
ONLINE EVENT DETECTION FROM STREAMING DATA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZLEM CEREN ŞAHİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

MAY 2018

Approval of the thesis:

ONLINE EVENT DETECTION FROM STREAMING DATA

submitted by ÖZLEM CEREN ŞAHİN in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Pınar Karagöz
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering, METU

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assist. Prof. Dr. Orkunt Sabuncu
Computer Engineering, TEDU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ÖZLEM CEREN ŞAHİN

Signature :

iv

ABSTRACT

ONLINE EVENT DETECTION FROM STREAMING DATA

ŞAHİN, ÖZLEM CEREN

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Pınar Karagöz

May 2018, 103 pages

The purpose of this study is detecting events from social media in an online fashion

where event is a happening that takes place at a certain time and place that attracts

attention within a short period of time. By doing so, it is aimed to provide a system

both accurate and efficient at the same time. The problem studied in this thesis is

modeled as a stream processing problem and three alternative methods are proposed.

The first event detection method is keyword-based and works with bursty keywords

inside social media messages. The second method is clustering-based method and

suggests an improved version of hierarchical clustering algorithm. The last one is

hybrid method which merges the previous two methods. All the methods introduced

are implemented on top of Apache Storm and Cassandra to provide a distributed and

scalable system, and each method has the ability to distinguish data belonging to

different countries and events are tagged with country information. Each method is

evaluated experimentally in terms of both accuracy and performance based on a real

dataset with 12M tweet messages collected from Twitter.

v

Keywords: Online event detection, Microblogging, Real-time Evaluation, Stateful

stream processing, Distributed system, Keyword-based event detection, Clustering-

based event detection, Hierarchical clustering, Twitter, Apache Storm, Apache Cas-

sandra

vi

ÖZ

AKAN VERİ ÜZERİNDEN ÇEVRİMİÇİ OLAY BELİRLEME

ŞAHİN, ÖZLEM CEREN

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Pınar Karagöz

Mayıs 2018 , 103 sayfa

Bu çalışmanın amacı meydana gelen olayları kısa bir sürede belirleyebilmektir. Bunu

yaparken, aynı zamanda hem doğru hem de verimli bir sistem sağlamayı amaçlamak-

tadır. Bu tezde çalışılmış olan problem, bir akış işleme problemi olarak modellen-

mektedir ve üç alternatif yöntem önerilmektedir. İlk olay algılama yöntemi, anahtar

kelimeye dayalıdır ve sosyal medya iletilerinde patlama yapmış anahtar kelimelerle

çalışır. İkinci yöntem kümeleme tabanlı bir yöntemdir ve hiyerarşik kümeleme al-

goritmalarının geliştirilmiş bir versiyonunu önerir. Sonuncusu, önceki iki yöntemi

birleştiren bir melez yöntemdir. Tüm yöntemler, dağıtılmış ve ölçeklendirilebilir bir

sistem sağlamak için Apache Storm ve Cassandra’nın üzerine uygulanmaktadır ve her

bir yöntem farklı ülkelere ait verileri ayırt etme yeteneğine sahiptir, olaylar ülke bilgi-

leriyle etiketlenmektedir. Her bir yöntem hem doğruluk hem de performans açısından

deneysel olarak değerlendirilmektedir.

Anahtar Kelimeler: Çevrimiçi olay belirleme, Mikroblog, Gerçek zamanlı değerlen-

dirme, Durumsal akış işleme, Dağıtık sistemler, Anahtar kelimeye dayalı olay be-

vii

lirleme, Kümelemeye dayalı olay belirleme, Hiyerarşik kümeleme, Twitter, Apache

Storm, Apache Cassandra

viii

dedicated to my loved ones...

ix

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Prof. Dr. Pınar Karagöz. The door to

Prof. Karagöz’s office was always open whenever I was in a trouble or had a question

about my study. I always feel her support, encouragement and motivation besides me.

I like to thank Nesime Tatbul for the useful comments and remarks. I am grate-

fully indebted to her for very valuable comments on this thesis. I also like to thank

Alper and other participants in the ground truth survey, who have willingly shared

their precious time during the process of survey.

I would like to show my gratitude to defense jury members, Assoc. Prof. Dr. İs-

mail Sengör Altıngövde and Assist. Prof. Dr. Orkunt Sabuncu for evaluating my

thesis and their valuable feedbacks.

I would like to thank to all my friends and my colleagues for their support throughout

my thesis. I owe special thanks to Güneş, who is involved in the entire process, both

by keeping me harmonious and helping me to put pieces together. I will be grateful

forever for his patience and support.

Finally, I must express my very profound gratitude to my parents, Deniz and Necdet,

to my little sister, Ece, and to my grandparents for providing me with unfailing sup-

port and continuous encouragement throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would not have

been possible without them. Thank you.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Contributions . 3

1.3 Organization of Thesis . 6

2 RELATED WORK . 7

3 EVENT DETECTION METHODS 11

3.1 Keyword-based Event Detection Method 12

3.1.1 Word Counts . 13

3.1.2 Word Weight Calculation 13

3.1.3 Detecting Events Using TF-IDF 15

xi

3.2 Clustering-based event detection method 15

3.2.1 Cluster formation 16

3.2.2 Cosine Similarity of Tweets 18

3.2.3 Detecting Events Using Clusters 18

3.3 Hybrid method for event detection 19

3.3.1 Tweet filtering . 19

3.3.2 Clustering . 20

3.3.3 Detecting Events Using Clusters 20

3.4 Illustrative Example . 20

4 IMPLEMENTATION . 23

4.1 Twitter API . 23

4.2 Apache Storm . 24

4.3 Keyword-based Event Detection Method 26

4.3.1 User defined parameters 26

4.3.2 Source Of Stream 26

4.3.3 Word Counts . 28

4.3.4 Event Detector Bolt 29

4.3.5 Event Compare Bolt 29

4.4 Clustering-based event detection method 30

4.4.1 User defined parameters 30

4.4.2 Source Of Stream 31

4.4.3 Clustering Bolts 32

4.4.4 Event Detector Bolt 32

xii

4.5 Hybrid method for event detection 33

4.5.1 User defined parameters 34

4.5.2 Source Of Stream 34

4.5.3 Word Counts . 35

4.5.4 Keyword-based Event Detector Bolt 35

4.5.5 Clustering Bolts 35

4.6 Geolocation . 37

4.7 Database . 38

5 EXPERIMENTS AND RESULTS 39

5.1 Setup . 39

5.2 Preprocessing . 40

5.3 Parameter Tuning and Validation 41

5.4 Event Detection Accuracy and Performance 48

5.4.1 Ground Truth Construction 48

5.4.2 Accuracy Comparison 49

5.4.3 Comparison of Events Detected by Keyword-based
and Clustering-based Methods 53

5.4.4 Comparison of Events Detected by Keyword-based
and Hybrid Methods 60

5.4.5 Comparison of Events Detected by Clustering and
Hybrid Method 65

5.4.6 Performance Comparison 68

5.5 Discussion . 71

6 CONCLUSION . 73

xiii

REFERENCES . 75

APPENDICES . 83

A EVENTS DETECTED BY CLUSTERING-BASED AND HYBRID
METHODS . 83

A.1 Events detected by clustering-based methods 83

A.2 Events detected by hybrid method 95

B APACHE CASSANDRA TABLES 97

B.1 Common Tables . 97

B.2 Tables of Key-based Event Detection Method 97

B.3 Tables of Clustering-based Event Detection Method 99

B.4 Tables of Hybrid Method 101

xiv

LIST OF TABLES

TABLES

Table 3.1 A Simplified Example . 21

Table 5.1 Preprocessing input and outputs 40

Table 5.2 Parameter Tuning and Validation Results (small dataset) 43

Table 5.3 Detailed Validation Results for Setting 3 and Setting 4 (full dataset) 44

Table 5.4 Ground Truth Event Set . 50

Table 5.5 Accuracy Results for the Keyword-based Method 51

Table 5.6 Accuracy Results for the Clustering-based and the Hybrid Methods . 52

Table 5.7 Details of Silhouette Coefficient (SC) Values for the Clustering-

based and the Hybrid Methods . 52

Table 5.8 Comparison of Keyword-based and Clustering-based Event Detection 54

Table 5.9 Ranking of Events Detected By Clustering-based Method using In-

tersection Ratios CAN (Ground truth set can be found in Table 5.4) 54

Table 5.10 Ranking of Events Detected By Clustering-based Method using In-

tersection Ratios USA (Ground truth set can be found in Table 5.4) 55

Table 5.11 Comparison of Keyword-based and Hybrid Method of Event Detection 61

Table 5.12 Ranking of Events Detected By Hybrid Method using Intersection

Ratios for USA (Ground truth set can be found in Table 5.4) 62

Table 5.13 Detected Words by Keyword-based and Clustering-based Methods . 63

xv

Table 5.14 Detected Words by Keyword-based and Hybrid Methods 64

Table 5.15 Comparison of clustering and hybrid techniques 66

Table 5.16 Performance Results for All Methods 67

Table A.1 Events found by clustering-based method 83

Table A.2 Events found by hybrid method . 95

xvi

LIST OF FIGURES

FIGURES

Figure 3.1 Event Detection Methods . 12

Figure 4.1 Storm grouping types (taken from [1]) 25

Figure 4.2 Keyword-based Storm Topologies 27

Figure 4.3 Count of bursty words by time . 30

Figure 4.4 Clustering-based Storm Topology 31

Figure 4.5 Hybrid Storm Topology . 34

Figure 5.1 Processing time of keyword-based method 68

Figure 5.2 Processing time of clustering-based method 69

Figure 5.3 Processing time of hybrid method 70

xvii

LIST OF ABBREVIATIONS

TDT Topic Detection and Tracking

CEP Complex Event Processing

API Application Programming Interface

SAX Symbolic Aggregate ApproXimation

LSH Locality-Sensitive Hashing

CDE Crime and Disaster related Events

DBSCAN Density-Based Spatial Clustering of Applications with Noise

TEDAS A Twitter-based Event Detection and Analysis System

RBEDS Real-time Bursty Event Detection System

NLP Natural Language Processing

URL Uniform Resource Locator

TF-IDF Term Frequency-Inverse Document Frequency

DB Database

CAN Canada

USA United States of America

xviii

CHAPTER 1

INTRODUCTION

1.1 Overview

The rise of social media and microblogging services started out as a way to share

information and news quickly on the web, and has become the largest source of pub-

licly accessible data especially with widespread use of smart phones, tablets, etc.

Today, people can use social media anytime, anywhere and social media has become

the main platform where people express their thoughts and react to current problems.

People broadcast the events occurring around them or the situation they are in when

something happens. This allows social media to take an important role in event de-

tection and analysis.

Twitter is the most popular micro-blogging social network service having more than

300 million monthly active users posting about 340 million tweets in a day where peo-

ple can post 140-character long messages[2]. Twitter provides data with geo-location

tags which are obtained from devices having location services such as smart phones

or tablets and that makes Twitter data extremely valuable for many disciplines from

market studies to real-time trend detection.

Social media has also been used in many academic studies due to the variety and

abundance of data [3, 4, 5, 6]. Up to today social media data including microblogs

posted on Twitter have been used to detect earthquakes, disasters, political topics,

traffic, etc. Nevertheless, detecting events by using social media is still an active and

popular research problem. In computer science literature, one can find different def-

initions for the concept of an event. In this work, we follow the event definition that

1

comes from Topic Detection and Tracking (TDT) research, which applies data mining

techniques on textual documents [7]. In such studies, event is defined as an activity

that happens at a specific time and place and that attracts attention in short time[3].

Following this, event detection is detecting events using textual content [5]. We adapt

these definitions within the following context:

• We work on social media posts, more specifically tweets, as the textual media.

• We assume that the time of an event constitutes a certain time interval.

In terms of event detection process, the literature contains off-line, or retrospective

techniques, and online techniques. We work on online event detection.

We assume that the sudden increase in the amount of mentioning about the same

topic is a strong indicator of an event. This is denoted as a burst in the mention of the

event. The burst in the mention can be measured in several ways. In this work, we

focus on two alternative approaches: measuring burst in words and measuring burst

in collection of tweets.

In order to clarify the scope of the work, it is important to note the difference between

event detection and complex event processing (CEP). In event detection, although the

definition of the event is clear, its structure is not clear; whereas in CEP, the structure

of the event is complex, but is defined through patterns. Hence, the focus in CEP is

the extraction of the instances complying with the predefined pattern, under low la-

tency (e.g., [8, 9, 10]). In this work, the focus is on event detection, rather than CEP.

Under these given assumptions, we can define the online event detection problem

as follows: Given a stream of microblog posts, detect all events (i.e., “bursts”) in

the stream both accurately and efficiently, where a burst manifests itself either as an

increase in word occurrences or as an increase in the message cluster sizes which can

be worthy in many ways from being aware of breaking news to being informed about

a natural disaster.

While plenty of researches have been made since the emergence of Twitter [3, 11,

2

12, 13, 14], only a handful of them make improvements on both accuracy and perfor-

mance [15, 16]. Along with the obvious importance of accuracy, performance takes

an important place with the considerable increase in data volumes, e.g. Twitter pro-

vides over 1000 tweets per second. Therefore, the ideal solution and the purpose of

this study is maintaining high accuracy with low latency under high input rates.

This study considers event detection as a stream processing problem. Low-latency,

high-throughput stream processing platforms are in use for years and many mature

platforms are present [17]. These platforms are laying the groundwork for high per-

formance event detection studies. Stream processing platforms are studied with event

detection applications in a few researches[15, 16], but there is a lack of researches

studying high-accuracy event detection methods on top of stream-based platform.

Therefore, in this study, stream-based design and implementation of three different

event detection algorithms are explored: keyword-based method, clustering-based

method and a hybrid method. While keyword-based method examines the words by

itself in a collection of splitted tweets, clustering-based method groups tweets by the

similarity of their contents. Despite the opposing characteristics of key-based and

clustering-based methods, hybrid methodology combines them by using the former

technique to filter dataset followed by grouping the remaining dataset.

1.2 Contributions

The main purpose of this study, as mentioned above, is capturing events accurately

by using different types of detection methods on top of stream processing system to

accelerate the processing of huge data by distributing. For this purpose three different

methods are hypothesized: keyword-based method, clustering-based method and hy-

brid method. Keyword-based method depends on splitted words of tweets and their

frequency changes in time, but this method does not spot the relation of words or

tweets and results in set of words as events which should be associated with others

manually as a latter step. On the other hand clustering method operates with whole

tweets and groups tweets by their similarity and relation. Therefore keyword-based

method stays as a simpler and faster method with less sensible results, but clustering

3

based method produces more accurate results in a longer time. While keyword-based

method takes advantage of being a syntactical approach by means of performance,

clustering-based method produces more accurate results by paying attention to mean-

ings and relations between data. As a combination of these two methods, hybrid

method uses the initial approach to filter data including bursty words and afterwards

group these filtered tweets by their similarity as in second method. Therefore, hybrid

method of event detection stays in the middle of those two approaches by producing

more expressive events with above average performance.

Along with the solution for accuracy of this study, performance requirements are

met by using a stream processing platform, Apache Storm. This study considers the

problem as a stateful stream processing problem, i.e. all the algorithms defined above

uses fixed-size time windows, namely rounds to process data as a chunk at every

round and some state is transferred between each consecutive rounds. The need for

stateful stream processing becomes the main issue when merged with a distributed

system since correct state transaction is crucial for accuracy of methods and system

natively has no support for batch processing or state transactions. For the state trans-

actions and data storage, Apache Cassandra, a key-value store is deployed.

The need for stateful stream processing has directed us to improve existing techniques

or experience different ways of execution steps for keyword-based and clustering-

based methods. Additionally, hybrid methodology has come into scene to cross in

the middle for accuracy and performance. Since event detection mostly depends on

the growth on words or clusters, it is important to find a way to break stream at some

point and evaluate the growth and compare with the previous ones. For this purpose

we have used the time window and control the growth rates at the end of time win-

dows. Hence, it is important to start/stop streaming and executions appropriately.

Keyword-based method has two different approaches for that purpose, first one is

waiting input streams for a predefined time and the other one is taking control of

distribution mechanism from Apache Storm so that stream can be easily controlled

by us. Thus, since keyword-based method for event detection is widely used, these

improvements and different handling of state transactions and their comparisons are

novel. Similarly, clustering based approaches are studied before but in this disserta-

4

tion, hierarchical clustering is splitted into two steps and it is applied on a distributed

system. Hybrid method of these two approach is also a novelty for this study. Addi-

tionally, all of these three methods are adapted to multi country examination so that

events from two countries are evaluated separately on the same infrastructure and the

system is capable of increase this number easily by adding more parallelism.

In experiments, real Twitter dataset is replicated in real time order and processed

by taking their geo-location information into account. As the last contribution, sys-

tem is designed so that the place affected by an event can be detected.

All three applications have implemented on top of Apache Storm & Cassandra and

experimentally tuned by using various scenarios. From the experiments, it is found

that there is an explicit accuracy-performance trade-off between keyword-based and

clustering-based methods. On the other hand, hybrid method of event detection pro-

vides a settlement between these two techniques.

The contributions of this thesis work can be summarized as follows:

• Three event detection methods are realized on stream processing framework

and their performances are compared in terms of accuracy and time efficiency.

• The first and second methods are previously used in the literature. Within the

scope of this work, these two methods are modified and improved to adapt

the distributed environment and also a new hybrid method is developed. This

hybrid method combines the advantages of the other two methods.

• All these three methods are built on the stateful stream processing platform,

and they use fixed-size time windows to process data as chunks and track the

change between rounds.

• The system is designed as a real-time computation system. Thus, a real Twitter

data set is replicated for experiments and the execution time of the system is far

below the interval of data set; while 7 days of Twitter data is used, maximum

execution time is less than 12 hours.

• The designed system is capable of processing multiple countries separately on

5

the same platform by using parallelism. For the experiments two different coun-

tries are evaluated.

• All three approaches have been implemented on top of Apache Storm & Cas-

sandra to take advantage of the distributed systems and increase the perfor-

mance of system.

1.3 Organization of Thesis

This dissertation is divided into six chapters starting with this introductory chapter.

This chapter is followed by the related work chapter which describes the previous

researches related to event detection techniques and about the technologies used in

our study. At the end of related work section, the most similar researches and differ-

ence of this study is discussed. Chapter 3 contains the detailed description of three

different methods present in this thesis, conceptually. This chapter ends with an il-

lustrative example to simulate the methods. Afterwards in Chapter 4 the equivalent

implementation details of theoretical method definitions are given in detail. At the

beginning, the Twitter API, used to collect Twitter data; and Apache Storm, preferred

as a distributed real-time computation system, are introduced briefly. At the end of

this chapter, the event detection by geolocation implemented in this study is described

and finally the brief introduction and the usage of Apache Cassandra in our system

is given. Chapter 5 contains the experiment environment and results. Firstly setup is

described in this section, then preprocess input and outputs are given, afterwards it is

explained how the parameters are determined and finally statistical information about

performance and accuracy of system is given and results are discussed as conclusion.

The last chapter is composed to give final discussions about methods, system and fu-

ture work. There are 4 appendices added to this thesis where the first one contains

tabular data showing events detected by clustering and hybrid method, second one

contains the detailed description of Apache Cassandra table descriptions, third one

contains three sample figures of events detected by keyword-based method visualiz-

ing the tf-idf increase by time and the last one contains the execution times of each

task for each method.

6

CHAPTER 2

RELATED WORK

Twitter is used by millions of users around the world to exchange information on web

and many studies use Twitter data for information retrieval after it came into scene in

2006 [18, 19, 5, 6]. The focus of this study is event detection, also known as event

tracking where event can be described as a happening that takes place at a certain time

and place, causing a short window of sudden burst in attention from the microbloggers

and event detection aims to detect events by processing textual materials like social

media[20]. Atefeh and Khreich [5] studied on Twitter streaming, syntactic filtering

and correction of tweets and classified different event detection techniques by using

the types of event and event detection methods. Cordiero and Gama [3] studied on an

improvement of event detection methods from Twitter data using network analysis by

means of user relations and interactions.

