A COMPONENT BASED WORKFLOW MANAGEMENT SYSTEM FOR
ENACTING PROCESSES DEFINED IN XML

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YALIN YARIMAGAN

4 188

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREEE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2000

YOKSEKOGRETIM KURULY
) X o i

Approval of the Graduate School of Natural and Applied Sciences.

\

Prof. (’1/){. Tayfur Oztiirk
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master Of Science.

Prof. IQ}' ﬁatos Yarman Vural
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

@EMW‘“Q/K\

Prof. Dr. Asuman
Supervisor

Examining Committee Members

Prof. Dr. Asuman Dogag %““" br‘('\,

Assoc. Prof. Dr. Aral Ege A

Assoc. Prof. Dr. Ismail Hakki Toroslu /) , /V‘ . "‘6(,._/«/\/\

Assoc. Prof. Dr. Nihan Kesim Cigekli C 24\' (A_C A zi (2 .
Assoc. Prof. Dr. Ozgiir Ulusoy (5%@? Do) : .

ABSTRACT

A COMPONENT BASED WORKFLOW MANAGEMENT SYSTEM FOR
ENACTING PROCESSES DEFINED IN XML

Yarimagan, Yalin
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Asuman Dogag¢

January 2000, 81 Pages

In this thesis, a component-based workflow enactment service is
developed for executing workflow systems defined in the Extensible
Markup Language (XML), conforming to a workflow Document Type
Definition (DTD). A workflow DTD is also provided which can be
replaced with a standardized one when such a DTD becomes available

as a result of the current standardization efforts.

Defining a workflow process in XML provides for the
interoperability of applications since XML is both machine processable
and human readable. Defining workflow processes in XML and coding a
workflow engine in Java to execute those definitions over the Internet
provides for high interoperability. This approach proves to be useful
especially for electronic commerce applications as in the case of the
supply chain automation and integration project currently progressing at
the Software Research and Development Center of the Middle East

TC VIRSEXSERETIM KURULD
DOKDOMANTASYON MERKEZL

Technical University. The work described in this thesis is realized as a

part of this automation project.

The workflow system is designed to consist of components and
thus provides for scalability that is, components are activated only when

they are necessary resulting in a small system footprint.

The system is developed in Java to provide for platform
independence and thus can be loaded over the Internet and executed.
The clients of the system are coded as network-transportable Java
applets so that there is no need for the end users of the system to pre-
install any software on their computers. This promotes user mobility
further as well as easy maintenance of the system components which

can be upgraded transparently on the server side.

Keywords: Workflow Management System, XML, DTD, Java,

Internet, Electronic Commerce, Supply Chain, Electronic Catalog

0z

XML ILE TANIMLANMIS SURECLERI HAREKETE GECIRMEK ICIN
PARCA ESASLI IS-AKISI YONETIM SISTEMI

Yarimagan, Yalin
Yiksek Lisans, Bilgisayar Mithendisligi B&lama

Tez Yoneticisi: Prof. Dr. Asuman Dogag

Aralik 1999, 81 Sayfa

Bu tezde, bir ig-akis Dékiiman Turd Tanimi (DTD)'na uygun
olarak Genisletilebilir Isaretleme Dili (XML) ile tanimlanmis is akiglarin
calistirmak igin parga-tabanli bir is-akigt harekete gecirme servisi
gelistiriimigtir. Tez kapsaminda bir is-akisi DTD'si de saglanmistir.
Saglanan bu DTD, devam etmekte olan standardizasyon c¢alismalari

sonucunda standart bir DTD ortaya ¢iktiginda onunla degistirilecektir.

XML, hem makinalar hem de insanlar tarafindan anlasilabildigi
icin, bir ig-akisi sirecini XML ile tanimlamak uygulamalarin beraber
calisabilirligini arttirmak bakimindan faydal olacaktir. Is-akisi stregleri
icin XML'de yazimig tanimlari ve bu tanimlan Internet Gzerinden
calistiracak Java tabanlh bir is-akis motoru saglamak, beraber
calisabilirligi arttiracaktir. Halen Orta Dogu Teknik Universitesi, Yazilim
Arastirma ve Geligtirme Merkezi'nde yuritilmekte olan tedarik zinciri

otomasyonu ve entegrasyonu projesi gibi elektronik ticaret uygulamalari

\

buna glizel bir érnektir. Bu tez calismasi kapsaminda gercgeklestirilen
calismalar s6zii edilen bu tedarik zinciri otomasyon projesinin bir

parcasidir.

Olgeklenebilirligi arttirmak amaciyla is-akis sistemi pargalardan
olusacak sekilde tasarlanmistir. Sistemi olusturan her bir parg¢anin
yalnizca gerekli oldugu zaman aktive edilmesi sayesinde o anda
kullaniimayan pargalarin sistem kaynaklarini gereksiz yere isgal

etmelerinin énine gegilmistir.

Sistem, platformdan bagimsizlik kazanmasi icin Java kullanilarak
gelistirilmistir. Bu sayede Internet lzerinden yiklenerek calistirilabilmesi
mumkin olmaktadir. Sistemin istemcileri, ag Gzerinden transfer edilebilir
Java-programcikiari "Java applets" olarak tasarlandiklari i¢in kullanicilar
makinalarina herhangi bir yazilim kurmadan sisteme erigebilmektedirler.
Bu sayede kullanicilarin farkli makinalardan da sistemi ayni sekilde
kullanabiimelerine olanak saglandigi gibi sistemi olusturan pargalarin

bakimi sunucu tarafinda kullanicilara hissetiriimeden yapilabilecektir.

Anahtar Sozciikler: - Is-Akisi Yénetim Sistemi, XML, DTD, Java,
Internet, Elektronik Ticaret, Tedarik Zinciri, Elektronik Katalog

vi

TABLE OF CONTENTS

ABSTRACT i
0z v
TABLE OF CONTENTS vii
TABLE OF FIGURES ix
CHAPTER
1 INTRODUCTION 1
2 RELATED WORK 4
2.1 XML ettt et et ae s s e et e ar e st s et sesenessenesesaeserans 4
2.1.] XML EBEIEIESooeereeeeeinieirirareesntstsieseesns e s aesee e sasses s sssnsnsons 11
2.1.2 XML-LiB.......covureirisiesiieaieeeeeiiseee et eevana e e ssesse e bassseens et eneensneesnans 14
2.1.3 XML-SHPIE SREELS........covveerieeiireeeieeceirenieseeeseseesesseessessesaesesneseeenenes 17
2.1.4 Namespaces in XML............cccooeoerveecuiveeiaiesieiensssieeseseessessesseessesecanesseenes 19
215 XML APIS ..o er sttt st seose s rsss e snsns s 21
2.2 WORKFLOW MANAGEMENT SYSTEMS....cceevieeeieenrersiinrsrecsiesssssessnssssssssssessanesseess 22
2.2.] CORTFACE.......ocoiceiicmccecieeieeir s ces et neeens et enaaen 25
2.2.2 METEORccoiviiiiiiiiecreceseeietetsiseeree s esesessenessonssosesaessnesrenane 28
2.2.3 ExoticQ And FIOWMEIK............oovvoveireeiriiveressereseiseeieiesissesescneneseresasaes 30
3 MESCHAIN ARCHITECTURE 33
3.1 BASIC CONCEPTSoeevveeruiereearerseresarererssesesssserssssssessnesssssesssessensssanssssessssssssssansnens 33
32 ARCHITECTURE OF THE SYSTEM ...cc.ueeevieereerteeritisnecseeseeeseesssesssssessssessnssresssesnees 38
3.2.1 An open architecture supporting different standards...............cuuuen..... 40
3.2.2 The architecture of CatQlOZ AGENLScocveuereierererereresresssrnsenaseseenas 4]
4 WORKFLOW MANAGEMENT SYSTEM ARCHITECTURE 43
4.1 OVERVIEW OF THE PROPOSED ARCHITECTUREccorervevereenransessessessesssesassassansene 43
4.2 COMPONENTS OF THE SYSTEM...ueieueiereicericeeeeeeeresseesiesessesessesssessessesesssessesssesssas 47
vii
T YOKSEXGGRETIM KURULY

DOKOMANTASYON MERKEZR

4.2.1 Workflow Domain Managercocoeeeeeveeeeeeenereeeresssesssssssesesens
4.2.2 Workflow Process Object (WPO)eeeeeeceecreeeeieceiveeneinneraresessesenssnes
4.2.3 Component-Server RePOSILOFY.............ccuvviueveerereinenerreeirenirirereesnanaene
4.2.4 Workflow Process Definitions Libraryccccoovevvveereveeveveersnnraernnens
4.2.5 HiStory MAnQGercouvivoeeereeiisieveseeiesssssieeseieseiesensssessesesseessessens
4.2.6 TaSKk MARAGELooooeeveireeeeivirrieieseeesersinisseies s beeseesesens e rencasasaen
5 IMPLEMENTATION
5.1 TOOLS AND FACILITIES ...ccovvotintieiecreneeeeieertessreceseessressaessseesssensesssessssessessessnessens
5.2 THE PROGRAM STRUCTUREc.cvceimriereerrererrerrenressresessseeseessesssensessossersesssssessesssases
5.2.1 Loading Process Definitionsccceceveieeercerieceninnersnnesnesssrrnsesennns
5.2.2 Executing WOrkflow PrOCESSES.........cciviveierecriserseniriseseseassessaessssnsesasnns
5.3 THE DATA STRUCTURESccoeeuemtrrireneerrersessessasssessisssssasssensssssesesssessesssssssssasanses
6 CONCLUSION AND FUTURE WORK
REFERENCES
APPENDICES

A DTD FOR WORKFLOW PROCESS DEFINITIONS

viii

52

52
53
54
57
61

65

67

70

TABLE OF FIGURES

FIGURE
2-1 Weather Report Encoded in XMLc.oooiiviiiieieeeeeeeeeeeeeeeeeeeeeeeves e 7
2-2 XML Document Using Namespace SCOPING.......cc.cccoverivvirireiviisiirieseeeenenen. 21
2-3 WIMC's Workflow Reference Modelccoccoviieviiiiiiecececiecen 23
3-1 The Proposed Supply Chain Architecture.............ccoevvvveevinieiriecreeeenne, 39
4-1 Workflow Management System Architecture..............cccoovvveeviiieicciceveenees 47
5-1 Member Variable Block Type Matchingsccccovveveviiieciieieceeee e 62

CHAPTER 1

INTRODUCTION

In this thesis, a workflow enactment service is designed and
implemented to execute workflow systems defined in XML conforming

to the document type definition that we provide.

The design of the workflow system is original in the sense that it has a
component based architecture. The components like basic enactment
server, worklist manager are activated only when they are necessary
thus resulting in a small system footprint. The system is developed in
Java to provide for platform independence and thus can be loaded over
the Internet and executed. The clients of the system are coded as
network-transportable Java applets so that there is no need for the end
users of the system to pre-install any software on their computers. This
promotes user mobility further as well as easy maintenance of the
system components which can be upgraded transparently on the server

side.

A workflow can be defined as a collection of processing steps (also
termed as tasks or activities) organized to accomplish some business
process. A task can be performed by one or more software systems, by
a person or team, or a combination of these. In addition to collection of
tasks, a workflow defines the order of task invocation or condition(s)
under which tasks must be invoked, i.e. control flow, and data flow

between these tasks.

Workflow management is the automated coordination, control and

communication of work as is required to satisfy workflow processes.

1

Workflow Management System (WFMS) is a system that completely
defines, manages and executes workflows through the execution of
software whose order of execution is driven by a computer
representation of the workflow logic [1]. Workflow Management
Systems aim at automating business processes to provide flexibility to
cope with on going business changes. Furthermore, WFMSs coordinate
and streamline complex business changes within large organizations to
achieve improvements in critical, comtemporary measures of

performances, such as cost, quality, service and speed.

XML [2] has gained a great momentum and is emerging as the standard
for self-describing data exchange on the Internet. lts power lies in its
extensibility and ubiquity. Anyone can invent new tags for particular
subject areas and they define what they mean in document type
definitions (DTDs). Content oriented tagging enables a computer to
understand the meaning of data. But if every business uses its own
XML definition for describing its data, it is not possible to achieve
interoperability. The tags need to be semantically consistent across
mérchant boundaries. One of the efforts in this respect is Common
Business Library (CBL) [3][4] by CommerceNet. The CBL consists of

information models for various concepts including:
e Business forms, such as catalogs, purchase orders and invoices,

e Standard measurements, such as date and time, location and

classification codes.

CommerceNet also intends to provide a workflow DTD. In fact, in many
of the business forms defined in CBL, there is a need to invoke a
workflow management system. Within the scope of this thesis, a
workflow DTD is defined which should be replaced by the standard one

when it becomes available.

