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Signature :

iv



ABSTRACT

AN INTELLIGENT FUZZY CLUSTERING APPROACH FOR
ENERGY-EFFICIENT DATA AGGREGATION IN WIRELESS SENSOR

NETWORKS

Sert, Seyyı̇t Alper

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

May 2018, 127 pages

Technological developments have made the generation and usage of wireless sen-

sor nodes possible. Although an individual node is capable of gathering data alone,

these nodes generally cooperate to extract high-level semantic information from the

sensed region. Networks consisting such nodes are referred to as Wireless Sensor

Networks (WSNs). There is generally a balance between energy-efficiency and ac-

curacy, which are two desirable but incompatible features of these networks, because

of the resource-restricted nature of the utilized devices. The balance, which can also

be called the trade-off, is tried to be optimized by efficient algorithms that mostly uti-

lize manually-value-assigned parameters through trial-and-error processes. However,

this assignment process nearly always fails in finding the optimum blend of parame-

ters, renders the implementation vague and inapplicable for most cases, and generally

biases the obtained result.

In this dissertation, an Intelligent Fuzzy Clustering Approach for Energy-Efficient

Data Aggregation in Wireless Sensor Networks is proposed. The proposed approach
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is a distribution-agnostic approach that runs and scales efficiently for sensor network

applications. Additionally, along with the proposal, an optimization framework is

utilized to tune the parameters used in the fuzzy clustering process in order to opti-

mize the performance of a given WSN. This dissertation also includes performance

comparisons and experimental evaluations of the proposal with the selected state-of-

the-art algorithms. The experimental results reveal that the proposal performs better

than any of the compared protocols under the same network setup considering metrics

used for comparing energy-efficiency and network lifespan of the protocols. Besides,

along with the proposed optimized fuzzy network clustering protocol, an empirical

study on multi-modal object classification problem in wireless sensor networks is

conducted in detail and obtained results are presented as well in order to corroborate

the object classification accuracy aspect of the proposed protocol.

Keywords: wireless sensor networks, fuzzy clustering, optimization, multi-modal ob-

ject classification
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ÖZ

KABLOSUZ DUYARGA ŞEBEKELERDE ENERJİ-VERİMLİ VERİ
TOPLAMA İÇİN AKILLI BULANIK KÜMELEME YAKLAŞIMI

Sert, Seyyı̇t Alper

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Mayıs 2018 , 127 sayfa

Teknolojik gelişmeler, kablosuz duyarga düğümlerinin üretilmesini ve kullanılma-

sını mümkün kılmıştır. Her bir düğüm tek başına veri toplayabilmesine rağmen, al-

gılanan bölgeden yüksek seviyeli anlamsal bilgiyi çıkarmak için bu düğümler genel-

likle işbirliği yaparlar. Bu düğümlerden oluşan şebekeler, Kablosuz Duyarga Şebeke

(KDŞ)’ler olarak adlandırılır. Genel olarak, kullanılan cihazların kaynak kısıtlı ya-

pıları nedeniyle, bu şebekelerin arzu edilen ancak uyumsuz iki özelliği olan enerji

verimliliği ve doğruluğu arasında bir denge vardır. Pazarlık olarak da adlandırılabilen

denge, deneme-yanılma süreçleriyle çoğunlukla manuel değer atanmış parametreler

kullanan verimli algoritmalar ile optimize edilmeye çalışılmaktadır. Ancak, bu atama

süreci neredeyse her zaman, parametrelerin optimum bileşimini bulmakta başarısız

olmakta, uygulamayı belirsiz ve çoğu durum için uygulanamaz kılmakta ve genel-

likle elde edilen sonucu tartışmalı hale getirmektedir.

Bu tez çalışmasında, Kablosuz Duyarga Şebekelerde Enerji-Verimli Veri Toplama

için Akıllı Bulanık Kümeleme Yaklaşımı önerilmiştir. Önerilen yaklaşım, duyarga

şebeke uygulamaları için verimli çalışan ve ölçeklenen dağılım-bağımsız bir yakla-
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şımdır. Ek olarak, öneri ile birlikte belirli bir KDŞ’nin performansını optimize et-

mek için, bulanık kümeleme işleminde kullanılan parametreleri ayarlamada bir op-

timizasyon çerçevesi kullanılmaktadır. Bu tez aynı zamanda, seçilen son teknoloji

algoritmalarla önerinin performans karşılaştırmalarını ve deneysel değerlendirmele-

rini de içermektedir. Deneysel sonuçlar, önerinin, protokollerin enerji verimliliğini ve

ağ ömrünü karşılaştırmak için kullanılan metrikler göz önünde bulundurulduğunda,

aynı şebeke kurulumu altında karşılaştırılan protokollerin her birinden daha iyi per-

formans gösterdiğini ortaya koymaktadır. Ayrıca, önerilen optimize edilmiş bulanık

ağ kümeleme protokolü ile birlikte, önerilen protokolün nesne sınıflandırma doğru-

luğu yönünü doğrulamak için kablosuz duyarga şebekelerde çok kipli nesne sınıflan-

dırma problemi üzerinde ampirik bir çalışma ayrıntılı olarak gerçekleştirilmiş ve elde

edilen sonuçlar sunulmuştur.

Anahtar Kelimeler: kablosuz duyarga şebekeler, bulanık kümeleme, optimizasyon,

çok-kipli nesne sınıflandırma
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CHAPTER 1

INTRODUCTION

Technological developments have made the generation and usage of wireless sensor

nodes possible. Although an individual wireless node is capable of gathering data

alone, these nodes nearly always cooperate to extract high-level semantic informa-

tion from the sensed region. Networks of such nodes are named as Wireless Sensor

Networks (WSNs). These wireless nodes possess various components such as a com-

putation board, a communication interface, a circuitry for interconnecting the avail-

able components, and one or more power supplies. Required sensors demanded by

the application domain are integrated into these nodes prior to the deployment phase.

A reference component schema of a wireless sensor unit is depicted in Figure 1.1 [1].

Figure 1.1: A reference component schema of a wireless sensor unit [1].

In the sections of this chapter, the increasing utilization of WSNs together with sam-

ple application domains are initially presented. Then, capabilities of these networks

and faced challenges are discussed. Finally, the problem addressed in this dissertation

is declared. At the end of the chapter, the organization of this dissertation is provided.
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1.1 Wireless Sensor Networks

In fact, generation of very small wireless nodes and the collaborative working princi-

ple among them are the leveraging ideas behind WSNs [1]. It is possible to encounter

sensor nodes at varying sizes from a few inches to some meters. A deployed WSN

may contain a great number of these units according to the application domain and

devices may either be deployed densely or sparsely depending on the requirements.

When it comes to the deployment scheme of these wireless nodes, it can either be

randomly or manually. This decision is made considering the working environment

and according to the resources in hand.

Initial utilization aim of these early wireless nodes is for passive indoor applications.

The first generation of the wireless nodes has the capability to sense and gather low-

cost scalar data such as the location of detections, pressure, humidity, or temperature.

This is due to the completely restricted resources such as storage or computation ca-

pabilities. For this reason, the sole purpose of these first generation nodes is to deliver

obtained data to the demanded locations such as next-hop nodes or the base stations

(sinks). However, next-generation wireless nodes possess larger storage spaces, more

computation capabilities, and better or redundant power solutions when compared

to their predecessors. Geared with these augmented capabilities, their primary uti-

lization effort has also evolved from passive to active environments. In this respect,

field monitoring, healthcare delivery, military applications, disaster recovery, or even

industrial process controls become in the scope of usage areas.

Advances in technology and proliferation of user requirements have given birth to the

derivation of WSNs. Wireless Multimedia Sensor Networks (WMSNs) are among

the prominent derivatives of WSNs. WMSNs may include various types of wireless

units that are geared with abundant forms of sensing units. From this perspective,

in addition to scalar data, multimedia and/or multi-modal data become the focus.

In these type of networks, a phenomenon is not only measured through its scalar

features but also through its multi-modal aspects such as images, audio, and video

streams. A Multimedia or multi-modal content requires higher-bandwidth channels

when compared to scalar data that can be transmitted in a delay-tolerant manner. A

reference schema of a WMSN is described in [2] and can be depicted as in Figure 1.2.
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Figure 1.2: An exemplary schema of a WMSN: a) A homogenous single-tier network,

b) A heterogeneous single-tier network, c) A heterogeneous multi-tier network.

Similarly to WMSNs, Surveillance Wireless Sensor Networks (SWSNs) are among

derivatives of WSNs that generally possess multimedia capabilities targeting surveil-

lance application domain. SWSNs begin to proliferate as a result of incorporating

low-energy communication substructure with low-cost multi-modal content providers

such as seismic or acoustic sensors together with imaging cameras and microphones.

With these multi-modal augmented capabilities, WMSNs and SWSNs are able to ob-

tain, process, store, and correlate multimedia content which is highly consulted in

decision making.

1.2 Multi-Modal Content and Challenges

As generally is, there is a trade-off between the gain and the cost which enforces

the beneficiary to review the cons and pros of the subject matter. This is also the

case for multi-modal content in WSNs. Although multi-modal information is gener-

ally crucial for high-level semantic information extraction, it has an unprecedented
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acquisition, storage, and computation cost in this resource-constrained environment.

For this reason, preliminary design models implemented for WSNs, considering the

network stack and the expected requirements at each layer, need revisions for the

aforementioned derivatives of these networks in consequence of the characteristics of

multi-modal content.

The component structure of a multimedia node pretty much falls apart from that of a

scalar node and hardware restriction is the core constraint over the multimedia nodes.

Computation power, storage size, and short-endurance battery lifetime are among

the challenges and main disadvantages faced in these derivatives of WSNs. More-

over, data transmission requirements of multimedia or multi-modal content such as

expected Quality of Service (QoS) levels and bursty traffic are among the challenges

that need addressing in addition to hardware constraints.

Efficient storage and management of data in WSNs are other problems in the field.

Ordinary data storage design is not suitable for the derivatives of WSNs because of

the constrained physical structure of a sensor node in wireless multimedia networks.

Bearing in mind the restricted structure, implemented strategies in order to overcome

this difficulty divide into three approaches:

• In one of the approaches, wireless nodes possess little storage space so as to

efficiently utilize restricted energy resources and deliver obtained data immedi-

ately to the next-hop and let the receiving node have the burden. If the next-hop

node is not the destination, the process is repeated until data reaches the des-

tination where long-term storage and data processing take place. The reason

behind the first argument is that the final destination in these networks is gen-

erally the sink, and the sink mostly resides in a constraint-relaxed locations.

• Another strategy is to equip each wireless device with high-capacity and energy

efficient flash storage. Available approaches following this strategy struggle to

achieve a storage-centered network as depicted in [3]. The reason behind the

second argument is that consumed energy due to storage of data is insignifi-

cant when it is cross-checked with the transmission of data. For this reason,

energy consumption of flash storage devices targeting sensor networks is ex-

tensively evaluated to realize storage-centered networks and presented in [4].
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Tested device characteristics, flash consumption, sleep current and power-up

consumption are introduced in Tables 1.1-1.3, respectively.

Table 1.1: Tested Device Characteristics [4]

Manufacturer and Type Interface and Capacity Page Size Erase Block

Atmel (NOR Serial) SPI 512 KB 256 1

ST (Serial NOR) SPI 512 KB 256 256

Hitachi (MMC) SPI 32 MB 512 16

Toshiba (NAND Flash) 8-bit bus 16 MB 512 32

Micron (NAND Flash) 8-bit bus 512 MB 2048 64

Table 1.2: Consumed Energy by Flash Device (µJ) [4]

Read Write Erase Bulk Erase Total

NOR (Atmel) 0.26 4.3 2.36 N/A 6.92

NOR (Telos) 0.056 0.127 N/A 0.185 0.368

MMC (Hitachi) 0.06 0.575 0.47 0.0033 1.108

NAND (Toshiba) 0.004 0.009 N/A 0.004 0.017

NAND (Micron) 0.027 0.034 N/A 0.001 0.062

Table 1.3: Current in Sleep & Consumption in Power-Up[4]

Current in Sleep (µA) Consumption in Power-On (µJ)

Serial (NOR) 2 0

Hitachi (MMC) 84 1130

Toshiba (NAND) 5 0

• The final approach to be mentioned is hybrid implementations including the

pros of each aforementioned approach. The motivation behind the hybrid im-

plementation lies in the fact that each application domain has its own require-

ments and it should be possible to modify the utilized storage structure.

The aforementioned challenges lie in the internal structure of the wireless nodes.

Apart from these challenges, there are external challenges. Type of external chal-
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lenges stems from operation environment in which the nodes operate. The environ-

mental effects such as water, temperature, or pressure also have important effects on

the nodes together with typically cruel or hostile field conditions. One final clas-

sification of the challenges can be made in the application layer. Application level

challenges are the result of domain-specific usages. These summarized challenge

headlines are detailed in [5] as industrial application challenges in WSNs.

When multimedia streaming becomes the core focus, as in WMSN and SWSN appli-

cations, it necessitates additional attention due to low-bandwidth channels and time-

liness requirements. In this respect, additional challenges that need addressing lie at

the transport layer and in stream coding level and can be stated as follows:

• At the transport layer, transmission of an obtained stream from the generating

node to the destination is not an easy task. This is because the network may

contain broken paths, which are also referred to as holes. There are two types

of holes: static and dynamic. These holes may be caused by the improper

deployment of the available wireless devices, the dying of the nodes, or the

overlapping. A region that cannot be covered by sensing instruments because

of improper node deployment is referred to as a static hole, whereas a dynamic

hole is due to the overlapping of stream data in a densely deployed network.

• For the stream coding, restricted computational capabilities and low power lev-

els of sensor nodes lie at the heart of challenges that are faced.

In order to address transport layer challenges, it is studied thoroughly in the literature

since reliable and efficient data transmission is crucial in these networks, especially

when the transmission occurs in streams which are more energy consuming opera-

tions when confronted to scalar data. Among available studies, Two-Phase geograph-

ical Greedy Forwarding (TPGF) routing algorithm and its differences from Greedy

Perimeter Stateless Routing (GPSR) are evaluated in [6] and elected as to be men-

tioned here. However, in order not to degrade the readability of this introductory

chapter, elaborations are left for the big picture and literature survey chapter.
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1.3 The Problem

Although there are various attractive problems in the WSN field as of today as stated

in the previous section, this dissertation focuses on energy efficiency in data aggre-

gation problem. Expected from a WSN is to fulfill its defined task, whether it is

object detection, localization, tracking, or classification, in order to be useful for the

end user. In this respect, although data aggregation and the lifetime of the individual

nodes initially look relatively unimportant, in fact, they are crucial since they serve as

minimum requirements for the mentioned operations.

If a V-node wireless network is modeled by an V-vertex graph described by G, where

N and E are its nodes and edges between nodes as given in Eq. 1.1 and Eq. 1.2,

then a two-dimensional network topology matrix can be constructed using the node

coordinates as depicted in Table 1.4.

G = (N, E) (1.1)

N = {1...V} (1.2)

Table 1.4: Topology Matrix

V_Num 1 , 2 ... V

Coor. X (Xi) X1, X2...Xv

Coor. Y (Yi) Y1,Y2...Yv

Problem Given G as an input WSN, intelligently clustering the given WSN which is

efficient considering the energy aspect of data aggregation operations.

The main problem in this context arises from the resource-constrained operation ar-

chitecture and clustering approaches targeting WSNs are either sophisticated but not

lightweight or lightweight but not efficient enough to meet expectations. Additionally,

most available solutions targeting the efficient aggregation problem do not consider

the clustering and routing phases jointly which diverts the implementation far from
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being applicable in real-world scenarios. And finally, it is also valid to state that most

available solutions are fixed such that the evolving environment is not taken into con-

sideration in these processes. In the light of the clarifications made, sub-problems of

this dissertation considering the problem statement are as follows:

Sub-Problem 1 Designing an energy-efficient clustering methodology.

The designed clustering methodology should not only improve the energy-efficiency

in the process when it is compared against the available solutions but also should

not incur an additional cost which would enforce the beneficiary to prefer available

solutions to the designed methodology.

Sub-Problem 2 Designing an energy-efficient routing methodology.

The designed routing methodology should contribute to the energy-efficiency of the

aggregation operation carried out by the utilization of the designed clustering method-

ology and also should be computationally feasible under a resource-constrained sen-

sor network environment.

Sub-Problem 3 Flourishing the designed aggregation methodology with intelligence.

The intelligence aspect should mimic the behavior of humans in the decision pro-

cesses so that the data aggregation substructure suits to the requirements of the evolv-

ing environment.

1.4 Scope & Contributions

The main scope of the thesis concentrates on the design of an intelligent clustering

approach by performing a literature survey over the aforementioned sub-problems in

the context of WSNs. For the energy-efficient clustering problem, firstly, a two-tier

distributed fuzzy logic-based clustering protocol is proposed. For the energy-efficient

routing problem, it is tried to overcome in the designed clustering methodology as an

additional tier which extends a crisp routing protocol using fuzzy variables in path

determination process. Then, the designed approach is extended using the proposed

Clonal Selection principle-based optimization algorithm. In addition, the designed
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aggregation methodology is flourished with intelligence by considering the changes

in the deployment environment. Finally, proposed clustering methodology is empiri-

cally tested over multi-modal object classification domain in WSNs.

Considering the problem definition, related sub-problems, and scope of the thesis,

this dissertation has three primary aims and its contributions are as follows:

• An energy-efficient data aggregation approach is designed and proposed. In

this dissertation, a Two-Tier Distributed Fuzzy Logic Based Protocol (TTDFP)

for the purpose of addressing data aggregation problems is proposed. TTDFP

is a competitive and a fully-distributed protocol considering the lifetime re-

quirements of the WSNs. TTDFP does not require the inclusion of a central

decision-making point during any of its phases. This distributed operation ar-

chitecture protects the protocol from the single point-of-failure situations. In

the first tier, TTDFP decides upon the final CHs through an energy-based com-

petition of provisional leaders, which are primarily chosen by means of a prob-

abilistic model. Fuzzy clustering phase handles uncertainty occurring in the

clustering phenomena more efficiently than its crisp and fuzzy counterparts. It

should be noted that the focus of many studies in the literature is on energy-

efficient clustering and, to the best of knowledge, none takes the efficiency of

clustering and routing phases jointly into account. The fuzziness in the sec-

ond tier (Tier II) is a novelty which also enhances routing performance when

compared to its crisp counterpart.

• Developed data aggregation methodology is flourished with the intelligence

sugar in order to mimic the human behavior. An optimization framework is uti-

lized in order to tune the input parameters of the first tier in TTDFP rather than

using a trial-and-error approach to find the right blend of these parameters.

The optimization framework employs the Simulated Annealing algorithm to

tune the pair of parameters with the aim of optimizing the performance metrics

of WSNs. Additionally, the fuzzy output function of TTDFP is optimized by

designing and employing a Clonal Selection principle-based approximation al-

gorithm. And finally, Simulated Annealing procedure is triggered with respect

to the change in the number of alive nodes so that the algorithm modifies its
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input parameters according to the changing environment which, in turn, breaks

the fixed operation structure of the algorithm.

• The impact of the designed methodologies is assessed in a multi-modal object

classification problem of the WSN domain. A verification procedure consisting

multiple methodologies is implemented in order to test the real-world usabil-

ity and highlight the effect of the proposal. Additionally, the same optimization

framework that is used for parameter tuning is employed with the aim of obtain-

ing the approximate weights of sensor modalities in fusion rather than utilizing

an expert knowledge in the weighted averaging procedure.

1.5 Organization

This dissertation starts with the essential properties of WSNs. This initial part nor-

mally addresses an audience of novices to the WSN field. Thereafter, related in-

formation about WSN application challenges and multi-modal content together with

streaming issues are given. Then, the problem, scope, and contributions of this thesis

study are provided.

