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ABSTRACT

DEVELOPMENT OF LOAD DISTRIBUTION MODEL AND
MICRO-GEOMETRY OPTIMIZATION OF FOUR-POINT CONTACT BALL

BEARINGS

YILMAZ, SİNAN
M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Metin AKKÖK

June 2018, 82 pages

The unique kinematic characteristics and load-carrying capabilities of four-point con-
tact ball bearings make these bearings being widely used in demanding applications.
Particularly, four-point contact ball bearings are preferred due to their reverse axial
load carrying capability and high level of stability. In this study, micro and macro
geometrical aspects of these bearings are investigated and compared with the conven-
tional ball bearings. Once the geometry and internal kinematics of four-point contact
ball bearing are examined and formulated, a comprehensive mathematical model is
established to define the load distribution characteristics of four-point contact ball
bearings by implementing existing models in literature. The contact between each
individual rolling element and raceway are considered in accordance with Hertzian
contact theory and formulated with numerical approximation methods. Centrifugal
body forces are taken into account in the model in order to capture the behavior of
these bearings under high rotational speeds. Moreover, the contact stress and contact
truncation formulations are provided for the performance evaluation of four-point
contact ball bearings. The developed model is then employed to explore the consis-
tency with the recent FEA studies and software packages under specified load and
speed conditions. After the verification of the model, an optimization subroutine is
developed in order to optimize the micro-geometry of custom design bearings for
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different load and speed conditions as well as for different optimization targets. Sev-
eral constraints are to be implemented in this optimization subroutine in order not to
converge to an infeasible design. Thus, this efficient optimization subroutine is to be
a guidance in the design of the custom design bearings for demanding applications.
At the end, several optimization results and the corresponding custom design bearing
geometries are investigated in terms of the effects of these geometrical parameters on
maximum contact stresses, contact truncations and load distributions.

Keywords: Four-point contact ball bearings, split ring ball bearings, optimization of
bearing micro-geometry, Hertzian contact theory, bearing load distribution, contact
truncation on bearings...
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ÖZ

DÖRT NOKTA TEMASLI BİLYELİ RULMANLARIN YÜK DAĞILIM
MODELİNİN GELİŞTİRİLMESİ VE MİKRO-GEOMETRİ

OPTİMİZASYONU

YILMAZ, SİNAN

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Metin AKKÖK

Haziran 2018 , 82 sayfa

Dört nokta temaslı bilyeli rulmanlar, özgün kinematik karakteristiği ve yük taşıma
kapasiteleri nedeniyle kritik uygulamalarda çokça kullanılmaktadır. Özellikle, dört
nokta temaslı rulmanlar, ters eksenel yük taşıma kapasiteleri ve sundukları yüksek
seviye stabilite nedeniyle tercih edilirler. Bu çalışmada; bu rulman tiplerinin mikro
ve makro geometrik özellikleri incelenmiş ve konvansiyonel bilyeli rulmanlarla kar-
şılaştırılmıştır. Dört nokta temaslı bilyeli rulmanların geometrisi ve iç kinematiği for-
müle edildikten sonra, literatürde yer alan modeller kullanılarak, bu rulmanların yük
dağılım karakteristiğini ihtiva eden kapsamlı bir matematik model oluşturulmuştur.
Her bir yuvarlanma elamanı ve yuvarlanma yolu arasındaki etkileşim, "Hertz Temas"
teorisine bağlı olarak, numerik yakınsama metotları yardımıyla modellenmiştir. Bu
rulmanların yüksek dönel hızlardaki davranışlarını saptayabilmek adına, merkezkaç
gövde kuvvetleri matematik modelde dikkate alınmıştır. Ayrıca, dört nokta temaslı
bilyeli rulmanların performansını değerlendirmek amacıyla, temas gerilme ve temas
kesiklik formülasyonları da sağlanmıştır. Kurulan modelin tutarlılığı, belirli yük ve
hız koşullarında, yapılan sonlu eleman analizi çalışmaları ve paket bilgisayar prog-
ramlarıyla karşılaştırılarak kontrol edilmiştir. Matematik modelin tutarlılığı kontrol
edildikten sonra, uygulamaya özel rulman mikro geometrisinin, belirli yük ve hız
koşullarında ve farklı optimizasyon hedefleri için optimize edilmesini sağlayan bir
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optimizasyon kodu geliştirilmiştir. Bu optimizasyon kodunun etkili bir biçimde ça-
lışmasını ve tutarlı bir mikro geometriye yakınsamasını sağlamak amacıyla, çeşitli
sınırlamalar eklenmiştir. Böylelikle, geliştirilen optimizasyon kodu uygulamaya özel
rulman tasarımında kullanılmak üzere çeşitli kritik uygulamalara rehberlik edecektir.
Optimizasyon sonuçları ve ortaya çıkan uygulamaya özel rulman geometrileri göz
önünde bulundurularak, rulman geometrik parametrelerin maksimum temas gerilme-
leri, temas kesiklikleri ve de yük dağılımı üzerindeki etkileri ele alınmıştır..

Anahtar Kelimeler: Dört nokta temaslı bilyeli rulmanlar, bilezik ayrımlı bilyeli rul-
manlar, rulman mikro-geometri optimizasyonu, Hertz temas gerilmesi, rulman yük
dağılımı, rulmanlarda temas kesiklikleri...
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CHAPTER 1

INTRODUCTION

In today’s industry, rolling-element bearings are still irreplaceable by means of effi-

ciency, service interval, reliability, size, weight and cost. While much more demand-

ing applications for rolling element bearings are evolving, today’s advanced manu-

facturing, engineering and computer tools make it possible to generate solutions to

these applications. Four-point contact ball bearing (4PCBB) is one of those solutions

for special applications with its unique geometry which is able to contain high contact

angles in both axial directions with relatively low axial clearance.

Figure 1.1: Four-Point Contact Ball Bearings with Brass & PEEK Cages [1]

Four-point contact ball bearing (4PCBB) is an excellent choice for the applications

which require the accommodation of the axial loads in both directions. By this
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characteristic, it is possible to eliminate one row of a bearing in particular applica-

tions. In this way, weight, space and cost savings are achieved by employing these

bearings. Therefore, 4PCBBs are suitable for the designs where space limitations ex-

ist with high axial loads in both directions or with high speeds. Moreover, these bear-

ings are capable of positioning the shafts with very close tolerances due to their low

axial clearance. Thus, 4PCBBs are widely used in the applications such as pumps,

retarders, compressors, industrial or automotive gearboxes as well as the helicopter

gearboxes.

For example, in Figure 1.2, screw compressor with two helical screws are supported

by the 4PCBBs. Since the narrow gaps between these two screws as well as the

housings are crucial for the proper operation, 4PCBBs are utilized with their low

axial clearance to provide a stiff axial arrangement.

Figure 1.2: Screw Compressor Application of 4PCBB [1]

In the wind turbine gearbox example shown in Figure 1.3, the high speed shaft of the

gearbox is configured to have 4PCBB combined with the cylindrical roller bearing in

order to accommodate the heavy axial loads caused by the helical gear mesh.
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Figure 1.3: Wind Turbine Gearbox Application of 4PCBB [1]

4PCBBs in large diameters (Figure 1.4) are also used as slewing bearing which typi-

cally supports a heavy but slow-turning or slow-oscillating load, often in a horizontal

platform such as a conventional crane, a swing yarder, or the wind-facing platform of

a horizontal-axis windmill.

Figure 1.4: 4PCBB Slewing Bearing Cross Section [2]
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1.1 Motivation of Study

Four-point contact ball bearings are also called as split race ball bearings. Splitting the

races is only because of the manufacturing and/or assembly purposes. There are two

options for 4PCBBs to be manufactured. First method is to splitting the races as left

and right for both inner and outer races. After splitting, the shim grinding operation

is carried out between two faces of the left and right races in order to have a 4PCBB.

Second method is to grind with special grinding technique called "Gothic Arched

Grinding". In this method, it is not required to split the races in order to have 4PCBB

configuration within the bearing. Before shim grinding operation and separation of

the rings, these bearings are simply like a deep groove ball bearing (DGBB). If gothic

arched grinding or shim grinding is made for only one ring (inner or outer), this makes

the bearing have a three-point contact ball bearing (3PCBB) configuration.

The unique characteristics of these bearings make them efficient solutions for special

cases. The major benefit of the 3PCBBs or 4PCBBs is the capacity of carrying reverse

axial load. In other words, these bearing have high axial load carrying capacity in both

axial directions. Therefore, in some cases, this specific feature may remove the need

of one more row of a bearing in a shaft-bearing system. In order to give an example

for this, pinion shaft of a helicopter transmission can be taken as a case study. In the

twin-engine helicopters, there exist flight conditions such as: All Engine Operative

(AEO) or One Engine Inoperative (OEI). The pinion shafts which are driven by each

engine, are meshed with the collector gear to unite the total power and to transmit to

the rotors. In the case of a failure in the one of the engines, i.e. in OEI condition, the

other engine is capable to maintain the flight. However, since the pinion shaft, which

is connected to the failed engine, will be the driven member but not the driver any

more, in the OEI case, the axial load on the pinion shaft will be reversed. Therefore,

it is required for these pinion shafts to be designed such that they could carry the axial

loads in both direction.

In Figure 1.5, it is seen that there are three rows of bearings (ACBB-1, ACBB-2 and

4PCBB) which share the total axial load that is in the -Z direction. However, in the

OEI flight condition, the axial load is reversed to +Z direction as in the Figure 1.6.

Conventional angular contact ball bearings (ACBB) can carry the axial load in only
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Figure 1.5: Pinion Shaft of the Helicopter Transmission in AEO Condition

Figure 1.6: Pinion Shaft of the Helicopter Transmission in OEI Condition

one direction. Therefore, in OEI case, all the axial load is carried by the 4PCBB. By

employing this 4CPBB, they are both guaranteed to increase the axial load carrying

capacity in -Z direction in AEO case and to support the shaft +Z direction in OEI

case.

Another unique difference of 3PCBBs and 4PCBBs from ACBBs is the axial end-play

which is simply the axial clearance of the bearings. In the operation, this clearance

diminishes and the rolling elements get in contact with both inner and outer rings. In

some cases, in a gearbox, it is needed to limit the axial end-play of the shafts. In these

cases, the 3PCBBs and the 4PCBBs would be the solution. When it is compared for

the axial end-play: ACBB>3PCBB>4PCBB for the bearings with equal geometry.
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In addition to, these bearing concepts have specific advantages in special conditions

which require assembly easiness with split races. Also, with split races or with gothic

arched design it is possible to provide much more efficient lubrication to the contact

zones as given in Figure 1.7.

Figure 1.7: Lubrication of 3PCBB between Inner Left and Inner Right Races [3]

To summarize, 3PCBBs and 4PCBBs have unique advantages with their special de-

sign. However, despite their names, these bearings shall be operated as conventional

ACBBs in the normal operation. In other words, these bearings shall not have three-

or four-point contact in any of the rolling elements because of the risk of excessive

heat generation and premature failure which results from the three- or four- point

contact. Therefore, the design and the optimization of these bearings carry great im-

portance in order to guarantee safe and efficient operation of the gearboxes. This

study might be a guidance for the designers by generating an optimization subroutine

which forms the optimal bearing geometry for a specific operation and condition.

1.2 Literature Survey

In order to establish an efficient mathematical model for the load distribution of

4PCBB, it is required to analyze the existing models starting with the conventional

ball bearing theory.