As a common point to all researches, initially pre-process step takes place and it is

followed by clustering or classification procedures to identify potential events. Hasan

et al. [21] make a survey about Twitter streams having different features and using

different techniques. In the survey both term-based and cluster-based methods take

place. For example Li et al. [22] detect events by top-k bursty word segments in a

specific time windows, Marcus et al. [23] make detection by keywords provided by

users to find peaks, Mathioudakis and Koudas [24] detect terms with high frequency

as events, Alvanaki et al. [25] use the correlation of tag pairs, Gaglio et al. [26]

work on a specialized term scoring to identify top-k terms within a dynamic tempo-

ral window, Cataldi et al. [27] detect events by user authorities and previous usage

informations, Stilo and Velardi [28] use Symbolic Aggregate ApproXimation (SAX)

to make terms discrete and use Wikipedia Events4 to remove non-event terms, Parikh

7

and Karlapalem [29] take leverage of increase in frequency and appearance of term

patterns, Weng and Lee [30] use discrete wavelet signals to filter out trivial words,

Zhang et al. [31] identify events by augmented normalized term frequency and user

authority, Zie et al. [32] also suggest a system offering real-time bursty topic detec-

tion.

All of the above studies are term-based approaches. Besides the following works

stand on clustering based approaches: Hasan et al. [14] use defragmentation sub-

module to handle cluster fragmentation with incremental clustering to lower the com-

putational cost, Petrovic et al. [33] use expiration mechanism and locality-sensitive

hashing(LSH), Osborne et al. [34] classify security related events and in another study

Osborne et al. [35] take leverage of Wikipedia for story detection, Becker et al. [36]

execute a periodic second pass to handle cluster fragmentation and mostly focus on

trend detection which interests in longer-term events and similarly Mathioudakis and

Koudas [37] improve a system called TwitterMonitor which also focuses on trend

detection, De Boom et al. [38] improve the approach introduced by Becker et al.

by adding hashtag-level semantics, Phuvipadawat and Murata [39] apply similarity-

threshold-based incremental clustering, McMinn and Jose [40] utilize inverted indices

for named entities and aggressive tweet filtering for scalability, Unankard et al. [41]

use leader-follower clustering algorithm and take advantage of content and concept

similarity, Kaleel and Abhari [42] prefer LSH-based incremental clustering improved

by prefix-tree structure, Lee and Chien [43] work on a modified Incremental DB-

SCAN clustering algorithm. Sankaranarayanan et al. [44] receive tweets of specified

users from different parts of the world; cluster them for event detection, and assign a

geographic location to the event in order to display it on a map.

While all the above previous studies focus on any type of events occurred, there are

also some studies which are specialized on a decided topic. Sakaki et al. [45, 11]

detect earthquakes and their locations by following tweets. Li et al. [46], on the

other hand focus on Crime and Disaster related Events (CDE), such as shooting, car

accidents, or tornado, as they are important types of events. In another work, Park et

al. [47] detect events related to a baseball game and list people who watch the game

on TV.

8

There are also some improvements about event detection on Twitter, for example

returning the first tweet posted about an event [48]. In several studies, semantics in

word co-occurrences has been used to find the similarities. In the study "Dynamic

Relationship and Event Discovery" [49], burst detection and co-occurrence methods

are used for event detection. They prepare lists to identify words which belong to

same event. To achieve this they use the burst approach, i.e. if two words have burst

in same window, they point the same event. A similar approach is used in "Event

Detection and Tracking in Social Streams" [50]. They generate a graph where terms

are represented as nodes and co-occurrences are represented as edges, then connected

sub-graphs are labeled as event clusters.

Methods identifying hashtag or word associations are also presented in some studies.

They aim to detect hashtags with an increasing co-occurrence value within a period

of time. Plachouras and Stavrakas make users select data and try to explore the con-

text of the selected data by defining associations between words and entities using

predefined queries. In another work, Huang et al. [51] aims to predict the name of the

product sold on online-store by using previous queries so that sellers can give a more

appropriate titles to their products instead of shortened and non-descriptive ones.

Ozdikis et al. [52] proposed a method to enhance the event detection techniques

by using lexico-semantic expansion of tweets. To achieve this they use document

similarity techniques and clustering algorithms. Similar to the approach by Ozdikis

et al., Sayyadi et al. [50] also leverage word co-occurrences to detect events. Zhou

and Chen [53] suggest a graphical model to detect social events.

Other than detection methods, studies differ as being online or offline. The studies of

Feng et al. [54] focus on hierarchical spatio-temporal hashtag clustering techniques

by using an offline technique, ie. using historical data. Similarly, Singh et al. [55]

collect spatio-temporal-thematic data from Twitter and Jaiku to detect events. On the

other hand there are many researches using real time event detection approaches. Ab-

delhaq et al. [56] create a system called EvenTweet which detects localized events in

real time and also follows the change of event over time. Hasan et al. [14] offer by

TwitterNews+ a scalable event detection system detecting events in real time, Sakaki

et al. [45, 11] similarly use real-time event detection techniques for earthquake de-

9

tection and Sankaranarayanan et al. [57] suggest a real-time localized event detection

called TwitterStand and focus on the noise removal problem from tweets. Watanabe

et al. [12] also suggest a system called Jasmine which is a real-time event detection

system based on geolocation information. There are also some studies applying both

online and offline techniques like TEDAS [46].

The emergence of Twitter opens a research area on event detection from tweets in real

time and detecting events from Twitter is much faster than any news channel since

tweets are sent at the time event is happening. However character limitation, volume

of data, location sensors, connections between data sources, performance of system

and accuracy of system are all study cases for the offered systems and all of them

focused on different type of problems, or they improve each other in a sense. This

study differs from other related work in that we suggest a distributed, scalable stateful

stream processing system which detects localized events and focuses on accuracy as

well. In this approach, we leverage a state-of-the-art system infrastructure based on a

distributed stream processing system (Apache Storm) for low-latency event detection

combined with a scalable key-value storage system (Apache Cassandra) for maintain-

ing state. To our knowledge, McCreadie et al.’s and Wang et al.’s works are the closest

approaches to ours. McCreadie et al.’s work [15] also suggests a distributed event de-

tection environment and Wang et al. [16] propose RBEDS which is a real-time bursty

event detection system. Similar to our approach, these two approaches also built on

Apache Storm, but they focus on different aspects of the problem. McCreadie et al.

[15] extend Petrovic et al.’s LSH-based approach by scaling event detection to mul-

tiple nodes using a new distributed lexical key partitioning, while Wang et al.’s work

applies k-means clustering to detect bursts on Storm. As distinct from these two ap-

proaches we propose a stateful system with three different methods, and we balance

the accuracy and performance issues. The methods compared in this study are burst

detection on keywords by using tf-idf values, burst detection on clusters created by

hierarchical clustering and hybrid method of these two. Thus, McCreadie et al.’s,

Wang et al.’s and our studies are complementary.

10

CHAPTER 3

EVENT DETECTION METHODS

This chapter contains the detailed description about three different event detection

techniques, namely keyword-based event detection, clustering-based event detection

and hybrid methodology with two of the previous methods. As an enhancement, all

of these three methods start with a preprocess step using Stanford NLP parser to in-

crease accuracy and process data with regard to geolocation. For the performance and

handling big data, distributed data computation tools as Apache Storm and Apache

Cassandra, explained in following sections, are used.

Another important point is that streaming posts are processed in windows of prede-

fined time intervals, which are called rounds. In each round, the stream is processed

and a state is generated. Hence, at each round, the previous state is preserved, and

there is a state transition between consecutive rounds. We can consider event de-

tection as a state that is reached according to the change between two consecutive

states.

Preprocessing. In the experiments and method evaluations, data are collected from

Twitter where Twitter provides the collection of limited size of text which includes the

opinions, sentiments, etc. of different people with different writing skills and styles.

This situation arises a need to normalize and standardize the data which contain short-

ened, extended, derived words or unrelated texts like website links. Therefore, as a

first step data are preprocessed to increase the accuracy and performance by using

"Stanford Natural Language Processing Library". Preprocess of a tweet includes the

following points,

• Tokenize the sentence into words using spaces and punctuation for the use of

11

Figure 3.1: Event Detection Methods

further preprocessing.

• Apply stemming and stop word elimination using NLP library [58]. The

reason for stemmer and stop word elimination is increasing the accuracy and

performance. While stemming reduces the word diversity, stop word elimina-

tion eliminates the unnecessary and irrelevant words.

• Remove geo-references which are sentences started with "I am at" and URLs.

• Normalize words by removing characters which repeats more than 2 times

consecutively. For example replace "noooooooooooooo" with "no".

Stemming and normalization takes the most important roles aggregating the different

occurrences of the same word. "firing", "fireeeee" and "fire" should be counted as

same word which will result in better performance and more accurate detection.

3.1 Keyword-based Event Detection Method

Keyword-based event detection method intends to reveal the uncommonly common

words that show high occurrence only in certain rounds by evaluating the usage of

each word in each round. The words which are frequently used in many documents

12

or the words which are underused are not the interest of this algorithm. The main

interest is detecting the unexpected increase in the occurrence or observation of the

words with respect to the previous round. Then, such bursty words are considered to

express an event.

This method consists of three main steps that are applied in every round: word count-

ing, word weight calculation, and event detection (see Figure 3.1 for an overview).

Hence, at the end of each round a set of event keywords are obtained.

3.1.1 Word Counts

Microblog postings are very short texts due to character limit. Hence, we consider the

set of postings in the same round as a single document. As the postings are received

through stream, the stemmed and normalized words are counted. In order to limit

time and space complexity in the following steps, there is a need for initial elimina-

tion of words whose frequency is below a given threshold. By this pre-elimination

we can define the most common words in current time-block and avoid unnecessary

calculations for the uncommon words.

3.1.2 Word Weight Calculation

Using word counts (i.e., frequency of words) may be misleading for detecting bursts,

as some of the words may be appearing in any context. In order to normalize this

effect, we measure the weight of the words in terms of tf-idf, instead of frequency

[59]. Since all the tweets in a round are considered as a single document, frequency

of a word denotes its frequency in the round.

Tf-idf is the short form of term frequency-inverse document frequency which shows a

numerical statistic pointing out the importance of a word to a document in a collection

of documents. This technique is mostly used in information retrieval and text mining

as a weighting factor. The tf-idf value of a word increases proportionally to tf values

which calculates the number of times a word appears in the document, however it

has offset by the frequency of the word in the corpus, which helps to eliminate words

13

which appear more frequently in general [60].

The value term frequency in a document can be calculated as follows:

tf(t, d) =
ft,d

|{t′ ∈ d}|
(3.1)

where,

• ft,d: the number of times that term t occurs in document d.

• |{t′ ∈ d}|: total number of terms in document d.

Then, the value idf among all documents 1 can be calculated as:

idf(t,D) = log
N

1 + |{d ∈ D : t ∈ d}|
(3.2)

where,

• N: total number of documents in the corpus N = {|D|}

• |{d ∈ D : t ∈ d}|: the number of documents where the term t appears. i.e., tf(t, d) ,

0. If the term is not in the corpus, this will lead to a division-by-zero. It is there-

fore common to adjust the denominator to 1 + |{d ∈ D : t ∈ d}|.

And finally the overall tf-idf value can be computed as follows:

tf-idf(t,d,D)= tf(t, d) · idf(t,D) (3.3)

where,

• tf(t, d) : tf value calculated by using equation 1

• idf(t,D) : idf value calculated by using equation 2

1 For efficiency and feasibility reasons, we consider previous 2 rounds for idf calculation.

14

3.1.3 Detecting Events Using TF-IDF

As a final step of this method, the increase in observation of a word is checked by

comparing the weight of the words in terms of tf-idf values in consecutive rounds.

The increase is compared against a threshold in order to consider a keyword as an

event related word.

increment_rate =
t f -id f (t, dcurrent,D)

t f -id f (t, dprevious,D)
(3.4)

where,

• t f -id f (t, dcurrent,D): the tf-idf value of the word for current document.

• t f -id f (t, dprevious,D): the tf-idf value of the word for previous document.

Using this formula the percentage showing the increment rate can be calculated and

this rate is pointing out even if the word represents an event or not. To sign a word

as an event, the increment_rate of the word should be above the specified threshold.

If the tf-idf value of a common word for the current document is much higher than

the tf-idf value of the word for the previous document, then obviously the word is an

uncommonly-common word and it is marked as an event. Otherwise, i.e if the tf-idf

value of a word is high or low for each document or if it has high tf-idf value for

the previous documents, it isn’t marked as event since it is not uncommonly common

word for the current round.

3.2 Clustering-based event detection method

In the clustering-based method, the basic assumption is that a cluster of tweets with

high growth rate corresponds to an event. As in the keyword-based method, each

round is processed one by one and the resulting clusters are compared for event de-

tection. This methodology creates clusters from tweets hierarchically, starts from zero

cluster and ends with unknown number of clusters. When the event detection proce-

dure starts, there does not occur any clusters and the number of clusters at the end

15

of algorithm is unpredictable. During the stream of tweet vectors, new clusters are

created and existing clusters are updated. At the beginning of clustering methodol-

ogy, the number of clusters is undefined (unlike k-means clustering) and clusters are

shaped during tweet streaming for each tweet which causes some problems discussed

below.

The method is composed of two basic steps: cluster formation and event detection

(see Figure 3.1 for an overview). In each round, these steps are applied in sequence.

3.2.1 Cluster formation

This method starts with an empty set of clusters and clusters are formed by using four

basic cluster operations:

• creating a new cluster

• updating an existing cluster

• merging two clusters

• deleting a cluster

Creation of new clusters, update of an existing cluster and merge of existing clusters

operations are used to follow the growth rate of clusters where the growth rate will

be used to decide even if a cluster is an event or not. On the other hand, deletion

operation is needed for efficiency and storage issues since the number of clusters

directly affect the performance because of that each fetch of cluster information refers

to database transaction. Therefore, it is required to remove clusters which are not

active lately.

Each cluster has a representative term vector, which includes the frequent terms of the

tweets in the cluster. Similarly, each tweet is represented by a term vector of stemmed

words in the tweet. Hence, similarity of a tweet to an existing cluster is measured with

cosine similarity between term vectors under a predefined threshold. As the tweets

are received in a round, one of the cluster operations is applied.

16

• If the tweet content is not similar to any of the clusters, a new cluster is created.

• If the tweet content is similar to a cluster, then the cluster is updated by in-

cluding the tweet in the cluster and updating the cluster’s representative term

vector.

• Cluster merging is applied in two stages. First, within each round, clusters are

generated locally (i.e., only considering the tweets in the current round, clusters

from previous rounds don’t take into account). Furthermore, at the end of a

round, similar local clusters are merged. As the second stage of merging, the

resulting local clusters are merged with the global clusters (i.e., the cumulative

set of active clusters since the beginning of time) complying with the similarity

threshold.

• In order to reduce the number of generated clusters, and hence improve execu-

tion time performance, inactive clusters are deleted. The condition for deletion

is defined as follows: If a cluster is not active (i.e., not updated) for the last two

rounds, then it is deleted.

One-stage clustering which stores clusters into one place and access there for each

tweet is not applicable in distributed and high-performance systems. The reason of

this is that to make parallel tasks synchronize, it is needed to use a shared memory

which is Cassandra database in our case and provide database access for each tweet

(to get the latest version of clusters to each task to avoid data loss) and this causes an

exponential increase of execution time as the number of clusters increase. Therefore,

another algorithm is evolved from the clustering method defined above and clustering

step is divided into two steps:

• Sub-clustering (local clustering) during a round, starts with an empty set of

clusters and local set of clusters are formed using tweets only emitted to owner

task. At the end of the round, each task has their own cluster set and emits these

sets to event detector.

• As the final step of the current round, local clusters are merged within them-

selves first and finally global clusters are retrieved from database and updated

by using local clusters of each parallel task.

17

This division of clustering logic provides high performance improvements.

3.2.2 Cosine Similarity of Tweets

Cosine similarity is used for two non-zero vectors to measure the angle between them.

Cosine similarity of 1 means that two of the vectors are same and 0 means they are

totally different. Cosine similarity is popular in a wide area of researches since it is

very efficient for sparse vectors.

The cosine similarity of two vectors can be calculated as follows:

cos(θ) =

∑n
i=1 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

(3.5)

where,

• Ai: First tweet as vector.

• Bi: Second tweet as vector.

• cos(θ): Cosine similarity of two vectors.

Clustering-based event detection method computes the cosine similarity for two op-

erations. First one is to assign a tweet to a cluster. For that purpose cosine similarity

is calculated between the current tweet vector with each cluster vector until it finds

the similar cluster or it may create a new cluster. Second one is to merge clusters. For

this merge operation cosine similarity is calculated between two cluster vectors. The

cosine similarity is used with a threshold value while merge and update operations.

3.2.3 Detecting Events Using Clusters

At the end of the current time-block operations, each cluster is evaluated to decide

even if it is an event or not. For this aim the growth rate of cluster is used. The

growth rate is calculated using the number of tweets which shapes a cluster using the

18

equation below:

cluster_growth_rate(C) =
|{tadded ∈ C}|

|{tall ∈ C}|
(3.6)

where,

• |{tadded ∈ C}|: the number of tweets merged to cluster C during the last round

execution.

• |{tall ∈ C}|: total number of tweets belongs to the cluster C from the beginning

of the execution.

To sign a cluster as an event, the cluster_growth_rate of the word should be greater

than the specified threshold.

3.3 Hybrid method for event detection

Our last method combines the previous two methods in order to increase the efficiency

of clustering by pre-elimination using tf-idf values of words and by filtering tweets

not including bursty keywords. First, bursty keywords are found by using the steps

used in the keyword-based event detection method, and then clustering is applied on

tweets containing the bursty keywords. Finally, by using the cluster growth rates, this

technique marks clusters as events (see Figure 3.1 for an overview; notice how the

tweets with bursty words found by the keyword-based method is fed as an input to

the clustering-based method after an additional pre-processing step to turn them into

tweet vectors). Similar two previous methods, hybrid method also processes data in

rounds.

3.3.1 Tweet filtering

As in the previous methods, words in a streaming tweet are tokenized and stemmed.

Words are counted and those with low frequency are eliminated. By this elimination,

19

we reduce the number of words to keep track of common words for burstiness. As

in the first method, burstiness of a word is checked through the increase in its tf-idf

value. The calculation of tf, idf, and tf-idf are as given in Equations 3.1, 3.2 and 3.3.

The increment rate of the tf-idf values should n-be greater than a threshold value in

order to consider a keyword as bursty keyword. Additionally, if the tf-idf value of a

word is very high for only the last round, then we consider it as a bursty term as well.

3.3.2 Clustering

The hybrid method uses the same clustering technique as in the clustering-based

method. Similarly, two level clustering is applied, local and global. The basic differ-

ence here is that, in a round, instead of clustering all streaming tweets, only those that

include one or more bursty terms are fed into the clustering phase. By this way, time

efficiency can be significantly improved.

3.3.3 Detecting Events Using Clusters

As the final step of the hybrid technique, event detection is performed by checking

the growth rate of the cluster as applied in the clustering-based technique.

3.4 Illustrative Example

We illustrate the basic processing for each of the three methods on a simple, hypothet-

ical example. As given in Table 3.1, our example includes four rounds. Thresholds

used in illustrative example are:

• threshold to be a bursty word: at least two same words should be appeared in

tweets

• threshold to be a bursty cluster: double the number of tweets included.

• threshold to be an inactive cluster: inactive for one round.

• threshold to be an underweighted word cluster: weight is below 0.5.

20

Ta
bl

e
3.

