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Signature :

iv



ABSTRACT

A NUMERICAL APPROACH FOR THE SOLUTIONS OF FLUID
DYNAMICS PROBLEMS IN THE PRESENCE OF MAGNETIC FIELD

OĞLAKKAYA, FATMA SİDRE
Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Canan Bozkaya

May 2018, 178 pages

This thesis is conducted to investigate numerically the two-dimensional steady or

unsteady, laminar flow of viscous, incompressible and electrically conducting flu-

ids in complex geometries subject to either uniform inclined magnetic field or nodal

magnetic sources. Specifically, the hydromagnetic natural/mixed convection of either

conventional fluid or water-based nanofluid flow and the heat transfer are consid-

ered in irregular enclosures with wavy walls. The equations governing the steady

magnetohydrodynamic (MHD) convection flow, which are obtained from the Navier-

Stokes, the energy equations of fluid dynamics and the electromagnetic equations of

the magnetohydrodynamics discretized by using the dual reciprocity boundary ele-

ment method (DRBEM). The DRBEM uses the fundamental solution of the Laplace

equation and treats all the other terms in the equations as non-homogeneity which is

approximated by radial basis functions. On the other hand, for the unsteady MHD

convection flow and heat transfer problems the DRBEM in space is combined with

a two-level integration scheme in time; and the numerical stability analysis is fur-

ther performed in terms of time increment, time relaxation parameters and the several
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physical controlling parameters. The proposed numerical technique is first applied

for the steady/unsteady mixed convection flow in a lid-driven cavity with a wall in-

volving flat, semi-rectangular, semi-circular or sinusoidal heaters with Joule heating

effect in the presence of inclined magnetic field. Later, the numerical simulation of

the MHD natural convection flow not only in an inclined semi-circular annulus enclo-

sure but also in a semi-annulus enclosure with a sinusoidal wavy inner wall filled with

a water-based nanofluid is studied under the influence of a uniform inclined magnetic

field. Finally, the effects of the nodal magnetic sources and the complex geometry

of the computational domain on the ferrofluid flow and the heat transfer are investi-

gated in annulus enclosures with different types of sinusoidal inner walls determined

by using different number of undulation. The results obtained for all problems under

consideration are visualized in terms of streamlines, isotherms and average Nusselt

number for various combinations of physical controlling parameters, namely Hart-

mann number, Rayleigh number, Joule heating parameter, inclination angle of the

externally applied magnetic field, number of undulation determining the shape of the

wavy wall and the solid volume fraction. It is well-observed that the strength of the

magnetic field and incorporating nanoparticles to conventional fluids can be used to

control the fluid flow and the heat transfer enhancement in irregular enclosures with

wavy walls.

Keywords: DRBEM, MHD, FHD, irregular enclosure, nodal magnetic source, nu-

merical stability
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ÖZ

MANYETİK ALAN ETKİSİNDEKİ AKIŞKANLAR MEKANİĞİ
PROBLEMLERİ İÇİN SAYISAL ÇÖZÜM YAKLAŞIMLARI

OĞLAKKAYA, FATMA SİDRE
Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Canan Bozkaya

Mayıs 2018 , 178 sayfa

Bu tez, düzgün eğimli manyetik alana veya noktasal manyetik kaynaklara tabi olan

kompleks geometrilerdeki viskoz, sıkıştırılamayan ve elektriksel olarak iletken akış-

kanların iki boyutlu zamana bağlı ya da zamana bağlı olmayan laminar akışını sayı-

sal olarak araştırmak için yürütülmüştür. Özellikle, düz ya da dalgalı duvarları olan

düzensiz ve karmaşık bir yapıya sahip olan kanal kesitlerinde klasik sıvı ya da su

bazlı nano-sıvı akışının ve ısı transferinin hidromanyetik doğal / karışık konveksi-

yonu düşünülmektedir. Akışkanlar mekaniğinin Navier-Stokes ve enerji denklemleri

ile manyetohidrodinamiğin elektromanyetik denklemlerinden elde edilen zaman ba-

ğımsız magnetohidrodinamik (MHD) konveksiyon akışını niteleyen denklemler, kar-

şılıklı sınır elemanları yöntemi (DRBEM) kullanılarak ayrıştırılır. Karşılıklı sınır ele-

manları yöntemi Laplace denkleminin temel çözümünü kullanır ve denklemlerdeki

homojen olmayan diğer tüm terimleri radyal bazlı fonksiyonları kullanarak yaklaşık

olarak hesaplar. Öte yandan, zamana bağlı MHD konveksiyon akış ve ısı transferi

problemlerinin ayrıklaştırılmasında uzay koordinatları için DRBEM, zaman yönünde

ise iki seviyeli bir zaman entegrasyon yöntemi kullanılır. Ayrıca, kullanılan yönte-
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min sayısal kararlılık analizi, zaman artışı, zaman yumuşatma parametreleri ve bazı

fiziksel kontrol parametrelerine bağlı olarak gerçekleştirilir. Önerilen sayısal teknik,

ilk önce eğimli manyetik alan varlığında Joule ısıtma parametresinin dikkate alındığı

düz, yarı-dikdörtgen, yarı-dairesel veya sinüzoidal dalgalı ısıtıcılar içeren duvar ve

kapakla yönlendirilen bir oyuktaki zaman bağımsız/zaman bağımlı karışık konvek-

siyon akışının çözümünde kullanılır. Daha sonra MHD doğal konveksiyon akışının

sayısal simülasyonu, içerisi su-bazlı nanosıvı ile doldurulmuş eğimli bir yarı dairesel

halka şeklindeki oyuğun yanı sıra sinüzoidal dalgalı bir iç duvara sahip yarı-halka

şeklindeki bir oyukta düzgün eğimli manyetik alan etkisi altında incelenmiştir. Son

olarak, noktasal manyetik kaynakların ferro-akışkan akış ve ısı transferi üzerindeki

etkileri, farklı sayıda dalgalanma kullanılarak belirlenen sinüzoidal iç duvarlara sahip

karmaşık yapıdaki halka oyuklar içerisinde incelenmiştir. Ele alınan tüm problemler

için elde edilen sonuçlar, Hartmann sayısı, Rayleigh sayısı, Joule ısıtma parametresi,

manyetik alanın eğim açısı, dalgalı duvarın şeklini belirleyen dalgalanma ve katı ha-

cim fraksiyonu gibi sayısal kontrol parametrelerinin çeşitli kombinasyonları için akış

çizgileri, eş sıcaklık eğrileri ve ortalama Nusselt sayısı açısından görselleştirilmiş-

tir. Bu çalışma ile dalgalı duvarlar ile oluşturulan düzensiz yapıya sahip oyuklardaki

magnetohidrodinamik akış problemlerinde sisteme uygulanan manyetik alan kuvve-

tinin arttırılmasının ve klasik akışlara nanopartiküllerin eklenmesinin, akışkan akışını

ve ısı transferi arttırımını kontrol etmek için kullanılabileceği gözlemlenmiştir.

