
GEOSPATIAL OBJECT RECOGNITION USING DEEP NETWORKS FOR
SATELLITE IMAGES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR BARUT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2018

Approval of the thesis:

GEOSPATIAL OBJECT RECOGNITION USING DEEP NETWORKS FOR
SATELLITE IMAGES

submitted by ONUR BARUT in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Eng. Dept., METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Selim Aksoy
Computer Eng. Dept., Bilkent Univ.

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Eng. Dept., METU

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Eng. Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ONUR BARUT

Signature :

iv

ABSTRACT

GEOSPATIAL OBJECT RECOGNITION USING DEEP NETWORKS FOR
SATELLITE IMAGES

Barut, Onur
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

May 2018, 102 pages

Deep learning paradigm has been drawing significant interest during the last decade
due to the recent developments in machine learning algorithms and improvements in
the computational hardware. Satellite image analysis is also an important scientific
area with many objectives, such as disaster and crisis management, forest cover, road
mapping, city planning, even military purposes. Spatial correlations of land cover or
geospatial objects between different images can be exploited by utilization of con-
volutional neural networks (CNN) for classification, segmentation, and detection in
remotely sensed images. Since the number of high resolution satellite images due
to new satellites around the Earth is increased, the visual data for training of such
networks is also more available compared to past. In this study, three main research
directions for satellite image analysis is examined and tested through simulations.
Land cover image scene classification of image patches is obtained by using con-
ventional CNNs. Next, the segmentation of natural scenes into different land cover
is obtained by deep networks that are capable of providing segment labels for every
pixel on the image. Finally, detection of geospatial objects on satellite images is ob-
tained by object detection techniques based on deep networks. For all these purposes,
a multispectral satellite image dataset is manually labeled for several natural scene
classes and human-made objects. Different architectures, training techniques and the
training parameters are examined through simulations in different datasets.

v

Keywords: Satellite remote sensing, raster data, deep learning, machine learning,
convolutional neural network, geospatial object classification

vi

ÖZ

UYDU GÖRÜNTÜLERİ İÇİN DERİN AĞLAR KULLANILARAK COĞRAFİ
NESNELERİN TANIMLANMASI

Barut, Onur
Yüksek Lisans, Elektrik ve Elektronik Mühendislii Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Mays 2018 , 102 sayfa

Derin öğrenme paradigması, son on yıl içinde yeni makine öğrenimi algoritmalarındaki
ve hesaplama donanımındaki son gelişmeler nedeniyle önemli bir ilgi çekmektedir.
Uydu görüntü analizi, felaket ve kriz yönetimi, orman örtüsü, yol haritası, şehir plan-
laması, hatta askeri amaçlar gibi birçok hedefi olan önemli bir bilimsel araştırma
alanıdır. Arazi örtüsü ya da farklı görüntüler arasındaki jeo-uzamsal nesnelerin me-
kânsal korelasyonları, insan yapımı yapılar ile arazi örtüsünün ve jeo-uzamsal nesne-
lerin tespiti ve sınıflandırılması için literatürde konvolüsyonel sinir ağlarının (CNN)
yaygın bir şekilde kullanılmasına olanak sağlamaktadır. Yörüngede birçok yeni uydu-
ların varlığından dolayı yüksek çözünürlüklü uydu görüntülerinin kullanılabilirliğindeki
artışa dikkat çekerek, bu tür ağların eğitiminde kullanılacak olan verilere geçmişe
kıyasla daha kolay ulaşılabilir. Bu çalışmada uydu görüntü analizi için üç ana araştırma
yönü incelenmiş ve simülasyonlarla test edilmiştir. Görüntü parçalarında arazi örtüsü
sınıflandırması, ilk olarak geleneksel CNN’ler kullanılarak elde edilir. Daha sonra,
doğal manzaraların farklı arazi örtüsüne ayrılması, görüntüdeki her piksel için seg-
ment etiketleri sağlayabilen derin ağlar tarafından elde edilir. Son olarak, uydu görün-
tüleri üzerindeki jeo uzamsal nesnelerin saptanması, derin ağlara dayanan geleneksel
nesne tespit teknikleri ile elde edilir. Tüm bu amaçlar için, çok bantlı bir uydu gö-
rüntü veri kümesi, çeşitli coğrafi ve insan yapımı nesneler için elle etiketlenir. Farklı
mimarilerin, eğitim tekniklerinin ve eğitim parametrelerinin performansa etkisi simü-

vii

lasyonlar aracılığıyla incelenmiştir.

Anahtar Kelimeler: Uydu uzaktan algılama, raster verileri, derin öğrenme, makine
öğrenme, evrişimli sinir ağları, coğrafi nesne sınıflandırması

viii

To my Fiancé and my family...

ix

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Prof. Dr. A. Aydın Alatan
for his precious suggestion and insistence for this study. He guided me to the right
direction during the study and relied on me as I would solve the difficulties. He
also provided considerable amount of labeled satellite imagery data to be used in this
thesis work as it would make this research more realistic and valuable.

I am also very much appreciated for the permission and support of ASELSAN Elek-
tronik Sanayi ve Ticaret A.Ş. and my supervisors in HAEMM department during this
study.

I would like to note here that I am grateful to Emre Can Kaya for his generous support
and help with his experience and knowledge in deep learning.

Finally, I would like to thank my dearest Tuğba Ceren for her constant and endless
support throughout the study and my family for their endeavour to raise me up this
way.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Scope and the organization of the thesis 4

2 LITERATURE OVERVIEW ON LAND USE AND GEOSPATIAL
OBJECT ANALYSIS . 7

2.1 Conventional Techniques for Land Use and Geospatial Ob-
ject Analysis . 7

2.1.1 Handcrafted Feature Extraction Methods 8

2.1.1.1 Color Histograms 9

xi

2.1.1.2 Scale Invariant Feature Transform (SIFT) 9

2.1.1.3 GISTs 10

2.1.1.4 Histogram of Oriented Gradients (HOGs) 10

2.1.1.5 Texture Descriptors 10

2.1.2 Unsupervised Feature Learning Methods 11

2.1.2.1 Principle Component Analysis (PCA)
based Features 11

2.1.2.2 K-means Clustering and Bag-of-Visual-
Words Representation 12

2.1.2.3 Features based on Sparse Coding . . . 12

2.1.2.4 Learned Unsupervised Features : Au-
toencoders 13

2.1.2.5 Brief Discussion on Feature Extrac-
tion Methods 13

2.2 Deep Networks on Land Use Analysis 13

2.2.1 Stacked autoencoder (SAE) 14

2.2.2 Convolutional Neural Network (CNN) 15

2.3 Related Works on Geospatial Object Analysis Using Deep
Networks . 16

3 FUNDAMENTALS OF DEEP NEURAL NETWORKS 19

3.1 Fundamental Deep Architectures 22

3.1.1 Deep Belief Networks (DBNs) 23

3.1.2 Stacked Autoencoders (SAEs) 25

3.1.3 Convolutional Neural Networks (CNNs) 27

xii

3.1.4 What makes CNN most attractive? 32

3.2 Training Convolutional Neural Networks (CNN) 33

3.2.1 Data augmentation 33

3.2.2 Preprocessing on images 34

3.2.3 Initialization of network weights 35

3.2.4 Hyperparameter selection 35

3.2.5 Regularization Methods 40

3.2.6 Transfer learning 42

3.2.7 Ensemble multiple networks 42

3.3 Popular CNN Architectures 43

3.3.1 LeNet-5 . 43

3.3.2 AlexNet . 44

3.3.3 VGGNet . 45

3.3.4 GoogLeNet . 46

3.3.5 ResNet . 47

3.3.6 FCN8s . 48

3.3.7 YOLO . 49

4 LAND USE ANALYSIS USING CNN IN REMOTE SENSING . . . 53

4.1 Image Scene Classification for Land Use Analysis 53

4.1.1 Proposed Classification Network 54

4.1.2 Experimental Results 54

xiii

4.1.2.1 Datasets for Classification Network Train-
ing 54

4.1.2.2 Experimental Setup 56

4.1.2.3 Experimental Results 60

4.2 Semantic Image Segmentation for Land Use 64

4.2.1 Proposed Segmentation Network 65

4.2.2 Experimental Results 66

4.2.2.1 Dataset Generation for Segmentation
Network 66

4.2.2.2 Experimental Setup 67

4.2.2.3 Results 67

5 GEOSPATIAL OBJECT ANALYSIS USING DEEP NETWORKS . . 79

5.1 Proposed Network . 79

5.2 Experiments and Results . 81

5.2.1 Dataset Generation for Object Detection 82

5.2.2 Experimental Setup 82

5.2.3 Experimental Results for Object Detection 83

6 CONCLUSIONS . 89

6.1 Summary . 89

6.2 Conclusion . 90

6.3 Future Works . 91

REFERENCES . 93

xiv

LIST OF TABLES

TABLES

Table 4.1 Tested architectures for the image scene classification network. The
characters ’c’, ’s’, ’fc’, and ’out’ stand for convolution, subsampling (pool-
ing), fully connected and output layer, respectively. The last ’out’ layer
is also a fully connected layer, but with softmax activation to compute
class probabilities for each. Input patch has the size 28x28 with 4 bands,
whereas the output labels are equal to 4, 6 and 2 for SAT-4, SAT-6, and
‘EkiliAlan‘ datasets, respectively . 54

Table 4.2 Proposed network parameters for batch size and learning rate 57

Table 4.3 Proposed network parameters for different dropout rates 57

Table 4.4 Proposed network parameters for additional fully connected layer
effect . 58

Table 4.5 Proposed network for mean-extract dataset experiment 58

Table 4.6 Proposed network parameters for different filter size and stride . . . 59

Table 4.7 Proposed network parameters for different depth of networks 59

Table 4.8 Proposed network parameters for different pooling types 59

Table 4.9 Proposed network parameters on fully convolutional layers instead
of fully connected layers . 60

Table 4.10 The results of proposed classification networks - M/E: mean extracted 61

Table 4.11 Most accurate proposed classification network architectures and re-
sults . 63

Table 4.12 Ekilialan proposed networks and results 63

Table 4.13 Tested architectures for semantic image segmentation network . . . 65

Table 4.14 Precision and Recall values of seg2248 dataset trained on reduced
FCN8s (VGG10) network from scratch 68

xv

Table 4.15 Precision and Recall values of seg2248 dataset trained on modified
FCN8s (VGG10 with 5x5 convolutional filters) network from scratch . . . 68

Table 4.16 Precision and Recall values of seg2248 dataset trained on modified
FCN8s (VGG13 with 5x5 convolutional filters) network from scratch . . . 69

Table 4.17 Precision and Recall values of seg2248 dataset fine-tuned ImageNet
pretrained FCN8s (no skip connection) network 70

Table 4.18 Precision and Recall values of seg2248 fine-tuned ImageNet pre-
trained FCN8s network . 70

Table 4.19 Confusion matrix for FCN8s image segmentation network trained
with seg2248 dataset from scratch . 71

Table 4.20 Precision and Recall values of all proposed networks 71

Table 5.1 Networks trained to detect Building and Aircraft Objects in Remote
Sensing Images. B is the number of color bands used as input 80

Table 5.2 Proposed smaller network trained to detect only Aircraft in Remote
Sensing Images . 81

Table 5.3 Training properties of YOLOv2 used in this study 84

Table 5.4 Results of the network trained with Aircraft-Urban dataset. The
network naming is (M)(N)(O)-(C)-(T): M is 3B/4B: num. of color band,
N is T/VT: tiny or verytiny YOLOv2, O is 7/13/19/23: output size, C is 2:
num. of class and T is the threshold of confidence 84

Table 5.5 Results of the network trained with Aircraft-Ship dataset and tested
only single class detection . 85

Table 5.6 Results of the networks for only Aircraft detection 85

Table 5.7 Single detection result of the network trained with Ship dataset . . . 86

xvi

LIST OF FIGURES

FIGURES

Figure 3.1 Widely used activation functions 20

Figure 3.2 A simple feed-forward multi-layer (artificial) neural network (NN) 20

Figure 3.3 A simple Deep Belief Network (DBN) structure, adapted from [1] . 24

Figure 3.4 An example of Stacked Autoencoder 25

Figure 3.5 An example of Convolutional Neural Network (LeNet-5) 27

Figure 3.6 2-dimensional convolution example with filter size 3x3 and stride
1, with zero padding . 28

Figure 3.7 Average pooling and max pooling operations with 2x2 filter and
stride 2 . 29

Figure 3.8 Fully connected layer . 30

Figure 3.9 Deconvolution operation example 31

Figure 3.10 Deconvolution illustrated with convolution operation 31

Figure 3.11 CNN exploits local correlation by using sparse representation and
parameter sharing principles . 32

Figure 3.12 Performance of DNN increases as the amount of training data in-
creases . 34

Figure 3.13 Loss vs Iteration plot looks very noisy for small number of batch size 37

Figure 3.14 The effect of learning rate on training loss of a deep network 38

Figure 3.15 An illustration of dropout regularization 41

Figure 3.16 LeNet-5 Network introduced by LeCun et al. in 1998 to recognize
digits in bank checks . 44

Figure 3.17 AlexNet architecture made breakthrough in ILSVRC competition
using deep convolutional network first time in 2012 45

xvii

Figure 3.18 VGG16 architecture achieved better performance in ILSVRC’14
with constant 3x3 filters and deeper structure 45

Figure 3.19 Inception module led GoogLeNet to become the most accurate in
ILSVRC’14 classification task . 46

Figure 3.20 GoogLeNet - the classification winner architecture in ILSVRC’14 . 47

Figure 3.21 Residual block of ResNet152 that placed first rank in all competi-
tion categories beating human performance in ILSVRC’15 and COCO’15 48

Figure 3.22 ResNet50 - 50 layer CNN introduced by He et al. in 2015 48

Figure 3.23 Fully Convolutional Network used for semantic image segmenta-
tion (FCN32s . 49

Figure 3.24 Detailed look at FCN8s with deconvolution layers 50

Figure 3.25 YOLO architecture proposed to detect PASCAL VOC objects . . . 50

Figure 3.26 Anchor Boxes allow multiple detection in a single cell by predict-
ing offset parameters from the center of ’responsible’ cell 52

Figure 4.1 SAT-4 and SAT-6 datasets sample patches of size 28x28x4 for each
class - barren land, trees, grassland, other for SAT-4, barren land, trees,
grassland, buildings, roads, water for SAT-6 55

Figure 4.2 Generated Ekilialan dataset sample patches of size 28x28x4 for
each class - cultivated land, other . 56

Figure 4.3 Network N110 for SAT-4 dataset on the top and N111 for SAT-6
dataset on the bottom with training loss, test loss and accuracy 64

Figure 4.4 Network N107 for Ekilialan dataset - training loss, test loss and
accuracy . 64

Figure 4.5 Sample data from generated segmentation dataset 67

Figure 4.6 Sample outputs. Left - VGG10 (3x3), Right - VGG10 (5x5) 72

Figure 4.7 Sample outputs. Left - VGG10 (5x5), Right - VGG13 (5x5) 73

Figure 4.8 Sample outputs. Left - VGG13 (5x5), Right - FCN8s without pool-
ing connections . 74

Figure 4.9 Sample outputs. Left - FCN8s without pooling connections, Right
- original FCN8s. Both networks are ImageNet pretrained. 75

xviii

Figure 4.10 Sample outputs. Left - original FCN8s with ImageNet pretrained
weights, Right - original FCN8s trained from scratch with seg2248 dataset 76

Figure 4.11 Sample output of FCN8s network fine-tuned with seg2248 dataset . 77

Figure 5.1 Sample training set images of classes ’aircraft’ on the left, ’build-
ing’ in the middle, and ’ship’ on the right column 83

Figure 5.2 Sample output images of 3BT19-2-.2 network, ’aircraft’ on the left
and ’building’ on the right . 87

Figure 5.3 Sample output images of 4BT23-2-.2 network, ’aircraft’ on the left
and ’ship’ on the right . 88

xix

LIST OF ABBREVIATIONS

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

BoVW Bag-of-Visual-Words

CNN Convolutinoal Neural Network

CRF Conditional Random Field

DL Deep Learning

DBN Deep Belief Network

DBM Deep Boltzmann Machines

DNN Deep Neural Network

FC Fully Connected

FCN Fully Convolutional Network

GEOBIA Geographic Object Based Image Analysis

GPU Graphical Processing Unit

HOG Histogram of Oriented Gradient

ILSVRC Imagenet Large Scale Visual Recognition Challenge

LR Learning Rate

LULC Land Use Land Cover

mAP mean Average Precision

ML Machine Learning

NIPS Neural Information Processing Systems

NIR Near Infra-Red

OBIA Object Based Image Analysis

PCA Principle Component Analysis

RGB Red Green Blue

RS Remote Sensing

SAE Stacked Autoencoder

SIFT Scale Invariant Feature Transform

xx

SSD Single Shot Detector

SURF Speed Up Robust Features

SVM Support Vector Machines

UAV Unmanned Air Vehicle

USB-BBR Unsupervised Score-Based Bouding Box Regression

VOC Visual Object Challenge

YOLO You Look Only Once

xxi

xxii

CHAPTER 1

INTRODUCTION

The rapid development in sensors, especially in camera and imaging technology re-

sults in huge amount of data produced every instant due to mobile devices, such as

smart phones. Processing this amount of data is troublesome using manpower; how-

ever, nowadays, the performance increase in computational hardware, such as Graph-

ical Processing Units (GPUs) assisted the vision researchers to understand, process

and derive meaningful information from vast amount of data by deep neural networks.

The breakthrough of deep neural networks on image classification problem became

very popular with the study of Krizhevsky et al. [2] in Neural Information Processing

Systems (NIPS) 2012 and success in International Large Scale Visual Recognition

Challenge (ILSVRC) 2012 ImageNet [3] competition. This performance jump led to

many other researchers to focus on deep neural networks in their own specific prob-

lems and deep learning is currently a quite hot topic in vision research; almost every

day a new scientific paper is published to improve the solutions to vision problems

by deep learning. On the other hand, the availability of the high quality sensors along

with the advancing aerospace and satellite industry enables the researchers to ob-

tain higher amount of remote sensing data with higher spectral and spatial resolution.

Thus, increasing quality and the number of remote sensing images let researchers

attack this problem and makes deep neural networks and deep learning possible for

remote sensing.

One of the tasks that deep learning in remote sensing trying to achieve is to generate

a fully automated system that can classify geospatial objects and land cover into sep-

arate classes such as airplane, barren land, building, cultivated field, forest, roadway,

1

runway, ship, storage tank, water etc. It is quite important to be able to classify land

use in order to monitor the constant changes on the Earth and manage urban devel-

opment. Utilization of machine learning techniques for this purpose is quite critical

and challenging due to the small number of remote sensing imagery that is available

with ground truth labels. Therefore, many computer vision scientists have proposed

number of different algorithms to extract information from remote sensing images

and significantly contributed to literature of the computer vision and remote sensing

field.

The research areas for satellite image analysis can be mainly categorized under three

major classes:

1. Scene classification of (rectangular-shaped) regions for land-use

2. Semantic segmentation of (arbitrarily-shaped) regions in terms of land-use

3. Detection of geospatial objects in satellite images (by bounding boxes)

Scene classification techniques simply takes image patches as input and try to classify

the whole patch into one of the predetermined classes depending the a priori training

data. If a rectangular input region contains more than one class of land use, the clas-

sifier is assumed to return the most dominant one. On the other hand, semantic seg-

mentation algorithms convert an input (satellite) image patch into arbitrarily shaped

regions into masks that denote land use labels for every pixel. In this scenario, this

resulting output mask has disjoint labels that are based on initial a priori training data.

Finally, detection of geospatial objects are achieved by estimating the coordinates of

the bounding boxes around the objects by the help of a pretraining network.

In this thesis, the above three research classes are all examined by a satellite image

data set with ground-truth information.

1.1 Motivation

Human has five different type of receptors on his sensory system to observe the

changes in his environment. These receptors are his tongue to taste, his nose to smell,

2

his skin to feel, his ear to hear, and his eyes to see. Any type of recognition that is

performed in the brain depends on the data collected by those sensory receptors. The

decision maker, the brain of the human, collects the data, processes it with its neurons

and makes decisions about the environment. Similarly, human-like robots which are

called as androids possesses sensors that pretend as the human receptors. In order to

illustrate this, a camera attached to a robot acts like the eye of the human. It takes the

light from the outside and generate an image accordingly. This image is converted

to a digital data and sent to the robots processor. This whole visual process, which

is usually referred as computer vision or machine vision, is one of main problems of

artificial intelligence.