Bearing theories which generate the bearing load-deflection relationships, consist

the contact mechanics between rolling elements and the raceways. Therefore, the
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Hertzian contact theory is the foundation of the bearing theories. Hertzian contact

theory is studied and used in plenty of textbooks and handbooks. To illustrate, Har-

ris [3] summed up and formulate Hertz contact on bearings. Furthermore, in the

ISO16281 [4], the Hertzian contact theory and application to ball and roller bearings

is explained briefly. Antoine et al. [5], developed an approximate analytical model

for Hertzian contact theory of the elliptical contacts and confronted with the studies

in the literature. These studies on Hertzian contact theory have been implemented

in the rolling-element bearings’ mathematical models in order to simulate the inter-

action between rolling elements and raceways by contact stiffness. For the roller

bearings, the line contact mechanics and laminae models are developed to generate

load-deflection relationship within the bearing. For the ball bearings which is also

the scope of this study, nature of the ball and raceway interaction results an elliptical

point contact.

The one of the earliest and the most comprehensive study on the ball bearings is devel-

oped by Jones [6]. In this study, a completely general solution is obtained, whereby

the elastic compliances of a system of any number of ball and radial roller bearings

under any system of loads can be determined. Gyroscopic forces and moments act-

ing on the bearing rolling elements are also included in order to capture the dynamic

effects of high-speed operation. That study of Jones [6] is referenced in many other

studies in rolling-element bearing literature. In that study, the bearing rings are as-

sumed to be rigid. Elastic deformations are only said to be in contact zones. This

assumption is very appropriate for most of the bearing applications. Moreover, Har-

ris and Broschard [7] extended the studies with taking into consideration the structural

deformation of the outer ring with an elliptical inner ring in order to capture the ring

deformation effects which carry great importance in the analysis of planetary gear

bearing applications.

On the theory of ball bearings, there exist other studies focusing on the different pa-

rameters and phenomena. De Mul et al. [8] generated a mathematical model in order

to simulate the bearing equilibrium and associated load distribution in five degrees

of freedom. In that study, ball contact stiffness matrix is developed both with and

without ball centrifugal loads. Also, Lim et al. [9] focused on the bearing stiffness

matrix which is an important parameter for vibratory motion from the rotating shafts
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to the flexible or rigid casings through rolling-element bearings. Hernot et al. [10]

calculated the angular contact ball bearing stiffness matrix analytically by replacing

the summation of ball-race loads by an integration. These advanced studies are sim-

plified and summarized in ISO16281 [4] in order to guide for calculation of the load

distribution within the rolling elements of an axially and radially loaded ball bearing

by ignoring the gyroscopic effects. In that model, the formulation is given for bear-

ing loading in three degrees of freedom which are two translational (axial and radial

load) and one rotational (radial moment). Also in ISO16281 [4], established basic

load distribution model is used for the calculation of the basic and modified reference

rating life.

Previously, the studies that are focused on the conventional ball bearings are men-

tioned. These studies are important guidance in the development of 3PCBB & 4PCBB

models. The very first analysis of the arched ball bearing is made by Hamrock and

Anderson [11]. The model of axially loaded arched outer-race ball bearing with only

centrifugal loads was developed in that study. Furthermore, Hamrock [12] improved

the model by adding gyroscopic moment and friction. With the enhanced calcula-

tion power of the advanced computer tools, more recently, studies on the 3PCBB &

4PCBB have evolved in order to model the bearings under complex loading and high

speed conditions. Amasorrain et al. [13] established a model for load distribution of

four-point contact slewing ball bearing under three degrees of freedom loading con-

dition (radial load, axial load & radial moment). In that study, the gyroscopic effects

were neglected since these slewing bearings are used in applications such as tower

cranes, wind-power generators, excavation machinery which are running at relatively

low speeds. Leblanc and Nelias [14] extended this work to a five degrees of free-

dom system with also including the gyroscopic effects, friction and film thickness.

Moreover, Halpin and Tran [15] proposed an analytical model for load distribution

of 4PCBB. In that model race control theory is replaced with a minimum energy

state theory to allow both spin and slip to occur at the ball-to-raceway contact. How-

ever, that model neglects the effects from gyroscopic moments and only considers

the dynamic body forces from centrifugal effects. Recently, Liu et al. [16] simu-

late the slewing bearing by modelling the balls under compression with traction-only

non-linear springs and validated the resultant load distribution with the experimental
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results.

In conclusion, these studies and models are focusing different key parameters of the

3PCBB & 4PCBB for different applications. The assumptions, geometrical & loading

considerations, simulation costs etc. shall be established carefully for each unique

application.

1.3 Scope of Thesis

In this study, it is aimed to develop and/or to modify the most reasonable mathemat-

ical model in order to make it possible for the optimization of micro-geometry of

the 4PCBB for a specific application. For this purpose, developed bearing model is

explained in terms of the assumptions, considerations that is required for an efficient

optimization subroutine.

In order to develop the mathematical model for load distribution of 4PCBB, the mod-

els that exist in literature are investigated and formulated. The established model is

formulated in MATLAB environment in order to benefit the existing MATLAB func-

tions and solvers. The model is to be verified with the existing studies. Moreover,

the model is used for obtaining the internal load distribution, contact stresses, contact

deflections and loaded contact angles under a prescribed load and speed conditions.

Generated model is to be employed under an optimization subroutine in order to make

it possible to automate micro-geometry optimization of the custom design bearings.

In this optimization subroutine, the bearing macro-geometry and the operational con-

ditions are pre-determined depending on the application. Objective of the optimiza-

tion is to find the optimum micro-geometry for a minimum contact stress. Further-

more, the ellipse truncation phenomenon as well as avoiding the possible three- or

four-point contact in any of the rolling element are taken into account. The other ge-

ometrical and manufacturability constraints are to be defined at the beginning of the

optimization in order not to optimize for an infeasible design.

Finally, the established model is to be used for different macro & micro geometries

as well as different loading conditions to sense the behaviour of the 4PCBBs and
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possible reasons for the rolling elements to be loaded more than two points.

1.4 Outline of Thesis

This study contains five main chapters. The first chapter is the introduction of the

study in terms of motivation, literature background of the problem and scope of the

study.

In Chapter 2, ball bearing geometry and the contact theory is summarized. The dif-

ferences between the 4PCBBs and conventional ACBBs in terms of geometrical pa-

rameters are given in Chapter 2. In addition to, the geometrical parameters unique

to 4PCBBs are also introduced. The contact theory that is needed for generating the

deflection and the load relation for a specific raceway to ball contact is also given in

Chapter 2. For this purpose, study of [5] is summarized and applied to ball & raceway

contact. In this study, the Hertzian contact theory is approximated by a numerical so-

lution which gives good precision with respect to analytical solution. Moreover, the

contact stress calculations are presented in Chapter 2.

In Chapter 3, the coordinate system, and ball indexing are introduced. The differ-

ences between the kinematics of ACBBs and 4PCBBs are also summarized. General

structure of the mathematical model for the load distribution of 4PCBB is given. The

input and output parameters are also introduced. Kinematics of a quasi-static ball is

briefly explained in Chapter 3. The formulation based on this kinematics as well as

the force equilibrium on a single ball are presented. The constraint equations that

relate the applied ring loads to bearing reaction forces are given in Chapter 3. More-

over, the post-process calculations which include the ellipse truncation phenomenon

are shown. The sample results of the established model are given for different load

conditions. Validation and comparison with FEA studies and other software packages

are introduced in Chapter 3.

In Chapter 4, micro-geometry optimization subroutine of the custom design 4PCBB is

established. For this purpose, the optimization parameters as well as the constraints

that ensure the feasibility of the optimization are introduced. Non-constrained and

constrained objective functions are built in Chapter 4. The results and summary of
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the optimization for different cases as well as the discussions over those results are

given at the end of Chapter 3.

In Chapter 5, discussions are given in terms of the assumptions within the generated

model and the corresponding results. Furthermore, the outcomes of the study and

possible future works are presented in Chapter 5.
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CHAPTER 2

GEOMETRICAL PARAMETERS OF 4PCBB & APPLICATION OF

ELLIPTICAL CONTACT THEORY TO 4PCBB

Rolling contact bearings are seemed like basic mechanisms. In fact, there exist plenty

of geometrical parameters within these bearings. These parameters are very effective

on the bearing performance like contact stress, load carrying capacity, basic life and

lubrication factors. In this chapter these geometrical parameters of ball bearings are

presented. Also, the differences and similarities of ACBBs and 4PCBB in terms of

geometry are stated.

2.1 Common Geometrical Parameters of ACBB & 4PCBB

In this section, the geometry of the conventional ACBBs are focused on. Since

ACBBs and 4PCBBs have some common geometrical parameters, they are explained

in this section. However, differences between ACBBs and 4PCBBs in terms of geo-

metrical parameters are stated in Section 2.2.

As seen on the Figure 2.1, ACBBs have basic geometrical parameters such as the

diameters where the bearing is mounted on the shafts (Bore Diameter, Di) and hous-

ings (Outer Diameter, Do). Balls with diameter, D are rolling in the orbital diameter

called: pitch diameter, dm. The race designs with corresponding micro geometries,

incorporate the contact angle, α which is an important parameter in the axial load car-

rying direction and capacity. Also, as given in Figure 2.1, shown bearing is capable

of carrying the axial load applied to the shaft in the shown direction by the nature of

its design.
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Figure 2.1: Basic Geometry of ACBB and Load Carrying Direction

Some parameters that are shown on the Figure 2.1 are becoming dummy in the math-

ematical model of the ACBBs. For example, the diameters Do, Di are ineffective and

not included in the models due to the assumption of rigid rings and elastic deforma-

tion only at contact points. However, for the most of the bearings, Equation 2.1 can

be taken as a reference to estimate the pitch diameter, dm.

dm ≈
1

2
(Do +Di) (2.1)

The radial ball bearings, in other words; Deep Groove Ball Bearings (DGBB) carry

an internal clearance called diametral clearance or radial clearance in their internal

design. However, In ACBBs this clearance diminishes when they mounted into a

system. Instead of this clearance, ACBB has a mounted contact angle i.e. unloaded

contact angle, α0. In the study [17], a comprehensive analysis on the effects of clear-

ance on the conventional bearings are presented.

Raceway radii define the load carrying ability of a bearing with the other parameters.

Inner and outer raceway radii, ri & ro are generally slightly larger than the ball radius.

In order to, give the sense of the measure between ball diameters and the raceway

radii, the definition osculation, f is used. As given in Equation 2.2, osculation is
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simply the ratio of the raceway radius to ball diameter.

f = r/D (2.2)

In Figure 2.2, the distance between the centers of the raceway curvature radii is shown

as A0. The relation between these parameters are given in Equation 2.3.

A0 = ri + ro −D (2.3)

A0 = (fi + fo − 1)D = BD (2.4)

By substituting Equation 2.2 to Equation 2.3, the total curvature of the bearing, B =

fi + fo − 1 is obtained as in Equation 2.4.

Figure 2.2: Raceway Curvature Radii and the Distance btw. them

In order to establish the contact stiffness between raceways and the rolling elements

in Section 2.3, it is required to calculate the necessary contact parameters such as: the

curvature sum, Σρ and the curvature difference, F (ρ). These parameters are briefly

explained by Harris [3]. Basically, for inner raceway and the ball contact, curvature
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sum and curvature difference become;

Σρi =
1

D

(
4− 1

fi
+

2γ

1− γ

)
and (2.5)

F (ρ)i =

1

fi
+

2γ

1− γ

4− 1

fi
+

2γ

1− γ

, respectively. (2.6)

Similarly for the outer raceway and the ball contact;

Σρo =
1

D

(
4− 1

fo
− 2γ

1 + γ

)
and (2.7)

F (ρ)o =

1

fo
− 2γ

1 + γ

4− 1

fo
− 2γ

1 + γ

, respectively. (2.8)

Where; γ =
D cosα

dm
. (2.9)

The parameter α is the loaded contact angle which is specific for each rolling ele-

ment and for each raceway contact. Therefore, in the following sections where the

mathematical model is established, subscripts will be added on the parameters such

as loaded contact angle, in order to identify the overall kinematics of the bearing.