In Chapter 2, background, the framework of the research, and related work which

make up the big picture in the scope of the dissertation are presented. The motivation

behind the study is stated in Section (2.1). In Section (2.2), data aggregation con-

cept including clustering and routing aspects are introduced. Fuzzy logic utilization

in WSN applications is elaborated in Section (2.3). Thereafter in Section (2.4), op-

timization in WSNs including the selected sample algorithms (approaches) together

with their usage areas are presented. Object classification in WSNs is introduced

in Section (2.5); this section also covers related information about multi-modality

(2.5.1) and data-fusion (2.5.2) which concludes the chapter.

This guides the reader to Chapter 3 where a novel clustering methodology, entitled

Two-Tier Distributed Fuzzy Logic Based Protocol (TTDFP), is introduced and de-

scribed in detail. In this chapter, an overview of the methodology and system model

are covered in Sections (3.1) and (3.2), respectively. Section (3.3) presents exten-

sive information regarding the operation architecture of TTDFP. Since TTDFP is the
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applied methodology in the conducted empirical study presented in Chapter 5, com-

prehensive tests and analysis together with experimental evaluation of the approach

are covered in Section (3.4) of the chapter. Concluding remarks are also given in the

final Section (3.5) of this chapter prior to detailing into the type of optimization that

can be utilized for improving the performance of fuzzy clustering algorithms.

Chapter 4 encompasses information and related descriptions of the proposed fuzzy

optimization methodology for rule-based clustering algorithms which this disserta-

tion partly based upon. Presented are an overview in Section (4.1), the methodology

in Section (4.2) which is inspired from the Clonal Selection Principle (4.2.1) together

with its modified and proposed version CLONALG-M (4.2.2), and experimental eval-

uation (4.3). At the end of the chapter, in Section (4.4), brief remarks are provided.

The discussion of topics until Chapter 5 puts the background into words and provides

required knowledge for comprehending the empirical study in this chapter. Although

some parts of this chapter are still targeting the readers with restricted background on

clustering, optimization and multi-modality topics in WSNs, many crucial aspects by

the way they collaborate are blended into a more coherent representation in Sections

(5.3) and (5.4) of this chapter and also tested in a problem from the WSN domain

throughout the rest of the chapter.

The final chapter of this thesis, Chapter 6, consists of conclusions, discussion, and

foreseen future work which conclude the dissertation.
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CHAPTER 2

THE FRAMEWORK OF THE STUDY

In the course of this chapter, the conducted survey of the literature is presented in

a self-contained manner in order to clarify the big picture of the study. The survey

starts with the motivation behind and proceeds with depicting the design principles of

a generic data aggregation system in WSNs. This chapter is structured according to

several well-defined aspects of multi-modal object classification domain implemented

in WSNs. Additionally, a flow of general data fusion procedure which helps to exem-

plify the structure utilized in the empirical study on multi-modal object classification

system in Chapter 5 is also presented. The chapter elaborates into the descriptions of

the interacting variables of the WSN systems, which target multi-modal object clas-

sification domain, that serve as the building blocks of this thesis study and includes

citations to the state-of-the-art researches.

As shortly depicted in the previous chapter, technological developments enabled the

generation and utilization of wireless sensor nodes. Although a wireless unit is in-

dependently capable of gathering data, the deployed nodes generally collaborate in

order to extract high-level semantic information from the viewed region. Networks

of such nodes are referred to as WSNs. These nodes are powered by one or more

energy sources which cannot be recharged easily in most cases, there are emerging

energy harvesting methodologies though. As an apparent consequence, gearing these

wireless devices with lightweight energy-harvesting techniques is a hot study field

among researchers [7]. However, a great number of nodes in the market does not

readily possess this technology because of its current cost, which prevents the imple-

mentation of such available methods. In this sense, decreasing consumed energy by

the utilization of efficient approaches is still among primary aims to be achieved [8].
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2.1 The Motivation Behind The Study

Prior to the dissertation study, a number of crucial aspects together with related gaps

in the literature which must be investigated and addressed are identified if the interest

is in real-world implementation. In this respect, the identified gaps are the insuffi-

ciency in data aggregation considering the energy aspect, optimized and distributed

run-time behavior, and adaptability to the changing environment. It is valid to state

that when the identified gaps are bridged, it is envisioned that the real-world usability

of the studies in the literature becomes more concrete. For this reason, this study

struggles to fulfill these gaps. To put it briefly, efficiency in data aggregation op-

erations along with optimized and distributed computation necessities are the main

motivations behind this dissertation.

From the dissertation title point of view, the study includes issues on Data Aggrega-

tion, Fuzzy Logic, Optimization, and Object Classification in WSNs. Corresponding

sections regarding the survey of the literature are presented in the rest of this chapter.

2.2 Data Aggregation in WSNs

Data aggregation in WSNs tackles the compilation and delivery of data from gener-

ating wireless devices to the intended locations such as the base station (sink) where

it can be utilized for required purposes. In general, there can be different sources

of information and these sources are sensors geared onto wireless devices in WSNs.

There are several sensor types including thermal, vibration, seismic, Passive Infra-

Red (PIR), fluid, acoustic, and imaging sensor classes, and so on. From this perspec-

tive, different classifications of sensors exist in the literature and the major classifi-

cation method relies on the internal principles of the sensor in hand. Because of the

fact that the energy consumption of a single wireless node is utterly important for the

whole network lifespan, it is a smart decision to utilize those types of sensors which

demand or require the least energy. Seeing that the so-called data aggregation opera-

tion is based upon both the delivery and the compilation of data, routing approaches

on top of clustering methodologies in this perspective provision energy-efficient in-

frastructure for the demanded task, respectively.
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2.2.1 Network Clustering

Clustering is an advantageous procedure that can categorize sets of alike subjects

(objects in hand) into piles or bunches, which are hereby referred to as clusters, in

the given space. The subjects that are the members of a specific cluster are more

alike to each other than those subjects in distinct clusters. A representative snapshot

of a clustering procedure is denoted in Figure 2.1, where (a) captures a scene from

the input subjects to be grouped and (b) presents the obtained clusters from the same

scene. The subjects that are left ungrouped are not more alike to any subject in one

cluster than in another cluster. Here, it is noteworthy to state that the subjects in the

snapshot are clustered with respect to their locations on the two-dimensional space.

Figure 2.1: A representative snapshot of clustering.

In accordance with the clarifications made for clustering in general, deployed wire-

less devices in a WSN can be split into clusters. Although there are variations in

specific application domains, in general, there exists a single cluster-head (CH) and

sometimes one but rather more member nodes in each cluster. In the literature, CHs

are also sometimes referred to as leaders since they lead data compilation process

from member nodes then deliver obtained data to the intended localities. With the use

of clustering techniques, the demanded performance can be provisioned [9][10] and

the network scalability can also be augmented [11]. Additionally, there are further

pros of clustering such as conservation of the restricted bandwidth, stabilization of

topology, and preservation of energy [12].
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The necessity of clustering in WSNs arises from various demands like reducing the

amount and length of relayed packets and provisioning effective handover techniques

to these packets. In the literature, there exist several studies clustering methodologies

for sensor networks. In the upcoming parts, the main distinctive properties of se-

lected prevalent clustering approaches are briefly discussed. However, an exhaustive

analysis concerning clustering categories can be found in [13].

Local decisions are promoted to elect CHs in Low-Energy Adaptive Clustering Hier-

archy (LEACH) [14], which depicts the protocol as a distributed algorithm. A prob-

ability model is utilized in its CH election phase. Data compression is performed by

CHs in LEACH prior to sending packets to the base station. However, the operation

of LEACH is not efficient due to its negligence of the remaining energy-levels of

nodes.

The Hybrid Energy-Efficient Distributed (HEED) protocol is based upon the equal

node assumption [15]. Parameters like energy, node degree, and distance are con-

sidered in two phases to elect CHs. However, HEED bears the hotspots problem in-

herently and results in an unbalanced energy consumption since it has an inclination

towards generating more clusters than necessary [13].

Due to the inexactness in WSNs, like most application domains, various clustering

algorithms such as [16] and [17] utilize fuzzy sets to cope with uncertainty. In the

study of [16], the selection of CHs is done in the base station, which promotes this

approach to be a centralized one. Cluster-Head Election mechanism using Fuzzy

logic (CHEF) [17] is an alike proposal. However, the inclusion of the sink in the CH

selection is not required.

Methodologies like the aforementioned ones experience the hotspots problem since

they incline to compose equal-sized clusters in WSNs. Unequal clustering techniques

are proposed so as to serve as a cure to the pitfalls of equal clustering studies. The

basic motivation behind unequal clustering is the distribution possibility of energy

consumption through efficient cluster-size adjustment. This situation differentiates

the impact of inter and intra-cluster energy consumption pursuant to the distances of

CHs with respect to the base station.
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The properties of Energy-Efficient Unequal Clustering (EEUC) are its distributed and

competitive operation mechanisms. Each node has an assigned competition radius in

the protocol and local competition determines leaders [18]. As nodes get closer to the

base station, their corresponding competition radii are reduced. Global data-gathering

in EEUC results in increased energy cost and degrades the network efficiency, but it

improves the network lifespan when compared to both HEED and LEACH [13].

The Multi-Objective Particle Swarm Optimization (MOPSO) protocol attempts to

optimize the number of clusters generated together with the consumed energy [19].

The specific design of MOPSO is based on mobile networks and hence ignores the

location of the nodes with respect to the base station, which causes MOPSO to be

liable to the hotspots problem.

Multi-Objective Fuzzy Clustering Algorithm (MOFCA) is introduced to address the

energy hole and the hotspots problems and increases the lifespan of WSNs [20]. It

is a semi-distributed algorithm and struggles to solve the energy hole and hotspots

problems with its fuzzy and distribution-agnostic approach. However, it does neither

pursue an optimization framework nor an efficient operation considering the routing

of the relayed packets.

Density-based Energy-efficient Clustering Algorithm (DECA) utilizes two parame-

ters in clustering, namely the density of each node and energy levels [21]. DECA,

like some aforementioned algorithms, does not take the node locations into account

and cannot address depicted problems.

Dynamic Power Control Clustering (DPCC) methodology is based on multi-packet

receipt technique [22], in which an interference cancellation algorithm in the sink is

implemented. Although the study proliferates the clustering phenomenon with the

interference cancellation approach, it is a centralized algorithm and does not fit into

the requirements of WSNs since the cancellation algorithm runs on the base station.

Another related study is a fuzzy logic-based clustering algorithm using super CHs,

which extends the lifetime of WSNs [23]. Here, a super CH is selected among CHs,

and only this super CH can send packets to the sink. However, it is designed for direct

communication and comparisons are only drawn against LEACH.
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2.2.2 Packet Routing

Most depicted clustering algorithms of the previous subsection put emphasis only

on the CH selection and do not consider how aggregated data is relayed to the sink,

despite the fact that the efficiency of aggregation also depends on routing efficiency.

Routing of the packets in a sensor network operates dissimilarly to traditional routing:

Firstly, links are unreliable and there is generally no infrastructure due to some ad-

hoc nature. Secondly, node failure-ratio is quite high and the next-hop node may

not operate properly. Finally, energy conservation is a must and considered among

primary goals.

Overall, wireless routing algorithms can be categorized into two as single-hop or

multi-hop routing protocols with respect to the communication scheme. In single-

hop communication, generated packet is directly sent to the receiving node without

any intermediate node. Due to this feature, they are also known as direct commu-

nication protocols. These protocols are not suitable to be utilized for most sensor

networks due to energy conservation requirements together with transmission range

barriers. For this reason, multi-hop communication is often preferred over the direct

transmission. However, there exist exceptions to this case which are beyond the scope

of this dissertation.

In general, routing protocols in sensor networks can be categorized into three as flat,

hierarchical, and location-based routing with considering the network structure. In

the case of flat routing, nodes are equally important or have more-or-less equal func-

tionality. In the case of hierarchical routing, which is the case for clustering, nodes

possess different roles such as the generating node, the intermediate node (as in the

case for CHs), or the final destination node (as in the case for the sink). In location-

based routing, node locations over multi-dimensional space are utilized in order to

efficiently route data in the network. Although there are various proposed method-

ologies considering each different category in the literature, elaborations are not pro-

vided in this subsection since routing itself is a broad topic. Additionally, it is valid to

state that this dissertation focuses on hierarchical routing which is a type of multi-hop

routing protocol. However, a detailed survey about the main routing protocols resides

in [24] for further investigation.
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In a WSN, it is possible to control the topology of the network, which is referred

to as "topology control", by transmission range adjustment and/or specific message-

forwarding node selection. This behavior can truly control the neighbor set of a node

in a WSN [25]. Topology control directly relates to packet routing since the routed

packets follow the established topology. There exist two major topology control cat-

egorizations which are homogeneous and non-homogeneous ones [26]. In homoge-

neous systems, transmission ranges of all the nodes are fixed and the same. However,

in heterogeneous counterparts, nodes with differentiating transmission ranges exist.

Following the clarifications made in the previous paragraph, it is valid to state that

clustering is also regarded as a way of controlling the topology since the primary

aim is the organization of a network for the purpose of load balancing among nodes

and extending the network lifespan [27]. In clustering, since member nodes are only

allowed to send aggregated data to their CHs, there is no parameter like k-connectivity

for leaf nodes; however, CHs may route data to the sink/s in a multi-hop manner where

this parameter become crucial if the task is a mission-critical one.

In the literature, there are studies dealing with topology control problems. Specifi-

cally, the studies like [28], [29], and [30] are dealing with the power adjustment in

the transmission which relies on the capability of nodes to adjust their transmission

power. Similarly, the studies like [31], [32], and [33] utilize sleep schedule with the

aim of decreasing the consumed energy when nodes are idle. There also exist other

studies that employ geometrical structures, direction and location information for

controlling the topology. Moreover, combinations of the mentioned methodologies

are also possible [34] [35]. There exists prior work trying to achieve k-connectivity

of any two nodes or between sensor nodes and super-nodes in heterogeneous sensor

networks [36]. However, to the best of knowledge, none focus on or seek a more

efficient transmission path than the available ones in a clustered environment.

2.3 Fuzzy Logic

A Fuzzy set is a set which consists of elements with differentiating degrees of mem-

bership. In the classical, also known as the crisp set theory, element membership
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degrees are evaluated in binary terms, an element is either a member of the set or not.

In contrast, fuzzy set theory enables the fractional evaluation of the element member-

ships. This fractional evaluation is performed with the utilization of a membership

function valued in the real unit range [0, 1].

A fuzzy set is the generalization of a crisp set because the membership function of

a fuzzy set is the generalized version of an indicator function in a classical set [37].

There is an ever-increasing utilization of the fuzzy set theory in the literature seeing

that it can be used in various fields such as robotics, dynamics, or monitoring where

information is not complete, precise, or determined. The WSN field is among these

domains due to inexactness of the operational nature of the wireless nodes.

The definition of a fuzzy set Ā is presented in mathematical terms in Eq. 2.1. In the

equation, an element of the fuzzy set is depicted as x and the membership degree of

the element x to the set Ā is depicted as µ(x).

Ā = {x, µ(x) | x ∈ X} (2.1)

Major objectives of fuzzy sets are depicted in [38] and put forward as follows: inexact

modeling, generalization (also known as relaxation), complexity reduction (compacti-

fication), and meaning preserving reasoning with the use of linguistic approximation.

In the WSN research, fuzzy sets are mostly utilized in clustering, object detection,

classification, and data fusion oriented proposals generally through applying linguis-

tic approximation.

Although there are various studies on network clustering and the operation can be

done either following a crisp approach or a fuzzy methodology, a significant number

of studies propose fuzzy-based solutions to the clustering problem due to the power of

fuzzy logic for effectively handling inexact values. The fuzzy-based methodologies

are found to be superior to their crisp counterparts, especially when the number of

clusters or the boundaries among them are uncertain. Additionally, fuzzy logic is

utilized to produce solutions to a wide range of problems in different domains since it

provides flexible solutions. However, the success of the solution greatly depends on

the internals of the logic controller.
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Fuzzy rule-based systems utilize fuzzy logic as a means of knowledge representa-

tion about the problem and model the correlations together with interactions existing

among its variables. Rule bases are generally represented using matrices or tables

and a generic form of a rule-table is given in Table 2.1. These rules depict the in-

teraction between variables and generally lie in the fashion of IF (a) and (b) and (c)

T HEN (R1), which means that for example IF weather is COLD (X1) and light is

LOW (X2) and weight is LIGHT (X3), T HEN the OUTPUT value of the function is

(Y1). In these systems, rules are evaluated by using a controller as an inference tech-

nique and a known method such as the Center of Gravity (COG) technique for the

defuzzification of linguistic functions.

Table 2.1: A Generic Rule-Table

X1

Input Ling. Var.

#1

X2

Input Ling. Var.

#2

X3

Input Ling. Var.

#3

Y

Output Ling.

Var.

Cold Low Light Y1

.... .... .... Y j

Warm Medium Normal Yk

.... .... .... Ym

Hot High Heavy Yx

2.4 Optimization in WSNs

In this section, some of the basics of optimization and how it is used in WSN con-

text in the literature are presented in accordance with the general framework of the

dissertation.

In mathematics, optimization is a decision problem on the best element from an avail-

able set of alternatives considering one or more criterion [39]. An optimization prob-

lem is a maximization or minimization of a real function through the consistent choice

of a set of input values from a range of values for each function parameter. A formal

definition of an optimization problem can be stated as follows:

Definition (Optimization) Given f : D → R, where D is a domain of vectors of the
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form < x1, x2,...,xn > and each xi has a range of feasible values, then optimization is

the procedure of determining an element xopt ∈ D, such that f (xopt) ≤ f (X),∀X ∈ D.

In the definition, the f is named as an objective function and a feasible solution that

the objective function can reach is named as an optimal solution.

2.4.1 Intelligent Clustering: What to Optimize?

As a term, Intelligent Clustering refers to the usage of Artificial Intelligence (AI)

techniques in the process of clustering. In fact, this is true in most cases. In the

literature, there are abundant studies using AI techniques in the clustering process.

However, in this dissertation, it possesses the meaning of less-intervention of humans

in the clustering process parameter value assignment rather than the utilization of AI

in the clustering process itself.

Decreasing the number of CHs in a WSN is among vital problems in order to reduce

contention of the channel and to increase the algorithm efficiency when realized at

CH level. There are few studies including intelligence in the clustering process in the

same respect as we do, the others differ in their approach. In [40], authors propose a

Self Organizing Sensor (SOS) network which does not necessitate many user-defined

inputs because of being based upon an intelligent clustering methodology. However,

although they refer to their study an intelligent approach, their study includes user-

defined parameters and authors manually assign values to the defined parameters. In

[41], authors propose a Genetic Algorithm (GA)-based method in order to offer a so-

lution to a problem of network optimization. Their approach utilizes a GA for the

clustering process itself, not for the manual parameter assignment problem. As stated

previously, in our proposal, intelligence possesses the meaning of less-intervention

of humans in the clustering process parameter setting, not the clustering process it-

self. In this respect, this intelligent point of view can be utilized in two distinct and

generally not related parameter sets in the WSN context:

• Algorithm-Dependent Parameters: Most algorithms in the literature possess

various input parameters for the clustering process itself. This parameter set

may consist of parameters such as remaining energy level, distance to base
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station, or density of a given wireless node. In the calculation of the values

of output parameters such as the chance, probability of a wireless node to be-

come CH, the depicted parameters are utilized. Seeing that these parameters

are algorithm-dependent, they may be employed in some algorithm, but not in

another algorithm. There is no general way of determining the presence of a

parameter in a given algorithm since the same parameter might be utilized un-

der different names or aliases. In this regard, each different algorithm assigns

various values to these input parameters in an effort to obtain the output param-

eter value. This process is executed almost always in a trial-and-error manner,

and whenever a suitable combination of the input parameters is encountered in

the process, this combination is employed for the evaluation of the algorithm.

This situation generally biases the final result and contribution of the study.

• Algorithm-Agnostic Parameters: There are parameters, such as tolerance and

connectivity, which may be valid for the whole network. All nodes must adhere

to this property. These parameters can be independent from the utilized algo-

rithm and may be referred to as algorithm-agnostic parameters. The determina-

tion of the values takes the form of a brute-force search, which is exponential

in a computational point-of-view in the average case.