Recent technological developments in imaging and satellite industry allowed to use

very high quality cameras on the satellites to observe the Earth for reconnaissance

purposes. This scientific field is denoted as remote sensing. Before application of

deep neural networks to vision problems, image processing and vision experts ap-

plied several different techniques and algorithms towards Earth observation problems.

Their earlier work for the classification of image scenes mainly based on handcrafted

features, such as color histograms, scale invariant feature transform (SIFT), GIST,

histogram of oriented gradients (HOG) and texture descriptors. The classification

success is quite dependent on the selected handcrafted features, and therefore on the

expert himself.

In the later studies, the researchers start using machine learning techniques to learn

better representations from training data. Unsupervised feature learning from unla-

beled data became more popular in order to replace the handcrafted features in remote

sensing images. By the help of such learned representations, a significant progress

is achieved in image analysis for remote sensing. Main methods used in this area in-

cludes principal component analysis (PCA), sparse coding and auto-encoders (AE).

Along with the advances in cameras to generate high resolution images, the proces-

sors and image processing algorithms also have improved. High computational speed

of hardware and the increasing number of satellite images make path to use deep

learning models in order to get better information from these high resolution images.

Unlike the unsupervised learning methods, deep learning based methods are able to

3

extract more powerful feature representations of raw input data using multiple lay-

ers. Since the success of the classification is very much related to the separability

of the extracted representations, these deeper neural networks allow researchers to

surpass the previous results which were obtained either using handcrafted features or

unsupervised learning features.

Deep learning is one of the subcategories of machine learning discipline. Artificial

neural networks try to represent a mathematical modeling of human neural system.

An artificial network mainly contains three layers: the first layer is called the input

layer. Second layer is called hidden layer, the third and the last one is called the

output layer. The number of hidden layers and the number of hidden neuron num-

bers are the design parameters. Deep networks are usually referred to the networks

with very huge number of hidden layers. Deep Boltzmann machines (DBMs), deep

belief networks (DBNs), stacked auto-encoders (SAEs) and convolutional neural net-

works (CNNs) are the most popular deep neural network architectures used in remote

sensing applications.

Based on the relevant literature, convolutional neural networks (CNNs) are known

to be the most powerful feature extractors for vision problems. Although the most

popular networks are designed and trained to recognize daily internet images, such

as ImageNet, Pascal VOC, MS COCO, it is shown through simulations that these

networks are also capable of recognizing geospatial objects and land cover in the

satellite images.

1.2 Scope and the organization of the thesis

The main goal of the thesis is to investigate the convolutional neural networks that are

popular and widely used in vision and machine learning community and apply those

networks to land use scene classification, semantic segmentation of land cover and

geospatial object detection problems of remote sensing images.

The image data set for each type of problem that is used in this thesis is generated

from a large scale satellite image. The images have a high spatial resolution with

0.46 meter per pixel and they contain 4 color bands, namely Red, Green, Blue and

4

Near-infrared (RGB-NIR). The ground truth information is provided by a area expert.

Since the labeling is handcrafted, it might contain minor positional and registration

errors and omission of some objects and regions.

The thesis is organized as follows: A detailed literature overview on land use land

cover and geospatial object analysis with both conventional techniques and deep

learning methods is presented in Chapter 2, whereas the theory of deep learning and

popular deep architectures are provided in Chapter 3. The experiments conducted on

scene classification and semantic segmentation of remote sensing images and their

results are given in Chapter 4. Chapter 5 contains the results of the experiments on

geospatial object detection in satellite images. In the last chapter, Chapter 6, the thesis

is concluded based on the simulations results.

5

6

CHAPTER 2

LITERATURE OVERVIEW ON LAND USE AND

GEOSPATIAL OBJECT ANALYSIS

Recently with the rapid advances in the deep learning and remote sensing data acqui-

sition technologies, numerous studies have been conducted to automatically analyze

the satellite imagery. This chapter aims to provide the related studies in the literature

during the last two decades. The methods used in the relevant literature of remote

sensing image analysis are presented in a chronological order and the evolution of

the image analysis methods for the scene classification, semantic segmentation and

object detection is reviewed through the following sections.

2.1 Conventional Techniques for Land Use and Geospatial Object Analysis

The necessity of the Earth observation and remote sensing imagery analysis for appli-

cations, such as Land Use Land Cover (LULC) classification [4, 5, 6, 7, 8, 9, 10, 11],

vegetarian mapping [12, 13], geographic image retrieval [14, 15], environment mon-

itoring, geospatial object detection [16, 17, 18], hazard detection [19, 20] and urban

planning goes back to 1970s. Given the fact that the remote sensing images had a

coarse spatial resolution in those years, the size of object of interest in such low res-

olution images were close to the pixel size; therefore most of the methods to analyze

earlier time remote sensing imagery were based on per-pixel analysis, or even sub-

pixel analysis [21, 22]. With the technological advances in the remote sensing area,

the spatial and spectral resolution of these images got better, which in turn resulted in

that the objects of interest started to be composed of multiple pixels. Thus, per-pixel

7

based image analysis methods failed to make a good classification. In this case, re-

searchers focused on the analysis of spatial patterns constructed by each pixel of the

object, instead of analyzing each pixel individually.

Based on the conclusion that the per-pixel image analysis generates unsatisfactory re-

sults in the finer remote sensing images, researchers came up with the idea called Ob-

ject Based Image Analysis (OBIA) [22] or Geographic Object Based Image Analysis

(GEOBIA) [23] to analyze higher spatial resolution images for the objects consisting

of several pixels in a spatial pattern [21]. Since object-level approaches are more ca-

pable to extract better representation of the image when compared to per-pixel meth-

ods, GEOBIA have become the most popular remote sensing image analysis method

for the next decade [21, 22, 23]. Even though these per-pixel and object level ap-

proaches showed significant success for some types of remote sensing tasks such as

land use, those approaches were incapable of extracting a semantic meaning from the

image. For example, even GEOBIA methods are unable to classify whether a patch

of a remote sensing image scene contains a runway or a roadway. Similarly, they are

not able to distinguish a scene if it is a dense residential or a rural residential. With

the recent developments in the machine learning techniques, researchers are now able

to make a semantic scene classification in remote sensing images, in other words,

label a patch of a remote sensing image scene with a specific semantic class such as

airplane, dense residential, rural residential, roadway, runway, etc.

Recently, numerous of studies have been conducted on remote sensing image analysis

and remarkable contributions are achieved in the literature. A number of feature

extraction methods have been developed and applied to the problems. Before the

application of deep learning techniques, handcrafted feature based methods [6, 8, 11,

14, 24, 25, 26, 27, 28] and unsupervised feature learning methods were widely used.

2.1.1 Handcrafted Feature Extraction Methods

Earlier works on image scene classification in remote sensing images mainly depend

on the handcrafted feature extraction [6, 8, 11, 14, 24, 25, 26, 27, 28]; hence the

expertise of the image analyst is utilized in remote sensing. Widely used feature

extraction methods in remote sensing image analysis are color histograms [25], scale

8

invariant feature transforms (SIFTs) [29], GISTs [30], histogram of oriented gradients

(HOGs) [31] and texture descriptors [32, 33].

2.1.1.1 Color Histograms

Color histogram [25] is a simple feature extractor compared to other handcrafted

feature extractors. In remote sensing image analysis, color histogram feature ex-

traction method is widely used especially in image scene classification of land use

[11, 14, 24, 25]. In [11], Yang et al. compared color histogram with other feature ex-

tracting methods for scene classification of 21 classes such as agricultural, airplane,

building, freeway, river, runway etc., while Dos Santos et al. used color histogram

for coffee crop and pasture parcel recognition in [14]. Since it is only related to the

color and independent of the spatial distribution, color histogram features are robust

to the orientation of the objects in the image. On the other hand, such a selection

also brings a disadvantage of misclassification between the classes with similar color.

Moreover, different illumination conditions and quantization errors occurring while

converting the sensor analog data to digital format cause color histogram feature to

become useless.

2.1.1.2 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) feature is extracted by taking the intensity

gradient around some identified keypoints in four steps, namely, 1) scale space ex-

trema searching, 2) sub-pixel keypoint refining, 3) dominant orientation assignment,

4) feature description. Moreover, as it is mostly utilized at sparse keypoints, there is

also a dense SIFT technique, which is computed in uniformly and densely sampled

local regions, as well as some other extensions, such as PCA-SIFT [34] and speed-up

robust features (SURFs) [35]. Similar to color histogram, SIFT features are invariant

to rotation. Moreover, as its name suggests, these extracted features are also invari-

ant to scale and illumination. Zhang et al. [36] applied DSIFT with SVM and CRF

classifiers to map rural residential areas.

9

2.1.1.3 GISTs

Using GIST [30], one can extract global representations from the spatial structure

of dominant scales and orientations of an image scene by calculating the statistics

of the outputs of local feature detectors in spatially distributed subregions. In order

to extract GIST representations, the images are first convoluted with a number of

steerable pyramid filters, which is followed by dividing the image into 4x4 grids

to calculate orientation histograms for each. Being similar with the SIFT feature

extraction, it is very simple to apply GIST and the results are quite effective, leading

GIST to be applied in several researches for image scene representation [37, 38]. Li

et al. combined GIST features with saliency features in [37] and used SVM classifier

to detect geospatial objects, such as ’airplanes’, ’boats’, and ’buildings’ in satellite

images, whereas Yin et al. [38] used GIST features to detect craters with random

forest classifier on Mars Orbiter Camera (MOC) database.

2.1.1.4 Histogram of Oriented Gradients (HOGs)

HOG features are shown to be successful for representation of the edge or local shape

information of the objects by computing the distribution of the gradient orientations

and intensities in spatially distributed subregions [31]. For image scene classification

and geospatial object detection tasks, it has been shown that HOG features are capable

to distinguish classes in several studies of Cheng et al. [6, 8, 28]. Moreover, some

modified versions for remote sensing problems are also exist as Zhang et al. [39]

proposed rotation invariant HOG, namely RIHOG, based airplane detection model

whereas Shi et al. [18] proposed Circle-Frequency combined HOG, denoted as CF-

HOG feature, to detect ships in high resolution satellite images.

2.1.1.5 Texture Descriptors

Several texture features, mainly local binary patterns [40, 41], gray level co-occurrence

matrix (GLCM) [32], and Gabor features [33] are widely used in the earlier remote

sensing image analysis studies [14, 26, 27]. Yang et al. [26] compared Gabor tex-

ture features with SIFT descriptors and [27] Huang et al. proposed a gray-level co-

10

occurance matrix textures to discriminate three different mangrove species using mul-

tispectral satellite images. These feature are mainly obtained by placing primitives in

local image subregions and analyzing the relative differences, which makes them use-

ful enough for image scene classification problems.

2.1.2 Unsupervised Feature Learning Methods

Although handcrafted features performs well for some specific tasks, they are very

hard to generalize and it is difficult to obtain a more global feature set to employ

for other vision analysis tasks. Hence, later studies in remote sensing image analy-

sis applied unsupervised feature learning method and significant progress has been

achieved in image classification [7, 9, 10, 42, 43]. Unsupervised features are learned

from either handcrafted features or directly from raw pixel values. Since these learned

features are better discriminators, the performance of the classifier is improved. Some

of the commonly used unsupervised learning techniques are principle component

analysis (PCA) [44], K-means clustering, sparse coding [45] and autoencoder [46].

2.1.2.1 Principle Component Analysis (PCA) based Features

PCA is a linear transformation operation that could be assumed as the first unsuper-

vised feature extraction method. As the name implies, the transformation matrix is

formed by orthogonal basis vectors which helps obtain the principle components of

the input data. The main goal is to obtain a new representation by preserving the

structure of the data [44]. In order to extend this idea, sparse PCA and PCANet algo-

rithms have also been developed. An informative feature selection algorithm based

on Sparse PCA is proposed in [42] for high resolution remote sensing image scene

classification. In order to obtain robust invariant features for image classification by

using PCA, multistage filter banks called as PCANet is proposed in [47]. However,

PCA based features are limited features, since the operation is a linear transforma-

tion. Hence, more powerful and nonlinear feature learning methods in order to obtain

more abstract representations have been developed.

11

2.1.2.2 K-means Clustering and Bag-of-Visual-Words Representation

The main aim of K-means clustering is to divide a set of data into K clusters such

that the within-cluster variance is minimum and between-cluster variance is maxi-

mum. First, the number of clusters, K, is randomly determined and the data set is

divided into K clusters and the data is assigned to the cluster whose centroid is the

closest. Then new centroid of each K cluster is computed and the data is assigned

to the closest cluster. This method is iterative until no data changes the belonging

cluster. K-means clustering is assumed to be an unsupervised learning method, be-

cause the data set do not contain any labeling information. Since this method is very

easy to apply, it has been widely used in the image scene classification problems to

learn strong unsupervised representations, especially with the Bag of Visual Words

(BoVW) based methods to extract visual dictionaries [48, 49, 50]. In Bag-of-Visual-

Words representation, a histogram of the indices of the cluster centers of any local

representation of the image describes the scene.

2.1.2.3 Features based on Sparse Coding

Sparse coding is an improved version of K-means clustering method to learn higher

level feature representations of the input data from unsupervised training samples.

Similar to K-means clustering, the input data can be represented as a linear combina-

tion of learned bases [45]. However, the extracted features, which are the coefficients

of the learned bases, are forced to be sparse; i.e., most of them are forced to be zero,

while only a few are allowed to be nonzero. This procedure simply consists of two

alternating steps: The first one is the determination of the bases, and the second one

is the estimation of the coefficients based on these bases.

Many sparse coding based methods have been applied for the scene classification of

remote sensing images [7, 9, 10, 51]. In [7], low-level features are represented as

sparse coded features. Multiple feature combination is obtained in [10] for satellite

image scene classification by using sparse coding method. In addition to those, the

authors in [9] proposed a method using multi-feature joint sparse coding with spatial

relation constraint for satellite images. However, this method is computationally quite

12

expensive, especially in large-scale images. Therefore, Wang et al. [52] proposed

locality constrained linear coding (LLC) method by the observation of the fact that

nonzero coefficients are usually happened to be close to each other such that the

input data can be reconstructed by using K-nearest neighbors among the bases, which

transforms the representation from sparsity to locality [24, 52]. Hence, the sparse

coded representations, i.e. the coefficients can be computed by solving a least-squares

problem.

2.1.2.4 Learned Unsupervised Features : Autoencoders

Autoencoder [46] is formed by a symmetrical neural network to learn an encoded,

i.e. compressed, feature representation of the input data as an unsupervised feature

learning method that is obtained by minimizing the reconstruction error of the en-

coded feature. The autoencoders have been successfully applied to land use scene

classification [15, 53, 43].

2.1.2.5 Brief Discussion on Feature Extraction Methods

Although the unsupervised feature learning methods succeeded a better performance

in land use classification tasks when compared to the handcrafted feature extraction

methods, these features still have the lack of semantic information due to absence

of labels in the data during the unsupervised learning. In order to achieve a better

classification result, one requires more powerful and discriminative features that can

be extracted by using supervised deep learning methods.Such features are learned to

improve the classification performances, on contrary to all aforementioned techniques

in this chapter which do not have such a capability.

2.2 Deep Networks on Land Use Analysis

In the recent literature, the most significant classification results are mostly achieved

by the use of supervised deep learning methods. In 2006, deep learning took a sig-

nificant step by the works of Hinton and Salakhutdinov in [46]. Since then, many

13

of the researchers applied deep feature extraction techniques instead of using hand-

crafted features in many applications including remote sensing image classification

[5, 24, 54, 55, 56, 57, 58, 59, 60, 61].

Obtaining powerful representations of the data with the use of handcrafted feature ex-

traction methods requires domain expertise and significant engineering effort. On the

other hand, deep learning method can extract more discriminative and abstract fea-

tures directly from raw input data via multi-layer architecture of the network. There-

fore, deep learning methods are gaining more attention from the researches every

other day.

A number of deep learning methods exists and are being developed for many appli-

cations including remote sensing image analysis. Some of the popular methods are

deep belief networks (DBNs) [62], deep Boltzmann machines (DBMs) [63], stacked

autoencoders (SAEs) [64] and convolutional neural networks (CNNs) [2, 65, 66, 67].

The most widely used networks in remote sensing image analysis are SAEs and

CNNs.

2.2.1 Stacked autoencoder (SAE)

Stacked autoencoder (SAE) [64] is an unsupervised learning method that consists of

multiple autoencoders as hidden layers that are trained mostly using greedy layer-wise

training [68] and has been used in remote sensing scene classification and semantic

image segmentation tasks successfully [4, 43]. To illustrate this, only the first layer

is trained using input and its reconstruction at the first step. Then only the second

layer is trained using the first layer as input and reconstruction of the first layer as

output. This process is applied for all hidden layers. At the last step, a fine-tuning is

performed by training the whole network, but with a smaller learning rate. Moreover,

SAEs are proven to be capable of extracting more powerful representations in [4, 43]

when compared to a single layer autoencoder. This result is possible, since each

hidden layer uses its previous layer as input, which results in obtaining higher level

of abstraction at the last layer.

14

2.2.2 Convolutional Neural Network (CNN)

CNN is a supervised deep learning method that is widely used for image classification

and have proven to output remarkable results. AlexNet proposed by Krizhevsky et al.

in [2] succeeded an impressive amount of an increase in the ImageNet classification

task. Similar to AlexNet, many other convolutional neural networks are proposed

including VGGNet [65], GoogLeNet [66], SPPNet [69] and ResNet [67]. A CNN is

typically formed by a 3 dimensional input layer, convolutional layers, pooling layers,

normalization layers, fully connected layers and an output layer. CNN is a powerful

feature extractor, since it takes the advantage of the properties, such as local connec-

tions, shared weights, pooling and the use of many layers [70].

Following the success of AlexNet, learning representations using CNNs became very

popular and many solutions are proposed using CNNs in different image analysis

problems, including remote sensing applications, such as land use scene classifica-

tion [24, 54, 55, 56, 57, 58, 59, 60, 61], land cover segmentation [4, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81]. As a prominent example, Castelluccio et al. [60] and

Nogueira et al. [61] examined the use of CNN in remote sensing image scene classi-

fication by first training the network from scratch, then fine-tuning with the ImageNet

trained weights. Moreover, the last layer of the CNN is also used as extracted fea-

ture vector for an image and these features are used in different classifiers, such as

Support Vector Machines (SVMs). It is shown that using pretrained weights and fine-

tuning with new data resulted in being the best classification method, especially when

dealing with limited small-scale datasets. On the other hand, Penatti et al. [24] used

UC Merced Land Use (UCML) dataset and Brazilian Coffee dataset to compare tra-

ditional methods with deep networks. Sevo and Avramovic [82] applied GoogLeNet

on UCML classification dataset for land use scene classification. Basu et al. [83] pro-

posed SAT-4 and SAT-6 datasets with 28x28x4 size and compared DBN, SAE, LeNet-

5 and their proposed DeepSat framework for barren land, buildings, grassland, roads,

trees, waterway, and other. Zhong et al. [84] also used SAT-4 and SAT-6 and proposed

SatCNN framework as classification network using Agile CNN and achieved 99.65%

for SAT-4 and 99.54% for SAT-6. On the other hand, Sherrah [73] applied Fully Con-

volutional Network (FCN) with and without downsampling during pooling on ISPRS

15

Vaihingen dataset which has 5 classes as impervious surface, building, low vegeta-

tion, tree, and car. Audebert et al. [75] applied SegNet with multi-kernel ensemble

and composite data fusion methods on ISPRS Vaihingen segmentation dataset. Kaiser

et al. [78] implemented a variant of FCN on several datasets. Maggiori et al. [77]

used two-scale FCN with Pleiades dataset.

