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ABSTRACT

OPTIMAL DESIGN OF SPARSE MIMO ARRAYS FOR WIDEBAND
NEAR-FIELD IMAGING BASED ON A STATISTICAL FRAMEWORK

Kocamış, Mehmet Burak

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Figen S. Öktem

May 2018, 76 pages

Wideband near-field imaging is an emerging remote sensing technique in various ap-
plications such as airport security, surveillance, medical diagnosis, and through-wall
imaging. Recently, there has been increasing interest in using sparse multiple-input-
multiple-output (MIMO) arrays to achieve high resolution with reduced hardware
complexity and cost. In this thesis, based on a statistical framework, an optimal de-
sign method is presented for two-dimensional MIMO arrays in wideband near-field
imaging. Different optimality criteria are defined based on the image reconstruction
quality obtained with the final design. An algorithm called clustered sequential back-
ward selection is used to perform the optimization of the chosen criterion over all
initial locations of antenna elements. The developed framework also allows incor-
porating different practical considerations into the design such as synthetic apertures
and antenna patterns. The performance of the approach is illustrated for a microwave
imaging application. The designs obtained for different observation settings are com-
pared with some commonly used sparse array configurations in terms of image recon-
struction quality. Numerical simulation results suggest that the approach can yield
designs that outperform conventional sparse array configurations in terms of image
reconstruction quality for a wide range of SNR.
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ÖZ

GENİŞBANTLI YAKIN ALAN GÖRÜNTÜLEMESİ İÇİN SEYREK
ÇOK-GİRDİLİ ÇOK-ÇIKTILI DİZİLERİN İSTATİSTİKSEL ÇERÇEVEYE

DAYALI OPTİMAL DİZAYNI

Kocamış, Mehmet Burak

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Figen S. Öktem

Mayıs 2018 , 76 sayfa

Genişbantlı mikrodalga görüntüleme, havaalanı güvenliği, gözetim, tıbbi teşhis ve
duvar-arkası görüntüleme gibi çok çeşitli uygulama alanlarında kullanılan gelişmekte
olan bir uzaktan algılama tekniğidir. Yakın zamanda, yüksek çözünürlüğü başarmakla
beraber donanımsal karmaşıklığın ve maliyetin azaltılması için seyrek çok-girdili
çok-çıktılı (MIMO) dizilere olan ilgi artmıştır. Bu tez çalışmasında, istatistiksel bir
çerçeveye dayandırılarak, genişbantlı yakın alan görüntülemede iki boyutlu MIMO
dizilerin optimal dizayn metodu sunulmaktadır. Nihai dizaynla elde edilen görüntü
oluşturma kalitesine bağlı çeşitli en iyilik ölçütleri tanımlanmaktadır. Seçilen ölçü-
tün bütün anten elemanlarının ilk yerleri üzerinden en iyilemesi kümeleşmiş ardışık
geri seçim (KAGS) olarak adlandırılan algoritma kullanılarak gerçekleştirilir. Ayrıca,
geliştirilen çerçeve, sentetik açıklık ve anten paternini dizayna dahil etme gibi deği-
şik pratik düşünceleri uygulamaya imkan sağlar. Bu yaklaşımın performansı mikro-
dalga görüntüleme uygulamalarında gösterilmektedir. Bu yaklaşım kullanılarak de-
ğişik gözlem durumları için elde edilen dizaynlar yaygın olarak kullanılan seyrek
anten dizilimleriyle görüntü oluşturma kaliteleri açısından karşılaştırılmaktadır. Sa-
yısal benzetim sonuçları, önerilen yaklaşım ile elde edilen dizaynların yaygın olarak
kullanılan seyrek anten dizilimlerine göre, geniş bir SNR aralığında daha iyi görüntü
oluşturma kalitesi sağlayabildiğini göstermektedir.
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CHAPTER 1

INTRODUCTION

1.1 Wideband Near-Field MIMO Imaging

Near-field ultrawideband imaging systems are emerging array-based systems for vari-

ous applications such as airport security, surveillance, through-wall imaging and med-

ical diagnosis. For example, such systems are currently used for security screening to

detect concealed weapons, explosives and metal objects [4, 5, 6]. Because there is a

dielectric contrast difference between healthy and abnormal biological tissues, near-

field radar imaging have also been studied for the diagnosis of certain diseases such as

breast cancer and brain stroke [7, 8, 9]. Through-wall imaging is another radar-based

application for near-field imaging. With these imaging systems, it becomes possible

to determine the layouts of a building from outside, and detect or track humans and

moving objects inside [10].

In wideband near-field imaging systems, down-range and cross-range resolutions are

determined by the frequency bandwidth and size of the antenna arrays. In the classical

two-dimensional designs, element spacing is chosen as at most half of the center

wavelength to prevent undesired grating lobes. As a result, in applications demanding

high-resolution, classical (non-sparse) planar arrays require large number of antenna

elements, and this results in high hardware complexity and cost.

To reduce this complexity and cost, recently, there has been increasing interest in

using sparse multiple-input-multiple-output (MIMO) arrays [2, 11]. MIMO imaging

systems operating at a wide frequency range can offer high resolution with reduced

hardware complexity and cost. A typical near-field MIMO imaging system is illus-
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trated in Fig. 1.1. As seen in the figure, the system is composed of two main compo-

nents: “sensors” consisting of antenna elements and “data processing” that performs

the image reconstruction from the raw radar data.

Figure 1.1: Illustration of a near-field imaging system [1].

First, the transmit antenna elements transmit a radar pulse and the receiver anten-

nas receive the reflected pulse from the unknown scene. This is often performed

with a multistatic system; that is, transmission and reception are performed by differ-

ent antenna elements unlike a monostatic system. For example, conventional wide-

band synthetic-aperture radar (SAR) systems are commonly monostatic [5, 12, 13],

whereas wideband MIMO imaging systems are multistatic. A typical imaging geom-

etry for the multistatic case is shown in Fig. 1.2. In this thesis, a similar MIMO planar

array imaging system is utilized.

Figure 1.2: Multistatic imaging system for near-field MIMO imaging [2].

The second part of the MIMO imaging system is related to the algorithms used for

data processing. An image is computationally formed from radar data by using an

image reconstruction algorithm. For this purpose, many algorithms have been devel-

oped. Due to the difference in the locations of transmitters and receivers in the mul-

tistatic systems, the algorithm used for solving the inverse problem also changes. For
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these systems, algorithms developed for monostatic systems are generally extended

to the multistatic case. Stack migration, Kirchoff migration and modified range mi-

gration are the examples for such extensions [2, 11, 14, 15]. In the inverse problem

community, statistical inversion methods are generally preferred over such analyti-

cal reconstruction methods. This is because statistical methods enable to regularize

the ill-posed inverse problems and offer improved image reconstruction quality in the

presence of noise and limited data [16]. In this thesis, statistical inversion methods

are utilized to perform image reconstruction.

The operating frequency range of near-field MIMO imaging systems is another im-

portant factor. The higher the operating frequency and the bandwidth of the system,

the better is the cross-range and down-range resolutions of the system, respectively.

Thus, operating frequency range should be selected based on the system require-

ments. Wavelengths are generally in the order of millimeters or centimeters for the

studied near-field imaging systems. For example, the operating frequency spans the

range from 300 MHz to 30 GHz (corresponding to cm-wave radar) in [2, 11], and

changes from 30 GHz to 300 GHz (corresponding to mm-wave radar) in [17]. More-

over, the operating frequency can also reach up to 1 THz for some applications [18].

1.2 Design of Wideband Near-Field MIMO Imaging Systems

With the increasing interest in using sparse MIMO arrays for imaging, the design of

the sparse imaging arrays has become important. The design approaches studied in

the literature are generally based on some desired properties of the virtual arrays and

beam patterns.

For example, in [19, 20, 21, 22], sparse arrays have been designed by imposing some

constraints on the beam pattern such as achieving a desired array radiation pattern,

narrow main lobe width and/or low side lobe level. In most of these works, the design

starts with a fully sampled non-sparse array, and the reduction of antenna elements

are performed until either a predefined number of array elements is reached or the

number of elements is minimized. Different non-iterative and iterative methods such

as matrix pencil method, simulated annealing, and Bayesian compressive sensing are
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applied to the resulting optimization problem, each demanding different amount of

computations. These works generally focus on a single operating frequency rather

than a wideband operation, and imaging quality is not of special interest.

There are also design approaches that take into account the imaging performance in an

indirect way through the use of virtual arrays [23, 24]. The virtual array of an antenna

configuration is mainly the morphological convolution of the locations of the transmit

and receive antenna elements, and is also related to the concept of effective aperture.

It has been proposed that the uniformity of the elements in the virtual array of an

antenna configuration affects the imaging performance positively. Moreover, minimal

element shadowing also improves the imaging quality. The proposed arrays in [11,

25, 23, 24, 26] are mainly based on the uniformity and minimal element shadowing

of their virtual arrays, and the performance of the proposed arrays are then compared

with the classical array configurations for imaging applications.

The virtual array concept used in the design of sparse MIMO arrays is mainly based

on the idea of co-arrays [27]. In far-field imaging, the sum and difference coar-

rays determine the family of realizable point-spread functions (PSFs) associated with

an antenna array, as well as the support of the inverse transform of the PSF. There

are various works that aim to develop a design theory for maximizing the degrees

of freedom (number of unique virtual sensors) in the co-array. These streams of

works can be grouped into two categories: nested arrays [28, 29, 30] and coprime

arrays [31, 32, 33, 34, 35]. The developed design approaches are for both 1D arrays

and 2D arrays, are applicable to both active (as in MIMO radars) and passive sensing,

and generally yield uniform and non-overlapping elements in the coarray. Moreover,

the performance of the resulting sparse array designs have been shown to improve

direction-of-arrival (DOA) estimation for a large number of targets in the field of

view when operated at a narrow band. However, although the concept of co-array is

directly related to the imaging performance for far-field conditions and narrowband

operation [27], to the best of our knowledge, no such relation is known for near-field

and wideband imaging. Hence, these design criteria based on the concepts of coarrays

or virtual arrays appear to affect the imaging performance in an indirect way.