In the scope of this dissertation, the focus is on optimizing the algorithm-dependent

parameters. Because, to the best of knowledge, once the optimization methodology

is decided, it is quite straightforward to adapt the operation of architecture from one

parameter set to another.

Designing a rule-based fuzzy logic system as depicted in the previous section covers

the definition of fuzzy sets that are generally depicted by membership functions and

rules. As soon as the fuzzy system is designed, one of the foremost problems to

handle is to establish the optimal placement of these described membership functions.

In general, most membership functions in fuzzy control systems are presumed to be

triangular or trapezoidal in shape and linear in a computational manner. For this

reason, the actual problem is to decide on the value of the variables that characterize

the shapes of these functions. If a suitable representation can be chosen, then the

membership function approximation is reduced to a discrete optimization problem
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that could be modeled by using parameters in general.

The parameters that define the shape of fuzzy output functions in rule-based cluster-

ing algorithms are usually obtained from a field expert or generated automatically.

Therefore, it consumes a considerable amount of time to determine the shape of these

functions together with the tuning operations, and it is often impractical to design

the optimal fuzzy system in detail. Various search algorithms are proposed in the

literature with the aim of improving the behavior of fuzzy systems.

Genetic Algorithms (GAs) commence with an initial population of randomly con-

stituted solutions (chromosomes) and moves toward better chromosomes with the

modeled use of genetic operators in nature. For any given problem, GAs maintain a

population of chromosomes and this population endures evolution through natural se-

lection. Relatively better chromosomes give offspring to reproduce in order to replace

relatively worse chromosomes which die in every generation. Fitness function serves

as the environment which discriminates between better and worse chromosomes.

GA is employed the first in [42] for the specification of membership functions. In that

study, authors apply GA in order to model a Fuzzy Logic Controller (FLC) for a prob-

lem. Two examples are presented in the study: an adaptive and a non-adaptive GA-

designed controller where membership functions are transcribed in real time. There

are membership functions which follow Gaussian distribution and the fitness func-

tion is a minimization which minimizes the difference between the center of the track

and the cart. Similarly, [43] also studies the cart problem. In that study, authors

follow a holistic methodology by utilizing GA in the system. Meredith et al. apply

GA in order to fine-tune the membership functions in an FLC of an air vehicle [44].

Cheng et al. [45] choose image thresholds through the minimization of the measures

of fuzziness. In that study, authors employ peak locations that are obtained from

the histogram using peak selection criteria in an image segmentation problem for the

automatic determination of fuzzy function bandwidths.

Self-Organizing Feature Maps (SOFMs) are a kind of Artificial Neural Networks

(ANNs) which can be trained by utilizing unsupervised learning methodologies in

order to generate a low-dimensional discretized exemplification of the input training

samples. The mapping is done from the input to output space and the representation
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is called a map. For this reason, they are utilized as a method to conduct dimen-

sionality reduction. SOFMs employ competitive learning and utilize a neighborhood

function in order to maintain the topological features of the input space, which dis-

tinguish them from remaining ANNs that employ error-correction learning by using

methods such as back-propagation. As one of its examples, Yang et al. [46] delin-

eate a methodology in order to produce fuzzy membership functions utilizing SOFM.

Their methodology is applied to a pattern recognition problem.

Tabu Search (TS) is a meta-heuristic search methodology which uses local search

approaches utilized for mathematical optimization. TS gets a possible solution to a

problem and inspects its immediate neighbors with the aim of finding a better solu-

tion. Because of its local search features, TS has an inclination towards suboptimal

regions or on plateaus where many solutions are equally fit, which cause it to be-

come stuck in local minimums or maximums. In the study of [47], an approach for

determining membership functions sing TS is proposed. Additionally in the study

of Cerrada et al. [48], an approach that allows the integration of the attitude of the

system parameters with fuzzy membership functions is proposed.

In the light of aforementioned methodologies, it is wise to state what Clonal Selection

(CS) is, since it is the principle adopted in the proposed optimization methodology in

Chapter 4. CS is utilized in order to elucidate the main properties of an immune re-

sponse to an antigenic stimulus. It is built upon the concept that solely the cells which

are susceptible to identifying a stimulus eventually multiply and diversify into effector

cells, therefore are chosen when compared to those that are not. Hyper-mutation and

affinity proportional reproduction are among the main principles of the theory. The

greater the affinity is the greater number of offspring produced. Every cell undergoes

a mutation throughout reproduction which is inversely proportional to its affinity with

the antigen. When compared to GAs, a standard GA does not preserve these immune

properties that the Clonal Selection does [49]. When it comes to CLONALG, it is

an exemplary CS algorithm and essentially formed to tackle unconstrained optimiza-

tion problems, especially for combinatorial and multi-modal optimization. Antigens

are exemplified by the fitness function, and antibodies are exemplified by the candi-

date solutions. CLONALG is primarily cultivated to conduct pattern recognition and

machine learning tasks and then applied to the optimization problems [50].
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2.5 Object Classification in WSNs

Detection and localization are two related procedures performed about a phenomenon

when the major goal is object classification in a WSN. Firstly, detection, or sometimes

referred to as discovery, of an object is done through the use of sensors. Then, the

location of the object is acquired, and thereafter the recognition (identification) pro-

cess commences. In this respect, classification is a convenient process employed for

the recognition of an object. In classification, the detected object is categorized with

respect to its features and the target types or classes are generally defined prior to

the deployment phase after a learning cycle which is referred to as training of the

network.

Although localization and classification of objects are based upon distinguishable

features, the process of classification could occur between arbitrary boundaries with

respect to the problem domain and generally independent of detection. In a technical

point-of-view, detection either occurs or not, that’s to say, ambiguity is not an option,

perhaps a variable with True or False boolean values. Available features of an object

are extracted by the utilization of extraction methodologies and these features are fed

into classification process. In general, WSNs are trained offline and discriminative

features of the target classes are introduced to the network for accurate classification

of objects into predefined classes. The classification process could take place in a

leaf node, where the real detection occurs, at an intermediate node, at the sink(s)

where the restriction on resources is not as tight as the other nodes mostly, or with the

collaborative effort of these distinct type of nodes. If the context is sensor networks, it

is possible to extract depicted discriminative features by utilizing single or multiple-

modalities for the classification process. Here, it is wise to elaborate on the details of

multi-modality which would enlighten the object classification path.

2.5.1 Multi-Modality

In this dissertation, the vocable “modality” is utilized in a meaning-preserving sense

from the semiotics domain. In this domain, this vocable is described as follows:

Definition (Modality) A modality is a certain type of information encoding for rep-
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resentation purposes. A particular class or type of representation format in which

information is stored is meant by the use of the word "modality". [51]

In the definition, modality is ambiguously put forward and needs elucidation. Various

definition efforts are encountered in the literature and the source of information aspect

is seen to be adopted in the domain of object classification. Objects are represented by

their features. Each feature can be regarded as a distinct modality at one extreme and

the combination of all features can be regarded as one modality at the other extreme

[52]. A trade-off can be found by clustering the features with respect to defined

criteria.

The choice of modalities in the WSN community is performed with respect to one of

the mentioned possibilities. However, there exists no definite evidence about which

method of feature combinations offer the expected result [52]. In sensor network

context, each sensor type can be depicted as a modality due to its distinctive source

of information property. From this perspective, multi-modal object representation

in the WSN context can be done using a different type of sensor such as velocity

(accelerometer), seismic, vibration and/or acoustic sensors. If the application type in

the sensor network targets multi-media or surveillance applications, these depicted

scalar sensors can be augmented with camera (imaging) sensors. Due to the fact that

there exist various types of sensors employable in sensor networks other than the

depicted ones here, the aforementioned are chosen with respect to their profoundness

in today’s WSNs.

In studies targeting object classification in the literature, the multi-modality subject

frequently appears in biometrics or multimedia domains since these fields of research

utterly utilize the multi-modality property to be able to represent and reveal the struc-

ture of the complex data. For instance, humans are recognized and differentiated

according to physical and behavioral characteristics in the biometrics domain. Since

recognition by the use of a single trait is rarely possible or enough, each trait is re-

garded as a different modality. More or less the same situation is valid for multimedia

usages in WSN context targeting surveillance applications.

If multiple-modality is the case for various sensors in the domain, then the object

classification process may achieve higher accuracy results when the combined effort
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among available modalities are utilized. However, the vital point here to be taken into

account is the computational complexity and the energy-efficiency of the integration

process.

2.5.2 Data Fusion

Fusion can be expressed as the composition of multiple source defining the same en-

tity into a single but more coherent, accurate, and beneficial state. The utilized data

can either be in the raw or processed state as in the case of knowledge/information.

The fused data generally provides a more informative representation of the subject

matter than that provisioned by any single source. Data fusion is a tempting pro-

cess since it is applied for better understanding the complex structure of the entity.

A similar expression "information fusion" is sometimes utilized interchangeably for

data fusion, or also some other times utilized in order to distinguish the fusion of

information (a form of processed data) from the fusion of raw data.

In the WSN context, data fusion is among hot topics recently since it has abundant

usage areas. What makes data fusion alluring for WSNs is its impact over energy-

efficiency. In other terms, the primary duty of most WSNs is data aggregation and

the so-called collected data can be compacted largely by using fusion techniques,

which in turn, decreases energy consumption in data transmission, where resource-

constrained nature is an inherent pressure over energy-powered nodes. Although

there are various and sometimes completely intriguing definitions of data fusion, the

adapted definition in this dissertation can be found in [53]. A flow of common data

fusion procedure implemented in most sensor network applications is presented in

Figure 2.2.

The "source" component of the procedure depicted in Figure 2.2 can be in any of

the modalities such as sensors or features. The primary reason for fusion strategies

applied in WSN applications can be said as energy-efficiency and accuracy issues,

which are also the direct results of working with combined sources. The reasons

below are the main arguments in order not to rely on a single source:

• Fusion of supplementary data ensures a more descriptive exemplification of the
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Figure 2.2: A flow of general data fusion procedure.

subject matter. Additionally, when different fusion sources consist of redundant

data then inexactness or vagueness of a decision decreases. Thus, robustness

and reliability of a possible decision increases [54],

• One of the functional benefits of data fusion resides in its unreliable source

filtering property. In real life applications, it is often unknown to deduce the

performance or added value that is brought by additional modality at the design

time. Not only performance but also the reliability of a modality cannot be

predicted correctly in real-world environments. For this reason, dependency on

any of the available modality or their weights on the overall result can together

be decreased [54],

• Noise is an undesirable property which may cause incorrect classification re-

sults. Multiple sources in this respect can operate as a filter and decrease the

effect of noise on the result [51],

• While no source is impeccable, the collaborative effort among them generally

produces better results hence improving usability [55],

• Each source has an implicit upper bound on the overall performance. There-

fore, no system performance can repeatedly be tuned through modifying its

components or operation steps [56].
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2.5.2.1 Fusion Methodology

The algorithm utilized for the combination of input sources is referred to as "Fusion

Methodology". There exist extensive proposed research in the literature and exper-

imentally evaluated in the context of fusion. However, there is no consensus on a

superior methodology among researchers regardless of the application domain [57].

The prediction of whether or not a combination to perform superior is difficult, and

from this perspective, no clear preference can be made over a combination methodol-

ogy [58].

Available algorithms in the literature proposed in the context of fusion can be di-

vided into two main categories: trained and non-trained approaches. Trained ap-

proaches are mostly not preferred for WSNs due to their dependency on training

data. Non-trained approaches are based upon voting and linear aggregation method-

ologies. Among these, minimum selection, product aggregation, maximum selection,

sum aggregation, majority voting, weighted averaging, linear combination, and con-

catenation are highly utilized ones. The success of the depicted methodologies lies in

their operation simplicity.

There are three widespread operation architectures (modes) of a fusion system. These

are: serial architecture, parallel architecture, or hybrid, also referred to as hierarchical,

architectures. Each depicted architecture defines the way in which available sources

utilized in a fusion. In a serial architecture, sources are combined incrementally while

in a parallel architecture they are combined at once (in parallel fashion). In hybrid

implementations, sources may be divided into layers (levels) and at each layer, se-

lected sources are utilized in parallel, serial, or in a combined manner of these two

modes. Rather detailed explanations about these architectures are as follows:

• The combiner is utilized in more than one step in a serial operation mode. In

any step, one remaining source from the available inputs is fused with the output

of the former step. The result of a former step is typically utilized in order to

straighten the number of possible outputs prior the utilization of another source.

• The combiner is utilized at once in a parallel operation architecture. There ex-

ists only a single fusion step. For this reason, fusion is performed over available
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source without the need to wait for other sources, if exists, to arrive. The best

case where a parallel scheme can be utilized is the case when all input modali-

ties are accessible at once at the time of fusion.

• Both aforementioned architectures are employed in a hybrid implementation as

the name suggests. For this reason, there surely exists mode than one fusion

step in this type of schemes. In each step, one or some of the sources are fused

in parallel and the output is fed forward to the following step.

2.5.2.2 Fusion Design

Apart from the fusion methodology, there exists a categorization of fusion systems

with respect to the time where the classification of a phenomenon is conducted: Early

Fusion and Late Fusion.

Typically, the fusion conducted by a system is referred to as early when the fusion

algorithm is applied prior the classification process. The reason behind early fusion

is that the obtainable information prior to classification is considerably more than late

fusion due to the unprocessed or unclassified data access. Although it is more feasible

to uncover hidden relations existing among different sources (modalities), it is also

a computation-intensive task which consumes much more energy. Additionally, a

great amount of training data is required in order to train such a system. Therefore,

early fusion is commonly known as an effective but also a complex type of fusion

[54], [59]. A representation of an early fusion structure is presented in Fig. 2.3. In

the figure initially, feature extraction from the sample is performed. Then, extracted

features are utilized directly in the fuser (combiner) without any prior classification

process. Finally, a learning methodology is performed right after the fusion of inputs.

Furthermore, the fusion, when performed after the classification process, is referred

to as late fusion. Unlike early fusion, this type of fusion is uncomplicated since

results of prior classification processes are utilized, which is much more interpretable.

On the other hand, available information is much restricted than early fusion due to

unavailability of raw data. Moreover, the chances in order to effectively correlate

results are low. Therefore, this type of fusion is computationally less complex but
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Figure 2.3: A representation of an early fusion structure.

also less effective in the overall result [54]. A representation of a late fusion scheme

is demonstrated in Fig. 2.4. As opposed to an early fusion scheme presented in Fig.

2.3, the final decision of a system can only be made either by a simple aggregation

approach or by an higher-level learning methodology [60].

Figure 2.4: A representation of a late fusion scheme.

According to the clarifications done, early fusion can also be referred to as fusion of

values whereas late fusion can be referred to as fusion of decisions. Each approach

has its own pros and cons and has distinct application areas. It should also be noted

that the overall computational complexity of a late fusion architecture can also be

quite high depending on the computational complexities of each classifier utilized in
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the process. Although the implementation of fusion is considerably easy, the depicted

computational complexity problem may deter the operation of a late fusion scheme.

In the light of aforementioned reasons, it is valid to state that transmission data vol-

ume can be reduced with the use of fusion techniques in data aggregation scenarios.

In accordance with the data volume reduction, energy consumption can also be de-

creased on a large scale. Moreover, as a direct effect, total network lifespan increases

because there exists a larger number of operating nodes at some time t at the network

when it is compared against fusion-less data gathering methodologies.

Moving object detection, event recognition, clustering or classification of objects are

among the widespread utilization fields of fusion. A sample study utilizing fusion for

detecting targets in a distributed manner resides in [61]. In the study, a description of

a Fusion Center (FC) is provided and outputs produced at sensor-level are fused at the

depicted FC. As depicted in the study of [62], cluster-based fusion, where nodes form

clusters and data is fused at cluster heads (CHs), is an important fusion methodology.

In the literature, the effect of data fusion over detection delay in real-world scenar-

ios is studied and presented in [63], which depicts the improvement considering the

performance requirements such as short detection delay in real time scenarios. There

are various approaches regarding where and how to apply the fusion process and [64]

presents aggregation tree based methodologies together with related processing tech-

niques among these approaches. A detailed classification of aggregation approaches

in the domain of WSNs and data fusion can also be found in [65] and [66], respec-

tively.

To summarize, the background information covered in the sections of this chapter

directly relates to the proposed methodologies covered in the upcoming chapters.

This concludes the framework and the big picture of this dissertation.
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CHAPTER 3

A TWO-TIER DISTRIBUTED FUZZY LOGIC BASED PROTOCOL

(TTDFP) FOR DATA AGGREGATION

In this chapter, a two-tier distributed fuzzy logic based protocol in order to improve

the efficiency of data aggregation operations in multi-hop WSNs is proposed. Clus-

tering is utilized for efficient aggregation requirements in terms of consumed energy.

In a clustered network, member (leaf) nodes transmit obtained data to cluster-heads

(CH) and CHs relay received packets to the sink. This CH-generated transmission

occurs over other CHs in multi-hop wireless networks. Due to the adoption of a

multi-hop topology, hotspots and/or energy-hole problems may arise.

Although the main focus of many studies in the literature is on energy-efficient clus-

tering, to the best of knowledge, none takes the efficiency of clustering and routing

phases jointly into account. The proposed protocol is distribution-adaptive that runs

and scales efficiently for sensor network applications. Additionally, along with the

two-tier fuzzy logic based protocol, an optimization framework is utilized to tune the

parameters used in the fuzzy clustering tier in order to optimize the performance of a

given WSN.

This chapter also includes performance comparisons and experimental evaluations

with selected state-of-the-art studies. Obtained experimental results reveal that pro-

posed protocol performs better than any of the other protocols under the same network

setup considering metrics used for comparing energy-efficiency and network lifespan

of the protocols.
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3.1 Overview

In clustering, efficiently selecting cluster leaders can significantly decrease consumed

energy. For this reason, there is an ongoing thorough study concerning selection

mechanisms in the literature. The most common point of the proposed solutions is

the utilization of a two-stage process: in the first stage a CH with more energy is

selected, and then in the second stage leadership is transferred among member nodes

with the aim of balancing consumed energy. This common point actually retains two

crucial hidden pieces of knowledge:

• Some of these methodologies like [14] and [16], which will be detailed in the

next section, lack other necessary relevant information such as the location or

connectivity of a node that can be utilized as input parameters in the clustering

process or possess a centralized operation architecture. For this reason, the final

clusters cannot meet the expected efficiency demand. Additionally, because of

not taking the position of each node into account, the hotspots or the energy

hole problems may arise in WSNs. The hotspots problem is related to the

premature death of the leaders that are around the base station or on busy routes

because of the intense inter-cluster relay. Similarly, the energy hole problem is

related with the early energy depletion of some close nodes that are located in

an area which degrades or sometimes completely impedes the transmission of

the relayed data to the intended location. Besides, the energy hole problem may

also occur in evolving networks since initial deployment location of nodes may

change drastically. This variable node location situation has a great influence

on the density and the connectivity of the nodes over time. This differentiation

in node location is particularly important in heterogeneous or multi-hop sensor

networks when compared to homogeneous or single-hop networks.

• The available solutions try to master only in clustering to prolong the lifespan

of WSNs. On the contrary, not only clustering but also routing phase should

pursue an energy-efficient operation in multi-hop environments. Otherwise,

most of the energy preserved from clustering would be overspent at the routing

phase. This situation can also overbalance the energy distribution of the net-

work which has a negative effect on clustering. It is observed that the utilization
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of a multi-hop routing methodology on its own instead of direct communica-

tion is not enough. For this reason, exploiting the power of fuzzy logic in the

routing phase over its crisp counterpart becomes a wise choice.

As the main contribution of this chapter, a Two-Tier Distributed Fuzzy Logic Based

Protocol (TTDFP) for the purpose of addressing data aggregation problems of multi-

hop wireless sensor networks is proposed. In the first tier (Tier I), TTDFP decides

upon the final CHs through an energy-based competition of provisional leaders, which

are primarily chosen by means of a probabilistic model. TTDFP is a competitive,

fully-distributed, and an optimized protocol considering the lifetime requirements

of the WSNs. TTDFP does not require the inclusion of a central decision-making

point during any of its phases. This distributed operation architecture protects the

protocol from the single-point-of-failure situations. Fuzzy clustering phase handles

uncertainty occurring in the clustering phenomena more efficiently than its crisp and

fuzzy counterparts. The optimization framework [67] is also utilized to tune the two

parameters in this tier, which are the Maximum Competition Radius and Threshold,

rather than using a trial-and-error approach to find the right blend of these parameters.