1:
A

Si
m

pl
ifi

ed
E

xa
m

pl
e

R
ou

nd
s

Tw
ee

ts
B

ur
st

y
A

ll
D

et
ec

te
d

C
lu

st
er

s
B

ur
st

y
C

lu
st

er
s

A
ll

D
et

ec
te

d
B

ur
st

y
C

lu
st

er
s

K
ey

w
or

ds
(C

lu
st

er
in

g)
(C

lu
st

er
in

g)
C

lu
st

er
s(

H
yb

ri
d)

(H
yb

ri
d)

(K
ey

w
or

d)

R
ou

nd
1

t 1
in

cl
ud

es
su

pe
rb

ow
l

—
C

1:
{t

1,
t 2

}
—

—
—

t 2
in

cl
ud

es
pa

tr
io

ts
C

2:
{t

3}

t 3
in

cl
ud

es
os

ca
rs

C
3:

{t
4}

t 4
in

cl
ud

es
sh

oo
tin

g

R
ou

nd
2

t 5
in

cl
ud

es
su

pe
rb

ow
l

os
ca

rs
C

1:
{t

1,
t 5

,t
7}

C
1:

ab
ou

ts
up

er
bo

w
l

C
1:

{
t 5

,t
7}

—

t 6
in

cl
ud

es
os

ca
rs

su
pe

rb
ow

l
C

2:
{t

3,
t 6

,t
8}

C
2:

ab
ou

to
sc

ar
s

C
2:

{
t 6

,t
8}

t 7
in

cl
ud

es
su

pe
rb

ow
l

t 8
in

cl
ud

es
os

ca
rs

R
ou

nd
3

t 9
in

cl
ud

es
os

ca
rs

os
ca

rs
C

2:
{t

3,
t 6

,t
8,

t 9
,t

11
}

C
2:

ab
ou

to
sc

ar
s

C
2:

{
t 6

,t
8,

t 9
,t

11
}

C
2:

ab
ou

to
sc

ar
s

t 1
0

in
cl

ud
es

ip
ho

ne
C

4:
{t

10
,t

12
}

t 1
1

in
cl

ud
es

os
ca

rs

t 1
2

in
cl

ud
es

ap
pl

e

R
ou

nd
4

t 1
3

in
cl

ud
es

os
ca

rs
—

C
2:

{t
3,

t 6
,t

8,
t 9

,t
11

,t
13

}
C

4:
ab

ou
ti

ph
on

e
—

—

t 1
4

in
cl

ud
es

ip
ho

ne
C

4:
{t

10
,t

12
,t

14
,t

16
}

t 1
5

in
cl

ud
es

hu
rr

ic
an

e
C

5:
{t

15
}

t 1
6

in
cl

ud
es

ap
pl

e

21

The streaming tweets for each round are shown in the second column of the table.

The third column shows the result for the keyword-based method. Being the initial

one, in the first round, there are no detected bursty keywords yet. However, in this

round, the weight of each term is calculated for comparison in the following rounds.

As the weight value, in this example, we simply consider frequency of the words, and

focus on the words given in the second column. Due to the increase in the frequency

of superbowl and oscars in second round, these two words are detected as bursty

keywords, possibly indicating the events of Superbowl 2018 Finals and 2018 Oscar

Awards. In the third round, the keyword oscars has still considerable presence, hence

it is marked as bursty keyword in this round as well. In round 4, there is a drop in the

frequency of this term, hence it is not detected as a bursty term anymore.

The clustering-based method is illustrated in the fourth and fifth columns. The column

with label All Detected Clusters includes all the constructed clusters, whereas the

other one shows those that are detected as event clusters in the current round. In the

first round, three clusters are created, which are candidates for the event detection.

The details of the similarity calculation are not given, but we can assume that t1 and

t2 are about Superbowl finals and have similar content. In the second round, out of

these three clusters, the first and the second ones grow further, and they are detected

as bursty clusters, but C3 is eliminated, since it is inactive for the last round. In the

third round, C1 is deleted from cluster list since it is inactive for the current round.

In this round, a new cluster, C4, is detected. Since C2 includes two more tweets in

round 3, it is detected as a bursty cluster in this round, as well. In the last round,

C2 and C4 are still kept as detected clusters, and additionally, a new cluster, C5 is

generated. In this round, as a difference from the keyword-based method, cluster C4,

which includes tweets on iphone and apple, is detected as bursty cluster, possibly

denoting an event of Launching of a new iphone model.

Finally, in the last two columns, the basic steps of the hybrid method is shown. Its

processing is similar to the clustering-based method. The basic difference is that

clusters are always constructed out of tweets containing bursty keywords. Therefore,

cluster C3 is not generated at all and C1 and C2 are generated at round 2 and detected

as event when it doubles its size at round 3. As in C3, since it does not include any

bursty keywords, in the last round, C4 is not generated or detected as event cluster.

22

CHAPTER 4

IMPLEMENTATION

In this section Apache Storm topologies and the components of topology for each

event detection technique, namely keyword-based event detection, clustering-based

event detection and event detection with a hybrid technique are described and dis-

cussed.

4.1 Twitter API

Twitter provides REST APIs and Streaming APIs to share the some percentage of

the public user’s tweets so that researches and analyses can be carried out by using

these data. REST API is used to send request to have information about tweets, users,

locations or other objects of Twitter data and get JSON or XML formatted responses

as common. On the other hand Streaming API provides a stream of Twitter data

which can be filtered by a desired criterion.

In this thesis, the Java library of Twitter Streaming API, namely Twitter4j [61] is used,

and the location filter property of Twitter4j is used to eliminate data came from other

countries rather than USA and Canada. For the experiments and evaluation phase, the

data came from streaming api is saved to Apache Cassandra database for 10 days and

each experiment runs on the same part containing 7-days data of this collected data.

Another important point is that we have collected any kind of data, collection is not

topic based, i.e during data collection from Twitter no filter other than location filter

is used. The variety of data makes the execution more complex and makes the system

heavily loaded.

23

4.2 Apache Storm

Due to the performance constraints we use Apache Storm as real-time distributed

computation system which is originally created by Nathan Marz [62] and team at

BackType [63] and become open source after being acquired by Twitter [64]. Storm

makes processing unbounded streams of data in real-time possible. Storm can be

used in any programming language. Some use cases of Storm are real-time analytics,

online machine learning and distributed remote procedure call. The main advantage

of Storm is its efficiency, i.e Storm can process a million tuples per second per node

as a benchmark. Besides Storm is scalable, fault-tolerant, guarantees your data will

be processed and is easy to set up and operate.

At the beginning of the project, we decided to use a distributed computing platform to

process big data by using the latest technologies and adapt event detection algorithms

on top of one of the real-time distributed computing framework for efficiency and

scalability. Apache Storm and Spark are two powerful candidates for this purpose.

Since Apache Storm fastens up the traditional processing and design as a real-time

distributed system, it provides all requirements for implementing business intelli-

gence and analytics in real time. On the other hand, Spark also has similar capabilities

but it is more of a general-purpose distributed computing platform while Storm is a

stream-oriented distributed computing platform. Additionally, Spark works by chain-

ing successive method calls as opposed to the Storm model driven by creating classes

and implementing interfaces. Another advantage of Storm is that there are number of

existing spouts which can directly be used in projects like Twitter streaming spout.

Therefore, Apache Storm is deployed as real-time distributed stream processing plat-

form in this study.

For an efficient and reliable computation, we have used Apache Storm in our project.

Apache Storm can be used in local mode during implementation since it creates Storm

nodes on local machine and makes implementation and debugging easier or it can be

used in cluster mode which enables the distributed computation. When Storm is used

in cluster mode, it creates distributed clusters and manage them automatically after

their configurations are done.

24

There are just three abstractions in Storm: spouts, bolts, and topologies.

• Storm uses "spouts" as source of streams in a computation. Spout even reads

from a queuing broker such as Kafka or RabbitMQ or generates its own stream

or read from somewhere like the Twitter streaming API or from a database like

Apache Cassandra. For our project we replicate the tweets stored in Apache

Cassandra database in time order.

• Storm uses "bolt" to process any number of input streams and produce any

number of new output streams. Most of the logic of a computation goes into

bolts, such as functions, filters, streaming joins, streaming aggregations, talking

to databases, and so on.

• Storm uses "topology" as a network of spouts and bolts, with each edge in

the network representing a bolt subscribing to the output stream of some other

spout or bolt. A topology is an arbitrarily complex multi-stage stream compu-

tation. Topologies run indefinitely when deployed.

Each spout or bolt executes as many tasks across the cluster. Each task cor-

responds to one thread of execution, and stream groupings define how to send

tuples from one set of tasks to another set of tasks. Parallelism for each spout

or bolt is set by developer.

Shuffle All

Fields Global

bolt A bolt A

bolt A bolt A

bolt B bolt B

bolt B bolt B

field X

field Y

Figure 4.1: Storm grouping types (taken from [1])

As seen in Figure 4.1 Apache storm provides five grouping types:

– Shuffle grouping: This type of grouping distributes stream among bolt

25

tasks randomly and fairly. Distribution is handled by Apache Storm.

– All grouping: This type of grouping replicates stream to all bolt tasks.

– Fields grouping: This type of grouping partitions stream on a user-specified

field.

– Global grouping: This type of grouping gets entire stream to single task.

– Direct grouping: This is a special kind of grouping. A stream grouped

this way means that the producer of the tuple decides which task of the

consumer will receive this tuple. Therefore, distributing tuples among

tasks fairly depends on the developer.

4.3 Keyword-based Event Detection Method

The Apache Storm topology of keyword-based event detection method can be seen in

Figure 4.2. The user parameters and the equivalents of Apache Storm abstractions in

experiments are given in the following subsections.

4.3.1 User defined parameters

There are 2 parameters defined by the user:

• TF-IDF_EVENT_RATE: This parameter is used to define the increment rate of

tf-idf value between the last two rounds to be an event. i.e. If this parameter is

10 and tf-idf values for last two are 0.001 and 0.015 in order, then this keyword

should be marked as event since 0.015/0.001 greater than 10.

• COMMON_WORD_THRESHOLD: This parameter defines the threshold num-

ber which is used to presume a word as common word. Only the common words

are subject to the keyword-based event detection algorithm.

4.3.2 Source Of Stream

As a source of stream, data saved to Apache Cassandra database is replicated doc-

ument by document in order where document corresponds to a collection of tweets

26

(a) Keyword-based Event Detection Topology with Direct Grouping

(b) Keyword-based Event Detection Topology with Sleep Intervals

Figure 4.2: Keyword-based Storm Topologies

in a 6-min time-block. When replication of tweets inside a document is finished,

spout does not start replication of the next document immediately. Next document

replication is suspended until the process of the current document is completed. The

reason of suspension between document processes is needed for the reliability of the

system and the correctness of the event detection, i.e. if the next document streaming

is started immediately, before the current document has finished processing, there is

a high possibility that the words in the next document will interfere the current doc-

ument which will result in wrong event detection for current document. Therefore,

it is needed to define a streaming protocol which handles suspension. Apache Storm

does not provide a methodology for this purpose, hence in our project we describe

27

two different approaches. First one is sleeping spout for some time determined by

experiments between rounds and the second one is using direct grouping defined by

Storm so that we are able to check whether current round is finished.

Our first approach uses shuffle grouping and fields grouping where scheduling and

distribution of data among tasks is handled by Apache Storm and use sleep intervals

between rounds to prevent mixing multiple rounds. This approach leads to a more

efficient distribution and processing time since data is distributed by Storm scheduling

mechanism, but the sleeping buffer used between rounds turn the advantage to the

disadvantage. The main reason of the low efficiency of this first approach is that the

process time of each round differs from each other since the volume of data for each

6-min interval in a day differs and the sleeping buffer is selected as the longest time.

In summary, spout needs to wait(sleep) some time decided by experiments so that at

the end of this time all tasks will finish their executions for the current document.

Second approach uses direct grouping techniques and direct streaming for each task

where Storm gives the control of distribution and scheduling mechanism to devel-

oper. In this approach we simply distribute the data in turn to each task without a

task availability check. Because of this distribution mechanism, efficiency is not as

well-handled as first approach, because the availability of the tasks can not be con-

trolled while distributing the tuples in order. On the other hand the advantage of this

method is not losing time by sleeps. Therefore, for the experiments second approach

is selected since it increases performance.

To summarize, the spout is labeled as ’INPUT STREAM’ in Figure 4.2 and it reads

tweets from Apache Cassandra database one by one in order, split tweets into words,

preprocess them and emits them to next bolt.

4.3.3 Word Counts

Streaming tuples firstly splitted into words and emitted to word count bolt. Tasks of

word count bolt simply count the number of words for the current document. Count

of the words are used to decide whether the word may represent an event or not.

Since performance is important for big data analysis methodologies, there is a need

28

to initial elimination of words. For our approaches we use a word count threshold

which is defined by COMMON_WORD_THRESHOLD to eliminate some of the

words which occur rarely in documents. By this pre-elimination we can define the

most common words in current document and avoid unnecessary calculations for the

uncommon words.

For the first approach(using sleep intervals), fields grouping is preferred, i.e for each

tweet same words are emitted to same tasks by Apache Storm’s distribution mecha-

nism (For example, if the first occurrence of word "hello" is emitted to Task 1 and

word "world" is emitted to Task 2; then for the following tweets, spout always emits

word "hello" to Task 1 and word "world" to Task 2). We have imitated this behavior

for the second approach which uses direct grouping and the distribution of tuples is

handled by us. For this purpose we have keep a list of task and word list so that same

words are emitted to the same task.

To summarize, word count bolts are responsible to hold count of each word separately

until the end of current round. This bolt emits the word to next bolt for tf-idf calcula-

tion phase only once when count of the word reached to the common word threshold

immediately.

4.3.4 Event Detector Bolt

This bolt stores the common words emitted from word count bolt until word count

bolt finishes its process for each word in current document. Then tasks of this bolt

starts to calculate the tf-idf value of each common word for the last two rounds and

these tf-idf values are used to calculate the increment rate of common words to decide

if this word is an event or not.

4.3.5 Event Compare Bolt

This bolt gets all events detected by Event Detector Bolt and has two simple jobs.

First one is storing event keywords to Apache Cassandra database and drawing line

chart for the event keyword which shows the counts of the word for the last 10 rounds.

29

Three different charts created by this bolt are concatenated and given in Figure 4.3.

0

10

20

30

40

50

60

70

80

12:24:00 12:30:00 12:36:00 12:42:00 12:48:00 12:54:00 13:00:00 13:06:00 13:12:00 13:18:00

Co
un
t	
of
	k
ey
w
or
ds

Time	(hh:mm:ss)

Count	of	bursty	words	by	time

rip muhammad ali

Figure 4.3: Count of bursty words by time

4.4 Clustering-based event detection method

The Apache Storm topology of cluster-based event detection can be seen in Figure

4.4. The user parameters and the equivalents of Apache Storm abstractions in exper-

iments are given in the following subsections.

4.4.1 User defined parameters

There are 1 parameter defined by the user:

• NUM_TWEET_THRESHOLD: During the computation of rounds, many clus-

ters are created. Therefore, it is not efficient to evaluate each cluster at the end

of each round and this threshold is used to eliminate clusters containing fewer

tweets.

30

Figure 4.4: Clustering-based Storm Topology

4.4.2 Source Of Stream

"INPUT STREAM" of this method works very similar to the keyword-based event

detection topology. Spout gets tweets from Apache Cassandra database in tweet-time

order and emit them by direct grouping to the next bolt. Similar to previous method,

spout waits until all bolt tasks finish their process for current document before start-

ing to replicate the next document. The difference is that spout does not split tweet

into words for this methodology. Spout vectorizes the tweets and directly emits the

tweet vector since clustering is based on the cosine similarity of the whole tweet vec-

tor. Tweet vector shows the words inside a tweet with the normalized weight as a

map. For example the vector of the tweet "RIP Muhammed Ali RIP" is {"RIP":0.5,

"Muhammed":0.25, "Ali":0.25}. Clusters are also represented with weighted vec-

tors. Therefore, these weighted vector representations are used to calculate the cosine

similarity between tweets and clusters, too.

To summarize, the spout is labeled as "INPUT STREAM" in Figure 4.4 which reads

tweets from Apache Cassandra database one by one in time order, vectorizes tweets

into weighted vector maps and emits tweet vectors to next bolt.

31

4.4.3 Clustering Bolts

Clustering bolts are responsible to assign tweets into clusters by using cosine similar-

ity. As mentioned in the previous chapter, there are two clustering algorithms. First

one connects to database at each time when a tweet vector is evaluated for cluster

assignment which results in very low performance and blocks the real time process-

ing. Second method uses a two-step clustering for performance improvement. In this

section, clustering bolt using two-step clustering methodology is explained.

This bolt is responsible for only local clustering step which means at the beginning of

a document process, there exists no clusters in the local list of tasks. Each task handles

its own cluster list, creates/updates clusters with the tweet vectors distributed by input

stream and at the end of process each clustering task emits the list of clusters to next

bolt for evaluation. For cluster assignment this bolt calculates the cosine similarity

between tweet vector and existing local clusters and if the cosine similarity of a tweet

vector and a cluster vector is higher than the specified threshold, tweet is assigned to

the cluster and cluster vector is updated accordingly. If cosine similarity constraint is

not met for any clusters, then new cluster is created for the tweet vector. At the end

of the round, all the clusters created during block streaming is emitted to the next bolt

which is event detection bolt explained below.

4.4.4 Event Detector Bolt

This bolt is activated at the end of the 6-min block streaming. Each clustering bolt

task sends the local cluster list to event detector bolt and event detector bolt stores

them until all tasks send their lists for the current round. When all the local cluster

lists of each task of previous bolt has arrived, event detector bolt starts evaluation of

local clusters. This evaluation consists of two steps:

• Local Cluster Evaluation: First of all this bolt merges local clusters created

by different tasks. Merge operation takes place if the cosine similarity of two

local clusters is higher than or equal to the specified threshold. During merge

operation cluster word map is updated by re-calculating the weight of each

32

word and reducing two cluster vectors to one. Also word map of merged cluster

is re-evaluated to avoid the sparse word maps by deleting insignificant words

from cluster word map. For this purpose after merge operation, word map is

examined and the words which has weight smaller than a specified threshold

are deleted from map. At the end of merge operation, clusters representing less

than a specified number of tweets are also deleted from local cluster list.

• Global Cluster Evaluation: After local evaluation, this bolt gets the list of previ-

ous clusters from Apache Cassandra database and this time, it merges the local

clusters come from previous tasks and global clusters held by database. For

this step, the cosine similarity of each global cluster is calculated for each local

cluster one by one and the global cluster is updated locally (without affect-

ing database1) until all the similar local clusters are merged into this cluster.

This merge operation is also followed by the cluster word map re-evaluation

step where words having smaller value than a threshold as weight are deleted

from map. After each similar local cluster is merged into the global cluster

and weight updates, database entry of this global cluster is updated. In case of

merge operation, this cluster also becomes an event candidate. For the updated

global cluster, growth rate is calculated by using Equation 3.6 and if growth

rate is bigger than the specified threshold, it is marked as event for the current

round. After merge operations, remaining local clusters are updated and added

to database. As the final step, global clusters are eliminated for performance.

The database entry of inactive clusters which are not updated for the last 3

rounds are deleted from database.

4.5 Hybrid method for event detection

The Apache Storm topology of hybrid method of event detection can be seen in Fig-

ure 4.5. The user parameters and the equivalents of Apache Storm abstractions in

experiments are given in the following subsections.

1 This detail is very important since database interactions are costly and this system connects to db at most
one time for each cluster in a round

33

Figure 4.5: Hybrid Storm Topology

4.5.1 User defined parameters

There are 3 parameters defined by the user:

• TF-IDF_EVENT_RATE: This parameter is used to define the increment rate of

tf-idf value between the last two rounds to be an event. i.e. If this parameter is

10 and tf-idf values for last two are 0.001 and 0.015 in order, then this keyword

should be marked as event since 0.015/0.001>10.

• COMMON_WORD_THRESHOLD: This parameter defines the threshold num-

ber which is used to presume a word as common word. Only the common words

are subject to the uncommonly common algorithm.

• NUM_TWEET_THRESHOLD: During the computation, many clusters are cre-

ated. Therefore, it is not efficient to evaluate each cluster at the end of each

round and there should be a threshold which points out the number of tweets in

a cluster.

4.5.2 Source Of Stream

"INPUT STREAM" of this method works same as the keyword-based event detection

topology of direct grouping. Spout gets tweets from Apache Cassandra database in

order, splits tweet into words, preprocess them and emit words by direct grouping to

the next bolt. Similar to other methods, spout waits until all bolt tasks finish their

34

process for current round before starting to replicate the next round.

4.5.3 Word Counts

This word count bolt works same as the word count bolt of keyword-based methodol-

ogy. Words are splitted from tweets and emitted from spout to this word count bolt by

direct grouping. These word count bolts is responsible to count the words occurred in

the current round and emit them when the count reaches the specified threshold. By

using this bolt, we only work with the words which are very commonly used in the

current round for performance issues.