2.3 Related Works on Geospatial Object Analysis Using Deep Networks

Although object-based image analysis methods showed an important increase in satel-

lite images, deep learning based methods have attracted many researchers to focus

on remote sense problems after the success achieved by a convolutional network,

namely AlexNet proposed by Krizhevsky et al. [2]. Initially, for object detection

tasks, region-based convolutional neural networks are proposed [85]. In those net-

works, one network is trained to propose candidate regions, and another network is

trained and used to detect targets in the proposed regions. One implementation of

region-based method to detect aircraft is developed by Han et al. [86]. Igor et al.

[82] implemented a GoogLeNet based two-stage network in UCML dataset using

image scenes instead of bounding boxes. A similar work performed by Yamamato

and Kazama [87] to detect image scenes containing ships in satellite images by VGG

based convolutional neural networks. Long et al. [88] proposed a two-stage unsuper-

vised score-based bounding box regression (USB-BBR) method for object detection,

while Xu et al. [89] utilized deformable ConvNets based on Region-based Fully Con-

volutional Networks (R-FCN) in aerial image object detection.

On the other hand, end-to-end training networks are also developed to detect objects

in a single network. Such networks are designed and utilized for non-aerial images.

YOLO network [90] is a single stage convolutional neural network with several hid-

den layers. The network divides the input image into 7x7 cells, and make prediction

for each cell. Radovic et al. [91] used YOLO network to detect aircraft in UAV im-

ages, whereas Carlet and Abayowa [92] compared the performances of both Faster

R-CNN and YOLO on vehicle detection in aerial imagery. An improved version of

YOLO, also called YOLOv2 or YOLO9000 [93], uses fully convolutional layers (in-

stead of fully connected layers) before the output layer and applies 5 anchor boxes for

16

each cell to make a prediction for the bounding boxes. Another single shot method,

namely Single Shot Detector [94] (SSD), similarly uses several grid cells with differ-

ent sizes such as 4x4 or 8x8, where the larger boxes predict the images with greater

size and narrower boxes predict the smaller size images. Chen et al. [95] applied

a modified version of SSD network to detect aircrafts for satellite images. Tang et

al. [96] modified SSD to obtain oriented bounding boxes around vehicles in aerial

images.

Since the processing speed of end-to-end training methods are much faster than region-

proposal methods, in our study we focused on modified versions of YOLOv2 network

to detect geospatial objects from satellite images in a preceding chapter.

17

18

CHAPTER 3

FUNDAMENTALS OF DEEP NEURAL NETWORKS

Machine Learning, which is a branch of Artificial Intelligence, has been widely used

in various computer vision problems to model complex tasks such as scene classi-

fication object recognition. In the past the problems were modeled by hand in the

computers. However with machine learning, the solutions of many difficult problems

can be improved by replacing traditional handcrafted algorithms with a learning al-

gorithm. As the availability of the data increases each day with the help of advanced

sensor technology, machine learning is getting more popular and practical for espe-

cially computer vision problems.

Artificial Neural Networks (ANNs), a popular type of machine learning, are inspired

from the biological neurons to model input-output relationship. As in the biologi-

cal neurons, an artificial neuron takes number of inputs, evaluate them as a matrix

multiplication, and output a single value with an activation function.

y = f(wTx + b) (3.1)

where y is the output, f(.) is the activation function, w is weight vector and x is

the input vector. b term is the bias parameter which adds non-linearity to the model

before the activation. Typical non-linear activation functions are given in Figure 3.1.

A neural network is formed by using multiple layers consisting multiple neurons be-

tween input and output layers. Layers between input and output layers are called

hidden layers. In a feed-forward neural network, each neuron in hidden layer collects

signals from the neurons in the previous layers and generates an output according to

19

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

σ(x) = 1 / (1 + e
−x

)

tanh(x) = [2 / (1 + e
−2x

)] − 1

ReLU(x) = x if x > 0; otherwise ReLU(x) = 0

Leaky ReLU(x) = x if x > 0; otherwise Leaky ReLU(x) = a.x where "a" is a small number

Figure 3.1: Widely used activation functions

the activation function. Fully connected neural network consists of the neurons in

each layer connected both to all of the previous layer neurons and the next layer neu-

rons. A simple feed-forward fully connected multi-layer neural network is illustrated

in Figure 3.2.

Figure 3.2: A simple feed-forward multi-layer (artificial) neural network (NN)

In a fully connected feed-forward neural network, the input layer takes the data as

input and propagates to the next layer. The hidden layers are where the extensive

computations take place in a neural network. The last layer, which is the output layer,

extracts the high-level learned representations, or makes classification predictions,

depending on the purpose. It is shown in [97] that a neural network with at least one

hidden layer can be constructed such that it can compute almost any function.

20

Neural networks take the input, make some non-linear operations with the weights

and output the values in the output layer. Since the operations are non-linear, it is

not possible to obtain an analytic model for a network to find the optimum weights.

Therefore, in order to train the network to perform a specific task, for example, clas-

sification, the weights, i.e. the connection weights of the neurons must be trained.

This learning process can be achieved by defining a loss function of the output layer

and minimize the loss function with respect to the connection weights. A typical

loss function that is widely used in machine learning algorithms is mean squared loss

function as shown in the equation 3.2.

loss =
N∑
i=1

(ŷi − yi)
2 (3.2)

The The back-propagation algorithm [98, 99] is a very effective way of training

the network weights in an iterative manner. Many optimization techniques such as

Stochastic Gradient Descend [100], Momentum Optimizer [101], Adam Optimizer

[102] exists in the literature. The basic idea is that the loss value calculated at the

output layer is minimized with the backward propagation of the gradients towards the

input layer. To explain in detail, the weights of the network is initialized randomly

and an input is fed to the network. After the computations in the hidden layers, the

output layer makes a prediction. This output is compared with the desired output in

a loss function. The loss value is used to compute the gradient at the output with a

chosen optimization method. At last, the gradient at the output is backward propa-

gated through the network towards the input by using chain rule of derivatives and

the connection weights are updated according to the learning rate. Learning rate is

a small number that determines what portion of the gradient should be used for the

weight update. A very small learning rate might cause the network train very slowly,

even diminish the update, while relatively large learning rate would cause the network

get stuck in the local minima, or even cause to diverge.

Learning process can be explained under three categories. The first one is the online

learning. A single input data is fed to network and weight update is done after each

input in online learning. Although this is a very fast and computationally low cost

method, zig-zag movement of loss value can be observed due to the lack of predicting

21

the global gradient with a single input. The second one is full batch learning, where

the gradients are computed and the network is updated after the whole dataset is fed to

the network. Given the advantage of having a better prediction of global gradient with

this method, the computation burden is very heavy, even impossible with large-scale

input size and dataset. Hence, there is the third method which is called as mini-batch

learning. In this method, after a small portion of the dataset is fed to the network, the

gradients are computed and the network is updated.

Deep neural networks basically consists of many hidden layers between input and

output layer. Training many layer network is called deep learning. As the depth

of the network increases, higher-level representations can be extracted. However,

the increasing depth may cause the gradients to vanish as they propagate towards the

previous layers. Also, the number of samples in the training set should be significantly

large to train very deep networks Moreover, the computational cost could be too high

for very deep networks such that training the network would take several months,

which makes very deep networks unpractical.

Recent advances in GPU technology and increasing number of dataset available makes

deep learning practical and many researchers have been focusing to replace the tradi-

tional feature extraction methods using deep neural networks in several applications.

In [2] it is shown that the first layers of deep networks extract feature that are com-

puted by hand in earlier works to detect edges and blobs in an image. Hence, deep

networks extract basic features in the earlier layers and more abstract and discrimina-

tive features can be learned in the deeper layers of the networks.

3.1 Fundamental Deep Architectures

Recent studies on audio recognition [103], natural language processing [104] and

computer vision fields [2] outperformed the traditional methods with use of deep

architectures. The idea behind is the imitation of deep mammal brain perception

system such that the received input is hierarchically processed in the different parts

of the system. For example in the visual system, multiple levels of abstractions are

detected in [105].

22

So far, many researchers proposed number of deep architectures such as Deep Belief

Networks (DBNs) [62], Stacked Autoencoders (SAEs) [43] and Convolutional Neu-

ral Networks (CNNs) [99]. DBNs are shown to achieved a great success when they

are trained layer-wise using Restricted Boltzmann Machines (RBMs) [106]. Later,

Sparse SAEs and denoising SAEs were developed to learn high level representations.

In addition to those, the most popular architecture among the computer vision re-

searchers that is still widely used to achieve incredible results is proposed by LeCun

et al. in [99] and referred as Convolutional Neural Network (CNN). Nowadays CNN

based methods outperform almost all of the traditional methods in several computer

vision tasks such as image scene classification and object recognition since CNNs

are very effective and powerful high level feature extractors when they are trained

properly. More detailed information about these deep networks can be found in the

following subsections.

3.1.1 Deep Belief Networks (DBNs)

Several stacked RBMs that are trained layer-wise are used while designing a deep

belief network as can be seen in Figure 3.3. An RBM consists of two layers with

visible layer and hidden layer. Input is fed in the visible layer and abstract features

are learned in the hidden layer by minimizing the energy function given by

E(v, h : θ) = −
N∑
i=1

bivi −
M∑
j=1

ajhj −
N∑
i=1

M∑
j=1

wijvihj (3.3)

where θ = {wij , aj, bi}, wij is the weight between it
h visible unit vi and jt

h hidden

unit hj , N is the number of visible units, M is the number of hidden units and aj and

bi terms are the biases of hidden unit hj and visible unit vi, respectively.

RBM tries to reconstruct the input vector via hidden units and the weights by mini-

mizing the energy function with the predicted probabilities of the training vector. The

conditional distributions of input vector v and hidden units h are given by the logistic

function

f(x) =
1

1 + e−x (3.4)

23

Figure 3.3: A simple Deep Belief Network (DBN) structure, adapted from [1]

p(vi = 1|h) = f(
M∑
j=1

wijhj + bj) (3.5)

p(hj = 1|v) = f(
N∑
i=1

wijvi + ai) (3.6)

The input vector is reconstructed after the hidden units are determined with the prob-

ability of each unit equals to 1 as in Equation 3.5. Then, the hidden units are updated

to obtain a better reconstruction. The weights are learned by contrastive divergence

(CD) method.

In DBNs, the first two layers are trained as an RBM. Then, the next RBM is trained

using the hidden layer of the first layer as visible layer. This process, which is called

layer-wise training, is followed until the last RBM is trained. At the last step, a

fine-tuning supervised training is applied with limited number of labeled data. It is

shown in [107] and [108] that DBNs used in remote sensing classification problems

outperforms the classifiers such as support vector machines (SVMs) and conventional

feature dimension reduction methods such as principle component analysis (PCA).

Moreover, DBN-based methods have been developed successfully in [109] for object

recognition and in [110] for scene classification in remote sensing images.

24

3.1.2 Stacked Autoencoders (SAEs)

Another unsupervised learning method in deep learning is to use autoencoders (AE)

adjacent to each other in order to obtain a deep structure. An AE is a neural network

that looks similar to Restricted Boltzmann Machines however works in a different

way such that an AE tries to minimize the reconstruction error of the input in a de-

terministic way while an RBM structure predicts the joint distribution of visible and

hidden layer. Stacked AEs consist of odd number of hidden layers such that the struc-

ture is symmetric, i.e. the number of encoding layers are equal to the number of

decoding layers as shown in Figure 3.4.

Figure 3.4: An example of Stacked Autoencoder

Like in the DBNs, the feature extracting weights of SAEs are learned using layer-

wise training method in an unsupervised manner. The extracted features of the input

is encoded in the "code" layer, which is in the center of the symmetry. In the encoding

part, N-dimensional input vector is transformed to K-dimensional feature vector using

a non-linear function as shown in Equation 3.7

zi = f(W1xi + b1) (3.7)

where zi is the K-dimensional encoded feature of N-dimensional sample xi in the

training set, b1 is the K-dimensional bias vector, W1 is KxN encoder weight matrix,

25

and f(.) is usually a sigmoid function as given in Equation 3.4.

In the decoding part, a similar procedure is followed to reconstruct the input with the

Equation given in 3.8

x′
i = W T

2 zi + b2 (3.8)

where x′
i is the N-dimensional reconstructed data, b2 is the reconstruction bias vector,

and W2 is KxN decoder weight matrix.

Weight parameters of the AE is learned by minimizing the loss function given in

Equation 3.9 below

J(X,X ′) = 0.5(
M∑
i=1

||x′
i − xi||2 + λ||W ||2) (3.9)

where the first term is the reconstruction error, the latter term is called "regularization

term", X is the input data, W is weight matrix, and X ′ is the reconstructed version of

the input.

In order to have a sparse AE, let ρ̂ = 1
M

∑M
i=1[zi] be defined as the average activation

of z averaged over the training set. Enforcing ρ̂ = ρ where ρ is the sparsity parameter

very close to zero, a sparsity constraint for each neuron ρ̂ in the encoding layer can

be satisfied. Hence, adding this sparsity term to the loss function gives

J(X,X ′) + β
K∑
j=1

KL(ρ||ρ̂) (3.10)

where β is the sparsity penalty parameter, K is the dimension of feature vector, and

KL(.) is the Kullback-Leibler divergence given by

KL(ρ||ρ̂) = ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ

1− ρ̂
(3.11)

In remote sensing image analysis, SAEs are mostly used [111, 112] as well as single

AE as feature extractor [15].

26

3.1.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are first proposed in the late 1990s and the

most popular of the time was applied to recognize handwritten digits in document by

Y. LeCun et al [99]. The proposed network was called as LeNet-5 and given in Figure

3.5

Figure 3.5: An example of Convolutional Neural Network (LeNet-5)

The main difference of a CNN when compared to fully connected neural network is

that CNN architecture is designed to receive 2D or 3D volume of the image as input

to the network, whereas in fully connected neural network receives the input as 1D

feature vector. By keeping the shape of the input image, spatially-local correlated

information of the input image can be exploit by CNN using local connectivity with

weight sharing. This also reduces the number of weights and enables to train a CNN

with less amount of training data that is required to train a fully connected multi-

layer neural network. A typical CNN is composed of three different layer types: 1)

convolutional layer, 2) pooling layer, 3) fully connected (dense connection) layer.

Convolutional layer

The term convolutional is inspired from the convolution operator in mathematics,

which is a point-wise integration operation between two functions. A convolutional

layer contains many feature maps which are the results of 2D convolution operations

of a convolution kernel, or filter, or sometimes called receptive field with the input

map. Each receptive field is convolved with the input map to produce a feature map.

An activation function is followed by each convolution layer to add non-linearity to

27

the model. In CNNs the most common activation function that is successfully used in

many computer vision tasks is a rectified linear unit (ReLU).

Let W be the receptive field of size c x c x k to be used in a convolutional layer where

c is the receptive field size. Assuming that the X be the input map of size m x m x k

where m is the number of rows and columns and k is the number of channels of the

image, p is the number of padding, s is the number of stride Y is the output feature

map of size (m−c+2p
s

+1)x(m−c+2p
s

+1) can be obtained by using the 2D convolutional

operation as given in Equation 3.12.

Yj = f(Wj ∗ X + bj) (3.12)

where j is the number of filters, i.e. the number of desired feature maps, ∗ operation is

2D convolution, f(.) is the non-linear activation function, and bj is the bias parameter.

An illustration of 2D convolution is provided in Figure 3.6

Figure 3.6: 2-dimensional convolution example with filter size 3x3 and stride 1, with

zero padding

Hierarchical feature learning property of CNN is obtained by using multiple convolu-

tional layers. The first layer filters learn to extract simple edges, whereas the second

layer filters learn more complex features composed of basic shapes of edged. By

going deeper in the network, more abstract and high-level features can be learned.

Pooling layer

This layer is another main difference of a CNN from other neural network archi-

tectures which basically applies a down-sampling operation over the feature map. By

28

choosing a window size nxn and stride number s, a spatial dimension reduction of the

feature map can be applied by pooling operation by preserving the most of the spatial

information. Moreover, pooling operation relieves the memory burden on the com-

putation hardware, which allows to allocate that free memory to increase the depth of

the network. Another advantage of pooling is the resultant feature map is more robust

to transnational variance and noisy data.

There are two types of pooling operations which are widely used in deep networks.

The first one is average pooling, which basically takes the average of the feature map

underlying the mapping window. It should be noted that this operation may yield

a suppressed feature map when used with tanh activation function as positive and

negative features might cancel each other. The other widely used pooling type is max

pooling, where the maximum of the feature map overlapped with pooling window is

calculated. Max pooling is more likely to overfit the network, even though it does not

have the problems of average pooling. However, this disadvantage of max pooling

operation can be avoided when combined with other kind of regularization methods.

Figure 3.7 shows a sample use of average pooling and max pooling layer.

Figure 3.7: Average pooling and max pooling operations with 2x2 filter and stride 2

Fully connected layer

Fully connected (FC) layers are placed just before the output layer of CNN, where

they act as regular neural network. As the name suggests, all of the neurons in FC

layer is connected to all of the neurons in the previous layer. The last FC layer behaves

29

as the classifier, whereas the previous FC layers tries to extract some interesting rela-

tionships that convolution layer cannot capture due to local connectivity and weight

sharing characteristics of receptive fields in convolution layers.

Figure 3.8: Fully connected layer

Since all neurons are connected to each other between layers in FC layer as in Figure

3.8, there exists so many number of trainable parameters. The feature map size of the

last layer before FC layer should be down-sampled enough in order to have reasonable

number of connections to train FC layers practically. This requirement also makes use

of the pooling layers where the feature maps dimensions are reduced.

Fully convolutional layer

Fully connected layers have fixed number of weights that does not apply when the

input size is changed. To be more precise, a fully connected layer has NxK number

of weights where N is the input feature vector dimension and K is the output vector.

However if input vector dimension is changed from N to M , the same FC layer is

not applicable since NxK ̸= MxK. This disadvantage of FC layer can be overcome

by using K number of 1x1xN convolutional filters with stride 1 because convolution

layers can accept any size of input map. This approach is widely used in semantic

image segmentation problems and called as Fully Convolutional Network since the

network does not include any FC layer.

30

Deconvolutional layer

In segmentation networks, every single pixel needs to be classified. Since CNN down-

samples the input due to the presence of pooling layers, a pixel-wise classification is

not possible directly on the output of an ordinary CNN. Therefore, deconvolutional

layer plays a crucial role in semantic image segmentation networks because it is used

to upsample the downsampled output classification map of a CNN to have the output

map size equal to input image size as shown in Figure 3.9.

Figure 3.9: Deconvolution operation example

A simple resizing operation is an option to upscale the resolution of an output map.

However, it is not as effective as a trainable upsampling convolutional layer. Decon-

volution operation can also be considered as transpose of a convolution operation, i.e.

the output of a convolution becomes the input of the deconvolution and the input of a

convolution becomes output of the deconvolution.

Figure 3.10: Deconvolution illustrated with convolution operation

31

3.1.4 What makes CNN most attractive?

The main motivation behind the existence of CNNs in deep learning applications is to

point out number of limitations that traditional neural networks are exposed in appli-

cations such as image classification. Old-fashioned fully-connected neural networks

simply cannot scale well because of their huge number of connections. CNNs con-

tribute with some brilliant ideas to improve the efficiency of deep networks. The two

important fundamental principles leveraged by CNNs are 1) Sparse Representation

and 2) Parameter sharing.

Figure 3.11: CNN exploits local correlation by using sparse representation and pa-

rameter sharing principles

Sparse Representation

Assuming an image classification problem that involves the analysis of large pictures

of millions of pixels, traditional neural network models the information using ma-

trix multiplication operations of every single input pixel and every single parameter,

resulting in tens of billions of computations where CNNs are based on convolution

operations between input data and a convolutional filter. By doing so, it turns out

that the convolutional filter parameters are significantly less than the input data. This

32

operation of CNN simplifies the number of computations required to train the model

or to make predictions.

Parameter Sharing

Another important property of CNNs is the parameter sharing. Conceptually, param-

eter sharing simply means that CNNs use the same filter across every position of the

input data which will allow the model to learn a single set of weights once, resulting

in less memory use compared to traditional models.

3.2 Training Convolutional Neural Networks (CNN)

Deep Neural Networks, especially Convolutional Neural Networks (CNN) are highly

non-linear complex mathematical models that can extract high level representations

of an input image data. CNNs proved incredible state-of-the-art results on many

computer vision tasks such as image scene classification, semantic segmentation and

object detection in many domains including remote sensing image analysis. In this

section, training a CNN is described to obtain accurate results by getting most of the

CNN.