2.2 Geometrical Parameters of 3PCBB & 4PCBB

3PCBBs & 4PCBBs have some unique geometrical parameters which make these

bearings efficient in terms of reverse axial load carrying capacity. These bearings are

also called as split ring bearings depending on which ring the shim grinding operation

is made. In Figure 2.3 the shim grinding operation is illustrated. The two inner rings

(left & right) are ground on the mating surfaces by an equal length of gi/2. This

operation makes the raceway curvature radii centers to be separated by the dimension

of gi (raceway curvature center distance). If this operation is carried out for only inner
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or outer rings, this makes bearing to be a 3PCBB. For the case where shim grinding

operation is done for both inner & outer rings, the bearing becomes a 4PCBB.

Figure 2.3: Shim Grinding Operation

Shim grinding operation transforms a DGBB into a 3PCBB or 4PCBB. While do-

ing this, some geometrical parameters are generated or altered. The shim grinding

operation and the separation of the raceway curvature centers make bearing to form

possible four point contacts under pure radial load which are oriented as in Figure

2.4.

Figure 2.4: Shim Angles under Pure Radial Load

The shown angles are called as the shim angle or the resting angle. Since the shim

grinding for left and right rings are assumed to be equal, the shim angles are also

equal for left and right contacts. The shim angles for inner and outer contacts, αsi

and αso are calculated with respect to the Figure 2.5. These shim angles for inner and
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outer contacts are given in Equation 2.10 & 2.11, respectively.

Figure 2.5: Calculation of the Shim Angles for Inner & Outer Contacts

αsi = sin−1
(

gi
2ri −D

)
(2.10)

αso = sin−1
(

go
2ro −D

)
(2.11)

The non-arched bearing radial clearance, Sd is illustrated in Figure 2.6. The non-

arched bearing radial play, Sd is changed to the arched or 4PCBB bearing radial play,

Pd with shim grinding or gothic arched grinding. Since the raceway curvature centers

are separated, the rolling elements touch the raceways in two points for each inner

and outer contacts but not at single point for pure radial load case. Because of this,

the radial play is decreased by the amount of (∆Pd)i and (∆Pd)o for inner and outer

contacts respectively, and given in Equation 2.12.

Pd = Sd − (∆Pd)i − (∆Pd)o (2.12)

Where;

(∆Pd)i = (2ri −D)(1− cosαsi) and (2.13)

(∆Pd)o = (2ro −D)(1− cosαso) . (2.14)
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Figure 2.6: Non-arched Bearing (DGBB) Radial Clearance, Sd

Finally, the unloaded contact angle, α0 can be calculated via Equation 2.15.

α0 = cos−1
(

1− Pd
2BD

)
(2.15)

The axial (clearance) end play of the bearing, Pe can be calculated by Equation 2.16.

As seen from the equation, axial end play is also decreased by shim grinding opera-

tion. By this configuration, 4PCBBs can have higher contact angles with lower axial
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end plays. However, this cannot be achieved with the conventional ACBBs.

Pe = 2BD sinα0 − gi − go (2.16)

Halpin and Tran [15] visualize the internal play of 4PCBB by considering a normal-

ized circle of radius 2r −D as shown in Figure 2.7. As it is given in Figure 2.7, the

relations between internal clearances, shim angles, contact angle, shim thickness and

axial end-play can easily be derived from this normalized circle.

Figure 2.7: Normalized Internal Clearance Circle

The parameters that are needed for the contact stiffness calculations are described as

in Section 2.1. These are basically the, curvature sum, Σρ and curvature difference, Fρ

which are needed to be calculated for each raceway and ball contact with the loaded

contact angle in order to simulate the contact stiffness in the loaded condition. Thus,

the formulation for ACBBs as given in 2.1 is valid for 4PCBB.
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2.3 Elliptical Contact Theory Application to Ball & Raceway Contacts

The Hertzian contact theory for elliptical contacts require Equation 2.17 to be solved

for ellipticity parameter, κ for both inner and outer raceway contacts.

(κ2 + 1) E(κ)− 2F(κ)

(κ2 − 1) E(κ)
− Fρ = 0 (2.17)

Where; terms F and E denote the elliptical integral of first kind and second kind,

respectively. These integrals are given in Equation 2.18 & 2.19.

F(κ) =

∫ π/2

0

[
1−

(
1− 1

κ2

)
sin2 φ

]−1/2
dφ (2.18)

E(κ) =

∫ π/2

0

[
1−

(
1− 1

κ2

)
sin2 φ

]1/2
dφ (2.19)

In order to have an efficient model for an optimization subroutine, these contact pa-

rameters are approximated by a numerical method which is defined in Antoine’s study

[5]. In this study, the ellipticity parameter, κ is expressed by an approximate expres-

sion in the structure of Equation 2.20.

κ = (N/M)λ (2.20)

Where;

M =
Σρ

4
(1− Fρ) & N =

Σρ

4
(1 + Fρ) . (2.21)

Ellipticity parameter, κ in the form of Equation 2.20, satisfies the Equation 2.17 as in

Equation 2.22

Fρ =
N/M − 1

N/M + 1
=

(κ2 + 1) E(κ)− 2F(κ)

(κ2 − 1) E(κ)
(2.22)
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The exponent λ for describing the behaviour of N/M is approximated in the form of

Equation 2.23

λ =
2

3

(
1 + µ1X

2 + µ2X
4 + µ3X

6 + µ4X
8

1 + µ5X2 + µ6X4 + µ7X6 + µ8X8

)
(2.23)

Where X = log10(N/M), and the coefficients are tabulated in Table 2.1

Table 2.1: Coefficients for Exponent, λ [5]

µ1 0.40227436 µ5 0.42678878

µ2 3.7491752× 10−2 µ6 4.2605401× 10−2

µ3 7.4855761× 10−4 µ7 9.0786922× 10−4

µ4 2.1667028× 10−6 µ8 2.7868927× 10−6

The elliptical integrals are also approximated as in Equation 2.24 & Equation 2.25

F(κ) = (ζ0 + ζ1m1 + ζ2m
2
1)− (ζ3 + ζ4m1 + ζ5m

2
1) lnm1 (2.24)

E(κ) = (β0 + β1m1 + β2m
2
1)− (β3m1 + β4m

2
1) lnm1 (2.25)

Where m1 = 1/κ2 and the coefficients are tabulated in Table 2.2.

Table 2.2: Coefficients for Approximated Polynomials of Elliptical Integrals [5]

ζ0 1.3862944 β0 1

ζ1 0.1119723 β1 0.4630151

ζ2 0.0725296 β2 0.1077812

ζ3 0.5 β3 0.2452727

ζ4 0.1213478 β4 0.0412496

ζ5 0.0288729

By the help of the approximation functions given in [5], which are explained above,

the corresponding ellipticity parameter, κ, and the elliptical integral of first kind and

second kind, F(κ), E(κ) are obtained. By the help of this parameters and the
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elliptical integrals, the load-deflection relationship, (Qvs. δ) can be established with

the following formulae:

Q = Kδ3/2 (2.26)

Q =

[
2(5/2)

3

E∗

(δ∗)3/2[(M +N)/2]1/2

]
δ3/2 (2.27)

WhereE∗ is the equivalent modulus of elasticity, which is derived from the materials’

properties [EI , νI ] and [EII , νII ] for bodies I and II respectively. This relation is given

in Equation 2.28. Equivalent modulus of elasticity, E∗ for both inner raceway and

outer raceway contacts are equal since both raceways; inner and outer are assumed to

have the same material properties.

1

E∗
=

1− ν2I
EI

+
1− ν2II
EII

(2.28)

Dimensionless parameters, a∗,b∗ and δ∗ that are required for defining the contact el-

lipse dimensions and the contact deflection are given in Equation 2.29, 2.30 and 2.31,

respectively.

a∗ =

[
2κ2E(κ)

π

]1/3
(2.29)

b∗ =

[
2E(κ)

πκ

]1/3
(2.30)

δ∗ =
2F(κ)

π

[
π

2κ2E(κ)

]1/3
(2.31)

Dimensions of contact ellipse, a, b and mutual approach of the centers of both bodies,

δ are given by following formulae:
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a = a∗
[

3Q

4(M +N)E∗

]1/3
(2.32)

b = b∗
[

3Q

4(M +N)E∗

]1/3
(2.33)

δ = δ∗
[

3Q

2E∗

]2/3
[(M +N)/2]1/3

2
(2.34)

The maximal contact stress occurring on the contact ellipse, σ is obtained with Equa-

tion 2.35

σ =
3

2

Q

πab
(2.35)

To conclude, in this approximation method, the Hertzian theory results show that

the errors are within the ±30 ppm range [5] (Error unit: part per million, 1 ppm =

10−4 %). This accuracy is sufficient for the calculation of the contact stiffness, K.

The procedure given in this section is aimed to find the contact stiffness with the

given bearing geometry and material properties. This procedure shall be applied on

each rolling element and each raceway contacts within the bearing.
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CHAPTER 3

MATHEMATICAL MODEL FOR THE LOAD DISTRIBUTION OF 4PCBB

In rolling contact bearings, the utility of the load distribution models is to provide the

correlation between the applied ring loads and the ring deflections. For this purpose,

the rolling element loads which resulted in raceway contacts need to be found in a

quasi-static condition.

In this Chapter, the models existing in the literature are examined, united and modified

in order to obtain a robust and an efficient model for optimization algorithm.

First of all, the coordinate system that referenced through the study is introduced in

Figure 3.1. As seen from the figure, the direction Z is the axial direction for the

bearing. The other axis X and Y are utilized for the radial directions.

Figure 3.1: Coordinate System of the Bearing
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The first rolling element is placed on the X axis. The other rolling elements are

numbered with respect to Figure 3.2. Moreover, azimuth angles, Ψj of these rolling

elements are also illustrated in Figure 3.2. The total number of balls within the bear-

ing is symbolized by Z, and the azimuth angles for each ball, Ψj is formulated in

Equation 3.1 where subscript j stands for ball number such as: j = 1, 2, ..., Z.

Ψj = (j − 1)
2π

Z
(3.1)

Figure 3.2: Ball Numbering and Azimuth Angles

3.1 Comparison with Conventional Ball Bearing Load Distribution Models

It carries great importance to inspect the ball bearing load distribution models for

good understanding of the geometrical parameters and their role within a ball bear-

ing. Therefore, for this study, ball bearing load distribution models of conventional

bearings have been investigated. Load distribution models of conventional DGBBs

and ACBBs without centrifugal effects were the essential step to overcome in order to

be familiar with ball bearing theory. In ISO16281 [4], the basic concepts for generat-

ing a load distribution model for ball bearings are summarized. In the model given in
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ISO16281 [4], there exist single sets of loaded contact angles, αj for both inner and

outer raceway contacts. Moreover, the contact stiffness for inner and outer contacts

are serially summed up as in Equation 3.2. Therefore, contact deflection, δj is the

sum of inner and outer contact deflections which are assumed to be equal. Thus, for

a quasi-static ball there exist 2× Z unknowns to be solved which are αj and δj .

1

Kio

=
1

Ki

+
1

Ko

(3.2)

Once the centrifugal effects are included in the model, the kinematics of the bear-

ing become more complicated. The contact load between ball and outer ring, Qoj

increases because of the centrifugal loads, Fcj acting on balls towards to outer ring

direction. Furthermore, this makes contact angles for inner and outer contacts to be

different i.e. the outer loaded contact angle, αoj decreases. For this case, there exist

4 × Z unknowns which are δij , δoj , αij and αoj to be solved for quasi-static ball.

These kinematic differences are illustrated in Figure 3.3 for the conventional ball

bearing without and with centrifugal effects.