To summarize, count bolts receive and store the count of each word separately and

emits the word to next bolt for tf-idf calculation phase once when count of the word

reached to the threshold immediately.

4.5.4 Keyword-based Event Detector Bolt

This bolt stores the words emitted from word count bolt and when the previous bolt

finishes its task for current round, this bolt starts to calculate the tf-idf value of last

two documents for each common word. By using the tf-idf values calculated, this

bolt calculates the increment rate and decides whether this word is an event or not. If

the common word is marked as event keyword, it is emitted to next bolt.

4.5.5 Clustering Bolts

This bolt is activated at the end of the 6-min block streaming. Clustering bolt of

hybrid approach, firstly gets the event keywords and eliminate the tweets which does

not contain any of the common words. Then using the filtered tweets, it starts two-step

clustering algorithm: local and global clustering same as clustering-based method.

Local and global clustering algorithms are executed on different bolts: Clustering and

event detector bolts. At the end of the global clustering, events are also stated by

using growth rate 3.6 of cluster. Both of the clustering steps use cosine similarity for

merge operations again. While local clustering step uses cosine similarity between

35

tweet and cluster vectors, global clustering step uses cosine similarity between two

clusters.

• Local Clustering: Clustering bolts are responsible to get the list of event candi-

date words, eliminate current block tweets containing any of these words and

then start local clustering phase. Steps of local clustering is as follows:

– Tweet elimination: Eliminate the tweets which does not contain any of the

event candidate words.

– Local clustering: This steps starts with an empty list of local clusters and

creates/updates clusters by cosine similarities and also updates vector rep-

resentation of clusters by using the same operations of clustering-based

method.

– Merging cluster: At the end of the current round before emitting the list

to next bolt, this bolt merges local clusters. For this step one by one each

cluster is compared with other clusters and when cosine similarity of two

clusters are greater than a specified threshold, these clusters are merged

and the vector representation of merged clusters is updated same as the

clustering-based method.

• Global Clustering: After local clustering, cluster list is emitted to the event

detector bolt and this bolt compares the global clusters with local clusters and

updates the global clusters. Clusters are marked as events regarding to the

growth rate of the cluster. Steps of global clustering is as follows:

– Eliminate local clusters: If a local cluster represents less than a specified

number of tweets, it is very low probability to be an event. Therefore, it

is removed from local cluster list.

– Assign local clusters to global clusters: This step is same as the clustering-

based method, i.e. all the local clusters are examined and if the cosine

similarity of the global cluster and the local cluster is above the specified

threshold, local cluster is assigned to global cluster and global cluster is

updated. After a global cluster goes over the whole local cluster lists, the

word map of the global cluster is cleaned by removing the under-weighted

36

words and Apache Cassandra table entry of this global cluster is updated.

Finally the updated global cluster is evaluated to be an event or not by

looking at the growth rate.

– Inactive global cluster removal: During global cluster assignment, if there

is no assignment to a global cluster and if it is inactive for the last two

blocks, cluster is removed from global cluster list.

– New cluster addition to global list: After relevant local clusters are as-

signed to global clusters, there may occur some new clusters which are

not related to any of the global clusters. The word map of this new clusters

are also updated by removing the words having low weights and added to

database as global clusters.

4.6 Geolocation

Since Twitter is used all over the world, Twitter data contain all kind of events like

new album announced by an artist who is known world-wide or an election of a

country which can be labeled as local event. Therefore, tweets posted from each

country or may be each city can be processed separately to identify if it is local event

or it is an event which concerns the whole world. If a user on Twitter gives permission

to use their location information, Twitter provides this by API. By using the filtering

option of Twitter Streaming API, we have stored tweets posted from Canada and

USA into Apache Cassandra with their location information. In the system proposed

in this study processes tweets in two parallel streams and these two streams have

exactly same process steps with different parallelism setup according to data volume.

As seen in Figures 4.2, 4.4, 4.5, input stream can identify where tweet is posted from

and direct tweets due to their location information to the related bolts. By doing

so events are detected with their locations. Despite this study is interested in only

Canada and USA, it is easy to plug new processing line for different countries.

37

4.7 Database

Apache Storm topologies are executing the methodology in a distributed fashion and

the setup contains a single local cluster with many tasks on a single machine, but still

since the system hires many tasks for each process steps and creates many threads,

the need for a storage to handle state of the system and related data rises and this need

is fulfilled by Apache Cassandra. Apache Cassandra is a NoSQL database providing

scalability and high availability. Since data is replicated to multiple nodes, the system

provides fault tolerance. Every Apache Cassandra node is identical on the system,

therefore there is no single point of failure and there are no network bottlenecks.

Apache Cassandra is in use at big companies like Netflix, Instagram, Reddit, eBay,

etc [65].

There are two use cases Apache Cassandra is integrated to system. First one is storing

data used or created from system like tweets or events detected at the end of process.

Second one is to provide stateful stream processing, for example to store created

information at the current state like count of words or global clusters at current time

window. Besides the state of tasks are stored in Cassandra like if the task finished its

job for the current window or not or how long does it take to finish its process. The

detailed description of tables is given in Appendix B.

38

CHAPTER 5

EXPERIMENTS AND RESULTS

In this section, we present the experimental study. The goal of this study is to test

and compare the three online event detection methods in terms of their accuracy and

performance. In what follows, we first describe our experimental setting. Then we

discuss an initial set of experiments that we conducted to tune our algorithm param-

eters along with the methodology that we used to validate their settings. Finally, we

present our results for event detection accuracy and performance.

5.1 Setup

All experiments were run on a MacOS Version 10.13.3 machine with an Intel R© Core
TM

i5 processor running at 3.2 GHz with 16 GB of memory.

For the experiments, nearly 12M tweets collected from Twitter within one week from

May 31, 2016, to June 7, 2016, is used. We filtered tweets by geographic location

and worked with only the ones posted from USA and Canada. The complete dataset

is stored in Cassandra and we replay it in a streaming fashion in our experiments

in order to simulate a behavior similar to the real Twitter Firehose. In each of the

experiments, we processed the tweets in rounds (i.e., time windows) of 6 minutes.

We chose this window size to create a behavior that is as close to a realistic and stable

system scenario as possible (i.e., tweet collection rate matches the processing rate,

and the total latency of buffering and processing each tweet is not too high).

Our main evaluation metrics are Precision/Recall/F-measure for accuracy, and total

execution time of processing the whole dataset for performance. Specific details of

39

these metrics are discussed in the following subsections.

5.2 Preprocessing

Preprocessing step is applied in all three methods and the aim of this step is making

tweets more meaningful by converting verbs into base forms and filter unimportant

words like at, the or urls, etc. Some examples from the preprocessing step can be

found in Table 5.1.

Table 5.1: Preprocessing input and outputs

Input Output

We’re proud to join 160+ companies in

@HRC’s petition to #RepealHB2, be-

cause we believe in equal rights for all:

be, proud, join, company, @hrc,

petition, #repealhb, believe, equal,

rights

TODAY WAS MY GRANDPARENTS

65TH WEDDING ANNIVERSARY

AND I THREW FIRST PITCH AT

@GoSquirrels AND I DEADLIFTED

295 SO IT WAS A GOOD DAY.

oday, grandparents, 65th, wed-

ding, anniversary, throw, first, pitch,

@gosquirrels, deadlift, good, day

Adding space. . . in space.

Watch as BEAM module attaches to @S-

pace_Station tomorrow at 5:30am ET

http://go.nasa.gov/1SgkTSv

add, space, space, watch, beam,

module, attach, @space_station, to-

morrow, 5:30, et

Donate to HRC for a chance to win

2 tickets to @springsteen’s NYC

show. Enter on @crowdrise at

http://crowdrise.com/nohate #nohatein-

mystate

donate, hrc, chance, win, ticket,

@springsteen, nyc, show, enter,

@crowdrise, #nohateinmystate

Made the ray marcher

into a 3.5 KB html page:

http://doodle.notch.net/unmandelboxing/

IE seems to dislike it.

make, ray, marcher, 3.5, kb, html,

page, ie, seem, dislike

40

Table 5.1 continued

Woke up before 8 am for the first time in

a long time, and I kind of like it. So many

hours of sunlight ahead of me! Coffee?

Need coffee.

wake, first, time, long, time, kind,

like, many, hour, sunlight, ahead,

coffee, need, coffee

I only follow’ed you bc I was waiting for

you to finish http://cliffhorse.com . Now,

I follow bc you’re damn funny.

follow, ‘, ed, wait, finish, now, fol-

low, be, damn, funny

lol afaik this is the best thing related to

league of legends omg ahahah

best, thing, related, league, legend,

ahahah

I liked a @YouTube video

http://youtu.be/Vi1tkUNpohM?a

Cologne Shop Roleplay (ASMR)

-

I’m at @AstirBeach in Vouliagmeni,

Athens https://www.swarmapp.com/c/

7lwQrizYC06

-

5.3 Parameter Tuning and Validation

The clustering-based event detection method (and therefore, the hybrid method which

is also based on clustering) involves several parameters used as thresholds. In order to

determine optimal values for these parameters that will create a fair and comparable

setting against the keyword-based method, we conducted an initial set of tuning and

validation experiments. These threshold parameters include:

• Cluster clean-up: To keep a cluster clean and simple, it is needed to eliminate

unnecessary or irrelevant words when a cluster gets crowded. A word in a

cluster is removed if:

– a. Number of tweets forming the local cluster > p1 and

– b. Weight of word < p2

41

• Cosine similarity threshold(p3): This threshold shows the minimum cosine sim-

ilarity score needed between two clusters to merge them.

• Number of tweets forming the cluster(p4): If the number of tweets residing in a

cluster is less than this threshold, the cluster cannot be a candidate of an event,

it is removed.

• Minimum weight of a word in a new cluster assignment(p5): When a new clus-

ter is added to global list, this cluster is also cleaned up. Words having smaller

value than this threshold are eliminated from cluster.

The first set of validation experiments are conducted on a smaller sample of the whole

dataset with 15 rounds, including the tweets about the event Death of Muhammad Ali

(i.e., a significant event that took place on June 3, 2016 – during the week that we

collected data from Twitter), and the resulting clusters are manually analyzed. Tested

parameter value settings and the number and quality of clusters that each setting led

to are shown in Table 5.2 along with our observations. For measuring cluster quality,

we use the silhouette coefficient. The silhouette coefficient essentially measures how

similar a given object is to its own cluster compared to the other clusters [66], given

in Equation 5.1. Its value ranges between -1 and +1, where a higher value indicates

higher clustering quality. Silhouette coefficient is used for both parameter tuning and

accuracy comparisons.

S Ccluster(C) =

∑
t∈C

S Ctweet(t)

|{t ∈ C}|
(5.1)

where,

• t: current tweet inside cluster C, similarity of which is calculated.

• C: current cluster, cosine similarity of which is calculated.

• |{t ∈ C}|: the number of tweets shaping the cluster C.

42

Ta
bl

e
5.

2:
Pa

ra
m

et
er

Tu
ni

ng
an

d
V

al
id

at
io

n
R

es
ul

ts
(s

m
al

ld
at

as
et

)

p 1
p 2

p 3
p 4

p 5
N

um
be

r
of

Si
lh

ou
et

te
C

om
m

en
ts

C
lu

st
er

s
C

oe
ffi

ci
en

t

Se
tt

in
g

1
30

0.
00

5
0.

3
30

0.
05

23
0.

75
C

lu
st

er
te

rm
ve

ct
or

s
in

cl
ud

e
hi

gh
nu

m
be

r
of

w
or

ds
.

M
an

y
no

n-
ev

en
t

cl
us

te
rs

ar
e

fo
rm

ed
.

T
hi

s
se

tti
ng

le
ad

s
to

th
e

lo
w

es
ta

cc
ur

ac
y

fo
re

ve
nt

de
te

ct
io

n.

Se
tt

in
g

2
40

0.
01

0.
4

50
0.

04
7

0.
79

A
sm

al
ln

um
be

ro
fc

ro
w

de
d

cl
us

te
rs

co
nt

ai
ni

ng
ir

re
l-

ev
an

tw
or

d
se

ts
ar

e
ge

ne
ra

te
d.

M
an

y
no

n-
ev

en
tc

lu
s-

te
rs

ar
e

fo
rm

ed
.

Se
tt

in
g

3
50

0.
01

0.
5

10
0

0.
05

3
1.

0
T

hr
ee

cl
us

te
rs

ar
e

fo
rm

ed
an

d
ea

ch
of

th
em

is
re

la
te

d

to
th

e
ev

en
tD

ea
th

of
M

uh
am

m
ad

A
li.

N
o

no
n-

ev
en

t

cl
us

te
rs

ar
e

fo
rm

ed
.

Se
tt

in
g

4
60

0.
02

5
0.

6
12

0
0.

06
1

1.
0

O
nl

y
on

e
cl

us
te

ri
s

ge
ne

ra
te

d.
It

is
re

la
te

d
to

th
e

ev
en

t

D
ea

th
of

M
uh

am
m

ad
A

li.

Se
tt

in
g

5
70

0.
05

0.
7

15
0

0.
07

0
0.

0
N

o
cl

us
te

rs
ar

e
ge

ne
ra

te
d.

43

Table 5.3: Detailed Validation Results for Setting 3 and Setting 4 (full dataset)

Method Country Number of Clusters Avg. S. C. Std. dev.

Setting 3

Clustering USA 74 0.855 0.276

Clustering CAN 7 1.0 0.0

Hybrid USA 15 0.342 0.49

Hybrid CAN 0 NaN NaN

Setting 4

Clustering USA 34 0.748 0.268

Clustering CAN 2 1.0 0.0

Hybrid USA 6 1.0 0.0

Hybrid CAN 0 NaN NaN

S Ctweet(t,C) =
MinDistToOtherClusters(t,C,C′) − AvgDistInsideCluster(t,C)

max(MinDistToOtherClusters(t,C,C′), AvgDistInsideCluster(t,C))
(5.2)

where,

• AvgDistInsideCluster(t, C): average distance between tweet t and other tweets

within the same cluster C.

• MinDistToOtherClusters(t, C, C’): the lowest average distance of tweet t to all

other tweets in any other cluster C’.

AvgDistInsideCluster(t,C) = 1 −

∑
t′∈C

CosineS imilarity(t, t′)

|{t′ ∈ C}|
(5.3)

where,

• CosineSimilarity(t, t’): Cosine similarity of t and t’ given in 3.5 where t’ is

other tweet than t inside same cluster C.

• |{t′ ∈ C}|: the number of tweets shaping the cluster C.

44

MinDistToOtherClusters(t,C,C′) = min([AvgDistInsideCluster(t,C′1),

..., AvgDistInsideCluster(t,C′n)]) (5.4)

where,

• C: cluster where tweet t belongs to.

• t: tweet inside cluster C.

• [AvgDistInsideCluster(t, C′1), ..., AverageDistInsideCluster(t, C′n)]: list of aver-

age distances where t is the current tweet inside cluster C evaluated and C′x is

the cluster other than current cluster C.

Threshold set values, definitions and comments below:

• Set 1 First set includes low threshold values:

– If the number of tweets in cluster is greater than 30 and weight of key

is less than 0.005, key will be removed from cluster. This is very light

condition. Most of the words will stay in the cluster and clusters will

expand more than others.

– If cosine similarity of two clusters is greater than 0.3, they will merge.

Therefore, there will be less duplication of clusters since most of the sim-

ilar clusters will merge.

– If the number of tweets in a cluster is greater than 30, it is saved as global

cluster for next rounds. Therefore, there will be more global clusters saved

to db than other sets which will decrease the performance.

– Minimum weight of a word in a new cluster assignment is 0.005 which is

also a light condition. Most of the words will stay in the newly created

clusters and this set will let clusters to expand more than other sets.

• Set 2 Second set includes higher threshold values but still low :

– If the number of tweets in cluster is greater than 40 and weight of key

is less than 0.01, key will be removed from cluster. This is also a light

45

condition. Most of the words will stay in the cluster too but elimination

will be better than the first set.

– If cosine similarity of two clusters is greater than 0.4, they will merge.

Therefore, there will be less duplication of clusters when compared to

next threshold sets.

– If the number of tweets in a cluster is greater than 50, it is saved as global

cluster for next rounds. Therefore, there will be less global clusters than

first set but more global clusters than next sets which will also decrease

the performance by increasing the db transactions.

– Minimum weight of a word in a new cluster assignment is 0.04 which is

heavier than first set. Words will eliminate in a more appropriate way and

cleaner clusters will shape.

• Set 3 Third set includes medium weight threshold values:

– If the number of tweets in cluster is greater than 50 and weight of key

is less than 0.01, key will be removed from cluster. This is a medium

condition. Most of the event related words and some of irrelevant words

will remain in clusters.

– If cosine similarity of two clusters is greater than 0.5, they will merge.

Therefore, there may be cluster duplicates since this threshold may force

the create new clusters for same events with mostly different selection of

words but the number of duplicates should not be much.

– If the number of tweets in a cluster is greater than 100, it is saved as

global cluster for next rounds. Therefore, there will be fewer clusters than

the sets mentioned until now.

– Minimum weight of a word in a new cluster assignment is 0.05 which is

also a medium value. Hence, even newly created global clusters will be

clean.

• Set 4 Fourth set includes higher threshold values:

– If the number of tweets in cluster is greater than 60 and weight of key

is less than 0.025, key will be removed from cluster. This is a heavy

46

condition when compared to previous sets. Most of the irrelevant words

will be removed and very clean clusters will be shaped.

– If cosine similarity of two clusters is greater than 0.6, they will merge.

This condition makes it harder to merge clusters or assign tweets into a

related cluster since the similarity score threshold will cause more elimi-

nation. Therefore, only very similar tweets will shape clusters and dupli-

cation becomes more likely.

– If the number of tweets in a cluster is greater than 120, it is saved as global

cluster for next rounds. This means smaller clusters will be eliminated and

more crowded ones will be evaluated for event detection.

– Minimum weight of a word in a new cluster assignment is 0.06 which

is higher than previous sets. This condition may filter many words in a

newly created clusters and result in small initial clusters.

• Set 5 Fifth set is the heaviest set:

– If the number of tweets in cluster is greater than 70 and weight of key is

less than 0.05, key will be removed from cluster. This is the most restric-

tive condition of all five sets. Only high-weighted words which occur in

the most of the tweets will remain in the cluster and the resulting clusters

will be very simple and clear.

– If cosine similarity of two clusters is greater than 0.7, they will merge.

This condition makes it harder to merge clusters or assign tweets into a

related cluster since the similarity score threshold is very high. Therefore,

only very similar tweets will shape the clusters.

– If the number of tweets in a cluster is greater than 150, it is saved as global

cluster for next rounds. This condition forces the system to filter only the

large clusters so there is a high possibility to ignore event related clusters.

– Minimum weight of a word in a new cluster assignment is 0.07 which

is higher than previous sets. This set contains the highest value for this

threshold value and that results in very small and insensible clusters.

As seen in Table 5.2, Setting 3 and Setting 4 provide the best results in terms of cluster

quality as well as the highest event detection accuracy results in our manual analysis.

47

Observing this, we then conducted a second set of validation experiments on the full

dataset, specifically for comparing Setting 3 and Setting 4. The results are given in

Table 5.3. Based on these results, we select Setting 3 for the clustering-based method

and Setting 4 for the hybrid method in the rest of our experiments. At the end of

event detection, keyword-based method labels 220 words as events for USA and 17

words for Canada. Clustering-based approach founds 74 event clusters for USA and

7 for Canada and finally hybrid method produces 6 event clusters for USA and no

clusters for Canada. Details of clusters created by clustering-based method is given

in Appendix A.1 and for hybrid method further information takes place in Appendix

A.2. Appendices include the information when and where the event occurred. Ap-

pendix also informs about the number of tweets forming the event clusters, the highest

weighted words which are the keywords for the detected events and the ground truth

column shows the index of event from ground truth set given in Table 5.4.

5.4 Event Detection Accuracy and Performance

In this section, we analyze the accuracy of event detection methods against the “ground

truth”. Furthermore, we report our findings on their computational performance.