Anahtar Kelimeler: Karşılıklı sınır elemanları yöntemi, Magnetohidrodinamik, Fer-

rohidrodinamik, düzensiz oyuklar, sayısal kararlılık
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and my sister, Ayşe Nur
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CHAPTER 1

INTRODUCTION

Fluid dynamics is the investigation of the interactive motion of liquids, gases and plas-

mas. It provides methods for studying the evolution of stars, meteorology, oceanogra-

phy, astrophysics, biology, oil recovery and even blood circulation. Some important

technological applications of fluid dynamics include rocket engines, wind turbines,

aircraft, turbo-machinery, car and ship design and etc.

A fluid is composed of a large number of individual particles, namely molecules and

atoms, which are in constant motion and collision. However, in most engineering

problems, the principle interest is not the motion of the individual molecules but the

overall behavior of the fluid as a continuous material. Thus, a fluid can be regarded as

continuum. That is, the smallest element of a fluid in continuum contains sufficient

number of molecules to make statistical averages.

The most important properties of simple fluids are the density and viscosity. The

density of a fluid is a function of temperature and pressure. When the density of

the fluid is slightly affected from these properties and is almost constant, the fluid

is often referred to as incompressible, otherwise it is compressible. On the other

hand, viscosity describes the internal friction of a moving fluid. The fluids with no

viscosity are referred to as inviscid (ideal) fluids. On the other hand, the speed of

flow also affects its properties in a number of ways. That is, when the speed increases

inertia becomes important and each fluid particle follows a smooth trajectory, and the

flow is called laminar. An additional increase in speed may lead to instability that

produces a more random type of flow which is called turbulent. Finally, the flow is

called steady when the change of various parameters of the flow at any point does

not depend on time. Otherwise, it is called unsteady. In this thesis, both the steady
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and unsteady flow problems are considered and the numerical solutions are obtained

involving the stability analysis of the numerical scheme for the unsteady flow.

On the other hand, the study of heat transfer analysis has been a major topic in fluid

dynamics due to its fundamental nature and wide spectrum of engineering applica-

tions such as solar collector, heat exchanger, cooling of electrical equipment, nuclear

reactors, etc. Heat transfer deals with the rate of energy transfer by time and the tem-

perature distribution through a thermal system. The basic principles of heat transfer

are the temperature and the flow of the heat. On a microscopic scale, there is direct

relation between the kinetic energy of molecules and the thermal energy. Regions

including higher kinetic energy, transfer the energy to the regions with lower kinetic

energy, and hence heat may take place in three modes which is conduction, convec-

tion and radiation. The physical mechanism of conduction is explained by the energy

which is transferred via direct molecule collisions. Higher temperatures are associ-

ated with higher molecular energies. When molecules collide, energy is transferred

from the molecules with more energy to the ones with less energy. On the other

hand, convection is known as the heat transfer between a surface and a moving fluid

at different temperatures. Thus, the convective heat transfer occurs when the heat is

transferred from one place to another by the movement of fluid; which is the dominant

form of heat transfer in liquids and gases. In physics, convective heat transfer contains

the combination of the random molecular motion (diffusion) and the bulk motion of

fluid (advection). Convective heat transfer can be classified due to the nature of the

flow. When the flow is affected from external source like a fan, a pump or atmospheric

winds, it is called forced convection. On the contrary, for natural (free) convection

the flow is induced by buoyancy forces depending on the density differences which

are caused by temperature variations in the fluid. Further, the combination of these

two (forced and natural) convections is referred to as mixed (combined) convection.

Thus, mixed convection occurs if either the effect of buoyancy dominates on a forced

flow or visa versa. Finally, radiation is the energy emitted by matter in the form of

rays or high-speed particles. All matters are composed of atoms. The emission occurs

when there is a change in the electron configuration of these atoms. The energy of the

radiation field is transported by electromagnetic waves. While the transfer of energy

by conduction or convection need the presence of a material medium, radiation does
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not.

Magnetohydrodynamics (MHD) is the science which studies the interaction between

the flow of electrically-conducting fluids and the applied magnetic fields. This phe-

nomenon brings together the concepts of fluid dynamics and electromagnetism. In

magnetohydrodynamics, the flow of an electrically conducting fluid under a mag-

netic field causes induced electric currents, which produce a resistive force known as

Lorentz force. The generated electric current flows both perpendicular to the mag-

netic field and in the direction of motion of the fluid. However, the induced currents

form their own magnetic field, which affects the original magnetic field. MHD has

received great interest due to its importance in a vast field of applied and funda-

mental research in engineering and physical sciences. For example, it is useful in

astrophysical problems (sun-spot theory, motion of inter-stellar gas, re-entry prob-

lem of inter-continental ballistic missiles) since a large part of the universe is filled

with widely spaced, charged particles permeated by magnetic fields. In addition, geo-

physics meets with MHD while dealing with the presence of conducting fluids and

magnetic fields in and around the earth. On the other hand, MHD has a great signifi-

cance in the design of many industrial applications such as MHD generators, pumps,

flow meters, cooling of nuclear reactors, geothermal energy extractors, nuclear waste

disposal, heat exchangers and space vehicle propulsion. A more recent innovation is

the application of MHD in drug targeting for the treatment of cancer. In the first part

of the present thesis (Chapter 3), we focus on the numerical solution of the convective

flow of a conventional fluid (purefluid) and the heat transfer in enclosures under the

influence of externally applied magnetic field.

On the other hand, in many engineering applications the primary requirement is the

transfer of heat from one point to another. Different types of base fluids, such as

water, engine oil, kerosene, ethanol, methanol, ethylene glycol, are usually used for

the heat transfer. However, these conventional heat transfer fluids generally have var-

ious limitations, one of which is their low thermal conductivity that causes a low

heat transfer rate in thermal engineering systems. This also affects the performance

of different equipments used in the heat transfer process. For this reason, improv-

ing the heat transfer efficiency is significant in any industrial facilities; and hence

researchers have considered a new class of heat transfer fluids, simply known as
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nanofluids. Nanofluids are the fluids which contain nanometer-sized particles (i.e.

nanoparticles). Nanofluids have better thermo-physical properties and might achieve

a better heat transfer performance compared to the conventional fluids. Combinations

of nanoparticles and the base fluids can be used for the preparation of many hetero-

geneous nanofluids. The commonly used materials for the nanoparticles are made

of metals (e.g. Al, Cu), nonmetals (e.g. graphite, carbon nanotubes), oxide ceramic

(e.g. Al2O3, CuO), metal carbides (e.g. SiC), layered (e.g Al +Al2O3, Cu +C) and

functionalized nanoparticles, whereas base fluids may include water, ethylene- or tri-

ethylene-glycols and other coolants, oil and other lubricants, and polymer solutions.