Figure 3.3: Ball Equilibrium in a Conventional Ball Bearing with Centrifugal Effects

i. Not included ii. Included

Kinematics of the 4PCBBs becomes much more complicated by the employment

of unique geometrical parameters and the nature of the possible contacts on four

different points. Namely, there exist unknowns in the number of 8×Z that needed to
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be solved within the mathematical model for the load distribution of a 4PCBB.

3.2 General Structure of the Mathematical Model of 4PCBB

In this section, overview of the generated model is briefly explained in terms of the

inputs & outputs. Moreover, the flowchart of the established model is provided at the

Appendix A.4.

The input parameters are divided into three categories as shown in the flowchart.

These categories are geometry, loading and material inputs. Geometry inputs con-

sist the 4PCBB geometrical parameters which defines the bearing geometry. The

parameters Sd, gi, go are sufficient for calculating the free (unloaded) contact angle,

α0. Therefore, the unloaded contact angle is not given as an input but a calculated

parameter before the iterations.

The loading inputs are simply the applied ring load matrix F and the rotational speed,

ω. The load matrix, F consist the 5 DoF loading such as;

F =



Fx

Fy

Fz

Mx

My


(3.3)

This loading and the speed produce a corresponding ring displacement matrix, δ such

as;

δ =



δx

δy

δz

βx

βy


(3.4)

Since the outer ring is assumed to be fixed, and the load is applied to the inner ring,

the load matrix and the ring displacements are assumed to occur at the inner ring.

These load and displacement matrices are located and oriented as in the coordinate
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system given in Figure 3.1. Fx, Fy, Fz are the applied ring loads in X, Y and Z direc-

tions, respectively. Mx and My are the applied ring moments in X and Y directions.

For the displacements, δx, δy, δz are the ring displacements in X, Y and Z directions,

respectively. βx, βy are the rotational displacements along X and Y directions, respec-

tively. The other parameter is the rotational speed, ω which is an important parameter

for centrifugal effect calculations. For this study, it is assumed that the inner ring is

rotating and outer ring is stationary. However, there exist methods in the literature to

establish centrifugal effects for other cases. [6]

The last category of the inputs for the model is the material. The elastic modulus of

the bodies, Ei,o,b (inner & outer rings and the balls) as well as the poisson’s ratio νi,o,b

are required for contact stiffness calculations. For the centrifugal effects, the density

of the balls, ρb is another needed parameter.

After the pre-calculations are carried out, iterations are started with initial guesses

in order to solve the necessary constraint equations which define the bearing quasi-

static condition for a load and speed case. After iterations converge to a solution the

loaded internal geometry and internal load distribution of the bearing is obtained for

a given load and speed case. After obtaining these results, by the help of post-process

calculations, the contact stresses of each contact over each rolling element can be

found.

3.3 Kinematics of the Quasi-Static Ball of 4PCBB

In this Section, the kinematics of the ball equilibrium is investigated. The relations be-

tween the inner ring displacements, (δx, δy, δz, βx, βy) and the contact deformations

(δil, δir, δol, δor) as well as the contact angles (αil, αir, αol, αor) are established. For

this purpose, ball and raceway centers at initial and at deformed conditions are illus-

trated as in Figure 3.4. In Figure 3.4, Cmk’s are the raceway centers where subscript

m = i, o for inner or outer, and subscript k = l, r for left or right respectively. As

shown in Figure 3.4, since the outer ring in the bearing is assumed to be fixed, Col

and Cor are at the same position at initial and at deformed state. On the other hand,

the inner raceway centers for left and right (Cil and Cir) take the position C ′il and
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C ′ir after the displacements and deformations within the bearing. Similarly, ball cen-

ter moves to the deformed position O′ from the initial position O. By this way, the

shown contact angles, αil, αir, αol, αor are formed. Distances between the left and

right raceways for both inner and outer raceways, shall be gi and go, respectively.

Figure 3.4: Ball and Raceway Centers at Initial and Deformed Positions

Auxiliary parameters A1 and A2 are the resultant of the ring displacements, δx, δy, δz,
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βx, βy and stated as in Equation 3.5 and 3.6.

A1,j = BD sinα0 + δz −Ri(βx sin Ψj + βy sin Ψj) (3.5)

A2,j = BD cosα0 + δx cos Ψj + δy sin Ψj

+Ri

[
β2
x

2
sin ΨjSGN(βx) +

β2
y

2
cos ΨjSGN(βy)

]
(3.6)

Where Ri is the distance from bearing rotation axis to inner raceway curvature center

and formulated as in Equation 3.7.

Ri =
dm
2

+

(
ri −

D

2

)
cosα0 (3.7)

As seen from Figure 3.4, there are several constraints for the raceway centers and

the internal kinematic parameters must obey in this configuration. These constraint

equations for each rolling element, j are formulated as in Equations 3.8 to 3.13. These

equations are obtained from the kinematic loops given in Figure 3.4.

CTi1,j ⇒ 0 = ((fo − 0.5)D + δol,j) cosαol,j − ((fo − 0.5)D + δor,j) cosαor,j (3.8)

CTi2,j ⇒ 0 = ((fo − 0.5)D + δol,j) sinαol,j + ((fo − 0.5)D + δor,j) sinαor,j

−go
(3.9)

CTi3,j ⇒ 0 = ((fi − 0.5)D + δil,j) cosαil,j − ((fi − 0.5)D + δir,j) cosαir,j

−gi sin (βx sin Ψj + βy cos Ψj)
(3.10)

CTi4,j ⇒ 0 = ((fi − 0.5)D + δil,j) sinαil,j + ((fi − 0.5)D + δir,j) sinαir,j

−gi cos (βx sin Ψj + βy cos Ψj)
(3.11)

CTi5,j ⇒ 0 = ((fo − 0.5)D + δor,j) sinαor,j + ((fi − 0.5)D + δil,j) sinαil,j

−A1,j

(3.12)

CTi6,j ⇒ 0 = ((fo − 0.5)D + δor,j) cosαor,j + ((fi − 0.5)D + δil,j) cosαil,j

−A2,j

(3.13)

The constraints CT1...6 are established with the above formulation. As seen from

Equations 3.8 to 3.13, these constraints are required to be assured for all rolling
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elements i.e j = 1...Z. In other words, above constraints are need to be applied for

total number of balls which results a total number of 6× Z equations to be satisfied.

3.4 Ball Equilibrium of 4PCBB under Contact & Body Forces

In Section 3.3, the kinematic constraints are built. In the internal loop, given in the

flowchart in Appendix A, there exist 8 × Z unknowns which are the contact angles,

αil, αir, αol, αor and the contact deflections, δil, δir, δol, δor, to be solved iteratively.

Therefore, there remain 2×Z equations to be established for solving these parameters.

These equations are derived from the free body diagram of the rolling elements for

an equilibrium condition which is given in Figure 3.5.

In order to establish equilibrium equations for the balls, it is needed to find the contact

stiffness of each ball for each contact. The formulation given in Section 2.3 is used by

employing the contact angles αil,j, αir,j, αol,j, αor,j in order to find the corresponding

curvature sum, Σρ and curvature difference, F (ρ) by inputting contact angles in γ

formulation as in Equation 2.9. Finally, the contact stiffnesses, Kil,j , Kir,j , Kol,j ,

Kor,j are found. These contact stiffnesses are utilized for contact load calculations as

in Equations 3.14 to 3.17.

Qil,j = Kil,jmax(0, δil,j)
1.5 (3.14)

Qir,j = Kir,jmax(0, δir,j)
1.5 (3.15)

Qol,j = Kol,jmax(0, δol,j)
1.5 (3.16)

Qor,j = Kor,jmax(0, δor,j)
1.5 (3.17)

In Equations 3.14 to 3.17 the contact deflections, δmk,j shall be taken as zero in case of

negative deflections which means no contact occurs in that specific ball and specific

contact.
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After finding the contact loads, Qmk,j , the remaining constraints CT7,j and CT8,j are

formulated in Equations 3.18 and 3.19 with respect to Figure 3.5.

Figure 3.5: Ball at Equilibrium Condition

CTi7,j ⇒ 0 = Qil,j sinαil,j +Qol,j sinαol,j −Qir,j sinαir,j −Qor sinαor (3.18)

CTi8,j ⇒ 0 = Qil,j cosαil,j +Qir,j cosαir,j −Qol,j cosαol,j −Qor cosαor

+Fc,j
(3.19)

Where Fc,j is the centrifugal forces acting on the rolling elements. The formulation

of the centrifugal force is given as in Equation 3.20.

Fc,j = ρb
4π
(
D
2

)3
3

dm
2

Ω2 (3.20)

Where ρb is the density of the balls, and the Ω is the ball orbital speed or separator

(cage) speed. For the calculation of the orbital speed, Ω, several assumptions are

made for an efficient model. In this study, it is aimed to make an optimization for a

4PCBB to act like an ACBB. Although Halpin [15] proposes that the Jones’ [6] "race
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control theory" becomes untenable for frictional effects calculation for a 4PCBB with

possible four point contacts, Jones’ theory is applied for this study. Since the frictional

and gyroscopic moment effects are disregarded in this study, Jones’ model is still

applicable for calculation of body forces which results from centrifugal effects.

Raceway control theory assumes that the ball rolls on one raceway without spinning

and all the spin occurs with respect to the other raceway. The raceway which the

rolling occurs called as the "controlled raceway".

The orbital speed, Ω formulation is given in Equation 3.21 for inner ring rotating and

outer raceway controlled bearing. The other cases are also given in detail in Jones’

study [6].

Ωj = ω
1− γ′ cosαik,j

1 + cos (αik,j − αok,j)
(3.21)

Where γ′ is the ratio of ball diameter to pitch diameter such as: γ′ = D/dm. As

proposed in [15], for the contact angles, αik,j and αok,j , the raceways are selected

for subscript k upon which raceway provide the dominating tractive forces. It can be

guaranteed to obey this rule by making an analogy with the direction of axial load, Fz

and the dominating raceways. This analogy is given in Equation 3.22.

k =



l : if m = i and Fz > 0

r, if m = o and Fz > 0

r, if m = i and Fz < 0

l, if m = o and Fz < 0

(3.22)

As an example, for an applied axial load, Fz in +Z direction, the dominating raceways

will be inner left, (m = i, k = l) and outer right raceway, (m = o, k = r).

3.5 Bearing Reaction Force vs. Applied Ring Load

In Sections 3.3 and 3.4, the constraints that need to be satisfied within the internal loop

is provided. In this Section, the outer loop constraints are established with equating
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the bearing reaction forces to the applied loads. Once the internal loop constraints

are satisfied with a pre-assumed ring displacements, δ in outer loop, the internal loop

variables (δmk,j and αmk,j) are solved iteratively within the generated mathematical

model. After that, resultant internal loop variables are supplied to the outer loop. In

the outer loop, the iterating independent variables are the ring displacements, δ for

finding the overall resulting bearing reaction matrix, (F )reaction which is given as in

Equation 3.23.

(F )reaction =



(Fx)reaction

(Fy)reaction

(Fz)reaction

(Mx)reaction

(My)reaction


(3.23)

The outer loop constraints are established by (F )reaction − F = 0. These constraints,

CTo1 to CTo5 are given in Equations 3.24 to 3.28, respectively.