5.4.1 Ground Truth Construction

In order to evaluate event detection accuracy, we need a ground truth as reference for

comparison since we use recall and precision measurements as in typical information

retrieval and data mining context. For this purpose it is needed to enumerate all

real-life events occurred between May, 31 to June, 6; but it is not feasible to find

out all events occurred all over the world for a given time. Therefore, we used events

detected by our system to create a ground truth set which is used as the complete set of

real-life events happened between the dates of our interest. As a result, we determined

the set of events that constitute the ground truth through a user study involving three

judges. The following process is applied by each of the judges independently: Given

all clusters generated by the cluster-based and the hybrid event detection methods,

the most frequent terms in representative term vectors of each cluster is examined in

48

detail, making use of web search with the frequent terms in order to match the cluster

with a real-world events that happened within the same time interval as the dataset

collection. Some events were very clear and well-known events, such as Death of

Muhammad Ali, which did not need detailed examination. On the other hand, some

other events, such as Offensive Foul by Kevin Love in NBA Finals Game I, needed

a more detailed web search. After the individual evaluation session by each judge,

another session is conducted to compare their results. In this second session, the final

set of events for the ground truth is determined under full consensus from all three

judges. As a result, the ground truth includes 20 different events for the USA tweets

and 4 different events for the Canada tweets, having indices 2, 6, 8 and 15 given in

Table 5.4, including events from the 2016 NBA Finals, the 2016 NHL Final, events

about celebrities as well as first appearances of movie trailers and music videos, and

the death of Muhammad Ali.

5.4.2 Accuracy Comparison

For accuracy evaluation, we used the well-known relevance metrics of Precision, Re-

call, and F-measure. Since the output of the keyword-based method is a set of bursty

keywords denoting events, precision (denoted as Precisionk) is calculated accord-

ingly, as given in Equation 5.5.

Precisionk =
Number of keywords matching some event

Number of keywords found
(5.5)

For the clustering-based and the hybrid methods, precision (denoted as Precisionc) is

calculated based on the number of clusters denoting events, as given in Equation 5.6.

Precisionc =
Number of clusters matching some event

Number of clusters found
(5.6)

49

Table 5.4: Ground Truth Event Set

Date Events

1. 31 May 2016 Thompson has written his name to NBA history by record-

ing 11 3s in NBA 2016 Western Conference Finals.

2. 31 May 2016 Draymond Green fouls on Steven Adams in NBA 2016

Western Conference Finals.

3. 31 May 2016 Steven Adams called Stephen Curry ve Klay Thompson as

quick little monkeys in NBA Western Conference Finals.

4. 31 May 2016 Penguins win against Sharks in the Stanley Cup Final, NHL.

5. 31 May 2016 Golden State Warriors complete comeback to reach 2016

NBA Finals.

6. 31 May & 2

June 2016

Predictions about 2016 NBA Finals.

7. 31 May 2016 Trailer of the movie "The Guest".

8. 1 & 6 June 2016 Ztro - FDB Ringtone

9. 3 June 2016 John Legend National Anthem in 2016 NBA Finals.

10. 3 June 2016 Stephen Curry fouls on Tristan Thompson in NBA Finals.

11. 3 June 2016 Kevin Love gets an offensive foul in NBA Finals.

12. 3 June 2016 Matthew Dellavedova fouls on Andre Iguodala in NBA Fi-

nals.

13. 3 June 2016 2016 NBA Finals, Game 1 - It was the lowest-scoring com-

bined game for Curry and Thompson all season, yet Golden

State won with ease.

14. 3 June 2016 Shaun Livingston scored 20 points in NBA Finals.

15. 4 June 2016 Death of Muhammad Ali.

16. 5 June 2016 Brock Lesnar is returning to UFC.

17. 6 June 2016 Carlos Santana’s National Anthem in NBA Finals.

18. 6 June 2016 LeBron James Travels But Goes Uncalled in 2016 NBA Fi-

nals Game 2.

19. 6 June 2016 Cavaliers vs Hawks playoffs in NBA Finals.

20. 6 June 2016 Kylie Jenner’s Twitter account is HACKED.

50

The definition of recall is the fraction of relevant instances that have been retrieved

over the total amount of relevant instances. In online streaming and event detection

studies, the relevant instances correspond to the all event occurred all over the world

(or for a given region of the world) for the time of interest. However, it is very hard

and infeasible to create a set of relevant instances which provides the requirements

of its definition. Therefore, we have created a ground set which is described in detail

in Section 5.4.1 and use this ground set as the all relevant instances. In consequence,

the definition of recall shows minor differences in this study and it is calculated in

the same way for all three methods, as the ratio of the number of detected events to

the total number of events in the ground truth set. Finally, F-measure is calculated

conventionally, as the harmonic mean of precision and recall.

Recall =
Total number of events detected by method

Total number of events in ground truth
(5.7)

F-measure = 2 ∗
Precision ∗ Recall

Precision + Recall
(5.8)

Table 5.5: Accuracy Results for the Keyword-based Method

Country Bursty Keywords Unde- Precision Recall F-

Keywords Matching tected measure

Found Some Events

Event

USA 220 135 (matching 7 61% 67% 64%

14 events)

CAN 17 7 (matching 2 41% 50% 45%

2 events)

Total 237 142 (matching 9 60% 64% 62%

16 events)

51

Table 5.6: Accuracy Results for the Clustering-based and the Hybrid Methods

Country Clusters Event Unde- Precision Recall F-

Found Clusters tected measure

Events

Clus-

USA 74 39 0 53% 100% 69%

CAN 7 5 0 71% 100% 83%

tering Total 81 44 0 54% 100% 70%

Hybrid

USA 6 6 15 100% 29% 45%

CAN 0 0 4 0 0% 0%

Total 6 6 19 100% 24% 39%

Table 5.7: Details of Silhouette Coefficient (SC) Values for the Clustering-based and

the Hybrid Methods

Method Country Number of Avg. SC Min. SC Max. SC Std. dev.

Clusters

Clustering USA 74 0.855 0.15 1.0 0.276

Clustering CAN 7 1.0 1.0 1.0 0.0

Hybrid USA 6 1.0 1.0 1.0 0.0

Hybrid CAN 0 NaN NaN NaN NaN

Precision, Recall, and F-measure values for the methods are shown in Table 5.5 and

Table 5.6. As seen in the results, the clustering-based method provides the highest

recall, whereas the hybrid method performs better in terms of precision. This result

is reflected in Table 5.7, as well. The clusters generated by the hybrid method for

the USA tweets are all event clusters with high silhouette coefficient values, whereas

the clusters generated by the clustering-based method have lower average silhouette

coefficient as well as a higher standard deviation. Keyword-based method has an

intermediate-level performance, performing slightly better for recall than for preci-

sion. On the overall, the clustering-based method gives the highest f-measure score.

52

5.4.3 Comparison of Events Detected by Keyword-based and Clustering-based

Methods

Some statistics about the events found by keyword-based and clustering-based event

detection methods are given under this title. While keyword-based method labels

single words as events, clustering-based method labels a cluster vector containing

many words coming from many tweets as events. Therefore, in this section we have

found the intersection ratios for both methods.

For the intersection ratio of keyword-based method, we have checked how many of

the words detected as events are included in any of the event clusters detected by

clustering-based method.

• For Canada, there are 17 keywords labeled as events with 14 unique keywords1

and 5 of them occurred in event cluster vectors of Canada. i.e, 0.36 of the event

keywords intersect cluster vectors.

• For USA, there are 220 keywords labeled as events with 155 unique keywords2

and 56 of them occurred in event cluster vectors of USA. i.e, 0.36 of the event

keywords intersect cluster vectors.

For the intersection ratio of clustering-based method, we have checked how many

of the cluster vectors detected as events contains any of event keywords detected by

keyword-based method.

• For Canada, there are 7 cluster vectors labeled as events and 3 of them contain

event keywords detected for Canada. i.e, 0.43 of the event clusters intersect

event keywords.

• For USA, there are 74 cluster vectors labeled as events and 60 of them contain

event keywords detected for USA. i.e, 0.81 of the event clusters intersect event

keywords.

1 Since same event keywords can occur for different rounds, there may be duplicated event entries.
2 See footnote 1.

53

Table 5.8: Comparison of Keyword-based and Clustering-based Event Detection

Method Total number of Number of Events Percentage of

Events Found Intersected With Intersection

Other Method

USA CAN USA CAN USA CAN

Keyword- 220 17 56 5 0.36 0.36

based (155 unique) (14 unique)

Clustering- 74 7 60 3 0.81 0.43

based

Table 5.9: Ranking of Events Detected By Clustering-based Method using Intersec-

tion Ratios CAN (Ground truth set can be found in Table 5.4)

Number of

Intersection

Map Representation of Events Detected Ground

Truth

3 {adam, ass, dirty, draymond, get, green, hurt, pull,

steven, try}

2

2 {boxer, great, greatest, legend, muhammad, peace,

rest, rip, time, world}

15

2 {bee, butterfly, float, greatest, legend, muhamm,

muhammad, rip, sting, time}

15

0 {final, nba, take, win } 6

0 {fdb, music, official, ringtone, video, ztro } 8

0 {follow, please, since } non-event

0 {guitar, lie, many } non-event

In Table 5.9 and 5.10, we show the events detected by clustering method by map

representation of high weighted entries with number of intersected event keywords

detected by keyword-based method, e.g for the first row, 10 different event keywords

detected by keyword-based method occurred in the event cluster vector detected by

clustering-based method. The keywords used in the cluster representation are deter-

54

mined by using the highest tenth weight in the cluster as threshold. Words having a

weight greater than or equal to the threshold or words which occur in both methods

regardless of their weights are included in the cluster representation. Additionally,

the bursty keywords contained in cluster are shown in bold in tables. These table

show that clusters having higher intersections are more meaningful and points out a

real-life event for both countries. Especially clusters having intersections more than

3 are showing real-life events for USA. Therefore, we can say that if a large number

of events are detected for a country, it could be handful to use the intersection number

to find out the real-life events.

Table 5.10: Ranking of Events Detected By Clustering-based Method using Intersec-

tion Ratios USA (Ground truth set can be found in Table 5.4)

Number of

Intersection

Map Representation of Events Detected Ground

Truth

10 {ali, alus, butterfly, champ, easy, greatest, history, leg-

end, muhammad, peace, rest, rip, step, time}

15

9 {ali, alus, boxer, greatest, legend, muhammad, peace,

rest, rip, step, time}

15

9 {ali, alus, butterfly, greatest, legend, muhamm,

muhammad, peace, rest, rip, time}

15

9 {ali, alus, butterfly, champ, easy, great, greatest, leg-

end, muhammad, peace, rest, rip}

15

8 {ali, bee, butterfly, greatest, legend, muhammad,

peace, rest, rip, sting, time}

15

7 {ali, alus, big, champ, easy, fellow, greatest, legend,

muhammad, peace, piece, rest}

15

7 {bee, butterfly, eye, float, fly, greatest, hit, legend,

muhammad, peace, rest, rip, see, sting}

15

7 {adam, ankle, cook, curry, dirty, get, green, guard,

keep, man, spray, steven, switch}

3

6 {bee, butterfly, champ, float, greatest, muhammad,

peace, rest, rip, sting}

15

55

Table 5.10 continued

6 {eye, float, greatest, hand, hit, legend, muhammad,

peace, rest, rip, see, sting, time}

15

6 {butterfly, champion, float, flow, forever, greatest,

hand, important, inspiring, muhammad, peace, person,

rest, rip, sting}

15

6 {act, adam, dirty, draymond, foul, get, green, player,

pull, steven, try}

2

6 {champ, float, fly, greatest, legend, muhammad,

peace, rest, rip, rumble, sting, time}

15

6 {eye, float, fly, greatest, hand, hit, legend, muhammad,

peace, rest, rip, see, sting}

15

6 {ankle, break, curry, dirty, fall, get, jab, make, slip,

step, thompson}

10

5 {back, bron, call, finally, foul, get, jame, lebron, nba,

ref, time, travel, travels}

18

5 {blues, bonino, dion, effort, game, get, guess, nigga,

pen, penguin, shark, take, waiter, wednesday, win}

4

5 {ball, delly, dick, foul, get, hit, iggy, iguodala, man, nut,

play, shumpert, wrong}

12

5 {apply, click, hospitality, join, latest, opening, retail,

sale, see, team, view}

non-

event

4 {arrogance, arrogant, bench, cav, curry, get, livingston,

lose, respect, torch, warrior, win}

13

4 {curry, final, freak, get, livingston, miss, mvp, nigga,

play, shaun, well}

14

4 {anthem, banner, get, good, john, legend, national,

okay, sing, sound, spangled, star}

9

4 {bench, cav, curry, double, game, get, lowest, next,

score, season, take, warrior, win}

13

56

Table 5.10 continued

4 {anymore, float, fly, greatest, muhammad, power, rest,

rip, rumble, sky, sting, young}

15

3 {cavalier, final, nba, take, win} 6

3 {anthem, carlo, chile, guitar, national, play, santana,

sing, uruguay, wrong}

17

3 {ass, ball, bang, block, call, contact, feel, foul, game,

get, kevin, love, man, murder, play, refuse, soft, trip}

11

3 {beat, bench, cav, even, game, get, lose, score, starter,

step, warrior, win}

13

3 {back, beat, cav, come, curry, get, gon, nba, series,

thunder, warrior, win}

6

3 {beauty, join, latest, open, opening, read, retail, see,

team, ulta, view}

non-

event

3 {cavalier, final, nba, take, win} 6

3 {care, join, latest, manager, open, opening, read, retail,

see, team, view}

non-

event

3 {analyst, compliance, join, latest, opening, read, regis-

ter, retail, see, team, view}

non-

event

3 {corporation, join, latest, open, opening, read, retail,

sale, see, team, view}

non-

event

3 {join, latest, new, open, opening, read, see, team, tech-

nical, view}

non-

event

3 {join, latest, open, opening, read, retail, sale, see, shift,

supervisor, team, temporary, view}

non-

event

3 {half, join, latest, open, opening, read, retail, robert,

see, supervisor, team, technology, view}

none-

event

3 {apply, click, join, latest, manager, open, opening, sale,

see, team}

non-

event

57

Table 5.10 continued

3 {automation, cater, coordinator, engineer, join, latest,

management, open, opening, principal, read, retail, see,

system, team, view}

non-

event

3 {associate, join, latest, open, opening, read, retail, sale,

see, team, view}

non-

event

2 {cna, georgia, join, latest, open, opening, read, see,

team, view}

non-

event

2 {cloud, company, east, energy, harvey, join, latest, open,

opening, peak, read, see, speedway, supply, team, trac-

tor, view}

non-

event

2 {cognizant, join, latest, open, opening, read, re-

sourcemfg, see, team, view}

non-

event

2 {engineer, join, latest, open, opening, read, see, super-

visor, team, view}

non-

event

2 {advisor, analytic, business, county, dunn, fit, great, in-

terest, maintenance, might, near, research, retail, sys-

tem}

non-

event

2 {baby, cav, cleveland, fan, final, golden, ref, state, wait,

win, word}

5

2 {big, cable, curry, example, fire, game, great, hate, heat-

ing, klay, mvp, prime, pull, respect, right, shoot, shooter,

song, thompson, trouble, warrior}

1

2 {join, latest, med, open, opening, read, see, team, view,

writer}

non-

event

2 {join, latest, manager, open, opening, read, see, staffing,

team, view}

non-

event

2 {join, latest, manager, open, opening, read, see, store,

team, view}

non-

event

2 {aerotek, general, join, latest, open, opening, read, see,

team, view}

non-

event

58

Table 5.10 continued

2 {analyst, join, latest, open, opening, read, see, senior,

team, view}

non-

event

2 {california, join, latest, open, opening, read, see, ser-

vice, team, view}

non-

event

2 {dell, factory, infant, join, keyholder, latest, open, open-

ing, part, read, register, see, team, time, view, wisconsin,

woman}

non-

event

1 {corporate, driver, fit, great, interest, manager, might,

near, sale, service}

non-

event

1 {lyft, code, free, lyftontwitter, promo, ride, try, use} non-

event

1 {clinical, driver, fit, great, interest, manager, might, near,

register, service}

non-

event

1 {con, vamo, nalgita} non-

event

1 {clearly, feel, get, hack, idol, kylie, laugh, morning, talk,

twitter}

20

1 {application, associate, fit, great, interest, manager,

might, near, sale, travel}

non-

event

0 {boy, cav, cleveland, get, gon, heat, lebron, series,

sweep, together }

19

0 {chain, cross, jesus, necklace, pendant, religious, steel } non-

event

0 {comment, jdameanor, love, post, see, share, show,

sorry, support, youtube }

non-

event

0 {music, official, video } 8

0 {fdb, music, official, ringtone, video, ztro } 8

0 {guest, movie, please,see, trailer} 7

0 {awesome, back, brock, call, fight, happy, imagine, kid,

lesnar, lesner, month, next, tho, ufc }

16

59

Table 5.10 continued

0 {check, please, song } non-

event

0 {birthday, day, friend, happy, hope, love, miss, much,

pretty, wait }

non-

event

0 {bundle, buy, free, get, huge, low, sale } non-

event

0 {fdb, music, official, ringtone, video, ztro } 8

0 {fdb, music, official, ringtone, video, ztro } 8

0 {comment, jdameanor, love, post, see, share, show,

sorry, support, youtube }

non-

event

0 {comment, jdameanor, love, post, see, share, show,

sorry, support, youtube }

non-

event

5.4.4 Comparison of Events Detected by Keyword-based and Hybrid Methods

Some statistics about the events found by keyword-based and hybrid event detection

methods are given under this title. While keyword-based method labels single words

as events, hybrid method labels a cluster vector containing many words coming from

many tweets as events. Therefore, in this section we have found the intersection ratios

for both methods.

For the intersection ratio of keyword-based method, we have checked how many of

the words detected as events are included in any of the event clusters detected by

hybrid method.

• For Canada, there is no event cluster found by hybrid methodology. Therefore,

the intersection ratio is 0.

• For USA, there are 220 keywords labeled as events with 155 unique keywords3

and 24 of them occurred in event cluster vectors of USA. i.e, 0.16 of the event

keywords intersect cluster vectors.
3 Since same event keywords can occur for different rounds, there may be duplicated event entries.

60

For the intersection ratio of hybrid method, we have checked how many of the event

cluster vectors contains any of event keywords detected by keyword-based method.

• For Canada, there is no event cluster found by hybrid methodology. Therefore,

the intersection ratio is 0.

• For USA, there are 6 cluster vectors labeled as events and all of them contain

event keywords detected for USA. i.e, 1.0 of the event clusters intersect event

keywords.

In Table 5.12, the number of intersections are shown in the same way applied in Table

5.10. For the hybrid methodology, the intersection number of hybrid and keyword-

based methods are not enlightening since the number of event clusters are small and

all of them points out a real-life event. But from the table, we see that the minimum

intersection number is 2 and this information can also be used if there is a large

number of events detected by hybrid methodology for further researches.