Ferrohydrodynamics (FHD) is the field of study concerning the interactions between

the magnetic fields and the magnetically polarizable fluids. FHD appeared in the mid-

1960s, and actuated by the objective of converting heat to work with no mechanical

parts. FHD is similar to MHD, but the difference between FHD and MHD is the

body force acting on the fluid. That is, in magnetohydrodynamics Lorentz force is

generated by the electric current whereas in FHD there is no electric current in the

fluid and the body force is due to the polarization force required for the magneti-

zation of the material. In FHD there are various magnetic nanofluids; the principal

type of magnetic nanofluid is the ferrofluid which is a synthesized colloidal mixture

of nanomagnetic carrier liquid, (i.e. water, oil) including permanently magnetized

nanoparticles such as; magnetite (Fe3O4) and hematite (Fe2O3). A major benefit of

ferrofluid is that the liquid can be forced to flow via the positioning and strength of

the magnetic field. Ferrofluids have the capability of reducing friction, which makes

them useful in a variety of electronic and transportation applications such as; hydrolic

suspension pistons, pressure seals for compressors, vacuum feedthroughs for semi-

conductor manufacturing and computer hard-drives. Ferrofluids have also plenty of

medical applications such as; carrying medications to exact locations within the body

and being used as a contrasting agent for MRI scans. Further, disparate fields in

which the ferrofluids can be used, are the heat transfer, analytic instrumentation, art

and aerospace. The second part of the present thesis (Chapter 4 and Chapter 5) is

devoted for the numerical solutions and the analysis of the obtained results for the

convective heat transfer flow of nanofluids and ferrofluids in irregular enclosures ei-

ther subject to uniform magnetic field or nodal magnetic sources.
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The motion of the fluid flow and its thermal behavior in the presence of a magnetic

field can be modelled by the Navier-Stokes equations of hydrodynamics, Maxwell’s

equation of electromagnetism and energy equation. These equations are so complex

that very few problems involving the full set of these equations can be solved ex-

actly. Therefore, numerical simulations play a crucial role in obtaining approximate

solutions for these equations. Thus, various numerical methods have been developed

and employed for the solution of these equations. The most notable ones are the fi-

nite difference method (FDM), the finite element method (FEM), the finite volume

method (FVM) and the boundary element method (BEM). All these techniques ex-

cept BEM are based on the domain discretization process. BEM is the boundary-only

nature technique which reduces the boundary value problems into equivalent inte-

gral equations on the boundary of the physical computational domain. This boundary

reduction has the advantage of diminishing the number of space dimension by one,

and hence BEM provides saving in computational time and data preparation effort.

Thus, in this sense BEM is more efficient than the domain discretization methods.

On the other hand, BEM owes its computational accuracy and efficiency to the exis-

tence of the fundamental solution for the governing equations. However, difficulties

arise while finding a corresponding fundamental solution for the fluid flow problems

with non-homogeneous and non-linear terms. Consequently, the BEM can not be

applied directly to such problems. In order to overcome this shortcoming the dual

reciprocity boundary element method (DRBEM) is developed. The basic idea be-

hind the DRBEM is to treat all the terms except the ones, for which the fundamental

solution is known, as the non-homogeneity; and these non-homogeneous terms are

approximated by radial basis functions in order to transform the domain integrals

into integrals only on the boundary. Therefore, this thesis uses the DRBEM for the

discretization of the non-linear coupled differential equations governing the MHD

convective heat transfer fluid flow problems under consideration.

This chapter is devoted to introductory concepts of the basic equations governing

the fluid flow and the associated phenomena. The discussion starts with the liter-

ature review in Section 1.1 and continues with the contribution of the thesis to the

research field in Section 1.2. The principal equations of fluid dynamics involving the

continuity, momentum and energy equations derived from the conservation of mass,
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conservation of momentum and the conservation of energy respectively, are given in

Section 1.3. In Section 1.4, the MHD flow equations are considered, where the fluid is

assumed to be electrically conducting, and governing equations are equations of mo-

tion from fluid dynamics coupled with Maxwell’s equations from electromagnetism.

Then, the equations of the unsteady MHD convection of a classical fluid flow and a

nanofluid flow are presented, respectively, in Section 1.4.1 and Section 1.4.2. Fur-

ther, the governing equations for the convective ferrofluid flow in the presence of an

externally applied nodal magnetic source are presented in Section 1.4.3. Finally, the

heat transfer rate in terms of Nusselt number is given in Section 1.5, which continues

with the plan of the thesis in Section 1.6.

1.1 Literature Review

Convective heat transfer, which is mentioned before, is the transfer of heat from one

place to another by the motion of fluid, and can be classified due to the nature of the

flow. In the natural convection, the buoyancy forces appear due to density variation

and affects the mechanism significantly. Natural convection occurs in many techno-

logical and industrial applications such as solar collectors, heat exchanger, building

heating and cooling etc. Hence, it is important to understand the heat transfer char-

acteristics of natural convection in an enclosure or cavity. On the other hand, mixed

convection appears as a result of two competing mechanism. The first one is the

shear force due to motion of the wall in the enclosure whereas the second one is the

buoyancy force produced by thermal non-homogeneity along the walls of enclosure.

Mixed convection in fluid-filled cavities or enclosures plays an important role in the

area of heat transfer and has been given an considerable attention due to the wide

variety of applications in science and engineering such as in material processing [37],

flow and heat transfer in solar ponds [15], dynamics of lakes, reservoirs and cool-

ing ponds [35], crystal growing [72], float glass production [65], etc. Many studies

have been produced for the solution of the convective flow in regular enclosures with

flat walls such as rectangular, circular or annular cavities by using several numeri-

cal methods such as FVM in the works (e.g. [20, 30, 50]), FEM in the works (e.g.

[47, 59, 68]) and FDM in the works (e.g. [2, 14, 80]). Öztop and Dağtekin [60] used
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a finite control volume using the non-staggered grid arrangement with the SIMPLEM

algorithm to examine the effect of Richardson number on mixed convection problem

in a vertical two-sided lid-driven cavity. Khanafer et al. [45] extended the investiga-

tion of the mixed convection flows in a lid-driven cavity to the unsteady case by using

a finite element scheme based on the Galerkin method of weighted residuals and they

studied the effects of Reynolds and Grashof numbers, and the lid oscillation frequency

on the flow. Further, Waheed [99] studied on the effects of the Richardson and Prandtl

numbers, and the length-to-height aspect ratio on the flow and thermal fields using the

finite difference method. Their results indicated that an increase in the Prandtl num-

ber results in an increase in the heat flux on the heated wall, while an increase in

aspect ratio suppresses it. Moreover, there have also been a quite number of studies

on the convective flow in complex geometries, (e.g. cavities with wavy and/or irregu-

lar walls) solved by mainly domain discretization methods (e.g. [34, 38, 48, 53, 73]).