To summarize, none of the earlier design approaches for wideband near-field imaging
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aim to minimize the image reconstruction error. In fact, a systematic approach to

the optimal design of MIMO arrays has not been developed from an inverse theoretic

perspective which takes into account the quality of the reconstructed images obtained

with the design.

In this thesis, based on a statistical framework, an optimal design method is presented

for two-dimensional MIMO arrays in wideband near-field imaging. The problem

of image reconstruction from MIMO measurements is formulated as an estimation

problem, and different optimality criteria are defined based on the image reconstruc-

tion errors obtained with the final design. An algorithm called clustered sequential

backward selection is used to perform the optimization of the chosen criterion over

all initial locations of antenna elements. That is, the algorithm starts with an initial

antenna configuration (either a uniform or a random configuration), and iteratively re-

duces the antenna elements based on the chosen optimality criterion until the desired

number of elements is reached.

To the best of our knowledge, such a statistical approach has not been applied to

the optimal design of wideband near-field MIMO imaging systems before. The de-

veloped design framework is also flexible; it allows incorporating different practical

considerations into the design such as synthetic apertures and antenna patterns. Exist-

ing design approaches do not also provide such flexibility. This work also illustrates

the performance of ML- and MAP-based image reconstruction (or equivalently least-

squares (LS) and Tikhonov-regularized LS solutions) for wideband near-field MIMO

imaging.

The performance of the designs obtained with our approach is illustrated for a mi-

crowave imaging application. The designs obtained for different observation settings

are compared with some commonly used sparse array configurations in terms of im-

age reconstruction quality. Numerical simulation results suggest that the approach

can yield designs that outperform conventional sparse array configurations in terms

of image reconstruction quality for a wide range of SNR.
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1.3 Contributions and Outline

The thesis is organized as follows. In Chapter 2, the statistical optimal design method

is developed. In Sect. 2.1, first, the continuous observation model for wideband near-

field MIMO imaging is derived, and the discretization of this forward model is pre-

sented. In Sect. 2.2, using this forward model, the problem of image reconstruction

from MIMO measurements is formulated using maximum likelihood (ML) and max-

imum posterior (MAP) estimation principles. Then, an optimality criterion, which is

a function of the error covariance matrix, is defined to maximize the image recon-

struction quality obtained with the design. Lastly, the algorithm used to perform the

optimization of the chosen criterion is presented. In Sect. 2.3, a simulation scenario

for microwave imaging is described, and numerical results are presented to illustrate

the performance of optimized designs. To perform comparison, ML and MAP based

image reconstruction for classical designs are also computed and compared with that

of optimized designs in terms of image reconstruction quality.

Chapter 3 focuses on practical design aspects such as enforcing a synthetic aper-

ture and including an antenna pattern to the formulation. In Sect. 3.1, the synthetic

aperture concept is considered, and continuous and discrete observation models are

modified for this purpose. Numerical simulations are performed for designs with a

specific synthetic aperture structure, and results are presented. In Sect. 3.2, the in-

clusion of the antenna pattern to the observation model is first presented and then

numerical simulations are performed for designs with different antenna patterns.

Finally, Chapter 4 concludes this work by summarizing the contributions, results and

their implications, as well as the future work.
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CHAPTER 2

OPTIMAL DESIGN OF SPARSE MIMO ARRAYS BASED ON

A STATISTICAL FRAMEWORK

In the classical two-dimensional designs, element spacing is chosen as at most half

of the shortest wavelength to eliminate undesired grating lobes. As a result, in appli-

cations demanding high-resolution, classical (non-sparse) planar arrays require high

hardware complexity and cost. To reduce this complexity and cost, recently, there

has been increasing interest in using sparse multiple-input-multiple-output (MIMO)

arrays in ultrawideband radar imaging applications. Many such sparse MIMO topolo-

gies have been suggested and tested for this purpose [24, 25, 26, 36]. The arrays have

been designed based on some desired properties of the virtual arrays such as unifor-

mity and minimal element shadowing. However, a systematic approach to the optimal

design of MIMO arrays has not been developed from an inverse problem perspective

which takes into account the quality of the reconstructed images obtained with the

design.

In this chapter, optimal design of sparse MIMO arrays based on a statistical frame-

work is presented. Firstly, continuous and discrete observation models for the imag-

ing system and the corresponding inverse problem are formulated. Secondly, the sta-

tistical framework is introduced, the design cost is formulated based on the estimation

error, and the optimization method is described. Then, the simulation scenarios are

presented and the imaging performance of the designed MIMO arrays are analyzed.

Moreover, the performance of the designed MIMO arrays are compared with that of

the classical MIMO designs in terms of image reconstruction quality.
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2.1 Observation Model for Wideband Near-Field MIMO Imaging

The continuous observation model and its corresponding discrete form are presented

in Sect. 2.1.1 and in Sect 2.1.2, respectively.

2.1.1 Continuous Observation Model

The main goal here is to mathematically relate the reflectivity of the scene to the

measurements obtained with the MIMO imaging system. The transmitter and receiver

antennas are placed on a planar plane located at (x, 0, z). In the MIMO imaging

system one transmitter and one receiver pair is active at each time. The continuous

observation model can be formulated in the time domain as follows:

s(xt, zt, xr, zr, t) =

∫
x

∫
y

∫
z

1

4πdtdr
f(x, y, z)p(t− dt

c
− dr

c
)dxdydz (2.1)

where

dt =
√

(xt − x)2 + y2 + (zt − z)2, (2.2)

dr =
√

(xr − x)2 + y2 + (zr − z)2. (2.3)

Here x, y and z denote the spatial positions, f(x, y, z) is the three-dimensional reflec-

tivity distribution of the scene, and s(xt, zt, xr, zr, t) denotes the measurement ob-

tained using the transmitter located at (xt, 0, zt) and the receiver located at (xr, 0, zr).

Also dt and dr respectively represent the distances from the corresponding transmitter

and receiver antenna element to a position (x, y, z) in the scene. Moreover, p(t) is the

waveform of the transmitted signal, and c and t denote the speed of the light and the

time variable, respectively [2].

By applying Fourier transform, the observation model can be obtained in the temporal

frequency domain as follows:

s(xt, zt, xr, zr, k) =

∫
x

∫
y

∫
z

1

4πdtdr
f(x, y, z)p(k)e−jkdte−jkdrdxdydz (2.4)

Here the measurements, s(xt, zt, xr, zr, k), are expressed in the temporal frequency

domain with f denoting the frequency and k = 2πf/c denoting the frequency-

wavenumber. Moreover, p(k) represents the Fourier transform of the transmitted

pulse.
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2.1.2 Discrete Observation Model

The continuous observation model in Eqn. 2.4 relates the reflectivity of the scene to

the measurements obtained with the MIMO imaging system. In the inverse problem,

the goal is to estimate the unknown scene reflectivity function from the observations.

Because the computations will be performed on a computer and discrete set of mea-

surements are available, the continuous observation model needs to be discretized.

The measurement obtained with the mth transmitter and nth receiver at the lth fre-

quency step can be obtained as follows:

s[m,n, l] = s(xtm , ztm , xrn , zrn , kl)

=

∫
x

∫
y

∫
z

1

4πdtmdrn
f(x, y, z)p(kl)e

−jkldtme−jkldrndxdydz

(2.5)

Here, m, n, l take the values 1 ≤ m ≤ M , 1 ≤ n ≤ N and 1 ≤ l ≤ L, respectively,

and kl denotes the lth frequency wavenumber. Hence the continuous observations,

s(xtm , ztm , xrn , zrn , kl), are now in discrete form given by s[m,n, l].

Apart from the observations, the unknown scene reflectivity function also needs to be

discretized. This can be done by representing f(x, y, z) in a proper basis:

f(x, y, z) =

Q∑
q=1

fqΦq(x, y, z) (2.6)

where Φq(x, y, z)’s are the chosen basis functions, each corresponding to a rectangu-

lar function associated with one voxel. Then fq’s are the representation coefficients

corresponding to the voxel values, and Q is the total number of the voxels in the

discretized reflectivity function. Using this representation, the relation between the

discrete measurements and the voxel values is obtained as follows:

s[m,n, l] =

Q∑
q=1

fq

∫
x

∫
y

∫
z

1

4πdtmdrn
Φq(x, y, z)p(kl)e

−jkldtme−jkldrndxdydz (2.7)

Using lexicographic ordering, the measurements can be cast in vector form y, i.e.

yi = s[m(i), n(i), l(i)] where i = 1, ...,MNL. That is, the ith measurement in

the vector y corresponds to the measurement obtained with m(i)th transmitter and
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n(i)th receiver at the l(i)th frequency index. After mapping the three-dimensional

measurements, s, into a one-dimensional vector, y, the above linear discrete model

can be written in matrix-vector form as follows:

yi =

Q∑
q=1

Aiqfq (2.8)

where

Ai,q =

∫
x

∫
y

∫
z

1

4πdtmdrn
Φq(x, y, z)p(kl)e

−jkldtme−jkldrndxdydz (2.9)

By assuming that the observation kernel changes slowly within a voxel, Aiq can be

approximated as follows:

Ai,q ≈
p(kl)e

−jkld
(q)
tme−jkld

(q)
rn4x4y4z

4πd
(q)
tmd

(q)
rn

(2.10)

Here d(q)
tm and d(q)

rn represent the distance from the center of the qth voxel to the mth

transmitter and nth receiver, respectively. The measurement index i indicates the

locations of the transmitting and receiving antennas, as well as the frequency used.

The voxel sizes in x, y and z axes are denoted as4x,4y and4z, respectively, and q

is the voxel index. Hence (i, q)th element of the observation matrix A represents the

contribution of the qth voxel to the ith measurement. The total number of rows in A

is equal to the length of the measurement vector, and the number of columns is equal

to the length of the reflectivity vector.