CTo1 ⇒ 0 =

[
Z∑
j=1

(Qil,j cosαil,j +Qir,j cosαir,j) cos Ψj

]
− Fx (3.24)

CTo2 ⇒ 0 =

[
Z∑
j=1

(Qil,j cosαil,j +Qir,j cosαir,j) sin Ψj

]
− Fy (3.25)

CTo3 ⇒ 0 =

[
Z∑
j=1

(Qil,j sinαil,j +Qir,j sinαir,j)

]
− Fz (3.26)

CTo4 ⇒ 0 =

[
Z∑
j=1

Ri (Qil,j sinαil,j −Qir,j sinαir,j) sin Ψj

]
−Mx (3.27)

CTo5 ⇒ 0 =

[
Z∑
j=1

−Ri (Qil,j sinαil,j −Qir,j sinαir,j) cos Ψj

]
−My (3.28)

Finally, after both internal and outer loop iterations are converged to a solution, the

corresponding independent iterating variables are found. Namely, the internal load

distribution, Qmk,j , contact angles, αmk,j , contact deflections, δmk,j as well as the

ring displacement matrix, δ are the output of the mathematical model. By the help

of these results, it is possible to calculate the necessary parameters such as: contact
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stress, ellipse truncation etc. for the evaluation of the bearing performance.

3.6 Postprocess for Ellipse Truncation Calculations

In order to evaluate the bearing performance and behaviour under a specific operating

condition, it is necessary to investigate the several phenomena. In bearing literature,

one of the most important performance parameter is the bearing life. Significant num-

bers of studies are made on bearing life calculations. To illustrate, in ISO 281 [18],

the bearing dynamic load rating and rating life calculations are presented. However,

in this standard, only axial and radial loadings are taken into account, and combined

for finding the equivalent load. In this method, the bearing internal load distribution

is not taken into account. In ISO 16281 [4], the moment loadings are included, as

well as the load distribution effects on bearing life. However, in this standard, the

centrifugal effects are not included in the calculations.

Besides, the bearing life is very much dependent on the operating conditions such

as: lubrication, contamination and bearing material. These factors are needed to be

included for a reliable estimation of the bearing life. Therefore, in this study, it is

aimed to evaluate the bearing performance over the resulting contact stresses and

possible ellipse truncations. The contact stress calculations are given in Section 2.3.

Therefore, the other phenomenon; "Ellipse Truncation" and the calculation method is

explained in this section.

In ball bearings, ellipse truncation is defined as the incidence of the ball and raceway

contact zones to exceed the edge of the raceway as given in Figure 3.6. Upon this in-

cidence occurs, the stress at the edge of the contact increases rapidly with the fraction

truncated, and the stress at the center of the contact also increases as the total area

of the contact is decreased. Therefore, the bearing materials yield at a lower applied

load than without truncation. Therefore, for performance evaluation of a bearing, it

carries great importance to control the ellipse truncation.

After obtaining the loaded contact angles and contact ellipse shape, geometrical cal-

culations are needed to find out the situation in terms of the ellipse truncation as in

Figure 3.7. Firstly, the shoulder diameters, Dsk, which are assumed to be equal for

36



Figure 3.6: Ellipse Truncation

left and right raceways, need to be given for inner and outer raceway. For this purpose,

shoulder thicknesses, Sti are employed in the form of a multiplication with ball di-

ameter in order to have a good sense in relating to ball diameter. To illustrate, usually

shoulder thickness is in between 0.15 to 0.30 times the ball diameter (Sti = 0.15D

to 0.30D). Thus, shoulder diameters, Dsk are found with Equations 3.29 and 3.30;

Figure 3.7: Contact ellipse at the loaded contact angle

Dsi = dm −D + 2Sti (3.29)

Dso = dm +D − 2Sti (3.30)
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Furthermore, the vertical distance between the shoulder diameter and raceway curva-

tures, Hsk are found as in Equations 3.31 and 3.32.

Hsi = Ri −
Dsi

2
(3.31)

Hso =
Dso

2
−Ro (3.32)

The shoulder edge angles, θsk are needed to be formulated in order to obtain the

limits of the edge, and given for inner and outer shoulders in Equations 3.33 and

3.34, respectively.

θsi = sin−1
Hsi

ri
(3.33)

θso = sin−1
Hso

ro
(3.34)

The truncation quantity is usually given in the form of percentage of semi-major axis

of the contact ellipse, akm,j in order to indicate the portion of the ellipse that exceeds

the shoulder edge. Thus, the truncation in percentage for each rolling element and for

each inner and outer raceway contacts, TRk,j is given in Equation 3.35.

TRk,j = 100

[
αkm,j + sin−1

(
akm,j
rk

)]
− [π/2− θsk]

2 sin−1
(
akm,j
rk

) (3.35)

If the output of the above formulation is negative, then it indicates that there exists no

ellipse truncation, and all the semi-major axis of the contact is contained within the

raceway.

3.7 Results of the Load Distribution Mathematical Model

In this section, the mathematical model results are given for a bearing under different

loading conditions. These loads are selected for simulating axial dominant load,
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radial dominant load and moment induced loads with A, B and C respectively. These

loading conditions are given in Table 3.1.

Table 3.1: Loads for the Results

Load A Load B Load C
Fx [N] 1500 -5000 1000
Fy [N] 0 2500 1500
Fz [N] 5000 1000 3000

Mx [Nm] 0 0 65
My [Nm] 0 0 -40
n [rpm] 23000 23000 23000

The bearing design including the geometrical inputs as well as the pre-calculated geo-
metrical parameters are given in Table 3.2. The material properties are selected same
for both raceways and balls. (Ei,o,b = 208000 MPa, νi,o,b = 0.3, ρb = 7850 kg/m3)

Table 3.2: Geometrical Parameters of the Bearing

Geometrical Inputs Pre-calculated Parameters
Value Unit Value Unit

ri 5.335 mm
dm 72.480 mm ro 5.376 mm
D 10.319 mm αsi 15.710 o

Z 16 # αso 12.662 o

fi 0.517 - ∆Pdi 0.013 mm
fo 0.521 - ∆Pdo 0.011 mm
gi 0.095 mm Pd 0.063 mm
go 0.095 mm α0 23.188 o

Sd 0.087 mm Pe 0.119 mm
St/D 0.300 - Ri 36.401 mm

Ro 36.041 mm

For the Load A, as seen from Figure 3.8, with the dominating axial load, the bearing

acts like an ACBB in the operation which is a desirable case. The two raceways,

inner-left and outer-right are loaded by making contacts with the balls. However,
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the other two raceways, inner-right and outer-left, have no contact loads. Moreover,

because of the centrifugal load, outer contact loads are higher than the inner ones.

In addition, loaded contact angles in outer raceway are lower than the inner raceway.

Although, the outer contact loads are higher than the inner ones, the maximum contact

stresses in outer contacts are lower than the inner ones. The reason of this situation is

because of the curvature sum and difference as well as the osculation parameters of

the inner and outer raceways.

For the Load B, the four point contact is observed in the bearing rolling elements be-

cause of the dominant radial load. This makes the bearing to operate in an undesirable

condition with the high risk of excess heat generation because of sliding. Therefore,

the transition from two point contact to possible three or four point contact shall be

captured and bearing shall be suitably designed and optimized in order to operate like

in the Load A. If this is not possible for a specific application then it is beneficial to

switch to a design with two rows of bearing.

The combined moment loading is also another reason for a 4PCBB to have three or

four point contact in the balls as seen in Figure 3.10. Since moment loading makes

the inner ring to be tilted, the opposite raceways are loaded within the bearing for ball

numbers separated by azimuth angle of 180o. Therefore, by this opposite loading, the

four point contact within the bearing becomes probable.
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Figure 3.8: Results for Load A
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Figure 3.9: Results for Load B
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Figure 3.10: Results for Load C
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3.8 Validation of the Model with FEA & CalyX Software

In this section established mathematical model for load distribution is compared with

the finite element solutions. For this purpose, CalyX software is utilized. Also, com-

parison with the recent study [16] that simulates the four-point contact slewing bear-

ing with FEA tool is given.

3.8.1 Comparison with CalyX Software

CalyX is a computer program meant for the contact analysis of two- and three-

dimensional multibody systems. It is a widely used tool in transmission design and

analysis.

The 4PCBB geometry given in Table 3.2 is employed for the comparison. However,

it is not possible to model the exact geometry of this 4PCBB in CalyX software.

Therefore, Load A is selected for simulation in order to make this 4PCBB to act like

an ACBB. Thus, the corresponding ACBB geometry, is modeled in the CalyX as an

output shaft bearing of a simple one stage gearbox given in Figure 3.11.

Figure 3.11: CalyX Gearbox Model for Validation
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In order to control the load on the output shaft bearing, the torque in the system is

set to an infinitesimal value which results approximately zero mesh loads induced on

the bearing. The loading is applied to the output shaft which is the Load A given in

Table 3.1. However, the centrifugal effects are not simulated in CalyX model, and in

the MATLAB model the shaft speed is given as 0 rpm. The finite element meshed

model of the system is given in Figure 3.12. As seen from this figure, the output shaft

bearing is modeled with finer meshes.

Figure 3.12: Simulation Results on Meshed Model

The other results that show the load distribution as well as the maximum contact

stresses are given in Figure 3.13 and 3.14, respectively. Furthermore, the applied

inner ring load and the bearing reaction force is given in that figure as a vector in pink

color.

Since there is no centrifugal effects on both Calyx and MATLAB model, the loads for

inner and outer raceways become equal and are compared in Figure 3.15 as contact

load, Q. As it is seen from Figure 3.15, the load distributions are very similar.
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Figure 3.13: CalyX Load Distribution with Reaction Force

Figure 3.14: CalyX Maximum Contact Stress Distribution with Reaction Force
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Figure 3.15: Contact Load Comparison of Calyx and MATLAB Model

The detailed numerical comparison is given in Table 3.3. The maximum error in the

ball load is % 10.5 which is in the rolling elements 4 and 13. As it is seen from the

comparison figure and table, the load distribution over the rolling elements are nearly

same. The difference in the load values are due to the mesh size. In the CalyX model,

it is observed that the mesh size is very effective on the results. However, with finer

meshes the required simulation time becomes very high. Therefore, an average mesh

size is selected for the simulation and comparison. Thus, with a finer meshed model,

these differences shall be dramatically decreased.
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Table 3.3: Numerical Comparison with CalyX Results

Ball Number QCalyX [N ] QMatlab [N ] Error [%]
1 998.6 1023.3 2.5
2 965.1 971.9 0.7
3 869.5 845.4 -2.8
4 725.7 707.0 -2.6
5 554.9 612.8 10.4
6 553.8 585.3 5.7
7 573.0 612.1 6.8
8 665.7 656.4 -1.4
9 728.8 677.2 -7.1

10 665.8 656.4 -1.4
11 573.0 612.1 6.8
12 553.8 585.3 5.7
13 554.9 612.8 10.4
14 725.7 707.0 -2.6
15 869.5 845.4 -2.8
16 965.1 971.9 0.7

3.8.2 Comparison with Slewing Bearing Simulation Study in ABAQUS

Liu et al. [16] built a FE model for a single-row four-point-contact slewing bearing

in ABAQUS software. The key to the method is to simulate the balls under compres-

sion by traction-only nonlinear springs. Furthermore, in the study, the comparison

between numerical and experimental results are discussed in detail.

The model of the contact that Liu et al. incorporated for the study is given in Figure

3.16. As it is seen from this figure, traction-only non-linear springs are located be-

tween the raceway centers. The rigid shell and rigid beam elements are used to tie

the raceways. By this way, the contact zones in the raceways are coupled with the

corresponding raceway centers.

The four-point contact slewing bearing geometrical parameters for the study of Liu et

al. [16] is given in Table 3.4.
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Figure 3.16: Model of the Contact [16]

Table 3.4: Geometrical Parameters of the Slewing Bearing [16]

Value Unit
dm 1000 mm
D 40 mm
Z 69 #
fi 0.525 -
fo 0.525 -
ri 21 mm
ro 21 mm
gi 1.414 mm
go 1.414 mm
αsi 45 o

αso 45 o

α0 45 o

Ri 500.707 mm
Ro 499.203 mm

The corresponding FE model for these geometrical parameters are given in Figure

3.17. As it is seen from the figure, the boundary conditions for symmetry are em-

ployed. Therefore, only half of the bearing as well as half of the total number of

rolling elements are analyzed. Moreover, the coordinate frame for the bearing loads
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Figure 3.17: FE Model of the Slewing Bearing [2]

are given in Figure 3.17.