Yao [100] has studied on the natural convection flow along a vertical wavy surface

using FDM. Their results showed that the local Nusselt number is smaller than that of

the flat plate case and decreases with increase of wave amplitude. Das and Mahmud

[19] solved natural convection problem in an enclosure which consists of two wavy

and two straight walls using FVM. They found that amplitude-wavelength ratio af-

fects both local heat transfer rate and the flow fields as well as thermal field. In [54],

FVM is also employed to solve the mixed convection flow in an inclined lid-driven

cavity with wavy wall. Further, Al-Amiri [1] conducted to analyze mixed convection

heat transfer in a lid-driven cavity with sinusoidal wavy bottom surface using FEM.

The results showed that the average Nusselt number increases with an increase in both

the amplitude of the wavy surface and Reynolds number.

On the other hand, magnetic field is also an important control parameter for con-

vective heat transfer in enclosures. When the fluid is electrically conducting and the

flow is subject to an external magnetic field, fluid experiences a Lorentz force which

reduces the velocity of the fluid as mentioned previously. This is the well-known re-

tarding effect of the magnetic field on the fluid flow and a main point of MHD theory.

In recent years, many numerical studies have been produced for the solution of the

MHD convective flows in regular enclosures by using mainly domain discretization

methods such as FVM in the works (e.g. [3, 16, 21, 74, 91, 101]) and FEM in the
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works (e.g. [32, 33, 66, 69, 77, 79]), whereas there have been only a few studies

(e.g. [11, 63, 94, 97]) on the solution of MHD convection flow obtained by using

dual reciprocity BEM. On the other hand, there is a limited amount of literature on

the MHD convection in enclosures of complex geometries with wavy walls, due to

the difficulty of obtaining enclosure boundaries and the complexity of the flow in-

side the enclosure. However, the hydromagnetic mixed convective heat transfer in

wavy enclosures has received more attention recently since enclosures with irregular

surfaces are often encountered in many engineering applications such as solar col-

lectors, underground cable systems, nuclear reactors, wall bricks and cooling system

of micro-electronic devices. Moreover, the irregular enclosures with a form of wavy

surfaces has an important role in the enhancement of the heat transfer since the varia-

tions in surface fluctuation have a great impact on the surface temperature. The effect

of wavy surfaces depends on some controlling parameters such as amplitude, number

of undulation and phase angle which determine the shape of the irregular surface and

hence the computational domain of the problem under consideration. Although there

are a quite number of studies given in the literature of MHD natural convection flow in

enclosures with wavy surfaces (e.g. [39, 40, 62, 84, 90]), there have been only a few

studies when an external magnetic field is applied on the mixed convection in wavy

enclosures. Rahman et.al. [67] investigated the combined influence of the uniform

magnetic field and Joule heating in a lid-driven cavity with a wall of semi-circular

heater. They observed that the flow strength and temperature distribution are affected

by the magnetic field and Joule heating parameter. Gajbhiye and Eswaran [24] solved

the MHD flow in a rectangular enclosure of which middle section is smoothly con-

stricted by using a finite volume solver. Their results revealed that with an increase

in Hartmann number or in constriction ratio, the motion of the fluid is suppressed

and hence the Nusselt number decreases. Moreover, the number of eddies in flow

increases with increase in the constriction ratio. Nasrin and Parvin [56] conducted a

study to analyze the mixed convection flow in a lid-driven cavity with a sinusoidal

wavy bottom surface in the presence of a transverse magnetic field by using the finite

element method based on the Galerkin method of weighted residuals. They observed

that the average Nusselt number at the heated surface increases with an increase in the

number of waves and Reynolds number, while decreases with increasing Hartmann

number.
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The studies given above are on the convection flow of a conventional fluid (e.g.

water, ethylene glycol and oil) which has low thermal conductivity that limits the

heat transfer capacitance considerably. In view of this, in order to enhance the heat

transfer performance, the use of nanofluids are preferred instead of traditional energy

transmission fluids as previously mentioned. Thus, using nanofluids to improve the

heat transfer capacitance in enclosures has attracted the great attention of many re-

searchers, which results in yielding many studies both in the absence and the presence

of magnetic field. In this manner, the nanofluids introduced by Choi [18], which is

a mixture of nanoparticles suspended in a base fluid, can be utilized as a solution

due to their high thermal conductivity. The numerical simulations have been carried

out using several numerical techniques in different shaped enclosures in the absence

of magnetic field. Khanafer et al. [44] investigated the heat transfer enhancement

in a rectangular enclosure for a range of Grashof numbers and volume fractions by

using a finite volume approach. They found that the heat transfer rate increases at

any Grashof numbers with an increase in the nanoparticle volume fraction. Sourtiji

et al. [92] have also applied FVM using Patankar’s SIMPLE algorithm for the so-

lution of the unsteady natural convection flow through an alumina-water nanofluid

in a square enclosure. Their results showed that the heat transfer is enhanced in the

presence of the nanoparticles for all values of the oscillation period and the Rayleigh

number. Natural convection in a nanofluid filled annulus between outer square and

inner elliptic cylinders was solved by the lattice Boltzmann method (LBM) in [85].

There have also been many studies which analyze further the effect of the mag-

netic field on the nanofluid natural convection flow. One of the commonly used

technique is the control volume (CV) technique. Ghasemi et al. [27] and Bahi-

raei et al. [8] solved the magnetohydrodynamic natural convection of nanofluid in

a square enclosure by using CV formulation with SIMPLE algorithm. The same

technique was employed to solve the natural convection flow in a triangular enclo-

sure filled with magnetic nanofluid in the work of Aminossadati [6] while a finite

volume method was applied by Mahmoudi et al. [51]. The CV formulation with

SIMPLE algorithm was also performed by Ghasemi [26] for the natural convec-

tion nanofluid in an U -shaped enclosure. The results of above studies revealed that

the thermal performance of the cavity is enhanced with an increase in the Rayleigh
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number and solid volume fraction, and with a decrease in the Hartmann number.