This thesis is realized as a part of the Electronic Catalog Integration and
Supply Chain Automation Project (MESChain) that is currently going on

at the Software Research and Development Center, METU. MESChain
2

uses CBL as its interoperability infrastructure. When it becomes
necessary to invoke workflows within the MESChain project, the
workflow management system developed within the scope of this thesis

should be used.

The thesis is organized as follows; Chapter 2 summarizes the related
work about both workflow management systems and the XML
technologies. The architecture of the MESChain project is provided in
Chapter 3. In Chapter 4, design issues for the Workflow Management
System is discussed. Implementation is explained in the Chapter 5 and

Chapter 6 concludes the thesis discussing the future work.

CHAPTER 2

RELATED WORK

Our primary goal in developing a workflow enactment system for
executing workflow processes defined in XML is to handle the problems
of the current workflow management systems. Most obvious problems
of such systems are lack of mechanisms for providing heterogeneity
and interoperability. By employing XML as the process definition
language and by providing a workflow engine coded in Java for
executing these definitions makes it possible for enterprises to pass
their workflow definitions to each other and execute them without

problems.

In this chapter, the technologies and standards that we exploited to
realize our goals are summarized. In Section 2.1, Extensible Markup
Language (XML) is presented. Later on, general concepts about
workflow management systems are discussed and a number of existing

workflow systems are briefly summarized in Section 2.2.

21 XML

Internet protocol (IP), the Hypertext Markup Language (HTML) and the
Hypertext Transport Protocol (HTTP) have revolutionized the manner in
which information is distributed, displayed and searched for.
Organizations rapidly embraced browsers and search engines with the
creation of corporate intranets, then extended these to customers,

suppliers, and business partners with extranets [8].

T.C. YOKSEKOGRETIM KURULY
NTASYNN MyDweri

EXtensibIe‘ Markup Language (XML), which compiements HTML,
promises to increase the benefits that can be derived from the wealth of
information found today on IP networks around the world. This is
because XML provides a uniform method for describing and exchanging
structured data. The ability to describe structured data in an open text-
based format and deliver this data using standard HTTP protocol is
significant for two reasons. XML will facilitate more precise declarations
of content and more meaningful search results across multiple
platforms. And once the data is located it will enable a new generation

of viewing and manipulating the data.

HTML can be used to tag a word to be displayed in bold or italic; XML
provides a framework for tagging structured data. An XML element can
declare its associated data to be a retail price, a sales tax, a book title,
the amount of precipitation, or any other desired data element. As XML
tags are adopted throughout an organization's intranet, and by others
across the Internet, there will be a corresponding ability to search for
and manipulate data regardless of the applications within which it is
found. Once data has been located, it can be delivered over the wire
and presented in browsers in any number of ways, or it can be handed

off to other applications for further processing and viewing.

XML is a subset of Standard Generalized Markup Language (SGML)
that is optimized for delivery over the Web; it is defined by the World
Wide Web Consortium (W3C), ensuring that structured data will be
uniform and independent of applications or vendors. This resulting
interoperability enables a new generation of business and electronic-

commerce Web applications.

W3C has created a powerful standard definition of XML to significantly
advance how people can take advantage of Web-based data. HTML
enables a universal method for displaying data; XML provides a
universal method for describing data. There is a rapidly growing need to

go beyond simply viewing data, as is the case with Web browsers

today. People need to be able to work with and manipulate the data.
And this is what XML allows.

Software corporations are increasingly moving from classic client/server
two-tier application models to three-tier models, in which a browser front
end interacts with a middle-tier Web server, which in turn communicates
with a back-end database server for storage. This three-tier architecture
has several benefits over client/server models, including easier
scalability and better security. And XML will make possible richer
implementation of such models through structured data exchange over
HTTP.

The power of XML is that it maintains the separation of the user
interface from structured data, allowing the seamless integration of data
from diverse sources. Customer information, purchase orders, research
results, bill payments, medical records, catalog data and other
information can be converted to XML on the middle tier, allowing data to
be exchanged online as easily as HTML pages display data today. Data
encoded in XML can then be delivered over the Web to the desktop. No
retrofitting is necessary for legacy information stored in mainframe
databases or documents, and because HTTP is used to deliver XML

over the wire, no changes are required for this function.

Once the data is on the client desktop, it can be manipulated, edited,
and presented in multiple views, without return trips to the server.
Servers now become more scalable, due to lower computational and
bandwidth loads. Also, since data is exchanged in the XML format, it

can be easily merged from different sources.

XML is valuable to the Internet as well as large corporate intranet
environments because it provides interoperability using a flexible, open,
standards-based format, with new ways of accessing legacy databases
and delivering data to Web clients. Applications can be built more
quickly, are easier to maintain, and can easily provide multiple views on

the structured data.

XML is a text-based format that lets developers describe, deliver and
exchange structured data between a range of applications to clients for
local display and manipulation. XML also facilitates the transfer of
structured data between servers themselves. Vast stores of legacy
information exist today, distributed across disparate, incompatible
databases. XML allows the identification, exchange and processing of
this data in a manner that is mutually understood, using custom formats

for particular applications if needed.

XML resembles and complements HTML. XML describes data, such as
city name, temperature and barometric pressure, and HTML defines
tags that describe how the data should be displayed, such as with a
bulleted list or a table. XML, however, allows developers to define an
unlimited set of tags, bringing great flexibility to authors, who can decide
which data to use and determine its appropriate standard or custom

tags.

In Figure 2-1, an example XML document is presented which describes

a weather report.:

<weather-report>

<date>March 25, 1998</date>

<time>08:00</time>

<area>
<city>Seattle</city>
<state>WA</state>
<region>West Coast</region>
<country>USA</country>

</area>

<measurements>
<skies>partly cloudy</skies>
<temperature>46</temperature>
<wind>

<direction>SW</direction>
<windspeed>6</windspeed>

</wind>
<h-index>51</h-index>
<humidity>87</humidity>
<visibility>10</visibility>
<uv-index>1</uv-index>

</measurements>

</weather-report>

Figure 2-1 Weather Report Encoded in XML

This data could be displayed in many different ways, or it could be
handed off to other applications for further processing. Style sheets help
by transforming structured data into different HTML views for display in
a browser, or even to other display formats on other platforms running

other applications.

Today, Document Type Definitions (DTDs) may accompany an XML
document, essentially defining the rules of the document, such as which
elements are present and the structural relationship between the
elements. DTDs help to validate the data when the receiving application
does not have a built-in description of the incoming data. With XML,

however, DTDs are optional.

Data sent along with a DTD is known as "valid" XML. In this case, an
XML parser could check incoming data against the rules defined in the
DTD to make sure data was structured correctly. Data sent without a
DTD is known as "well-formed" XML. Here an XML-based document
instance, such as the hierarchically structured weather data above, can

be used to implicitly describe itself.

With both valid and well-formed XML, XML encoded data is self-
describing. The open and flexible format used by XML allows it to be
employed anywhere a need exists for the exchange and transfer of

information. This makes it extremely powerful.

For instance, XML can be used to describe information about HTML
pages, or it can be used to describe data contained in business rules or
objects in an electronic-commerce transaction, such as invoices,
purchase orders and order forms. Since XML is separate from HTML,
XML could also be added inside HTML documents. W3C is working to
define a format by which XML-based data, or "XML islands," can be
encapsulated in HTML pages. By embedding XML data inside an HTML
page, multiple views could be generated from the delivered data, using
the semantic information contained in the XML. Moreover, XML can be

70 i AR ETiv KURELS

I
;
Fa/

used for such compelling applications as distributed printing, database

searches, and others.

XML brings so much power and flexibility to Web-based applications
that it provides a number of compelling benefits to developers and

users:
¢ More meaningful searches
o Development of flexible Web applications
¢ Data integration from disparate sources
e Data from multiple applications
e Local computation and manipulation of data
e Multiple views on the data
e Granular updates
e Open standards
o Format for Web delivery
¢ Enhances scalability

« Facilitates compression

The opportunities will expand further as more vertical market data
formats are created for key markets such as advanced database
searching, online banking, medical, legal, electronic commerce, and
other fields.

Customer services are now migrating to Web sites from call centers and
physical locations and will therefore benefit from the robust functionality
of XML. And, because most of these business applications involve
manipulation or transfer of data and database records, such as
purchase orders, invoices, customer information, appointments, maps
and such, XML will revolutionize end-user possibilities on the Internet

by allowing a rich array of business applications to be implemented. In
9

addition, information already on Web sites, whether stored in
documents or databases, can be marked up using XML-based, intranet-
oriented vocabularies. These vocabularies also help small and medium-
sized corporations that need to exchange information between

customers and suppliers.

A vital untapped market is development tools that make it easy for end
users to build their own collaborative Web sites, including tools for
generating XML data from legacy database information and from
existing user interfaces. In addition, standard schemas could be
developed for describing portfolios or other data, for example, which
could use the layout, graphs and other functions of spreadsheet
programs. Declarative and visual tools for describing XML generated

from legacy databases are a powerful opportunity.

XML will require powerful new tools for presenting rich, complex XML
data within a document; this is done by mapping a user-friendly display
layer on top of a complex set of hierarchical data that can change
dynamically. Possible layouts to use for XML data include collapsing
outlines, PivotTable dynamic views, and a simple sheet for each

portfolio.

Web sites offer stock quotes or news articles or real-time traffic data,
which can be obtained by filtering from Web broadcasts or by intelligent
polling of a tree of servers replicating these sites. Information overload
can be avoided with XML by writing custom rules for aging of
information, for example, as is done with e-mail. XML-based tools for
users to construct these rules and server and client software to execute
them are a huge opportunity. A Standard Object Model could enable
these functions, typically written in script, to filter incoming messages,
examine stored messages, create outgoing messages, access
databases and such. These agents can be written to run anywhere

automatically.

10

XML has several issues such as entites, style sheets and namespaces
that enable it to accomplish all that is explained up to this point. In the
following sub-sections, such major aspects of the XML will be

introduced.

2.1.1 XML Entities

XML supports some practical aspects of document management with its
concept of entities. Entities are sequences of characters or bit patterns,

held within an XML document or external to it.

Entities can be used to represent external resources, such as illustra-
tions, with an added notation to indicate their type. XML supports this
approach, and it calls such resources external binary entities.

In addition, XML offers two types of entities that can be used to help
manage XML documents.

External text entities are simply resources (usually, but not necessarily,
files) containing XML markup. External text entities allow building XML
documents in chunks. For example, a book can be being written one
chapter at a time, and each chapter is a separate text entity. When the
time comes to make the whole book into a single XML document, all that
is to be done is to declare each chapter as an external text entity and

make reference to them all in the correct order.

In addition to allowing documents to be written by a number of different
people, external text entities allow information reuse. A standard
warning, for example, could be marked up in XML and held in a file, -

ready to be pasted into all new customer documentation.

The ability to build up a document in chunks can also be useful when
parts of it are in a different character set. Each part can be isolated and

placed in a separate entity with its own encoding rules.

XML also supports the idea of internal entities, which are shorthand for

a piece of XML markup that is held within the document. Internal

11

entities can be used for standard phrases, expansions of abbreviations,

and even for single characters (such as the trademark symbol, ™).
Internal entities have a value that is given directly in the entity
declaration:

<!ENTITY XML "Extensible Markup Language">

This entity declaration maps the name XML to the content "Extensible

Markup Language". No separate storage unit is involved.

External entities, by contrast, refer in their declarations to a storage unit

by means of a systemor pusLIC identifier:

<!ENTITY chapterl SYSTEM "chapl.xml">

This associates the name chapter1 with the URL "chap1. xml”. An XML
processor must read the file referenced by that URL in order to find out
the content of that entity.

The format for pusLIc identifiers includes a purLic name before the

SYSTEM nName:
<!ENTITY imagel PUBLIC "-//RBL//NONSGML

Illustration 1//EN" "images/illusl.gif” NDATA gif>

puBLIC identifiers provide a mechanism for describing an entity, but do
not specify any particular storage location. This can be very useful when
a particular entity is already widely available. An XML processor may be
able to determine, by matching the pusL1c identifier against a catalog of
resources available locally, that it does not need to fetch a new copy of
this entity because it is already available.

External entities can be either fext or binary.

A text entity contains text data, which is considered to form part of the
XML document. When you insert a reference to a text entity, it is treated
as though its content actually appears in the text of the document at

that point. For exampie, the entity xmL declared as

<!ENTITY XML “Extensible Markup Language”>

12

means that references to the entity xMmL should be replaced by the

phrase “Extensible Markup Language”. Then the markup

<p>physical structures in &XML;.</p>

is equivalent to the following:
<p> physical structures in Extensible Markup Language.</p>
A binary entity is basically anything that isn't meant to be treated as

though it is XML-encoded. In that sense, the name is somehow

misleading: A binary entity might be a plain text file, for example.