3.2.1 Data augmentation

Since deep networks are consisted of huge number of weights to map input data to

output, again a huge number of input data is required for the task. As can be seen

in Figure 3.12, bigger amount of data increases the performance of deep network,

whereas the traditional algorithms saturate with the performance for a bigger amount

of data.

Finding labeled remote sensing dataset is not very easy due to the economical costs

and commercial restrictions. Therefore, the number of data in the training set must be

increased in order to train a CNN. Increasing the number of data in training dataset is

called as Data Augmentation. Data augmentation is basically a process of increasing

the number of training dataset with some operations such as rotating the input image,

33

Figure 3.12: Performance of DNN increases as the amount of training data increases

flipping horizontally and vertically, jittering the colors of the image, randomly crop-

ping the image, random zooming and re-sizing etc. To illustrate the process, assume

the training image set of a remote sensing scene classification problem has 200 im-

ages for 2 different classes, say 100 images belonging to class 1, sea, and other 100

images belonging to class 2, which is tree. Simply by just having 4 times 90 degree

rotations 4 x 200 = 800 images can be obtained. If horizontal and vertical flipping

applied to the new dataset, 4 x 800 = 3200 image can be obtained in the training set.

Starting from 200 data, it is certain that better results can be obtained by combining

original 200 data with generated 3000 data using data augmentation technique.

3.2.2 Preprocessing on images

The optimized Deep Neural Networks for a given tasks usually have weights of very

small numbers. The input images of a CNN usually has pixel values in an interval

of [0, 255], which are relatively large numbers. In order to boost the performance of

the network, normalization and zero-centering of the training dataset can be applied.

Zero-centering can be done by extracting the mean value of the training set from each

images, and normalization can be done by divining each input data to the standard

deviation of the training set so that the pixel values of training set is mapped between

[−1, 1].

34

3.2.3 Initialization of network weights

Before training a CNN, some values should be assign to the weights of the network

to make loss calculation at the output layer.

By intuition, it can be considered that all the weights are initialized with zero. How-

ever, if each neuron outputs the same value, then the same gradients will flow back-

ward through all the neurons during backpropagation, which will cause a same amount

of update for each of the neurons. This initialization will not break the zero-symmetry

of the network, therefore will fail.

One might think of initializing the network weights randomly, which would be a good

idea. The better one would be that the network weights should be initialized with

samples drawn from zero-mean unity variance Gaussian distribution, scaled with a

small value, say 0.001. Since there will be no symmetry as in all-zero initialization,

each neuron will get a different amount of update during the gradient flow and the

network will eventually be trained to reach the optimum value.

When going deeper in detail with the above initialization, it can be realized as a

problem that the variance of the output distribution of a randomly initialized neuron

is getting higher with the increasing number of inputs to that neuron. In order to solve

this problem, the variance of each neuron’s output can be normalized by calibration

the variances with 1/
√
n, where n is the number of inputs so that the network when

initialized will have approximately the same output distribution, which will improve

the the convergence time. Taking another step with the initialization of the weights,

He et al. proposed in [113] that the calibration of the variances of the neurons should

be scaled with
√
2/n to achieve a better initialization, especially when using ReLUs

as the activation function.

3.2.4 Hyperparameter selection

In machine learning, there are several parameters to be selected before starting the

training process. If it is a deep neural network, the number of parameters is a long

list, so called hyperparameter optimization. There are three main methods to tune

35

hyperparameters. The first one is using grid search, where all the hyperparameters

are listed with prior intervals and all the possibilities are selected and the network

is trained for a short time period. Then the combination of which gave the better

result is selected as optimal hyperparameter values and the network is trained using

them. However, this procedure is a very exhausting and time-consuming, therefore

not much preferred. The second one is random search, where a set of hyperparameter

values are chosen and the network is trained for a small number of iterations. Then

another set of hyperparameters are randomly selected on the hyper-sphere of the pre-

vious set with smaller hyper-radius and the network is trained for a short time. If the

result is better, another set is randomly selected on hyper-sphere of newer set with

even smaller hyper-radius. If not, another random point is selected using the previous

set. This procedure is applied for a certain of iteration, then the best set is chosen. The

third method is Bayesian hyperparameter optimization, where a prior over hyperpa-

rameter distribution is selected and sequentially updated with observation of coming

experiments. Some important parameters are listed and discussed below.

Filter and pooling size

Although it seems as if the size of convolutional filters and pooling windows should

depend on the feature map of interest and ,indirectly, the size of the input image, in

[65] it is shown that instead of using 5x5, 7x7 or larger receptive field size, 3x3 size

convolutional filters are able to capture the adequate information from the feature

maps. Using smaller size filters has another advantage of having smaller number of

weights in the network to be trained while increasing the performance of the network.

In most cases, preserving the feature map size in convolutional layers is important be-

cause the pooling layers divide the size of the maps by 2 or 3 or another choice, where

the size of the map should still be available to be divided into an integer value in the

pooling layer. Therefore, it is very common that in the convolutional layer the feature

map is padded accordingly to keep the size of the feature map the same. As an exam-

ple, by choosing input size multiple of 2n, where n is the number of pooling layers,

convolution kernel size 3x3 with stride 1 and zero-padding and the pooling window

size 2x2 with stride 2, one can construct a proper CNN with unlimited convolutional

layers and at most n pooling layers deep.

36

Mini batch size

Deep networks are composed of huge number of weights. Hence a huge number of

data, which could be considered as Big Data, is required to train the network. How-

ever providing such big data to the network at once to calculate the global gradient

of the dataset is impossible due significant amount of memory requirement and hard-

ware considerations. One possible solution is mini batch training, where only a small

part of the training data is provided to the network in order to compute the local gra-

dient. Using small number of batch size causes a high variance of gradient estimation

between every batch. In that case, the plot of computed loss value looks very noisy as

in Figure 3.13. It is usually recommended that the mini batch size should be selected

as high as the hardware can support.

Figure 3.13: Loss vs Iteration plot looks very noisy for small number of batch size

Adjusting learning rate (LR)

Learning rate is another important parameter to be tuned for the best performance.

This parameter is the multiplication coefficient of the computed gradient, in other

words, step size of the weight updates, which plays a crucial role in training a deep

network. Choosing a smaller learning rate causes the training to take very long time.

On the other hand, a larger learning rate may cause the network to be stuck in a local

minimum even though the loss decreases faster. A much higher learning rate might

even cause the loss to diverge. Therefore, optimal selection of learning rate effects the

37

performance of the network. Typical learning rate values vary between 0.1 to 1e-5.

Figure 3.14 shows how a good training loss should decrease.

Figure 3.14: The effect of learning rate on training loss of a deep network

Selection of activation function

A neural network without non-linear activation function is just a simple cascaded

matrix multiplication and addition operation, which means the network with many

number of layers can be represented with a single layer neural network. For this

issue, a non-linear activation function is called within each neuron. This phenomenon

is inspired from the biological neuron activity.

Several important activation functions are mentioned in the beginning of this chapter

(check Figure 3.1). In this section, those activation function as discussed in more

detail.

Sigmoid function is widely used in neural networks for decades since it has a simple

implementation and nice representation of neuron firing, i.e. if the input to the sig-

moid function is relatively large number with negative sign, the neuron output is zero

(not fired), and if the input is relatively large number with positive sign the output

is one (fired). The input values around zero point outputs a relatively linear output.

However, sigmoid activation function is rarely used nowadays because of two main

drawbacks:

1. It is very important for a neural network while training that the gradients from

the output layer should flow through the input layer without being killed. Since

38

sigmoid function saturates for very large number of negative and positive val-

ues, the local gradient of that neuron becomes too small such that the flowing

gradient from upper layer cannot backpropagate through the lower layers. This

undesirable event is called as vanishing gradient problem and it is a very serious

one that comes out when using sigmoid activation function.

2. The non-zero output of the sigmoid function introduces a zig-zagging motion of

gradient update. Since the output of the function is always greater than zero, i.e.

positive, the gradient of the weights for the neuron in descendant layer is either

all negative or all positive, which causes the zig-zagging motion. However,

due to the mini-batch optimization, this effect is reduced with the sum of the

gradients in a mini-batch.

Hyperbolic tangent function, tanh(x), which is another activation function used in

neural networks shows similar characteristics with sigmoid function such as vanish-

ing gradient problem due to activation saturation. However, unlike sigmoid, tanh

concentrates its input data between [-1,1] output value. Since this function gives a

zero-centered output, tanh is preferred to the sigmoid.

Rectifier Linear Unit, also known as ReLU, has been the most popular activation

function preference for the last few years. It has a very simple mathematical for-

mula as f(x) = max(0, x), which is also considered as thresholding at zero. When

compared to the previous activation functions, ReLU is inexpensive to operate and

does not suffer from saturating. However, neurons with ReLU activation might die

forever because ReLU performs as a transition gate to the gradients such that if the

input to the neuron is positive, the gradient is flowed to the input neurons. On the

other hand, the gradient flow is stopped if the input to the ReLU activated neuron is

negative. This issue is mostly encountered with an improper, highly selected learning

rate. Being careful with the learning rate may mitigate the possibility of the neurons

to die.

Some attempts such as Leaky ReLU, Parametric ReLU, and Randomized ReLU have

been made to deal with the dying neuron problem in ReLU activated neurons. In

ordinary ReLU, f(x) = x if x > 0 and f(x) = 0 if x ≤ 0, where for other members

of ReLU family f(x) = x if x > 0 and f(x) = αx if x ≤ 0 where α is set for a small

39

value for Leaky ReLU, learned by the network in Parametric ReLU, or sampled from

a random distribution for Randomized ReLU. In any case, modified ReLU functions

reduce the dying neuron number and improve the overall performance.

3.2.5 Regularization Methods

Overfitting is the phenomenon of modeling the training set too well such that the

model cannot make accurate predictions for the unseen test data, i.e. it cannot gen-

eralize. There are several ways of avoiding overfitting the neural network such as

L1 regularization, L2 regularization, Max norm constraints, Batch normalization and

Dropout.

L1 regularization

A term λ|w| is added to the loss function, in which the weights are forced to become

sparse during optimization. That is to say, L1 regularization ends up having noise

invariant network by using sparse subset of the most important inputs.

L2 regularization

The most commonly used regularization methods could be L2 regularization, where
1
2
λw2 term is added to the loss function. The gradient of this term is λw, which im-

plies that higher values of the weights are penalized more than smaller ones, resulting

in a diffused, non-peaky weight vectors.

Max norm constraints

This type of regularization is barely used, but slight improvements are reported on

several applications. The idea here is to bound the magnitude of the weight vector

after weights are updated such that ||w2|| < c where c is the constraint value, typically

on orders of 3. The beauty of this regularization is that the weights cannot explode

even if the learning rate is set too high since the updated weights are always bounded.

40

Batch normalization

Batch normalization is not an obvious regularization method, but it can be mentioned

under this section since it is another way of improving the network performance sim-

ilar to other regularization methods. The idea comes from the normalization of input

parameters, where a neuron of input layer takes values between 1 and 100, and other

neuron could take values between 0.01 to 1, for instance. This normalization in the

input values increase the network training speed. The similar approach can be ap-

plied for each layer of the network instead of only input layer. Batch normalization is

applied by subtracting the batch mean from the output of previous layer and dividing

the resultant by batch standard deviation. In practice, this results in allowing higher

learning rate to speed up the training since there is no activation value of a neuron

that can go very high or very low due to large learning rate. In addition, it reduces

the overfitting, which can be a reason of considering batch normalization as a regu-

larization method, by introducing some noise to the activation value of each neuron

in hidden layers.

Dropout

Dropout is a very simple and effective regularization method and considered as a

type of layer. This can simply be interpreted as randomly killing each neuron with

probability p in dropout layers during training. In other words, a randomly sampled

sub-network is held responsible for the objective of the whole network and only their

connections are updated during backpropagation. An illustration of using dropout can

be found in Figure 3.15

Figure 3.15: An illustration of dropout regularization

41

During testing, no dropout is used by setting dropout ratio p = 0. This means that

during testing, all of the subnetworks are averaged together to achieve the final ob-

jective of the network. That is why dropout gives improved performance. In most of

the cases, p = 0.5 is found to be the most effective dropout ratio.

3.2.6 Transfer learning

The state-of-the-art deep networks trained by famous research groups are trained us-

ing extensive amount of data, such as ImageNet [3]. As already shown in Figure

3.12, the performance of the deep networks increase with the amount of training data.

Thanks to the generalization property of these networks, using pretrained networks

as baseline allows the weights to reach the optimum value faster. This procedure is

usually called as fine-tuning the network.

For some domains such as remote sensing applications, obtaining a huge training data

as ImageNet data set is not very practical. In such cases, using pretrained networks,

even trained in another domain, could save a lot of time with better performance

because the training a deep network from scratch with a small data set results in a

poor performance. It is a common sense that if one has a small data set on a similar

domain of a pretrained network, only fine-tuning the top classifier layer could be

sufficient. As the number of training data increases, it is always better to fine-tune

more layers starting from the top classifier layer because deep networks extract global

information in the first layers and more detailed and domain-specific information in

the deeper layers. However, if one needs to train a deep network for a very different

data set, whole parameters of each layer in a pretrained network should be fine-tuned,

which requires a lot of training data on the new domain. In case of having a small

data set for a different domain, using pretrained networks might not be a good idea.

3.2.7 Ensemble multiple networks

Ensemble methods in machine learning is an approach to combine several different

trained models to achieve state-of-the-art accuracy. As already known in the litera-

ture, ensemble methods gives more accurate results when compared to single model.

42

For example, one way of ensemble method is to train the network with different

random initialization. Another way would be choosing top several models of cross-

validation while determining the best hyperparameters. In addition, using different

checkpoints of a single model training and combining them to obtain final classifier

would be a good idea and very inexpensive to achieve.

3.3 Popular CNN Architectures

ImageNet is a very large visual database created for visual object recognition. Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual contest

where algorithms compete to achieve the most accurate scene classification task.

Most of the state-of-the-art deep networks for semantic image segmentation and ob-

ject detection problems use the networks trained with ImageNet data set as baseline

since ImageNet database is huge enough to learn global filters hierarchically. Sim-

ilarly, PASCAL Visual Object Classes (VOC) data set is a data set used for object

detection applications and annual contest is held to detect objects in an image scene.

In this section, several important deep networks used in image scene classification, se-

mantic image segmentation and object detection tasks are introduced with their novel

approaches.

3.3.1 LeNet-5

LeNet-5 is introduced by LeCun et al. [99] in 1998 to detect digits in bank checks.

The network takes 32x32 size gray-scale input and consecutively convolves with 5x5

filters followed by 2x2 pooling windows with stride 2, and 2 fully connected layer

until the output. The architecture can be summarized as [6c-2s(a)-16c-2s(a)-120c-

fc84-out10 (5x5)] where c represents convolution operation and the number before

it is the number of activation maps, s stands for the subsampling (pooling) operation

with window size and stride 2, (a) indicates the average pooling, fc is the fully con-

nected layer and the number after it is the number of activation neurons, and out10

is the output layer with 10 neurons. Visualization of the network is given in Figure

3.16.

43

Figure 3.16: LeNet-5 Network introduced by LeCun et al. in 1998 to recognize digits

in bank checks

This network can be considered as a relatively shallow convolutional network when

compared to other state-of-the-art deep networks, however still performs adequate to

recognize hand-written digits.

LeNet-5 is the pioneer of convolutional neural networks. However, deeper neural

networks were not practical due to the reasons such as hardware restrictions and lack

of huge amount of training data in those years.

3.3.2 AlexNet

AlexNet is an 8 layer convolutional neural network introduced by Alex Krizhevsky et

al. [2] in ILSVRC’12 and achieved a breakthrough in the image scene classification

challenge. Having a similar structure as LeNet, AlexNet is deeper with more filters

per layer. This network is trained by ImageNet data set, therefore designed to receive

224x224x3 input data. The architecture can be summarized as [96c(11x11)-3s(m)-

lrn-256c-3s(m)-lrn-384c-384c-256c-3s(m) (3x3)-fc4096-d-fc4096-d-out1000] where

bn and d stand for local response normalization (which is not common anymore) and

dropout layers, respectively. The network was trained on two different GPUs, that is

why the structure in Figure 3.17 is split into 2 parts.

Another novelty of this network is that it was the first time of ReLU activation func-

tion. In order to improve the accuracy, heavy data augmentation, dropout, L2 regu-

larization and ensemble methods were applied.

44

Figure 3.17: AlexNet architecture made breakthrough in ILSVRC competition using

deep convolutional network first time in 2012

3.3.3 VGGNet

VGGNet proposed by Zisserman et al. [65] in ILSVRC’14 achieved a more accu-

rate performance, second in classification and first in localization, by using smaller

filters with deeper architecture when compered to AlexNet. VGGNet has 2 differ-

ent versions such as VGG16 and VGG19, where VGG16 has 12 convolutional layers

and 3 fully connected layers and VGG19 has 3 more convolutional layers. VGG16

architecture is given in Figure 3.18.

Figure 3.18: VGG16 architecture achieved better performance in ILSVRC’14 with

constant 3x3 filters and deeper structure

45

VGGNet uses 3x3 filters for all convolutional layers with zero-padding to preserve

the size of the activation maps during convolution. Moreover, VGGNet uses three

adjacent 3x3 filters which results in having a 7x7 effective receptive field. Hav-

ing a deeper structure allows the network to learn more non-linearity; therefore, the

last fully connected layer with 4096 neurons generalize well for other tasks. The

architecture could be summarized as [64c-64c-2s(m)-128c-128c-2s(m)-256c-256c-

256c-2s(m)-512c-512c-512c-2s(m)512c-512c-512c-2s(m) (3x3)-fc4096-d-fc4096-d-

out1000].

3.3.4 GoogLeNet

This architecture is proposed by Szegedy et al. [66] in 2014 and outperformed all

other competitors in ILSVRC’14 classification category with a performance very

close to human level. By using efficient "Inception" module, GoogLeNet achieved

the best of its time in image scene classification by only 5 million weights, which is

28x smaller than VGGNet and 12x smaller than AlexNet.

Inception module

The novelty introduced with GoogLeNet is the "Inception module", which can be

considered as network inside a network. The module architecture is given in Figure

3.19.

Figure 3.19: Inception module led GoogLeNet to become the most accurate in

ILSVRC’14 classification task

Naive Inception module has parallel 3 different convolutional operations with filter

size 1x1, 3x3, 5x5 and 1 pooling operation with window size 3x3 that are followed

46

by a depth-wise filter concatenation. However this structure is very expensive in terms

of computational complexity. Hence, a solution is proposed using 1x1 "bottleneck"

convolutional layers by reducing the activation volume of the previous layer. This

approach reduced the complexity of the inception module more than a half, which

made stacking inception modules more practical.

GoogLeNet architecture is given in Figure 3.20. The structure begins with usual con-

volution, pooling, 2 consecutive convolutions, pooling, and continues with stacked

inception modules with dimension reduction. The output layer at the deepest gives

the classification result. Other two output layers inside the network are auxiliary clas-

sification outputs to inject additional gradients to the lower layers of the structure.

Figure 3.20: GoogLeNet - the classification winner architecture in ILSVRC’14

3.3.5 ResNet

In 2015, He et al. [67] introduced Residual block as in Figure 3.21 which helped

train ultra deep network with 152 layers effectively and placed the first rank for all

classification, detection, and localization competitions in ILSVRC’15 and COCO’15

beating the human level performance.

The idea comes from the hypothesis that deeper networks should perform better than

shallower ones. However, stacking convolutional layers on top of each other gives

worse performance because the optimization becomes more difficult as the network

gets deeper. So, residual blocks solves this problem by opening a "highway" for

the gradients coming from the top layer to reach the first layers. Having similar

approach with VGGNet such as using always 3x3 convolutional filters except the

first 7x7 convolutional layer followed by a pooling layer and doubling the number

of filters as reducing the size of the activation maps with not pooling but having the

convolution layer with stride 2, ResNet is much deeper than VGGNet while having

47

Figure 3.21: Residual block of ResNet152 that placed first rank in all competition

categories beating human performance in ILSVRC’15 and COCO’15

less computational complexity and requiring less amount of memory. A 50 layer

version of ResNet is shown in Figure 3.22.