The optimization framework employs the Simulated Annealing algorithm to tune the

aforementioned pair of parameters with the aim of optimizing the performance met-

rics of WSNs. Additionally, fuzziness in the second tier (Tier II) is a novelty which

also enhances routing performance when compared to its crisp counterpart. Bearing

in mind these contributions, it is valid to state that TTDFP is a candidate approach to

be utilized in mission-critical real-life applications where utilization context may be

updated with respect to the application domain.

In the clustering phase, TTDFP uses three fuzzy parameters. These are relative node

connectivity, distance to the base station, and remaining node energy. In the routing

phase, TTDFP proliferates the operation architecture of a known multi-hop routing

methodology with the use of fuzzy logic. In this second tier, TTDFP utilizes two

fuzzy parameters, average link residual energy and relative distance to determine an

efficient routing path. In order to observe the competency of the proposed solution,

it is experimentally evaluated against a selected distinctive set of the existing cluster-

ing mechanisms such as LEACH [14], CHEF [17], EEUC [18], and MOFCA [20].

Several experiments are conducted under various operating conditions. Performance
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results demonstrate that TTDFP is an efficient protocol that outperforms the other

algorithms it is compared against under the tested experimental setups.

Here, it is wise to state that there are approaches (i.e. [19]) that employ optimization

for the clustering phase itself in order to find an optimal solution. However, as far as

known, the proposed protocol is the first study that employs fuzzy logic not only for

clustering and routing jointly, but also it utilizes an optimization technique for tuning

the parameters in clustering of WSNs.

Although there are various optimization algorithms, here Simulated Annealing (SA)

algorithm is depicted in short since it is the approach that is utilized in TTDFP. SA

depends on a probabilistic mechanism in order to approximate the optimum of a given

function. Specifically, it is meta-heuristic utilized in large search spaces. It is often

employed in discrete search spaces. However, it can also be utilized in continuous

search spaces. SA solely requires a single initial point as a starting point and a search

operation [68]. Since optimization is a vast topic in itself, interested readers may refer

to the literature for more details.

3.2 System Model

The proposed solution is built upon the characteristics of the system model given

below. This system model is also utilized for experimental evaluation. In the model,

member nodes send data to their CHs in direct (single-hop) communication method.

CHs accumulate these data, aggregate them and transmit to the sink by employing a

multi-hop routing methodology. The representative snapshot of the utilized model is

presented in Fig. 3.1.In the figure, the sink is depicted with a larger black dot which

resides in the service area, CHs are marked with red dots, member nodes are plotted

with blue dots, and competition radii of final CHs are marked with dotted circles.

Lines colored in black depict direct communication channel and lines colored in green

depict the multi-hop communication channel.

The assumptions in the system model can be described as follows:

• Nodes are the same considering their hardware components.
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Figure 3.1: The representative snapshot of the utilized model.

• Nodes are deployed into the area randomly, following uniform distribution

model and the base-station can be anywhere.

• Nodes may change their initial locations and the displacement of nodes does

not consume energy.

• Nodes have the same amount of energy at the deployment phase, which is equal

to 1 joule (J).

• Transmission power can be adjusted considering the distance of the receiver.

• Received Signal Strength (RSS) is employed to compute the distance between

peers.

Deployed wireless nodes are modeled as a W-vertex graph G, which consists of N

vertices and P edges as depicted in Eq. 3.1 and Eq. 3.2, respectively.

G = (N, P) (3.1)

N = {1...W} (3.2)
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Energy consumption is represented by the First Order Radio Model as exploited in

[14]. Discharged energy calculation in transceiving b bits to or from a distance of

d can be measured as in Eq. 3.3 and Eq. 3.4, respectively. In the equations, Eelec

= 50nJ/bit, ε f s = 10pJ/bit/m2, εmp = 0.0010pJ/bit/m4 and d0 = 20 m. Eelec depicts

consumed energy per bit in the transceiver circuits and εmp depicts the energy con-

sumption of a bit in RF amplifier.

ET X(b, d) =


bEelec + bε f sd2, d < d0

bEelec + bεmpd4, d ≥ d0

(3.3)

ERX(b) = ERX−elec(b) = bEelec (3.4)

3.3 Operation Architecture

The proposed protocol (TTDFP) includes two tiers. In the first tier, the proposed

fuzzy clustering algorithm elects the set of CHs that maximize the network energy

efficiency. Then, in the second tier, the optimal routing path from CH to the sink is

sought by the developed fuzzy routing procedure. Finally, these two architectures are

unified into a two-tier protocol to provide an efficient data aggregation methodology.

3.3.1 Tier I: Distributed Fuzzy Clustering Phase

Distributed Fuzzy Clustering Phase is devised by considering three crucial elements.

The first one is energy-efficiency, the second is distributed operation requirements

which provide its scalability and finally optimized run-time configuration. The clus-

tering approach is a fuzzy distributed unequal clustering approach that utilizes local

commitments in the specification of radius values and CH election. Thus, the inclu-

sion of the base station during the election process is not required. The reason behind

devising the protocol is to cope with the energy hole and the hotspots problems of

WSNs in an optimized manner while still pursuing a distributed efficient operation.

The proposed distributed fuzzy clustering phase considers three parameters, which
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are remaining node energy, relative connectivity of a node, and distance to the base

station with the goal of determining the value of competition radius for provisional

CHs. Competition radius of a node is the radius which defines the area where the

node competes with the other nodes located in the area prior to final Cluster Head

(CH) selection. Additionally, fuzzy logic is utilized in the computation of the com-

petition radius values. Fuzzy variables handle inexactness efficiently. The proposed

protocol utilizes a probabilistic model in the selection of provisional CHs and em-

ploys randomized recurrent spinning as in [18] or [20]. The proposed approach is

fully-distributed since the inclusion of the base station is not required in any decision

stage. Additionally, there are no manually assigned algorithm-dependent parameter

values in the proposed protocol. This is accomplished through the use of an opti-

mization methodology employed in the clustering tier. The exchanged messages in

the clustering tier are depicted in Algorithm 1. Ei, Compi, and S i stand for the re-

maining energy, competition radius, and status of a specific node i, respectively.

When a clustering round starts, a random number (µ) is generated by each node within

the interval [0,1]. Whenever µ of a specific node is smaller than the optimized thresh-

old value (Th), then that node (i) turns into a provisional CH. Here, the optimized

threshold value depicts the ratio of desired provisional CHs. The distributed fuzzy

clustering phase employs relative node connectivity, distance to the base station, and

remaining energy values. In this phase, competition radius values are modified in

each round. The radius calculation is performed by the fuzzy inference engine. This

operation is indicated in line number 7 in Algorithm 1. The employed fuzzy rules

for the fuzzy inference engine are depicted in Table 3.1. For the rule evaluation pro-

cess, the Mamdani Controller [38] fuzzy inference method together with the Center of

Gravity (COG) technique is utilized in the competition radius defuzzification process.

CoG =

∫ xmax

xmin

f (x) ∗ xdx∫ xmax

xmin

f (x)dx
(3.5)

In the defuzzification, fuzzy logic controller initially computes the area within the

boundaries of the output descriptor under the membership functions, thereafter calcu-

lates the geometrical center of this area by using Eq. 3.5, where CoG is the calculated
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Algorithm 1: TTDFP Tier-I: Fuzzy Clustering Algorithm
Input: A Non-Clustered Network

Output: A Fuzzy-Clustered Network

1 Th← Optimized value using SA

2 S i ← CLUSTERMEMBER

3 clusterMembers← NULL

4 myCH← This (self)

5 beProvisionalCH← TRUE

6 if (µ <Th) then

7 By utilizing fuzzified input descriptors, form Compi

8 Communicate Candidate (Id, Compi, Ei, Ci)

9 On the reception of Candidate from Node j

10 if (Ei <E j) then

11 beProvisionalCH← FALSE

12 Communicate CeaseElection(Id)

13 else if ((Ei = E j) and (Ci ≤ C j)) then

14 beProvisionalCH← FALSE

15 Communicate CeaseElection(Id)

16 if (beProvisionalCH = TRUE) then

17 Communicate CHMessage(Id)

18 S i ← CLUSTERHEAD

19 On receiving JoinCH(Id) from Node j

20 clusterMembers← ADD( j)

21 EXIT

22 else

23 On the reception of all CHMessages

24 myCH← The closest CH

25 Communicate JoinCH(Id) to the closest CH

26 EXIT
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center of gravity, x is the linguistic variable value, and xmin and xmax stand for range

boundaries.

For the calculation of the competition radius of a specific CH, a total of three fuzzified

input parameters are utilized. The first descriptor is the Distance to the Base Station.

This fuzzified descriptor is depicted in Fig. 3.2. Far, medium and close are the

selected linguistic variables of this fuzzy parameter.

The second descriptor is the Node Remaining Energy. This fuzzified descriptor is

depicted in Fig. 3.3. High, medium and low are the selected linguistic variables of

this fuzzy parameter.

The third descriptor is the Relative Node Connectivity of a specific node. The fuzzy

set which characterize the relative node connectivity is indicated in Fig. 3.4. High,

medium and poor are the selected linguistic variables here. This fuzzy variable is uti-

lized with the same purpose of the density parameter as in [20]. However, in contrast

to the density parameter, the calculation of relative connectivity is done in a fully-

distributed manner. Relative connectivity of a provisional CHs (Ci) is computed as

in Eq. 3.6. With the help of the exchanged messages, a node is already aware of its

own connectivity value. Then, the maximum connectivity in its radius is used as a

normalization factor as depicted in the denominator of Eq. 3.6.

Figure 3.2: The fuzzified parameter Distance to The Base Station.
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Table 3.1: Fuzzy Rules in Tier-I: Distributed Fuzzy Clustering Phase

Distance to

the Sink

Remaining

Energy

Relative Node

Connectivity

Competition

Radius

Close Low High CR1

Close Low Medium CR2

Close Low Poor CR3

Close Medium High CR4

Close Medium Medium CR5

Close Medium Poor CR6

Close High High CR7

Close High Medium CR8

Close High Poor CR9

Medium Low High CR10

Medium Low Medium CR11

Medium Low Poor CR12

Medium Medium Poor CR13

Medium Medium Medium CR14

Medium Medium High CR15

Medium High Poor CR16

Medium High Medium CR17

Medium High High CR18

Far Low Poor CR19

Far Low Medium CR20

Far Low High CR21

Far Medium Poor CR22

Far Medium Medium CR23

Far Medium High CR24

Far High Poor CR25

Far High Medium CR26

Far High High CR27
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Figure 3.3: The fuzzified parameter Node Remaining Energy.

Ci =
Connectivityi

max(Connectivity)inRadius
(3.6)

Figure 3.4: The fuzzified parameter Relative Node Connectivity.

There is only a single fuzzified output descriptor named as the competition radius of

a provisional CH. The fuzzy set of this fuzzified output descriptor is presented in Fig.

3.5. There exist 27 linguistic variables denoted as CRi. Only CR1 and CR27 have

trapezoidal membership functions, the rest of the linguistic variables are described by
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triangular functions. In order to compare the proposal with MOFCA, the same fuzzy

output function for competition radius is utilized as in [20].

Figure 3.5: The fuzzified output descriptor Competition Radius.

When competition radius determination of provisional CHs finishes, the actual com-

petition starts. Every provisional CH communicates CandidateCH Message to start

the competition with remaining provisional CHs. CandidateCH Message is sent to the

provisional CHs which situated in the maximum competition radius value obtained

by using the optimization approach. The message consists of the identifier (Id), com-

petition radius (Compi), remaining energy (Ei), and relative connectivity (Ci) of the

source node. The first utilized and key parameter in CH competition is the remain-

ing energy of sensor nodes. If a provisional CH gets a CandidateCH Message from

another provisional CH that resides in its competition range and the amount of re-

maining energy in the source node is greater than the amount of remaining energy in

the destination node, then the destination node leaves the competition and commu-

nicates a CeaseElection Message. If there happens a tie considering the remaining

energies of the nodes, it is broken by the employment of the computed relative node

connectivity values. If a specific provisional CH owns the highest remaining energy

level among the provisional CHs which it gets CandidateCH Message from, or if it

possesses the greatest relative connectivity inside its competition range among equal-

energy provisional CHs, then it turns into a final CH.
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The above-mentioned competition assures that there exists a single CH in the com-

petition range of a specific CH and energy consumption is distributed evenly over

the network. The aim of this competition is to diminish intra-cluster occupation and

increase inter-cluster work, through assignment of narrow cluster sizes to the CHs

that are closer to the sink since these CHs are exposed to higher inter-cluster relay

(due to their position on the relay path) and CHs that relatively further have lower

inter-cluster relay. As can be seen from the system model and the operation of the

clustering, there are no unrealistic assumptions, like the use of infinite transmission

range, in the proposed protocol which distinguish the procedure from some other

proposals in the literature.

Figure 3.6: A Voronoi graph snapshot of a scene from a WSN clustered by TTDFP.

Fig. 3.6 depicts a representative scene from a WSN clustered by TTDFP. In the figure,

1000 nodes are deployed randomly to the 1000m x 1000m service area. The sink has
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the black color and a greater size in contrast to the other nodes, elected CHs have the

red color, and the other remaining (member) nodes have the blue color. Service areas

of generated clusters are depicted as green circles, transmission path from a member

node to its cluster head is highlighted as an orange line, and dead nodes are marked

with two crossed red lines (x). A Voronoi graph is also used here to differentiate

between cluster ranges.

3.3.2 Optimization Approach using Simulated Annealing

In the literature, there are various manually value-assigned parameters employed in

numerous proposed clustering/routing protocols. These parameters are assigned cer-

tain values after trial-and-error processes most of the time. In the study [67], several

experiments are conducted to highlight the importance of tuning such parameters as

they significantly affect network lifetime and the overall performance of the WSN.

When there are multiple parameters of a given protocol with wide ranges of possi-

ble values, the search space and the computational complexity of finding the optimal

blend of these values increase asymptotically. Additionally, when these values are

assigned manually, it may cause a best-case scenario for the proposed protocol which

generally biases the final comparison result in the experimental evaluations. There-

fore here, an efficient framework is utilized to tune such parameters in order to op-

timize the performance metrics of WSNs, where performance metrics can vary from

network lifetime to a number of packets successfully received by the sink [67].

In the aforementioned study, a framework that uses local search algorithms, simu-

lated annealing (SA) and k-beams, is presented along with a discrete-event system

simulator, OMNET++ with Castalia framework, to tune the parameters of cluster-

ing/routing protocols presented in the literature. The local search algorithm explores

the search space of the possible combinations of parameters’ values then invokes the

simulator to assess the performance of a WSN under a given combination of parame-

ter values. The use of a simulator to measure the fitness of combinations of parameter

values is needed given the absence of a closed-form equation that calculates different

performance metrics of WSNs given a set of parameters’ values.

In this subsection, inspiration is taken from the study [67] and then adapted to this
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study as follows; first, rather than using OMNET++ with Castalia framework [69],

the experiments are conducted on the simulation environment which was presented

and described in detail in [20]. Second, the optimization is chosen to be performed

solely using the SA algorithm the details of which are available in [70].

Algorithm 2: TTDFP Optimization Framework
Input: (MaxCompRad,Th)initial

Output: (MaxCompRad,Th)optimal

1 Pass (MaxCompRad,Th)initial to SA

2 Pass Operating Conditions to DESS

3 Pass Performance Metric to DESS

4 FZA: Trigger Optimization Framework

5 Simulated Annealing: Explore Search Space

6 Trigger DESS to evaluate a new pair

7 Return fitness score

8 Return (MaxCompRad,Th)optimal

Figure 3.7: Optimization Framework Internals.

In the MOFCA [20] case, there are only two manually value-assigned parameters

which are maximum competition radius (MaxCompRad) and threshold (Th). Thus,

the modified version of the optimization framework in [67] can also be employed to

tune this pair of parameters. Experimental results in the following sections highlight
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the effect of optimizing MOFCA when compared to its original version. For TTDFP,

the same pair of parameters, maximum competition radius and threshold, is utilized

in the fuzzy clustering tier in an optimized manner that differs from the previous

studies as these inputs do not possess estimated fixed values. In addition, there are

no manually value-assigned parameters in the second tier of the TTDFP protocol,

thus the optimization framework is utilized only in the first tier. A general diagram

showing the different blocks of the optimization framework and their corresponding

interactions with the protocol itself is presented in Figure 3.7. Furthermore, algorithm

2 depicts the flow of the optimization framework as well as how the two units of the

optimization framework interact and collaborate to achieve the predefined goal of

parameter tuning.

It is important to emphasize that these parameters are not treated independently during

optimization, the pursued approach optimizes them jointly targeting the maximum

network lifetime, where this lifespan can be defined as the round when the First Node

Dies (FND), Half of the Nodes Die (HND), or Last Node Dies (LND). For this reason,

the selected parameters are optimized considering the depicted efficiency metrics at

the start of the fuzzy clustering tier for both MOFCA [20] and TTDFP protocols

using the optimization approach, the details of which are presented in [67]. The

whole operation procedure of the methodology is not presented here in order not to

degrade the readability of the chapter. However, the original study consists of a more

detailed explanation of the operation.

This concludes fuzzy clustering phase and optimization essentials implemented in

this tier. In the next subsection, the second tier which consists of the details of fuzzy

routing is presented.

3.3.3 Tier II: Fuzzy Routing Phase

Two crucial elements are taken into account when devising the fuzzy routing tier:the

first element is energy-efficiency in the tier, which is a must for the overall efficiency

of TTDFP, and the other is lightweightness in the computational aspect. Like the

previous tier, this tier also uses a distributed approach since the sink is not included

in the Routing Route (RR) selection procedure. There is only a single point where the
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base station is included, which is the route set-up procedure initiated by the source

node. There is no escape from this inclusion since the base station is the destination

node. The rationale for devising this fuzzy routing tier is to decrease and balance

the consumed energy over the whole network by a less number of transceiver unit

activations through an efficient route selection. The fuzzy routing scheme extends

the multi-hop routing approach defined in [18] with two fuzzified input parameters,

which are average link residual energy and relative distance, one of which is already

utilized in [71] in the selection of a routing path. However, in this study relative

distance is employed instead of hop count in order to obtain better accuracy. The

operation of the fuzzy routing phase is explained in Algorithm 3. ALREr , RDr, Chr

stand for average link residual energy, relative distance, and the chance value of a

specific route r, respectively.

In search of a routing route, a source CH sends an RREQ packet addressed to the base

station and starts collecting the RREP packets which are broadcast and addressed to

itself by the sink. These packets arrive from different transceiver nodes and are control

packets which do not consume as much energy as data packets. In normal operation,

whenever a CH requests to send data to the base station, it sends an RREQ destined to

the base station and waits for the RREP packets to arrive. According to the received

RREP packets, it sets up a route considering the fuzzified input parameters and after

generation of the chance value. When the RR is determined, data transmission over

the path is initiated. In the routing route selection procedure, the source CH generates

a value (Min), which is assigned as 1. This Min value only serves as a comparison

value and is employed in the Routing Route election procedure. If there are no pos-

sible routes, the CH quits transmitting data. If the count of possible routes is greater

than this Min value (line number 10), then fuzzy routing process (line 11-20) is initi-

ated. Since the fuzzy routing tier employs relative distance together with the average

link residual energy for computing the chance values of available paths, the chance

value of each route changes dynamically as rounds pass by. This dynamism is the

result of varying average link energies caused by energy depletion of nodes that are

on the path. Computation of the chance values is done by the fuzzy inference engine

which utilizes the fuzzy rule base to handle uncertainty.