Each binary entity has to have an associated notation. A notation
describes a type of resource (which is usually just a file type, such as
BMP, GIF or JPG). In fact, having a notation is the one thing that
distinguishes a binary entity from a text entity. Notation information

forms part of the entity declaration in the DTD;

<!ENTITY my.picture SYSTEM "mypic.bmp" NDATA BMP>

This line declares that the entity my.picture is in the BMP notation; that
is, it is a BMP file.

The notation information tells an XML processor the type of the entity,
and therefore, allows the processor to decide what to do with it. For
example, if an entity contains mathematical equations using the Tex
notation, an XML browser might call a helper application to format the

equations and then display the result inline within the document.

An entity is inserted into XML documents by using &, followed by the

Name Of the entity, followed by a ;, as in the following example:
&pub-status;

XML entities might be useful in a large number of situations. Following

are some examples;
o Represent non-standard characters within XML documents.

e Function as shorthand for frequently used phrases.

13

¢ Hold chunks of markup that might appear in more than one XML

document.
» Hold sections or chapters from a large XML document.
e Organize DTD into logical units.

e Represent non-XML resources.

2.1.2 XML-Link

XML provides built-in linking facilities that aim to be powerful enough to
cope with most Web-based applications. Three standards, in particular,

have influenced the design of hyperlinks in XML;

e HTML provides a linking mechanism that is already familiar to

everyone who has ever encoded a Web page.

e HyTime is an International Standard that contains useful background

concepts.

o Text Encoding Initiative (TEl) Guidelines provide a concise syntax

for specifying complex links.

XML allows the user to state which elements in XML documents are to
be interpreted as linking elements. This is done by specifying the
special xML-LINK attribute. This both asserts that an element is to be
treated as a link and specifies what type of link it is. For example, the

following code states that this is a simple link;
<A XML-LINK="SIMPLE" HREF="http://www.w3c.org/XML/Activity">
Every link can have a machine-processible role. The role is the

meaning of the link, and it tends to be specific to a particular XML

application. It can also have a human-readable label.

Finally, the default behaviors can be specified for a link. The szow
attribute indicates whether the resource pointed to by the link is
designed to be embedded in the current context, to replace it, or to start

14

its own new context. The acrtuarE attribute indicates whether the user

has to take action before anything is done with the link.

HTML-style links are one example of what XML calls simple links.
Simple links are links that sit in an XML document and point to a single
target, or resource (which might be anything that can be addressed by a
link).

Extended links are a lot less obvious. They can point to any number of
targets, and they can live anywhere. In fact, extended links don’t need
to live inside any of the resources they point to. This might not sound
helpful, but in fact it gives the ability to set up bidirectional and even
multidirectional links. Also, taking links out of documents should make it
easier to manage them (for example, by checking that their target

resource continues to exist).

XML lets declaring one or more XML documents as a link group, which
makes it easier to manage a set of documents that contain a network of

links.
The XML-Link specification extends HREF links in the following ways;

Allowing any element type to indicate the existence of a link

¢ Defining the precise meaning of the fragment identifier (the part of
the URL that follows the #or |) in cases when the target of the link is

an XML document
¢ Providing links with human-readable labels
¢ Providing links with machine-readable labels

e Specifying policies for the context in which links are displayed and

processed
e Specifying policies for when links are traversed
e Supporting extended linking groups
e Supporting multi-ended links

15

The XML-Link specification talks about several concepts. These are

briefly introduced below;

e Resource: This is any addressable object that is taking part in a link
Examples include documents, parts of (and points within)

documents, images, programs, and query results.

o Linking element: This is a special element within an XML document
that asserts the existence of a link and contains a description of the

link’s characteristics.

e Locator: A character string appearing in a linking element that is the

address of a resource and can be used to locate that resource.

e Title: This is a caption associated with a resource, suitable for
explaining to human users the significance of the part played in the

link by that resource.

e Traversal: This is the action of using a link to access a resource.
Traversal can be initiated by a user action (for example, clicking on
a displayed portion of a linking element), or it can occur under

program controi.

e Mulfidirectional link: This link can be traversed starting at more than
one of its resources. Note that being able to go back after following

a one-directional link does not make the link multidirectional.

s Inline link: This link is indicated by a linking element that serves as
one of its own resources. HTML <a> elements are examples of inline

links.

e Qut-of line link: This link is indicated by a linking element that does
not serve as one of its own resources (except perhaps by chance). It
need not even occur in the same document as any of the resources

it serves to connect.

16

TC TISEKGCRETIM KURTLA
DORTYANTASY 08 MERECEZ

2.1.3 XML-Style Sheets

Although XML is a data oriented structure, it still needs proper ways for
displaying its contents, such as the style sheet mechnisms that are

widely used for formatting HTML documents.

In principle, the existing CSS1 (Cascading Style Sheets, level 1)
standard could be applied to give simple control over the on-screen
display of XML documents. CSS1 states its rules in terms of element
names, IDs, and so on, which are clearly features of XML documents as

well as HTML documents.

CSS1 was specifically designed around HTML, and some of its features
rely on HTML-specific encoding practices. For example, the a linking
element is treated specially so that visited links can look different from
unvisited ones. Similarly, the class attribute is treated specially by
CSS1: that attribute has to be added to every element in XML DTDs to
take advantage of that feature of CSS1. However, this is likely to
change. The CSS1 specification states an expectation that it will
become more generic: “CSS1 has some HTML-specific parts (e.g., the
special status of the crass and 1p attributes) but should easily be
extended to apply to other DTDs as well.” Such changes will clearly
make CSS a more attractive style sheet mechanism for XML

documents.

XML provides its own means of specifying style sheets (termed XS).
Apart from having the advantage of being designed to work with any
XML document structure, XS is massively more powerful than CSS1.

XS is designed to control the output of an XML document to the screen,

the printed page; or any other two-dimensional display device.

It is essentially a data-driven style mechanism. When an XML document
is to be displayed, one or more XS style sheets will be called into action.
These might be specified in the XML document or selected by the user.

17

The processing of the XML document is determined by scanning the
XML document’'s structure and merging it with the formatting
specification derived from the active style sheets. These instructions are
then used to create the flow objects, such as paragraphs and tables,
which determine the layout of the document. This merging process

produces a tree structure of flow objects: the flow object tree.

Each flow object has characteristics, such as font-name, font-size,
and font-posture, that can be specified explicitly or inherited from flow

objects further up the flow object tree.

XS has an extremely flexible core expression language, based on
Scheme. This is a complete programming language, with facilities for
doing calculations, testing conditions, and so on. It can be used to build
up complex instructions for the processing of individual elements or

even characters within an XML document.

At a higher level, XS supports construction rules that declare, in effect,
what to do with an element. More precisely, they state what flow objects
are to be created, and what characteristics each flow object is to have.
For example, an element construction rule for the p element might
specify that a paragraph flow object is to be added to the flow object

tree, with these characteristics:

font-size: 12pt

first-line-start-indent: 20pt

quadding: left

This will cause the characters in the paragraph to be 12-point font size,

with a 20-point indent at the start of the first line. The paragraph will be
left-justified.

Typically, the low-level formatting instructions will be declared as
functions. This means that the top-level instructions can be made much

clearer to a reader, as in this example:

{(element NOTE (STANDARD-NOTE))

18

(element EG (MONOSPACED-TEXT))

(element CODE (UNDERLINED-PHRASE))

Because the core expression language is so powerful, it is possible to
use nearly any aspect of an XML document’s structure to control how it
appears. Most construction ruies are pitched at the element level, but
their behavior can easily be refined by testing properties of the element,

such as its attributes and their values or its ancestor elements.

Although by default the whole document will be displayed in its original
order, the core expression language actually gives access to the full
document structure at any point. Therefore, a related piece of text from
elsewhere in the document can be grabbed beforehand. For example, a
virtual table of contents can be generated from the chapter headings,
and placed at the start of the document while displaying. Also, parts of a

document can be suppressed at certain times.

The mathematical functions in the core expression language make it
easy to express font sizes, spacing, and so on in relative rather than
absolute terms. This means that style sheets can be written in which the
user can blow up the whole display in a consistent manner by overriding

the base font size.

2.1.4 Namespaces in XML

There are applications of XML where a single document may contain
elements and attributes (referred to as a "markup vocabulary") that are
defined for and used by multiple software modules. One motivation for
this is modularity; if such a markup vocabulary exists which is well-
understood and for which there is useful software available, it is better

to re-use this markup rather than re-invent it.

Such documents, containing multiple markup vocabularies, pose
problems of recognition and collision. Software modules need to be
able to recognize the tags and attributes which they are designed to

process, even in the face of "collisions" occurring when markup
19

intended for some other software package uses the same element type

or attribute name.

These considerations require that document constructs should have
universal names, whose scope extends beyond their containing
document. This specification describes a mechanism, XML

namespaces, which accomplishes this.

An XML namespace is a collection of names, identified by a URI
reference, which are used in XML documents as element types and
attribute names. XML namespaces differ from the "namespaces"”
conventionally used in computing disciplines in that the XML version
has internal structure and is not, mathematically speaking, a set.

URI references which identify namespaces are considered identical
when they are exactly the same character-for-character. URI references
which are not identical in this sense may in fact be functionally
equivalent. Examples include URI references which differ only in case,
or which are in external entities which have different effective base
URlIs.

Names from XML namespaces may appear as qualified names, which
contain a single colon, separating the name into a namespace prefix
and a local part. The prefix, which is mapped to a URI reference,
selects a namespace. The combination of the universally managed URI
namespace and the document's own namespace produces identifiers
that are universally unique. Mechanisms are provided for prefix scoping

and defaulting.

URI references can contain characters not allowed in names, so cannot
be used directly as namespace prefixes. Therefore, the namespace
prefix serves as a proxy for a URI reference. An attribute-based syntax
described below is used to declare the association of the namespace
prefix with a URI reference; software which supports this namespace

proposal must recognize and act on these declarations and prefixes.

20

A default namespace is considered to apply to the element where it is
declared (if that element has no namespace prefix), and to all elements
with no prefix within the content of that element. If the URI reference in
a default namespace declaration is empty, then unprefixed elements in
the scope of the declaration are not considered to be in any
namespace. Note that default namespaces do not apply directly to

attributes.

An example XML document using namespace scoping is given in
Figure 2-2
<?xml version="1.0"7?7>
<!=- initially, the default namespace is "books" -->
<book xmlns='urn:loc.gov:books'
xmlns:isbn='urn:ISBN:0-395-36341-6"'>
<title>Cheaper by the Dozen</title>
<isbn:number>1568491379</isbn:number>
<notes>
<!-- make HTML the default namespace -->
<p xmlns='urn:w3-org-ns:HTML'>
This is a book
</p>
</notes>

</book>

Figure 2-2 XML Document Using Namespace Scoping

2.1.5 XML APis

XML documents are parsed or created with XML processors that
provide a standard set of APIs that allow access to all parts (elements,
attributes, entities, processing instructions, comments and DTD) of an
XML document.

There are two major types of XML APIs:

21

o Tree-based API: A tree based APl compiles an XML document into
an internal tree structure and allows an application to navigate the
tree. The Document Object Model (DOM) is such an API.

o Event based API: An event based API, on the other hand, reports
parsing events (such as the start and end of an element) to an
application through call backs. The application implements handlers
to deal with various events. Simple API for XML (SAX) is such an
API.

2.2 Workflow Management Systems

Workflows are composite activities that typically involve a variety of
computational and human tasks and span multiple systems. Workflows
arise naturally in heterogeneous environments consisting of a variety of
databases and information systems. In a heterogeneous environment,
applications autonomously developed at different sites in different
languages on different hardware and software platforms need to share
information and invoke each other's services. It is common that
workflow systems access heterogeneous resources and interoperate
with other workflow systems. If a workflow system tries to overcome
heterogeneity problem, which can take the form of communication level,
platform level or semantic level heterogeneity, within its own
architecture, the system becomes very complex and inflexible.
Therefore, it is more efficient to base a Workflow Management System
(WFMS) framework on a standard middleware that hides some levels of
heterogeneity in the environment. The object technology, the distributed
computing technology and XML are the enabling technologies to

provide necessary communication infrastructure for this purpose.

A partial solution to semantic interoperability problem specific to
WFMSs can be obtained by complying to the standards being
developed by the Workflow Management Coalition (WfMC). WfMC,

22

which aims at standardizing the terminology and interoperability
between workflow products, defines a Workflow Reference Model.

Most of the available workflow management products have some
common functionalities and characteristics because they aim at the
same functional target. Until recently there has been no common
standard for these products to make them interoperate with each other.
In order to provide the communication and interoperation of workflows
across different vendor products, a standard workflow specification is
necessary. Workflow Management Coalition (WfMC), founded in 1993,
is a non-profit, international organizatioh of workflow vendors and
analysts. Their objectives include standardization of the terminology

and interoperability between workflow products.