The linear forward model above can be completed by including the noise component

denoted by w as follows:

y = Af + w, (2.11)

As mentioned before, A is the observation matrix, f is the reflectivity vector and

y is the measurement vector. Denoting the number of receivers, transmitters and

frequency steps as M , N , L, respectively, and the number of voxels as Q, the length

of the measurement vector, y, is given by P = MNL. Thus, the size of the matrix A

is given by P×Q.
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2.2 Optimal Design Method

In the inverse problem, the goal is to estimate the unknown reflectivity vector f from

the noisy measurements y. In this work, a statistical framework is used to formulate

the inverse problem. More specifically, the problem of image reconstruction from

MIMO measurements is formulated both as a maximum likelihood (ML) and a max-

imum posterior (MAP) estimation problem. Based on these statistical frameworks, a

design approach [37] is presented. The optimality criterion for the design is chosen

based on the error covariance matrix with the goal of minimizing image reconstruc-

tion error. A greedy optimization algorithm is used to numerically solve the resulting

optimization problem.

2.2.1 Statistical Framework

The ML and MAP frameworks used for the inverse problem formulation are described

in Sect. 2.2.1.1 and 2.2.1.2, respectively.

2.2.1.1 Maximum Likelihood (ML) Framework

In the ML framework [38], the noise vector is assumed to be complex Gaussian dis-

tributed with mean zero as follows:

w ∼ CN(0,Σw), (2.12)

Here Σw denotes the covariance matrix of the noise vector. With f treated as a de-

terministic quantity, the distribution of the measurement vector is same as that of the

noise vector except its mean is shifted by Af :

y ∼ CN(Af,Σw), (2.13)

Then, to estimate the unknown reflectivity vector f using the maximum likelihood

approach, the likelihood function of f is maximized:

f̂ML = argmax
f

p(y|f), (2.14)
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=
e−(y−Af)HΣ−1

w (y−Af)

πP |Σw|
(2.15)

where |.| denotes the determinant of a matrix and the superscript (.)H represents the

Hermitian of a matrix.

The easy way to maximize the likelihood function is to first take its logarithm to get

rid off the exponential term. In fact, the maximization problem is equivalent to the

following minimization problem:

f̂ML = arg min
f

−log p(y|f),

= arg min
f

||y − Af ||2
Σ−1

w
, (2.16)

When A is full column rank, this problem has a closed-form solution given by

f̂ML = (AHΣ−1
w A)−1AHΣ−1

w y. (2.17)

Moreover, by defining the error vector as e = f − f̂ML, the error covariance matrix

for this ML estimate is given by [39]

Σe = (AHΣ−1
w A)−1. (2.18)

In the special case that noise components are independent and identically distributed

(i.i.d.) with variance σ2
w, the ML estimate and its error covariance matrix simplifies

as follows:

f̂ML = (AHA)−1AHy, (2.19)

Σe = σ2
w(AHA)−1. (2.20)

2.2.1.2 Maximum a Posteriori (MAP) Framework

In the MAP framework [40], the unknown reflectivity vector f is also treated as ran-

dom. The distribution of the reflectivity vector, i.e. the prior distribution, is assumed

to be complex Gaussian as follows:

f ∼ CN(f0,Σf ), (2.21)
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where f0 and Σf respectively denote the mean vector and the covariance matrix. To

find the MAP estimate of f , the posterior distribution of f is maximized:

f̂MAP = argmax
f

p(f |y), (2.22)

By using Bayes’ rule, the posterior distribution p(f |y) is expressed as follows:

p(f |y) =
p(y|f)p(f)

p(y)
, (2.23)

where p(y|f) denotes the conditional pdf of y given f (equivalently, the likelihood

function of the unknown f ), p(f) is the prior distribution, and p(y) is the distribution

of the measurement vector. Because p(y) does not depend on f , the maximization

of p(f |y) over f depends only on p(y|f)p(f). After taking logarithm, the MAP

estimation problem becomes

f̂MAP = arg min
f

−log(p(y|f))− log(p(f)).

= arg min
f

||y − Af ||2
Σ−1

w
+ ||f − f0||2Σ−1

f
. (2.24)

Then the MAP estimate of the scene reflectivity vector has a closed-form given by

f̂MAP = f0 + (AHΣ−1
w A+ Σ−1

f )−1AHΣ−1
w (y − Af0). (2.25)

Moreover, the error covariance matrix for this MAP estimate is given by [39]

Σe = (AHΣ−1
w A+ Σ−1

f )−1. (2.26)

In the special case that the noise is assumed to be independent and identically dis-

tributed (i.i.d.) with variance σ2
w, and the covariance matrix of the reflectivity vec-

tor has the form Σf = (1/γ2)(LTL)−1, the MAP estimate becomes equivalent to the

Tikhonov regularized least-squares solution, f̂Tik, [37]:

f̂Tik = arg min
f

1

σ2
w

||y − Af ||22 + γ2||L(f − f0)||22, (2.27)

= arg min
f

||y − Af ||22 + λ||L(f − f0)||22, (2.28)

= f0 + (AHA+ λLTL)−1AH(y − Af0). (2.29)
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Its error covariance matrix is then given by

Σe = (
1

σ2
w

AHA+ Σ−1
f )−1. (2.30)

= σ2
w(AHA+ λLTL)−1. (2.31)

where λ = (γσw)2 is the defined regularization parameter.

One possible choice for the transformation matrix L is a discrete derivative operator

(DDO) for three dimensional space (x, y, z). This choice imposes a smoothness con-

straint on the solution since large changes between consecutive voxel values in x, y

and z axes are penalized significantly. Here a first-order discrete approximation to the

gradient operator is used as DDO, which results in taking differences between neigh-

boring voxels. This is equivalent to the convolution operation with [−1 1] vector in

each direction. Hence, the matrix L is chosen as

L = [Dx;Dy;Dz]. (2.32)

where the matrices Dx, Dy and Dz are convolution matrices performing convolution

with [−1 1] along x, y, and z directions, respectively. The general form of these

matrices are as follows:

Dx =


Dsubx 0...0 . . . 0...0

0...0 Dsubx . . . 0...0
...

...
...

0...0 . . . 0...0 Dsubx

 , Dsubx =


1 0 ... 0 − 1 0 ... ... 0

0 1 0 ... 0 − 1 0 ... 0
...

...
...

0 ... ... 0 1 0 ... 0 − 1


(2.33)

Dz =


1 − 1 0 ... ... ... 0

0 1 − 1 ... ... ... 0
...

...
...

0 ... ... ... 0 1 − 1

 (2.34)

Dy =


1 0 ... 0 ... 0 − 1 0 ... ... ... 0

0 1 0 ... 0 ... 0 − 1 0 ... ... 0
...

...
...

0 ... ... ... 0 1 0 ... 0 ... 0 − 1

 (2.35)

These matrices are illustrated in Fig. 2.1 for an image cube of size 7x7x3.
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Figure 2.1: Matrices used for discrete derivative operation along x (upper),z (middle),

and y (lower) directions.
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2.2.2 Cost Formulation Based on Error Covariance Matrix

Having established the statistical frameworks for the inverse problem, we can now

define an optimality criterion based on the error covariance matrix with the goal of

minimizing image reconstruction error. It is possible to define various different opti-

mality criteria based on Σe [37]. Here, we define the cost function for the design as

the trace of the error covariance matrix:

Cost(A) = Tr(Σe) =

Q∑
q=1

(Σe)qq, (2.36)

The closed-form expressions for the error covariance matrix are given earlier for the

ML and MAP cases in Eqn. 2.20 and 2.31, respectively. Because the factor σ2
w in

these equations does not change the result of the cost minimization, the cost functions

used for the design optimization are as follows:

Cost(A)ML = Tr((AHA)−1), (2.37)

Cost(A)MAP = Tr((AHA+ λLTL)−1). (2.38)

After determining the cost functions for both frameworks, a numerical optimization

technique is required to perform design optimization.

2.2.3 Optimization Algorithm

For a given number of antenna elements, the goal in the optimal design is to obtain an

array configuration that minimizes the cost function. For this purpose, an algorithm

called clustered sequential backward selection (CSBS) [37] is used. The algorithm

starts with an initial antenna configuration with large number of antenna elements,

and iteratively reduces the antenna elements based on the chosen optimality criterion

until the desired number of elements is reached. More specifically, the reduction

of the antenna elements corresponds to the elimination of the respective rows from

the observation matrix. The optimality criterion is used to identify which rows to

eliminate. That is, at each iteration, the cost function of the design resulting after the

removal of each antenna element is calculated, and the one that yields the minimum
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cost value is removed from the current design. Equivalently, corresponding rows

from the observation matrix are eliminated. This process continues until the desired

number of antennas is reached for the design.

In order to reduce the computational complexity, the cost function can be replaced

with an equivalent but a simpler form [37]. This results in the following faster imple-

mentation:

Γ←− Γ \ k∗ : k∗ = arg min
kεΓ

∑
iεΠk

aiΣ
2
ea
H
i

1− aiΣeaHi
, (2.39)

Here Γ contains the indices of the antenna elements in the current configuration, and

k∗ represents the index of the antenna element that is removed from the current con-

figuration. Moreover, ai shows the ith row of the observation matrix, Πk contains

the row numbers corresponding to the measurements related to the kth antenna. To

compute this cost function, matrix Σe is required to be updated at each iteration using

the current observation matrix AΓ and Eqn. 2.20 or 2.30 without σ2
w term.

Greedy algorithms like CSBS algorithms can only provide suboptimal solutions; that

is, it does not guarantee to obtain the optimal solution that minimizes the cost func-

tion. At each iteration it makes the optimal decision for the reduction of a single

antenna element; however, this does not guarantee to reach the optimal combination

of antenna elements that minimizes the overall cost function. Once the best selection

is made at the current step, change in the decision is not allowed later on. Hence,

although the designs obtained with the CSBS algorithm are sometimes referred as

optimal design in this thesis, one should note that these designs are inherently subop-

timal due to the suboptimality of the CSBS algorithm.