Table 5.11: Comparison of Keyword-based and Hybrid Method of Event Detection

Method Total number of Number of Events Percentage of

Events Found Intersected With Intersection

USA CAN USA CAN USA CAN

Keyword- 220 17 24 0 0.16 -

based (155 unique) (14 unique)

Hybrid 6 0 6 0 1.0 -

61

Table 5.12: Ranking of Events Detected By Hybrid Method using Intersection Ratios

for USA (Ground truth set can be found in Table 5.4)

Number of

Intersection

Map Representation of Events Detected Ground

Truth

7 {adam, dirty, doin, draymond, flop, foul, green, pick,

pull, series, stay, steven, ugly, wait}

2

5 {ankle, break, curry, fall, get, jab, make, slip, step,

thompson, tristan}

10

5 {ali, dammit, goat, god, greatest, legend, man,

muhamm, muhammad, rip}

15

3 {cavalier, final, nba, take, win} 6

3 {anthem, get, john, legend, light, nigga, sing, skin,

take, tryna, voice}

9

2 {back, deck, exactly, get, help, hurt, kevin, love, rush,

soft}

11

62

Table 5.13: Detected Words by Keyword-based and Clustering-based Methods

Words detected by

both methods

Words detected only by keyword-based

method

CAN draymond, adam,

green, rip, muhammad

livingston, mtvpopcd, barbosa, agp,

curry, bucciovertimechallenge, just-

showupshow, 20:20, ali

USA technical, opening,

latest, fit, hospitality,

click, retail, rest, butter-

fly, peace, rip, greatest,

muhammad, bench,

double, curry, win,

step, legend, alus, ali,

shaun, livingston, mvp,

foul, iggy, iguodala,

delly, shumpert, kevin,

soft, lyft, dirty, slip,

jab, ankle, anthem,

national, john, cavalier,

nba, hack, travels,

ref, jame, vamo, san-

tana, bonino, pen,

dion, waiter, adam,

green, steven, switch,

draymond

3-1, movement, 11:11, cub, marquez,

rafa, allin, nbafinalsvote, barbosa, denzel,

bucciovertimechallenge, shump, clock,

flop, kobe, drake, ddt, flagrant, mar-

leau, rko, careerarc, jobs, sjsharks, elbow,

gameofthrones, hound, 2-0, andy, vare-

jao, diaz, mcgregor, karlie, speight, nba-

finals, barne, harrison, diabetes, diabetic,

type, 1diabete, crosby, sheary, lovejoy,

ward, navybestwhip, braun, tie, mookie,

greta, seager, spoon, guardado, jefferson,

roberson, tommie, hip, hop, dellavedova,

replay, backstreet, hbk, kessel, phil, an-

derson, ibaka, knee, layup, steph, kerr,

sprint, verizon, rust, rusty, chad, retweet,

lovebts, (word written in other than latin

alphabet), westvirginia, hiring, job, rec-

ommend, nursing, sales, toronto, -lsb-,

-rsb-, 06/05, ave, div, dagger, andnew,

bisp, bisping, michael, murray, muham-

madali, 2k17, goldberg, answer

63

Table 5.14: Detected Words by Keyword-based and Hybrid Methods

Words detected by

both methods

Words detected only by keyword-based

method

CAN - -

USA cavalier, nba, win,

dirty, draymond, foul,

adam, green, steven,

flop, slip, jab, step,

ankle, curry, anthem,

legend, john, rip, ali,

greatest, muhammad,

kevin, soft

3-1, movement, 11:11, cub, marquez,

rafa, travels, lyft, allin, nbafinalsvote,

barbosa, denzel, bucciovertimechallenge,

shump, shumpert, clock, kobe, drake, na-

tional, santana, livingston, shaun, ddt,

double, flagrant, marleau, rko, career-

arc, jobs, sjsharks, elbow, ref, game-

ofthrones, hound, 2-0, jame, andy, vare-

jao, diaz, mcgregor, karlie, speight, nba-

finals, barne, harrison, hack, diabetes,

diabetic, type, 1diabete, bench, bonino,

pen, dion, waiter, crosby, sheary, love-

joy, ward, delly, navybestwhip, braun, tie,

mookie, greta, seager, spoon, guardado,

jefferson, vamo, mvp, roberson, tommie,

hip, hop, dellavedova, iguodala, replay,

technical, backstreet, hbk, kessel, phil,

anderson, ibaka, knee, layup, steph, kerr,

sprint, verizon, switch, rust, rusty, chad,

retweet, lovebts, (word written in other

than latin alphabet), westvirginia, hir-

ing, job, retail, click, fit, latest, opening,

recommend, hospitality, nursing, sales,

toronto, -lsb-, -rsb-, 06/05, ave, div, dag-

ger, andnew, bisp, bisping, michael, mur-

ray, muhammadali, alus, butterfly, peace,

rest, 2k17, goldberg, iggy, answer

64

Discussion. There are two reasons why some of the words does not appear in any of

the clusters:

• Tweets, containing same event keywords detected by keyword-based method,

are splitted into multiple clusters and this may result in clusters with small vol-

umes and these clusters may be eliminated by thresholds. For example, the

word ’3-1’ has the count 74 whereas ’curry’ has the count 654 when they be-

come an event in keyword-based event detection method, therefore if tweets

containing word ’3-1’ are splitted into multiple clusters and the number of

tweets forming the clusters are less than the threshold, these clusters may be

removed. On the other hand the count of ’curry’ is much more than the count

of ’3-1’ and even if tweets containing this word is splitted into multiple clusters

there is a high possibility for some of the clusters to become an event.

• Cluster containing an event keyword, detected by keyword-based method, be-

come an event cluster but word may be eliminated since its weight is below

threshold. For example, for USA people mostly use ’muhammad’ (having

count 478) and ’ali’ (having count 534) separately in their posts and this causes

keyword ’muhammadali’ (having count 107) to have low weight and removed

from clusters.

This is an expected behavior of clustering-based method since it has a stronger elim-

ination conditions and does not allow weak keywords to pass. Therefore, we can say

that clustering-based method is more accurate than keyword-based method. On the

other hand, it can be seen from tables that hybrid has the strongest filtering algorithm

and eliminates a big majority of words, but it also is an expected behavior because

there is two elimination steps; one by keyword-based algorithm elimination and then

clustering-based elimination. However this causes some events to be missed and this

is an disadvantage.

5.4.5 Comparison of Events Detected by Clustering and Hybrid Method

For the comparison of these two methods, we calculate the intersection ratio of clus-

ters. For example, cluster A has 10 words in map and B has 5 words and 2 of them

65

are common, then the maximum intersection rate is 0.4 for these two clusters. Ad-

ditionally, a threshold value is needed to say if those two clusters point to the same

event or not. Therefore, we use multiple threshold values for this purpose and results

are given in Table 5.15.

Table 5.15: Comparison of clustering and hybrid techniques

Threshold C1 C2 C3 C4 C5 C6 Percentage

0.1 X X X X X 0.83

0.2 X X X X X 0.83

0.3 X X X X X 0.83

0.4 X X X X X 0.83

0.5 X X X X 0.66

0.6 X X 0.33

0.7 X X 0.33

Common words of clusters are given below:

• C1 : [adam, dirty, doin, draymond, green, series, stay, ugly]

• C2 : [cavalier, final, lock, nba, take, warrior, win]

• C3 : [john, legend, skin, take, tryna]

• C4 : [ankle, break, fall, jab, step, thompson]

• C5 : [ali, dammit, god, muhammad, rip]

• C6 : [back, deck, exactly, help, kevin, love, rush]

Table 5.15 contains the information below:

• Threshold: Cluster A detected by clustering-based method and Cluster B de-

tected by hybrid method are similar if intersection percentage of words is above

the threshold value. For example Cluster A has 10 words and 5 of them are also

contained in Cluster B, then intersection percentage is 0.5 and if threshold is

less or equal to 0.5 then these clusters are assumed to point the same event.

66

• Cluster 1 - 6: Event clusters detected by hybrid methodology and Yes/No shows

even if there is an intersected event cluster detected by clustering-based method

or not.

• X: Shows even the similar event cluster occurs in the event clusters obtained

using clustering methodology.

• Percentage: Similarity rate between clusters of hybrid and clustering approaches.

i.e, 5/6 = 0.83 means that 5 of the event clusters created by hybrid methodology

are similar to some of the event clusters formed by clustering approach

The above table shows that Cluster 2 and 4 have similar clusters in clustering method

for each threshold values. Those two clusters are related to NBA final game and both

approaches label event clusters related to this event.

Cluster 1, 2, 3, 4 and 6 are related to NBA final game also. Specifically 1 is related to

Draymond Green at NBA finals, 2 is about the game in general Warriors vs Cavaliers,

3 is related to John Legend National Anthem at NBA finals, 4 is related to Stephen

curry with the ankle breaker jab step on Tristan Thompson, 5 is related to the death

of Muhammad Ali (RIP) and 6 is related to Kevin Love’s struggles in NBA Finals.

Clustering-based method also marks some clusters as events for each of the above

event clusters detected by hybrid method.

Table 5.16: Performance Results for All Methods

Method Total Number of Number of Round

Execution Tweets Rounds Processing

Time Processed Processed Time

of 7 days per Second per Minute (seconds)

(hours)

Keyword ∼ 3 1200 9.3 6.5

Clustering ∼ 11 300 2.5 24

Hybrid ∼ 3.5 950 8 7.5

67

0

2

4

6

8

10

12

14

16

15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

25
5

27
0

28
5

30
0

31
5

33
0

34
5

36
0

37
5

39
0

40
5

42
0

43
5

45
0

46
5

48
0

49
5

51
0

52
5

54
0

55
5

57
0

58
5

60
0

61
5

63
0

64
5

66
0

67
5

69
0

70
5

72
0

73
5

75
0

76
5

78
0

79
5

81
0

82
5

84
0

85
5

87
0

88
5

90
0

91
5

93
0

94
5

96
0

97
5

99
0

10
05

10
20

10
35

10
50

10
65

10
80

10
95

11
10

11
25

11
40

11
55

11
70

11
85

12
00

12
15

12
30

12
45

12
60

12
75

12
90

13
05

13
20

13
35

13
50

13
65

13
80

13
95

14
10

14
25

14
40

14
55

14
70

14
85

Ta
sk
	n
u
m
b
er

Time	(seconds)

Small	Set	of	Process	Times	for	Keyword-based	Method

Figure 5.1: Processing time of keyword-based method

5.4.6 Performance Comparison

In stream processing, processing time is an important metric to be able to cope with

continuous data. Additionally, online event detection calls for timely processing to

extract and present the events with the least possible delay. Since the streaming be-

havior is simulated in our experiments, the tweet arrival rates are set to the same level

for each of the methods. For performance, we focus on measuring the total processing

time of the complete input dataset through the corresponding Storm topology for each

method. Table 5.16 summarizes our results. As expected, the most efficient method

is the keyword-based event detection method with the total execution time of about

3 hours, since this method does not involve as many iterations over the data as the

other methods and it does not work with large blocks of data. In contrast, since the

clustering-based method performs many database accesses to maintain cluster state

and it has to iterate over larger amounts of data, it incurs the highest total execution

time of about 11 hours. The hybrid method shows a major improvement over the

clustering-based method, bringing the total execution time down to about 3.5 hours.

This proves that filtering tweets based on bursty keywords can be effective in reduc-

ing the cost of cluster computation. In this section, small subsets of processing times

are added to discuss the execution times of tasks.

As seen in Figure 5.1, the task numbers and the corresponding tasks are as follows:

68

0

2

4

6

8

10

12

14

16

15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

25
5

27
0

28
5

30
0

31
5

33
0

34
5

36
0

37
5

39
0

40
5

42
0

43
5

45
0

46
5

48
0

49
5

51
0

52
5

54
0

55
5

57
0

58
5

60
0

61
5

63
0

64
5

66
0

67
5

69
0

70
5

72
0

73
5

75
0

76
5

78
0

79
5

81
0

82
5

84
0

85
5

87
0

88
5

90
0

91
5

93
0

94
5

96
0

97
5

99
0

10
05

10
20

10
35

10
50

10
65

10
80

10
95

11
10

11
25

11
40

11
55

11
70

11
85

12
00

12
15

12
30

12
45

12
60

12
75

12
90

13
05

13
20

13
35

13
50

13
65

13
80

13
95

14
10

14
25

14
40

14
55

14
70

14
85

Ta
sk
	n
u
m
b
er

Time	(seconds)

Small	Set	of	Process	Times	for	Clustering-based	Method

Figure 5.2: Processing time of clustering-based method

Task 2: input stream

Task 3, 4, 5, 6, 7: word count bolts for USA

Task 8, 9: word count bolts for CAN

Task 10: compare bolt

Task 11, 12: event detector bolts for USA

Task 13, 14: event detector bolts for CAN

As seen from Figure 5.1, input stream is nearly always active and emitting data to

word count bolts. Word count bolts are also very active with some stop sections

where event detector bolts takes action and detect keywords as events. While event

detector bolts of USA have a little idle time, event detector bolts of CAN have more

idle time since the data volume of CAN is much smaller than USA. The compare bolt

has the longest idle time since it gets active only when there is a new event detection.

As seen in Figure 5.2, the task numbers and the corresponding tasks are as follows:

tasks are as follows:

Task 2: input stream

Task 3, 4, 5, 6, 7, 8, 9, 10, 11, 12: clustering bolts for USA

Task 13: clustering bolt for CAN

Task 14: event detector bolt for USA

Task 15: event detector bolt for CAN

69

0

2

4

6

8

10

12

14

16

18

17 34 51 68 85 10
2

11
9

13
6

15
3

17
0

18
7

20
4

22
1

23
8

25
5

27
2

28
9

30
6

32
3

34
0

35
7

37
4

39
1

40
8

42
5

44
2

45
9

47
6

49
3

51
0

52
7

54
4

56
1

57
8

59
5

61
2

62
9

64
6

66
3

68
0

69
7

71
4

73
1

74
8

76
5

78
2

79
9

81
6

83
3

85
0

86
7

88
4

90
1

91
8

93
5

95
2

96
9

98
6

10
03

10
20

10
37

10
54

10
71

10
88

11
05

11
22

11
39

11
56

11
73

11
90

12
07

12
24

12
41

12
58

12
75

12
92

13
09

13
26

13
43

13
60

13
77

13
94

14
11

14
28

14
45

14
62

14
79

14
96

Ta
sk
	n
um

be
r

Time	(seconds)

Small	Set	of	Process	Times	for	Hybrid	Method

Figure 5.3: Processing time of hybrid method

As seen from Figure 5.2, the input stream is slower and waits more than keyword-

based methods, because the complexity of this method is higher than keyword-based

method and the process times are longer for clustering tasks. Therefore, input stream

waits for all tasks to finish their work before streaming the next round. The active

and idle times of event detector tasks and clustering tasks complete each other in this

method, because event detector tasks wait for clustering task to complete its local

clustering job to start the global clustering. And also bolts of CAN is less active than

bolts of USA as expected.

As seen in Figure 5.3, the task numbers and the corresponding tasks are as follows:

Task 2: input stream

Task 3: clustering bolt for USA

Task 4: clustering bolt for CAN

Task 5, 6, 7, 8, 9: word count bolts for USA

Task 10, 11: word count bolts for CAN

Task 12: event detector bolt for both countries

Task 13, 14: keybased event detector bolts for USA

Task 15, 16: keybased event detector bolts for CAN

As seen from Figure 5.3, input stream is also nearly always active in this method

since splits tweets into words and emit words one by one. Keybased event detector

70

bolt takes action when a common word is reached to itself and evaluates words to

detect keybased events. Clustering bolt is activated when keybased event detector

bolt emits the list of event keywords so that it can filter the tweet list and create local

clusters. Event detector bolt waits for clustering bolts as expected since this bolt is

responsible of global clustering and should wait for local clusters. Similar to other

methods, tasks of CAN is less active than tasks of USA.

5.5 Discussion

The key takeaways from our experimental study can be summarized as follows:

• The clustering-based method provides the highest recall and f-measure values

per country as well as overall. This is an expected result, since this method

generates more number of clusters and performs a finer-grained analysis.

• On the other hand, the clustering-based method is also the least efficient method.

However, the idea of pre-filtering tweets using keyword counts is a promising

way to improve the performance of the clustering-based method, as the perfor-

mance results of our hybrid method indicate.

• In the clustering-based method, we observed cases where multiple event clus-

ters are generated in the same round corresponding to the same event, causing

fragmented clusters. For example, for the event Death of Muhammad Ali, two

clusters are generated in the same round, one of them containing frequent terms

champion, rest in peace, whereas the other one containing float, butterfly, sting,

referring to the famous quote "Float like a butterfly, sting like a bee". Another

advantage of the hybrid method we observed is that, it reduces the degree of

this kind of fragmentation. The fragmentation problem in the clustering-based

method could also be improved through using semantic similarity measurement

methods, however, this likely would incur additional processing cost.

• On the other hand, there might be an advantage to generating several event

clusters for the same event in that, the event itself or its effect would then last

for several rounds. This could be useful in detecting events that may have

different durations.

71

• While tweet filtering applied in the hybrid method brings efficiency, it also

causes a drop in recall and f-measure for both the USA and the Canada events.

This drop is in fact quite drastic for Canada, such that it was not possible to

generate any clusters (hence, the 0’s in Table 5.6 and the NaN’s in Table 5.7).

It may be possible to fix this problem with a more detailed analysis of our

parameter settings. Despite this, the clusters that were successfully generated

strongly indicate the occurrence of relevant events from the ground truth set.

• The keyword-based method processes the tweet stream faster than the other

two methods, and the bursty keywords provide good hints for detecting the

events. However, the same keyword may be associated with several related

yet different events. For example, the bursty keyword game appears in several

clusters’ representative vectors. Therefore, it is not easy to associate a keyword

with an event precisely.

• Overall, this study shows that using a stream processing framework for online

event detection is a viable idea and can facilitate implementation and scalability,

while helping control accuracy. We note that the benefit of this approach could

be further improved by providing stronger support for transactional processing

to efficiently coordinate concurrent data accesses, which we plan to investigate

in more depth as part of our future work.

72

CHAPTER 6

CONCLUSION

Online event detection aims to discover the events in real time or near real time

through analysis of streaming web content such as blog posts or social media mes-

sages. In this work, we model event detection problem as burst detection in fre-

quency of keywords or in size of message clusters. We analyze the performance of

three methods for event detection implemented on the stream processing framework

Apache Storm.

The methods are evaluated on a set of tweets collected in one week. The experiments

are conducted on stream simulation, so that the methods can be compared on the same

data. The tweet streams are processed in time windows, called rounds. In each round,

the tweets are processed through the defined topologies and the change in the output

of each round determines whether an event is detected or not.

The experimental results show the applicability of the stream processing frameworks

for online event detection. Among the compared methods, clustering-based one pro-

vides higher f-measure and recall scores. On the other hand, keyword-based method

is a more lightweight solution in terms of topology structure and processing time.

However, it provides lower recall and captures less information about the event, re-

lying on a single keyword. Hybrid method, as expected, provides a better balance

between accuracy and processing time cost. However, the recall values are much

lower than that of the other two methods.

There are several directions for improvement over this work. As one of the improve-

ments, parameter settings for clustering-based method can be further analyzed. By

this way, the recall value for the hybrid method can be increased to a more satisfac-

73

tory level. In clustering operations such as cluster update and merge, we used cosine

similarity on term vectors. Semantic similarity based measurements can be utilized to

prevent fragmentation of clusters related to the same event. As another research direc-

tion, utilization of transactional support within stream processing can be investigated

and its effect on clustering accuracy can be analyzed.

74

REFERENCES

[1] J. L. Dario Simonassi, Gabriel Eisbruch, Getting Started with Storm. O’Reilly

Media, Inc., 2012.

[2] S. Aslam, “Twitter by the numbers: Stats, demographics & fun facts.” https:

//www.omnicoreagency.com/twitter-statistics/. Accessed: 2018-

03-20.

[3] M. Cordeiro and J. Gama, “Online Social Networks Event Detection: A

Survey,” in Solving Large Scale Learning Tasks. Challenges and Algorithms

(S. Michaelis, N. Piatkowski, and M. Stolpe, eds.), vol. 9580 of Lecture Notes

in Computer Science, pp. 1–41, Springer, Cham, 2016.

[4] M. F. Mokbel and A. Magdy, “Microblogs Data Management Systems: Query-

ing, Analysis, and Visualization (Tutorial),” in ACM SIGMOD International

Conference on Management of Data (SIGMOD), pp. 2219–2222, 2016.

[5] F. Atefeh and W. Khreich, “A Survey of Techniques for Event Detection in

Twitter,” Computational Intelligence, vol. 31, no. 1, pp. 132–164, 2015.

[6] V. Gulisano, Z. Jerzak, S. Voulgaris, and H. Ziekow, “The DEBS 2016 Grand

Challenge,” in ACM International Conference on Distributed and Event-based

Systems (DEBS), pp. 289–292, 2016.

[7] J. Allan, Topic Detection and Tracking: Event-based Information Organization.

Kluwer Academic Publishers, 2002.

[8] E. Wu, Y. Diao, and S. Rizvi, “High-performance Complex Event Processing

over Streams,” in ACM SIGMOD International Conference on Management of

Data (SIGMOD), pp. 407–418, 2006.

[9] M. Akdere, U. Cetintemel, and N. Tatbul, “Plan-based Complex Event Detection

Across Distributed Sources,” in International Conference on Very Large Data

Bases (VLDB), pp. 66–77, 2008.