On the other hand, the fully implicit finite difference method was employed to dis-

cretize the governing equations of the natural convection problem in an inclined L-

shaped enclosure with differentially heated wall by Elshehabey [22]. Another com-

monly used numerical method for the solution of natural convection subjected to a

magnetic field in a nanofluid filled enclosure is the control volume finite element

method (CVFEM), which uses the advantages of both finite element and finite vol-

ume methods in complex-geometries. The magnetohydrodynamic free convection of

water-based nanofluid in an annulus-type enclosure (namely, circular, half-annulus,

cylindrical-triangular, circular-sinusoidal cylinder, circular-elliptic cylinder annulus

enclosures) was studied in the works [83, 86, 87, 88, 93]. On the other hand, Ne-

mati et al. [57] applied the lattice Boltzman method to investigate the effect of CuO

nanoparticles on the natural convection with MHD flow in a square cavity. LBM

was also used by Ashorynejad et. al. [7] to analyze the natural convection under

the effect of radial-applied magnetic field in a horizontal cylindrical annulus enclo-

sure filled with a Ag-water nanofluid. The results of both studies showed that the

average Nusselt number increases for nanofluids when increasing the solid volume

fraction, and it decreases in the presence of a high magnetic field. Finally, the finite

element method application for the nanofluid filled enclosure under a magnetic field

was analyzed in terms of the effects of physical parameters such as Rayleigh and

Hartmann numbers and the solid volume fraction on the flow field and heat transfer

rate in the works [31, 46, 75]. On the other hand, in literature, there have been a

few studies on the convection flow in an enclosure filled with nanofluids solved by

DRBEM. Ravnik et al. [71] studied on the flow and heat transfer characteristics of

the natural convection nanofluid flows in closed cavities. The simulations performed

for Rayleigh number and three types of water-based nanofluids by using a three di-

mensional boundary element method based on flow solver. Results showed that using

water-based nanofluids instead of pure water enhances heat transfer. Gümgüm et al.

[29] employed DRBEM for the solution of the unsteady natural convective flow of

nanofluids in a square enclosure with heated source. Later, this problem in a square

enclosure under a uniform magnetic field was investigated by using both FEM and

DRBEM techniques in the work of Tezer-Sezgin et.al. [95]. Plenty of studies are

employed in the regular enclosures as mentioned above, however, there have been
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only a few studies in the literature of convective nanofluids flow in a cavity with com-

plex geometries. A finite volume approach was conducted for the mixed convection

heat transfer of water-based nanofluids (Cu-water, Al2O3-water, TiO2-water) in a lid-

driven cavity with wavy surface in the work of Cho et.al. [17]. The numerical results

were obtained for nanoparticle volume fraction, the type of nanofluid, the Richardson

number, the Grashof number and the wavy surface geometry parameters. The results

showed that Cu-water nanofluid gives the best heat transfer performance among the

three nanofluids. Sheremet et.al.[89] solved numerically the MHD natural convection

of Cu-water nanofluid within an inclined wavy cavity with a corner heater on the ba-

sis of FDM. The obtained results showed that a variation in the inclination angle of

the cavity leads to essential changes in the fluid flow and heat transfer due to different

positions of the heater and cooler; and insertion of nanoparticles leads to an increase

on the average Nusselt number. Further, an increase in undulation number of cooled

wavy wall results in a weak attenuation of the convective flow and more intensive

cooling of the cavity. Sheikholeslami et. al. [84] investigated the numerical solution

of MHD natural convection flow in a cavity with sinusoidal wall filled with Cu-water

nanofluid using control volume finite element method (CVFEM). It can be found that

increasing the volume fraction, dimensionless amplitude of the sinusoidal wall and

Rayleigh number leads to an increase in average Nusselt number whereas the average

Nusselt number decreases with an increase in Hartmann number.

Another type of nanofluids used to enhance the heat transfer is the so-called ferroflu-

ids. Many investigations are carried out numerically in the study of convective fer-

rofluid flow in smooth geometries under the effect of spatially variable magnetic field

by using FEM in the works (e.g [41, 76, 78, 96]), FDM in the works (e.g. [25, 49]),

and CVFEM in the works (e.g. [4, 28, 42]). However, it is also important to study

the ferrofluid flow driven in more complex geometries since ferrofluid flows in cav-

ities/channels with irregular surfaces are widely encountered in many engineering

applications. Sheikholeslami and Ganji [81] investigated the effect of a nodal mag-

netic source on ferrofluid flow and heat transfer in a semi-annulus enclosure with a

sinusoidal wall using CVFEM. Their results showed that for low Rayleigh number,

the heat transfer enhancement is an increasing function of Hartmann number and de-

creasing function of magnetic number while opposite situation can be observed for
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high Rayleigh number. Sheikholeslami et.al. [82] also applied CVFEM method to

solve the problem of hydro-thermal characteristics of a ferrofluid in a semi-annulus

enclosure in the presence of magnetic source. In this porblem they considered thermal

radiation. Their results revealed that average Nusselt number increases with an in-

crease in magnetic and Rayleigh numbers but it decreases with increase of Hartmann

number and radiation parameter. In [98], the fundamental problem of the biomagnetic

fluid flow in a channel with stenosis in the presence of magnetic field is investigated

by using FDM, and it has been observed that the presence of the magnetic field affects

the flow field considerably.

1.2 Contribution of the Thesis

The literature survey given in Section 1.1 indicates that there have been only a few

studies which investigate the influence of irregular surfaces on the steady/unsteady

convective MHD flows and heat transfer in enclosures filled with either convectional

fluids and/or nano/ferrofluids. Moreover, in many of the related works basically a

domain discretization method (i.e. FEM, FVM, FDM, CVFEM, etc.) has been em-

ployed for the numerical simulation, while the governing equations have been dis-

cretized by a boundary element approach in a very limited number of works in which

only regular cavities in the absence of magnetic field have been considered. Thus, the

objective of the thesis is to incorporate the use of dual reciprocity BEM for spatial

discretization with the effects of the irregular cavities for the MHD convective flow

and heat transfer problems.

In the first part of the thesis, we focus on the numerical solution of both steady and un-

steady mixed convection flow of a conventional fluid in lid-driven cavities with wavy

walls subject to a uniform inclined magnetic field. The equations are discretized by

using DRBEM for the spatial domain and a two-level integration scheme is employed

in time direction, which can be counted one of the contribution of the thesis. More-

over, the stability analysis of the numerical algorithm is also performed in terms of

several problem parameters to determine the optimal value of the time increment and

relaxation parameters for the numerical stability. Further, the influence of the ex-

ternally applied inclined magnetic field and Joule heating parameter on the mixed
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convection are investigated.

On the other hand, in the second part of the thesis we extend the application of

the present proposed numerical technique, DRBEM in space-two level integration

in time, to the solution of convective heat transfer and flow of nanofluids and ferroflu-

ids in enclosures with complex geometries under the influence of both uniform and

non-uniform (i.e. nodal magnetic sources) magnetic fields which is another main con-

tribution of the thesis to the related research area. In addition, the effects of the shape

of the computational domain, the inclination angle of the uniform magnetic field,

and the position and the number of nodal magnetic sources are investigated through

the streamlines, isotherms and average Nusselt number displayed for a wide range of

physical parameters. The stability analysis of the present technique for the solution of

the unsteady MHD convective flow of nanofluid problems is also performed through

the eigenvalue decomposition of the matrix system which can be also counted as a

contribution for the MHD convective flow in complex geometries.