Liu et al. simulate the slewing bearing under several load levels. In these loadings

only the axial and moment loads are applied. Thus, load distribution result for a

specific load level is presented in detail. This load level is given as; Fa = 91.5

kN M = 216.5 kN.m. For coordinate frame of the 4PCBB model that is given in

this study, this load level corresponds to the following load combination; Fx = 0

kN, Fy = 0 kN, Fz = 91.5 kN, Mx = 0 kN.m and My = −216.5 kN.m. Since

the centrifugal effects are disregarded, the shaft speed is taken as zero in MATLAB

model. As a result, the contact loads for inner and outer raceways become equal such

as; Qil = Qor and Qir = Qol.

The load distribution obtained in Liu’s study [16] is given in the Figure 3.18. Spring

Peu-Pid corresponds to the spring between the left inner and right outer raceway

centers. Similarly, spring Ped-Piu corresponds to the spring between the right inner

and left outer raceway centers.
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Figure 3.18: Load Distribution of the Slewing Bearing [16]

Resulting load distribution is obtained as given in Figure 3.19 with the established

MATLAB model. In Figure 3.19, the FEA results are also illustrated in order to see

the differences and similarities between these two models. Load distribution trends

are similar for these two models. However, considerable differences occur in the con-

tact load results of rolling elements from number 5 to number 21. In Liu’s model [16]

both springs are active and the rolling elements (# 5 to # 21) are loaded in four-point

contacts. This situation is not observed in the MATLAB model results. This differ-

ence is due to the flexibility of the rings that is included in FE model but excluded in

MATLAB model.
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Figure 3.19: Load Distribution Comparison of FEA and MATLAB Models

Both comparisons with the CalyX and the Liu’s study give enough precision in terms

of the load distribution. After verifying the MATLAB model with both CalyX and a

FEA study, the model is employed for the optimization subroutine.
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CHAPTER 4

MICRO GEOMETRY OPTIMIZATION OF 4PCBB

In this chapter, the established optimization subroutine is presented in terms of the

fixed parameters & design variables, constraints and the objective function to be min-

imized. In addition, optimization algorithm is basically described. Sample results that

obtained with the micro-geometry optimization and discussions over these results are

also presented at the end of this chapter.

4.1 Optimization Algorithm

For optimization purpose, MATLAB software is utilized as in the load distribution

model. Existing optimization solver in MATLAB; "fmincon" is employed for opti-

mization. In this optimization solver, boundaries for design variables are introduced.

These boundaries are described in following sections for each design variables. More-

over, the constraints that must be satisfied within the optimization are also stated and

the implementation is given in the following sections. Optimization solver "fmincon"

uses the "interior-point" algorithm in default. "interior-point" handles large, sparse

problems, as well as small dense problems. The algorithm satisfies bounds at all iter-

ations, and can recover from "Not a Number (NaN)" or infinite results. The algorithm

can use special techniques for large-scale problems. Therefore, the default algorithm;

"interior-point" is utilized for the optimization purpose.

The load distribution model including the post-process calculations are formed as

a function, f4PCBB in a MATLAB script. This function has the input and output
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parameters which are given as in Equation 4.1.

dm, D, Z, Sti, Sto, Sd δ

fi, fo, gi, go ⇒ f4PCBB ⇒ Qmk,j, Fc,j, αmk,j, δmk,j

F, ω σmk,j, TRmk,j

(4.1)

By using f4PCBB function in an optimization loop, design variables are optimized.

Selection of the design variables as well as the fixed parameters are given in following

section.

4.2 Fixed Parameters & Design Variables

In this section selected fixed parameters and the optimization design variables are

introduced. The optimization is focused on the micro geometry of a custom design

4PCBB under a specific load and speed condition. Therefore, the macro geometrical

parameters are selected as fixed parameters.

In the rotating machinery applications, there exist many constraints that designer shall

obey in rolling element bearing design such as: shaft diameter, housing diameter. For

this reason, optimization of the macro geometry of a custom design 4PCBB is out

of scope for this study. To illustrate, bore diameter, Di and outer diameter, Do of

the bearing is dependent on the available space within the design. Bearing pitch

diameter, dm and ball diameter, D are also needed to be selected with respect to

the bore and outer diameter. In addition, in the industry it is not possible to find

rolling elements with any diameters. These ball diameters are standardized by the

manufacturer. Therefore, optimization of these ball diameter is not feasible. Once

these parameters are selected, the cage design is another constraint that indicates

the maximum number of balls, Z which can be employed for this specific design.

Shoulder thicknesses, Sti, Sto are also fixed and not included in optimization loop.

All parameters that are assumed to be pre-defined by the means of manufacturing,

assembly easiness as well as the optimization efficiency are tabulated in Table 4.1. In

this table, the design variables that optimized in terms of minimum contact stress and

ellipse truncation are also given.
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Table 4.1: Fixed Parameters & Design Variables

Fixed Design
Parameters Variables

dm
D fi
Z fo
Sti gi
Sto go
F Sd
ω

The design variables consist the osculation of inner and outer raceways, fi, fo as well

as the shim thicknesses for inner and outer rings, gi, go. Moreover, non-arched radial

clearance, Sd is also optimized within the optimization subroutine. These design vari-

ables are the micro geometrical features of the custom design 4PCBB which indicates

the unloaded contact angle, α0 with the other fixed parameters. Therefore, the axial

load carrying capacity, radial clearance, axial clearance and the other characteristics

which are effective on the maximum contact stress, ellipse truncation as well as the

four point contact behaviour are very much dependent on the bearing micro geometry.

In the bearing design, optimization of these parameters is highly important and make

the bearing to operate more efficiently for a selected application.

4.3 Constraint Implementation and Objective Function of the Optimization

For the optimization, it is necessary to set boundaries for the selected design variables

in order to stay in feasible region. In other words, for the sake of efficient and rational

optimization, the design variables are constrained to be in a pre-determined interval.

To illustrate, raceway osculations are usually in the limits of 0.51 ≥ fi,o ≤ 0.53 in

the bearing literature and manufacturing. Therefore, these limits are embedded into

the optimization loop. Furthermore, the shim thicknesses, gi and go are also limited

in an interval by limiting the resultant shim angles, αsi and αso in between 5o to

45o which is the general boundaries within bearing manufacturing. It is obvious that
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higher shim angles than 45o would result a higher clearance drop (∆Pd)i and (∆Pd)o

from Equations 2.13 and 2.14. The non-arched radial clearance Sd is also limited in

an interval which assures that the arched radial clearance as well as the axial end-play

is positive (Pd , Pe > 0). However, the constraint that radial and axial clearance to be

positive cannot be assured %100 percent by only employing boundaries to the non-

arched radial clearance, Sd. Because the radial clearance drops, (∆Pd)i and (∆Pd)o

and the axial end-play, Pe dependent on the other design variables (fi, fo, gi, go) as

well as the boundaries of these design variables. In other words, limiting Sd in a

very conservative way to assure positive radial and axial end-play for all fi, fo, gi, go

in the limits will result a very narrow interval for Sd which makes the optimization

inefficient. Therefore, the positive axial end-play requirement is embedded not only

by boundary implementation but also constraint implementation. In order to satisfy

the axial end-play to be positive, Equations from 2.10 to 2.16 are rewritten in terms

of the design variables to obtain Equation 4.5.

Pe =2BD sinα0 − gi − go (4.2)

=2BD sin

[
cos−1

(
1− Pd

2BD

)]
− gi − go (4.3)

=2BD sin

[
cos−1

(
1− Sd − (∆Pd)i − (∆Pd)o

2BD

)]
− gi − go (4.4)

Equation 4.4 is rewritten to control Sd, in order Pe to be positive, and following

inequality, Equation 4.5 is obtained.

Sd > 2BD

{
1− cos

[
sin−1

(
gi + go
2BD

)]}
+ (∆Pd)i + (∆Pd)o (4.5)

In addition to, the upper limit for non-arched radial clearance, Sd is determined by

fixing maximum unloaded contact angle α0 to 45o. This is a general acceptable limit

for the ACBBS, and applied to 4PCBBs. The inequality that satisfies this condition

is derived in Equations from 4.6 to 4.9.
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45o > cos−1
(

1− Pd
2BD

)
(4.6)

45o > cos−1
(

1− Sd − (∆Pd)i − (∆Pd)o
2BD

)
(4.7)

cos 45o <

(
1− Sd − (∆Pd)i − (∆Pd)o

2BD

)
(4.8)

Sd < 2BD(1− cos 45o) + (∆Pd)i + (∆Pd)o (4.9)

Finally, the boundaries of Sd are formulated in terms of other design variables. For

this purpose, the boundaries of fi, fo, gi, go are used in a way that the range of Sd is

maximized but not narrowed. Formulation of boundaries for the design variables are

given in Table 4.2.

Table 4.2: Boundaries for the Design Variables

Variable Boundaries
fi fi,min = 0.51 fi,max = 0.53

fo fo,min = 0.51 fo,max = 0.53

gi gi,min = (2fi,minD −D) sin 5o gi,max = (2fi,maxD −D) sin 45o

go go,min = (2fo,minD −D) sin 5o go,max = (2fo,maxD −D) sin 45o

Sd Sd,min = See Equation 4.5 with fi,min, fo,min, gi,min, go,min
Sd,max = See Equation 4.9 with fi,max, fo,max, gi,max, go,max

After the formulation of the boundaries for the design variables, these boundaries

are embedded into the "fmincon" solver as an input before the optimization starts.

Thus, the optimization seeks the best solution in a predetermined and feasible region.

Moreover, there exist other constraints than the optimization boundary. Namely, these

constraints aim to avoid four point contact, truncation and negative end play within

the optimized bearing micro geometry. These constraints are implemented by us-

ing the penalty functions with static penalty parameters. These penalty functions

including the penalty parameters are added on the objective function, φ(x). Thus, the
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constrained objective function of the optimization, φc(x) is given as in Equation 4.10.

φc(x) = φ(x) +

Np∑
s=1

WsPs(x) with x =



fi

fo

gi

go

Sd


(4.10)

Where φ(x) is the unconstrained objective function which is simply the maximum

contact stress over the bearing, and output of the f4PCBB. Penalty functions, Ps mul-

tiplication with the penalty coefficients, Ws are added to the φ(x) with s = 1, 2...Np.

WhereNp is the total number of the penalty functions in other words the total number

of constraints. These penalty functions are given in Equations from 4.11 to 4.17.

P1 = max(σir,j) (4.11)

P2 = max(σol,j) (4.12)

P3 = max(TRil,j) (4.13)

P4 = max(TRir,j) (4.14)

P5 = max(TRol,j) (4.15)

P6 = max(TRor,j) (4.16)

P7 = min(0, Pe)
2 (4.17)

As seen from Equations 4.11 and 4.12, first two penalty functions are employed in

order to avoid three or four point contact within any of the rolling elements. For this

purpose, the raceways other than the primary raceways (inner-left and outer-right for

an axial load in the direction +Z) are penalized in the case of contact stress occurrence

in these secondary raceways. Namely, the maximum contact stresses over the rolling

elements that located within the secondary raceways are taken for the penalization.

The other penalty functions from P2 to P6 are utilized for the truncation avoidance

while optimizing the micro-geometry. All contacts between each raceway and rolling

element are analyzed for the truncation, and maximum truncation over the rolling
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elements are selected for adding to the objective function for penalization. Finally,

the last penalty function P7 is for positive axial end-play constraint. As seen from

Equation 4.17, in the case of a negative axial end-play, P7 becomes positive. However,

for the positive Pe values P7 is taken as zero which means no penalization applied.