WFMC defines a Workflow Reference Model [1] and interface
descriptions between the basic components of the Reference Model.
Figure 2-3 illustrates the major components and interfaces within

workflow architecture of the model.

Process
clinitivn Tools
A

Administration

Interface 3

ol
Interfuce 4

&
Monitoring Tools

Figure 2-3 WfMC's Workflow Reference Model

23

The core component in the Reference Model is the Workflow
Enactment Service which is responsible for creation, management and
execution of workflow process instances according to process definition
produced by process definition tools. The workflow enactment software
consists of one or more workflow engines, which are responsible for
managing all, or part of the execution of individual process instances. It
interprets a process definition coming from the definition tool and
coordinates the execution of workflow client applications for human
tasks and invoked applications for computerized tasks. This may be set
up as a centralized system with a single workflow engine responsible
for managing all process execution or as a distributed system in which
several engines cooperate, each managing part of the overall

execution.

In order to achieve interoperability among various WFMS
implementations, WIMC has defined five standard interfaces between
the components. These interfaces are designated as Workflow APIs

and interchange formats. These interfaces are;
Interface 1: Process Definition Tools Interface

The purpose of this interface is to integrate process definitions
generated by different process definition tools, or to use a

definition generated for a workflow system in another system.
Interface 2: Workflow Client Applications Interface

Users of a workflow system utilize several different types of client
applications such as editors, CAD/CAM tools, WWW browsers.
This interface provides integration of these applications in order

to participate in a workflow system.
Interface 3: Invoked Applications Interface

WFMSs are expected to work with already existing software

components such as legacy systems and DBMS applications.

Interface 4: Other Workflow Enactment Services Interface

24

It may be necessary for different enactment services to
interoperate because a process in one enactment service may

invoke a process in another.
Interface 5: Administration and Monitoring Tools Interface

An administration and monitoring tool may be a separately
developed system, or it may be necessary to centrally monitor

different workflow systems.

Process Definition Tools are used to analyse, model, describe and
document a business process. The outcome of this process modeling
and design activity is a process definition which can be interpreted at
run time by the workflow engine(s) within the enactment service.
Workflow Client Applications involve the activities which require
interaction with the human resources. In the workflow model, interaction
occurs between the client application and a particular workflow engine
through a well-defined interface embracing the concept of a worklist -
the queue of work items assigned to a particular user by the workflow
engine. Invoked Applications are the programs invoked by the workflow
management system. Administration and Monitoring Tools are used to

track workflow process events during workflow process execution.

In the following sub-sections, some of the existing workflow systems are

reviewed.

2.2.1 ConTract

One of the first and most advanced workflow research projects is the
ConTract project [9). The focus of this project has been to extend
transaction-oriented run-time mechanisms for fault tolerant workflow

execution in a distributed environment.

The ConTract model tries to provide the formal basis for defining and
controlling long-lived, complex computations, just like transactions

control short computations. It is inspired by the mechanisms for

25

managing flow that are provided by some TP-monitors, like queues and
context-databases [10].

The basic idea of the ConTract model is to build large applications from
short ACID transactions and to provide an application independent
system service, which exercises control over them. As a main
contribution, ConTracts provide the computation as a whole with the
reliability and correctness properties. The ConTract Model extends the
fraditional transaction conceépts to form a generalized controi
mechanism for long-lived activities. A large distributed application is
being divided into a set of related processing steps which have

appropriate consistency and reliability qualities for their execution.

A ConTract can be defined as consistent and fault tolerant execution of
an arbitrary sequence of predefined actions (called steps) according to
an explicitly specified control flow description (called script). In other
words, a ConTract is a program that has control flow like any
programming environment, has persistent local variables, accesses
shared objects with application oriented synchronization mechanisms

and has precise error semantics.

In ConTract programming model, the coding of steps is separated from
defining an application's control flow script. Steps are coded without
considering implementation details like managing asynchronous or
parallel computations, communication, resource distribution,

synchronization and failure recovery.

Control flow between related steps can be modeled by the usual
elements: sequence, branch, loop, and parallel constructors.
PARFOREACH(query) statement executes its query in parallel. A

sample ConTract script can be like:

CONTRACT Business Trip Reservations
CONTROL_E‘LOW__S CRIPT
S1: Travel Data_Input(in_context: ;out_context: date, from,
to);
PARFOREACH (airline: EXECSQL select airline from ... ENDSQL)
$2: Check_Flight_Schedule(in_context: airline, date, from,
to; out_context: flight no, ticket price);

26

END_PARFOREACH
END CONTROL_FLOW_SCRIPT

END_CONTRACT

Each of the Sn states is a step whose implementation can be coded in

a programming language.

Each ConTract step is implemented by embedding it into a traditional
ACID transaction, preserving only local consistency for the manipulated
objects. Due to not being a transaction, a whole ConTract is not an
ACID unit of work.

The ConTract script programmer can define atomic units of work
consisting of more than one step by grouping them into sets.
Furthermore, the ftransaction programmer may specify events
depending on the result of steps and/or transactions. Grouping of a set

of steps into one atomic unit of work is modeled by the following

example:
TRANSACTIONS
Tl (S1, S2)
T2 (S3, S4)

END_TRANSACTIONS

Dependency between the execution results of different steps can also

be modeled:

DEPENDENCY (Tl abort -> begin T1)

ConTract introduces concept of context elements, which are ConTract-
local variables . These variables are kept in stable transactional storage
and are only accessible from the ConTract in which they are defined.
Only a step of a ConTract can read or modify the value of context
elements. Since the steps are running under the protection of a
transaction, their modifications of the context are protected by this

transaction. To support the examination of history, context elements are

27

stored in an update-free way, in which a new version is generated upon

a change to the variable.

APRICOTS (A PRototype Implementation of a COnTract System) [11]
is an implementation of the ConTract model to show feasibility of its

mechanism.

2.2.2 METEOR
METEOR (Managing End To End ORganization) [12] is a workflow

language and model based on an extension of the Bellcore workflow
model [13]. Its workflow execution model is driven by intertask
dependency rules that are expressed in specifically designed script
language. METEOR allows workflow definition at two levels of
abstraction, by using two different languages: the Workflow
Specification Language (WFSL), describing workflow structure and data
exchange among tasks, and the Task Specification Language (TSL),

describing the details of the tasks.

WFSL is used to specify the workflows, including all task types and
classes in a workflow, all intertask dependencies, application level
failure recovery and error handling issues. TSL is a declarative rule-
based language that mainly deals with task structure, typed input and
outputs for each task, and preconditions for every controllable
transition. The designer may define fask types, describing task
structures, and task classes, that are of a specific type and have typed
input and outputs. Three task structures in this model are fransactional,
non-transactional, and open 2PC task structures. Each task has got
controllable transitions that can be enabled by the workflow controller,
and non-controllable transitions that are enabled by the task's
processing entity. There are also compound tasks which can be

composed of simple tasks and/or other compound tasks.

One of the key objectives of TSL is the minimal rewriting of existing
tasks. TSL provides a wrapper for code describing interaction with an
28

yiuSEKOCRETIM KURDLUY
E{%}@MW@N MIERKEZ]

interface to processing entity and essentially comprises a set of macros
that can be embedded in a host language. The main functionality of the
TSL macros is to indicate points in the task execution at which the
workflow controller can be informed about the current logical state of
the task. This functionality allows the workflow to deal with legacy
applications without changing their code. Description of a simple

transactional task can be :

simpleTaskType SIMPLE TRANSACTIONAL

{

CONTROLLABLE start(initial, executing) input ;
NON_CONTROLLABLE abort (executing, aborted) output ;
NON_CONTROLLABLE commit (executing, committed) output ;

simple TaskType denotes that the definition does not relate a compound

task; and also two non-controllable transitions produce output.

Each WFSL rule has two components: a control part and an optional
data transfer part. Every next step of the workflow is determined by an

evaluation of the relevant rules when an event occurs.

Intertask dependencies [14] determine how the tasks in the workflow
are coordinated for execution. Two general types of dependencies in
METEOR are state dependencies and value dependencies. State
dependencies describe how a controllable transition of a task depends
on the current observable states of other tasks. A state dependency

example takes the following form:
[L1, done] ENABLES [L2, start]

This indicates that the start transition of L2 can be enabled only after L1
has entered the done state. This approach is similar to the transitions in
ECA (Event-Condition-Action) rules, however ECA rules use events on
the left hand in contrast to states in this case. Each state can be the
result of one or more events being happened. An example of a rule
including state and value dependencies is:

[L1, done] & (success(L1.output) = TRUE) ENABLES [L2, start]

29

success is a filter function which determines whether L1 has logically

completed successfully.

WFSL allows to associate output of a task with input of others. The

specification:
L1.output —» L2.input;

indicates that output of L1 must be used as input of L2.

2.2.3 Exotica And FlowMark

Exotica Research Project [15], [16] being carried out at the IBM
Almaden Research Center brings together industrial trends and
research issues in the workflow area. It has got focus on a commercial
product called FlowMark [17].

Exotica project has got six major research areas: failure resilience in
distributed WFMSs, compensation and navigation in workflow networks,
high availability through replication, mobile computing, distributed

coordination and advanced transaction models.

The system, Exotica/lFMQM [16], FlowMark on Message Queue
Manager, is a distributed workflow system in which a set of autonomous
nodes cooperate to complete the execution of a process. Each node
functions independently of the rest of the system, the only interaction
between nodes is through persistent messages informing that the
execution of a step of the process has been completed. In this system,
the sequence of events is as follows: a user first creates a process. The
process is compiled in the process definition node. After compilation,
the process is divided in several parts and each part is distributed to an
appropriate node. The division of the process into parts will be based on
the users associated with the different nodes and the roles associated
with the different activities in the process. Upon receiving its part of the
process, a node creates a process table to store this information and
starts a process thread to handle the execution of instances of such

30

process. Finally, the process thread creates a queue for communicating

with other nodes all information relevant to instances of the process.

The FlowMark workflow model is a representation of a process,
comprising a process diagram and the settings that define the logic
behind the components of the diagram. Listed below are the main

components of a FlowMark workflow model:

Process: A sequence of activities that must be completed to

accomplish a task.

Activity: A step within a process that represents a piece of work that
the assigned person can complete by starting a program or another

process.

Block: Grouping of several activities and nested blocks to reduce

complexity and looping through a series of activities.

Control flow: Determines the sequence in which activities are

executed.

Connector: Links activities in a workflow model to define the

sequence of activities and the transmission of data between activities.

Data container: Allocated storage for the input and output data of

the process and of the activities and blocks within it.

Data structure: An ordered list of variables with a name and a data
type.

Condition: The means by which the flow of control in a process can

be specified.

Program: A computer-based application program that supports the

work to be done in an activity.

Server: A server can be specified for each subprocess, so that a

process can be distributed among several servers.

Staff: Each activity in a process is assigned to one or more staff

members.
31

FlowMark provides a graphical definition tool that can be used to model
a workflow, by including the above components. There are symbols for
activities and blocks, and a process can contain many of these blocks

and activities.

The information given in a graphical form can be exported to a textual
form. This definition contains declarations for data structures, programs,
servers and staff. The process definition gives some information about

the process and how the workflow is supposed to execute.

32

CHAPTER 3 -

MESCHAIN ARCHITECTURE

The work described in this thesis is part of the METU Supply Chain
Automation (MESChain) Project, which is being developed at the
Software Research and Development Center of Middle East Technical
University. The purpose is to develop a system for "Electronic Catalog

Integration and Supply Chain Automation on the Internet".

This chapter is dedicated to the discussion of the MESChain [29]
project to be able to put the work described in this thesis into
perpective. Section 3.1 will review the basic concepts about the system.

The next seciton will discuss the architecture of MESChain.

3.1 Basic Concepts

Electronic commerce is happening at a very fast pace and business-to-
business ecommerce seems to be taking the lead, a very important part
of which is the supply chain integration and automation. There is a high
demand for well accepted interoperability standards which need to be
fitted together for supply chain integration to meet the business
demands such as being able to integrate catalogs from different
companies. This will facilitate product comparisons and producing
customized catalogs. Given an anchor product anywhere on the supply
chain, it should be possible to obtain information on related products
that complement or add value to this anchor product. Yet another key
issue is the full automation of the supply chain processes. However
since a single dominant electronic commerce standard is unlikely, the

supply chain integration and automation should be able to accomodate
33

different standards like Open Trading Protocol (OTP) or Open Buying
on the Internet (OBI). This will make it possible for users to conform to

the standards of their choice.

Another important fact is that rigid supply chains can co-exist with
supply chains formed on the fly where participants can transact
business spontaneously since the Web is able to make the information
instantly available to all trading partners. Facilitating resource discovery
that is finding out about the information on possible partners and their
catalogs on the Internet and transacting business automatically also

becomes an important issue.