1.3 Basic Fluid Dynamics Equations

The derivation of the principal equations of fluid dynamics, namely contiunity, mo-

mentum and energy equations, is based on the dynamical behavior of a fluid which

is determined by the conservation of mass, conservation of momentum and the con-

servation of energy. In the following sections, the derivation of these basic equations

will be given over a control volume.

1.3.1 Continuity equation

The application of conservation of mass to the fluid flow gives the continuity equa-

tion. The law of mass conservation comes from the fact that mass neither created nor

destroyed in a fluid system, hence the system has the same quantity of matter at all

times. This means that the mass of a system is constant, thus the rate of change of the

mass of the system is zero, that is,

∂m

∂t̄
= 0 (1.1)
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where m is the mass, and t̄ is the time. The mass per unit volume is dmΩ = ρdΩ

where ρ is the density of the fluid and Ω is the finite control volume, so that the total

mass is obtained by

m =

∫
Ω

ρdΩ. (1.2)

Then, the time rate of change of the total mass inside Ω can be written as

∂m

∂t̄
=

∂

∂t̄

∫
Ω

ρdΩ = 0. (1.3)

The mass flow of a fluid through a surface fixed in space equals to ρ(ū·n)dS in which

ū, n, dS represent the flow velocity, the unit normal vector and surface area element,

respectively. If the term ū · n is negative it is called inflow, otherwise, it is called

outflow, hence the mass leaves the control volume. Thus, the net mass flow rate over

the surface of volume is given in terms of a surface integral∫
S

ρ(ū · n)dS (1.4)

where S is the control surface. Then, Equations 1.3 and 1.4 yield∫
S

ρ(ū · n)dS =

∫
Ω

∂ρ

∂t̄
dΩ. (1.5)

The surface integral on the left can be transform into a volume integral by applying

the Divergence theorem. Thus, Equation (1.5) becomes∫
Ω

∇(ρū)dΩ = −
∫

Ω

∂ρ

∂t̄
dΩ (1.6)

or more explicitly it can be written as [10, 23]

∇(ρū) = −∂ρ
∂t̄
· (1.7)

In the thesis, we focus only on the incompressible fluid, that is the density ρ of the

fluid is constant, and hence the continuity equation reduces to

∇ · ū = 0. (1.8)

1.3.2 Momentum equation

The derivation of the momentum equation is performed by using a particular form

of the Newton’s second law of motion which states that the rate of change of linear
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momentum for a system is equal to the sum of the external forces acting on the system.

That is, the change in momentum depends on the action of the forces which can be

written as

dF =
d(mΩū)

dt̄
(1.9)

where F represents the net force acting on the control mass and mΩ = ρdΩ is the

mass per unit volume as given in Section 1.3.1. Thus, the Newton’s second law can

be formulated as:

F =
d

dt̄

∫
Ω

ρūdΩ. (1.10)

Hence, for a fixed control volume Reynolds transport theorem results in

d

dt

∫
Ω

ρūdΩ =
∂

∂t̄

∫
Ω

ρūdΩ +

∫
S

ρū(ū · n)dS (1.11)

where the first integral of right hand side denotes the rate of change of momentum in

the control volume, and the second integral represents the rate of change of outflow

of momentum across the control surface. The net force F on the finite control volume

can be expressed as

F = FS + FB (1.12)

where FS = FP+FV is the surface force (FP: pressure force and FV: viscous force),

and FB is the body force (i.e. gravity, electric forces, magnetic forces, centrifugal

force etc.). Then, the pressure force FP, the viscous force FV and the body force FB

can be expressed as

FP = −
∫
S

(p̄ · n)dS, FV =

∫
S

(τ · n)dS, FB =

∫
Ω

ρbdΩ (1.13)

where p̄ is the pressure, τ is the stress tensor and b is the body force per unit mass.

Combining Equations (1.10) and (1.13), the integral form of momentum equation can

be written as

∂

∂t̄

∫
Ω

ρūdΩ +

∫
S

ρū(ū ·n)dS = −
∫
S

(p̄ ·n)dS +

∫
S

(τ ·n)dS +

∫
Ω

ρbdΩ. (1.14)

The second term on the left and right hand sides represent the convective flux and the

diffusive flux, respectively. After the application of Divergence theorem, we have

∂

∂t̄

∫
Ω

ρūdΩ +

∫
Ω

ρū · (∇ū)dΩ = −
∫

Ω

(∇p̄)dΩ +

∫
Ω

(∇τ )dΩ +

∫
Ω

ρbdΩ. (1.15)
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Since, Equation (1.15) is valid for any control volume, the integral vanishes and one

can obtain

ū
∂ρ

∂t̄
+ ρ

∂ū

∂t
+ ρū · (∇ū) = −∇p̄ +∇τ + ρb. (1.16)

When the fluid is assumed to be incompressible (i.e. density is constant) and viscous,

by using the relationship between ū and τ , the momentum equation can be written as

[10]

ρ
∂ū

∂t̄
+ ρū · (∇ū) = −∇p̄ + µ∇2ū + ρb (1.17)

where µ is the viscosity parameter of the fluid.

1.3.3 Navier-Stokes equations

The Navier-Stokes equations play an important role in computational fluid dynamics

(CFD) since they describe the physics of many scientific and engineering phenome-

nas, namely ocean current, weather, water flow in a pipe, the design of power stations,

the motion of stars inside a galaxy and blood flow analysis. The Navier-Stokes equa-

tions consist of the continuity equation for conservation of mass (Equation (1.8)) and

momentum equations obtained from Newton’s second law of motion for fluids (Equa-

tion (1.17)).

Thus, the two-dimensional, laminar flow of unsteady incompressible Navier-Stokes

equations in terms of primitive variables are formulated by the continuity equation

∇ · u = 0 (1.18)

and the momentum equation, which is written by neglecting the body forces,

ρ(
∂ū

∂t̄
+ ū · ∇ū) = −∇p̄ + µ∇2ū. (1.19)

Here the vector ū = (ū, v̄) is the velocity field for a two-dimensional flow and p̄ is the

pressure, ρ and µ are the density and the dynamic viscosity of the fluid, respectively.

The non-dimensional form of Equations (1.18) and (1.19) are obtained by introducing

a characteristic length ` and a characteristic velocity U0 and defining the dimension-

less quantities as follows

x =
x

`
, y =

y

`
, u =

u

U0

, v =
v

U0

, t =
t

(`/U0)
, p =

p

U2
0ρ
· (1.20)
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Thus, the non-dimensional form of Navier-Stokes equations in component-wise can

be written as
∂u

∂x
+
∂v

∂y
= 0 (1.21)

∇2u = Re(
∂p

∂x
+
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) (1.22)

∇2v = Re(
∂p

∂y
+
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) (1.23)

where dimensionless Reynolds number is defined as

Re =
ρU0`

µ
· (1.24)

The Reynolds number states the ratio of inertia forces to the viscous forces, that is,

Re classifies the relativity of the two types of the forces and determines the regime

of the flow. Thus, if the viscous forces are more influential (i.e. Re < 2100) the flow

regime is laminar, otherwise, the flow is said to be turbulent. The time dependent

Navier-Stokes equations are usually supplied with the essential boundary conditions

for velocity as

u(xb, yb, t) = fub , v(xb, yb, t) = fvb , t > 0, (1.25)

where the subscript b represents the restriction of (x, y) to the boundary of the region.