In order to analyze the computational complexity of the CSBS algorithm [40], recall

that Σe and the summation in Eqn. 2.39 are required to be computed at each iteration.

Computation of Σe involves matrix multiplication and inversion operations in Eqn.

2.26 but note that the inverse of Σf is calculated only once and stored for the rest.

Assuming that the number of rows in the updated matrix AΓ is P ∗ (P̃ ≤ MNL),

the computational complexity is O(P̃ 2Q + Q2P̃ ) for the matrix multiplications and

O(Q3) for the matrix inversion. Since P̃ ≥ Q, the computational complexity of Σe

calculation becomes O(P̃ 2Q). Moreover, if the sum of the receiver and transmitter

antenna elements is denoted by C (C = M +N ), then the computational complexity
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of the summation in Eqn. 2.39 is O(Q2C). Hence, the computational complexity of

one iteration becomes O(P̃ 2Q + Q2C). Since P̃ ≥ Q and P̃ ≥ C, computational

complexity of one iteration can be expressed as O(P̃ 2Q).

2.3 Numerical Results

The aim of this section is to apply the design method discussed in Sect. 2.2 to some

observation scenarios. First, the simulation parameters are presented. Then, the sim-

ulation results and their discussions are given. In particular, the performance of the

designs obtained with the CSBS algorithm is compared with that of the known array

topologies such as uniform rectangular, Mills Cross, and ring-spiral arrays in terms

of image reconstruction quality. The comparisons are made separately both for ML

and MAP frameworks.

2.3.1 Simulation Scenario

To compare the image reconstruction quality of the CSBS-based array designs with

the commonly used sparse arrays [24], a microwave imaging scenario is considered.

The parameters used in this scenario are given in Table 2.1. The center frequency and

bandwidth are selected as same with [24]. Moreover, the number of frequency steps

is selected such that observation matrices become full rank.

For the initial antenna array configurations used in the CSBS algorithm, a large num-

ber of antenna elements are distributed uniformly or randomly within the antenna

aperture. Sample initial array configurations are shown in Fig. 2.2. Throughout this

thesis, for the random case, three different random configurations are used, and the

one that gives the smaller design cost is presented as the result. Initial antenna ele-

ments are distributed between −10λc and 10λc in x and z directions, which result in

a width of 20λc in both directions for the initial arrays. Moreover, the initial array

configuration contains 242 antennas equally shared for receiver and transmitter an-

tennas. The task is to reduce the number of antenna elements to the desired number

of 25 using the CSBS algorithm.
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Table 2.1: Scenario parameters

Parameter Value

Center frequency (fc) 11 GHz

Bandwidth (B) 16.5 GHz

Number of frequency steps (F ) 10

Center wavelength (λc) 2.73 cm

Number of image cube voxels (x, z, y) 19 x 19 x 3

Voxel size (x, z, y) λc, λc, λc

Physical size of the image cube 19λc x 19λc x 3λc

Target distance to arrays (R) 40λc

SNR (dB) 60, 30, 15
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Figure 2.2: Initial antenna array configuration: Uniformly distributed initial array

(left), randomly distributed initial array (right).

For uniformly distributed initial antenna array configuration (see Fig. 2.2), the spac-

ing between transmit antennas is set to λc/2. In order to avoid overlapping of the

virtual array elements, the spacing between receive antennas is chosen different than

λc/2. In fact, the ratio between the spacing’s of receive and transmit antennas is

chosen as an irrational number of 3/π, while keeping the width of the transmit and

receive antenna arrays close to 20λc.
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To compare the imaging performance of the CSBS-based array designs, uniform rect-

angular, Mills Cross, and ring-spiral topologies in [24] are considered. These array

topologies also have 25 antenna elements, and are shown in Fig. 2.3.
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Figure 2.3: Known array topologies: rectangular (upper left), Mills Cross (upper

right), ring-spiral (bottom)

The reflectivity cube of interest is divided into 19 × 19 × 3 voxels in the x, z and

y directions, respectively. To determine the voxel sizes along each direction, down-

range and cross-range resolutions are calculated using the following equations [24]:

δy =
c

2B
, δx = δz =

λcR

2W
, (2.40)

Here δy is the down-range resolution, and δx and δz are the cross-range resolutions

along x and z directions. Using the scenario parameters in Table 2.1, down-range

and cross-range resolutions are calculated as 0.33λc and 1λc, respectively. Based on

these, voxel size is chosen as λc in each direction. The physical size of the image

cube then becomes 19λc × 19λc × 3λc.

As the test object for the simulations, a point scatterer (PS) at the center of the reflec-
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tivity cube is considered as in [24], and the distance from the point scatterer to the

antenna array, R, is selected as 40λc. Other synthetic test objects used in the simu-

lations are multiple point scatterers (MPS) (consisting of 5 points) and a sample 2D

extended object (EO) (in the shape of letter H).

To analyze the imaging performance of different array designs, the elements of the

observation matrix is calculated using Eqn. 2.10, and p(k) there is taken as unity.

The measurement vector is computed using Eqn. 2.11 and the observation noise w

is generated as i.i.d. complex Gaussian. Then the reflectivity vector is reconstructed

using both ML and MAP approaches for different types of objects. Specifically, in

the MAP case, the reflectivity vector is reconstructed using Eqn. 2.29 (equivalently,

Tikhonov regularization), with λ chosen as the optimal regularization parameter and

L chosen as the discrete derivative operator described before. Throughout this thesis,

the reconstruction results obtained with five different noise realizations are visually

checked, and neither the best nor the worst one, but the median one is presented to

illustrate the average performance.

For the point scatterer, each range slice of the reconstructed reflectivity cube is pro-

vided. In this case, the central slice of the cube provides an effective point-spread

function (PSF) for the imaging system. Apart from the central slices, the first and

third slices of the reconstructed cube are also provided for PS target to check the

cleanliness of these target-free slices. Furthermore, the reconstructions for MPS and

EO target types are only given for the best optimal and classical arrays (i.e. for the

arrays that give the smallest cost value).

For the generation of the noise, the signal-to-noise ratio (SNR) is chosen as the ratio

of the power of noise-free observation to the power of noise [41] as follows:

SNR(dB) = 10 log10

||Af ||22
Pσ2

w

. (2.41)
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2.3.2 Simulation Results

2.3.2.1 Results for ML Framework

In this part of the results, ML framework is considered for three different SNR values

of 60 dB, 30 dB, and 15 dB. Note that the cost function for the ML-based design does

not depend on the noise variance (see Eqn. 2.37); as a result the optimal designs do

not depend on SNR. CSBS algorithm is applied on uniformly or randomly distributed

initial antenna arrays (see Fig. 2.2) to reduce the number of antenna elements to 25.

The array designs obtained with these initializations are provided in Fig. 2.4. The

number of receivers and transmitters are respectively 12 and 13 for both designs.
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Figure 2.4: Optimal arrays for ML framework: CSBS-designed with uniform initial-

ization (left), CSBS-designed with random initialization (right)

Table 2.2: Cost values using ML framework and Condition Number

Array Type CostML Cond. Num.

CSBS-designed, initially uniform 1.76e+3 52.7

CSBS-designed, initially random 1.44e+3 42.6

Rectangular 4.28e+5 4.1e+3

Mills Cross 2.60e+7 3.4e+4

Ring-spiral 9.74e+7 6.4e+4

To compare the CSBS-designed arrays with the classical designs, the cost values are

calculated for each design using Eqn. 2.37 and provided in Table 2.2. As seen, CSBS-
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based designs yield smaller cost value; hence they outperform the classical designs in

terms of the cost values. In particular, CSBS-based design with random initialization

yields the best result while the rectangular array yields the best result among classical

arrays. Condition numbers of the observation matrices for each array type are also

provided in Table 2.2. CSBS-based designs also have smaller condition number than

classical designs, which means they yield better-conditioned inverse problems, or

equivalently less solution sensitivity to errors in the observation vector.

Table 2.3: MSE values using ML framework for PS, MPS, EO for SNR=∞

Array Type MSE, PS MSE, MPS MSE, EO

CSBS-designed, initially uniform 1.6e-27 7.8e-27 2.6e-25

CSBS-designed, initially random 1.2e-27 5.6e-27 1.1e-25

Rectangular 3.1e-21 1.8e-20 1.5e-18

Mills Cross 1.5e-15 1.6e-15 4.5e-13

Ring-Spiral 2.6e-15 6.7e-15 1.1e-12

Table 2.4: MSE values using ML framework for PS, MPS, EO for SNR = 60 dB

Array Type MSE, PS MSE, MPS MSE, EO

CSBS-designed, initially uniform 6.8e-6 3.5e-5 1.4e-3

CSBS-designed, initially random 5.6e-6 3.0e-5 1.1e-3

Rectangular 1.7e-3 7.9e-3 0.32

Mills Cross 0.11 0.52 24.7

Ring-spiral 0.41 2.13 130.1

To analyze the sensitivity of image reconstruction to noise, image reconstructions

are obtained for different designs, test objects and SNR values. For each design,

mean square error (MSE) values are calculated for point scatterer (PS), multiple point

scatterers (MPS) and extended object (EO) types with 50 Monte Carlo trials. The

average of these MSE values is given in Table 2.3, 2.4, 2.5 and 2.6, for the cases that

SNR is ∞, 60 dB, 30 dB, and 15 dB, respectively. (There is no noise component
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Table 2.5: MSE values using ML framework for PS, MPS, EO for SNR = 30 dB

Array Type MSE, PS MSE, MPS MSE, EO

CSBS-designed, initially uniform 6.8e-3 3.5e-2 1.4

CSBS-designed, initially random 5.6e-3 3.0e-2 1.1

Rectangular 1.7 7.9 320

Mills Cross 110 520 2.5e+4

Ring-spiral 410 2130 1.3e+5

Table 2.6: MSE values using ML framework for PS, MPS, EO for SNR = 15 dB

Array Type MSE, PS MSE, MPS MSE, EO

CSBS-designed, initially uniform 0.21 1.09 43.3

CSBS-designed, initially random 0.18 0.93 33.5

Rectangular 53.8 249 1.0e+4

Mills Cross 3.4e+3 1.7e+4 7.8e+5

Ring-spiral 1.3e+4 6.7e+4 4.1e+6

used during the reconstruction of the images at SNR=∞.) For all object types, the

smallest MSE values are obtained for the CSBS-based designs, as expected from the

cost values in Table 2.2. The given cost values in this table are CostML, hence they do

not include the noise variance σ2
w term in the original cost function (see Eqn. 2.20 and

2.37). In fact, if the cost value of a specific array in the table is multiplied with the

noise variance σ2
w used for any object type, the result is nearly the MSE value obtained

for that object type. Moreover, the MSE values for each design are increased as the

SNR value decreases as expected. It is also observed that MSE values of any array

type at any SNR value increase as the object type is changed from PS to EO since

MSE is affected from the noise variance σ2
w. The noise variance increases as the

signal power increases from PS to EO object types, to keep the SNR value same for

each object.