The electronic catalogs will much better serve the needs of the
business today if they can achieve the following functionalities through
seamless interoperation of the resources on the whole supply chain of

retailers, distributors and manufacturers [18]:

1. Facilitating product comparisons and customized catalogs: Buyers
should be able to query multiple catalogs concurrently and then
assemble the accumulated information in any format they specify to
be able to compare competitive products. In other words, it should
be possible to integrate data from a number of different resources to
create catalogs that are not only timely and information rich, but also
tailored according to the customer's needs and preferences. Also for
large organizations that have negotiated special discounts with
certain suppliers, interoperable catalog technology should make it
possible to create internally distributed product listings that describe
approved items and the prices set for them through master purchase

agreements.

2. Locating complementary products: A buyer may be willing to
purchase related products or a product may need several additional
components before a complete system is deployed. This
necessitates being able to locate compatible products in other

catalogs through standardized queries. That is, once a buyer

34

establishes a core (or "anchor") product anywhere on the supply
chain, s/he should be able to readily obtain information from other
catalogs describing items and services that complement or add
value to this anchor product. For many suppliers this approach is
also preferable to the alternative of redirecting customers to
complementary catalogs since many of these catalogs may contain

pointers to competitive products.

. Bidirectional catalog integration: Catalog integration should be
possible not only down the supply chain, that is from retailer to
manufacturer but also up the supply chain that is from manufacturer
to the retailer. As an example, a distributor's catalog should not only
be able to obtain information about products from the original
suppliers, but should also acquire information about the retail outlets
where products in the catalog are offered. This will make it possible
for the user to access all the information available on a particular
product, regardless of where s/he has chosen to establish an anchor

on the supply chain.

. Automation of processes on the supply chain: Whenever a product
is bought, this information should propogate down and up the supply
chain automatically triggering a series of distribution, manufacturing
and logistics events. As an example, the items collected in a
shopping cart should automatically trigger the issuing, approval and
delivery of related purchase orders electronically to the appropriate
vendor organization. In response an electronic message should be
sent to the buyer confirming the acceptance of the transaction,
providing tracking number of the transaction and summarizing the
status of the order. At the seller site, on the other hand, the related
subprocesses like shipment and payment need to be automatically
activated. Assuming that the buyer is a customer who contacted a
retailer, it is necessary to automatically trigger the processes down
the supply chain alerting necessary processes in distributors and

manufacturers.
35

In order to address these needs, MESChain project is addressing the

following issues;
1. Catalog interoperability.

In MESChain the new catalogs are created in Extensible Markup
Language (XML) and already existing catalogs are transformed
dynamically into XML, alil conforming to the "catalog.dtd" of the
Common Business Library (CBL) [3]. XML is a simplified
metalanguage, derived from SGML, emerging as the standard for
self-describing data exchange in Internet applications. The CBL
contains business documents and message formats as XML
Document Type Definitions (DTDs). CBL is not a single standard but
a collection of common business elements underlying all EDI and
Internet Commerce protocols and in this respect is not limiting the
architecture proposed; rather CBL provides the much needed

interoperability basis among XML documents in the system.

It should be noted that the major database vendors are in an effort
to fully support XML and therefore dynamic XML will soon be readily
available [19]. However, as a proof of concept, the software is
implemented to be used until then, that generates an XML document
conforming to "catalog.dtd" of CBL from a query sent to an Oracle
database. There is a manually built dictionary to transform the
attribute names in the database to the tag names conforming to the

ones in "catalog.dtd".

2. Given an anchor product on the supply chain, discovery of the items

and services that add value to this product.

To realize this feature on the supply chain, the "property" feature of
the RDF is used.

Resource Description Framework (RDF) is a foundation for
processing metadata for providing interoperability between
applications that exchange machine-understandable information. It

can be used in a variety of application areas, including resource
36

discovery to provide better search engine capabilities, cataloging for

describing the content and content relationships [20], [21].

The basic data model consists of three object types: resources
which are the things being described by RDF, properties which are
specific aspects, attributes or relations describing a resource and

statements that assign a value to a property of a resource.

Through the "property” feature of RDF, it is possible to state which
resource (e.g. a printer) is an addon product for which other

resource (e.g. a computer).
. Bi-directional traversal on the supply chain.

The relationships among the catalogs on the supply chain, in other
words participant roles, are described through RDF properties which

makes it possible for bi-directional catalog search and integration.

. An open architecture being able to support different electronic

commerce standards.

It is widely believed that a single dominant ecommerce standard is
unlikely. Rather there will be many standards. An ecommerce
architecture should be open in the sense that it should be able to
support more than one standard at a time. As an example both OBI
and OTP are different but similar standards. When the base is XML,
since XML is machine processable, it naturally follows that the task
of supporting more than one standard should be delegated to the
agents and this is the approach taken in MESChain by associating

catalog agents to catalogs.

Associating catalog agents with catalogs makes it possible to
conduct business according to the different standards. A different
workflow process template is defined for each standard, and the
catalog agents are informed about messages specific to each of
these process templates. Since the agents are able to differentiate
between different types of messages and act accordingly, the

37

proposed architecture provides its users the flexibility to conform to

any of the procurement standards they prefer.
5. Resource discovery on the Web.

Resource discovery on the Web has been an important yet difficult
problem. On the other hand finding out about catalogs is necessary

on the supply chain for forming on the fly partnerships.

The architecture proposed helps the users in the following ways in

this respect:

e The metadata of the catalogs is expressed in RDF using the
Dublin Core element set and hence it becomes possible for

resource discovery agents to find out about these catalogs.

e Catalogs are also associated with catalog agents that advertise
their capabilities to the facilitators which further help with match

making.
6. Automating the whole process on the supply chain.

When a catalog agent receives a customer order, it identifies the
associated protocol and initiates the corresponding workflow
template inside the company's firewall. The companies on the chain
can define their workflow templates in XML conforming to
workflow.dtd and a workflow engine in Java is provided to execute

these definitions.

It is clear from the discussion above that to be able to support different
standards and for automating the whole process on the supply chain,
there is a need to invoke workflow systems that are highly interoperable

and this constitutes the scope of this thesis.

3.2 Architecture Of the System

In the classical supply chain model, the distinctions between retailers,
distributors and manufacturers are not clear cut in that manufacturers

may also need to buy raw material and distributors or retailers may be
38

assembling (i.e., producing) products. Therefore in order to come up
with a more generic model we assume that all the participants on the
supply chain may purchase or produce products that they sell. This
removes any differences between a manufacturer and a distributor or a

retailer in terms of supply chain functionality.

Figure 3-1 shows the proposed architecture. In a business-to-consumer
(B2C) model, a customer either contacts a predetermined supply chain
or uses a search agent to find out the potential catalogs. The search
agent can dynamically create a catalog for comparative shopping
purposes. Catalogs are associated with catalog agents which activate
the related workflow template instances. Workflow process instances
obtain the necessary information from product descriptions such as

stock availability.

In the following, we provide details about those functionalities of the
system that make direct use of the workflow management system that

is developed within the scope of this thesis.

Manufacturers Distributors Retailers B28 Model
jmmm=m—m == | | mm—m oo | VT
t 0¥ Deeriptions] Organization s
N roger | | Cotate Catulog

Fur gencration
and approval

i 1
! i
! Product Caulog | |
A ! Bescriptiony | Description :
! ! |
t : ! ! of orders
i ! ! | b e e e
L) Lo 1 [R g F I S RO

] |

[|

1 i

" g [1
Deseription: Prescripnion| : WS |
1 !

1 |

1 {

[
|mmmm—mm— = . 1 |Or; animljog(is :

I——===—= —— 1 " - <#> ustomizi
| [RUF Dewripion | ; 1 RO Descripions] | y [KDF poseriprions : : Catllog | 1
: Pt Catalog |1 : Produst Cawlog |1 : Pendust Catslog 11 t won :

seseri j ! x l i " -)
o Descrip : 1 [Dewniption) | 3 [psrie 1 : : forpion™) |

and af
! i ! | ! | i ol m !
! i ! ! ! 1 [|
[o L= __.—-__ 1 | e e)
e ==l I Bl e o e Im=—====—==
RDF Dersriptions 1 __RDE Descripgions]

| , B2C Model
: Prindisct Canalog Prowduct Caialog e N SR —

Deseriptiony | Descripion]

Descripttony | Description) Customer

-_——— - — —

Figure 3-1 The Proposed Supply Chain Architecture

39

3.2.1 An open architecture supporting different standards

Catalogs have associated catalog agents which initiate a workflow

process to handle incoming orders.

There can be different workflow process template definitions conforming
to different standards like OTP or OBI. A catalog agent initiates the
related workflow template according to the incoming message type. It is
possible to accomodate new standards by introducing new workflow
templates and by informing the catalog agents about the message

formats and the related workflow templates.

The workflow processes are defined in XML conforming to
"workflow.dtd" as provided in Appendix A. The organizations on the
supply chain can download the engine and execute any workflow
process defined in XML conforming to this DTD, which gives an

enormous flexibility in terms of interoperability.

The workflow process instances are invoked through the catalog agent
which queries the XML order message it receives, and according to the

type of the message invokes the related workflow template.

An important point to note here is the need to invoke applications also
from an XML document. For example a workflow process invoked by a
catalog agent may need to invoke some subprocesses. Currently XML
does not interact with external applications. The "NOTATION" facility in
XML provides one-way interface, i.e., invoking and sending some
information to an external application, but not the other way around, i.e.
getting the results back is not supported.

With the current XML technology the following two alternatives can be
used to integrate the results of an external database application into an
XML document:

e If an autonomous inventory control database is supporting XML,
then it can be queried through XML-QL queries that are placed in
the XML document [23].

40

The XML-QL queries can be used in combination with XML
"NOTATION" facility. For example, an external application that
accesses the company's autonomous database may be initiated by
the NOTATION facility. The external application can store its results
in XML to a pre-defined location which can be accessed then by an
XML-QL query.

These issues are being addressed within the scope of a related MS
Thesis [26].

3.2.2 The architecture of catalog agents

Agents are distinguished from other types of software because they are

independent entities capable of completing complex assignments

without intervention, unlike tools that must be explicitly manipulated by

human users.

In MESChain each catalog is associated with a catalog agent which

handles incoming orders or any other XML messages sent to the

catalog. The catalog agents have the following properties:

They accept messages rather than being invoked by other

programs.

They evaluate the messages that they receive and act in response
rather than being told what to do, i.e., they are autonomous.
Specifically, they are able to handle order requests in different
formats to provide for the flexibility of conducting the commerce
according to different standards that the user may prefer. For
example, a catalog agent can handle the customer orders to the
catalog when the requests to the catalog come in diverse formats
such as OTP or OBl messages. It should be noted that the catalog
and the catalog agent can be outside the company firewall and if the
order is accepted, the agent needs to initiate a workflow process

inside the firewall to process the customer order. In MESChain, the

41

workflows invoked within firewalls make use of the system

developed in this thesis.

o They find out about the other catalog agents that they need to

communicate.
e They keep their state while communicating with other agents.

¢ The catalog agents can advertise the services offered by the catalog
through facilitators (possibly to the marketplaces) to extend their
commerce activities as much as possible. Currently catalog agents
communicate with each other through an Agent Communication
Language, which is specific to MESChain agents. To communicate
with other agents in the outside world, a standard agent

communication language like KQML should be used [24].

MESChain Agent Communication Language is implemented on TCP/IP.
The usage of TCP/IP is preferred over HTTP and FTP for its efficiency.
For each catalog agent one predefined socket is assigned where it

listens to the incoming messages.

Concurrent access to a single port is handled by Java's Net Package by
assigning dynamic ports for each request. Simple message buffering
and queuing are also provided by this package. These queuing facilities
have been extended to persistent queue implementation and
transactional agent communication for safe and consistent

transmission.

42

T.C YUKSEKOGRETIM KURULY
DOKOMANTASYON

CHAPTER 4

WORKFLOW MANAGEMENT SYSTEM ARCHITECTURE

As described in the previous chapter, MESChain project requires a
Workflow Management System to fully automate the supply chain
process. This chapter proposes such a workflow architecture that not
only fullfills the requirements of MESChain project but can also be used

as a general purpose Workflow Management System.

The system that is proposed will be able to run any workflow process
that is defined in XML conforming to the workflow.dtd. The workflow.dtd
is given in Appendix A. It should be noted that, for the sake of
standardization and common ontology, the provided workflow.dtd will be
replaced by a standardized one when it becomes available within the

scope of CommerceNet's electronic commerce infrastructure.