The fuzzy operation starts at line number 12 in Algorithm 3 and Candidate Routes
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Algorithm 3: TTDFP Tier-II: Fuzzy Routing Algorithm
Input: Route/s (RREP packet/s)

Output: The Routing Route (RR)

1 Min← 1

2 RR← NULL

3 Enum(Routes)

4 if (Count(Routes) <Min) then

/* No possible route (not connected) */

5 RR← NULL

6 EXIT

7 else if ((Count(Routes) = Min then

/* use the only possible route */

8 RR← OnlyRoute

9 EXIT

10 else

11 foreach route r ∈ Routes do

12 By using fuzzified inputs, form Chr

13 CandidateRouter (Idr, Chr, ALREr)

14 RR← CandidateRoute1

15 for i = 2 to Count(Routes) do

16 if (Chi <ChRR) then

/* RR does not change */

17 else if ((Chi = ChRR) and (ALREi ≤ ALRERR)) then

/* RR does not change */

18 else

19 RR← CandidateRoutei

20 EXIT
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are produced accordingly. The Fuzzy rules utilized in this tier are given in Table

3.2. Rules are evaluated by using the Mamdani Controller as an inference methodol-

ogy and the Center of Gravity (COG) technique for the defuzzification of the output

variable value.

Table 3.2: Fuzzy Rules in Tier-II: Fuzzy Routing Phase

Relative

Distance

Average Link

Residual Energy

Chance

Value

Far Low Very Low

Far Medium Extra Low

Far High Moderately Low

Regular Low Low

Regular Medium Normal

Regular High High

Close Low Moderately High

Close Medium Extra High

Close High Very High

To be able to compute the route chance values, a total of two fuzzified input param-

eters is employed in this tier. The first fuzzified parameter is Average Link Residual

Energy (ALRE) and Fig. 3.8 depicts the fuzzy set of this parameter. The chosen

linguistic variables of this set are low, medium and high.

The second fuzzified parameter is the Relative Distance (length) of a route. The fuzzy

set of this parameter is depicted in Fig. 3.9. Close, regular and far are the chosen

linguistic variables of this fuzzy set.

Computations of the values of Relative Distance (RD) and Average Link Residual

Energy (ALRE) of a specific route r are presented in Eq. 3.7 and Eq. 3.8, respec-

tively. The usage of the relative and average values does not necessitate the inclusion

of the sink in the decision process. As in the previous phase, this established as-

pect promotes the fuzzy routing phase to be a distributed promising route election

methodology. max(Distance) value in Eq. 3.7 can be deduced from the received
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Figure 3.8: The fuzzy set of the first input parameter (ALRE).

Figure 3.9: The fuzzy set of the second input parameter (RD).

RREP packets and utilized in the normalization procedure of varying link distances.

RDr =
Distancer

max(Distance)
(3.7)

ALREr =

∑m
i=1 REi

m
(3.8)
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The only fuzzified output descriptor is the chance value of a received route. The set

utilized for this fuzzified output variable is delineated in Fig. 3.10. There are a total

of nine chosen linguistic variables. There is no particular reason behind choosing this

function other than its satisfactory results.

Figure 3.10: The fuzzy set of the output parameter (Chance).

The employed fuzzy rules in this tier are in the form of IF a and b T HEN c as in

the previous tier, which means that for example IF a specific route has HIGH ALRE

and has CLOSE RD, THEN the CHANCE value of that route is VERY HIGH. It is

also noteworthy to state that although the fuzzy approach extends its crisp counterpart

with two additional fuzzy parameters, it is actually based upon the counterpart and

consists of the basic principles of the underlying architecture inherently. For instance,

if the crisp routing protocol does not generate some path i because of its congestion

or resource values, the routing tier will not consider that path. This concludes the

operation architecture of the fuzzy routing phase.

Tier-I on the basis and Tier-II on top of it make up the TTDFP architecture. Since

energy consumption is directly proportional to the square of the transmitted distance,

distance has a crucial impact over the network lifetime. Decreasing the transmission

distance in both tiers helps in maintaining an energy-efficient operation. It is a fully-

distributed, fuzzy logic-based and an optimized protocol which targets inefficient data

aggregation scenarios of wireless sensor networks.
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3.4 Experimental Evaluation

The obtained performance results of the TTDFP protocol are presented in this section.

For the performance evaluation of TTDFP, it is compared against the selected distinc-

tive protocols existing in the literature, which are LEACH, CHEF, EEUC, MOFCA-

Original, and MOFCA-Optimized using two different scenarios which have two sepa-

rate cases. These scenarios are depicted so as to quantify the contribution of each tier

individually, which means that not only the performance of fuzzy clustering tier in

TTDFP against selected clustering protocols but also the performance of fuzzy rout-

ing tier in TTDFP against its crisp counterpart are compared. MOFCA-Optimized is

the tuned version of the original MOFCA protocol, where the threshold and maximum

competition radius values are obtained from the optimization framework specifics of

which are presented in detail in the previous section. In the evaluated scenarios, the

location of the sink is stationary and can either be in the service area or out of it.

Nodes are deployed randomly following the uniform distribution properties.

In Scenario 1, CHs of the LEACH protocol relay the aggregated data to the base sta-

tion by using direct transmission and the aspired percentage of CHs for LEACH is

10%. The rest of the compared protocols, including TTDFP, utilize the same routing

scheme, which is multi-hop routing as defined in [18], in both cases of Scenario 1. In

Scenario 2, compared protocols either employ the routing scheme as defined in [18]

in Case A or the proposed fuzzy routing scheme in Case B. CHEF α value is set to 2.5

as in [17] and the threshold optimal value is computed with the equations defined in

that study and set as approximately 0.3 and 0.22 for 100 and 1000 nodes, respectively.

Coefficient and threshold values of EEUC and MOFCA-Original are set to the same

values as in the original studies [18] and [20], respectively. For MOFCA-Optimized

and TTDFP, these values are obtained using the Simulated Annealing (SA) algorithm.

In the discussion subsection, there is also a corroborative scenario which targets het-

erogeneous networks that consist of nodes with different initial energy levels. For this

reason, the assumption that nodes possess equal initial energy is broken in the case of

that specific scenario. Tested scenarios are sketched as follows:

• Scenario 1 targets the exploitation of the contribution only in fuzzy clustering

tier. This scenario has two cases:
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– In Case A, the sink is out of the service area,

– In Case B, the sink is in the service area.

• Scenario 2 targets the exploitation of the contribution only in fuzzy routing tier.

This scenario has also two cases:

– In Case A, the compared protocols employ the multi-hop routing scheme

as defined in [18] (which is referred as the crisp counterpart in this study),

– In Case B, the same protocols employ the proposed fuzzy routing scheme.

In the of depicted scenarios, clusters are reformed at every single round. Every mem-

ber node sends 4000 bits data to the CH it belongs. Every CH compresses the received

data with a ratio of 10% as employed in [17] prior to relaying towards the sink. Elab-

orations related to the calculation of this ratio and the final length of data of a CH

after compression resides in [20].

Various experiments are done by using a WSN simulator for the purpose of testing

the efficiency of TTDFP. The simulator is a discrete event simulator and it is able

to simulate the compared algorithms under the same conditions. The details of the

simulator can be found in [20]. However, MATLAB or Castalia [69] platforms can

also be used for the simulation of the scenarios above. Wireless sensor nodes are

randomly located into a 1000m x 1000m area and the full battery power of a node is

set as 1 Joule (J). In the experiments, the sensor network is deployed so as to form a

rectangular area-of-interest (service area). This is due to its easiness and effectiveness

in simulations as it does not have any best or worst case effect on any architecture. The

reason behind changing the location of the base station in cases is to target different

WSN application types such as environmental monitoring, path or trail surveillance,

and etc. Experiments are carried out on a 2.70 GHz quad-core workstation with 32

GB DDR4 2133 Mhz RAM and 512 GB SSD Drive.

In the experiments, three metrics for evaluation of the energy-efficiency of the de-

picted protocols are utilized. These metrics are First Node Dies (FND), Half of the

Nodes Die (HND), and Total Remaining Energy (TRE). Node Dies (ND) metrics, in

general, depict estimated values for the round in which the event, like the death of the
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first node or the half of the nodes, is generated. As done in some studies in the lit-

erature, the approach also does not consider LND metric for comparisons since most

sensor networks require a portion of nodes to be alive in order for the network to be

in fully-alive operation. Bearing in mind this restriction, FND, HND, and TRE met-

rics are chosen with the aim of evaluating the energy-efficiency of the crosschecked

protocols.

3.4.1 Scenario 1

In this scenario, the performance of fuzzy clustering tier is assessed independently.

For this reason, LEACH employs direct transmission and all the remaining protocols,

including TTDFP, employ the multi-hop routing scheme as defined in [18]. The sink

is either out of the service area as in Case A or in the service area as in Case B, and

the nodes are deployed randomly into the service area.

3.4.1.1 Case A

An illustrative capture from the experimental environment in this case is depicted in

Fig. 3.11 and the configuration of this case in Scenario 1 is delineated in Table 3.3.

The maximum competition radius for the EEUC and MOFCA-Original protocols are

set as 55m and 70m, respectively. The threshold (Th) and maximum competition

radius (Comp) values for MOFCA-Optimized and TTDFP protocols are optimized

using the Simulated Annealing (SA) approach and obtained as 0.15 (Th) and 75m

(Comp) for MOFCA-Optimized, and 0.2 (Th) and 80m (Comp) for TTDFP. In addi-

tion, TRE is measured at the round 20 in this case.

The experimental results for Case A in Scenario 1 are presented in Table 3.4.

In this case, the proposed TTDFP approach outperforms all compared algorithms

considering the utilized metrics. The performances of the compared protocols ex-

cept TTDFP are the same according to the results of the FND metric. However, the

performances of the protocols differ if the HND metric is considered. The number

of alive nodes in connection with the number of rounds in Case A in Scenario 1 is
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Figure 3.11: A scene captured from the WSN in Case A Scenario 1.

Table 3.3: The Configuration of Case A Scenario 1

Parameter Value

Service Area 1000m x 1000m

Location of the sink (1250,1250)

Number of deployed nodes 100

Data packet size 4000 bits

εmp 0.0010pJ/bit/m4

Eelec 50nJ/bit

Aggregation ratio 10%
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depicted in Fig. 3.12. As can be seen from the figure, the starting point for the

death of the deployed nodes in TTDFP occurs at the round 3, which means that it

has a longer fully-alive operation time than all other protocols. Although the perfor-

mances of all other protocols initially look similar, EEUC performs better than both

LEACH and CHEF when considering the HND metric, and MOFCA-Original out-

performs these three protocols. Also, the performance of MOFCA-Original is close

to MOFCA-Optimized, and they pursue a more or less similar energy consumption

model. Moreover, the tuned version MOFCA-Optimized depletes remaining energy

slower than its original version, which means that the optimization strategy followed

generates a better combination of threshold and competition radius values than when

these values are assigned manually. TTDFP preserves its efficient operating model

for the HND metric as it performs better than the others, as in the case for the FND

metric. In Case A, the TTDFP clustering phase performs 96.8% better than LEACH,

nearly 45.8% better than CHEF and EEUC, 10.4% better than MOFCA-Original, and

6.2% better than MOFCA-Optimized when considering the TRE metric, which means

that the energy depletion occurring in the TTDFP clustering phase balances energy

consumption over the network better as well.

Table 3.4: Obtained Results of Case A Scenario 1

Algorithm FND HND TRE

LEACH 2 14 1.24

CHEF 2 17 21.62

EEUC 2 18 21.64

MOFCA 2 25 35.74

MOFCA-Optimized 2 28 37.43

TTDFP 3 32 39.91

3.4.1.2 Case B

An illustrative capture from the experimental environment in this case is depicted in

Fig. 3.13. The reason behind choosing this case for evaluation is to test the impact

of the location of sink over the compared clustering protocols. The configuration of

this case is the same as the previous case except for the location of the base station,
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Figure 3.12: Number of alive nodes in connection with the number of rounds in Case

A Scenario 1.

which is at (500,500), and the number of deployed nodes, which is 1000. Maximum

competition radius values for EEUC and MOFCA are set as 70m and 80m, respec-

tively. Threshold and maximum competition radius values for MOFCA-Optimized

and TTDFP are optimized using SA and the values obtained are 0,3 Th and 65m

Comp for MOFCA-Optimized, and 0,23 Th and 75m Comp for TTDFP. As can be

seen from Table 3.5, clustering tier of the proposed TTDFP approach outperforms

all of the compared approaches when considering all three metrics as in the previous

case of this scenario. In this case, TRE is measured at the round 100.

Table 3.5: Obtained Results of Case B Scenario 1

Algorithm FND HND TRE

LEACH 13 76 151.76

CHEF 9 135 380.25

EEUC 11 147 469.74

MOFCA-Original 14 152 486.14

MOFCA-Optimized 15 164 501.47

TTDFP 17 176 561.77

The number of alive nodes in connection with the number of rounds in this case is

depicted in Fig. 3.14. According to the obtained results, in this case, the perfor-
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Figure 3.13: A scene captured from the WSN in Case B Scenario 1.

mance of TTDFP is nearly 23.5% more efficient than LEACH, 47% more efficient

than CHEF, 35.2% more efficient than EEUC, 17.6% more efficient than MOFCA,

and 11.7% more efficient than MOFCA-Optimized for the FND metric. CHEF per-

forms the worst among all when considering the FND metric, but it performs better

than LEACH for the HND metric. Although LEACH performs better than CHEF for

the FND metric, efficiency is not preserved against CHEF as it depletes remaining

energy of nodes faster when the death of the nodes commences, as can be seen from

the HND and TRE metrics. Again, TTDFP performs the best among all protocols

in this case with respect to all considered metrics. This situation corroborates that

the proposed TTDFP protocol clustering tier maintains its efficient operation fashion

under various operating conditions.
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Figure 3.14: Number of alive nodes in connection with the number of rounds in Case

B Scenario 1.

Scenario 1, with its two cases, independently assesses the performance of clustering

tier, under which all protocols except LEACH follows the same routing scheme, it is

valid to state that TTDFP clustering tier outperforms compared clustering protocols

in its sole aspect.

3.4.2 Scenario 2

In this scenario, the performance of fuzzy routing tier is assessed independently. For

this reason, LEACH is not included in the scenario since it is specifically designed

for direct transmission. CHEF, EEUC, MOFCA with its two versions, and TTDFP

employ the multi-hop routing scheme as defined in [18] in Case A and the proposed

fuzzy routing scheme in Case B.

The configuration of this scenario is as presented in Table 3.6. Since the only dif-

ference is in the underlying routing scheme between cases, the configurations of

Case A and Case B are not presented separately. The maximum competition ra-

dius for the EEUC and MOFCA algorithms in this scenario are set as 70m and 80m,

respectively. The threshold and maximum competition radius values for MOFCA-

Optimized and TTDFP are optimized using SA and obtained as 0.2 (Th) and 65m

(Comp) for MOFCA-Optimized, and 0.2 (Th) and 80m (Comp) for TTDFP. TRE is

measured at rounds 150 in both cases of this scenario.
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Table 3.6: The Configuration of Scenario 2

Parameter Value

Service Area 1000m x 1000m

Location of the sink (500,500)

Number of deployed nodes 1000

Data packet size 4000 bits

εmp 0.0010pJ/bit/m4

Eelec 50nJ/bit

Aggregation ratio 10%

First, the obtained performance results of compared approaches under different rout-

ing schemes in two different cases are presented and then the performance gain by

comparing the results of the same protocol in different cases are delineated in order

to highlight the performance of fuzzy routing.

3.4.2.1 Case A

The obtained experimental results for the compared protocols of Case A (crisp multi-

hop routing) in Scenario 2 are depicted in Table 3.7.

Table 3.7: Obtained Results of Case A Scenario 2

Algorithm FND HND TRE

CHEF 9 135 156.94

EEUC 11 147 216.65

MOFCA-Original 14 152 230.24

MOFCA-Optimized 15 164 240.36

TTDFP 17 176 254.03

3.4.2.2 Case B

The obtained experimental results for Case B Scenario 2 are depicted in Table 3.8.
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Table 3.8: Obtained Results of Case B Scenario 2

Algorithm FND HND TRE

CHEF 10 142 161.17

EEUC 12 155 223.49

MOFCA-Original 17 158 235.74

MOFCA-Optimized 17 169 244.81

TTDFP 18 181 262.92

To be able to effectively compare the performance of fuzzy routing over its crisp

counterpart, each protocol can be investigated under different routing schemes as can

be seen from Tables 3.7 and 3.8. There is little gain for all protocols if the routing

scheme is updated to fuzzy routing when considering the FND metric. However,

the gain due to fuzzy routing increases as the rounds pass by. This situation can be

corroborated from the HND metric. CHEF performs 4.9%, EEUC performs 5.1%,

MOFCA-Original performs 3.7%, MOFCA-Optimized performs 2.9%, and TTDFP

performs 2.7% better under fuzzy routing conditions considering the HND metric.

Since the TRE is measured at the same round under both routing schemes, it is obvi-

ous that energy is preserved more under fuzzy routing conditions than crisp routing

conditions for all protocols. Moreover, although fuzzy routing brings an overhead

in the packet structure and computational aspects, this overhead is tolerable and in-

significant. The operation of fuzzy routing when compared to its crisp counterpart

also ensures that energy is balanced throughout the network for all protocols.

3.4.3 Discussion

In order to grasp the essential properties of the proposed protocol and the theoreti-

cal advantages of the designed method over compared algorithms, it is beneficial to

conceive common and discriminating features of evaluated algorithms. Therefore,

common and discriminating features of the compared protocols are depicted in Table

3.9. As can be grasped from the table, TTDFP is the only protocol which includes

fuzzy clustering, improved by the optimized parameters, jointly with fuzzy routing.

Also, it is the only protocol that evaluates multiple routes in fuzzy fashion prior to
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Table 3.9: Common and Discriminating Features of Evaluated Algorithms

Clustering

Approach

Fuzzy

Computation

Transmission

Scheme

Location

Consideration

Size of

Clusters

Optimized

Parameters

Efficient

Routing

LEACH [14] × Direct × Equal × ×

CHEF [17] X EEUC × Equal × ×

EEUC [18] X EEUC X Unequal × ×

MOFCA [20] X EEUC X Unequal × ×

MOFCA-Opt X EEUC X Unequal X ×

TTDFP X Fuzzy X Unequal X X

relaying data to the sink.

In fact, the design of TTDFP makes it perform better than the compared algorithms

due to the following reasons: In the first tier, optimized parameters provide a more

efficient run-time for the fuzzy clustering algorithm than that of compared proto-

cols. Moreover, fuzzy routing tier balances energy consumption over relay paths

more efficient than probabilistic crisp multi-path routing approach due to its fuzzy

computation. Finally, the overhead of fuzzy computation is insignificant which can

be corroborated by the obtained experimental results.

According to the efficiency comparisons done, TTDFP outperforms the compared

protocols. However, not only efficiency but also scalability and computational com-

plexity of a protocol are the crucial features for it to be utilized in large-scale net-

works, which is very important for today’s most WSNs. For this reason, conducted

experiments are run over the same WSN under varying number of nodes in the pre-

sented scenarios. As for the scalability analysis of the protocol, the test cases with

1000 nodes are vital, since they consist of a large number of nodes when compared to

the remaining cases. TTDFP is significantly more energy-efficient in each of its tiers

than all of the compared protocols as demonstrated by the results of the conducted

experiments. In addition, as the number of nodes increases, it starts to deviate from

the compared approaches considerably, which corroborates the scalability aspect of

the proposal.

As for the computational complexity of the protocol, the clustering tier in TTDFP is

O(n2) because (n2 - n) number of comparisons are done in the worst case to elect CHs

66



as in [20]. Additionally, since the optimization approach is triggered only once in the

base station prior to the deployment phase, where there is generally no restriction on

computational resources in real-life situations, the computational complexity of the

optimization part can be ignored. For the fuzzy routing phase, each elected CH makes

at most (n2 - n) number of comparisons among possible routes, which is also O(n2).

For this reason, when these two-tiers are considered jointly, the overall computational

complexity of TTDFP is O(n2), which makes it a prominent approach.

It is valid to state that each tier in TTDFP is theoretically feasible in its sole aspect.