75

https://www.omnicoreagency.com/twitter-statistics/
https://www.omnicoreagency.com/twitter-statistics/

[10] M. Li, M. Mani, E. A. Rundensteiner, and T. Lin, “Complex Event Pattern De-

tection over Streams with Interval-based Temporal Semantics,” in ACM Inter-

national Conference on Distributed Event-based Systems (DEBS), pp. 291–302,

2011.

[11] T. Sakaki, M. Okazaki, and Y. Matsuo, “Tweet Analysis for Real-Time Event

Detection and Earthquake Reporting System Development,” IEEE Transactions

on Knowledge and Data Engineering (TKDE), vol. 25, no. 4, pp. 919–931, 2013.

[12] K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: A Real-time Local-

event Detection System based on Geolocation Information Propagated to Mi-

croblogs,” in ACM International Conference on Information and Knowledge

Management (CIKM), pp. 2541–2544, 2011.

[13] H. Abdelhaq, C. Sengstock, and M. Gertz, “EvenTweet: Online Localized Event

Detection from Twitter,” PVLDB, vol. 6, no. 12, 2013.

[14] M. Hasan, M. A. Orgun, and R. Schwitter, “TwitterNews+: A Framework for

Real Time Event Detection from the Twitter Data Stream,” in Social Informatics

(E. Spiro and Y.-Y. Ahn, eds.), vol. 10046 of Lecture Notes in Computer Science,

pp. 224–239, Springer, Cham, 2016.

[15] R. McCreadie, C. Macdonald, I. Ounis, M. Osborne, and S. Petrovic, “Scalable

Distributed Event Detection for Twitter,” in IEEE International Conference on

Big Data, pp. 543–549, 2013.

[16] Y. Wang, R. Xu, B. Liu, L. Gui, and B. Tang, “A Storm-Based Real-Time Micro-

Blogging Burst Event Detection System,” in Machine Learning and Cybernetics

(X. Wang, W. Pedrycz, P. Chan, and Q. He, eds.), vol. 481 of Communications

in Computer and Information Science, pp. 186–195, Springer, 2014.

[17] “IEEE Data Engineering Bulletin, Special Issue on Next-Generation Stream

Processing,” 2015.

[18] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: understanding

microblogging usage and communities,” in Proceedings of the 9th WebKDD

and 1st SNA-KDD 2007 workshop on Web mining and social network analysis,

pp. 56–65, ACM, 2007.

76

[19] S. Milstein, A. Chowdhury, G. Hochmuth, B. Lorica, and R. Magoulas,

“Twitter and the Micro-Messaging Revolution: Communication, Connec-

tions, and Immediacy – 140 Characters at a Time (An O’Reilly Radar

Report).” http://weigend.com/files/teaching/haas/2009/readings/

OReillyTwitterReport200811.pdf, 2008.

[20] H. Sayyadi, M. Hurst, and A. Maykov, “Event Detection and Tracking in So-

cial Streams,” in International Conference on Web and Social Media (ICWSM),

pp. 311–314, 2009.

[21] M. Hasan, M. A. Orgun, and R. Schwitter, “A survey on real-time event detec-

tion from the twitter data stream,” Journal of Information Science, vol. 0, no. 0,

p. 0165551517698564, 0.

[22] C. Li, A. Sun, and D. A. Twevent:, “segment-based event detection from tweets,”

in Proceedings of the ACM international conference on information and knowl-

edge management (CIKM ’12), Maui, HI, 29 October–2 . : ACM, pp. 155–164,

November 2012.

[23] A. Marcus, M. S. Bernstein, O. Badar, et al., “Twitinfo: aggregating and visual-

izing microblogs for event exploration,” in Proceedings of the SIGCHI confer-

ence on human factors in computing systems (CHI’11), (New York), pp. 227–

236, ACM, 2011.

[24] M. Mathioudakis and K. N. TwitterMonitor:, “trend detection over the twitter

stream,” in 10) . New York: ACM, pp. 1155–1158, Proceedings of the ACM

SIGMOD international conference on management of data (SIGMOD, 2010.

[25] F. Alvanaki, M. Sebastian, K. Ramamritham, et al., “Enblogue: emergent topic

detection in web 2.0 streams,” in Proceedings of the ACM SIGMOD interna-

tional conference on management of data (SIGMOD ’11), Athens, pp. 1271–

1274. : ACM, pp. 12–16, June 2011.

[26] S. Gaglio, G. L. Re, and M. A. Morana, “framework for real-time twitter data

analysis,” Comput Commun, vol. 73, pp. 236–242, 2016.

[27] M. Cataldi, “Di caro l and schifanella c. emerging topic detection on twitter

based on temporal and social terms evaluation,” in Proceedings of the tenth in-

77

http://weigend.com/files/teaching/haas/2009/readings/OReillyTwitterReport200811.pdf
http://weigend.com/files/teaching/haas/2009/readings/OReillyTwitterReport200811.pdf

ternational workshop on multimedia data mining (MDMKDD ’10), Washington,

DC, 25 –4-10. : ACM, pp. 4–1, 2010.

[28] G. Stilo and P. Velardi, “Efficient temporal mining of micro-blog texts and its

application to event discovery,” Data Min Knowl Disc, vol. 30, pp. 372–402,

2016.

[29] R. Parikh and K. K. E. events from tweets, “In: Proceedings of the 22nd interna-

tional conference on world wideweb (www’13 companion),” pp. pp. 613–620,

2013.

[30] J. Weng and L. Bs., “Event detection in twitter,” in Proceedings of the interna-

tional AAAI conference on web and social media (ICWSM), pp. 401–408, vol.

11, 2011.

[31] X. Zhang, X. Chen, Y. Chen, et al., “Event detection and popularity prediction

in microblogging,” Neurocomput, vol. 149, pp. 1469–1480, 2015.

[32] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “TopicSketch: Real-Time

Bursty Topic Detection from Twitter,” IEEE Transactions on Knowledge and

Data Engineering (TKDE), vol. 28, no. 8, pp. 2216–2229, 2016.

[33] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming First Story Detection

with Application to Twitter,” in Human Language Technologies: Conference of

the North American Chapter of the Association for Computational Linguistics

(HLT-NAACL), pp. 181–189, 2010.

[34] M. Osborne, S. Moran, R. McCreadie, et al., “Real-time detection tracking.

monitoring of automatically discovered events in social media,” in Proceedings

of the 52nd annual meeting of the association for computational linguistics,

Association for Computational Linguistics, 2014.

[35] M. Osborne, S. Petrovic, R. McCreadie, C. Macdonald, and I. Ounis, “Bieber no

more: First Story Detection using Twitter and Wikipedia,” in SIGIR Workshop

on Time-aware Information Access (TAIA), 2012.

[36] H. Becker, M. Naaman, and L. Gravano, “Beyond Trending Topics: Real-World

Event Identification on Twitter,” in International AAAI Conference on Weblogs

and Social Media (ICWSM), pp. 438–441, 2011.

78

[37] M. Mathioudakis and N. Koudas, “TwitterMonitor: Trend Detection over the

Twitter Stream,” in ACM SIGMOD International Conference on Management

of Data (SIGMOD), pp. 1155–1158, 2010.

[38] C. De Boom, “Van canneyt s and dhoedt b,” in Semantics-driven event clustering

in Twitter feeds, pp. 2–9, In: Proceedings of the 5th workshop on making sense

of microposts, vol. 1395 , CEUR, 2015.

[39] S. Phuvipadawat and T. Murata, “Breaking news detection and tracking in twit-

ter,” in Proceedings of the IEEE/WIC/ACM international conference on web in-

telligence and intelligent agent technology. Toronto, Canada, vol. 3 of WI-IAT

’10, 31 August–3 September, , DC: IEEE Computer Society, pp. 120–123, 2010.

[40] A. J. McMinn and J. Jm., “Real-time entity-based event detection for twitter,” in

Experimental IR meets multilinguality, multimodality, and interaction: 6th in-

ternational conference of the CLEF association (CLEF’15) (J. Mothe, J. Savoy,

J. Kamps, and others Kamps J. al, eds.), pp. 65–77, Berlin: Springer, 2015.

[41] S. Unankard, X. Li, and S. Ma., “Emerging event detection in social networks

with location sensitivity,” World Wide Web, vol. 18, no. 5, pp. 1393–1417, 2015.

[42] S. B. Kaleel and A. Abhari, “Cluster-discovery of twitter messages for event

detection and trending,” J Comput Sci, vol. 6, pp. 47–57, 2015.

[43] C. H. Lee and C. Tf., “Leveraging microblogging big data with a modified

density-based clustering approach for event awareness and topic ranking,” J Inf

Sci, vol. 39, pp. 523–543, 2013.

[44] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling,

“Twitterstand: news in tweets,” in Proceedings of the 17th acm sigspatial inter-

national conference on advances in geographic information systems, pp. 42–51,

ACM, 2009.

[45] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake Shakes Twitter Users: Real-

time Event Detection by Social Sensors,” in International Conference on World

Wide Web (WWW), pp. 851–860, 2010.

79

[46] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “TEDAS: A Twitter-based

Event Detection and Analysis System,” in IEEE International Conference on

Data Engineering (ICDE), pp. 1273–1276, 2012.

[47] H. Park, S.-B. Youn, G. Y. Lee, and H. Ko, “Trendy episode detection at a very

short time granularity for intelligent vod service: a case study of live baseball

game,” in Proceedings of EuroITV, 2011.

[48] S. Petrović, M. Osborne, and V. Lavrenko, “Streaming first story detection

with application to twitter,” in Human Language Technologies: The 2010 An-

nual Conference of the North American Chapter of the Association for Compu-

tational Linguistics, pp. 181–189, Association for Computational Linguistics,

2010.

[49] A. Das Sarma, A. Jain, and C. Yu, “Dynamic relationship and event discovery,”

in Proceedings of the fourth ACM international conference on Web search and

data mining, pp. 207–216, ACM, 2011.

[50] H. Sayyadi, M. Hurst, and A. Maykov, “Event detection and tracking in social

streams.,” in ICWSM, 2009.

[51] S. Huang, X. Wu, and A. Bolivar, “The effect of title term suggestion on e-

commerce sites,” in Proceedings of the 10th ACM workshop on Web information

and data management, pp. 31–38, ACM, 2008.

[52] O. Ozdikis, P. Senkul, and H. Oguztuzun, “Semantic expansion of hashtags for

enhanced event detection in twitter,” in Proceedings of the 1st International

Workshop on Online Social Systems, Citeseer, 2012.

[53] X. Zhou and L. Chen, “Event Detection over Twitter Social Media Streams,”

The VLDB Journal, vol. 23, no. 3, pp. 381–400, 2014.

[54] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and J. Huang,

“STREAMCUBE: Hierarchical Spatio-temporal Hashtag Clustering for Event

Exploration Over the Twitter Stream,” in IEEE International Conference on

Data Engineering (ICDE), pp. 1561–1572, 2015.

80

[55] M. G. V. K. Singh and R. Jain, “Situation Detection and Control using Spatio-

temporal Analysis of Microblogs,” in International Conference on World Wide

Web (WWW), 2010.

[56] H. Abdelhaq, C. Sengstock, and M. Gertz, “Eventweet: Online localized event

detection from twitter,” PVLDB, vol. 6, no. 12, p. 2013, 2013.

[57] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling,

“TwitterStand: News in Tweets,” in ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems (GIS), pp. 42–51, 2009.

[58] “Wordnet website.” https://wordnet.princeton.edu/. Accessed: 2016-

04-03.

[59] A. D. Sarma, A. Jain, and C. Yu, “Dynamic Relationship and Event Discovery,”

in ACM International Conference on Web Search and Data Mining (WSDM),

pp. 207–216, 2011.

[60] A. Aizawa, “An information-theoretic perspective of tf–idf measures,” Informa-

tion Processing & Management, vol. 39, no. 1, pp. 45–65, 2003.

[61] “Twitter for java website.” http://twitter4j.org/en/index.html. Ac-

cessed: 2016-04-03.

[62] N. Marz, “Nathan marz website.” http://nathanmarz.com/about/. Ac-

cessed: 2016-04-03.

[63] “Backtype website.” http://www.backtype.com/. Accessed: 2016-04-03.

[64] N. Marz, “A storm is coming.” https://blog.twitter.com/2011/

storm-coming-more-details-and-plans-release. Accessed: 2016-04-

03.

[65] A. Cassandra, “Apache cassandra.” http://cassandra.apache.org/. Ac-

cessed: 2017-07-30.

[66] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and valida-

tion of cluster analysis,” Journal of Computational and Applied Mathematics,

vol. 20, pp. 53 – 65, 1987.

81

https://wordnet.princeton.edu/
http://twitter4j.org/en/index.html
http://nathanmarz.com/about/
http://www.backtype.com/
https://blog.twitter.com/2011/storm-coming-more-details-and-plans-release
https://blog.twitter.com/2011/storm-coming-more-details-and-plans-release
http://cassandra.apache.org/

82

APPENDIX A

EVENTS DETECTED BY CLUSTERING-BASED AND HYBRID METHODS

A.1 Events detected by clustering-based methods

Tables in this appendix include the following information:

• Date: The date when the event occurred.

• Country: The country where the event occurred.

• Number of Tweets: The number of tweets forming the cluster.

• Common Words: The most common words contained in cluster with their

weights.

• Ground Truth: The index of the event given in Table 5.4.

Table A.1: Events found by clustering-based method

Date Country Number

of

Tweets

Common Words Ground

Truth

31 May 2016,

Tuesday, 05:30

AM

USA 106 [apply:0.82, click:0.82,

join:0.76, latest:0.94,

open:0.41, opening:0.59,

see:0.87, team:0.69]

Non-

event

83

Table A.1 continued

31 May 2016,

Tuesday, 09:42

AM

USA 82 [comment:1.0,

jdameanor:1.0, love:1.0,

post:1.0, see:1.0, share:1.0,

show:1.0, sorry:1.0, sup-

port:1.0, youtube:1.0]

Non-

event

31 May 2016,

Tuesday, 10:48

AM

USA 151 [game:0.42, klay:1.0, thomp-

son:0.93]

1

31 May 2016,

Tuesday, 10:54

AM

USA 750 [adam:0.62, draymond:0.77,

green:0.8, steven:0.27]

2

31 May 2016,

Tuesday, 10:54

AM

CAN 108 [adam:0.98, draymond:0.92,

foul:0.6, green:0.76,

steven:0.48]

2

31 May 2016,

Tuesday, 11:30

AM

USA 169 [adam:0.98, curry:0.87,

get:0.45, guard:0.34,

keep:0.21, steven:0.57]

3

31 May 2016,

Tuesday, 11:54

AM

USA 111 [blues:0.22, game:0.95,

get:0.57, nigga:0.25,

pen:0.71, penguin:0.28,

shark:0.26, take:0.58,

win:0.6]

4

31 May 2016,

Tuesday, 12:24

PM

USA 309 [back:0.35, beat:0.22,

cav:0.81, come:0.37,

get:0.22, gon:0.39, series:0.3,

warrior:0.76, win:0.72]

5

31 May 2016,

Tuesday, 12:24

PM

USA 175 [golden:1.0, state:1.0] 6

84

Table A.1 continued

31 May 2016,

Tuesday, 09:48

PM

USA 74 [guest:0.98, movie:0.98,

please:1.0, see:1.0,

trailer:0.98]

7

31 May 2016,

Tuesday, 10:00

PM

USA 138 [join:0.61, latest:1.0,

open:0.42, opening:0.8,

read:0.6, see:0.61, team:0.56,

view:0.53]

Non-

event

01 June 2016,

Wednesday,

01:00 AM

USA 110 [join:0.22, latest:1.0, open-

ing:0.9, read:0.64, see:0.22,

team:0.24, view:0.46]

Non-

event

01 June 2016,

Wednesday,

02:30 AM

USA 108 [join:0.65, latest:1.0,

open:0.4, opening:0.8,

read:0.56, see:0.65,

team:0.58, view:0.72]

Non-

event

01 June 2016,

Wednesday,

04:00 AM

USA 113 [analyst:0.33, join:0.43,

latest:1.0, open:0.38, open-

ing:0.71, read:0.5, see:0.43,

team:0.45, view:0.71]

Non-

event

01 June 2016,

Wednesday,

04:42 AM

USA 106 [join:0.52, latest:1.0,

open:0.26, opening:0.8,

read:0.49, see:0.52,

team:0.51, view:0.59]

Non-

event

(job

adver-

tise-

ment)

01 June 2016,

Wednesday,

06:00 AM

USA 105 [join:0.68, latest:1.0,

open:0.46, opening:0.83,

read:0.47, see:0.68,

team:0.68, view:0.39]

Non-

event

(job

adver-

tise-

ment)

85

Table A.1 continued

01 June 2016,

Wednesday,

03:54 PM

USA 97 [fdb:1.0, music:1.0, of-

ficial:1.0, ringtone:1.0,

video:1.0, ztro:1.0]

8

01 June 2016,

Wednesday,

11:24 PM

USA 145 [fit:0.99, great:1.0, in-

terest:0.62, might:0.55,

near:0.62]

Non-

event

(job

adver-

tise-

ment)

01 June 2016,

Wednesday,

11:24 PM

USA 249 [apply:1.0, click:1.0,

join:0.29, latest:0.89, open-

ing:0.44, read:0.23, re-

tail:0.26, sale:0.27, see:0.63,

team:0.36, view:0.25]

Non-

event

02 June 2016,

Thursday, 12:00

AM

USA 108 [cognizant:0.5, join:0.69,

latest:1.0, open:0.32, open-

ing:0.83, read:0.47, re-

sourcemfg:0.5, see:0.69,

team:0.7, view:0.41]

Non-

event

(job

adver-

tise-

ment)

02 June 2016,

Thursday, 03:06

AM

USA 112 [join:0.52, latest:1.0,

open:0.43, opening:0.76,

read:0.56, sale:0.27, see:0.52,

shift:0.25, supervisor:0.25,

support:0.21, team:0.53,

temporary:0.25, view:0.61]

Non-

event

02 June 2016,

Thursday, 05:24

AM

USA 103 [join:0.51, latest:1.0,

open:0.46, opening:0.8,

read:0.44, see:0.51,

team:0.54, view:0.56]

Non-

event

86

Table A.1 continued

02 June 2016,

Thursday, 05:30

AM

USA 126 [join:0.64, latest:1.0,

open:0.4, opening:0.79,

read:0.57, see:0.74,

team:0.69, view:0.37]

Non-

event

02 June 2016,

Thursday, 10:06

AM

USA 67 [check:1.0, please:1.0,

song:1.0]

Non-

event

02 June 2016,

Thursday, 11:24

AM

USA 76 [chain:1.0, cross:1.0, je-

sus:1.0, necklace:1.0, pen-

dant:1.0, religious:1.0,

steel:1.0]

Non-

event

(Neck-

lace

adver-

tise-

ment)

02 June 2016,

Thursday, 12:12

PM

USA 64 [bundle:1.0, buy:1.0, free:1.0,

get:1.0, huge:1.0, low:1.0,

sale:1.0]

Non-

event

02 June 2016,

Thursday, 12:12

PM

USA 102 [fdb:1.0, music:1.0, of-

ficial:1.0, ringtone:1.0,

video:1.0, ztro:1.0]

8

02 June 2016,

Thursday, 08:30

PM

USA 127 [cavalier:0.63, final:1.0,

lock:0.37, nba:1.0, take:1.0,

warrior:0.37, win:1.0]

6

02 June 2016,

Thursday, 08:36

PM

USA 266 [cavalier:0.62, final:1.0,

lock:0.37, nba:1.0, take:1.0,

warrior:0.38, win:1.0]

6

02 June 2016,

Thursday, 10:00

PM

USA 111 [join:0.52, latest:1.0,

open:0.32, opening:0.78,

read:0.61, see:0.53,

team:0.58, view:0.59]

Non-

event

87

Table A.1 continued

02 June 2016,

Thursday, 10:54

PM

CAN 71 [cavalier:0.49, final:1.0,

lock:0.46, nba:1.0, take:1.0,

warrior:0.49, win:1.0]

6

03 June 2016,

Friday, 12:00

AM

USA 104 [county:0.33, fit:1.0,

great:1.0, interest:0.79,

might:0.71, near:0.79]