Figure 3.22: ResNet50 - 50 layer CNN introduced by He et al. in 2015

ResNet does not contain any fully connected layer except the output layer and imple-

ments heavy batch normalization after every convolutional layer, Xavier initialization,

L2 regularization and no dropout.

3.3.6 FCN8s

Fully connected layers are defined with a constant input size. However, semantic

image segmentation requires pixel-level classification; hence, the network should be

capable of handling varying input size. In 2014, Long et al. [114] replaced fully con-

nected layers with 1x1 convolutional layers, allowing the network to receive different

input sizes and called the network Fully Convolutional Network as given in Figure

3.23.

The architecture uses VGGNet as baseline. Since VGGNet has 5 pooling layers, it

48

Figure 3.23: Fully Convolutional Network used for semantic image segmentation

(FCN32s

divides the input size by 25 = 32. This output map of VGGNet is deconvolved,

i.e., upsampled by 32 to obtain the original input size. This network is called as

FCN32s. However, the result was very coarse due to information loss caused by

pooling layers. The solution was found out to be making an upsampling by 2 and

adding the information from the previous pooling activations to this upsampled map.

To obtain the original input size, this activation maps should be upsampled by 16,

which led the name of the network FCN16s. Obviously, the results of FCN16s is

finer than FCN32 by 3% in mAP. Taking one step more, VGGNet activation map is

upsampled by 2 two consecutive times by each being added with 4th and 3rd pooling

activations, and at the and upsampled by 8 to obtain the original size as in Figure

3.24, leading FCN8s network the finest of all by 0.5% more in mAP.

Since utilizing the higher resolution feature maps of previous pool2 and pool1 layers

did not yield an important improvement in the performance, the authors only used

pool3 and pool4 feature maps to increase the accuracy

3.3.7 YOLO

You Look Only Once (YOLO) network is proposed by Redmon et al. [90] in 2015

to detect PASCAL VOC objects in images and one of the fastest networks for object

49

Figure 3.24: Detailed look at FCN8s with deconvolution layers

detection task. The architecture is inspired from GoogLeNet and given in Figure 3.25.

Figure 3.25: YOLO architecture proposed to detect PASCAL VOC objects

YOLO is a assumed to be a regressor rather than a classifier since it predicts the

bounding box parameters with regression. The output volume is SxSx(Bx2 + C)

where S = inputsize
26

, B is the bounding boxes and C is the number of classes. The net-

work divides the input image into SxS grids and predicts center point x and y, height

h, and width w of each bounding box along with class probabilities. For example,

YOLO network for 20 class COCO data set requires an output filter SxSx(5x2+20).

Here the network is designed to predict 2 bounding boxes for each cell. One of the

bounding box predictor giving higher IoU is held ’responsible’ for prediction, i.e.

the loss is calculated using the responsible predictor. Sum-squared error is used to

optimize the weights and the loss function is defined as the weighted sum of bound-

ing box parameters and class predictions error. The final loss function of YOLO is

presented in Equation 3.13

50

λcoord

S2∑
i=0

B∑
j=0

1obj
ij

(
(xi − x̂i)

2 + (yi − ŷi)
2
)

+λcoord

S2∑
i=0

B∑
j=0

1obj
ij

(
(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2
)

+
S2∑
i=0

B∑
j=0

1obj
ij (Ci − Ĉi)

2

+λnoobj

S2∑
i=0

B∑
j=0

1noobj
ij (Ci − Ĉi)

2

+
S2∑
i=0

1obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2

(3.13)

where 1obj
i denotes if object appears in cell i of output map and 1obj

ij denotes that jth

bounding box is responsible for that object prediction. xi and wi parameters in the

loss function are normalized with respect to width of the input size and yi and hi

parameters are normalized with respect to the height of the input size to make the

terms in the loss function consistent since both confidence and class probabilities are

in the interval of [0, 1].

There might be two or more cells making prediction about the same object in the

output map. In this case, a non-max suppression algorithm is used to get rid of all

predictions except the one having the higher P (obj).

The drawbacks of YOLO are that each cell can predict only 2 bounding boxes for

only one class, small objects near each other cannot be detected, the predictions are

computed on a relatively coarse features and the network cannot generalize due to

learning the bounding boxes directly from the training set. Therefore, several im-

provements on these issues are discussed in [93] and named the improved network as

YOLO9000 since it can detect more than 9000 classes.

YOLO9000

YOLOv2, sometimes called as YOLO9000, is proposed by Redmon and Farhadi [93]

to improve the aforementioned limitations of original YOLO. In this network the

51

regularization is applied using batch normalization instead of dropout and 2 percent

improvement is achieved. For YOLOv2, the network is pretrained for classification

task using ImageNet with the same resolution of detection task, where in the previous

version the classification network was pretrained using the half resolution of detec-

tion network. Full size classification training increased the mean average precision

(mAP) by 4%. In addition, newer version replaced fully connected layer with convo-

lutional layer, enabling to use anchor boxes. Unlike the previous version where only

2 bounding boxes are directly predicted, using anchor boxes in YOLOv2 allows the

network to make thousands of predictions by output layer size SxSxBx(5+C) where

B is the number of anchor boxes, 5 stands for offset coordinates with respect to the

grid center and the confidence, and C is the number of classes.

Figure 3.26: Anchor Boxes allow multiple detection in a single cell by predicting

offset parameters from the center of ’responsible’ cell

This approach made a slight decrease in localization; however, significantly improved

the recall rate. Moreover, YOLOv2 makes use of fine-grained features with 13x13

feature map by a pass-through layer. Finer resolution features of 26x26x512 are con-

verted to 13x13x2048 feature volume, which can be concatenated with features com-

ing after the pooling. The previous version did not utilize the finer feature map fusion

and had output resolution 7x7. Hence, fine-grained features with better resolution

help the network localize smaller object better.

52

CHAPTER 4

LAND USE ANALYSIS USING CNN IN REMOTE SENSING

Accessing the remote sensing images have become widely available by the help of

commercial satellite systems, such as WorldView, GeoEye, IKONOS etc., exposing

a need for deep analysis and interpretation for a range of applications, such as map-

ping, urban planning, resource management, climate change observations and land

use monitoring. These satellite images can be acquired using panchromatic or mul-

tispectral sensors on the satellite. Panchromatic images contain only a single band;

however, their resolution can be impressive. On the other hand, multispectral images

may contain various bands in electromagnetic spectrum such as Red, Green, Blue and

Near-Infrared.

Land use analysis using satellite images is a challenging but necessary problem. Nat-

ural areas such as bare land, cultivated field, forest, lake, rocks, sea, shorelines etc.

needs to be analyzed in remote sensing images. Moreover, dealing with the increas-

ing number of remote sensing images requires to automatize land use analysis. For

this purpose, a series of CNN-based deep learning experiments for image scene clas-

sification and semantic image segmentation tasks are discussed in this chapter.

4.1 Image Scene Classification for Land Use Analysis

In this section, a CNN-based land use classifier is proposed and training of this CNN-

based image scene classification network are examined in detail.

53

4.1.1 Proposed Classification Network

Deep neural networks, especially convolutional neural networks, are proven to per-

form more accurate than traditional methods in image scene classification of remote

sensing applications. Therefore, extensive number of training CNN versions, such as

LeNet-5, AlexNet, and VGGNet are conducted using various set of hyperparameters

on different datasets that are shared by other researchers, such as SAT-4, SAT-6 [83]

and finally, self-generated ’Ekilialan’ dataset for cultivated land classification. Basic

tested architectures of the proposed classification networks are presented in Table 4.1.

Table 4.1: Tested architectures for the image scene classification network. The char-
acters ’c’, ’s’, ’fc’, and ’out’ stand for convolution, subsampling (pooling), fully con-
nected and output layer, respectively. The last ’out’ layer is also a fully connected
layer, but with softmax activation to compute class probabilities for each. Input patch
has the size 28x28 with 4 bands, whereas the output labels are equal to 4, 6 and 2 for
SAT-4, SAT-6, and ‘EkiliAlan‘ datasets, respectively

Input Proposed CNN structures Output (# of labels)
Image Patch (28x28x4) c1-s1-c2-s2-fc3-out4 Class Label (4,6,2)
Image Patch (28x28x4) c1-s1-c2-s2-fc3-fc4-out5 Class Label (4,6,2)
Image Patch (28x28x4) LeNet-5 Class Label (4,6,2)
Image Patch (28x28x4) c1-s1-c2-s2-c3-s3-fc4-out5 Class Label (4,6,2)
Image Patch (28x28x4) AlexNet Class Label (4,6,2)
Image Patch (28x28x4) c1-c2-s1-c3-c4-s2-c5-c6-c7-out8 Class Label (4,6,2)
Image Patch (28x28x4) VGG16 Class Label (4,6,2)

4.1.2 Experimental Results

4.1.2.1 Datasets for Classification Network Training

Three different datasets are used during simulations. SAT-4 and SAT-6 datasets are

extracted from National Agriculture Imagery Program (NAIP) dataset in [83] and

available to public as .mat file. ’Ekilialan’ dataset is generated by the author by using

WorldView-2 and GeoEye-1 satellite raw raster image data.

54

TRAIN DATA TEST DATA

barren land

trees

grassland

other

buildings

roads

water

Figure 4.1: SAT-4 and SAT-6 datasets sample patches of size 28x28x4 for each class

- barren land, trees, grassland, other for SAT-4, barren land, trees, grassland, build-

ings, roads, water for SAT-6

SAT-4

This dataset contains 400,000 training and 100,000 testing image patches of size

28x28 with RGB-NIR bands. Four classes of the dataset are ’barren land’, ’trees’,

’grassland’ and ’other’. Ground-truth information is also provided as one-hot vector

(i.e. the correct label is equal to 1, whereas the others are 0 for a 4-D vector) for each

image patch.

SAT-6

Another dataset introduced along with SAT-4 is SAT-6 dataset of classes ’barren-

land’, ’trees’, ’grassland’, ’roads’, ’buildings’ and ’water’. SAT-6 consists of 324,000

image patches for training and 81,000 for testing purpose. As SAT-4, the image

patches of this dataset are 28x28x4 and ground-truth information is provided as one-

hot vector for each image patch.

55

Ekilialan

This dataset is generated using very large 4-band raster images of WorldView-2 and

GeoEye-1 satellites. The images of .img format also contains hand-crafted ground-

truth shape files as .shp format. In general, each image has around 20,000x20,000x4

pixels of 11-bit value and 0.46 meter pixel resolution in each channel. First, the pixel

values are normalized to 8-bit to imitate SAT-4 and SAT-6 datasets. Then, 28x28x4

size image patches covering at least 70 percent of the specified class ground-truth are

extracted along with one-hot label vector for each patch. Ekilialan dataset is a binary

dataset with two classes, ’cultivated field’ and ’other’. The class ’other’ contains

image patches of several classes such as sea, forest, building, road, aircraft etc. This

dataset contains 628,039 training and 60,105 testing image patches of size 28x28x4.

Half of the image patches belong to ’cultivated field’ label whereas the remaining half

contains ’other’ class.

TRAIN DATA TEST DATA

cultivated land

other

Figure 4.2: Generated Ekilialan dataset sample patches of size 28x28x4 for each class

- cultivated land, other

4.1.2.2 Experimental Setup

Proposed CNNs were trained with various hyperparameter sets to reach the optimum

results in remote sensing image classification application. The experiments were all

conducted on a 6 GB GPU of nVidia GTX 1060 using tensorflow [115] deep learning

framework. The effects of batch size, learning rate, dropout, number of fully con-

nected (fc) layer, convolutional filter size, depth of network, pooling type, and CNN

architecture are examined on the accuracy. In all experiments, the loss function is se-

lected as cross-entropy with 0.9 momentum optimizer ratio. All the experiments are

56

tested in a controlled manner, giving a unique index to every particular experiment,

denoted by N# where # denote the index of the architecture in that particular exper-

iment for all the tables below. Only some of the experiments with prominent results

are presented in this thesis.

Experiments on Batch size and learning rate

N35 and N37 networks that are described in Table 4.2 were trained to determine the

effect of selecting batch size and learning rate.

Table 4.2: Proposed network parameters for batch size and learning rate

Exp# Proposed CNN structure Batch size Learning rate
N35- c6(5x5)-a(2,2)-c12(5x5)-m(2,2)-fc96-out4 5000 exp(.0002, .0001)
N37- c6(5x5)-a(2,2)-c12(5x5)-m(2,2)-fc96-out4 2000 exp(.0005, .0001)

Both networks are trained using SAT-4 dataset, ReLU as activation function, no

padding, and dropout ratio as 0.5 during training and 1.0 during testing. Initial value

of exponentially decreasing learning rate is set to be equal to one over batch size.

Experiments on Dropout

N36, N40, N41 and N42 networks that are described in Table 4.3 were trained to

determine the effect of dropout.

Table 4.3: Proposed network parameters for different dropout rates

Exp# Proposed CNN structure Dropout
N36- c6(5x5)-m(2,2)-c12(5x5)-m(2,2)-fc128-out4 0.00
N40- c6(5x5)-m(2,2)-c12(5x5)-m(2,2)-fc128-out4 0.25
N41- c6(5x5)-m(2,2)-c12(5x5)-m(2,2)-fc128-out4 0.50
N42- c6(5x5)-m(2,2)-c12(5x5)-m(2,2)-fc128-out4 0.75

All networks are trained using SAT-4 dataset, ReLU as activation function, no padding,

batch size 2000 and learning rate is lr = 0.0005e−0.0001i.

57

Experiments on Number of fc layer

Networks N68 and N69 in Table 4.4 were trained to determine the effect of using

multiple fc layers before output layer.

Table 4.4: Proposed network parameters for additional fully connected layer effect

Exp# Proposed CNN structure
N68- c6(5x5)-a(2,2)-c12(5x5)-m(2,2)-fc48-out4
N69- c6(5x5)-a(2,2)-c12(5x5)-m(2,2)-fc48-fc12-out4

Both of the proposed networks are trained using Ekilialan dataset with mean ex-

tracted, ReLU as activation function, no padding, 0.5 as dropout ratio, batch size

1000 and learning rate is lr = 0.001e−0.0001i.

Experiments on Extracting Mean of dataset

Preprocessing is sometimes useful for deep neural networks to be trained to optimum.

Extracting mean of the dataset is one of several preprocessing steps applied in training

of deep networks because preprocessing helps network become more robust to bias

between the mean values of the images and zero-mean randomly initialized weights.

Hence, networks given in Table 4.5 are tested with and without mean-extracted (M/E)

preprocessing.

Table 4.5: Proposed network for mean-extract dataset experiment

Exp# Proposed CNN structure
N74- c6(5x5)-a(2,2)-c12(5x5)-m(2,2)-fc48-out2
N75- c6(5x5)-a(2,2)-c12(5x5)-m(2,2)-fc48-out2

Experiments on Convolutional filter size and stride

N78, N79, and N80 networks given in Table 4.6 were trained to determine the effect

of convolutional filter stride and size.

All of the proposed networks are trained by Ekilialan dataset which is mean extracted,

ReLU as activation function, no padding, 0.5 as dropout ratio, batch size 2000 and

learning rate is lr = 0.0005e−0.0001i.

58

Table 4.6: Proposed network parameters for different filter size and stride

Exp# Proposed CNN structure First layer conv. stride
N78- c6(5x5)-a(2,2)-c16(5x5)-m(2,2)-fc64-out2 (1,1)
N79- c6(5x5)-a(2,2)-c16(5x5)-m(2,2)-fc16-out2 (2,2)
N80- c6(3x3)-a(2,2)-c16(4x4)-m(2,2)-fc100-out2 (1,1)

Experiments on Depth of network

N89, N90, N91 and N111 networks of Table 4.7 were trained to determine the effect

of adding more layers to the network.

Table 4.7: Proposed network parameters for different depth of networks

Exp# Proposed CNN structure
N89- c8(3x3)-a(2,2)-c12(4x4)-m(2,2)-fc100-out2
N91- c8(3x3)-a(2,2)-c12(4x4)-m(2,2)-c24(4x4)-fc100-out2
N90- c8(3x3)-a(2,2)-c12(4x4)-m(2,2)-c24(4x4)-m(2,2)-fc100-out2
N92- VGGNet16 (fully convolutional fc1000-fc1000)-out2

All of the proposed networks except VGGNet are trained using Ekilialan dataset with

mean extracted, ReLU as activation function, no padding, 0.5 as dropout ratio, batch

size 2000 and learning rate is lr = 0.0005e−0.0001i. VGGNet is also trained using the

same hyperparameters only with 256 batch size due to memory concern.

Experiments on Pooling

N96, and N97 networks of Table 4.8 were trained to determine the effect of pooling

type.

Table 4.8: Proposed network parameters for different pooling types

Exp# Proposed CNN structure
N96- c8-c16 (5x5)-a(2,2)-c64-c256 (3x3)-a(2,2)-c1024(3x3)-fc100-out2
N97- c8-c16 (5x5)-m(2,2)-c64-c256 (3x3)-m(2,2)-c1024(3x3)-fc100-out2

Both of the proposed networks are trained using Ekilialan dataset with mean ex-

tracted, ReLU as activation function, no padding, 0.5 as dropout ratio, batch size

500 and learning rate is lr = 0.0005e−0.0001i.

59

Experiments on CNN architecture

N107, and N108 networks of Table 4.9 were trained to determine the effect of using

convolutional layers instead of fully connected layers.

Table 4.9: Proposed network parameters on fully convolutional layers instead of fully
connected layers

Exp# Proposed CNN structure
N107- c16-c64(3x3)-m(2,2)-c128-c128(3x3)-m(2,2)-c256(3x3)-fc512-fc512-out2
N108- c16-c64(3x3)-m(2,2)-c128-c128(3x3)-m(2,2)-c256(3x3)-c512(2x2)-c512(1x1)-out2

Both of the proposed networks are trained using Ekilialan dataset, ReLU as activation

function, no padding, 0.5 as dropout ratio, batch size 256, and learning rate is lr =

0.004e−0.0001i.

4.1.2.3 Experimental Results

Training loss and validation loss along with test accuracy are the parameters to exam-

ine while determining the best network. In Table 4.10, the results of the proposed net-

works given in the previous section are compared. Moreover, number of total weights

for convolutional layers and fully connected layers for each network is provided in

the same table.

Selecting batch size as high as possible as long as hardware memory allows is the best

suggestion. However, low batch size is sometimes is necessary because of insufficient

memory on the hardware. For this case, setting the initial value of learning rate equal

to one over batch size for classification networks is an empirical but a meaningful

decision. When comparing N35 and N37 in terms of batch size and learning rate,

the results are quite close to each other. The reason why N35 has slightly worse

performance is the result of having a learning rate lower than the optimum value.

Selecting the optimum dropout value is turned out to be crucial. N36, N40, N41, and

N42 results show that the worst accuracy is observed without using a dropout layer.

The most accurate result is achieved with 0.25 dropout rate, which is followed by the

network with dropout ratio 0.5 with a slight difference. The conclusion that can be

60

Table 4.10: The results of proposed classification networks - M/E: mean extracted

Exp# Dataset Wconv WFC Tr. loss Val. loss Acc.
N35- SAT-4 450 18,816 0.1621 0.1689 0.944
N37- SAT-4 450 18,816 0.1308 0.1335 0.952
N36- SAT-4 450 18,816 0.3250 0.3283 0.880
N40- SAT-4 450 18,816 0.1210 0.1258 0.963
N41- SAT-4 450 18,816 0.1574 0.1575 0.954
N42- SAT-4 450 18,816 0.2114 0.2120 0.933
N68- SAT-4 450 9,408 0.1186 0.4754 0.835
N69- SAT-4 450 9,840 0.2241 0.5586 0.777
N74- Ekilialan 450 9,312 0.0922 0.4579 0.848
N75- Ekilialan M/E 450 9,312 0.1155 0.5466 0.831
N78- Ekilialan M/E 550 16,512 0.0869 0.6176 0.832
N79- Ekilialan M/E 550 288 0.2131 0.7037 0.715
N80- Ekilialan M/E 310 40,200 0.1615 0.3024 0.881
N89- Ekilialan M/E 264 30,200 0.1045 0.5483 0.794
N91- Ekilialan M/E 648 9,800 0.1114 0.5336 0.777
N90- Ekilialan M/E 648 2,600 0.1402 0.4762 0.821
N92- Ekilialan M/E 40,066 - 0.0801 0.4132 0.892
N96- Ekilialan M/E 12,696 102,600 0.0942 0.6651 0.771
N97- Ekilialan M/E 12,696 102,600 0.0758 0.3643 0.882

N107- Ekilialan 5,328 787,454 0.0246 0.2695 0.918
N108- Ekilialan 7,888 1,024 0.0219 0.4819 0.858

deduced from these result is that the network could perform better with other values

for dropout ratio instead of setting dropout rate equal to 0.5 as default.