Sample image reconstructions are obtained using ML estimation and for different
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Figure 2.5: Central slice, ML results for point scatterer, SNR=∞: CSBS-designed

with uniform initialization (upper left), CSBS-designed with random initialization

(upper right), rectangular (middle left), ring-spiral (middle right), Mills Cross (bot-

tom)

array topologies, object types, and SNRs. These reconstructions are shown in Figures

2.5-2.18, which also illustrate the superiority of the CSBS-designs. To determine

which array types are more suitable at a predefined SNR value, it may also help to
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Figure 2.6: ML results for MPS and EO at SNR=∞: Central range slice of CSBS-

designed with random initialization (upper left), central range slice of rectangular

(upper right), central range slice of CSBS-designed with random initialization (lower

left), central range slice of rectangular (lower right)

check the MSE values and the sample image reconstructions for PS and EO target

types. PS target is important since it gives an idea about the effective PSF of the

imaging system. EO target is also important since in many applications targets of

interest cover much more than a single voxel. MPS target can also be considered as

the transition between PS and EO target types in terms of number of nonzero voxels

in the target.

For example, Fig. 2.5 shows sample image reconstructions at SNR=∞ for PS target.

Only the central slice of the image cube is shown since the other range slices are

completely clean in this noise-free case. Moreover, image reconstruction results for

the best optimal and classical arrays are also shown in Fig. 2.6 for MPS and EO

targets when SNR=∞. For this non-realistic case, all array types are suitable for
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Figure 2.7: Central slice, ML results for point scatterer, SNR = 60 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

operation. They all give faithful reconstructions.

On the other hand, at 60 dB SNR, ring-spiral array does not work properly for the cho-
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Figure 2.8: Range slice 1, ML results for point scatterer, SNR = 60 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

sen scenario. Image reconstruction results for PS target are provided in Fig. 2.7, 2.8,

2.9. Moreover, image reconstruction results for MPS and EO targets are also shown

in Fig. 2.10 for the best optimal and classical arrays. Although the performance of

28



Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

 

 

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10 −40

−35

−30

−25

−20

−15

−10

−5

0

Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

 

 

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10 −40

−35

−30

−25

−20

−15

−10

−5

0

Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

 

 

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10 −40

−35

−30

−25

−20

−15

−10

−5

0

Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

 

 

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10 −40

−35

−30

−25

−20

−15

−10

−5

0

Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

 

 

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10 −40

−35

−30

−25

−20

−15

−10

−5

0

Figure 2.9: Range slice 3, ML results for point scatterer, SNR = 60 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

CSBS-designs and rectangular array appears to be similar for PS and MPS targets,

the performance of the rectangular array is actually worse than the CSBS-design as

can be seen from the MSE values in the Table 2.4. This is due to the used dynamic
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Figure 2.10: ML results for MPS and EO at SNR = 60 dB: Central range slice of

CSBS-designed with random initialization (upper left), central range slice of rectan-

gular (upper right), central range slice of CSBS-designed with random initialization

(lower left), central range slice of rectangular (lower right)

range of 0 to−40 dB in the figures; that is, the structures that have smaller value than

−40 dB are not visible in the figures.

Image reconstruction results at 30 dB SNR is provided in Fig. 2.11, 2.12, and 2.13

for the PS target, and in Fig. 2.14 for the MPS and EO targets. At 30 dB SNR,

none of the classical arrays do work properly since their MSE values are very high

for each target type. This can also be seen from Fig. 2.14. The reconstruction for

the EO type has too many artifacts even for the best classical design, while the MPS

target rarely gives faithful reconstructions, but the quality of the reconstruction tends

to change significantly with different noise realizations. Neither the worst nor the

best reconstructions are provided as mentioned before. On the other hand, the CSBS-

designed arrays are still capable of working properly at 30 dB SNR for each target
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Figure 2.11: Central slice, ML results for point scatterer, SNR = 30 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

type since they are optimized to operate well in the ML framework.

At 15 dB SNR, a sample image cube reconstruction is shown in Fig. 2.15, 2.16, and
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Figure 2.12: Range slice 1, ML results for point scatterer, SNR = 30 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

2.17 for the PS target, and in Fig. 2.18 for the MPS and EO targets. As seen from

the figures, none of the classical arrays do work properly at this SNR. However, the

optimal arrays still yield good reconstructions for each target type.
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Figure 2.13: Range slice 3, ML results for point scatterer, SNR = 30 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

The goodness of a design may also be assessed based on the extent and uniformity

of its virtual array as in earlier works [24]. Fig. 2.19 shows the virtual arrays of all

the designs. As seen in the figure, the virtual arrays of CSBS-based designs extend
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Figure 2.14: ML results for MPS and EO at SNR = 30 dB: Central range slice of

CSBS-designed with random initialization (upper left), central range slice of rectan-

gular (upper right), central range slice of CSBS-designed with random initialization

(lower left), central range slice of rectangular (lower right)

from −10λc to 10λc, while the classical designs have smaller coverage. Moreover,

the virtual array elements distribute more uniformly within this extent for the CSBS-

designs.

For the chosen observation scenario, most of the antenna elements in the CSBS-

designs appear close to the boundaries of the array plane. Additional simulations

are performed to check whether this trend changes if the unknown image cube is

smaller or bigger at cross ranges. Uniform initialization is utilized for this analysis.

The image cube size is halved to obtain a smaller cube while the voxel sizes are kept

as before. To generate a bigger image cube, the image cube size is doubled while the

voxel sizes are also doubled at cross range. The resulting CSBS-designs are shown

in Fig. 2.20. As seen, the obtained designs are similar in terms of the spread of the
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Figure 2.15: Central slice, ML results for point scatterer, SNR = 15 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

antenna elements over the array plane. Hence, for these changes on the size of the

image cube along cross range direction, most of the antenna elements are still located

close to the boundaries.
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Figure 2.16: Range slice 1, ML results for point scatterer, SNR = 15 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)
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Figure 2.17: Range slice 3, ML results for point scatterer, SNR = 15 dB: CSBS-

designed with uniform initialization (upper left), CSBS-designed with random initial-

ization (upper right), rectangular (middle left), Mills Cross (middle right), ring-spiral

(bottom)

2.3.2.2 Results for MAP Framework

In this section, instead of the ML framework, both the design optimization and the

reconstructions are obtained using the MAP framework. The same scenario parame-
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Figure 2.18: ML results for MPS and EO at SNR = 15 dB: Central range slice of

CSBS-designed with random initialization (upper left), central range slice of rectan-

gular (upper right), central range slice of CSBS-designed with random initialization

(lower left), central range slice of rectangular (lower right)

ters in Table 2.1 are used. The MAP framework requires prior knowledge regarding

the distribution of the unknown reflectivity vector. The prior distribution is chosen

as Gaussian, as described in Section 2.2.1.2, with the mean set to 0 and the covari-

ance matrix form given in terms of the discrete derivative operator. With this prior, the

MAP estimate becomes equivalent to the Tikhonov regularized least squares solution.

The parameter λ appearing in the cost function of MAP framework (see Eqn. 2.38)

should be different for different SNR values since λ increases with the noise variance

σ2
w. To set this parameter (which is related to the prior distribution of the reflectivity),

its optimal value is investigated for the known array topologies and different target

types, then the value that generally yields good reconstructions is chosen as λ. In

particular, λ is selected as 9 × 10−6, 9 × 10−3, and 3 × 10−1 in the design for SNRs
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Figure 2.19: Virtual arrays for ML: CSBS-designed with uniform initialization (upper

left), CSBS-designed with random initialization (upper right), rectangular (middle

left), Mills Cross (middle right), ring-spiral (bottom)

of 60, 30 and 15 dB, respectively. Hence, each value is used for obtaining the MAP-

based design at the corresponding SNR value.

The CSBS-designs obtained for the MAP framework at 60 dB SNR are shown in Fig.

2.21. For both uniform and random initializations, the resulting designs have same

number of receive and transmit antennas, which are 12 and 13, respectively.
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Figure 2.20: Optimal arrays for ML framework for different image cubes: CSBS-

designed with uniform initialization for smaller cube (left), CSBS-designed with uni-

form initialization for bigger cube (right)
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Figure 2.21: Optimal designs for MAP framework at SNR of 60 dB: CSBS-designed

with uniform initialization (left), CSBS-designed with random initialization (right)

Table 2.7: Cost and MSE values using MAP framework for PS, MPS, EO for SNR =

60 dB

Array Type Init. CostMAP Final CostMAP MSE, PS MSE, MPS MSE, EO

CSBS-design, init. uniform 3.74 1.3e+3 5.0e-6 2.5e-5 8.8e-4

CSBS-design, init. random 3.55 1.5e+3 5.8e-6 3.1e-5 1.1e-3

Rectangular - 5.12e+4 8.2e-5 4.9e-4 0.03

Mills Cross - 2.3e+5 0.05 0.08 0.11

Ring-spiral - 8.5e+5 0.06 0.13 0.39
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For the 60 dB SNR case, the results are summarized in Table 2.7. The table contains

the cost values for different designs computed using Eqn. 2.38, and also the average

MSE values for the reconstruction of different object types. Both the initial and final

costs of the CSBS-based designs are provided whereas only the final costs are given

for the known array topologies. (In particular, the initial cost is the cost value for

the initial array with 242 antenna elements and the final cost is the cost value after

reduction to 25 elements.)