Non-

event

03 June 2016,

Friday, 08:24

AM

CAN 99 [guitar:1.0, lie:1.0, many:1.0] Non-

event

03 June 2016,

Friday, 08:42

AM

USA 101 [fdb:0.97, music:1.0, of-

ficial:1.0, ringtone:0.97,

video:1.0, ztro:0.97]

8

03 June 2016,

Friday, 10:00

AM

USA 252 [anthem:0.21, good:0.29,

john:0.99, legend:1.0,

okay:0.21, sound:0.22]

9

03 June 2016,

Friday, 10:18

AM

USA 130 [ankle:0.29, break:0.34,

curry:0.31, fall:0.31,

get:0.21, jab:0.98, make:0.23,

slip:0.21, step:0.98, thomp-

son:0.3]

10

03 June 2016,

Friday, 10:48

AM

USA 111 [foul:0.37, get:0.51,

kevin:0.9, love:1.0, soft:0.23]

11

03 June 2016,

Friday, 11:54

AM

USA 242 [ball:0.54, delly:0.31,

dick:0.41, get:0.43, hit:0.81,

iggy:0.25, man:0.29, nut:0.6,

play:0.32, wrong:0.25]

12

88

Table A.1 continued

03 June 2016,

Friday, 12:06 PM

USA 200 [arrogance:0.33, arro-

gant:0.33, bench:0.89,

cav:0.59, curry:0.36,

get:0.33, lose:0.42, re-

spect:0.33, take:0.32,

torch:0.33, warrior:0.9]

13

03 June 2016,

Friday, 12:06 PM

USA 204 [livingston:1.0, miss:0.24,

shaun:0.95]

14

03 June 2016,

Friday, 12:12 PM

USA 145 [beat:0.35, bench:0.9,

cav:0.87, get:0.38,

starter:0.26, warrior:0.8]

13

03 June 2016,

Friday, 12:30 PM

USA 109 [cav:0.65, game:0.93,

get:0.33, klay:0.24, low-

est:0.26, next:0.4, score:0.27,

season:0.27, take:0.25,

warrior:0.58, win:0.95]

13

03 June 2016,

Friday, 01:00 PM

USA 105 [birthday:0.99, day:0.21,

happy:1.0, hope:0.23,

love:0.38, much:0.22,

pretty:0.24, wait:0.23]

Non-

event

03 June 2016,

Friday, 02:00 PM

CAN 83 [chapter:0.94, follow:1.0,

please:1.0, since:1.0]

Non-

event

04 June 2016,

Saturday, 12:00

AM

USA 119 [join:0.36, latest:1.0,

open:0.33, opening:0.77,

read:0.46, see:0.36,

team:0.36, view:0.74]

Non-

event

89

Table A.1 continued

04 June 2016,

Saturday, 12:00

PM

USA 93 [code:1.0, free:1.0, lyft:1.0,

lyftontwitter:1.0, promo:1.0,

ride:1.0, try:1.0, use:1.0]

Non-

event

(Lyft

adver-

tise-

ment)

04 June 2016,

Saturday, 01:18

PM

USA 375 [ali:0.96, muhammad:0.87,

rest:0.25, rip:0.73]

15

04 June 2016,

Saturday, 01:24

PM

USA 1283 [ali:0.84, greatest:0.27,

muhammad:0.77, peace:0.23,

rest:0.27, rip:0.69]

15

04 June 2016,

Saturday, 01:24

PM

USA 174 [float:0.88, rip:0.24,

sting:0.96]

15

04 June 2016,

Saturday, 01:30

PM

USA 2655 [ali:0.82, greatest:0.31,

muhammad:0.73, rip:0.71]

15

04 June 2016,

Saturday, 01:30

PM

USA 304 [float:0.9, rip:0.29,

sting:0.96]

15

04 June 2016,

Saturday, 01:30

PM

USA 161 [ali:0.24, big:0.48,

champ:0.4, easy:0.7, fel-

low:0.51, greatest:0.25,

peace:0.88, piece:0.43,

rest:1.0]

15

04 June 2016,

Saturday, 01:30

PM

CAN 143 [greatest:0.24, muham-

mad:0.68, rip:0.8]

15

90

Table A.1 continued

04 June 2016,

Saturday, 01:36

PM

USA 151 [ali:0.34, champ:0.47,

easy:0.41, greatest:0.37, leg-

end:0.29, muhammad:0.28,

peace:0.85, rest:1.0]

15

04 June 2016,

Saturday, 01:36

PM

USA 276 [float:0.94, muhammad:0.21,

rip:0.28, sting:0.94]

15

04 June 2016,

Saturday, 01:36

PM

CAN 121 [greatest:0.39, muham-

mad:0.79, rip:0.61]

15

04 June 2016,

Saturday, 01:42

PM

USA 178 [float:0.91, rip:0.21,

sting:0.97]

15

04 June 2016,

Saturday, 01:42

PM

USA 128 [ali:0.28, alus:0.22,

champ:0.36, easy:0.46,

greatest:0.31, peace:0.91,

rest:1.0]

15

04 June 2016,

Saturday, 01:48

PM

USA 159 [bee:0.95, butterfly:0.97,

float:0.9, sting:0.97]

15

04 June 2016,

Saturday, 01:54

PM

USA 123 [butterfly:0.97, float:0.93,

sting:0.99]

15

04 June 2016,

Saturday, 02:00

PM

USA 108 [bee:0.95, butterfly:0.98,

float:0.95, muhammad:0.26,

rip:0.24, sting:0.98]

15

91

Table A.1 continued

04 June 2016,

Saturday, 10:00

PM

USA 108 [fit:1.0, great:1.0, in-

terest:0.57, might:0.69,

near:0.57]

Non-

event

(Job

adver-

tise-

ment)

05 June 2016,

Sunday, 12:00

AM

USA 132 [join:0.5, latest:1.0,

open:0.27, opening:0.78,

read:0.55, see:0.5, team:0.5,

view:0.58]

Non-

event

05 June 2016,

Sunday, 12:00

AM

USA 120 [fit:1.0, great:1.0, in-

terest:0.53, might:0.7,

near:0.53]

Non-

event

(Job

adver-

tise-

ment)

05 June 2016,

Sunday, 02:12

AM

USA 106 [join:0.69, latest:1.0,

open:0.38, opening:0.8,

read:0.59, see:0.69,

team:0.73, view:0.64]

Non-

event

05 June 2016,

Sunday, 12:36

PM

USA 108 [back:0.5, brock:0.96,

fight:0.46, lesnar:0.86,

lesner:0.32, ufc:0.71]

16

05 June 2016,

Sunday, 08:18

PM

USA 114 [comment:1.0,

jdameanor:1.0, love:1.0,

post:1.0, see:1.0, share:1.0,

show:1.0, sorry:1.0, sup-

port:1.0, youtube:1.0]

Non-

event

92

Table A.1 continued

06 June 2016,

Monday, 12:00

AM

USA 106 [join:0.38, latest:1.0,

open:0.66, opening:0.74,

read:0.45, see:0.38,

team:0.38, view:0.68]

Non-

event

06 June 2016,

Monday, 01:00

AM

USA 102 [engineer:0.25, join:0.52,

latest:1.0, open:0.29, open-

ing:0.84, read:0.59, see:0.52,

team:0.59, view:0.77]

Non-

event

06 June 2016,

Monday, 03:36

AM

USA 110 [join:0.61, latest:1.0,

open:0.26, opening:0.86,

read:0.59, see:0.61,

team:0.59, view:0.45]

Non-

event

06 June 2016,

Monday, 04:00

AM

USA 109 [join:0.44, latest:1.0,

open:0.28, opening:0.87,

read:0.55, see:0.44,

team:0.54, view:0.59]

Non-

event

06 June 2016,

Monday, 05:30

AM

USA 117 [join:0.74, latest:1.0, man-

ager:0.27, open:0.39, open-

ing:0.77, read:0.69, see:0.74,

store:0.25, team:0.74,

view:0.49]

Non-

event

06 June 2016,

Monday, 09:00

AM

USA 109 [anthem:0.99, carlo:0.21,

chile:0.26, guitar:0.33,

national:0.95, play:0.43,

santana:0.37, uruguay:0.36]

17

06 June 2016,

Monday, 10:42

AM

USA 119 [con:1.0, nalgita:0.98,

vamo:1.0]

Non-

event

93

Table A.1 continued

06 June 2016,

Monday, 10:48

AM

USA 230 [call:0.9, finally:0.24, le-

bron:0.68, travel:0.87,

travels:0.5]

18

06 June 2016,

Monday, 10:54

AM

USA 105 [cav:0.82, get:0.98, gon:0.31,

lebron:0.53, sweep:0.63, to-

gether:0.21]

19

06 June 2016,

Monday, 12:12

PM

USA 71 [comment:1.0,

jdameanor:1.0, love:1.0,

post:1.0, see:1.0, share:1.0,

show:1.0, sorry:1.0, sup-

port:1.0, youtube:1.0]

Non-

event

06 June 2016,

Monday, 02:06

PM

CAN 104 [fdb:1.0, music:1.0, of-

ficial:1.0, ringtone:1.0,

video:1.0, ztro:1.0]

8

06 June 2016,

Monday, 02:12

PM

USA 148 [get:0.66, hack:0.99,

kylie:0.82, twitter:0.44]

20

06 June 2016,

Monday, 02:36

PM

USA 81 [fdb:1.0, music:1.0, of-

ficial:1.0, ringtone:1.0,

video:1.0, ztro:1.0]

8

07 June 2016,

Tuesday, 02:00

AM

USA 101 [join:0.83, latest:1.0,

open:0.57, opening:0.74,

read:0.5, see:0.83, team:0.75,

view:0.42]

Non-

event

94

A.2 Events detected by hybrid method

Table A.2: Events found by hybrid method

Date Country Number

of

Tweets

Common Words Ground

Truth

31 May 2016,

Tuesday, 10:54

AM

USA 465 [adam:0.63, dirty:0.82,

doin:0.33, draymond:0.69,

green:0.73, pick:0.23,

pull:0.28, series:0.32,

stay:1.0, ugly:0.37,

wait:0.23]

2

02 June 2016,

Thursday, 08:30

PM

USA 126 [cavalier:0.63, final:1.0,

lock:0.37, nba:1.0, take:1.0,

warrior:0.37, win:1.0]

10

03 June 2016,

Friday, 10:00

AM

USA 215 [john:1.0, legend:1.01,

light:0.25, nigga:0.24,

skin:0.5, take:0.5, tryna:0.5]

15

03 June 2016,

Friday, 10:18

AM

USA 119 [ankle:0.4, break:0.34,

curry:0.27, fall:0.38,

jab:0.98, make:0.26,

step:0.93, thompson:0.34]

6

04 June 2016,

Saturday, 01:18

PM

USA 277 [ali:0.98, dammit:1.0,

god:0.92, muhammad:0.87,

rip:0.81]

9

06 June 2016,

Monday, 09:54

AM

USA 116 [back:0.38, deck:0.5,

exactly:0.5, help:1.0,

kevin:0.98, love:0.99,

rush:0.5, soft:0.25]

11

95

96

APPENDIX B

APACHE CASSANDRA TABLES

B.1 Common Tables

Each method gets Twitter data and parse it before using. Therefore, "tweets" table is

used with all methods. The schema of the table is described below:

CREATE TABLE t w e e t s (

round b i g i n t ,

c o u n t r y t e x t ,

t w e e t t i m e t imes tamp ,

i d b i g i n t ,

r e t w e e t c o u n t b i g i n t ,

t w e e t t e x t ,

u s e r i d b i g i n t ,

PRIMARY KEY (round , c o u n t r y , t w e e t t i m e , i d)

)

B.2 Tables of Key-based Event Detection Method

There are 5 tables required for the uncommonly common algorithm. The first four of

them are required for both approaches, using direct and shuffle grouping(suspension).

The last table is only needed for the approach using direct grouping since the infor-

mation of block execution done for each bolt is needed.

• Tweets table: As mentioned above tweets are replicated for each method using

97

this table.

• Counts table: Counts table is used to hold the count of words for the each block.

Due to the tf-idf calculation, the count of the words in blocks are calculated

again and again during the project, it slows the computation to count the same

word many times. Therefore, we stored the counts of words with the round

information into COUNTS table when it is calculated for the first time.

CREATE TABLE c o u n t s (

round b i g i n t ,

word t e x t ,

c o u n t r y t e x t ,

c o u n t b i g i n t ,

t o t a l n u m o f w o r d s b i g i n t ,

PRIMARY KEY (round , word , c o u n t r y)

)

• Events table: At the end of the event detection flow, the events found by our

project are stored in the events table of Cassandra with event keyword, round

and country information. The increment rate between tf-idf values of the last

two rounds are also stored in the table.

CREATE TABLE e v e n t s (

round b i g i n t ,

c o u n t r y t e x t ,

word t e x t ,

i n c r e m e n t p e r c e n t double ,

PRIMARY KEY (round , c o u n t r y , word)

)

• Process times: This table is used for the analytics of methodologies. This bolt

stores the execution times of bolts for each tuple during blocks and process

times are created according to this table.

CREATE TABLE p r o c e s s t i m e s k e y b a s e d (

row i n t ,

98

column i n t ,

i d i n t ,

PRIMARY KEY (row , column)

) ;

• Processed table: Processed table holds the information of bolt tasks even they

finish executing the current block or not. Since the streaming of next block

starts after all the tasks finish their executions of the current block, this table is

needed.

CREATE TABLE . p r o c e s s e d t a s k s k e y b a s e d (

round b i g i n t ,

b o l t i d i n t ,

f i n i s h e d boolean ,

PRIMARY KEY (round , b o l t i d)

) ;

B.3 Tables of Clustering-based Event Detection Method

There are 5 tables required for the clustering algorithm:

• Tweets table: As mentioned above tweets are replicated for each method using

this table.

• Clusters table: This table holds all the active clusters during whole execution

time. Clustering algorithm can add new clusters, update them or remove if they

are inactive. Cluster map, number of tweets assigned to this cluster, last round

of update and some other fields occur in this table.

CREATE TABLE c l u s t e r s (

c o u n t r y t e x t ,

i d t imeuu id ,

c o s i n e v e c t o r map t e x t , double ,

c u r r e n t n u m t w e e t s i n t ,

99

l a s t r o u n d b i g i n t ,

p revnumtwee t s i n t ,

PRIMARY KEY (c o u n t r y , i d)

) ;

• Events table: At the end of each block clusters are reviewed and some of them

are marked as events. This table is responsible to store the events.

CREATE TABLE e v e n t c l u s t e r s (

round b i g i n t ,

c l u s t e r i d t imeuu id ,

c o s i n e v e c t o r map t e x t , double ,

c o u n t r y t e x t ,

i n c r e m e n t r a t e double ,

numtweet i n t ,

PRIMARY KEY (round , c l u s t e r i d)

) ;

• Process times: This table is used for the analytics of methodologies. This bolt

stores the execution times of bolts for each tuple during blocks and process

times are created according to this table.

CREATE TABLE p r o c e s s t i m e s c l u s t e r i n g (

row i n t ,

column i n t ,

i d i n t ,

PRIMARY KEY (row , column)

) ;

• Processed table: Processed table holds the information of bolt tasks even they

finish executing the current block or not. Since the streaming of next block

starts after all the tasks finish their executions of the current block, this table is

needed.

CREATE TABLE p r o c e s s e d t a s k s c l u s t e r i n g (

round b i g i n t ,

100

b o l t i d i n t ,

b o l t p r o c e s s e d b i g i n t ,

c o u n t r y t e x t ,

f i n i s h e d boolean ,

s p o u t s e n t b i g i n t ,

PRIMARY KEY (round , b o l t i d)

) ;

B.4 Tables of Hybrid Method

There are 7 tables required for the clustering algorithm:

• Tweets table: As mentioned above tweets are replicated for each method using

this table.

• Clusters table: This table holds all the active clusters during whole execution

time. Clustering algorithm can add new clusters, update them or remove if they

are inactive. Cluster map, number of tweets assigned to this cluster, last round

of update and some other fields occur in this table.

CREATE TABLE c l u s t e r s h y b r i d (

c o u n t r y t e x t ,

i d t imeuu id ,

c o s i n e v e c t o r map t e x t , double ,

c u r r e n t n u m t w e e t s i n t ,

l a s t r o u n d b i g i n t ,

p revnumtwee t s i n t ,

PRIMARY KEY (c o u n t r y , i d)

)

• Counts table: Counts table is used to hold the count of words for the each block.

Due to the tf-idf calculation, the count of the words in blocks are calculated

again and again during the project, it slows the computation to count the same

101

word many times. Therefore, we stored the counts of words with the round

information into COUTNS table when it is calculated for the first time.

CREATE TABLE c o u n t s h y b r i d (

round b i g i n t ,

word t e x t ,

c o u n t r y t e x t ,

c o u n t b i g i n t ,

t o t a l n u m o f w o r d s b i g i n t ,

PRIMARY KEY (round , word , c o u n t r y)

)

• Events table: At the end of each block clusters are reviewed and some of them

are marked as events. This table is responsible to store the events.

CREATE TABLE e v e n t s h y b r i d (

round b i g i n t ,

c l u s t e r i d t imeuu id ,

c o s i n e v e c t o r map t e x t , double ,

c o u n t r y t e x t ,

i n c r e m e n t r a t e double ,

numtweet i n t ,

PRIMARY KEY (round , c l u s t e r i d)

) ;

• Events keybased table:This table holds the event candidate keywords found by

tf-idf calculation. This table is used only for development.

CREATE TABLE e v e n t s k e y b a s e d h y b r i d (

round b i g i n t ,

c o u n t r y t e x t ,

word t e x t ,

i n c r e m e n t p e r c e n t double ,

PRIMARY KEY (round , c o u n t r y , word)

) ;

102

• Process times: This table is used for the analytics of methodologies. This bolt

stores the execution times of bolts for each tuple during blocks and process

times are created according to this table.

CREATE TABLE p r o c e s s t i m e s h y b r i d (

row i n t ,

column i n t ,

i d i n t ,

PRIMARY KEY (row , column)

) ;

• Processed table: Processed table holds the information of bolt tasks even they

finish executing the current block or not. Since the streaming of next block

starts after all the tasks finish their executions of the current block, this table is

needed.

CREATE TABLE p r o c e s s e d t a s k s h y b r i d (

round b i g i n t ,

b o l t i d i n t ,

f i n i s h e d boolean ,

PRIMARY KEY (round , b o l t i d)

) ;

103

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	introduction
	Overview
	Contributions
	Organization of Thesis

	related work
	event detection methods
	Keyword-based Event Detection Method
	Word Counts
	Word Weight Calculation
	Detecting Events Using TF-IDF

	Clustering-based event detection method
	Cluster formation
	Cosine Similarity of Tweets
	Detecting Events Using Clusters

	Hybrid method for event detection
	Tweet filtering
	Clustering
	Detecting Events Using Clusters

	Illustrative Example

	implementation
	Twitter API
	Apache Storm
	Keyword-based Event Detection Method
	User defined parameters
	Source Of Stream
	Word Counts
	Event Detector Bolt
	Event Compare Bolt

	Clustering-based event detection method
	User defined parameters
	Source Of Stream
	Clustering Bolts
	Event Detector Bolt

	Hybrid method for event detection
	User defined parameters
	Source Of Stream
	Word Counts
	Keyword-based Event Detector Bolt
	Clustering Bolts

	Geolocation
	Database

	experiments and results
	Setup
	Preprocessing
	Parameter Tuning and Validation
	Event Detection Accuracy and Performance
	Ground Truth Construction
	Accuracy Comparison
	Comparison of Events Detected by Keyword-based and Clustering-based Methods
	Comparison of Events Detected by Keyword-based and Hybrid Methods
	Comparison of Events Detected by Clustering and Hybrid Method
	Performance Comparison

	Discussion

	conclusion
	REFERENCES
	APPENDICES
	Events detected by clustering-based and hybrid methods
	Events detected by clustering-based methods
	Events detected by hybrid method

	Apache Cassandra Tables
	Common Tables
	Tables of Key-based Event Detection Method
	Tables of Clustering-based Event Detection Method
	Tables of Hybrid Method