Network N68 has one fully connected layer before output layer, whereas N69 has one

more fully connected layer, making an addition about 5% in the number of weights.

Since adding one more fully connected layer before the output layer increases the

number of parameters of the network to be trained as much as whole number of

parameters in the first 2 convolutional layers, N69 performed worse when trained with

the same amount of training data. Therefore, adding more layers as fully connected

do not always increase the performance unless the amount of training data is also

increased.

Networks N74 and N75 are the same networks, except a mean-extract preprocessing.

N75 is trained with mean-extracted Ekilialan dataset and has lower accuracy when

61

compared to N74 where the network is trained without mean-extract preprocessing.

The results show that mean-extraction by itself cannot help network weights to con-

verge the optimum values better.

Keeping the network structure similar, changing the first convolution layer stride from

1 in N78 to 2 in N79 reduces the feature map size, leading less number of features to

reach the fully connected layers. Therefore, number of neurons in the fully connected

layers were arranged according to the number of neurons after second pooling layer.

This change also decreases the number of trainable parameters of the whole network

significantly. Hence, small number of weights with coarse features resulted in a poor

performance in N79, dropping accuracy from 83.2% to 71.5%. On the other hand,

decreasing the first and second convolutional filter size to 3x3 and 4x4, respectively,

boosted the performance of the network N80 to 88.1%. It gives a strong indication

that smaller-sized convolutional filters typically learn better even though those net-

works have quite number of parameters as fully connected.

When comparing the results of N89 and N90, increasing depth of the network with

convolutional and pooling layers boosted the accuracy by 3% since pooling layer

helped extract more semantic information. On the other hand, result of N91 shows

that increasing the depth with convolutional layer but not adding a pooling layer re-

sulted worse. Yet, VGGNet in N92 increased the accuracy by 10% from baseline

LeNet-5. These results indicate that number of trainable parameters regardless of net-

work architecture is not an indicator to foresee whether a specific amount of weight

is optimum, less or too extensive.

N96 network was constructed with average pooling where N97 with max pooling. Af-

ter training both networks, N97 with max pooling performed nearly 11% better than

N96 with average pooling. Therefore, max pooling should be preferred as priority

option.

Two networks inspired by AlexNet with consecutive convolutional layers were trained.

In N108, fully connected layers of N107 are replaced with convolutional layers. Al-

though the training loss value of N108 is better than N107 because it has significantly

less number of trainable parameters in the network, it has poorer generalization abil-

ity, i.e. it was less accurate for the unobserved test data.

62

The best performance is usually obtained by using some hyperparameter searching

methods, such as grid search, random search, or Bayesian search. In this study, man-

ual search similar to grid search was applied to gain intuition about neural network

training.

The most accurate CNN architectures of best hyperparameter set and the accuracy

values are given in Table 4.11 where all of the networks were trained using ReLU

as activation function, no padding, 0.5 as dropout ratio, batch size 256, and learning

rate is lr = 0.004e−0.0001i. The results show that SAT-4 and SAT-6 datasets were al-

most perfectly classified with 16-layer VGGNet, initialized from ImageNet pretrained

weights, while for ekilialan dataset the best result was obtained with a shallower net-

work similar to AlexNet.

Table 4.11: Most accurate proposed classification network architectures and results
Exp# Dataset Proposed CNN structure Wconv WFC Tr. Loss Val. Loss Acc.
N107- Ekilialan c16-c64(3x3)-m(2,2)-c128-c128(3x3)-m(2,2)-c256(3x3)-fc512-fc512-out2 5,328 787,454 0.0246 0.2695 0.918
N108- SAT-4 VGG16 with ImageNet pretrained weights 40,068 - 0.0008 0.0046 0.999
N109- SAT-6 VGG16 with ImageNet pretrained weights 40,070 - 0.0003 0.0012 0.999

It is worth to note that for Ekilialan dataset, the most accurate network was obtained

with shallower network than VGG16, while VGG16 has performed extremely accu-

rate in SAT-4 and SAT-6 datasets. Therefore, in order to improve Ekilialan dataset

classification accuracy, pretrained SAT-6 weights are fine-tuned by Ekilialan dataset.

Nevertheless, the outcome of the fine-tuned networks is not as accurate as the N107

in the test data. The results of Ekilialan proposed networks are given in Table 4.12.

Table 4.12: Ekilialan proposed networks and results
Exp# Proposed CNN structure Wconv WFC Tr. Loss Val. Loss Acc.
N107- c16-c64(3x3)-m(2,2)-c128-c128(3x3)-m(2,2)-c256(3x3)-fc512-fc512-out2 5,328 787,454 0.0246 0.2695 0.918
N110- VGG16 with ImageNet pretrained weights 40,066 - 0.0134 0.6654 0.887
N111- VGG16 with SAT-6 pretrained weights 40,066 - 0.0098 0.4985 0.901

In Table 4.12, it can be observed that even though deeper networks such as VGG16

could learn to classify training set with lower loss, those networks failed to generalize

to classify unseen test data.

63

Figure 4.3: Network N110 for SAT-4 dataset on the top and N111 for SAT-6 dataset

on the bottom with training loss, test loss and accuracy

Figure 4.4: Network N107 for Ekilialan dataset - training loss, test loss and accuracy

4.2 Semantic Image Segmentation for Land Use

In this section, training a CNN-based semantic image segmentation method for land

use analysis is examined in detail. On contrary to previous classification results,

where the image patches (of size 28x28x4) are labelled as a whole into a number

of classes, the results consist of output masks where every pixel has a segmentation

label.

64

Table 4.13: Tested architectures for semantic image segmentation network

Input Proposed CNN structures Output (# of labels)
512x512x4 Reduced FCN8s (VGG10+upsampling) 10-class masks
512x512x4 Reduced FCN8s (VGG10 (5x5)+upsampling) 10-class masks
512x512x4 Modified FCN8s (VGG13 (5x5)+upsampling) 10-class masks
512x512x4 FCN8s (no skip connection) 10-class masks
512x512x4 FCN8s (VGG16+upsampling) 10-class masks

4.2.1 Proposed Segmentation Network

Following the advances in deep learning, CNNs are also utilized for semantic image

segmentation. Hence, based on the idea of Long et al. [114], VGGNet as classifi-

cation and deconvolutional layers to upsample the image into original size, several

experiments were conducted for the natural scene segmentation in satellite images.

The tested architectures for segmentation experiments are given in Table 4.13.

VGGNet is a classification network which contains fully connected layers. Since

semantic segmentation task requires to perform a pixel-wise classification, the output

of the segmentation should be a 2D classification map, unlike in original VGGNet,

where the output is 1D class prediction vector. Therefore, VGGNet is modified to

have a pixel-wise classification at the output by replacing fully connected layers with

1x1 size convolutional layers. Unlike fully connected layers, convolutional layers

with 1x1 filters do not care about the input feature map, which leads to a pixel-wise

classification. The benefit of using 1x1 convolutional layers instead of fully connected

layers is that the input size of the network could be arbitrary, resulting in an output

map size proportional to pooling layer and convolutional layer strides. Therefore, all

the VGGNet versions trained in this study has 1x1 convolutional layers instead of

fully connected layers.

Firstly, a shallower version of VGGNet is trained (referred as Reduced FCN8s VGG10

+ upsampling). The reason of this selection is that remote sensing images with natural

areas mostly contain textural information rather than edges or blob type forms. Since

VGG16 is a network designed to classify 1,000 classes of ImageNet, 10 class pixel-

wise classification network could perform accurate enough with less parameters.

65

Secondly, receptive field size is increased using 5x5 convolutional filters instead of

default 3x3 size. The idea behind this preference is that larger receptive field could

learn detailed texture information rather than edges or other shapes, since natural area

segmentation images often contain three to five large portions of natural areas.

Thirdly, classification network is increased from 10 to 13 layer VGGNet with 5x5

filter size to check whether extending the network further boost the performance.

Later, VGG16 classification network is designed and ImageNet pretrained weights

are imported to the network except the first convolutional layer filters due to dimen-

sion mismatch since pretrained weights are obtained with 3-band images while in

this study 4-band images are used to train. First layer convolutional filters are ini-

tialized randomly with values from zero-mean normal distribution. Since RS images

in this study contain 4 color bands (RGB-NIR), first convolutional layer weights are

initialized randomly due to the dimension mismatch. Moreover, 3 consecutive de-

convolution layers are added without the additional features coming from pool4 and

pool3 feature maps. The pooling feature fusion is removed in this experiment to have

less parameters to train, since the training set do not contain huge amount of data.

Finally, full ImageNet pretrained FCN8s network in [114] is fine-tuned with seg2248

dataset.

4.2.2 Experimental Results

4.2.2.1 Dataset Generation for Segmentation Network

VGG16 network of FCN8s downscales the input size by 32 using 5 pooling layers,

indicating the input size of the dataset multiple of 32. Therefore, the size of the im-

ages to generate the segmentation dataset is determined to be 512x512x4. Using the

ground-truth information, 400 images of size 512x512x4 are extracted for 10 classes

- ’sea’, ’cultivated field’, ’lake’, ’rock’, ’river’, ’forest’, ’shoreline’, ’waterway’, ’bar-

ren land’, ’other’ from the main satellite image data set. Each image is selected to

include at least 3 classes. Data augmentation is a quite useful tool for such small size

datasets to avoid overfitting while training a deep neural network. Hence, the a larger

dataset is derived by using data augmentation techniques, such as rotating and flip-

66

ping the original images. Hence, seg2248 dataset is obtained as 2,000 training images

and 248 test images after data augmentation. Sample data from generated segmenta-

tion dataset is presented in Figure 4.5. It should be noted that dataset also contains

images belonging to only a single class.

Figure 4.5: Sample data from generated segmentation dataset

4.2.2.2 Experimental Setup

FCN8s and its variants were trained for semantic image segmentation in satellite im-

ages using Tensorflow framework on a single GPU, nVidia GTX1060 (6GB). For full

FCN8s implementations, batch size was selected as 2, where for the reduced and

modified FCN8s versions the batch size was kept at 4. In addition, cross entropy

loss function is used with stochastic gradient descend (SGD) optimization along with

dropout ratio at 0.5 and learning rate 1E-6, constant throughout the training for all

experiments.

The proposed networks given in Table 4.13 were trained with the given order for

natural area segmentation in satellite images.

4.2.2.3 Results

Reduced FCN8s (VGG10+upsampling) with 3x3 filter size was trained from scratch

using seg2248 dataset for 24 hours on 6 GB GTX 1060 GPU. Table 4.14 presents the

67

precision and recall rates for each class. Precision and recall indicators are calculated

as in Equation 4.1.

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(4.1)

where TP, TN, and FN stand for True positive, True Negative, and False Negative,

respectively.

Table 4.14: Precision and Recall values of seg2248 dataset trained on reduced FCN8s
(VGG10) network from scratch

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Average
Recall 0.858 0.233 0.803 0.701 0.726 0.721 0.779 0.431 0.581 0.815 0.665

Precision 0.821 0.583 0.813 0.716 0.902 0.775 0.771 0.967 0.703 0.681 0.773

The results show that cultivated land recall and precision rates are the worst among

the other classes, even though very similar classes such as ’sea’ and ’lake’ have much

higher accuracy.

Another FCN8s network with VGG10 is trained using larger convolutional filters

(5x5) instead of 3x3 filters to have larger receptive field because the images in the

natural area segmentation problem usually contains smooth shapes with about three

or four large portions for each class in a scene. The results given in Table 4.15 shows

that larger receptive field size helped the network segment ’cultivated land’ better

and have higher recall for other classes as well, except ’lake’, ’rock’ and ’other’.

However, while the average recall rate is increased by 10%, classes ’waterway’ and

’barren land’ had lower precision, resulting in average precision is reduced by 3%.

Table 4.15: Precision and Recall values of seg2248 dataset trained on modified
FCN8s (VGG10 with 5x5 convolutional filters) network from scratch

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Average
Recall 0.852 0.416 0.771 0.675 0.731 0.767 0.765 0.474 0.713 0.786 0.695

Precision 0.882 0.592 0.849 0.768 0.951 0.754 0.774 0.874 0.674 0.718 0.784

Next, 3 more layers added and VGG13 with convolutional kernel size 5x5 was trained

in a reduced FCN8s from scratch. After training the network, the results in Table

4.16 show that further increasing network depth with 5x5 filters did not have any

significant contribution. In fact, average recall is worse than even the first proposed

68

network with 3x3 filters. Hence, this result indicates that the network has larger

number of weights than the training set could train.

In order to benefit from the pretrained VGG16, another network is designed by us-

ing VGG16 with ImageNet trained weights and 3 consecutive deconvolutional layers,

without any connection from pool4 and pool3 features. Not connecting pooling fea-

tures during upsampling the pixel-wise classification has less parameters to be trained.

Since seg2248 dataset consists of multispectral images with 4 channels, directly im-

porting the ImageNet pretrained weights to the network is not possible, since Ima-

geNet data contains 3 channel images. The problem occurs with the first layer con-

volutional filter due to the input channel differences. Therefore, pretrained weights

were imported to the network except the first layer convolutional filters, which are

randomly initialized. The recall and precision metrics are presented in Table 4.17.

The average recall and precision show that fine-tuning the pretrained weights with

bilinear initialized deconvolutional layers gave the most accurate performance when

compared to previously proposed approaches.

Finally, the original FCN8s network along with pool4 and pool3 feature skip connec-

tions was trained both from scratch using seg2248 dataset and over ImageNet pre-

trained weights. FCN8s network fine-tuned over ImageNet pretrained weights with

seg2248 dataset results are presented in Table 4.18.

As in the previous networks, ’cultivated land’ class has the poorest recall rate and

second poorest precision rate after ’waterway’ class in the fine-tuned network. In ad-

dition, fine-tuned FCN8s has the highest recall rate, but has precision 2% less than

FCN8s without pooling connections. However, the effect of pooling feature connec-

tion can be observed clearly in Figure 4.9 that the network with higher resolution

pooling feature connections can learn the boundary shape better.

In order to compare the effect of using pretrained network on remote sensing se-

Table 4.16: Precision and Recall values of seg2248 dataset trained on modified
FCN8s (VGG13 with 5x5 convolutional filters) network from scratch

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Average
Recall 0.817 0.272 0.908 0.523 0.737 0.329 0.843 0.459 0.694 0.797 0.638

Precision 0.857 0.573 0.727 0.796 0.957 0.872 0.664 0.795 0.658 0.689 0.759

69

Table 4.17: Precision and Recall values of seg2248 dataset fine-tuned ImageNet pre-
trained FCN8s (no skip connection) network

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Average
Recall 0.955 0.753 0.893 0.848 0.884 0.847 0.813 0.734 0.796 0.779 0.830

Precision 0.876 0.718 0.918 0.787 0.905 0.834 0.862 0.833 0.776 0.881 0.839

mantic segmentation performance, FCN8s was trained also from randomly initialized

weights. Training such a large network from scratch took 48 hours on 6 GB GTX

1060 GPU. The confusion matrix for randomly initialized network is given in Table

4.19. Average recall of this network is calculated as 0.699 with average precision

0.767. It can be concluded that using pretrained weights significantly improves the

accuracy, especially training with a small dataset, such as satellite images even with-

out using feature skip connections.

From confusion matrix given in Table 4.19, it can be observed that between similar

classes such as ’sea’, ’lake’, ’river’, and ’waterway’ the confusion rate is quite high,

as expected. Due to the fact that labeled pixel number is smaller than unlabeled pixel

number in most of the images in the dataset, ’other’ class dominates the network

decision mechanism.

Small sized natural areas, such as ’river’, and ’waterway’, are the most difficult classes

to be segmented by FCN8s model because the spatial information might got lost by

the network during pooling operations. However, results of the conducted experi-

ments indicate that using pretrained weights is more beneficial than training shallow

networks from scratch. Fine-tuned FCN8s is obviously more accurate than the net-

work trained from scratch due to the small amount of the data in the training set.

Hence, ImageNet pretrained weights boost FCN8s network to segment natural areas

in satellite images more accurately. The results of the experiments are combined in

Table 4.20.

Table 4.18: Precision and Recall values of seg2248 fine-tuned ImageNet pretrained
FCN8s network

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Average
Recall 0.969 0.602 0.871 0.874 0.936 0.891 0.892 0.829 0.842 0.744 0.845

Precision 0.911 0.705 0.929 0.687 0.926 0.807 0.764 0.921 0.687 0.852 0.818

70

Table 4.19: Confusion matrix for FCN8s image segmentation network trained with
seg2248 dataset from scratch

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Recall
Sea 4658806 31378 301329 4525 591 6767 26932 4052 8714 382173 0.859

Cultv. L. 135351 2577323 197145 6951 6237 113089 8839 1895 387375 1172539 0.559
Lake 293869 160877 3391115 1657 6337 11583 615 3994 11795 290218 0.813
Rock 1686 6236 269 2108922 186 34246 8798 1886 56658 761826 0.708
River 6543 14638 47842 434 429478 1961 82 2516 15648 126006 0.666
Forest 7915 55053 4880 31265 336 4796853 139 1772 55830 1212715 0.778

Shoreline 44028 5475 1381 7867 118 1798 1154696 659 130493 341431 0.684
Waterway 622 3112 653 234 3651 1824 467 245796 28757 257957 0.453
Barren L. 8435 214467 5764 17163 2139 79119 76718 8522 5100268 1684826 0.709

Other 75276 116408 52071 62824 198 40895 9202 6431 416430 5527794 0.761
Precision 0.821 0.705 0.795 0.752 0.869 0.797 0.771 0.754 0.703 0.710

Table 4.20: Precision and Recall values of all proposed networks
Reduced FCN8s (VGG10+upsampling)

Class Sea Cultivated Land Lake Rock River Forest Shoreline Waterway Barren Land Other Average
Recall 0.858 0.233 0.803 0.701 0.726 0.721 0.779 0.431 0.581 0.815 0.665

Precision 0.821 0.583 0.813 0.716 0.902 0.775 0.771 0.967 0.703 0.681 0.773
Reduced FCN8s (VGG10 (5x5)+upsampling)

Recall 0.852 0.416 0.771 0.675 0.731 0.767 0.765 0.474 0.713 0.786 0.695
Precision 0.882 0.592 0.849 0.768 0.951 0.754 0.774 0.874 0.674 0.718 0.784

Modified FCN8s (VGG13 (5x5)+upsampling)
Recall 0.817 0.272 0.908 0.523 0.737 0.329 0.843 0.459 0.694 0.797 0.638

Precision 0.857 0.573 0.727 0.796 0.957 0.872 0.664 0.795 0.658 0.689 0.759
FCN8s - fine-tuned over ImageNet weights (no skip connection)

Recall 0.955 0.753 0.893 0.848 0.884 0.847 0.813 0.734 0.796 0.779 0.830
Precision 0.876 0.718 0.918 0.787 0.905 0.834 0.862 0.833 0.776 0.881 0.839

FCN8s - fine-tuned over ImageNet weights
Recall 0.969 0.602 0.871 0.874 0.936 0.891 0.892 0.829 0.842 0.744 0.845

Precision 0.911 0.705 0.929 0.687 0.926 0.807 0.764 0.921 0.687 0.852 0.818
FCN8s - trained from scratch

Recall 0.859 0.559 0.813 0.708 0.666 0.778 0.684 0.453 0.709 0.661 0.699
Precision 0.821 0.705 0.795 0.752 0.869 0.797 0.771 0.754 0.703 0.710 0.767

71

Figure 4.6: Sample outputs. Left - VGG10 (3x3), Right - VGG10 (5x5)

72

Figure 4.7: Sample outputs. Left - VGG10 (5x5), Right - VGG13 (5x5)

73

Figure 4.8: Sample outputs. Left - VGG13 (5x5), Right - FCN8s without pooling

connections

74

Figure 4.9: Sample outputs. Left - FCN8s without pooling connections, Right - orig-

inal FCN8s. Both networks are ImageNet pretrained.