41 Overview of the Proposed Architecture

There are many business models used in electronic commerce (EC)
like e-shop, e-procurement, e-mall, electronic marketplace, virtual
communities, value chain integrators, colloboration platforms, and
information brokerage [27]. In all of these models, the business
processes can be modeled as a set of steps that are ordered according
to the control and data flow dependencies among them. This
corresponds to a workflow process, where the coordination, control and
communication of activities are automated, although the activities

themselves can either be automated or performed by humans.

43

Yet the workflow systems to be used in electronic commerce should

have specific features that are of critical importance for electronic

commerce applications [28]:

The mass-business characteristics of EC workflows require a high-
throughput workflow execution engine. Thus, load distribution across
multiple workflow servers is necessary to ensure this kind of
scalability. The EC workflow systems must also quickly adopt to

network changes due to failed sites or due to load balancing.

The EC workflows should easily adapt to different and changing
requirements of the customers. So a workflow model is more likely
to be a template that is dynamically enriched by introducing
additional activities along with their control and data flow, and also
possibly skipping the parts of the pre-specified workflow template.
Also there could be changes in EC process execution flow triggered
by colloborative decision points, or context-sensitive information
updates or other internal or external events which necessitate
dynamic modification of the workflow instance (e.g., cancelation of

an order by the customer).

Electronic commerce processes should be ubiquitous. To achieve
this, they should be able to run in environments with scarce
resources, and they should also have an open architecture. That is,
the functionality of a workflow system should be tailorable to the
needs and available resources of a customer and the system should
run on the Internet and should be based on an open and

interoperable infrastructure.

Frequent failures and unavailability of EC workflow servers would
immediately weaken the market position of the merchant. This

requires efficient replication of workflow servers.

The current monolithic workflow engines on the other hand can not fulfill

these needs. In the current systems even for very simple workflow

processes, the full-scale engine runs, consuming resources

44

unnecessarily. These systems also suffer from difficulties in load

balancing, migration of workflow process instances, and efficient

replication of servers.

Within the context of this thesis, a workflow system architecture based

on Internet, XML and Java has been designed to address these issues:

Each process instance is an object that contains all the necessary
data and control information as well as its execution history. This
feature makes it possible to migrate the object in the network to
provide load balancing. Furthermore, it is possible to dynamically
modify the process definition on the instance basis at run time. It
should be noted that with this architecture, a site failure affects only

the process instances running at that site.

The system is designed to consist of functional components
containing but not restricted to: Basic Enactment Service,
UserWorklistManager, Workflow Monitoring Tool, Workflow History
Manager, Dynamic Modification Tool, Process Definition Library
Manager, Reliable Message Queue Manager, Workflow Domain
Manager and Distributed Transaction Manager. This componentwise
architecture makes it possible to incorporate the functionality and
thus the complexity only when it is actually needed at run time by a
process instance by downloading only the necessary components
which results in effective usage of system and network resources. It
is also possible to add new components or maintain and upgrade
the existing components of the system incrementally without

affecting the other parts of the system.

The componentwise architecture facilitates the replication to a great
extend. Each site can download its own copy of a component
server; also the Domain Manager can be replicated at each site as a
Site Manager. This provides for availability and prevents network

overhead.

45

e The clients of the system are coded as network transportable
applets written in Java so that the end users can acquire workflow
components from the Workflow Domain Manager over the network.
Thus it is not necessary to have any pre-installed software on the
user computer. This promotes user mobility further as well as easy
maintenance of the system components which can be upgraded

transparently on the server side.

Another important design issue is the usage of XML for the system
infrastructure. Currently there are a lot of commercial systems and
research prototypes that are quite successful within themselves.
However, the lack of standarts about WFMSs prevents them from
communicating properly, which is a vital requirement for operations

running on such heterogeneous environments.

As indicated in Chapter 2, it is so common for a Workflow Management
System that it has to deal with several applications, information systems
and other Workflow Management Systems that operate on different
hardware and software platforms. The heterogeneity problem might
take the form of communication level, platform level or semantic level

heterogeneity.

Even though there has been efforts to set the standart to overcome
these heterogeneity issues, the outcoming implementations are not
satisfactory enough. Most vital example of this issue shows up when it
comes to the process definition stage. Every Workflow Management
System has its own language for defining workflow processes which
makes it cumbersome to adopt a definition written for a specific WFMS
to another one, if not impossible. This is a major issue preventing the
usage of WFMSs to the extend it should be.

It should be stated at this point that the efforts of WFMC, which are

mentioned in Chapter 2 has not been fully successful. The main reason

46

for this is the fact that the consortium could not agree on the interface

standards.

XML is a promising candidate for providing interoperability among
different workflow systems. If all workflow processes were defined in
XML, conforming to a universally accepted workflow DTD, integration of
process definitions among different WFMSs would require no extra
efford.

Actually, since any two XML documents conforming to a particular DTD
become inherently interoperable, XML might even be used for defining

the whole set of interfaces proposed by the WFMC.

4.2 Components of the System

Component-Server Repository
- Textval Process Delinition Tool
- Graphicul Process Definition Tool
~ Process Animator
- Dynamic Modification Tool
- Process Instance Monitoring Tool

|

|

| .
I Workflow Domain,
|

|

1

1

i - Workflow Domain Monitoring Tool

1

}

!

1

i

i

|

|

Monitoring Tool

- Basic Enactiment Server oo
- Worklist Handler - Engine

- Worklist Handler - User

- Activity Handler / Scheduler - Type |

I
I ! .
| : Workflow Domain Control Data
I
- Activity Handler / Scheduler - Type 2 | I
!
!
i

- URL of Component Server Repository
%! . URL of Wf Process Definitions Library
- URL of Wf Domain Permanent Storage
- List of Active Process Instances

| - List of Active Component-Servers

t - List of Participating Sites

e e e e e e -

-~ Permanent History Handler
- Authorization Server

!
i Workflow Process Definitions Library :‘"

s
[Web Browser] [Catalog AgentJ [<?EXECUTE 2> }

Processing Instr.

HUMAN USER CATALOG XML Parser

Workflow Domain Manager

Figure 4-1 Workflow Management System Architecture

47

The architecture of the workflow system is component based as shown
in Figure 4-1. This architecture provides for a complete general purpose
adaptive workflow system that participants can use not only for the
supply chain automation but for any kind of workflow processes that
their business may require. Each participant in the supply chain has a
Workflow Domain Manager that runs in close contact with the catalog
agent. The Workflow Domain Manager and other components of the
workflow system are implemented as Java objects and they

communicate with each other through XML messages.

The basic components of this workflow system are presented in the

following subsections.

4.2.1 Workflow Domain Manager

The domain manager is the Web server of the system. It communicates
via XML messages. For example, a catalog agent sends an XML
message indicating which workflow process should be inititated when a
customer order is accepted. On the other hand, human clients access
to the domain manager via a Web browser that can communicate in
XML, and in responsé to their authorized service requests the domain
manager downloads appropriate Java applets to the client which then
handles subsequent requests of the same client for that particular
service which is provided by a component server. If a client needs a
different WfMS service, the domain manager is then accessed again via
the Web browser and another Java applet is downloaded. The domain
manager keeps runtime information such as list of active process
instances, active component servers, list of participating sites, etc. for

domain monitoring purposes.

4.2.2 Workflow Process Object (WPO)

When the catalog agent or an authorized user wants to initiate a new

instance of a pre-specified workflow process, the Domain Manager

48

creates a new "Workflow Process Object’. The main method of this
object is the "Basic Enactment Method" which is activated by the
Domain Manager on behalf of the client. The WPO contains all the data
(such as workflow process definition, workflow relevant data, enactment
history of that instance upto the current execution point, etc.) required to
complete the execution of the process instance, or to migrate the
process instance from one site to another, or to rescue an instance in
case of failures. Since a WPO contains its own copy of the workflow
process definition and all the run-time information about its own process
instance, the dynamic modification of the workflow process definition on

instance basis is simply enabled by dynamically modifying the WPO.

WPOs exist only for active process instances. When a process instance
terminates, its WPO is destroyed after its history is permanently saved

by the History Manager.

4.2.3 Component-Server Repository

The components of the system are implemented as Java objects and
are activated by the domain manager as requested by the executing
process instances. The human interaction components like Dynamic
Modification tool, on the other hand, are accessed by the authorized
users through Java applets. The Component-Server Repository

includes the following components for human interaction:

e Workflow Process Definition Tool: Authorized users are allowed to
define new workflow processes or to delete previously defined
processes. Graphical or textual specification interfaces are
available. The process definition is syntactically verified and
permanently stored in the Workflow Process Definition Library in
XML.

¢ Dynamic Modification Tool: Authorized users are allowed to modify a
particular workflow process instance at run time to respond to
external changes that cause variations in the pre-specifed process

49

definition. In such a case, the modifications can be applied to
executing instances selectively or to all instances of the same
workflow process if required. The modifications can also be reflected
to the template definitions in the Workflow Process Definition Library

if needed.

e Process Instance Monitoring Tool: Users are allowed to trace
workflow process instances they have initiated and extract run-time
information about the current execution status of an instance.
Collecting and measuring process enactment data are needed to
improve subsequent process enactment iterations as well as
documenting what process actions actually occured in what order.
This feature provides data to improve optimization and evalution of
processes. Note that an authorized user can monitor any process

instance.

4.2.4 Workflow Process Definitions Library

Workflow definitions (i.e., the process templates), organizational role
definitions, and participant-role assignments are durably stored into this
library. Only workflow process definition tool and dynamic modification

tool may insert or update workflow process templates in this library.

4.2.5 History Manager

The History Manager handles the database that stores the information
about workflow process instances which have been enacted to
completion to provide history related information to its clients (e.g. for
data mining purposes). It should be noted that the history of active

process intances are stored within the WPO itself.

4.2.6 Task Manager

Another important component of the system is the Task Manager. Even

though it is not a direct component of the Workflow Management
50

System, it has a vital part for the success of operations of the system.
Every WFMS needs to execute several tasks which might be of
arbitrary complexities ranging from as simple as sending confirmation
mails informing the acceptance of purchase orders to logging on to
Database Management Systems and querying stock quantities of
particular products. Making the issue more complex, most of these
tasks are required to execute on remote machines rather than the host
running WFMS.

Task Manager is the component responsible from executing tasks. It
operates together with a Name Server. On its initializatin phase, Task
Manager registers itself to the Name Server, informing the tasks that it
is capable of executing. Whenever a Workflow Process Object of the
WFMS requires to execute a particular task, it queries the Name Server
through XML messages, gathering address information about the most
suitable Task Manager that is capable of executing that specific task.
Then, using that information, it contacts with that particular Task
Manager and submits the task request. The Task Manager interprets
the request, extracts the task to execute and the parameters provided.

It executes the task and returns any results generated to the WPO.

51

CHAPTER 5

IMPLEMENTATION

In this chapter, implementation details about the Enactment Service
module of the proposed Workflow Management System architecture are
provided. First, the tools and facilities that are used during the
implementation are briefly introduced. Then, the program structure is
overviewed. Finally, data structures that are being employed are

discussed.

5.1 Tools and Facilities

The system is developed using the Java language. Java 2 SDK, v1.2.1
from Sun Microsystems is used as the Java platform. Java is chosen as
the development platform mainly because of its ability to run on

heterogeneous platforms.

An external XML parser is required for the verification process of

..... O 4 [——— - - P I -+ JUNG ¥ RS RPN I RS L. /R &1 AV AR § oo YSSOSURSISR £ -

5.2 The Program Structure

The main module that is accessible from outside is the Domain
Manager, which is basically a process listening to a specific port for
incoming requests. An incoming request may either run an existing
workflow process from the process library or may execute a new

workflow process whose definition is provided in the request.

During the initialization phase, Domain Manager creates an instance of
a processLibrary object and calls its loadSignatures method, which
reads the process definition files that reside in a specific directory,
extracts process signatures and permanently stores that information in
the memory. A procedure signature consists of the name of the

procedure, its formal parameters and the return type.

Having successfully created an instance of a processLibrary object,
Domain Manager becomes ready to accept incoming requests. The rest
of the operation executes in a multi-threaded fashion. That is; the
Domain Manager creates a server socket which is connected to a
specific port of the host it is running on and invokes listener objects
each of which are responsible for serving one client. Any incoming
request from that specific port is handled by one of the free listener

objects which makes it possible to serve multiple clients concurrently.

Whenever a listener object catches an incoming request, it contacts
with the process library and decides whether the request can be
accepted or not. If it accepts the request, creates an instance of a
Workflow Process Instance object (WPO) and calls its
loadProcessDefinition method. After successfully loading the process
definition, calls the basicEnactmentService method of the WPO and

returns the generated results to the requester.

In the following sub-sections, details about these two methods are

discussed.

53

5.2.1 Loading Process Definitions

Loading process definitions is a two-stage process. The first part
consists of generating the Document Object Model (DOM) from a given
XML document and thus making sure that the given definition is verified
against the workflow DTD. This guarantees that the program will
execute a valid process definition which greatly simplifies the rest of the
code by saving a lot of post-controls. The second part consists of
traversing that DOM and generating a corresponding structure which
will store the necessary program and hierarchy information that will be

used during the execution of the workflow process.