There is no repetition condition (loop) which may prevent convergence of the first

tier since the clustering algorithm is executed once for each round. Although there

is a single loop in the SA approach, it is controlled by the maximum number of

steps and improvement threshold values which terminate the loop when the efficiency

saturates (stabilization over time takes place). Fuzzy computation in the routing tier

occurs only in the route determination process and does not consist of a loop as in the

first tier. For these reasons, it is valid to state that TTDFP is a theoretically feasible

approach.

Although the performance of each tier in the proposed protocol is assessed indepen-

dently, it is done to refrain from bias and to highlight the gain resulted in each tier.

However, it can be more clarifying to study how these protocols run as they are (with

their original clustering and routing schemes). The performance gain resulted from

the proposed protocol with respect to the compared counterparts is depicted in Table

3.10. In this experiment, the sink is located at (0,500), a total number of 200 nodes

are deployed, and TRE is measured at the round 50.

Table 3.10: The Overall Performance Comparison of TTDFP

Algorithm FND HND TRE

LEACH 4 34 12.67

CHEF 6 42 32.23

EEUC 2 27 12.73

MOFCA-Original 4 43 35.42

MOFCA-Optimized 4 47 36.32

TTDFP 6 59 44.86
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Figure 3.15: Heat maps for the operation architecture of TTDFP in heterogeneous

networks.

It is also noteworthy to consider the stated assumptions. The mentioned assumptions

may be restrictive for heterogeneous networks, which have different types of nodes

when considering their battery sizes. The operation of the algorithm can be gener-

alized for the non-restricted case as follows: "At the initial stages (rounds) of the

operation, if there are nodes at different energy levels, these high-energy nodes are

selected as final Cluster Heads most of the time until their energy deplete and be-

come more or less the same as other (low-energy) nodes as the rounds pass by. If this

is the case, such as in heterogeneous wireless networks, the real final CH competi-

tion commences at these energy-balanced rounds." In order to clarify this operation

architecture and demonstrate the applicability of proposal in heterogeneous wireless

networks, here an extra scenario is depicted. Generated heat maps for the operation

architecture of TTDFP in this example scenario are provided Fig. 3.15.

In this heterogeneous network scenario nodes have varying initial energy levels such

that normal nodes (90% of the total number) possess 1 joule of initial energy, whereas

remaining nodes, which may be called super-nodes, (10% of the total number) possess

10 joules of initial energy. A total of 100 nodes are deployed to the 100x100 m. area

in this experiment and the compared protocols run as they are (with their original

clustering and routing schemes). The plot in part a (the left-most) depicts the heat-

map of the network at the initial deployment time, the plot in part b (the middle)

depicts the heat-map of the network at the round 500, and the plot in part c (the

right-most) depicts the heat-map of the same network at some round r, respectively.

All heat-maps are interpolated and smoothed with respect to the maximum energy of
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the deployed nodes. Normal nodes in the (a) plot are barely visible since the initial

energy of each (1 j) is significantly less than the initial energy of super-nodes (10 j).

However, they become more visible (clearer) as the rounds pass by. This visibility is

not the result of an increase in their energy rather the result of a significant decrease in

the energy levels of super-nodes since this maximum energy of a node in the network

is utilized in the smoothing operation. As can be seen from the evolving nature of

the heat maps, it is verified that super-nodes in TTDFP are elected as CHs initially

more when compared to normal nodes until some round r. When the energy-levels of

super-nodes and normal nodes start to balance, normal nodes are also elected as final

CHs as much as super-nodes.

The decrease in TRE of each protocol under heterogeneous network scenario is pre-

sented in Fig. 3.16. Under this heterogeneous environment, the proposal maintains

its efficient operation manner and consumes TRE much slower than the compared

algorithms. The performances of the compared protocols except LEACH are more or

less the same when compared to the homogeneous network environment. This is the

result of their energy-based operation architectures. However, periodical rotation of

nodes without considering their energy levels in LEACH makes the network consume

TRE faster and more vulnerable to death of the nodes.

Figure 3.16: The decrease in TRE of each protocol under heterogeneous networks.

In summary, the contributions in this chapter by devising TTDFP protocol are two

folds: First, the fuzzy clustering phenomena is improved. In Tier I of the proposal,

a more energy-efficient operation is pursued. Moreover, in Tier II, there is a novelty
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such that a crisp routing protocol is extended with two fuzzy descriptors. This is

done to overcome insufficiency resulted from crisp routing and to balance energy

consumption over relay paths.

3.5 Remarks

In this chapter, a TTDFP (Two-Tier Distributed Fuzzy Protocol) which is an energy-

efficient protocol for data aggregation in multi-hop WSNs is proposed. The proposal

considers relative node connectivity, distance to the base station, and remaining node

energy parameters in the election of CHs; and average link remaining energy together

with relative distance parameters in the selection of RR while employing fuzzy logic

in order to handle the occurring inexactness in these phases.

It is conceivable from the obtained results that TTDFP is a fully-distributed, fuzzy

logic based and optimized protocol which targets inefficient data aggregation prob-

lems in WSNs. According to the results of the tested scenarios, the performance of

each tier in TTDFP is much better than the compared protocols. Considering the ex-

perimental results done throughout the study, TTDFP preserves its scalability as the

number of nodes increase. Furthermore, the TTDFP protocol has no manually-value-

assigned parameters as it uses an optimization framework to avoid the inefficient trial-

and-error approach as well as any bias resulting from the best-case behavior.

For future work, optimization of the other algorithm-dependent parameters using

some other methodologies such as Particle Swarm Optimization (PSO) can be con-

sidered. Additionally, exploring the behavior and testing the performance of TTDFP

under WSNs coupled with various node movement strategies can also be investi-

gated.
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CHAPTER 4

CLONALG-M TO IMPROVE ENERGY-EFFICIENCY OF RULE-BASED

FUZZY CLUSTERING ALGORITHMS

In clustered networks, clustering can be done either following a crisp approach or a

fuzzy one. Fuzzy clustering methodologies are found to be superior to crisp clustering

counterparts when the boundaries among clusters are uncertain. As a result of this,

a significant number of studies have proposed fuzzy-based solutions to the clustering

problem. Most rule-based fuzzy systems determine and tune the fuzzy rules and the

shapes of the output membership functions by employing some field experts in trial

and error processes; thus, a considerable amount of time is dedicated to obtain and

tune these functions, and it is almost impossible or impractical to contrive a fuzzy

system that possesses the optimality property.

In this chapter, a Modified Clonal Selection algorithm (CLONALG-M) is proposed

with the purpose of increasing the energy-efficiency of rule-based fuzzy clustering

algorithms. Although there exist some studies in the literature focusing on fuzzy

optimization in general as stated in the literature survey chapter of this dissertation,

to the best of knowledge, none takes the performance improvement of rule-based

fuzzy clustering algorithms into consideration. The CLONALG-M algorithm gets

inspiration from Clonal Selection Principle, which is employed to elucidate the basic

principles of an adaptive immune system. In the study, this principle is applied to

identify the approximate placement of output membership functions which boosts the

performance of rule-based fuzzy clustering algorithms, whose rule base and shape of

membership functions are known a priori. Experimental analysis and evaluations of

the proposed approach are done over fuzzy rule-based clustering methodologies and

the results reveal that proposed approach performs and scales well for fuzzy functions.
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The operation of CLONALG (a representative of CLONal Selection ALGorithms)

is modified and the application of the modified version (CLONALG-M) is proposed

to extend the lifespan of WSNs through determining the approximate placement of

output membership functions in rule-based fuzzy clustering algorithms whose rule

bases and shapes of membership functions are known a priori. CLONALG-M takes

the initially defined fuzzy output function and approximates it based on the principles

of CLONALG-M. To the best of knowledge, there is no existing study that utilizes

the original or any modified version of CLONALG on output function approximation

in the fuzzy clustering context. In order to evaluate the performance of the proposal,

it is applied to the selected fuzzy clustering mechanisms such as CHEF and MOFCA

and also compared with a standard Genetic Algorithm (GA) implementation. Various

experiments are conducted under defined scenarios. The obtained results reveal that

CLONALG-M is an encouraging approximation approach to be utilized for fuzzy

output functions in clustering applications of WSNs.

4.1 Overview

An ever-increasing portion of clustering methodologies utilizes fuzzy logic in order

to cope with uncertainty problems in WSNs. Therefore, they are categorized as fuzzy

methodologies in general. In most available approaches, fuzzy sets and rules are

exploited in order to obtain a preferable blend of applicable input parameters that can

generate an optimal output. The parameters that define the shape of fuzzy output

functions in rule-based clustering algorithms are usually obtained from a field expert

or generated automatically. Therefore, it consumes a considerable amount of time to

determine the shape of these functions together with the tuning operations, and it is

often impractical to design the optimal fuzzy system in detail.

Designing a fuzzy logic-based system covers the definition of fuzzy sets that are gen-

erally depicted by membership functions and rules. As soon as the fuzzy system is

designed, one of the foremost problems to handle is to establish the optimal placement

of these described membership functions. In general, most membership functions in

fuzzy control systems are presumed to be triangular or trapezoidal in shape and linear

in a computational manner. For this reason, the actual problem is to decide on the
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value of the variables that characterize the shapes of these functions. If a suitable rep-

resentation can be chosen, then the membership function approximation is reduced to

a discrete optimization problem that could be modeled using parameters in general.

In the upcoming sections of this chapter, the proposed methodology is presented in

detail and extensively experimented.

4.2 Methodology

Before detailing the proposed methodology, the basic principles of CLONALG are

discussed initially.

4.2.1 CLONALG

Castro and Zuben proposed CLONALG to integrate main processes contained in

clonal selection principle. CLONALG is primarily proposed for pattern recognition

and machine-learning tasks, and afterward transcribed to be implemented to opti-

mization domain. The proposed steps in the original CLONALG algorithm for an

optimization task is given below [50]:

1. "Generate j antibodies randomly."

2. "Repeat until a stopping condition:"

(a) "Calculate the affinities of antibodies. These affinities comply with the

evaluation of a fitness function."

(b) "Choose the n highest affinity antibodies."

(c) "The chosen n antibodies is cloned to their affinities proportionally, form-

ing a repertory C of clones: The greater the affinity, the greater number of

clones formed and vice-versa."

(d) "The clones from C are subject to hypermutation process inversely propor-

tional to their antigenic affinity. The greater the affinity, the less mutation,

and vice-versa."
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(e) "Calculate the affinities of the C mutated clones."

(f) "Using this set C of clones and antibodies, choose the j greatest affinity

clones to constitute the renewed antibodies population."

(g) "Substitute the d lowest affinity antibodies by newly formed individuals

randomly."

3. "End repeat."

According to the CS theory, it is suggested commencing with an initial repertory j of

immune cells. Then, the immune system can transform itself in response to various

experiences with the surroundings. Through selection and cumulative variation on

generations of large-scale cells, the immune system is able to obtain the required in-

formation to defend the host structure against pathogenic threats of the surroundings.

Although the utilization of CLONALG for optimization problems is common, the

utilization of the same approach in the fuzzy context is rare. The feasibility of find-

ing the most convenient designation of membership functions for a Multiple-Input

Multiple-Output system using CLONALG for unconstrained optimization problems

is presented in [72]. In the study, authors depict how the fuzzy membership optimiza-

tion problem is converted to the parameter optimization problem and utilize CLON-

ALG for the problem at hand. However, the CLONALG algorithm is modified to

be applied for the constrained approximation problems in the following subsection,

which is mostly the case for the output membership functions of rule-based fuzzy

clustering algorithms in WSNs.

4.2.2 CLONALG-Modified (CLONALG-M)

Applied modifications to CLONALG which make up CLONALG-M are as follows:

• Generate j antibodies randomly such that j ≥ NumberO f Rules (in Step 1),

• Each antibody (possible solution) should perform a feasibility check prior to

evaluating the objective function in order to determine whether it is a valid

fuzzy output function (in Step 2.a),
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• Mutation operates in a constrained fashion (in Step 2.d),

• Mutated clones should perform feasibility checks prior to determination of

affinity whether they still preserve fuzzy function validity measures (in Step

2.e).

The operation of CLONALG-M on a fuzzy output function with pseudo-code is pre-

sented in Algorithm 4. CLONALG-M takes initially an expert defined fuzzy output

function together with S izepop, S izesel, S izeprob, #randcells, Rateclone, and Ratemutation pa-

rameters and returns the approximated fuzzy output function. These parameters de-

note Population Size, Selection Size, Problem Size, Number of Random Cells, Clone

Rate, and Mutation Rate, respectively.

First, the Population is assigned the initially created cells and then starts iterating

over the search space while stopping condition, which is here depicted as 1% im-

provement, is not reached. Since CLONALG-M checks the feasibility of each Pi

prior to affinity calculation and regenerates or remutates if necessary, every generated

Pi in CLONALG-M satisfy the fuzzy function validity measures. It is wise to check

feasibility while these Pi are changing. If this check is not performed, the generated Pi

may not satisfy the fuzzy validity measures. These feasibility checks in CLONALG-

M are depicted in lines 4 & 16 of Algorithm 4. Additionally, mutation operates in a

controlled fashion such that mutated clones are unique in CLONALG-M.

The following subsection elaborates into the details of CLONALG-M operation on a

generic fuzzy output function in order to grasp the computational aspects and essential

features of the proposed approach.

4.2.3 Example Operation of CLONALG-M on a Generic Fuzzy Function

The output membership function of a generic rule-based fuzzy system on which com-

putational aspects of CLONALG-M are explained on consists of four rules as depicted

in Fig. 4.1. As can be seen in the figure, there are both trapezoidal and triangular

membership functions.

Triangular functions are exemplified by three points (a, b, c) which denote the start-
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Algorithm 4: CLONALG-M Algorithm
Input: An Initial Expert-Defined Fuzzy Output Function, Params

Output: Population: An Approximated Fuzzy Output Function

1 Population← CreateInitialCells(S izepop,S izeprob)

2 while ¬ StopCondition() do

3 for Pi ∈ Population do

4 CheckFeasibility(Pi);

5 if Pi , Feasible then

6 repeat

7 Regenerate(Pi);

8 until Pi = Feasible;

9 Affinity(Pi);

10 S elpop ← Select(Population,S izesel)

11 Clonepop ← ∅

12 for Pi ∈ S elpop do

13 Clonepop ← Clone(Pi,Rateclone)

14 for Pi ∈ Clonepop do

15 ControlledMutation(Pi,Ratemutation)

16 CheckFeasibility(Pi);

17 if Pi , Feasible then

18 repeat

19 Remutate(Pi);

20 until Pi = Feasible;

21 Affinity(Pi);

22 Population← Select(Population,Clonepop,S izepop)

23 Randpop ← CreateRandCells(NumberO frandcells)

24 Replace(Population,Randpop)

25 Return(Population)
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Figure 4.1: The output membership function of a generic fuzzy system.

ing, top, and ending points of triangles corresponding to the crisp output values. How-

ever, trapezoidal membership functions are exemplified by four points (a, b, c, d) in

the population representation. What is expected from CLONALG-M is to obtain

the approximate values of these points which improve the performance of the fuzzy

clustering algorithm near to the optimality, when the initially expert-defined output

membership function is given as input.

The number of created initial cells should be at least greater than or equal to the rule

number. A modification is proposed in order for the immune system to defend against

early convergence situations. Taking into account this modification, initial cells (Pi)

are generated and assigned to the population. Then, a feasibility check is performed

for each cell in the population. This feasibility check measures if the generated cell

satisfies the validity measure of a fuzzy function or not. The validity measure is

utilized as the covering of the whole range of the crisp output value. In order to test

the validity, first, the range of the crisp output value is assigned to a set. Then, for

each membership function, ranges that reside in a to c are removed from the set if the

function is triangular; otherwise, ranges that reside in a to d are removed from the set

if the function is trapezoidal. Finally, a check is performed to test whether the set is
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empty or not. If empty, the generated cell Pi is accepted; otherwise, regeneration of

the cell that does not satisfy the validity measure is performed as depicted in line 7

of Algorithm 4. After all generated cells become feasible, the affinity of each cell is

calculated.

The affinity of each cell is obtained from the HNA metric which depicts the round in

the WSN at which half of the deployed wireless nodes die. It is a widely used metric

in the context of efficiency comparison of clustering protocols. The corresponding

HNA metric value is obtained by utilization of the First Order Radio Model, details

of which is given in the experimental evaluation section. Since Selection and Cloning

processes are done exactly in the same manner as the original CLONALG, the details

of these operations are not explained here in order not to degrade the readability of

the proposal. However, interested readers may refer to the original study [50] for a

more comprehensive explanation of these operations.

NoC =

n∑
i−1

round(β
N
i

) (4.1)

Representation of base lengths of membership functions depends on the range of the

crisp output value. If the example given in this generic fuzzy output function, where

the range is 50, is considered, the representation can be done by using 5 bits. The ac-

tual representation bit number varies according to the fuzzy output function domain

interval values. After obtaining values of affinities, they are put in descending order.

If it is presumed that the parameter S izesel is given as five (5), then the five (5) greatest

affinity cells are chosen. The Number of Clones (NoC) of Pi is determined accord-

ing to the Eq. 4.1. This equation employes the principles of affinity proportional

reproduction stated in the original CLONALG.

One discriminating property of CLONALG-M is the mutation operator controlled by

the employed constraints. Since changing the total number of rules is not intended

and beyond the scope of this dissertation, which is also known as the compactification

of the rule-base, the mutation (including the remutation) operates under the following

constraints:
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1. ∀TRG ∈ MF@i, j such that

(a) (ai = a j ∧ bi = b j ∧ ci = c j)

(b) (ai = bi = ci)

(c) (ai = ci)

2. ∀TRP ∈ MF@i, j such that

(a) (ai = a j ∧ bi = b j ∧ ci = c j ∧ di = d j)

(b) (ai = bi = ci = di)

(c) (bi = ci)

(d) (ai = di)

In the constraints, MF stands for Membership Function, TRG stands for Triangu-

lar Membership Function, and TRP stands for Trapezoidal Membership Function.

Seeing that the compactification of the rule-base is beyond the scope of this study,

these constraints assure that generated MFs (both TRGs and TRPs) are unique. This

controlled mutation is depicted as line 15 in Algorithm 4.

These elaborations conclude the example operation of CLONALG-M on a generic

fuzzy output function and present the details of computational aspects. In the next

section, the proposal is experimentally evaluated under depicted scenarios.

4.3 Experimental Evaluation

The details about the properties of utilized system model are elaborated for clarifica-

tion purposes prior to presenting the obtained results of performance tests.

4.3.1 System Model

The system model and the assumptions that are utilized for the experimental evalua-

tion in this chapter are the same as the corresponding ones which are explained in the
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previous chapter. Therefore, a graphical exemplification of the utilized model is not

presented here again. However, there is a single additional assumption which is only

valid for the experimental evaluations in this chapter. The additional assumption is as

follows: The number and shapes of fuzzy membership functions are known a priori

and do not change throughout the operation.

4.3.2 Performance Results

For the efficiency evaluation of the proposal, it is compared with the elaborated stan-

dard GA implementation on the selected fuzzy clustering protocols, which are CHEF

and MOFCA, in three depicted scenarios.

In the scenarios, the protocols utilize a multi-hop routing methodology presented in

detail in [18]. The CHEF α value is assigned as 2.5 and the threshold optimal value is

determined by the use of equations in [17] and assigned as roughly 0.3, 0.2 for 100,

1000 nodes, respectively. The threshold value of the MOFCA algorithm is set to 0.3

as depicted in [20]. Sketch of the depicted scenarios is as follows:

• In Scenario 1, network boundaries are 100x100 m. and 100 nodes are randomly

scattered into the network boundaries.

• In Scenario 2, network boundaries are 1000x1000 m. and 100 nodes are ran-

domly scattered into the network boundaries.

• In Scenario 3, network boundaries are 1000x1000 m. and 1000 nodes are ran-

domly scattered into the network boundaries.

The features of the GA implementation against which CLONALG-M is compared

against are as follows:

• The implementation consists of 3 fundamental operations that are selection,

genetic operations and replacement, which are the minimum requirements of a

simple GA.