75

Figure 4.10: Sample outputs. Left - original FCN8s with ImageNet pretrained

weights, Right - original FCN8s trained from scratch with seg2248 dataset

76

Figure 4.11: Sample output of FCN8s network fine-tuned with seg2248 dataset

77

78

CHAPTER 5

GEOSPATIAL OBJECT ANALYSIS USING DEEP NETWORKS

Small object detection from satellite images is one of the primary tasks of remote

sensing image analysis. In general, man-made objects, such as airplanes, buildings,

roads, ships, and vehicles are the main objects of interest in geospatial target de-

tection. Although ImageNet competitions helped a rapid advance in general object

detection research, the main difference and cause of difficulty of the object detection

in satellite images is due to the relatively small size of the targets in remotely sensed

images; i.e., typically about 20-50 pixels width and height for the satellites whose

ground sampling distance is between 2.5m to 50cm. However on the positive side,

there is not only a small variation in the observation angle, allowing to estimate the

pixel sizes of the objects of interest in advance, but also no affine deformation of the

objects due to oblique viewing of the scene.

As discussed in Chapter 3, a CNN based network named "You Only Look Once

(YOLO)", a learning based detection technique, gives quite promising results and

hence, is selected for object detection problem and tested using multispectral satellite

images. The examined architecture and its corresponding experimental results are

presented in this chapter.

5.1 Proposed Network

During object detection experiments, a modified version of YOLOv2 is utilized to

analyze the limits of the performance of geospatial object detection. For this purpose,

original YOLOv2 network is trained first for classification task with ImageNet1000

79

Table 5.1: Networks trained to detect Building and Aircraft Objects in Remote Sens-
ing Images. B is the number of color bands used as input

t-yolo7-2c t-yolo13-2c t-yolo19-2c t-yolo23-2c
input layer 224x224xB 416x416xB 608x608xB 736x736xB
c1-(3,16) 224x224x16 416x416x16 608x608x16 736x736x16
m1-(2,2) 112x112x16 208x208x16 304x304x16 368x368x16
c2-(3,32) 112x112x32 208x208x32 304x304x32 368x368x32
m2-(2,2) 56x56x32 104x104x32 152x152x32 184x184x32
c3-(3,64) 56x56x64 104x104x64 152x152x64 184x184x64
m3-(2,2) 28x28x64 52x52x64 76x76x64 92x92x64

c4-(3,128) 28x28x128 52x52x128 76x76x128 92x92x128
m4-(2,2) 14x14x128 26x26x128 38x38x128 46x46x128

c5-(3,256) 14x14x256 26x26x256 38x38x256 46x46x256
m5-(2,2) 7x7x256 13x13x256 19x19x256 46x46x256

c6-(3,512) 7x7x512 13x13x512 19x19x512 46x46x512
m6-(2,1) 7x7x512 13x13x512 19x19x512 46x46x512

c7-(3,1024) 7x7x1024 13x13x1024 19x19x1024 23x23x1024
c8-(3,1024) 7x7x1024 13x13x1024 19x19x1024 23x23x1024
output layer 7x7x21 13x13x21 19x19x21 23x23x21

dataset, then modified and trained for detection with PASCAL VOC dataset. The

classification network, namely Darknet-19, is used as baseline for YOLOv2, which

has total 19 convolutional, 5 maxpool operations with stride 2 and 1 global average

pooling layer.

The final version of YOLOv2 is capable of detecting 9,000 objects in general (non-

aerial) images and it has a low-complexity to be used as real-time object detector. On

the other hand, a smaller version of YOLOv2 called as tiny-YOLO network is also

available that is trained for 80 class object detection task. This smaller network has

416x416x3 input layer, 8 convolutional layers with kernel size 3, 5 maxpooling layers

with kernel size 2 and stride 2, 1 maxpooling layer with kernel size 2 but stride 1, and

13x13x(N*(C+5)) output map, where N is the number of anchor boxes used and C

indicates the number of classes. The output of this network is 5 dimensional where

these 5 dimensions represent the prediction box parameters, which are height, width,

x and y values of the center point of the boxes and a confidence value.

Since tiny-YOLOv2 network is designed to detect PASCAL VOC classes and per-

80

Table 5.2: Proposed smaller network trained to detect only Aircraft in Remote Sens-
ing Images

verytiny-yolo23-1c
input layer 368x368xB
c1-(3,16) 368x368x16
m1-(2,2) 184x184x16
c2-(3,32) 184x184x32
m2-(2,2) 92x92x32
c3-(3,64) 92x92x64
m3-(2,2) 46x46x64

c4-(3,128) 46x46x128
m4-(2,2) 23x23x128

c5-(3,256) 23x23x256
c6-(3,256) 23x23x256

output layer 23x23x18

forms excellent in that dataset, it struggles when the image contains numerous smaller

objects, such as buildings and airplanes, that are quite close to each other. In order

to solve this issue, the output map size should be increased. This extension can be

achieved by either increasing the input size of the network, or decreasing the depth

of the network by removing one or more pooling layer. Moreover, the number of the

utilized anchor boxes were reduced from default number 5 to 3 in the tests, while pre-

dicting the bounding boxes, since the size of the objects to be detected in this study

does not vary significantly. The trained tiny-YOLOv2 with different output map sizes

are given in Table 5.1. In order to show that a network with larger output map size

performs more accurate than a network which is deeper but has smaller output map

size, the network in Table 5.2 is proposed.

5.2 Experiments and Results

In this section, training a CNN based object detection method (YOLOv2) for geospa-

tial object analysis is discussed in detail.

81

5.2.1 Dataset Generation for Object Detection

A new dataset is generated from WorldView-2 and GeoEye-1 satellite images and

aircraft, building and ship ground-truth information is provided by manual labeling.

For this purpose, several 4-band raster images with sizes around 20,000x20,000x4 are

used in order to extract the image patches to be used as input to proposed networks.

These satellite images have 0.46m x 0.46m spatial resolution with Red, Green, Blue

and Near-InfraRed wavelengths. 3 datasets (named as Aircraft,Ship, and Urban, re-

spectively) are generated for the task.

Image patches containing more than 10 buildings are assigned to Urban dataset. In

addition, Aircraft and Ship datasets are generated with images containing at least 1

aircraft, or 1 ship, but there is no upper limit. Since the sizes objects to be detected

vary from several meters up to 90 meters maximum, the image sizes are selected to

be 250 meter per 250 meter, which corresponds to 500x500x4 in pixels.

Urban training set contains 1,254 images of size 500x500x4 with 19,715 annotated

building objects whereas Aircraft training set contains 1,535 images with 8,313 an-

notated airplanes and Ship training set contains 2,096 images with 10,887 annotated

ships in total. Two other datasets are obtained after combining Aircraft + Urban

training sets first and then Aircraft + Ship training sets to be used in 2-class detection

network training.

In order to observe the effect of the NIR band to the detection performance, RGB

versions of the above 3 single class datasets are generated by excluding N-IR band.

Sample training images are presented in Figure 5.1.

5.2.2 Experimental Setup

In order to show that increasing output map size also increases the performance of

detecting smaller objects, several tiny YOLOv2 networks with different output map

sizes were trained.

Tensorflow implementation of YOLO (i.e. Darkflow) is used for this study and mod-

ified for this purpose. Two separate computers with nVidia GTX 1080 (8 GB) and

82

Figure 5.1: Sample training set images of classes ’aircraft’ on the left, ’building’ in

the middle, and ’ship’ on the right column

GTX 1060 (6 GB) are used during the experiments. The batch sizes are kept constant

at the maximum number that GPUs could support with slowly varying learning rate

from 1E-3 to 1E-6. Table 5.3 summarizes the training properties of YOLOv2 used in

our experiments while training in Darkflow framework.

5.2.3 Experimental Results for Object Detection

The networks in Table 5.1 are trained with Aircraft-Urban combined dataset and the

results show that as the output size of the network increases, the performance of

detecting smaller objects is getting better, as can be observed in Table 5.4. Sample

detection results of this Aircraft-Urban network is given in Figure 5.2 F1 score is

calculated as in Equation 5.1.

83

Table 5.3: Training properties of YOLOv2 used in this study

Properties YOLOv2 tiny-YOLOv2
batch-norm YES YES

hi-res classifier YES NO
convolutional YES YES
anchor boxes YES YES

dimension priors YES YES
location prediction YES YES

passthrough YES NO
multi-scale YES NO

hi-res detector YES NO
adaptive learning rate YES YES

F1 =
2(Recall)(Precision)

(Recall + Precision)
(5.1)

Both networks of 3-band input and 4-band input increases their capacity of detecting

true positive significantly around 30 percent by slightly reducing the number of false

positive with the increased resolution in the output map. Moreover, the networks that

are fine-tuned with pretrained weights using only RGB data provide better results

when compared to the networks trained from the scratch using all RGB and NIR data

in the input.

In addition, Aircraft-Ship combined two-class dataset is used to train 23x23 output

size tiny-YOLOv2 network to observe if two objects having low probability to happen

Table 5.4: Results of the network trained with Aircraft-Urban dataset. The network
naming is (M)(N)(O)-(C)-(T): M is 3B/4B: num. of color band, N is T/VT: tiny or
verytiny YOLOv2, O is 7/13/19/23: output size, C is 2: num. of class and T is the
threshold of confidence

Network Recall Precision F1
4BT7-2-.5 0.1272 0.1286 0.1279
4BT13-2-.5 0.2297 0.4010 0.2921
4BT19-2-.2 0.3094 0.4160 0.3549
3BT7-2-.5 0.1730 0.1960 0.1838
3BT13-2-.5 0.3056 0.5069 0.3813
3BT19-2-.2 0.4538 0.5126 0.4814

84

Table 5.5: Results of the network trained with Aircraft-Ship dataset and tested only
single class detection

Network Test Set Recall Precision F1
4BT23-2-.3 aircraft only 0.7921 0.8364 0.8134
4BT23-2-.1 ship only 0.3874 0.3783 0.3824
4BT23-2-.3 both 0.4732 0.6592 0.5514

to be in the same scene could be detected as accurate as a single class network. Results

in Table 5.5 shows the two-class detection test performance of the network. Sample

detection results of Aircraft-Ship trained network is given in Figure 5.3.

Table 5.5 also gives the recall, precision, and F1 score of the above trained network

tested only a single class detection. It is observed that ship object has lower recall and

precision rate than aircraft detection.

The proposed network in Table 5.2 is trained for a single class only by using Aircraft

dataset in order to observe whether decreasing the number of layers in the network

but increasing the input and output map size improves the recall and precision or not.

The results in Table 5.6 shows that keeping the depth constant but increasing the

resolution of the network increases the F1 score as expected. On the other hand, the

proposed larger output map network with smaller number of layers, 4BVT23-1, has

higher F1 score when compared to deeper but smaller output map 4BT19-1 network.

This result means that by spending less memory, the performance of detection can be

increased by using larger output map size.

Another result of these experiments is that 3-band networks with pretrained weights

Table 5.6: Results of the networks for only Aircraft detection

Network Recall Precision F1
3BT19-2-.2 0.7394 0.6892 0.7134
4BT19-2-.2 0.6865 0.6263 0.6550
3BT19-1-.2 0.7964 0.7071 0.7491
4BT19-1-.2 0.7583 0.6526 0.7015
3BT23-1-.2 0.8273 0.7661 0.7955
4BT23-1-.2 0.8149 0.8638 0.8386

4BVT23-1-.2 0.6979 0.7439 0.7202

85

Table 5.7: Single detection result of the network trained with Ship dataset

Network Recall Precision F1
4BT23-1-.3 0.4142 0.4933 0.4486

outperforms the 4-band networks which are trained from scratch. At last, 2-class

trained networks 3BT19-2 and 4BT19-2 are less accurate to detect only aircrafts when

compared to the single class trained networks 3BT19-1 and 4BT19-1. One result

worth to note is that 3BT19-2 network has higher F1 score than 4BT19-1, which in-

dicates the generalization ability of using pretrained weights. Besides, it is confirmed

that aircraft only trained and tested network is more accurate to detect objects than

aircraft-building and aircraft-ship trained but only aircraft object tested networks.

Finally, ship-only network is trained and tested for single class detection. The results

are presented in Table 5.7. The reason of low F1 score for both building and ship de-

tection in one or two-class networks is that these objects are found in a scene that has

high textural complexity with many shapes and other objects, whereas the aircrafts

are found in places where the terrain and scene does not have complex other objects

or shapes.

86

Figure 5.2: Sample output images of 3BT19-2-.2 network, ’aircraft’ on the left and

’building’ on the right

87

Figure 5.3: Sample output images of 4BT23-2-.2 network, ’aircraft’ on the left and

’ship’ on the right

88

CHAPTER 6

CONCLUSIONS

6.1 Summary

Convolutional neural networks are proven to outperform the traditional techniques

in many applications, including remote sensing image analysis. Training a CNN re-

quires a proper selection of hyperparameter set, which can be obtained using hyper-

parameter optimization methods such as grid search, random search or Bayesian hy-

perparameter optimization. Even though the deeper networks are believed to perform

better, improper selection of hyperparameters and optimization methods could yield

a worse performance when compared to a shallower but properly trained network.

Moreover, increasing the depth of the network requires increasing amount of data in

the training set. Therefore, using pretrained networks for remote sensing image anal-

ysis is a good idea because it is very difficult to obtain huge amount of labeled remote

sensing dataset.

In this study, image scene classification architectures are examined for satellite im-

ages. Several parameters of CNN architectures including depth of network and CNN

architecture are tuned to gain insight about training a CNN. Later, semantic im-

age segmentation task is performed for the same topic. It is shown one more time

that pretrained weights boost the performance of remote sensing image analysis. At

last, geospatial object detection network is trained to detect ’airplane’, ’building’ and

’ship’ classes. It is noted one more time that fine-tuning an ImageNet1000 pretrained

network results in to be more accurate than a network trained from scratch, even

though an additional information is available as 4th channel (Near Infra-Red band).

89

6.2 Conclusion

The conclusions that can be drawn from the experiments in this thesis can be stated

as follows:

CNN architecture are powerful classifiers, detectors, and segmentation algorithms

even for satellite images with relatively small resolutions.

One of the most important conclusions of this study is that if one has a relatively small

labeled dataset for a learning problem, such as remote sensing image analysis, using

pretrained networks significantly and consistently performs better than its shallower

variants that are trained from scratch.

During this thesis, it has been observed that special attention should be given to the

training stage of such deep networks.

Based on the experimental results, learning rate should be selected properly to train

a network to the global optimum. Smaller learning rates resulted in longer training

time, while larger ones resulted the network got stuck on a local minimum. Therefore,

gradually decreasing the learning rate is usually the best option.

Dropout could be tried with 0.5 probability to avoid overfitting; however it cannot

be stated that 0.5 dropout ratio is the default choice for remote sensing applications.

Moreover, keeping the convolutional filter size as small as possible while increasing

the depth of the network always gave the best results in all experiments.

Max pooling is the most useful selection of activation function rather than average

pooling for deep learning in remote sensing applications since neurons do not suffer

from saturating unlike other functions such as sigmoid or hyperbolic tangent.

Fully connected layers bring network a heavy burden of trainable parameters whereas

convolutional layer filters bring significantly less number of trainable parameter bur-

den to the network. Moreover, deeper networks can extract more semantic informa-

tion. Therefore, increasing the depth of the network should be performed by adding

more convolutional layers with pooling operation afterwards rather than adding fully

connected layers before the output layer.

90

In addition to those, fully connected layers can be replaced with 1x1 convolutional

layers, enabling the network perform pixel-wise classification with deconvolutional

networks at the output map. Moreover, fusing higher resolution features into decon-

volutional network outputs refines the boundary shapes of the segmented areas.

On the other hand, for object detection using bounding boxes task, multiclass net-

works cannot learn as accurate as single class networks. Detection of objects (air-

crafts and ships) that have low probability to be found in the same image can be

performed more accurately with two separate networks trained for single class. How-

ever, this costs 2 network training time and 2 network parameter storage concern.

Therefore, one network for these two classes can be trained and used with slightly

accuracy trade-off.

6.3 Future Works

Deep learning algorithms such as CNNs result in remarkable results in computer vi-

sion and remote sensing tasks. The attractive parts of such algorithms is that the

pretrained networks such as ImageNet1000 trained AlexNet, VGGNet, GoogLeNet

etc. are capable of generalizing for other domains such as remote sensing. As fu-

ture studies, first of all, handmade ground truth information for classification (ekil-

ialan), segmentation (seg2248), and detection (Aircraft, Ship, Urban) datasets should

be refined and corrected. Training the classification base network of both semantic

segmentation and detection networks could be trained beforehand using a handmade

generated remote sensing classification dataset such as UCML. CRF post-processing

could be applied just after the segmentation output to have better boundary shapes.

Similar to the approach used in segmentation task, higher resolution pooling features

could be fused in the detection output map as heavily utilized in SSD network.

91

92

REFERENCES

[1] Hai Wang, Yingfeng Cai, and Long Chen, “A vehicle detection algorithm
based on deep belief network,” vol. 2014, pp. 647380, 05 2014.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds., pp. 1097–1105. Curran Associates, Inc., 2012.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[4] X. Yao, J. Han, G. Cheng, X. Qian, and L. Guo, “Semantic annotation of
high-resolution satellite images via weakly supervised learning,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3660–3671,
June 2016.

[5] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature selec-
tion for remote sensing scene classification,” IEEE Geoscience and Remote
Sensing Letters, vol. 12, no. 11, pp. 2321–2325, Nov 2015.

[6] G. Cheng, J. Han, L. Guo, Z. Liu, S. Bu, and J. Ren, “Effective and effi-
cient midlevel visual elements-oriented land-use classification using vhr re-
mote sensing images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 8, pp. 4238–4249, Aug 2015.

[7] A. M. Cheriyadat, “Unsupervised Feature Learning for Aerial Scene Classifi-
cation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, pp.
439–451, Jan. 2014.

[8] Gong Cheng, Junwei Han, Peicheng Zhou, and Lei Guo, “Multi-class geospa-
tial object detection and geographic image classification based on collection of
part detectors,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.
98, pp. 119 – 132, 2014.

[9] X. Zheng, X. Sun, K. Fu, and H. Wang, “Automatic annotation of satellite
images via multifeature joint sparse coding with spatial relation constraint,”
IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 4, pp. 652–656,
July 2013.

93

[10] Guofeng Sheng, Wen Yang, Tao Xu, and Hong Sun, “High-resolution satellite
scene classification using a sparse coding based multiple feature combination,”
International Journal of Remote Sensing, vol. 33, no. 8, pp. 2395–2412, 2012.

[11] Yi Yang and Shawn Newsam, “Bag-of-visual-words and spatial extensions for
land-use classification,” in Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, New York, NY,
USA, 2010, GIS ’10, pp. 270–279, ACM.

[12] Xiaoxiao Li and Guofan Shao, “Object-based urban vegetation mapping with
high-resolution aerial photography as a single data source,” International Jour-
nal of Remote Sensing, vol. 34, no. 3, pp. 771–789, 2013.

[13] Jason Walker and John Briggs, “An object-oriented approach to urban forest
mapping in phoenix,” vol. 73, pp. 577–583, 05 2007.

[14] J. A. dos Santos, O. A. B. Penatti, and R. da S. Torres, “Evaluating the po-
tential of texture and color descriptors for remote sensing image retrieval and
classification,” in VISAPP, Angers, France, May 2010.

[15] Weixun Zhou, Zhenfeng Shao, Chunyuan Diao, and Qimin Cheng, “High-
resolution remote-sensing imagery retrieval using sparse features by auto-
encoder,” Remote Sensing Letters, vol. 6, no. 10, pp. 775–783, 2015.

[16] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional
neural networks for object detection in vhr optical remote sensing images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp.
7405–7415, Dec 2016.