The case when fub = fvb = 0 implies the no-slip condition on the velocity field. The

initial condition on velocity field is

u(x, y, 0) = u0, v(x, y, 0) = v0 (1.26)

where u0 and v0 are given. In conclusion, the two-dimensional incompressible Navier-

Stokes equations in the traditional velocity-pressure formulation are given in Equa-

tions (1.21)-(1.23). Although this formulation describes the fluid flow phenomena

precisely, it is difficult to obtain the direct solution to the system of differential equa-

tions due to the lack of the physical boundary conditions for pressure. In order to

avoid the pressure term, stream function-vorticity formulation is used as an alterna-

tive formulation to the primitive variable formulation. When the stream function ψ

and vorticity ω are introduced, respectively, as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(1.27)

ω =
∂v

∂x
− ∂u

∂y
(1.28)

17



Equation (1.27) satisfies the continuity equation automatically, and invoking Equation

(1.27) into Equation (1.28) yields the stream function equation

∇2ψ = −ω. (1.29)

Differentiating Equation (1.22) and (1.23) with respect to y and x, respectively, and

subtracting differentiated Equation (1.23) from differentiated Equation (1.22) one can

obtain the vorticity transport equation

∇2ω = Re(
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
). (1.30)

Hence, the unsteady Navier-Stokes equations in the form of stream function and vor-

ticity become

∇2ψ = −ω (1.31)

∇2ω = Re(
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
). (1.32)

1.3.4 Energy equation

The energy equation is obtained under the light of the first law of thermodynamics,

which dictates the fact that the change in the internal energy of a system equals to the

heat added to the system minus the work done by the system. The conserved quantity

is the total energy stored per unit volume i.e. ρCpT̄ where Cp is the specific heat

capacitance at constant pressure and T̄ is the temperature. Then, the rate of change of

the total thermal energy stored inside the control volume Ω with respect to time can

be expressed as
∂

∂t̄

∫
Ω

ρCpT̄ dΩ.

The contribution of the convective flux is defined as

−
∫
S

(q′′ · n)dS

where q′′ represents the heat flux. Then, by the conservation of mass one can obtain

the integral equation over the control volume:

∂

∂t̄

∫
Ω

ρCpT̄ dΩ = −
∫
S

(q′′ · n)dS. (1.33)
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When we apply the Divergence theorem and the Fourier law (q′′ = −k∇T̄ ) to Equa-

tion (1.33), the energy equation for an incompressible fluid over any control volume

can be written as:

ρCp
∂T̄

∂t̄
= k∇2T̄ (1.34)

where k is the thermal conductivity and ∇T̄ is temperature gradient. The energy

equation contains additional terms when the temperature of the fluid is under the

influence of external forces as [9]

ρCp
∂T̄

∂t̄
= k∇2T̄ + JB + µΦ +QV (1.35)

where µ is the dynamic viscosity of the fluid. Here the terms JB =
1

σ
J2, Φ, and QV

represent the Joule dissipation, viscous dissipation (internal friction) and volumetric

heat sources, respectively. The electric current density J is induced and is given

through the Ohm’s law as

J = σ(E + ū× B̄) (1.36)

where σ is the electrical conductivity of the fluid. In addition, the electric field is

defined as E = −∇φ where φ is the electric potential. Since the insulated boundaries

makes φ uniform in the cavity, the electrical field becomes zero (E = 0). Then,

the term JB =
J2

σ
representing the Joule dissipation can be converted to the term

σB2
0(ū sinλ − v̄ cosλ)2 in which B0 is the intensity of the applied magnetic field B̄

making an angle λ with the positive x-axis, and the velocity field ū = (ū, v̄, 0). On

the other hand, the viscosity of the fluid in the viscous fluid flow takes energy from

the motion of the fluid (kinetic energy) and converts it into the internal energy of the

fluid. The viscous dissipation is expressed as

Φ = 2(
∂ū

∂x̄
)2 + 2(

∂v̄

∂ȳ
)2 + (

∂ū

∂ȳ
+
∂v̄

∂x̄
)2.

Hence, the energy equation with viscous and Joule heating dissipations can be written

as

ρCp
∂T̄

∂t̄
= k∇2T̄ + σB2

0(ū sinλ− v̄ cosλ)2 + µ[2(
∂ū

∂x̄
)2 + 2(

∂v̄

∂ȳ
)2 + (

∂ū

∂ȳ
+
∂v̄

∂x̄
)2].

(1.37)
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1.4 The MHD Flow Equations

Magnetohydrodynamics is the mathematical and physical framework which studies

on the macroscopic interaction of the electrically-conducting liquids and gases with

a magnetic field as mentioned previously. This interaction gives rise to a complex

system called a magneto-fluid whose dynamics is quite different from that of either

a non-conducting fluid or that of a magnetic field in a vacuum. The fundamental

idea behind the MHD is that conductive fluids can spontaneously generate magnetic

fields which is called induced magnetic field. The influence of magnetic fields cre-

ate a force on the fluid thence potentially changing the magnetic field itself. The

partial differential equations of MHD can be derived from Boltzmann’s equation. In

the standard non-relativistic form, the MHD equations consist of the basic conserva-

tion laws of mass, momentum and energy (if the heat change is considered) together

with the induction equation for the magnetic field. The set of equations that describe

MHD flow are a combination of the Navier-Stokes equations of fluid dynamics and

Maxwell’s equations of electromagnetism through the Ohm’s law. The motion of a

two-dimensional electrically conducting magneto-fluid satisfies the continuity equa-

tion

∇ · ū = 0 (1.38)

and the momentum equations [55]

ρ(
∂ū

∂t̄
+ ū · ∇ū) = −∇p̄ + µ∇2ū + (J× B̄) (1.39)

where ū = (ū, v̄, 0), p̄, ρ are the velocity field, pressure and density of the fluid,

respectively. Here, the term J × B̄ is the Lorentz force due to the magnetic field

applied on the electrically conducting fluid. The electric current density J is induced

and is given through the Ohm’s law in Equation (1.36), i.e. J = σ(E + ū× B̄). Thus

J× B̄ = σ(E + ū× B̄)× B̄ = σ[−B̄y(ūB̄y − v̄B̄x)i+ B̄x(ūB̄y − v̄B̄x)j]

where the applied magnetic field B̄ = (B̄x, B̄y, 0) of intensityB0 with B̄x = B0 cosλ,

B̄y = B0 sinλ and λ is the angle between B̄ and x-axis, in the case when E = 0.