At 60 dB SNR, the CSBS-designed arrays outperform the classical arrays in terms of

the cost values. The best array is the CSBS-based design with uniform initialization,

and the best classical array is the rectangular array. The image reconstruction perfor-

mance of these arrays for the PS target is shown in Fig. 2.22, and the image recon-

struction results for MPS and EO target types are shown in Fig. 2.23 for best CSBS

and classical arrays. Sample reconstructions also illustrate that the CSBS-based ar-

rays and the rectangular array have better imaging performance than the others.

It is also observed that the MSE values are not much different than the ML case. This

is expected because the SNR is high and the prior term (i.e. the regularization) does

not significantly contribute to the solution in this case.

Table 2.8: Cost and MSE values using MAP framework for PS, MPS, EO for SNR =

30 dB

Array Type Init. CostMAP Final CostMAP MSE, PS MSE, MPS MSE, EO

CSBS-design, init. uniform 3.74 0.9e+3 4.8e-3 2.5e-2 0.54

CSBS-design, init. random 3.55 1.1e+3 5.8e-3 2.8e-2 0.68

Rectangular - 1.9e+3 0.02 0.09 1.03

Mills Cross - 2.4e+3 0.11 0.36 1.72

Ring-spiral - 4.2e+3 0.21 0.68 2.39

The virtual arrays of the CSBS-designs are shown in Fig. 2.24. As seen in the fig-

ure, the virtual arrays of CSBS-based designs extend from −10λc to 10λc, while the

classical designs have smaller coverage. Moreover, there is no overlap among the

elements of the virtual array for the CSBS-based design with uniform initialization
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Figure 2.22: MAP results for point scatterer at SNR of 60 dB: CSBS-designed with

uniform initialization (upper left), CSBS-designed with random initialization (upper

right), rectangular (middle left), Mills Cross (middle right), ring-spiral (bottom)

whereas a couple of overlaps exist for CSBS-based design with random initialization,

which could be another indicator of the better design for the CSBS-based array with

uniform initialization.
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Figure 2.23: MAP results for MPS and EO at SNR of 60 dB: Central range slice of

CSBS-designed with uniform initialization (upper left), central range slice of rectan-

gular (upper right), central range slice of CSBS-designed with uniform initialization

(lower left), central range slice of rectangular (lower right)
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Figure 2.24: Virtual arrays for MAP at SNR of 60 dB: CSBS-designed with uniform

initialization (left), CSBS-designed with random initialization (right)

43



−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Rx Antenna(x) :12   Tx Antenna(o) :13

Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Rx Antenna(x) :13   Tx Antenna(o) :12

Horizontal [λ
c
]

V
er

tic
al

 [λ
c]

Figure 2.25: Optimal arrays for MAP framework at SNR of 30 dB: CSBS-designed

with uniform initialization (left), CSBS-designed with random initialization (right)

The CSBS-designs obtained for SNR= 30 dB case are shown in Fig. 2.25, and the

related results are given in the Table 2.8, and Fig. 2.26 and 2.27. The virtual arrays

of these designs are also shown in Fig. 2.28. The number of receiver and transmitter

antennas are 12 and 13, respectively, for the CSBS-design with uniform initialization,

and 13 and 12, respectively, for the CSBS-design with random initialization. Obser-

vations are similar with the SNR= 60 dB case; the CSBS-based designs outperform

the classical arrays in terms of cost values.

The CSBS-designs obtained for SNR= 15 dB case are shown in Fig. 2.29. In both

designs, the number of receiver and transmitter antennas are 12 and 13, respectively.

The performance related results are given in the Table 2.9, and Fig. 2.30 and 2.31.

This time the best array is the CSBS-based design with random initialization, while

the best classical array is the rectangular array. The virtual array of each design is

also given in Fig. 2.32. Couple of overlaps exists for both CSBS-designs. Other

observations are similar as before; the CSBS-based designs outperform the classical

arrays in terms of cost values.

The difference between ML and MAP reconstructions is apparent at higher noise

levels. For example at 15 dB SNR, MAP reconstructions are better than ML recon-

structions in terms of reconstruction quality, especially for the EO target type. This

can be observed by comparing Fig. 2.18 and 2.31.
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Figure 2.26: MAP results for PS at SNR of 30 dB: CSBS-designed with uniform

initialization (upper left), CSBS-designed with random initialization (upper right),

rectangular (middle left), Mills Cross (middle right), ring-spiral (bottom)

2.3.2.3 Comparison of Obtained Designs

Many designs are obtained using the same initializations for both ML and MAP

frameworks. In this section, we compare these designs with each other to gain a better
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Figure 2.27: MAP results at SNR of 30 dB: CSBS-designed with uniform initializa-

tion, MPS (upper left), rectangular, MPS (upper right), CSBS-designed with uniform

initialization, EO (lower left), rectangular, EO (lower right)
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Figure 2.28: Virtual arrays for MAP at SNR of 30 dB: CSBS-designed with uniform

initialization (left), CSBS-designed with random initialization (right)

understanding of the performance of the CSBS algorithm and the resulting designs.
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Figure 2.29: Optimal designs for MAP framework at SNR of 15 dB: CSBS-designed

with uniform initialization (left), CSBS-designed with random initialization (right)

Table 2.9: Cost and MSE values using MAP framework for PS, MPS, EO for SNR =

15 dB

Array Type Init. CostMAP Final CostMAP MSE, PS MSE, MPS MSE, EO

CSBS-design, init. uniform 3.71 268 0.12 0.61 5.4

CSBS-design, init. random 3.52 263 0.10 0.51 5.1

Rectangular - 294 0.12 0.83 5.6

Mills Cross - 302 0.28 0.99 6.3

Ring-Spiral - 356 0.36 1.41 7.9

If we compare the locations of the antenna elements in different designs, the CSBS-

based designs with the uniform initialization is different for ML and MAP frame-

works. However, the CSBS-based designs obtained with the same random initializa-

tion have some similarities such that the locations of the nearly 20 antenna elements

coincide. Hence, for uniformly distributed initialization different optimal arrays are

obtained for ML and MAP frameworks whereas for randomly distributed initializa-

tion rather similar designs are obtained with the CSBS algorithm.

Comparing the locations of the antenna elements in MAP-based designs, the designs

with uniform initialization are different for 15 dB SNR. But for 60 dB and 30 dB

SNR designs, antenna locations are symmetrical with respect to x axis. Moreover, the

CSBS-based designs with random initialization also resemble to each other (except
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Figure 2.30: MAP results for point scatterer at SNR of 15 dB: CSBS-designed with

uniform initialization (upper left), CSBS-designed with random initialization (upper

right), rectangular (middle left), Mills Cross (middle right), ring-spiral (bottom)

dislocation of a couple of antenna elements).

The designs can also be compared by calculating their cost values when operated at

a different setting than their design settings (such as ML or MAP, different SNR).
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Figure 2.31: MAP results at SNR of 15 dB: CSBS-designed with random initializa-

tion for MPS (upper left), rectangular for MPS (upper right), CSBS-designed with

random initialization for EO (lower left), rectangular for EO (lower right)
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Figure 2.32: Virtual arrays for MAP at SNR of 15 dB: CSBS-designed with uniform

initialization (left), CSBS-designed with random initialization (right)

For instance, the cost value can be computed if a design obtained for ML framework

were to be used for MAP framework. These cost values are provided in Table 2.10 for
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all CSBS-based designs, as well as for the uniform rectangular array, which appears

as the best classical design for the chosen scenario. Four different cost values are

available for each array in this table. CostML corresponds to the cost value in the

ML framework, i.e. Cost(A)ML in Eqn. 2.37. CostMAP,60 dB is the cost value in the

MAP framework for 60 dB SNR case, i.e. Cost(A)MAP in Eqn. 2.38 with λ =

9× 10−6. CostMAP,30 dB is the cost value in the MAP framework for 30 dB SNR case,

i.e. Cost(A)MAP in Eqn. 2.38 with λ = 9 × 10−3. Lastly, CostMAP,15 dB is the cost

value in the MAP framework for 15 dB SNR value, i.e. Cost(A)MAP in Eqn. 2.38

with λ = 3× 10−1.

Table 2.10: Cost values for ML and MAP frameworks

Array Type CostML CostMAP,60 dB CostMAP,30 dB CostMAP,15 dB

Best ML 1.44e+3 1.44e+3 1.03e+3 264

Best MAP 60 dB 1.33e+3 1.33e+3 974 260

Best MAP 30 dB 1.33e+3 1.33e+3 974 260

Best MAP 15 dB 1.45e+3 1.45e+3 1.03e+3 263

Rectangular 4.28e+5 5.12e+4 1.94e+3 294

The values in the table can be interpreted by considering each cost type (i.e. cost

values in one row) separately. For example, if we compare the CostML values provided

for each array, the minimum value is achieved by the best CSBS-designs for the MAP

60 dB and MAP 30 dB cases. It is desired that the best CSBS-design obtained for the

ML case should have the minimum CostML value. However, due to the sub-optimality

of the CSBS algorithm, the best array obtained for the ML setting does not achieve

the minimum CostML value. However, it should also be noted that CostML values of

all CSBS-based arrays are close to each other, hence the difference in the cost value

is not significant.

The best CSBS-designs for the MAP 60 dB and MAP 30 dB cases have the same cost

values for all cost types. As mentioned above, these designs are essentially the same.