4.4 Optimization Results for Selected Bearing and Loading Conditions

In this section, results of the optimization that defined in previous sections are given

for a selected bearing design and loading conditions. Moreover, the penalty coeffi-

cients as well as each iteration within the optimization subroutine are to be illustrated.

For this purpose, the bearing design that is given in Table 3.2 is employed. However,

as it is discussed earlier, the micro-geometry is to be optimized. Hence, fi, fo, gi,

go and Sd parameters are going to be optimized for different loading conditions with

different optimization objectives. In following subsections, these different objectives

and optimization are to be illustrated for the bearing with same macro-geometry.

The penalty coefficients, Ws that define the weight of each penalty functions need to

be selected according to the purpose of the optimization. To illustrate, it is possible

for the optimization subroutine to end up with a design point which cannot achieve to

satisfy all the constraints implemented by penalty method. Therefore, by arranging

the weight of the penalty functions with the coefficients, it is possible to direct the

optimization to a design point which is more closer to satisfy the preferred constraints.

Therefore, these penalty coefficients are specifically selected for each optimization

cases. Moreover, these parameters shall be suitably selected in order to have same

order of magnitude within each penalty functions. In other words, since each penalty

function has different units, the weights shall be selected accordingly. For example,

P1 and P2 are contact stresses in MPa. In addition to, the penalties from P3 to P6 are

the truncations in percentages. Lastly, P7 is the end-play in millimeters. Therefore, it

is important to assign weights to these functions according to these units and possible

function values for an efficient optimization.
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4.4.1 Optimization #1: Focusing On Four-Point Contact Avoidance

In this optimization case, bearing is optimized for a loading with low axial to radial

load ratio (i.e. Fz/Fx = 1.5) as given in Table 4.3. Namely, in the non-optimized

bearing design given in Table 3.2, four point contact is observed under this load con-

dition. Therefore, the optimization in this subsection focuses on avoiding four point

contact by changing the micro-geometry of the bearing. Thus, both non-optimized

and optimized bearing parameters as well as the resulting contact stress distributions

are to be provided. For the optimization #1, penalty coefficients are selected such as:

W1,2 = 102, W3,4,5,6 = 103 and W7 = 106.

Table 4.3: Loads for the Optimization #1

Load / Speed
Fx [N] 2000
Fy [N] 0
Fz [N] 3000

Mx [Nm] 0
My [Nm] 0
n [rpm] 23000

Optimization finds an optimum point which satisfies the constraints by minimizing

the penalty functions as well as the maximum contact stress. In Figure 4.1, the con-

strained and non-constrained objective function evaluation during the optimization

iterations are given. It is observed that the constrained and non-constrained objective

functions are converged to be equal. It means that all the penalty functions become

zero. In other words, all the constraints are satisfied when the values of constrained

and non-constrained objective functions are same.

As it is seen from Table 4.4, it takes 7 iterations for optimization subroutine to reach

the optimum point. The non-constrained objective function, φ which is simply the

maximum contact stress over all rolling elements and raceways are listed for each it-

erations. Obviously, maximum contact stress is increased from 1913.9 MPa to 2056.5

MPa. However, as it is seen from Figure 4.2 four point contact is avoided by the help

of the optimization subroutine. To illustrate, initial micro-geometry results to have

four point contact in some of the rolling elements, whereas in the optimized micro-

60



0 1 2 3 4 5 6 7

104

105

Iteration Number #

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Objective Functions of Each Iteration

φc
φ

Figure 4.1: Objective Functions at Each Iteration of Optimization #1

Table 4.4: Iterations of Optimization #1

Micro-geometrical Non-const.
Iter. Parameters Obj. Func.

# fi fo gi go Sd φ

0 0.517 0.521 0.095 0.095 0.087 1913.9
1 0.519183 0.522511 0.082056 0.082056 0.19429 2083.1
2 0.524483 0.526181 0.050663 0.050663 0.123445 2175.7
3 0.522049 0.525443 0.045171 0.045171 0.103226 2112.6
4 0.520024 0.522847 0.040602 0.057869 0.086404 2056.7
5 0.520016 0.522837 0.040584 0.057919 0.086338 2056.5
6 0.520016 0.522837 0.040583 0.057922 0.086334 2056.5
7 0.520016 0.522837 0.040583 0.057922 0.086334 2056.5

geometry design the secondary raceways (inner-right and outer-left) and balls have no

contacts as given in Figure 4.2. When it is compared with the excess heat generation

as well as the premature failure due to this four point contact, contact stress increase

in the amount of ∼ %7.5 is way better than acceptable.

In the Optimization # 1, it is aimed to optimize the bearing for preventing the four

point contact in any of the rolling element. Therefore, the penalty coefficients, Ws are

arranged accordingly. Thus, preventing of four point contact is achieved with small

amount of increase in maximum contact stress. In the following subsections, other

optimizations are to be carried out with different targets and geometries.

61



0 5 10 15

0

500

1,000

1,500

2,000

Rolling Element Number #

M
ax

im
um

C
on

ta
ct

St
re

ss
M

Pa
Initial Design

0 5 10 15

0

500

1,000

1,500

2,000

Rolling Element Number #
M

ax
im

um
C

on
ta

ct
St

re
ss

M
Pa

Optimized Design

σil
σir
σol
σor

Figure 4.2: Contact Stress Distribution for Initial & Optimized Design of Optimiza-

tion #1

4.4.2 Optimization #2: Mainly Focusing on Contact Stress Minimization

In the Optimization #2, it is aimed to optimize the same bearing geometry in Opti-

mization #1 which is given in Table 3.2 under the Load A given in Table 3.1. Pre-

viously, it is known that this bearing micro-geometry configuration under specified

Load A acts like an ACBB which means no four point contact is observed. Thus,

in this optimization, maximum contact stress of the bearing in any of the rolling ele-

ment is aimed to be minimized. Like in the Optimization #1, non-optimized micro-

geometry is given as an initial point for the iterations of the subroutine. By this way,

the iterations shall converge to a more optimized bearing micro-geometry with lower

contact stresses rather than the initial point micro-geometry.

In Figure 4.3, it is seen that the non-constrained and constrained objective functions,

φ and φc are equal for all iterations which means no penalty is induced on the con-

strained objective function. In the optimization process, at each iteration algorithm

searches for different points by calling multiple function evaluations and tends to

the best point. Thus, design variables stay in the feasible region over the iterations

because of the penalty functions. Design variables at each iteration as well as the

maximum contact stresses are given in Table 4.5 in detail.
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Figure 4.3: Objective Functions at Each Iteration of Optimization #2

As it is seen from Table 4.5, there is a decrease in the maximum contact stress by

∼ %12.5 from the non-optimized to optimized micro-geometry. Thus, the bearing is

optimized in 9 iterations to have lower contact stress. Moreover, the initial and the

final stress distributions of the bearing design under specified load is given in Figure

4.4.

Table 4.5: Iterations of Optimization #2

Micro-geometrical Non-const.
Iter. Parameters Obj. Func.

# fi fo gi go Sd φ

0 0.517 0.521 0.095 0.095 0.087 1971.124
1 0.513570 0.515610 0.057264 0.057264 0.045909 1900.111
2 0.511071 0.511683 0.029770 0.029770 0.050008 1762.654
3 0.511017 0.510505 0.021522 0.021522 0.065841 1731.746
4 0.510933 0.510463 0.055804 0.055804 0.080514 1725.620
5 0.510933 0.510464 0.055817 0.055817 0.080515 1725.612
6 0.510915 0.510455 0.056602 0.055068 0.081225 1724.115
7 0.510915 0.510455 0.056587 0.055085 0.081263 1724.061
8 0.510915 0.510455 0.056589 0.055083 0.081266 1724.057
9 0.510915 0.510455 0.056589 0.055083 0.081266 1724.057
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Figure 4.4: Contact Stress Distributions for Initial & Optimized Design of Optimiza-

tion #2

4.4.3 Optimization #3: Focusing on Truncation Avoidance

In this optimization case, it is aimed to optimize the bearing design for truncation

issues. Cage designs of bearings dictate the feasible shoulder diameters. Therefore,

it is not always possible to have large shoulder thicknesses in the bearings. More-

over, weight saving especially in aerospace applications is very important. Thus,

optimization of the micro-geometry for small shoulder thicknesses for the target of

zero truncation carries great importance. For this optimization purpose, the bearing

design given in previous optimization cases is utilized. However, in order to show

the power of the optimization algorithm, the shoulder thicknesses Sti and Sto are

to be decreased to a critical value that results ellipse truncation in between several

rolling elements and raceways. To illustrate, in previous optimization cases the ratio

St/D is taken as 0.3 for both inner and outer shoulders. Thus, this value is decreased

to 0.165 for St/D in Optimization #3. Since dominant axial load is the reason for

balls to override through the raceway shoulders, high axial loading of 7500 N with

small radial load of 1500 N is applied for this optimization case. Namely, the bearing

with non-optimized micro-geometry results maximum truncation of %10.1 between

9th ball and inner-left raceway. This non-optimized configuration is supplied as ini-

tial guess for the iterations as in the previous optimization cases. Thus, the objective
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functions of each iteration are obtained as in Figure 4.5.
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Figure 4.5: Objective Functions at Each Iteration of Optimization #3

As it is seen from Figure 4.5, constrained objective function, φc converges to non-

constrained one, φ after three iterations. This implies that the penalty functions be-

come zero after three iterations, and all the constraints are satisfied. Moreover, it is

seen that the maximum contact stress is increased a little for the sake of satisfying

the constraints. In Table 4.6, micro-geometrical parameters as well as the maximum

contact stresses are listed for each iteration.

Table 4.6: Iterations of Optimization #3

Micro-geometrical Non-const.
Iter. Parameters Obj. Func.

# fi fo gi go Sd φ

0 0.517 0.521 0.095 0.095 0.087 2140.917
1 0.516224 0.519713 0.085795 0.132469 0.076570 2170.550
2 0.516205 0.519715 0.085607 0.103992 0.076403 2138.734
3 0.522013 0.526381 0.090393 0.042788 0.059063 2361.959
4 0.518169 0.527171 0.091663 0.090160 0.059853 2275.773
5 0.517153 0.527243 0.091666 0.102261 0.059809 2253.683
6 0.517153 0.527243 0.091670 0.102261 0.059809 2253.675
7 0.517153 0.527243 0.091670 0.102261 0.059809 2253.675

As it is seen from Table 4.6, maximum contact stress within the rolling elements is in-

creased from 2140.9 MPa to 2253.7 MPa, whereas no truncation is observed with the
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optimized micro-geometry. Thus, the optimization reaches its target by eliminating

any truncation within the bearing by changing the micro-geometry. Initial and opti-

mized contact stress as well as the truncation distributions are illustrated in Figures

4.6 and 4.7, respectively.
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Figure 4.6: Contact Stress Distributions for Initial & Optimized Design of Optimiza-

tion #3
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4.5 Summary and Discussions over Optimization Results

In this section, results of the optimizations that carried out in the previous section are

to be summarized and discussed. For this purpose, a general summary is provided in

Table 4.7.