5.21.1 Creating the DOM

In order to verify a process definition against the workflow DTD,
XJParser is employed. As described in the previous section, XJParser
is a Java based XML parser which is capable of verifying XML
documents against DTDs. XJParser has several methods that can be
called in order to generate the Document Object Model (DOM) of a
given XML document. Any application that needs to parse an XML
document starts with an instance of a Document object. Below is a brief
summary of the most important properties of the Document object. By
using appropriate get/set methods on these properties, XML documents

can be parsed;
e URL; the URL or the local file path of the XML document

e validateOnParse; if the value is false the XML is not validated
against any data definition. If the value is true, the appropriate
validating parser is set and the XML is validated against available

data definition resources such as DTDs.

e parserClassName; there are three parser classes available in
XJParser for parsing an XML document to create the DOM. These

are;

54

» Basic Parser is a high-performance non-validating XML parser. It
does not resolve any external entities and does not read default

attributes from any DTD.

» DTDValidatingParser is a class derived from the BasicParser
class. It is a full DTD-validating parser. Regardless of the value
of the "validateOnParse" property, external entities are resolved,
and default attributes are read and parsed as if they were part of
the XML. If the "validateOnParse" property is true, the XML is
validated against the DTD while parsing, and the process stops

at any validation error.

» XMLDOMParser is the full-featured parser class in XJParser. It is
derived from the DTDValidatingParser class. In addition to the
features provided in the DTDValidatingParser and BasicParser
classes, it validates the namespace of the elements and
attributes, resolves the data types of the elements and attributes
in the orginal XML document, resolves the schema through the
namespace URL of the schema document, and validates the

XML against the schema.

For the purposes of our project, whenever a new process definition is to
be added to the library, validateOnParse and parserClassName
properties are set to "true” and "XMLDOMParser" respectively, which
makes it possible to catch up any possible errors before registering the
definition in the library. From then on, unless modified, the definitions

are loaded with "false" and "BasicParser" parameters.

5.2.1.2 Creating the Structure

After creating the DOM for the workflow process, the rest of the loading
process consists of traversing the DOM and creating a corresponding
structure for representing the process definition. This structure will store
all the necessary information that will be required during the execution

of the workflow process. These include;

55

7.C YORSEKOGRETIM KURULY
DOKDMANTASYON MERKEZS

o Formal parameter declarations
o Variable declarations
o Process body

e Return values

Type and value information of formal parameters and variable are
stored in a symbolTable object whose details are provided in section
5.3. Later on, while loading the process body, each referenced variable
will be checked against the entries in the symbol table. Non-declared
variables and variables referred with non-compatible types will result in

compile-time errors.

Process Body stores the rules of the workflow process; that is the order,
hierarchy and conditions about executing tasks. A process body tree
composed of nodes called controlBlocks is created for this purpose.

The structure of a controlBlock object is discussed in section 5.3.

For each node of the DOM that is a child of the Process Body tagged
node, there will be one or more controlBlock nodes in the process body
tree. For example, for an IF-THEN-ELSE tagged DOM node; following

sub-tree will be added to the process body tree;

IF Block

| I
CONDITION block {THEN path} {ELSE path}

The interpretation rules for each type of the controlBlock objects is
given in the following section. Child nodes labelled THEN path and
ELSE path might consist of arbitrary depth sub trees. For demonstration
purposes, suppose the XML document contains the following
(simplified) sub part in the process body;

<IF>
<CONDITION>
<SERIAL>
<ASSIGNMENT (ASG1l)>

56

<SERIAL>
<ASSIGNMENT (ASG1l)>
<SIMPLE TASK (SIT1)>
</SERIAL>
<AND PARALLEL>
<OR PARALLEL>
<SIMPLE TASK (SIT2)>
<SIMPLE TASK (SIT3)>
</OR PARALLEL>
<ASSIGNMENT (ASG2)>
<SIMPLE TASK (SIT4)>
</AND PARALLEL>
</IF>

The corresponding structure in the process body tree will be as below;

IF

block
|
[|]
CONDITION SERIAL AND PARALLEL
block block block
I
[|] |]
ASG1 SIT1 OR PARALLEL ASG2 SiT4
block

5.2.2 Executing Workflow Processes

After successfully loading the process definition into the memory, the
domain manager calls the Basic Enactment Service (BES) of the WPO

which handles the execution of the workflow process.

Before starting the execution, BES loads the actual parameters into the
symbol table by calling the loadActualParameters method. It then
creates an execTable object, which stores information about the
execution status of the process. Finally, it creates an executionThread
object and assigns the process body to that thread. Execution thread is
capable of executing one node of the process body tree. If the node is a
leaf, i.e. has no children node, it simply executes, writes its execution
status to the execTable and terminates. If the node is not a leaf, it
creates threads for its children and starts to wait for the outcome of
57

those threads. According to that information, it determines whether it is

successful or not and informs its own parent.

By this way, the process body is traversed in a multi-threaded fashion.

For each level of the process body tree, parallel jobs are carried-out by

different threads.

As stated before, each node of the process body tree consists of one

controlBlock object. There are several different controlBlock types, and

for each of those, there is a well-defined task to be done. Below is a

summary of those tasks;

Process Body Block : The root node of the process body tree is a
Process Body block. Process Body blocks are executed similar to

serial blocks.

Serial Block : In order to execute a Serial Block, a new execution
thread is created for the first child block. If it succeeds, another
thread is created for the next child. All child blocks are executed
sequentially in this fashion. If any one of the child blocks fail, the

whole block fails, otherwise succeeds.

AND Parallel Block: In order to execute an AND Parallel Block, a
new execution thread is created for each one of the child blocks. If
any one of the child blocks fail, the whole block fails, otherwise

succeeds.

OR Parallel Block: In order to execute an OR Parallel Block, a new
execution thread is created for each one of the child blocks. If any
one of the child blocks succeeds, the whole block succeeds,

otherwise fails.

XOR Parallel Block: In order to execute an XOR Parallel Block, a
new execution thread is created for each one of the child blocks. If
only one of the child blocks succeed, the whole block succeeds,

otherwise fails.

58

IF Block: In order to execute an IF Block, the condition of the block
is evaluated. If it evaluates to frue, then a new thread is created and
is assigned to the first child block. If the condition is false and the
block has a second child, then a new thread is created and is
assigned to the second child block. If child block succeeds, the block

succeeds, otherwise fails.

Iterative Block: In order to execute an Iterative Block, the condition
of the block is iteratively evaluted and each time it evaluates to true,
a new thread is created and assigned to the child block. If any
execution of the child blocks fail, the whole block fails, otherwise

succeeds.

FOR EACH Block: In order to execute a FOR EACH Block, a simple
block is iterated for every element of a list variable. The simple block
can either be a Serial Block or any one of the Parallel Blocks. If any
execution of the simple blocks fail, the whole block fails, otherwise

succeeds.

Task Block: In order to execute a Task Block, a suitable Task
Manager is queried via the Name Server and the task is submitted
to that Task Manager. Whether the task succeeds, the block

succeeds:; the task fails, the block fails.

Assignment Block: In order to execute an Assignment Block, the
expression of the block is evaluated. The calculated value of the
expression is replaced with the current value of the simple variable
pointed to by the leftHSBlock pointer of the block.

List Assignment Block: Execution of the List Assignment Block is
similar to an Assignment Block. The only difference is that more
than one expression needs to be evaluated and each calculated

value is appended to a list variable.

59

As indicated in the previous chapter, one of the essential requirements
for a workflow management system is the ability to communicate with
external applications. For example, for the purposes of the MESChain
Project, suppose there is a workflow process which processes incoming
purchase orders. After the acceptance of each valid order, there is a
need to contact the stock system and check whether the remaining
stock level has fallen below a certain predefined amount or not. If so,
the system automatically fires certain actions to get the stock quantity
back to a desired level. In order to be able to accomplish this, the
workflow management system must be capable of communicating with
an external application, a Database Management System in this case.

The proposed architecture makes use of a component called Task
Manager for this purpose. The design principles of the Task Manager
are similar to those of the Domain Manager. There is a library object
called Task Library which is responsible for storing information about
tasks that the manager is capable of executing. During the initialization,
Task Manager creates an instance of a Task Library object and
registers the types of tasks that it can execute. Task Library stores
these information in the memory and registers the Task Manager to a

Name Server.

In order to execute tasks, the Task Manager uses objects called drivers.

Currently, there are two drivers;

o Database Driver, as its name implies, this is a specialized object for
executing database related tasks such as running SQL queries and

stored procedures.

o Shell Driver, this is a specialized object for invoking applications via
shell commands such as sending mails and running maintenance

programs.

Similar to the Domain Manager, there are listener objects for incoming
requests. Each listener object can handle one client at a time and after

verifying from the Task Library that the request is valid, it creates an
60

instance of a Task object and calls its execute method which makes

use of the appropriate driver object to execute the requested task.

5.3 The Data Structures

As indicated in the previous section, a tree structure is constructed in
order to store the workflow process definition, which consists of nodes
called controlBlocks. These blocks are the most basic data structure of

the system. A controlBlock object has these member variables;

private int controlBlockType:;
private controlBlock parentPtr;

private WPO owner;

protected boolean vital;

protected Vector leftHSVector;
protected String taskDefinition;
protected condition conditionPtr;
protected Vector expressionVector;
protected String listName;

protected Vector childControlBlockVector;
protected processCallBlock processCallBlockPtr;
protected String iterationVar;
protected controlBlock compensationBlock;
protected controlBlock contingencyBlock;

Only first four of the variables are used in all of the control blocks. The
rest of the variables and pointers are used according to the type of the
block, which is determined by the controlBlockType variable. parentPtr
is a pointer to the parent block of the current block and is null for the
root block. The owner is a pointer to the WPO that the current block
belongs to. vital stores information about whether or not the block has
to be completed in order for the workflow process to be successful. The
possible values that the controlBlockType variable can take are;,

public static final int CB_PROCESS_BODY = 1;
public static final int CB_ASSIGNMENT = 2;
public static final int CB_SIMPLE_TASK = 3;
public static final int CB_IF BLOCK = 4;
public static final int CB_ITERATIVE_ BLOCK = 5;
public static final int CB_LIST_ASSIGNMENT = 6;
public static final int CB_FOR_BLOCK = 17;
public static final int CB_COMPENSATION = 8;
public static final int CB_CONTINGENCY = 9;
public static final int CB_PROCESS_CALL = 10;
public static final int CB_SERIAL_BLOCK = 41;

61

42;
43;
44;

public static final int CB_AND_ PARALLEL
public static final int CB_CR_PARALLEL
public static final int CB_XOR_PARALLEL

Matchings for the rest of the member variables and the block types that

make use of them are presented in Figure 5-1;

Variable Name Block Types

LeftHSVector Assignment, Process Call
TaskDefinition Simple Task

ConditionPtr IF block, Iterative Block
ExpressionVector Assignment, List Assignment
ListName List Assignment

ChildControlBlockVector | Process Body, Serial, AND Parallel,
OR Parallel, XOR Parallel, IF Block,
lterative, For Each

ProcessCallBlockPtr Process Call

lterationVar For Each

Figure 5-1 Member Variable Block Type Matchings

compensationBlock and contingencyBlock are two reserved variables
which are not being used in the current implementation. They will store
information that will be useful for rolling-back the execution in case of

failures.

Besides the controlBlock object, there are a number of different objects
that are used within the system among which symbolTable, execTable,
expression, and condition are the most important ones. Below is an
explaination of the member variables of those objects and how they are

used;

62

symbolTable is a vector which contains objects called
symbolTableEntry. Each symbolTableEntry contains the following

member variables;

protected String varName;
protected int varType:
protected String varValue;
protected list listPtr;
protected int kind;

The kind variable determines whether the entry is a simple variable
or a list variable. If it is a simple variable; varName, varType and
varValue are used for storing the name, type and value of it
respectively. If it is a list variable, a list object, pointed to by listPtr

stores such information. A list is a simple object with the following

member variables;

private String name;
private int type;
private Vector value;

execTable is a vector which contains objects called execTableEntry.

Each execTableEntry has the following member variables;

private int status;
private execTable parentTable;

The parentTable is a pointer to the execTable object which this entry
belongs to. The status is a flag for determining the current status of
the execution of an executionThread object. The possible values it

can take are;

public static final int ETE_NOT_STARTED = 1;
public static final int ETE EXECUTING = 2;
public static final int ETE_COMPLETED = 3;
public static final int ETE TERMINATED = 4;
public static final int ETE_COMPENSATED = 5;

expression is a collection of two vectors, one for storing the
operands and one for storing the operators. Possible operators are;
addition, subtraction, multiplication and division. An operand is an

object with the following member variables;

protected int Kind;
protected String Name;
protected literal 1Ptr;
protected expression ePtr;

63

protected processCallBlock pcBlockPtr;

The kind variable determines the type of the operand. An operand
can be a variable reference, a literal, an expression, a list reference
or a process call. The name, IPtr, ePtr and pcBlockPtr variables are
used for variable reference, literal, expression and process call
typed operands respectively. For list references, the name and ePtr
variables are used together for denoting the name of the list and

index to its referenced member.