In particular, their antenna locations are symmetric with respect to x-axis. Hence,

they have the same cost values for all cost types.
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The minimum CostMAP,60 dB value is obtained by both MAP 60 dB and MAP 30 dB

designs. This also illustrates the sub-optimality of the CSBS algorithm. It is also

observed that CostML and CostMAP,60 dB values for each CSBS- array are the same. The

reason is that CostMAP,60 dB is calculated by using the smallest λ (i.e. regularization)

value among all MAP settings. The term in the CostMAP,60 dB due to prior becomes

negligibly small in this case, and CostMAP,60 dB value becomes equal to CostML value.

The minimum CostMAP,30 dB value is obtained by both MAP 60 dB and MAP 30 dB

designs. Moreover, the minimum CostMAP,15 dB value is also obtained by both MAP 60

dB and MAP 30 dB designs. However, it is desired for the best MAP 15 dB design to

have minimum CostMAP,15 dB value; but this is not achieved due to the sub-optimality

of the algorithm. However, the rectangular array is the worst array for all cost types.

Hence, the sub-optimal algorithm is still able find a better design than the classical

designs for the analyzed simulation scenario.
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CHAPTER 3

OPTIMAL DESIGN WITH PRACTICAL CONSIDERATIONS

A design approach for sparse MIMO arrays is presented in Chap. 2. In this chapter,

the design approach is extended to incorporate different practical considerations into

the design. First, the design approach for synthetic aperture-based implementation is

investigated. Second, the antenna patterns for both transmit and receive antennas are

also included into the formulation and the design approach.

3.1 Enforcing a Synthetic Aperture

The number of antennas used in the MIMO system affects the cost of the design

and the data acquisition time. Moreover, the reduction in the size of the observation

matrix yields faster reconstruction. For these reasons, it is often desirable to decrease

the number of antennas.

The reduction in the number of antennas, on the other hand, degrades the image

reconstruction quality. Introducing a synthetic aperture can help to enhance the image

reconstruction quality due to the increase in the aperture size [1]. There are different

ways of creating a aperture such as by circularly rotating the array plane around a

center point or shifting the array plane to the predefined locations. The main goal of

moving the array plane is to increase the aperture size and measurement diversity so

that the quality of the reconstructed images can be improved [4, 13].

In this section, the modifications on the observation model and the optimal design

method are presented for a general synthetic aperture setting. The simulation scenario

and the results are provided for one special case of generating synthetic aperture. This

53



case consists of shifting the array plane to the four quadrants successively.

3.1.1 Observation Model

In this setting, the locations of the antenna elements are changed by moving the array

plane from one location to another. The observations are taken at each location. The

corresponding matrix-vector form for the observations is the following:

y(u) = A(u)f + w(u), (3.1)

Here, upper index, u, indicates the location of array plane. To be more precise, there

are U array plane location in the synthetic aperture implementation, hence u is a dis-

crete variable taking values from the set {1, 2, ..., U}. Hence, y(u) is the measurement

vector, w(u) is the noise vector, and A(u) is the observation matrix for the uth location

of the array plane.

Prior to applying the design method, the observations taken at different locations of

the array plane should be combined. By vertically concatenating both y(u) vectors

and A(u) matrices, the forward model becomes:

y = Af + w, (3.2)

where

y =


y(1)

y(2)

...

y(U)

 , A =


A(1)

A(2)

...

A(U)

 (3.3)

3.1.2 Optimal Design Method

Having derived the matrix-vector form for the observation model, the optimal design

method can be applied. Geometry configuration of synthetic aperture is different from

the prior array configurations since for each location of the array plane same transmit

and receive antenna pair is used to take measurements. Hence, in the optimization

algorithm, the observations from different locations of the antenna array should be
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taken into account for calculating the cost value of the specific antenna element. For

this reason, the iteration in the CSBS algorithm is updated as follows:

Γ←− Γ \ k∗ : k∗ = arg min
kεΓ

∑
uεΛ

∑
iεΠ

(u)
k

a
(u)
i Σ2

ea
(u)H
i

1− a(u)
i Σea

(u)H
i

, (3.4)

where Γ contains the indices of the antenna elements in the MIMO array configu-

ration, and k∗ represents the index of the antenna element that is removed from the

current configuration. Λ contains the indices for the locations of the array plane, and

u indicates at which location array plane is placed. Moreover, a(u)
i represents the ith

row of the observation matrix when the array plane is in the uth location and Π
(u)
k

contains the row numbers corresponding to the measurements related to the kth an-

tenna element. To compute this cost function, matrix Σe is required to be updated at

each iteration using the current observation matrix AΓ and Eqn. 2.38.

3.1.3 Numerical Results

The aim of this section is to present the performance of the design method when a

synthetic aperture is implemented.

3.1.3.1 Simulation Scenario

The chosen synthetic aperture geometry is demonstrated in Fig. 3.1. The moving

platform is such that the MIMO array is placed at four different quadrants. The quad-

rants are separated by a distanceD. The transmit and receive antennas in the array are

initially assumed to be placed in the location II . The observations for different trans-

mit and receive antenna pairs at predefined frequency steps are taken in this location.

Then, the MIMO array is shifted to the locations I , IV , and III , and measurements

are taken from each location.

The structure of the observation matrix A is depends on the synthetic aperture ge-

ometry as mentioned earlier. The matrix A consists of 4 parts each correspond-

ing to a different location. The observation matrix at each location can be rep-

resented as A(I), A(II), A(III) and A(IV ). Thus, the matrix A can be defined as

A = [A(I);A(II);A(III);A(IV )].
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Figure 3.1: Array geometry for synthetic aperture implementation

To investigate the image reconstruction quality of the CSBS-based antenna arrays the

same imaging scenario is considered. The parameters used in this scenario are given

in Table 3.1. The only difference here is that the final number of antenna elements is

set to 12, instead of 25.

The main goal here is to compare the performance of the design with the synthetic

aperture to the optimized array in Sect. 2.3.2.2. Design algorithm starts with 72 an-

tennas equally shared for transmit and receive antennas, and reduces the total number

of antennas to 12. Moreover, the distance D between two locations is set to the dis-

tance between two neighboring antenna elements in the initial configuration, which

is 2λc.

3.1.3.2 Results for MAP Framework

Initial antenna arrays are illustrated in Fig. 3.2. The CSBS algorithm is applied using

MAP framework at 30 dB SNR and the resulting array configurations are provided

in Fig. 3.3. The designed arrays are copied to each array location so that one can
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Table 3.1: Scenario parameters

Parameter Value

Center frequency (fc) 11 GHz

Bandwidth (B) 16.5 GHz

Number of frequency steps (F ) 10

Center wavelength (λc) 2.73 cm

Number of image cube voxels (x, z, y) 19 x 19 x 3

Voxel size (x, z, y) λc, λc, λc

Physical size of the image cube 19λc x 19λc x 3λc

Target distance to arrays (R) 40λc

SNR (dB) 30

Distance (D) 2λc

observe the overall design with synthetic aperture.
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Figure 3.2: Initial configuration for synthetic aperture at one array plane location:

Uniform initial distribution (left), random initial distribution (right)

Sample image reconstructions for point scatterer are provided in Fig. 3.4. The final

cost values and the MSE values for different object types are given in Table 3.2.

CSBS-based design with uniform initialization is better than the one with random
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Figure 3.3: Optimal arrays for MAP framework at SNR of 30 dB: CSBS-designed

with uniform initialization (left), CSBS-designed with random initialization (right)

Table 3.2: Cost and MSE values using MAP framework for PS, MPS, EO for SNR =

30 dB

Array Type Init. CostMAP Final CostMAP MSE, PS MSE, MPS MSE, EO

CSBS-design, init. uniform 13.92 1.74e+3 0.012 0.08 0.69

CSBS-design, init. random 37.55 1.83e+3 0.016 0.09 0.99

CSBS-design, previous 3.74 0.9e+3 4.8e-3 2.5e-2 0.54
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Figure 3.4: MAP results for point scatterer at SNR of 30 dB: CSBS-designed with

uniform initialization (left), CSBS-designed with random initialization (right)

initialization in this case.

To compare the best design for the synthetic aperture case with the best MAP design
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Figure 3.5: MAP results at SNR of 30 dB: CSBS-designed with uniform initial-

ization, PS (upper left), CSBS-designed with uniform initialization from previous

chapter, PS (upper right), CSBS-designed with uniform initialization, MPS (middle

left), CSBS-designed with uniform initialization from previous chapter, MPS (middle

right), CSBS-designed with uniform initialization, EO (bottom left), CSBS-designed

with uniform initialization from previous chapter, EO (bottom right)
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in the previous chapter at 30 dB SNR, the cost and MSE values for the earlier design

are also provided in the table. Moreover, sample image reconstructions are shown in

Fig. 3.5. The optimized array in the previous chapter slightly outperforms the op-

timized synthetic aperture array in terms of both cost and MSE values. However, it

should be noted that in the synthetic aperture case, the number of antenna elements

is 12, instead of 25. The reason behind degraded performance in synthetic aperture

stems from the fact that transmissions and receptions are all made from one quad-

rant in the synthetic aperture geometry whereas in the previous chapter there is no

limitation on locations for transmission and reception.

The virtual arrays of CSBS-designs are also provided in Fig. 3.6. The virtual array of

the design with uniform initialization appears to be more uniform, which is consistent

with its superior performance.
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Figure 3.6: Virtual arrays for MAP at SNR of 30 dB: CSBS-designed with uniform

initialization (left), CSBS-designed with random initialization (right)

3.2 Inclusion of Antenna Pattern

In this section, first the observation model is modified to include the antenna pat-

terns in the formulation. Moreover, simulation results are presented to compare the

optimized designs and the classical designs with different antenna patterns.
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3.2.1 Observation Model

Prior to describing the transmitter and receiver antenna patterns, 3D spherical coor-

dinate system should be introduced since antenna patterns can be expressed in this

coordinate system. In Fig.3.7, the origin is considered as the location of a specific an-

tenna element. The point at (r, θ, φ) is the location of the specific voxel in the imaging

cube and r is the distance between the antenna element and the voxel. The antenna

pattern can be selected such that it only depends on the angle θ, and not angle φ.