• The initial population is constructed at the size of 50 with random construction.

• Chromosome encoding follows the same principles depicted for TRGs and
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TRPs in CLONALG-M computation. Fuzzy function related information is

encoded in the chromosome.

• The fitness (evaluation) function that is utilized for the calculation is the same

as in CLONALG-M, which is the HNA metric result that is calculated through

the First Order Radio model.

• Parent selection is done proportionally. Matching in crossover is implemented

randomly, crossover points are determined at the MF level so as to replace the

depicted MF completely.

• Bit mutation in CLONALG-M computation follows the same principles de-

picted for TRGs and TRPs.

Figure 4.2: Initially defined fuzzy output function for CHEF.

In the tested scenarios, clustering has two distinctive stages: set-up and steady. Clus-

ters are reformed at each round at the set-up phase. Then any member node transmits

acquisition to its CH. The size of transmitted data is 4000 bits per round. Received

data is aggregated with the defined ratio Ragg prior to relaying towards the base station.

The assigned value of the aggregation ratio is 10% as used in [20].

Initially defined fuzzy output functions for the CHEF and MOFCA protocols are
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given in Fig. 4.2 and Fig. 4.3, and modified versions of these functions which are

approximated to optimality using CLONALG-M are presented in Fig. 4.4 and Fig.

4.5, respectively. As can be seen from the figures, obtained fuzzy output functions

conform to the depicted fuzzy validity measures and are not symmetric in form. In

the remaining part of this subsection, the efficiency of the selected algorithms with

respect to the applied approximation methodology is compared considering WSN

performance metrics.

Figure 4.4: Fuzzy output function for CHEF obtained using CLONALG-M.

Commonly considered metrics in order to assess the lifespan of WSNs and efficiency

perspective of protocols are presented in detail in the previous chapter. Therefore, the

same metrics are employed to evaluate the performance of the methodologies.

A series of experimentation are run by utilizing the WSN simulator presented in [20]

to be able to evaluate the validity of the proposal. The simulator is a Discrete Event

System Simulator (DESS) and has an ability to simulate the chosen algorithms under

the same environment. Conducted experiments are run on an eight-core 2.7 GHz Intel

Core i7 workstation under the Windows 10 operating system. Each depicted scenario

is run 20 times to acquire more stable and reliable metric results and the mean of the

results are depicted in this section.
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4.3.2.1 Scenario 1

This is the base scenario where the preliminary comparison of depicted methodolo-

gies is performed. In this scenario, network boundaries are 100x100m. and nodes are

deployed randomly within the boundaries of the network. Selected CHs of CHEF and

MOFCA relay the aggregated data to the sink using multi-hop routing. The configu-

ration applied in this scenario is depicted in Table 4.1.

Table 4.1: The Applied Configuration for Scenario 1

Parameter Value

Network Size 100m x 100m

Location of the sink (50,50)

Number of deployed nodes 100

Data packet size 4000 bits

εmp 0.0010pJ/bit/m4

Eelec 50nJ/bit

Aggregation ratio 10%

Table 4.2: Simulation Results for Scenario 1

METHODOLOGY FND HNA TRE(j)

CHEF 1197 1608 10.27

CHEF_GA 1314 1642 11.23

CHEF_CLONALG-M 1338 1616 12.17

MOFCA 1201 1618 11.59

MOFCA_GA 1346 1628 12.10

MOFCA_CLONALG-M 1359 1633 12.36

The obtained results in Scenario 1 are presented in Table 4.2. The maximum com-

petition radius for the MOFCA algorithm in this scenario is set as 40 m. As can

be seen from Table 4.2, the proposed approximation approach outperforms the orig-

inal algorithm and the GA-approximated versions of both CHEF and MOFCA when

considering the FND metric. In the scenario, TRE is measured in the round 1500.

Performances of the original versions of both protocols are the worst when consider-

85



ing all metrics when compared to approximated versions which corroborate the gain

pursued by optimization methodologies, either GA or CLONALG-M. CLONALG-M

performs better than GA if the FND and TRE metrics are considered for both pro-

tocols. The number of alive nodes in connection with the number of rounds of this

scenario is presented in Fig. 4.6. As grasped from the figure, the inception points for

the death of the sensor nodes in both clustering algorithms that are approximated by

CLONALG-M occur after original or GA approximated versions. Performances of

CLONALG-M and GA initially look similar, however, regarding the HNA metric, GA

performs better than CLONALG-M for both clustering methodologies. Although the

performances of GA-approximated versions are better than CLONALG-M modified

versions, GA-approximated versions deplete TRE faster CLONALG-M modified ver-

sions. In this scenario, CLONALG-M modified versions perform 10.5% better than

the compared versions on average when considering the HNA metric, and 11.3%

better than the compared versions on average when considering the TRE metric. Al-

though the performance gain is nearly insignificant when it is compared against GA,

the gain is crucial when it is compared against the original versions (CHEF and its

versions).

Figure 4.6: The number of nodes to the number of rounds in Scenario 1.

The number of clusters to the number of rounds and overall approximation impact

on clustering algorithms in Scenario 1 are given in Fig. 4.7 and Fig. 4.8, respec-

tively. According to Fig. 4.7, all versions of selected clustering algorithms except

CLONALG-M approximated versions suffer initially from not creating the necessi-
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Figure 4.7: The number of clusters to the number of rounds in Scenario 1.

tated number of clusters. This situation forces those methodologies to consume more

than necessary energy and, as a result, energy depletion balance decreases. However,

as the rounds go by, the GA-approximated version improves genetically and maxi-

mizes the network lifespan when compared to CLONALG-M approximated versions.

However, it cannot perform as efficient as CLONALG-M, which can be analyzed

from the TRE metric result. According to Fig. 4.8, it is valid to state that approxi-

mated versions perform better than original versions in this scenario which corrobo-

rate the need for approximation approaches applied to these clustering algorithms.

4.3.2.2 Scenario 2

In this scenario, network boundaries are 1000x1000m. and nodes are randomly scat-

tered within the network boundaries. Applied configuration in this scenario is de-

picted in Table 4.3. The reason for selecting this scenario is to exploit the effect

of approximation methodology over the fuzzy clustering algorithms in sparsely de-

ployed WSNs.

The obtained performance results of Scenario 2 are given in Table 4.4. The maxi-

mum competition radius for MOFCA is set as 60 m. In this scenario, TRE is obtained

at the round 50. As can be corroborated from Table 4.4, the proposed approxima-

tion methodology performs better than all compared approaches when considering

all metrics.
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Figure 4.8: Overall approximation impact on clustering algorithms in Scenario 1.

Table 4.3: Configuration for Scenario 2

Parameter Value

Network Size 1000m x 1000m

Location of the sink (500,500)

Number of deployed nodes 100

Data packet size 4000 bits

εmp 0.0010pJ/bit/m4

Eelec 50nJ/bit

Aggregation ratio 10%

Here, performances of the GA-approximated versions are the poorest, most probably

because of the generated final fuzzy functions. Although this is valid, they do not

cover the crisp range effectively. CHEF and MOFCA original versions outperform

the GA-approximated versions when considering all of the metrics, which is different

from the obtained results of Scenario 1. Expected from the GA was to approximate

these fuzzy functions to optimality, however, it fails for sparsely deployed WSNs.

In this scenario, CLONALG-M approximated versions perform 43.6% better than

the compared versions in average when considering the FND metric, 10.4% better
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Table 4.4: Simulation Results for Scenario 2

METHODOLOGY FND HNA TRE(j)

CHEF 10 50 17.39

CHEF_GA 8 43 12.40

CHEF_CLONALG-M 16 52 18.93

MOFCA 18 46 18.29

MOFCA_GA 8 44 16.72

MOFCA_CLONALG-M 26 53 19.86

than the compared versions in average when considering the HNA metric, and 14.3%

better than the compared versions in average when considering the TRE metric.

Figure 4.9: The number of nodes to the number of rounds in Scenario 2.

The number of alive nodes in connection with the number of rounds in Scenario 2

is depicted in Fig. 4.9. According to the obtained result, it is valid to state that the

sparse deployment type of the network has an uttermost impact on the efficiency of

GA since this is both true for CHEF and MOFCA GA-approximated versions in this

scenario.

The number of clusters in consideration with the number of rounds and overall ap-

proximation impact on clustering algorithms in Scenario 2 are given in Fig. 4.10

and Fig. 4.11, respectively. As depicted in Fig. 4.10, GA-approximated versions of
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Figure 4.10: The number of clusters to the number of rounds in Scenario 2.

CHEF and MOFCA again suffer from not creating the required number of clusters

in this scenario. Moreover, different from the previous scenario, GA-approximated

versions cannot acquire this property throughout the run-time of the protocols. Ac-

cording to Fig. 4.11, the performance of CLONALG-M is significant if LND metric

is paid attention. However, as stated in the previous subsection, this metric is not

considered since it is the final round of operation in WSNs. In this figure, results of

the FND and HNA metric both corroborate presented results of Table 4.4.

Figure 4.11: Overall approximation impact on clustering algorithms in Scenario 2.
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4.3.2.3 Scenario 3

In this scenario, network boundaries are 1000x1000 m. The applied configuration

of this scenario is similar to Scenario 2, except the number of deployed nodes, so

it is not given here again due to page restrictions. The motivation behind choosing

this scenario is to highlight the effect of applied methodologies over selected fuzzy

algorithms in densely deployed WSNs. Additionally, this scenario serves to test and

measure the scalability properties of the proposed approach.

Table 4.5: Simulation Results for Scenario 3

METHODOLOGY FND HNA TRE(j)

CHEF 6 129 376.99

CHEF_GA 15 133 456.99

CHEF_CLONALG-M 16 144 474.72

MOFCA 11 122 447.62

MOFCA_GA 12 135 477.08

MOFCA_CLONALG-M 13 142 490.06

The obtained performance results of Scenario 3 are given in Table 4.5. The maximum

competition radius for MOFCA is set as 70 m. In the scenario, TRE is measured in

the round 100. As can be seen from Table 4.5, CLONALG-M approximated versions

of both protocols performs better than the original and GA-approximated versions

of CHEF and MOFCA in this scenario when considering all metrics. However, the

operation of GA-approximated versions are similar to CLONALG-M approximated

versions for FND metric. GA or CLONALG-M can be applied in place of each

other. Although, there is no significant performance gain between methodologies

considering the FND, the difference increases as the rounds go by. In this scenario,

the CLONALG-M approximated versions perform 6.6% better when considering the

FND metric, 6.2% better when considering the HNA metric, and 3.1% better when

considering the TRE metric than the GA-approximated versions. The performance

gain increases if the original versions are taken into account in the comparisons.

The number of alive nodes with respect to the number of rounds in this scenario is

depicted in Fig. 4.12. According to Fig.4.12, the decrease in the number of alive

91



Figure 4.12: The number of nodes to the number of rounds in Scenario 3.

nodes for all compared methodologies are more or less follows the same routine in

this scenario. They pursue similar energy consumption patterns. However, as can

easily be seen from the figure, CHEF_CLONALG-M and MOFCA_CLONALG-M

versions outperform the compared methodologies significantly until round 300. From

this round on, the compared approaches catch up CLONALG-M approximated ver-

sions. However, CLONALG-M versions maintain their efficient operation manner

throughout the lifespan of the network.

Figure 4.13: The number of clusters to the number of rounds in Scenario 3.

The number of clusters with respect to the number of rounds and overall approxima-

tion impact on clustering algorithms in Scenario 3 are given in Fig. 4.13 and Fig.

4.14, respectively. In this scenario, efficient operation of CLONALG-M approxi-
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Figure 4.14: Overall approximation impact on clustering algorithms in Scenario 3.

mated versions are maintained as in previous scenarios.

If the obtained performance results in the tested scenarios are analyzed, it can be

concluded that CLONALG-M is a promising approach to be applied for fuzzy output

function approximations in rule-based clustering applications in WSNs. When the

impact of network size and the number of nodes in network boundaries over com-

pared methodologies are evaluated, it is valid to state that they have insignificant

distinctive values since they do not affect the way the protocols operate. However,

since the efficient operation of CLONALG-M is maintained as the network size and

the number of nodes increase, it is also valid to state that CLONALG-M is an efficient

methodology and scales well for large-scale WSNs.

4.4 Remarks

In this chapter, a modified clonal selection algorithm (CLONALG-M) is proposed to

be applied for performance improvement of rule-based fuzzy clustering algorithms in

WSNs. The proposed CLONALG-M algorithm modifies the basic principles of the

original CLONALG approach while considering the fuzzy validity measures in the

mutation and generation phases of the possible solutions.
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According to the conducted experimental evaluations, it enhances the performance

of the fuzzy clustering algorithms and approximates the fuzzy output functions to

optimality. Experimental analysis conducted on the depicted scenarios clearly shows

that the efficiency of CLONALG-M is fairly better than the compared standard GA

implementation in all experiments run throughout this chapter.

In this chapter, fuzzy output function approximation using CLONALG-M is done

offline because of its computation-intensive nature, which is also the case for GA

approximations in the conducted tests.

This concludes the approximation of fuzzy output functions proposed for utilization

in rule-based fuzzy clustering systems with the purpose of increasing the system per-

formance.
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CHAPTER 5

AN EMPIRICAL STUDY ON MULTI-MODAL OBJECT CLASSIFICATION

PROBLEM IN WIRELESS SENSOR NETWORKS

In this chapter, an empirical study on multi-modal object classification problem in

wireless sensor networks is conducted in order to corroborate whether or not the pro-

posed intelligent fuzzy clustering methodology,while being energy-efficient, main-

tains object classification accuracy when its compared against the selected clustering

algorithms.

The presented empirical study is based on the related work described in the previ-

ous chapters and the research project supervised by The Scientific and Technological

Research Council of Turkey under Grant No. 114R082. The analysis helps to com-

prehend how a multi-modal object classification performance of a WSN can be aug-

mented by utilizing the proposed intelligent fuzzy clustering methodology. For this

reason, required explanations are elaborated upon completing the brief description.

5.1 Brief Description

In this thesis, it is implicitly asserted that the proposed intelligent methodology not

only improves energy-efficiency but also maintains the classification accuracy when

utilized in multi-modal object classification problems in wireless sensor networks.

According to this assertion, new approaches for fuzzy clustering and fuzzy opti-

mization are proposed and extensive experimental analysis is conducted in previous

chapters. Although performed experimentation is enough to prove the benefits of the

proposed methodologies considering the energy-efficient operation requirements of

a protocol, conducting an empirical study on multi-modal object classification prob-
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lem on wireless multimedia sensor networks can highlight the positive features of the

proposals also considering the classification accuracy.

5.2 Multi-Modality Revisited

As delineated in the previous chapters about data fusion domain, the multi-modality

issue not only occurs in multimedia processing but also in multi-sensor data process-

ing. An ever-increasing number of applications deployed on WSNs tries to discrim-

inate between detected objects based upon their characteristics. Most studies in the

literature treat data acquired from different types of sensors as a different modality for

fusion in order to handle inefficiency occurring in the classification process.

In terms of explaining the basics of the conducted empirical study, setups in which an

object (phenomenon) is observed using multiple sensors, each of which is a member

of a different type such as PIR, acoustic, imaging, microphone, or seismic, are con-

sidered. In this type of a setup, each acquired data from a sensor-type is described as

a separate modality. If these modalities are not correlated in time or space, then they

are associated with one data set. However, when necessary correlations occur through

fusion, the whole data is regarded as multi-modal. A wireless node can access the

multi-modal data if the node consists of different types of sensors. The multi-modal

data access is also valid for a CH since different modalities at each wireless node are

transferred to the CH for fusion and aggregation purposes. A vital feature of multi-

modal data, as stated in [73], is its complementarity in the sense that several kinds of

value are added to the whole, acquisition of which is generally impossible from any

remaining modality in the environment.

5.2.1 Fusion System

Data fusion mainly struggles to make a more efficient and/or accurate decision by the

combination of available input sources. In other words, fusion methodologies and

aggregation techniques acquire the most inclusive and identifying datum related to

an entity by the utilization of various correlated data that are supplied from differ-

ent sources, therefore facilitating the end user to increase accuracy, decrease noise,
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and extract semantic information for decision making. For this reason, fusion is im-

plemented in this empirical study in the object classification process considering the

light-weight and accurate operation requirements of WSNs. To emphasize again, the

following are the main points of discussion for not sticking to and counting upon a

single source:

• Fusion of supplementary data ensures a more descriptive exemplification of the

subject matter. Additionally, if different fusion sources consist of redundant

data, then inexactness or vagueness of a decision decreases. Thus, robustness

and reliability of a possible decision increases [54],

• One of the functional benefits of data fusion resides in its unreliable source

filtering property. In real life applications, it is often unknown to deduce the

performance or added value that is brought by additional modality at the design

time. Not only the performance but also the reliability of the modality cannot

be predicted correctly in real-world environments. From this perspective, de-

pendency on any of the available sources or their weights on the overall result

can together be decreased [54],

• Noise in the data is an undesirable property which may cause incorrect clas-

sification results. Multiple sources in this respect can operate as a filter and

decrease the effect of noise on the result [51],

• While no source is impeccable, the collaborative effort among them generally

produces better results hence improves usability [55],

• Each input has an implicit upper bound on the overall result. Therefore, no

system performance can be repeatedly tuned by modifying its components or

operation steps [56].

5.2.2 Design Principles

Although there exist various expectations from a real-life fusion system design, effec-

tiveness, efficiency, and feasibility are placed among the top third. These expectations

can be reported as but not limited to:
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• An output obtained from a fusion system could be operated at least as efficiently

as any of its inputs [54],

• Performance and robustness of classification should be increased by the utiliza-

tion of fusion [54], [74], and[75],

• A true fusion system should be feasible in the sense that the design principles

could easily be implemented in real-world scenarios,

• Flexibility and speed of operation are among the desired properties of a fusion

system [76].

The aforementioned expectations are valid for any fusion system independent of its

application domain. Moreover, there are other requirements such as a light-weight

operation architecture together with the accuracy of object/event detection process

and energy-efficiency when the system under discussion is applied to a domain of

WSNs where resource-constraints apply.

5.3 System Architecture

This conducted empirical study is based on the research project supervised by The

Scientific and Technological Research Council of Turkey under Grant No. 114R082.

With the project, a new approach and a framework targeting the energy-efficiency

and accuracy trade-off problems in WMSNs are aimed. The focus is on increasing

accuracy of transferred information as well as the wireless network energy efficiency.

In the project, by using fuzzy clustering algorithms, a wireless sensor network con-

suming much less energy than currently used ones is constructed and realized. Thus,

a WMSN framework that reduces energy consumption while at the same time pre-

serving accuracy is developed and experimentally verified. The system architecture

applied in the research project is presented in Fig. 5.1.

In the scope of the research project, a WMSN node is realized on a Raspberry Pi

Model B+ board as demonstrated in Fig. 5.2, equipped with necessary sensors and

is set up so that the node operates in a collaborative manner. The WSN that this

empirical study conducted on consists of a total number of 100 virtual nodes that are
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Figure 5.1: The research project system architecture.

deployed into an area size of 1000 x 1000 m, and the first order radio model is used

for energy consumption measurement as described in the previous chapters.

Figure 5.2: The Realized WMSN Node.

5.4 Implementation Details

Since the clustering process directly relates to paths data flows through, the following

modifications are made to the system architecture presented in Fig. 5.1 in order to

measure and emphasize the effect of clustering on classification:
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• Each wireless node is only equipped with three sensors, one of them is PIR and

the other sensors are from the seismic, acoustic, or camera sensor classes.

• The first and second level fusion schemes are both late fusions such that sepa-

rate classifiers are utilized for each modality data.

• Due to the first modification, the triggering process is canceled and second

level fusion and classifications are only performed on the first level CHs, by

considering the timestamps and locations of the detections, of which the data

acquired nodes are members.