A literal is a simple object for denoting simple literals. lts member

variables are;

protected int type;
protected String value;

Currently supported literal types are;

public final static int INTEGER = 1;
public final static int STRING = 2;
public final static int BOOLEAN = 3;
public final static int FLOAT = 4;

condition is a collection of two vectors, one for storing the logical
operators and one for storing the operands. Possible logical
operators are AND, OR, XOR and NOT. An operand is represented
by an object called simpleCondition which has the following member

variables;

private operand leftOperand;
private operand rightOperand;
private int comparisionOpr;
private boolean negate;

If the condition is unary, only the leftOperand is used. If it is binary,
rightOperand and comparisionOpr variables are also used. In both
cases, the negate variable determines whether or not the resulting

value should be negated. Possible comparision operators are;

public final static int CO_EQUAL =1; // equal to

public final static int CO_GREATER 2; // greater than
public final static int CO_LESS 3; // less than
public final static int CO_GEQ 4; // greater or equal
public final static int CO_LEQ 5; // less or equal
public final static int CO_NEQ = 6; // not equal

Il

64

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, a component based workflow management system for
enacting processes defined in XML conforming to a workflow DTD is
described. The work done is realized as part of the Electronic Catalog
Entegration and Supply Chain -Automation Project that is being
developed at the Software Research and Development Center of the
Middle East Technical University.

The main contribution of the thesis is to improve the interoperability of a
workflow system through the usage of XML as the basis for process
definitions. In order to achieve interoperability, there is a need for a
structure that can run on heterogeneous platforms, can easily be
adopted for different applications and being supported by major
software vendors. XML not only meets these requirements but also is
an open and self-explaining standart which makes it machine-
understandable. In addition, since XML can be transmitted over the
HTTP protocol, any computer in the world can receive and send XML
documents provided that it has access to the Internet, there is no need
for an extra infrastructure. In a work that is currently progressing at the
Software Research and Development Center, an XML parser is being
developed which will be capable of invoking external applications from
within XML documents. Thus, it will be possible to replace specific tags
of XML documents with the results of the applications that are being
called. By employing this powerful feature in our work, it will be possible
to define dynamic workflow processes rather than static ones.

65

Another major contribution of the thesis is to propose a component

based architecture for a workflow management system rather than a

monolithic one which provides several benefits such as better utilization

of system resources and betier management and maintenance

opportunities.

There are a number of modification and contributions that can be done

to the current implementation of the system as future work;

As indicated above, it is planned to incorporate the “external

application invoking” capability to the system.

The current implementation makes use of a DTD that is provided by
the SRDC. However, in order to achieve world-wide interoperability,
that DTD should be replaced with a standart one whenever one
becomes available as a result of the ongoing standardization efforts

carried-out by the international organizations like CommerceNet.

Current implementation of the workflow system is not fault-tolerant.
That is, whenever a failure occurs at any step during the execution
of a process, the whole process fails. It is necessary to incorporate
fault-tolerance into the system. For this purpose, the process
definitions should be enriched by side-ways such as contingency
and compensation blocks which should provide alternative paths to

take for the program in case of failures.

The system currently supports only primitive data types. It might be
necessary to support the usage of complex data types such as user-
defined structures and arrays in order to increase the efficiency of

processes defined.

Furthermore, the system being a prototype to demonstrate the

feasibility of a component based architecture lacks some further

components of a full-fledged WFMS such as a history manager, worklist

manager or monitoring tool which might be developed as future work.

66

[1]

[2]

3]

[4]

(3]

[6]
(7]

[9]

REFERENCES

D. Hollingsworth, "The Workflow Reference Model", Workflow
Management Coalition Specification, TC00-1003 (Draft 1.0), 1994.

"Extensible Markup Language (XML) 1.0". W3C Recommendation.
hitp://iwww.w3.org/TR/REC-xmI-19980210, 1998.

R.Glushko, J.M. Tenenbaum, and B. Meltzer, "An XML Framework
for Agent-Based E-Commerce", Communications of the ACM,
42(3), 1999.

VEOQ Systems Inc., http://www.veosystems.com, 1998.
OBI, "Open Buying on the Internet", http://www.openbuy.org/, 1998.
OTP, "Open Trading Protocol", http://www.otp.org/, 1997.

RosettaNet, http://www.rosettanet.org/generalffinished-project/
laptop.htmi, 1998.

Microsoft, "XML: Enabling Next-Generation Web Applications”,

http://msdn.microsoft.com/xml/articles/xmiwp2.asp, 1999.

H. Watcher and A. Reuter, "The ConTract Model", In Transaction
Models For Advanced Database Applications, Chapter 7, Morgan-
Kaufmann, February 1992.

[10] U. Dayal, M. Hsu and R. Ladin, "Organizing Long Running Activities

with Triggers", In Proc. of the ACM SIGMOD, 1990.

[11]F. Schwenkreis, "APRICOTS - A Prototype Implementation of a

ConTract System: Management of the control flow and the
communication system”, In Proc. of the 12th Symposium On
Reliable Distributed Systems, 1993.

67

[12] N. Krishnakumar and A. Sheth, "Managing Heterogeneous Multi-
System Tasks to Support Enterprise-Wide Operations”, In
Distributed And Parallel Databases, Vol. 3, No. 2, April 1995.

[13]M. Rusinkiewicz and A. Sheth, "Specification and Execution of
Transactional Workflows", In Modermn Database Systems: The
Object Model, Interoperability and Beyond, W. Kim (ed). Addision-
Wesley, 1994.

[14] P. Attie, M. Singh, A. Sheth and M. Rusinkiewicz, "Specifying and
Enforcing Intertask Dependencies”, In Proc. of the 19th
International Conference on Very Large Databases (VLDB'93),
1993.

[156]C. Mohan, G.Alonso, R. Gunthor and M.Kamath, "Exotica: A
Research Perspective on Workflow Management Systems", In Data
Engineering, Vol.18, No.1, March 1995.

[16] G. Alonso, D. Agrawal, A. Abbadi, C. Mohan, M. Kamath and R.
Guenthoer, "Exotica/ffmgm: A Persistency Message-Based
Architecture for Distributed Workflow Management ", In Proc. of the
IFIP Working Conference on Information Systems Development for

Decentralized Organizations (pp 1-18), Trondheim, Norway.

[17] "FlowMark: Programming Guide", IBM Document No. SH19-8240-
01, February 1996.

[18] CommerceNet, "Catalogs For the Digital Marketplace", Note 97-03,
1997.

[19] Oracle, "XML Support in Oracle8i", http://www.oracle.com/xml/
documents/xmi_tmp/., 1999.

[20] "Resource Description Framework (RDF) Model and Syntaz
Specification”, W3C Working Draft, http:/iwww.w3.0org/TR/ WD-rdf-
syntax, 1998.

[21] "Resource Description Framework (RDF) Schema Specification”,

W3C Working Drafft, http://www.w3.org/TR/WD-rdf-schema, 1998.
68

[22] "Dublic Core Metadata Element Set", http://purl.org/DC/, 1998.

[23] A. Deutsch, M. Fernandez, D.Florescu, A. Levy, and D. Suciu,
"XML-QL: A query language for XML", W3C Document,
http://mvww.w3.0org/TR/NOTE-xml-ql, 1998.

[24] Y. Labrou and T. Finin, "A Proposal for a New KQML Specification”,
Technical Report TR-CS-97-03, University of Maryland, 1997.

[25] DataChannel, "XJParser Developer's Guide",
http://xdev.datachannel.com/downioads/xjparser/documentation,
1999.

[26] E. Seving, "Invoking Applications From XML", Departmant of
Computer Engineering METU, MS Thesis, in preparation.

[27] P.Timmers, "Internet Electronic Commerce Business Models",

http://www.ispo.cec.be/ecommerce/busimod.htm

[28] P. Muth, J. Weissenfels, and G. Weikum, "What Workflow
Technology Can Do for Electronic Commerce", in Current Trends in
Database Technology, A. Dogac, T. Ozsu, O. Ulusoy, editors, Idea
Group Publishing, 1998.

[29] . Cingil, "Electronic Catalog Integration and Supply Chain
Automation on the Internet”, Departmant of Computer Engineering
METU, Ph.D Thesis, in preparation.

69

APPENDIX A

DTD FOR WORKFLOW PROCESS DEFINITIONS

In this appendix, the proposed DTD for the workflow processes is given.
For any process to be executed by our system, it must be possible to
verify its definition against this DTD.

<!ENTITY %remarks "#PCDATA">

<!ENTITY %req.name.attrib "name CDATA #REQUIRED">

<!ENTITY %opt.name.attrib "name CDATA #IMPLIED">

<!ENTITY %operand "var.ref | literal | expression | list.ref |
process.call">

<!ENTITY $%$activity "assignment | list.assignment | simple.task
| simple.block | if.block | iterative.block |
for.each.block | process.call">

<!ELEMENT workflows (process.defn)>

<!ELEMENT process.defn (formal.parameters?, variables?,
process.body, return.value?)>
<!{ATTLIST process.defn

$reg.name.attrib;

type (integer | string | boolean | void) "void">

<!ELEMENT formal.parameters (parm.defn)+>
<!ELEMENT parm.defn (%remarks;)>
<!ATTLIST parm.defn

%req.name.attrib;

mode (IN | OUT | INOUT) "IN"

type (integer | string | boolean) "integer">

<!ELEMENT variables (var.defn | list.defn)+>

<!ELEMENT var.defn (%remarks;)>

<!ATTLIST var.defn
%reg.name.attrib;
type (integer | string | boolean | float) "integer"
initial.value CDATA #REQUIRED>

<!ELEMENT list.defn (%remarks;)>
<!ATTLIST list.defn
$reg.name.attrib;

70

type (integer | string | boolean | float) "integer">
<!ELEMENT return.value (expression)>

<!ELEMENT process.body (%activity;)*>
<!ATTLIST process.body
%opt.name.attrib;>

<!ELEMENT simple.task (execute.block, compensation?)>
<!ELEMENT execute.block (#PCDATA)>

<!ELEMENT compensation (%activity;)+>

<!ELEMENT simple.block ((%activity;)+, compensation?)>
<!ATTLIST simple.block

%opt.name.attrib;

type (SERIAL | AND PAR | OR_PAR | XOR_PAR) "SERIAL">

<!ELEMENT list.assignment (expression)*>
<!ATTLIST list.assignment
%req.name.attrib;>

<!ELEMENT assignment (leftHS, (expression)*)>

<!'ELEMENT leftHS (var.ref | list.ref)>
<!ELEMENT var.ref (%remarks;)>
<!ATTLIST var.ref

$reqg.name.attrib; >

<{ELEMENT list.ref (expression)>
<!ATTLIST list.ref
$req.name.attrib;>

<!ELEMENT expression ((%operand;), (operator, (%operand;))*)>
<!ELEMENT operator EMPTY>
<!ATTLIST operator

kind (+ | = | * | /) #REQUIRED>

<!ELEMENT literal (integer | string | boolean)>
<!ELEMENT integer (#PCDATA)>
<!ELEMENT string (#PCDATA)>
<!ELEMENT boolean EMPTY>
<!ATTLIST boolean
value (TRUE | FALSE) #REQUIRED>

<!ELEMENT for.each.block {(simple.block, compensation?)>
<!ATTLIST for.each.block

varName CDATA #REQUIRED

listName CDATA #REQUIRED>

<!ELEMENT if.block (condition, simple.block, simple.block?)>

<!ELEMENT iterative.block (condition, simple.block,
compensation?) >

<!ELEMENT condition (simple.cond, (logical.opr, simple.cond)*)>
<!'ELEMENT simple.cond ((%operand;), comparision.opr,
(%operand;))>

<!ATTLIST simple.cond

71

truth.value (NOT | SELF) "SELF">

<!ELEMENT comparision.opr EMPTY>
<!ATTLIST comparision.opr

type (EQUAL | GREATER | LESS | GEQ | LEQ | NEQ)
#REQUIRED>

<!ELEMENT logical.opr EMPTY>
<!ATTLIST logical.opr
type (AND | CR | XCR) #REQUIRED>

<!ELEMENT process.call (expression | leftHS)*>

<!ATTLIST process.call
$reqg.name.attrib;>

72
' OGRETIM KURULY
1.C. YOKSEK! e