Table 4.7: Summary of the Optimizations

Optimization #1 Optimization #2 Optimization #3

Macro-geo.
Parameters

dm 72.480 mm
D 10.319 mm
Z 16

Sti/D 0.3 0.165
Sto/D 0.3 0.165

Initial
Micro-geo.
Parameters

fi 0.517
fo 0.521
gi 0.095 mm
go 0.095 mm
Sd 0.087 mm

Initial
Pre-calculated
Parameters

αsi 15.710 o

αso 12.662 o

Pd 0.063 mm
α0 23.188 o

Pe 0.119 mm

Loading
Conditions

Fx 2000 N 1500 N 1500 N
Fy 0 N 0 N 0 N
Fz 3000 N 5000 N 7500 N
Mx 0 Nm 0 Nm 0 Nm
My 0 Nm 0 Nm 0 Nm
n 23000 rpm 23000 rpm 23000 rpm

Penalty
Coefficients

W1,2 = 102 W1,2 = 10

Ws W3,4,5,6 = 103 W3,4,5,6 = 103

W7 = 106 W7 = 106

Initial Results
4PC ?∗ YES NO NO
TRmax 0 % 0 % 10.1 %
σmax 1913.9 MPa 1971.1 MPa 2140.9 MPa

Optimized
Results

4PC ?∗ NO NO NO
TRmax 0 % 0 % 0 %
σmax 2056.5 MPa 1724.1 MPa 2253.7 MPa

∗ Four Point Contact ?
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Moreover, optimized bearing micro-geometry as well as the corresponding calculated

geometrical parameters are given in Table 4.8.

Table 4.8: Optimized Geometrical Parameters

Optimization #1 Optimization #2 Optimization #3

Optimized
Micro-geo.
Parameters

fi 0.520016 0.510915 0.517153
fo 0.522837 0.510455 0.527243
gi 0.040583 mm 0.056589 mm 0.091670 mm
go 0.057922 mm 0.055083 mm 0.102261 mm
Sd 0.086334 mm 0.081266 mm 0.059809 mm

Optimized
Pre-calculated
Parameters

αsi 5.638 o 14.549 o 15.008 o

αso 7.059 o 14.790 o 10.479 o

Pd 0.081 mm 0.067 mm 0.038 mm
α0 24.676 o 31.970 o 16.637 o

Pe 0.271 mm 0.122 mm 0.068 mm

In addition, computation time as well as the iterations that appear on the command

window of MATLAB during the optimization process are given at Appendix A.1,

A.2 and A.3 for Optimization #1, #2 and #3, respectively. In these command window

results, function evaluation numbers are given in "F-count" column. These function

evaluation numbers indicate how many times the function, f4PCBB is called out for

each iteration.

In the Optimization #1, iterations altered the bearing micro-geometry such a way

that in the final optimized design, there exist no three- or four-point contact loading

in any of the rolling elements. This is achieved by decreasing the shim angles, αsi

and αso from 15.710o and 12.662o to 5.638o and 7.059o, respectively. Moreover,

osculations, fi and fo are both increased in the small amount in order to guarantee

the minimum contact stress after avoiding the four-point contact within the bearing.

From these results it is observed that four-point contact tendency is related with the

shim thicknesses, g and shim angles, αs with the combination of osculations. Thus,

if the shim angles and shim thicknesses are increased, it is highly probable to witness

four-point contact in the bearing even for a small amount of radial load. Therefore, in

Optimization #1 , algorithm alters the micro-geometry design to avoid the four-point

contact by decreasing the shim angles and shim thicknesses. However, this procedure
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is not possible to be applied for all applications. To illustrate, for this optimization the

axial to radial load ratio is taken as Fz/Fx = 1.5. If this ratio is decreased to lower

values, it may become impossible to generate a solution which both avoids four-point

contact and satisfies the constraints of the optimization.

In the second optimization case, the bearing initially has no four-point contact in

any rolling elements because of high Fz/Fx = 3.33. However, micro-geometry de-

sign results a maximum contact stress of σmax = 1971.1 MPa. Thus, by the help

of optimization this contact stress is decreased to σmax = 1724.1 MPa. Since the

optimization case is not very limited by the constraints and penalties of four-point

contact and truncation avoidance, the algorithm can freely adjust the parameters to

decrease the maximum contact stress. However, in Optimization #1, with low Fz/Fx,

algorithm converged to a solution with higher contact stress but avoided four-point

contact.

Finally, in the Optimization #3, the algorithm is limited by the design of the shoulder

thickness i.e. St/D = 0.165 and with high axial loading of Fz = 7500N . Therefore,

in this optimization the maximum contact stress is again increased as in Optimization

#1. However, ellipse truncation is prevented in any of the rolling elements. By de-

creasing the contact angle, α0 from 23.188o to 16.637o, ellipse truncation is avoided

by making contact in lower contact angles and making contact zone to be moved away

from the edge of the raceways to the center of the raceway. Thus, axial load carrying

capacity is decreased and the maximum contact stress is increased for high amount

of axial loading. Nevertheless, both Optimizations #1 and #3 are successful since

they manage to prevent possible important premature failures within the bearing due

to four-point contact and ellipse truncation by changing the micro-geometry of the

bearing.
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CHAPTER 5

CONCLUSIONS & FUTURE WORK

5.1 Conclusions

In this study, 4PCBB geometrical parameters and internal kinematics are investigated

and compared with the conventional ACBB. Mathematical model for load distribu-

tion of 4PCBB is modelled in MATLAB environment based on the existing studies

and models. In this model, bearing inner and outer rings are assumed to be rigid,

and only deformations in the ball and raceway contacts are taken into consideration

according to Hertz contact theory with numerical approximation method given in [5].

Moreover, left and right raceways are modelled and assumed to have same geometri-

cal parameters. In this study, material of the rings and rolling elements are selected

as steel. However, it is possible to input different materials for the rings and balls to

the model. Thus, hybrid bearing designs with steel rings and ceramic balls can also

be studied with generated model. Loading in 5 DoF and rotational speed is applied

into the inner rings and outer rings are assumed to be stationary and grounded. Cen-

trifugal body forces acting on the rolling elements are taken into account in order to

simulate the centrifugal effects which become effective at high rotational speeds. The

Hertzian contact stress and ellipse truncation formulations that are needed to evaluate

the performance of the bearing are given. MATLAB function "fsolve" is employed as

the solver of the established model. Resultant load, loaded contact angle, deflection

and maximal contact stress distributions of several bearing designs under different

load conditions are illustrated. Generated model is then compared with the existing

FEA study and results of software called "CalyX". Both comparisons give enough

precision in terms of the load distribution. After the validation of the model, it is
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utilized for the micro-geometry optimization of 4PCBBs. In this optimization sub-

routine, the micro-geometrical parameters are selected as the design variables to be

optimized. Several constraints and boundaries are introduced for an efficient and fea-

sible optimization. For the optimization purpose, MATLAB function "fmincon" is

employed in order to implement the boundaries of design variables. Furthermore, the

static penalty method is used for the manually implementation of other constraints to

the algorithm. Several optimization study is carried out for different loading condi-

tions, and these results are summarized and discussed. Thus, micro-geometry design

of a customized 4PCBB for a specific application is automated by the help of the

established subroutine.

5.2 Outcome of Study & Recommendations for Future Work

Outcome of this study is to give guidance in customized bearing design by finding

the optimum combination of micro-geometrical parameters for a minimum contact

stress. By this way, it is possible to generate the optimum bearing micro-geometry

for a specific application. The constraints and boundaries can be adjusted according to

the need of the application. To illustrate, it is possible to limit the axial clearance, Pe

to a critical value for the applications where this parameter is needed to be controlled.

Moreover, the boundaries that are given for osculations, fi and fo can be narrowed or

expanded depending on the manufacturing capabilities. To summarize, the efficiency

of the generated mathematical model for the load distribution of 4PCBB makes it

possible to be utilized in an optimization subroutine. Therefore, modifications can be

made on the established optimization subroutine in order to investigate for different

optimization targets with different constraints and boundaries.

Finally, the possible future works that may be constructed on this study are to be given

as follows:

• Ring deformations may be embedded into load distribution model for the anal-

ysis of bearings which seat to thin section supports. By this way, it would be

possible to optimize the bearing for this type of applications where the ring

deformations are dominant and effective.
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• Optimizing the bearing not only for single load case but for multiple load cases

may be added to the optimization subroutine.

• Tribological aspects of the bearing may be investigated and embedded into the

model in order to increase the number of performance evaluation criterion such

as: film thickness, friction torque and power loss.

• By employing the generated model for a series of bearings with different macro-

and micro-geometrical parameters as well as with different load cases, transi-

tion from acting like a conventional ACBB to having three- or four-point con-

tact may be captured, and an empirical formula may be generated.
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APPENDIX A

COMMAND WINDOWS OF MATLAB DURING OPTIMIZATION

A.1 Command Window of MATLAB during Optimization #1
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A.2 Command Window of MATLAB during Optimization #2
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A.3 Command Window of MATLAB during Optimization #3
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APPENDIX B

FLOWCHART OF LOAD DISTRIBUTION MODEL
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B.1 Flowchart of the Mathematical Model for the Load Distribution of 4PCBB

Start

Geometry Inputs 

(dm, D, Z, fi, fo, Sd, gi, go)

Perform Pre-calcula�on 

for other geometrical 

parameters

Loading Inputs

(F, ω )

Material Inputs 

(Ei,o,b, υ i,o,b, ρ)

Set the ini�al values of 

ring de�ec�ons, δ

Calculate, A1 and A2

Set the ini�al values for 

contact angles;

α ilj, αolj, α irj, αorj

contact de�ec�ons; 

δilj, δolj, δirj, δorj

Calculate the contact 

s��ness of each contact;

Kilj, Kolj, Kirj, Korj

Calculate the contact 

Loading at each contact;

Qilj, Qolj, Qirj, Qorj

Calculate the Centrifugal 

Forces;

Fcj

Calculate the Kinema�c 

Constraint and the Ball 

Equilibrium Equa�ons

Constraints and 

equilibrium are 

sa�s�ed ? 

N
o

, 
co

n

�

n
u

e
 t

o
 i

te
ra

�

o
n

Calculate the resultant 

ring loads, Fresult

Yes

Compare F and Fresult

Are they same ?

N
o

, 
co

n

�

n
u

e
 t

o
 i

te
ra

�

o
n

Postprocess the data

Yes

End

82


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	INTRODUCTION
	Motivation of Study
	Literature Survey
	Scope of Thesis
	Outline of Thesis

	GEOMETRICAL PARAMETERS OF 4PCBB & APPLICATION OF ELLIPTICAL CONTACT THEORY TO 4PCBB
	Common Geometrical Parameters of ACBB & 4PCBB
	Geometrical Parameters of 3PCBB & 4PCBB
	Elliptical Contact Theory Application to Ball & Raceway Contacts

	MATHEMATICAL MODEL FOR THE LOAD DISTRIBUTION OF 4PCBB
	Comparison with Conventional Ball Bearing Load Distribution Models
	General Structure of the Mathematical Model of 4PCBB
	Kinematics of the Quasi-Static Ball of 4PCBB
	Ball Equilibrium of 4PCBB under Contact & Body Forces
	Bearing Reaction Force vs. Applied Ring Load
	Postprocess for Ellipse Truncation Calculations
	Results of the Load Distribution Mathematical Model
	Validation of the Model with FEA & CalyX Software
	Comparison with CalyX Software
	Comparison with Slewing Bearing Simulation Study in ABAQUS


	MICRO GEOMETRY OPTIMIZATION OF 4PCBB
	Optimization Algorithm
	Fixed Parameters & Design Variables
	Constraint Implementation and Objective Function of the Optimization
	Optimization Results for Selected Bearing and Loading Conditions
	Optimization #1: Focusing On Four-Point Contact Avoidance
	Optimization #2: Mainly Focusing on Contact Stress Minimization
	Optimization #3: Focusing on Truncation Avoidance

	Summary and Discussions over Optimization Results

	CONCLUSIONS & FUTURE WORK
	Conclusions
	Outcome of Study & Recommendations for Future Work

	REFERENCES
	APPENDICES
	COMMAND WINDOWS OF MATLAB DURING OPTIMIZATION
	Command Window of MATLAB during Optimization #1
	Command Window of MATLAB during Optimization #2
	Command Window of MATLAB during Optimization #3

	FLOWCHART OF LOAD DISTRIBUTION MODEL
	Flowchart of the Mathematical Model for the Load Distribution of 4PCBB