[17] Peicheng Zhou, Gong Cheng, Zhenbao Liu, Shuhui Bu, and Xintao Hu,
“Weakly supervised target detection in remote sensing images based on trans-
ferred deep features and negative bootstrapping,” Multidimensional Syst. Sig-
nal Process., vol. 27, no. 4, pp. 925–944, Oct. 2016.

[18] Z. Shi, X. Yu, Z. Jiang, and B. Li, “Ship detection in high-resolution optical
imagery based on anomaly detector and local shape feature,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 52, no. 8, pp. 4511–4523, Aug
2014.

[19] T. R. Martha, N. Kerle, C. J. van Westen, V. Jetten, and K. V. Kumar, “Seg-
ment optimization and data-driven thresholding for knowledge-based landslide
detection by object-based image analysis,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 49, no. 12, pp. 4928–4943, Dec 2011.

[20] André Stumpf and Norman Kerle, “Object-oriented mapping of landslides
using random forests,” Remote Sensing of Environment, vol. 115, no. 10, pp.
2564 – 2577, 2011.

94

[21] Thomas Blaschke and Josef Strobl, “Whats wrong with pixels? some recent
developments interfacing remote sensing and gis,” vol. 14, pp. 12 – 17, 06
2001.

[22] T. Blaschke, “Object based image analysis for remote sensing,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 65, no. 1, pp. 2 – 16, 2010.

[23] Thomas Blaschke, Geoffrey J. Hay, Maggi Kelly, Stefan Lang, Peter Hofmann,
Elisabeth Addink, Raul Queiroz Feitosa, Freek van der Meer, Harald van der
Werff, Frieke van Coillie, and Dirk Tiede, “Geographic object-based image
analysis towards a new paradigm,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 87, pp. 180 – 191, 2014.

[24] Otávio Augusto Bizetto Penatti, Keiller Nogueira, and Jefersson Alex dos San-
tos, “Do deep features generalize from everyday objects to remote sensing and
aerial scenes domains?,” in CVPR Workshops. 2015, pp. 44–51, IEEE Com-
puter Society.

[25] Michael J. Swain and Dana H. Ballard, “Color indexing,” Int. J. Comput.
Vision, vol. 7, no. 1, pp. 11–32, Nov. 1991.

[26] Yi Yang and Shawn D. Newsam, “Comparing sift descriptors and gabor tex-
ture features for classification of remote sensed imagery,” 2008 15th IEEE
International Conference on Image Processing, pp. 1852–1855, 2008.

[27] Xin Huang, Liangpei Zhang, and Le Wang, “Evaluation of morphological
texture features for mangrove forest mapping and species discrimination using
multispectral IKONOS imagery,” IEEE Geosci. Remote Sensing Lett., vol. 6,
no. 3, pp. 393–397, 2009.

[28] G. Cheng, J. Han, L. Guo, and T. Liu, “Learning coarse-to-fine sparselets for
efficient object detection and scene classification,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015, pp. 1173–
1181.

[29] David G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[30] Aude Oliva and Antonio Torralba, “Modeling the shape of the scene: A holis-
tic representation of the spatial envelope,” Int. J. Comput. Vision, vol. 42, no.
3, pp. 145–175, May 2001.

[31] Navneet Dalal and Bill Triggs, “Histograms of oriented gradients for human
detection,” in In CVPR, 2005, pp. 886–893.

[32] R. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image
classification,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 3,
no. 6, 1973.

95

[33] Anil K. Jain, Nalini K. Ratha, and Sridhar Lakshmanan, “Object detection
using gabor filters,” Pattern Recognition, vol. 30, no. 2, pp. 295 – 309, 1997.

[34] Yan Ke and Rahul Sukthankar, “Pca-sift: A more distinctive representation for
local image descriptors,” in Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Washington, DC,
USA, 2004, CVPR’04, pp. 506–513, IEEE Computer Society.

[35] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “Surf: Speeded up robust
features,” in In ECCV, 2006, pp. 404–417.

[36] Zuyu Zhang Yonglin Shen Bin Zhang, Yueyan Liu, “Land use and land cover
classification for rural residential areas in china using soft-probability cascad-
ing of multifeatures,” Journal of Applied Remote Sensing, vol. 11, pp. 11 – 11
– 17, 2017.

[37] Z. Li and L. Itti, “Saliency and gist features for target detection in satellite
images,” IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2017–
2029, July 2011.

[38] J. Yin, H. Li, and X. Jia, “Crater detection based on gist features,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 8, no. 1, pp. 23–29, Jan 2015.

[39] Wanceng Zhang, Xian Sun, Kun Fu, Chenyuan Wang, and Hongqi Wang, “Ob-
ject detection in high-resolution remote sensing images using rotation invariant
parts based model,” IEEE Geosci. Remote Sensing Lett., vol. 11, no. 1, pp. 74–
78, 2014.

[40] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–
987, Jul 2002.

[41] Jianfeng Ren, Xudong Jiang, and Junsong Yuan, “Learning lbp structure by
maximizing the conditional mutual information,” Pattern Recogn., vol. 48, no.
10, pp. 3180–3190, Oct. 2015.

[42] S. Chaib, Y. Gu, and H. Yao, “An informative feature selection method based
on sparse pca for vhr scene classification,” IEEE Geoscience and Remote Sens-
ing Letters, vol. 13, no. 2, pp. 147–151, Feb 2016.

[43] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, “Stacked convolu-
tional denoising auto-encoders for feature representation,” IEEE Transactions
on Cybernetics, vol. 47, no. 4, pp. 1017–1027, April 2017.

[44] I.T. Jolliffe, Principal Component Analysis, Springer Verlag, 1986.

96

[45] Bruno A. Olshausen and David J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by v1?,” Vision Research, vol. 37, no. 23, pp.
3311 – 3325, 1997.

[46] G E Hinton and R R Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, July 2006.

[47] Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma,
“Pcanet: A simple deep learning baseline for image classification?,” CoRR,
vol. abs/1404.3606, 2014.

[48] K. Qi, H. Wu, C. Shen, and J. Gong, “Land-use scene classification in high-
resolution remote sensing images using improved correlatons,” IEEE Geo-
science and Remote Sensing Letters, vol. 12, no. 12, pp. 2403–2407, Dec 2015.

[49] Y. Zhang, X. Sun, H. Wang, and K. Fu, “High-resolution remote-sensing
image classification via an approximate earth mover’s distance-based bag-of-
features model,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 5,
pp. 1055–1059, Sept 2013.

[50] Bei Zhao, Yanfei Zhong, and Liangpei Zhang, “A spectralstructural bag-of-
features scene classifier for very high spatial resolution remote sensing im-
agery,” vol. 116, pp. 73–85, 06 2016.

[51] Kunlun Qi, Zhang Xiaochun, Wu Baiyan, and Wu Huayi, “Sparse coding-
based correlaton model for land-use scene classification in high-resolution
remote-sensing images,” vol. 10, pp. 042005, 06 2016.

[52] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained
linear coding for image classification,” in 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, June 2010, pp. 3360–
3367.

[53] F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learn-
ing for scene classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 4, pp. 2175–2184, April 2015.

[54] Fan Hu, Gui-Song Xia, Jingwen Hu, and Liangpei Zhang, “Transferring deep
convolutional neural networks for the scene classification of high-resolution
remote sensing imagery,” Remote Sensing, vol. 7, no. 11, pp. 14680–14707,
2015.

[55] F. Zhang, B. Du, and L. Zhang, “Scene classification via a gradient boosting
random convolutional network framework,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, no. 3, pp. 1793–1802, March 2016.

[56] Wenzhi Zhao and Shihong Du, “Scene classification using multi-scale deeply
described visual words,” International Journal of Remote Sensing, vol. 37, no.
17, pp. 4119–4131, 2016.

97

[57] Francois P. S. Luus, Brian P. Salmon, Frans van den Bergh, and Bodhaswar T.
Maharaj, “Multiview deep learning for land-use classification,” IEEE Geo-
science and Remote Sensing Letters, vol. 12, pp. 2448–2452, 2015.

[58] Dimitrios Marmanis, Mihai Datcu, Thomas Esch, and Uwe Stilla, “Deep
learning earth observation classification using imagenet pretrained networks.,”
IEEE Geosci. Remote Sensing Lett., vol. 13, no. 1, pp. 105–109, 2016.

[59] Martin Längkvist, Andrey Kiselev, Marjan Alirezaie, and Amy Loutfi, “Clas-
sification and segmentation of satellite orthoimagery using convolutional neu-
ral networks,” Remote Sensing, vol. 8, no. 4, 2016.

[60] Marco Castelluccio, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva,
“Land use classification in remote sensing images by convolutional neural net-
works,” CoRR, vol. abs/1508.00092, 2015.

[61] Keiller Nogueira, Otávio Augusto Bizetto Penatti, and Jefersson Alex dos San-
tos, “Towards better exploiting convolutional neural networks for remote sens-
ing scene classification,” CoRR, vol. abs/1602.01517, 2016.

[62] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, “A fast learning
algorithm for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–
1554, July 2006.

[63] Ruslan Salakhutdinov and Geoffrey Hinton, “An efficient learning procedure
for deep boltzmann machines,” Neural Comput., vol. 24, no. 8, pp. 1967–2006,
Aug. 2012.

[64] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol, “Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, pp. 3371–3408, Dec. 2010.

[65] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[66] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich, “Going deeper with convolutions,” CoRR, vol. abs/1409.4842, 2014.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual
learning for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[68] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle, “Greedy
layer-wise training of deep networks,” in Proceedings of the 19th Inter-
national Conference on Neural Information Processing Systems, Cambridge,
MA, USA, 2006, NIPS’06, pp. 153–160, MIT Press.

98

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Spatial pyramid
pooling in deep convolutional networks for visual recognition,” CoRR, vol.
abs/1406.4729, 2014.

[70] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton, “Deep learning,” Na-
ture, vol. 521, no. 7553, pp. 436–444, 2015.

[71] Lucas Assirati, Alexandre Souto Martinez, and Odemir Martinez Bruno,
“Satellite image classification and segmentation using non-additive entropy,”
CoRR, vol. abs/1401.2416, 2014.

[72] N. P. Deepika and K. Vishnu, “Different techniques for satellite image seg-
mentation,” in 2015 Online International Conference on Green Engineering
and Technologies (IC-GET), Nov 2015, pp. 1–6.

[73] Jamie Sherrah, “Fully convolutional networks for dense semantic labelling of
high-resolution aerial imagery,” CoRR, vol. abs/1606.02585, 2016.

[74] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler, M. Datcu, and U. Stilla,
“Semantic Segmentation of Aerial Images with AN Ensemble of Cnns,” ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
pp. 473–480, June 2016.

[75] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre, “Semantic seg-
mentation of earth observation data using multimodal and multi-scale deep
networks,” CoRR, vol. abs/1609.06846, 2016.

[76] S. Paisitkriangkrai, J. Sherrah, P. Janney, and A. van den Hengel, “Semantic
labeling of aerial and satellite imagery,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 9, no. 7, pp. 2868–2881,
July 2016.

[77] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural
networks for large-scale remote-sensing image classification,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 55, no. 2, pp. 645–657, Feb
2017.

[78] Pascal Kaiser, Jan Dirk Wegner, Aurélien Lucchi, Martin Jaggi, Thomas Hof-
mann, and Konrad Schindler, “Learning aerial image segmentation from on-
line maps,” CoRR, vol. abs/1707.06879, 2017.

[79] J. Zuo, G. Xu, K. Fu, X. Sun, and H. Sun, “Aircraft type recognition based
on segmentation with deep convolutional neural networks,” IEEE Geoscience
and Remote Sensing Letters, vol. 15, no. 2, pp. 282–286, Feb 2018.

[80] K. Chen, K. Fu, M. Yan, X. Gao, X. Sun, and X. Wei, “Semantic segmentation
of aerial images with shuffling convolutional neural networks,” IEEE Geo-
science and Remote Sensing Letters, vol. 15, no. 2, pp. 173–177, Feb 2018.

99

[81] Wenkai Zhang, Hai Huang, Matthias Schmitz, Xian Sun, Hongqi Wang, and
Helmut Mayer, “Effective fusion of multi-modal remote sensing data in a fully
convolutional network for semantic labeling,” Remote Sensing, vol. 10, no. 1,
2018.

[82] I. evo and A. Avramovi, “Convolutional neural network based automatic object
detection on aerial images,” IEEE Geoscience and Remote Sensing Letters,
vol. 13, no. 5, pp. 740–744, May 2016.

[83] Saikat Basu, Sangram Ganguly, Supratik Mukhopadhyay, Robert DiBiano,
Manohar Karki, and Ramakrishna R. Nemani, “Deepsat - A learning frame-
work for satellite imagery,” CoRR, vol. abs/1509.03602, 2015.

[84] Yanfei Zhong, Feng Fei, Yanfei Liu, Bei Zhao, Hongzan Jiao, and Liangpei
Zhang, “Satcnn: satellite image dataset classification using agile convolutional
neural networks,” Remote Sensing Letters, vol. 8, no. 2, pp. 136–145, 2017.

[85] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun, “Faster R-CNN:
towards real-time object detection with region proposal networks,” CoRR, vol.
abs/1506.01497, 2015.

[86] Zhang H. Zhang J. Han, Z. and X. Hu, “Fast aircraft detection based on re-
gion locating network in large-scale remote sensing images,” in 2017 IEEE
Conference on Image Processing (ICIP), 17-20 September 2017.

[87] Tomonori Yamamoto and Yoriko Kazama, “Ship detection leveraging deep
neural networks in worldview-2 images,” p. 39, 10 2017.

[88] Y. Long, Y. Gong, Z. Xiao, and Q. Liu, “Accurate object localization in remote
sensing images based on convolutional neural networks,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 55, no. 5, pp. 2486–2498, May 2017.

[89] Zhaozhuo Xu, Xin Xu, Lei Wang, Rui Yang, and Fangling Pu, “Deformable
convnet with aspect ratio constrained nms for object detection in remote sens-
ing imagery,” Remote Sensing, vol. 9, no. 12, 2017.

[90] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi,
“You only look once: Unified, real-time object detection,” CoRR, vol.
abs/1506.02640, 2015.

[91] Matija Radovic, Offei Adarkwa, and Qiaosong Wang, “Object recognition in
aerial images using convolutional neural networks,” Journal of Imaging, vol.
3, no. 2, 2017.

[92] Jennifer Carlet and Bernard Abayowa, “Fast vehicle detection in aerial im-
agery,” CoRR, vol. abs/1709.08666, 2017.

[93] Joseph Redmon and Ali Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

100

[94] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg, “Ssd: Single shot multibox detector,”
2016, To appear.

[95] Zhong Chen, Ting Zhang, and Chao Ouyang, “End-to-end airplane detection
using transfer learning in remote sensing images,” Remote Sensing, vol. 10,
no. 1, 2018.

[96] Tianyu Tang, Shilin Zhou, Zhipeng Deng, Lin Lei, and Huanxin Zou,
“Arbitrary-oriented vehicle detection in aerial imagery with single convolu-
tional neural networks,” Remote Sensing, vol. 9, no. 11, 2017.

[97] Kurt Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251 – 257, 1991.

[98] Y. LeCun, “A theoretical framework for back-propagation,” in Proceedings of
the 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and
T. Sejnowski, Eds., CMU, Pittsburgh, Pa, 1988, pp. 21–28, Morgan Kaufmann.

[99] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, November 1998.

[100] Léon Bottou, “Large-scale machine learning with stochastic gradient descent,”
in in COMPSTAT, 2010.

[101] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton, “On the
importance of initialization and momentum in deep learning,” in Proceedings
of the 30th International Conference on International Conference on Machine
Learning - Volume 28. 2013, ICML’13, pp. III–1139–III–1147, JMLR.org.

[102] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[103] Abdel-rahman Mohamed, Tara N. Sainath, George E. Dahl, Bhuvana Ramab-
hadran, Geoffrey E. Hinton, and Michael A. Picheny, “Deep belief networks
using discriminative features for phone recognition,” in ICASSP. 2011, pp.
5060–5063, IEEE.

[104] Ronan Collobert and Jason Weston, “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th International Conference on Machine Learning, New York,
NY, USA, 2008, ICML ’08, pp. 160–167, ACM.

[105] Thomas Serre, Gabriel Kreiman, Minjoon Kouh, Charles Cadieu, Ulf
Knoblich, and Tomaso Poggio, “A quantitative theory of immediate visual
recognition,” vol. 165, pp. 33–56, 02 2007.

101

[106] Yoav Freund and David Haussler, “Unsupervised learning of distributions on
binary vectors using two layer networks,” in Advances in Neural Information
Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds.,
pp. 912–919. Morgan-Kaufmann, 1992.

[107] Y. Chen, X. Zhao, and X. Jia, ,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing.

[108] T. Li, J. Zhang, and Y. Zhang, “Classification of hyperspectral image based
on deep belief networks,” in 2014 IEEE International Conference on Image
Processing (ICIP), Oct 2014, pp. 5132–5136.

[109] Diao Wenhui, Xian Sun, Fangzheng Dou, Menglong Yan, Hongqi Wang, and
Kun Fu, “Object recognition in remote sensing images using sparse deep belief
networks,” vol. 6, pp. 745–754, 10 2015.

[110] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature selec-
tion for remote sensing scene classification,” IEEE Geoscience and Remote
Sensing Letters, vol. 12, no. 11, pp. 2321–2325, Nov 2015.

[111] J. Tang, C. Deng, G. B. Huang, and B. Zhao, “Compressed-domain ship de-
tection on spaceborne optical image using deep neural network and extreme
learning machine,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 3, pp. 1174–1185, March 2015.

[112] Xiaorui Ma, Jie Geng, and Hongyu Wang, “Hyperspectral image classifica-
tion via contextual deep learning,” EURASIP Journal on Image and Video
Processing, vol. 2015, no. 1, pp. 20, Jul 2015.

[113] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification,”
CoRR, vol. abs/1502.01852, 2015.

[114] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convolutional
networks for semantic segmentation,” CoRR, vol. abs/1411.4038, 2014.

[115] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng, “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015, Software available from tensorflow.org.

102

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Scope and the organization of the thesis

	LITERATURE OVERVIEW ON LAND USE AND GEOSPATIAL OBJECT ANALYSIS
	Conventional Techniques for Land Use and Geospatial Object Analysis
	Handcrafted Feature Extraction Methods
	Color Histograms
	Scale Invariant Feature Transform (SIFT)
	GISTs
	Histogram of Oriented Gradients (HOGs)
	Texture Descriptors

	Unsupervised Feature Learning Methods
	Principle Component Analysis (PCA) based Features
	K-means Clustering and Bag-of-Visual-Words Representation
	Features based on Sparse Coding
	Learned Unsupervised Features : Autoencoders
	Brief Discussion on Feature Extraction Methods

	Deep Networks on Land Use Analysis
	Stacked autoencoder (SAE)
	Convolutional Neural Network (CNN)

	Related Works on Geospatial Object Analysis Using Deep Networks

	FUNDAMENTALS OF DEEP NEURAL NETWORKS
	Fundamental Deep Architectures
	Deep Belief Networks (DBNs)
	Stacked Autoencoders (SAEs)
	Convolutional Neural Networks (CNNs)
	What makes CNN most attractive?

	Training Convolutional Neural Networks (CNN)
	Data augmentation
	Preprocessing on images
	Initialization of network weights
	Hyperparameter selection
	Regularization Methods
	Transfer learning
	Ensemble multiple networks

	Popular CNN Architectures
	LeNet-5
	AlexNet
	VGGNet
	GoogLeNet
	ResNet
	FCN8s
	YOLO

	LAND USE ANALYSIS USING CNN IN REMOTE SENSING
	Image Scene Classification for Land Use Analysis
	Proposed Classification Network
	Experimental Results
	Datasets for Classification Network Training
	Experimental Setup
	Experimental Results

	Semantic Image Segmentation for Land Use
	Proposed Segmentation Network
	Experimental Results
	Dataset Generation for Segmentation Network
	Experimental Setup
	Results

	GEOSPATIAL OBJECT ANALYSIS USING DEEP NETWORKS
	Proposed Network
	Experiments and Results
	Dataset Generation for Object Detection
	Experimental Setup
	Experimental Results for Object Detection

	CONCLUSIONS
	Summary
	Conclusion
	Future Works

	REFERENCES