The reasons behind the modifications are as follows:

• Firstly, all available wireless nodes in the market may not utilize camera sensors

due to using these sensors as higher-order assets in some nodes,

• Secondly, with this modification, in addition to homogeneous sensor networks,

heterogeneous counterparts can also be targeted,

• And finally, also as a crucial reason, impact of clustering on classification can

be rendered vague if all fusion and classification operations are done following

an in-node processing manner. In the in-node processing case, only final clas-

sification results are transmitted to CHs and CHs relay the acquisitions to the

sink. However, with the modifications done on the architecture, it is now pos-

sible to transmit one modality representing a phenomenon to one CH and one

other modality representing the same phenomenon to another CH. When this is

the case, there is a chance for the fusion and classification results to change due

to the availability or unavailability of a modality at a CH.

Prior to the network deployment, clock synchronization is initially performed. All

clocks are set to the beginning of time, which is 00(h):00(m):00(sec):000(msec).

Then, when there is no object in the range of specific sensor types, measured back-

ground noise of the utilized sensor is generated and employed as the threshold value

for the detection of signals. Thereafter, created class signatures pertaining to the seis-

mic, microphone, acoustic, and camera sensor types are stored in the wireless nodes.

Finally, the simulation drawer generated data (objects) are flushed into the network
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considering the timestamps and locations of the objects. In the class signature prepa-

ration, seismic and acoustic data properties are employed as delineated in [77] and

[78], respectively.

Classification outputs pertaining to each modality at sensor or CH level are generated

as follows:

• PIR data is utilized as a boolean data which discriminate between the presence

or absence of an object and associated with a class label randomly since PIR

data is regarded as useless in the object classification process.

• For the seismic classification, k-Nearest Neighbor algorithm is employed. Since

the utilized algorithm is a supervised approach, classifier is trained offline prior

to the node deployment phase in order to discriminate between class labels.

• For the acoustic classification of the detection, signal analysis is performed in

order to determine the target presence by utilizing Binary Fuzzy Classifier as

described in [79]. Here, different from the original study, class labels are gen-

erated instead of evidences. There are multiple binary fuzzy classifiers utilized

in an hierarchical manner and each classifier is a fuzzy rule-based classifier.

• For visual classification of the detection, Speed and Shape Ratio are extracted

through the utilization of Minimum Bounding Rectangle of the detection. Elab-

orations related to the visual classification approach pursued for this modality

reside in [80].

For the fusion of classification results, two different methodologies are applied and

the performance of each is presented in the evaluation section. These methodologies

are as follows:

• Standard Weighted Averaging: Each modality possesses an expert defined weight

in the calculation of a fusion result. The assigned weight for the imaging modal-

ity is equal to 65%, is equal to 15% for the seismic modality, is equal to 15%

for the acoustic modality, and is equal to 5% for the PIR modality.

• Simulated Annealing-based Weighted Averaging: Like the standard weighted

averaging methodology, each modality possesses a weight obtained from the
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Simulated Annealing algorithm. The calculation of the SA-based weights fol-

lows from the Optimization Framework, internals of which are explained in

Subsection 3.3.2 of Chapter 3. The only difference lies in the utilization of dif-

ferent input parameters. In this specific purpose, inputs of the SA algorithm are

the expert-defined weights of modalities.

It is also noteworthy to state that the standard weighted averaging is also applied

in a modified manner in this empirical study due to the presence or absence of a

sensor type in a wireless node. Since each wireless node is geared with three types

of sensors, one of which is PIR sensor and the others are from the remaining sensor

types, assigned weights are modified in favor of the sensors except the PIR in the

sense that the total weight assignment in a node is still equal to 100%. For instance, if

a wireless node consists of a PIR sensor together with imaging and seismic sensors, a

total of 8% is assigned to the PIR modality, a total of 71% is assigned to the imaging

modality, and 21% is assigned to the seismic modality. That is to say, 1/5 of the

remaining weight is assigned to the PIR modality and 2/5s of the remaining weight

are assigned to the other modalities.

Additionally, SA-based weights are calculated offline due to the computation-intensive

nature of the operation and obtained as roughly 70% for the imaging modality, 14%

for the seismic modality, 14% for the acoustic modality, and 2% for the PIR modality.

The distribution of the remaining weight on a wireless node is done as in the case for

the standard weighted averaging approach.

5.5 Evaluation

The graphical exemplification of the utilized system model for node communication

is presented in Chapter 3; therefore, not presented here again. But, it is noteworthy to

state that the member nodes perform data acquisition with the equipped sensors, fuse

and classify detections, and then send the resulting data, which is the decided class of

an object to their CHs utilizing a single-hop communication channel, whereas CHs

accumulate the decisions of member nodes, perform higher level classification if pos-

sible and then relay the result to the destination via multi-hop routing methodology.
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With the aim of evaluating the proposed intelligent fuzzy clustering approach in terms

of classification accuracy, it is compared against CHEF and MOFCA in a predefined

scenario. In the scenario, TTDFP utilization is flourished with intelligence in the

sense that the SA procedure in TTDFP is triggered when the ratio of the alive-node

count with respect to the total deployed nodes differentiates in quartiles. TTDFP

utilizes its fuzzy routing methodology whereas CHEF and MOFCA employ the multi-

hop routing methodology presented in [18]. The CHEF α value is given as 2.5 and

the threshold optimal value is determined by the use of equations in [17] and assigned

as roughly 0.3 for 100 nodes as in the original study. Threshold and coefficient values

of TTDFP are obtained using SA as explained in Chapter 3 and vary at each quartile.

5.5.1 The Data Set

This empirical study is conducted on a generic data set generated by the WSN data

simulator developed by Cihan Küçükkeçeci. Data Simulator concentrates on gener-

ating a graph-based big data model so as to simulate wireless sensor networks. The

simulator deploys initiated sensor nodes manually on a rectangular area depicted by

their latitude and longitude values and insert the obtained values as locations of the

nodes into the OrientDB graph database. However, for this study, the manual deploy-

ment feature is modified as random deployment, and the data store is modified as SQL

Server, which stores the locations of nodes as coordinates in 2D space in accordance

with the requirements of this empirical study.

Figure 5.3: Snapshots from the original data simulator.
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In order to create objects in the rectangular area, simulation drawer is employed.

Snapshots from the data simulator are shown in Fig. 5.3. According to the chosen

phenomenon type on the drawer and following a path on the drawer, object features

corresponding to the utilized sensor types are created with their timestamps. In this

empirical study, 500 human class, 500 animal class, and 500 vehicle class of objects

are utilized, their relevant data is generated using the simulator, and in order to train

and measure the performance of the classifiers, ten-fold cross validation is applied.

5.5.2 Performance Metrics

Similarly to TRE, HNA, and FND metrics utilized for predicting the lifespan of sen-

sor networks and measuring the efficiency aspect of protocols, Precision and Recall

metrics are utilized with the purpose of measuring the classification accuracy resulted

by the use of compared protocols interchangeably in the clustering phase together

with F-Score metric which is applied to measure the accuracy of the conducted tests.

Precision depicts the portion of relevant instances among the retrieved instances

whereas Recall depicts the portion of relevant instances retrieved over all relevant

instances, which are useful in describing the classification performance of a system.

Precision is also phrased as "positive predictive value" and recall is phrased as "sen-

sitivity" in the literature. The performance of the classifier being tested for a classi-

fication task can be compared with reliable external judgments using the terms true

positives (tp), true negatives (tn), false positives ( f p), and false negatives ( f n). These

positive and negative terms express the classifier’s estimation (expectation), and the

true and false terms express whether that estimation aligns with the observation.

Precision =
tp

tp + f p
(5.1)

Recall =
tp

tp + f n
(5.2)

In the light of the clarifications made, precision and recall metrics can be defined in

mathematical terms as in Eq. 5.1 and Eq. 5.2, respectively.
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As stated, F-Score metric is employed with the purpose of corroborating the accuracy

of the conducted tests. Since F-Score metric is the harmonic average of the depicted

metrics in Eq. 5.1 and Eq. 5.2, it can be described formally as in Eq. 5.3.

F − S core =
2

1
Precision + 1

Recall

(5.3)

Therefore, these described metrics are employed for the purpose of evaluating the

classification performance of the compared algorithms in the same setup.

5.5.3 Experimental Results

A series of experimentation are run by utilizing the WSN simulator in [20] in order

to simulate the clustering phase at each round. The simulator is a Discrete Event

System Simulator (DESS) and can simulate the coded algorithms under the same

environment. Conducted experiments are run on an eight-core 2.7 GHz Intel Core i7

workstation 20 times to acquire more stable and reliable metric results and arithmetic

mean of obtained results are sighted in this subsection.

Table 5.1: Classification Results using Standard Weighted Averaging

Clustering Algorithm Object Precision Recall F-Score

CHEF

Animal 63.4% 52% 0.571

Human 81.8% 72% 0.765

Vehicle 71.4% 60% 0.652

Average 72.2% 61.3% 0.662

MOFCA

Animal 69.2% 54% 0.606

Human 88.3% 76% 0.816

Vehicle 69.7% 60% 0.644

Average 75.3% 63.3% 0.688

TTDFP

Animal 67.5% 54% 0.600

Human 84.4% 76% 0.799

Vehicle 72% 62% 0.666

Average 74.6% 64% 0.688
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The obtained classification performance results for the experimented scenario using

the standard weighted averaging and the SA-based weighted averaging approaches

are presented in Table 5.1 and 5.2, respectively.

Table 5.2: Classification Results using SA-based Weighted Averaging

Clustering Algorithm Object Precision Recall F-Score

CHEF

Animal 68.2% 56% 0.615

Human 86.6% 78% 0.820

Vehicle 70.4% 62% 0.659

Average 75.1% 65.3% 0.698

MOFCA

Animal 67.5% 54% 0.600

Human 84.4% 76% 0.799

Vehicle 74.4% 64% 0.688

Average 75.4% 64.6% 0.696

TTDFP

Animal 66.6% 56% 0.608

Human 84.7% 78% 0.812

Vehicle 74.4% 64% 0.688

Average 75.2% 66% 0.703

If the impacts of SA-based weighted averaging and standard weighted averaging are

compared with respect to the obtained classification performance results as presented

in Table 5.1 and 5.2, it is clearly visible that SA-based weighted averaging improves

the accuracy ratios for all utilized algorithms in most classes, which explicitly denotes

the pros of the methodology. Moreover, since SA-based weighted averaging improves

the accuracy ratios for all utilized algorithms and does not boost any bad performing

algorithm to a better place or the vice-versa, it also implies that it has a significant

distinctive value when compared to the standard weighted averaging approach.

In order to corroborate and derive the significance of the finding, an unpaired t-test

is conducted on the results of TTDFP operation over the re-randomized random data.

To be able to conduct this test, average classification accuracy results for the F-Score

metric pertaining to standard weighted averaging approach and SA-based weighted

averaging approach are obtained through the utilization of the algorithm 20 times for

each approach.
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According to the acquired result of the test; t − value is obtained as -2.25 and the

probability of this result, assuming the null hypothesis, is obtained as 0.030. The

box-plot of the obtained result in the unpaired t-test is presented in Fig. 5.4. In the

figure, A and B depicts the standard and SA-based weighted averaging methodologies,

respectively.

Figure 5.4: The box-plot of the obtained result in the unpaired t-test.

Although the energy-efficient operation of TTDFP is experimentally verified in the

previous chapters, it is clarifying to depict the energy consumption of the compared

protocols in this chapter again, since there is a difference in the transmitted data such

that each leaf node transmits fixed 4000 bits of data to its CH in Chapter 3, whereas

in this chapter, the nodes sense and obtain data according to their geared sensor types

and the size of data differs for each different type of a node. Additionally, due to

our modifications regarding intelligent input parameter tuning for clustering in the

quartiles for TTDFP with the purpose of modifying the operation of TTDFP with

respect to the evolving environment, it is now more comprehensible to verify and

highlight the energy-efficiency aspect of the TTDFP algorithm.

The obtained energy-efficiency results for the experimented study are presented in
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Table 5.3. It is wise to state that the energy consumption results are obtained from the

standard weighted averaging-based fusion implementation and energy consumption

because of fusion is considered insignificant due to the fact that the computation cost

is insignificant when compared to the communication cost.

Table 5.3: Obtained Energy Consumption Results of the Empirical Study

Algorithm FND HND TRE

CHEF 87 492 12.03

MOFCA 102 700 20.36

TTDFP 108 861 24.47

The variation in the number of alive nodes as the rounds pass by in the empirical

study is depicted in Fig. 5.5. According to the obtained results, TTDFP preserves its

efficient-operation architecture under the investigated scenario.

Figure 5.5: The variation in the number of alive nodes as the rounds pass by in the

empirical study.

One additional test scenario is setup in accordance with the specifications of the cam-

era (raspicam) employed in the research project. Since the camera sensor is able to

record low resolution video (320 x 240 pixels) at 5 fps and each pixel bit depth can be
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modeled as 8 bits, the transmitted data size for a still image when an object is detected

by an imaging sensor can be utilized as 600 KB (614400 bits). Additionally, initial

battery charge of a wireless node is modified and utilized as 100 joules in this specific

scenario. The reason behind choosing this scenario lies in the real-world usability

requirements. TRE consumption of the depicted methodologies under the raspicam

usability scenario is delineated in Fig. 5.6. According to the results, all protocols are

affected from the increase in transmitted data size, however the pressure over CHEF is

the most. MOFCA and TTDFP pursue similar energy consumption models and con-

sumes less energy when compared to CHEF also in the case for raspicam usability

scenario.

Figure 5.6: TRE consumption of the methodologies under the raspicam scenario.

5.6 Remarks

In this chapter, an empirical study on multi-modal object classification problem in

wireless sensor networks is presented in order to corroborate whether or not the pro-

posed intelligent fuzzy clustering methodology maintains object classification accu-

racy when its compared against selected clustering algorithms. According to the ob-

tained classification performance results, the proposed intelligent fuzzy clustering

approach, in addition to its energy-efficient operation architecture, preserves its accu-

racy when employed in multi-modal object classification scenarios of WMSNs.
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It is also noteworthy to state that the only difference in the employed scenario is the

compared clustering protocols which affect the path from which the data is trans-

mitted. The remaining elements in the architecture, such as fusion and classification

methodologies, are exactly the same and occur at the same locations. In this respect,

it is valid to compare the impact of clustering algorithms over classification results.

Consequently, it is possible to deduce that the change in transmission path directly

alters available modalities for fusion at a CH for this experimented scenario, which in

turn, modifies the classification outputs.

Additionally, the utilization of the optimization framework, essentials of which is de-

picted in Chapter 3, in the modality weight assignment phase in the fusion process is

a promising choice since it has a significant effect over the classification performance

of the constructed system. Since the probability value (p) in the conducted test is ob-

tained as 0.03, it shows that the difference between the weight calculation approaches

is not as much as expected. In this respect, if the alpha (α) value is set as 0.01, it

cannot be concluded that SA-based approach always improves the result.
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CHAPTER 6

CONCLUSIONS

In this dissertation, an Intelligent Fuzzy Clustering Approach for Energy-Efficient

Data Aggregation in Wireless Sensor Networks is proposed. The proposed approach

is a distribution-agnostic approach that runs and scales efficiently for sensor network

applications. Additionally, along with the proposal, an optimization framework is

utilized to tune the parameters used in the fuzzy clustering process in order to opti-

mize the performance of a given WSN. This dissertation also includes performance

comparisons and experimental evaluations of the proposals with the selected state-of-

the-art studies.

The experimental results reveal that the proposed protocol performs better than any

of the compared protocols under the same network setup considering metrics used for

comparing energy-efficiency and network lifespan of the protocols. At the same time,

along with the proposed optimized fuzzy network clustering protocol, an empirical

study on multi-modal object classification problem in wireless sensor networks is

conducted and obtained classification performance results are also presented so as to

corroborate the object classification accuracy aspect of the proposed protocol.

Although the proposed protocol fails in handling specifically engineered scenarios

where node deployment occurs manually following a non-uniform distribution on the

corners of a rectangular area, which is also the case for MOFCA, it is considered as

a low-possibility scenario and a specific utilization aim of deploying such a network

has not yet been observed.
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6.1 Discussion

The conducted empirical study in this dissertation is based on the research project

supervised by The Scientific and Technological Research Council of Turkey under

Grant No. 114R082. With the project, a new approach and a framework targeting the

energy-efficiency and accuracy trade-off problems in WMSNs are aimed. The focus

is on increasing accuracy of transferred information as well as the wireless network

energy efficiency. In the project, by using fuzzy clustering algorithms, a wireless

sensor network consuming much less energy than currently used is constructed and

realized. Thus, a WMSN framework that reduces energy consumption while at the

same time preserving accuracy is developed and experimentally verified.

This dissertation starts with the preliminaries about WSNs. These initial sections

mostly target an audience of people not accustomed to WSN field. Thereafter, re-

quired explanations about application challenges in WSN and multi-modal content

together with streaming issues are given. Then, the problem, scope, and contributions

of this dissertation are provided.

Then the big picture, background and related work in the scope of the dissertation are

presented. This part covers data aggregation concept including clustering and rout-

ing aspects, fuzzy logic utilization in WSN applications, and optimization in WSNs

together with object classification and related information about multi-modality and

data-fusion.

For the energy-efficient clustering problem a new clustering algorithm, named Two-

Tier Distributed Fuzzy Logic Based Protocol (TTDFP), is introduced and described

in detail. In this sense, an overview of the methodology and system model together

with detailed information about the operation architecture of TTDFP is presented. For

the energy-efficient routing problem, it is tried to overcome in the designed clustering

methodology as an additional tier which extends a crisp routing protocol using fuzzy

variables in path determination process.

Thereafter, the designed and proposed approach (TTDFP) is extended using the pro-

posed Clonal Selection principle-based optimization algorithm for fuzzy rule-based

clustering algorithms. In this context, detailed descriptions about the proposed fuzzy
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optimization methodology for rule-based clustering algorithms are also provided.

The discussion of topics until Chapter 5 puts the background into words and provides

required knowledge for comprehending the empirical study in this chapter. Although

some parts of this chapter are still targeting the readers with restricted background on

clustering, optimization and multi-modality topics in WSNs, many important details

about the way they collaborate with each other are blended into a more concrete

knowledge which is then utilized to corroborate the proposals done throughout this

dissertation.

6.2 Future Work

Within the scope of this thesis, there are various topics to be studied on in the future.

Those topics can be grouped as;

• The design of a more energy-efficient data aggregation methodology,

• Intelligent operation architecture extensions.

The elaborations related to the aforementioned topics are as follows:

• Although the proposed data aggregation methodology is verified through con-

ducted experiments, there are several other parameters that can be considered

for a more-effective and energy-efficient clustering implementation. The blend

that the considered parameters fit in the clustering process needs more investi-

gations.

• Additionally, the proposed fuzzy path determination process extends its crisp

counterpart with selected fuzzy variables considering energy-efficiency and bal-

ance throughout the utilized paths. A similar extension or investigations are

also necessary for utilized fuzzy parameters in order to obtain a more effective

combination which eventually decreases consumed energy in transmission and

balances energy more effectively.

• It is believed that there can be possible improvements and modifications that

can be made on the intelligent operation behavior of the proposal. Firstly, in-
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stead of SA, other optimization methodologies which do not bring much over-

head into a resource-constrained environment in the obtainment of parameter

values can be investigated. Then, because of its computational complexity,

fuzzy function approximation in this dissertation is conducted in an offline man-

ner. Future studies may focus on devising an online version of this methodol-

ogy. And finally, the intelligence sugar blended into the architecture only mod-

ifies its operation parameters with respect to the change in the number of alive

nodes in the environment. There might exist smarter choices of conducting

this intelligent behavior which would resemble the way humans behave. These

options should also be investigated.

In the same sense, optimization of various algorithm-dependent parameters using

some other methodologies such as Particle Swarm Optimization (PSO) can be con-

sidered. Additionally, exploring the behavior and testing the performance of TTDFP

under WSNs coupled with various node movement strategies can also be investigated.

Learning and classification processes performed throughout the empirical study in

this dissertation are executed in accordance with the conducted research project su-

pervised by TUBITAK. Although beyond the scope of this dissertation, these method-

ologies can be augmented with emerging deep learning approaches for faster and

more accurate results.
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