Figure 3.7: 3D Spherical Coordinate System [3].

After the inclusion of the antenna patterns, elements of the observation matrix become

as follows:

Ai,q ≈
p(kl)e

−jkld
(q)
tme−jkld

(q)
rn g

(q)
m g

(q)
n 4x4y4z

4πd
(q)
tmd

(q)
rn

(3.5)

Here the only difference with the system matrix given earlier in Eqn. 2.10 is the

addition of the terms g(q)
m and g(q)

n . These terms g(q)
m and g(q)

n are the antenna patterns

of the mth transmitter and nth receiver for the qth voxel, respectively. That is, the

antenna pattern depends on the location of the antenna element and the voxel.

3.2.2 Optimal Design Method

Optimal design method used in this part is similar to the method utilized in Chapter

2. The only difference is in the formulation of the observation matrix. The antenna

patterns for both transmit and receive antennas are taken into account in this part as

given in Eqn. 3.5.
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3.2.3 Numerical results

The aim of this section is to investigate the effect of different element patterns on the

performance of CSBS-designs.

3.2.3.1 Simulation Scenario

In the simulations, the following element pattern is used [42]:

g(q)
m = g(q)

n = cosn(θ), (3.6)

Here the main beams of the transmit and receive antenna patterns are assumed to be

the same regardless of the operating frequency. Corresponding antenna patterns are

illustrated for n = 4 and n = 40 in Fig. 3.8, respectively.

Same simulation scenario is used. In this case, maximum θ value between an antenna

element and a voxel is 24 degrees. Hence, the half power beamwidth should be larger

than 24 degrees in order for each antenna element to cover the imaging cube. For

this, value of n should be equal to, or smaller than 8. In the simulations, two different

values are chosen: n = 4 and n = 40, for which the beamwidth is 33 and 11 degrees,

respectively.
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Figure 3.8: Normalized antenna beam patterns for different n values: n = 4 (left), n

= 40 (right)
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3.2.3.2 Results for MAP Framework

Same initial antenna arrays (see Fig. 2.2) are used to obtain designs for the MAP

framework at 30 dB SNR. The resulting CSBS designs are shown in Fig. 3.9. The

number of receive and transmit antennas in both designs are 12 and 13, respectively.
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Figure 3.9: Optimal arrays for MAP framework, n = 4: CSBS-designed with uniform

initialization (left), CSBS-designed with random initialization (right)

Table 3.3: Cost and MSE values using MAP framework for PS, MPS, EO for SNR =

30 dB, n = 4

Array Type Init. CostMAP Final CostMAP MSE, PS MSE, MPS MSE, EO

CSBS-design, init. uniform 3.74 2.1e+3 9.4e-3 4.3e-2 0.90

CSBS-design, init. random 19.88 2.2e+3 1.2e-2 5.4e-2 1.03

Rectangular - 2.9e+3 0.02 0.11 1.08

Mills Cross - 3.8e+3 0.11 0.38 1.85

Ring-spiral - 5.0e+3 0.20 0.70 2.34

It appears that element patterns for n = 4 case cause the antennas to locate closer to the

center of the array plane. Moreover, the CSBS-designs outperform the classical arrays

in terms of both cost and MSE values as shown in Table 3.3. It is concluded that the

best array is the CSBS-based design with uniform initialization, and the best classical

array is the rectangular array. Sample image reconstructions are also provided in Fig.

3.10 for PS. The image reconstruction results for the best CSBS-design and classical

array are also shown for MPS and EO target types in Fig. 3.11. Furthermore, the
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Figure 3.10: MAP results, n = 4 for PS: CSBS-designed with uniform initializa-

tion (upper left), CSBS-designed with random initialization (upper right), rectangular

(middle left), Mills Cross (middle right), ring-spiral (bottom)

virtual arrays of CSBS-designs are also shown in Fig. 3.12. The virtual elements also

appear to be closer to the center of the array plane.

The CSBS-designs for n = 40 case are shown in Fig. 3.13. The number of receiver
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Figure 3.11: MAP results, n = 4: CSBS-designed with uniform initialization, MPS

(upper left), rectangular, MPS (upper right), CSBS-designed with uniform initializa-

tion, EO (lower left), rectangular, EO (lower right)
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Figure 3.12: Virtual arrays for MAP framework, n = 4: CSBS-designed with uniform

initialization (left), CSBS-designed with random initialization (right)

and transmitter antennas are 13 and 12 for the design with uniform initialization, and

12 and 13 for the design with random initialization.
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Figure 3.13: Optimal arrays for MAP framework, n = 40: CSBS-designed with uni-

form initialization (left), CSBS-designed with random initialization (right)

Table 3.4: Cost and MSE values using MAP framework for PS, MPS, EO for SNR =

30 dB, n = 40

Array Type Init. CostMAP Final CostMAP MSE, PS MSE, MPS MSE, EO

CSBS-design, init. uniform 3.74 1.8e+5 9.7e-2 0.80 2.68

CSBS-design, init. random 19.88 1.8e+5 9.2e-2 0.67 2.47

Rectangular - 2.2e+5 0.07 0.95 2.13

Mills Cross - 2.5e+5 0.21 0.84 3.88

Ring-spiral - 2.4e+5 0.17 1.00 2.95

The effect of beampattern on the locations of the antennas are more clearly observed

as opposed to n = 4 case. The antennas are located much closer to the center of the

array plane for both designs.

The CSBS-designs again outperform the classical arrays in terms of cost values as

shown in Table 3.4. It is concluded that, in terms of cost values, the best design

is CSBS-based design with random initialization, and the best classical array is the

rectangular array. Sample image reconstructions for PS are also provided in Fig. 3.14.

The image reconstruction results for the best CSBS-designs and classical arrays are

also shown for MPS and EO target types in Fig. 3.15. It is observed that CSBS-

designs generally yield better reconstructions, but not always.

The virtual arrays of the CSBS-designs are also illustrated in Fig. 3.16. It is observed
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Figure 3.14: MAP results, n = 40 for PS: CSBS-designed with uniform initializa-

tion (upper left), CSBS-designed with random initialization (upper right), rectangular

(middle left), Mills Cross (middle right), ring-spiral (bottom)

that the elements of the virtual array are more concentrated at the center of the array

plane.

Finally, the effect of antenna pattern on the CSBS-designs is illustrated in Fig. 3.17.
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Figure 3.15: MAP results, n = 40: CSBS-designed with random initialization, MPS

(upper left), rectangular, MPS (upper right), CSBS-designed with random initializa-

tion, EO (lower left), rectangular, EO (lower right)
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Figure 3.16: Virtual arrays for MAP framework, n = 40: CSBS-designed with uni-

form initialization (left), CSBS-designed with random initialization (right)

As antenna beam pattern becomes more directed with increasing value of n, the an-

tenna elements are more concentrated in the middle of the array plane and less con-
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centrated at the edges.
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Figure 3.17: Best optimal arrays for MAP framework: n = 4 (left), n = 40 (right)
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CHAPTER 4

CONCLUSIONS

In this thesis, a design approach is presented for two-dimensional MIMO arrays used

in wideband near-field imaging. Different than the earlier design approaches, the

quality of the reconstructed images obtained with the design is taken into account

with a statistical approach. For this purpose, the problem of image reconstruction

from MIMO measurements is formulated as an estimation problem using ML and

MAP frameworks (or, equivalently, least-squares (LS) and Tikhonov-regularized LS

approaches), and the trace of the error covariance matrix is chosen as the optimality

criterion for the final design.

The clustered sequential backward selection (CSBS) algorithm is used to perform

the optimization of the chosen criterion over all initial locations of antenna elements.

That is, the algorithm starts with an initial antenna configuration (either a uniform

or a random configuration), and iteratively reduces the antenna elements based on

the chosen optimality criterion until the desired number of elements is reached. The

performance of the CSBS designs is then illustrated for a microwave imaging ap-

plication. The imaging performance of the designed MIMO arrays are analyzed for

different observation settings, and compared with the classical MIMO designs.

In particular, the design approach is described in detail in Chapter 2, which includes

the forward problem, statistical image reconstruction approaches, the related design

cost formulation and the optimization method. The designs obtained with our ap-

proach are compared with some commonly used sparse array configurations, such as

Mills Cross, rectangular and ring-spiral arrays, at different SNRs. It is observed that

the CSBS-designs outperform the classical designs at each SNR in terms of cost val-

ues, regardless of the chosen framework. Moreover, the MAP framework outperforms
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the ML framework in terms of both cost and MSE values especially at lower SNRs of

30 and 15 dB. The CSBS-designs obtained using ML and MAP frameworks are also

compared with each other, which reveals the sub-optimality of the CSBS algorithm.

The developed design approaches are also flexible; they allow incorporating different

practical considerations into the design. This is illustrated in Chapter 3, by extending

the design approach to include synthetic aperture implementations and antenna pat-

terns. The simulation results are presented for the MAP framework and 30 dB SNR

case. The results for the synthetic aperture case are compared with the best MAP

design obtained in Chapter 2. It is observed that the synthetic aperture implementa-

tion with the number of antenna elements reduced to half provides similar imaging

performance with the earlier design. Moreover, the results for the antenna pattern

case are compared with the classical designs using different antenna patterns. It is

again observed that the CSBS-designs outperform the classical arrays in terms of cost

values, although for more directed antenna patterns the difference in the cost values

becomes small. Moreover, as the antenna pattern becomes more directed, the antenna

elements in the CSBS-designs are located closer to the center of the array plane, as

expected.

4.1 Future Work

As future work, the prior distribution used in the MAP framework can be changed to

enforce sparse reconstructions. This can yield designs with improved imaging quality.

Moreover, different constraints can be added to the design optimization problem to

produce more realistic designs. For instance, the distance between different antenna

elements in the final design can be set to a minimum value and enforced in the design

optimization [43]. In addition, it may be possible to improve the CSBS-designs by

reruning the suboptimal CSBS algorithm with the randomly perturbed designs, which

is also a topic of future study.
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