Hence, the governing equations of the two-dimensional, unsteady, MHD flow can be

written in component-wise as
∂ū

∂x̄
+
∂ū

∂ȳ
= 0 (1.40)
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∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
+ν(

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
)+

σB2
0

ρ
(v̄ cosλ sinλ− ū sin2 λ) (1.41)

∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ν(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
)+

σB2
0

ρ
(ū cosλ sinλ− v̄ cos2 λ) (1.42)

where ν =
µ

ρ
is the kinematic viscosity of the fluid.

When the MHD flow equations (1.40)-(1.42) is combined with the temperature equa-

tion (1.34) through the Boussinesq approximation, we end up with the MHD convec-

tion flow equations. The equations governing the unsteady MHD convection flow of

a conventional pure fluid will be given in Section 1.4.1. Later, the equations of MHD

nanofluid and ferrofluid flows will be expressed in Section 1.4.2 and Section 1.4.3,

respectively.

1.4.1 The unsteady MHD mixed convection of conventional purefluid flow equa-

tions

As mentioned above, the equations governing the MHD convection flow are the

combination of the Navier-Stokes equations with the equations of electrodynamics

through the Ohm’s law, and inclusion of the energy equation obeying the Boussinesq

approximation. In this thesis, the equations governing the MHD mixed convection

flow and heat transfer which are obtained under the following assumptions are con-

sidered. The flow is considered to be unsteady and laminar in which the Joule heating

effect is taken into account while the radiation and viscous dissipation are neglected.

The magnetic Reynolds number is assumed to be small so that the induced magnetic

field is neglected. Moreover, an oblique magnetic field of strength B0 forming an an-

gle λ with the x-axis is applied and the gravity acts in the negative y-direction. Thus,

under the light of these assumptions the governing equations of the unsteady MHD

convection flow of a conventional fluid can be written as [55]

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (1.43)

∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
+ ν(

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) +

σB0
2

ρ
(v̄ sinλ cosλ− ū sin2 λ),

(1.44)
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∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ ν(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) +

σB0
2

ρ
(ū sinλ cosλ− v̄ cos2 λ)

+ gβ(Th − Tc),
(1.45)

ρCp(
∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
) = k(

∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
) + σB0

2(ū sinλ− v̄ cosλ)2 (1.46)

which are the MHD equations given in Equations (1.40)-(1.42) in which the Buoy-

ancy force gβ(Th − Tc) is involved through the Boussinesq approximation; and the

energy equation (1.37) in which the Joule heating effect is considered. Here, g is the

gravitational acceleration, β is the thermal expansion coefficient.

By introducing the dimensionless variables

x =
x̄

`
, y =

ȳ

`
, u =

ū

U0

, v =
v̄

U0

, t =
t̄

(`/U0)
, p =

p̄

U2
0ρ

ψ =
ψ̄

U0`
, ω =

ω̄`

U0

, α =
k

ρCp
, θ =

T̄ − Tc
Th − Tc

(1.47)

we obtain the following equations for the stream function ψ, vorticity ω and temper-

ature θ as:

∇2ψ = −ω (1.48)

1

Re
∇2ω =

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− Ha2

Re
(
∂u

∂x
sinλ cosλ− ∂v

∂y
sinλ cosλ

− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)− Ra

Re2Pr

∂θ

∂x

(1.49)

1

RePr
∇2θ =

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
− J (u sinλ− v cosλ)2 . (1.50)

The dimensionless parameters are defined as the Reynolds number (Re =
U0`

ν
), the

Hartmann number (Ha = B0`

√
σ

µ
), the Prandtl number (Pr =

ν

α
), the Rayleigh

number (Ra =
gβ(Th − Tc)`3

να
) and the Joule heating parameter (J =

σB2
0`U0

ρCp(Th − Tc)
).

Reynolds number is defined as the ratio of the inertia forces to friction forces in the

fluid which determines the flow regime. Hartmann number is the ratio of electromag-

netic force to the viscous force which characterizes the flow of conducting fluid in

a transverse magnetic field. The measure of relative effectiveness of the momentum
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and the energy diffusion in the velocity and thermal boundary layer is defined by the

Prandtl number. The Rayleigh number is associated with the heat transfer within the

fluid. That is, when the Rayleigh number is less than the critical value for a fluid,

the heat transfer is in the form of conduction, while it is in the form of convection

when Rayleigh number is greater than that critical value. Joule heating parameter is

the quantity of Joule heating or ohmic heating which is the process by the passage of

an electric current through a conductor which releases heat.

1.4.2 The unsteady MHD convection of nanofluid flow equations

A wide range of industrial processes contain the heat transfer. During any indus-

trial facility, heat must be added, removed or moved from one process to another.

The enhancement of heating or cooling in an industrial process may create a saving

in energy, reduce process time, raise thermal rating and lengthen the working life

of equipment. For this reason, various techniques are applied to improve the heat

transfer efficiency. One of these techniques is increasing the thermal conductivity by

using nanofluids as the working fluid in the convection flow as previously mentioned.

Thus, this section is devoted to the equations of MHD convection flow of a nanofluid.

The same assumptions for the flow given in Section 1.4.1 are considered, and the

Joule heating is also neglected here. Moreover, the thermo-physical properties of the

nanofluid are assumed to be constant except the density variations due to the Boussi-

nesq approximation. Further, the nanoparticles and the base fluid are supposed to be

in thermal equilibrium.

Hence, the dimensional governing equations can be written as [86]:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (1.51)

∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= − 1

ρnf

∂p̄

∂x̄
+ νnf (

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
)

+
σnfB0

2

ρnf
(v̄ sinλ cosλ− ū sin2 λ)

(1.52)
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∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= − 1

ρnf

∂p̄

∂ȳ
+ νnf (

∂2v̄

∂x̄

2

+
∂2v̄

∂ȳ2
) + gβnf (T − Tc)

+
σnfB0

2

ρnf
(ū sinλ cosλ− v̄ cos2 λ)

(1.53)

∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
= αnf (

∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
). (1.54)

The effective density (ρnf ), the heat capacitance (ρCp)nf , the thermal expansion co-

efficient (βnf ), the thermal diffusivity (αnf ) and the dynamic viscosity (µnf ) of the

nanofluid are given respectively as [86]:

ρnf = ρf (1− φ) + ρsφ, (ρCp)nf = (ρCp)f (1− φ) + (ρCp)sφ

βnf = βf (1− φ) + βsφ, αnf =
knf

(ρCp)nf
, µnf =

µf
(1− φ)2.5

(1.55)

where φ is the solid volume fraction of nanoparticles, the subscripts nf and f de-

note the nanofluid and fluid, respectively. On the other hand, the effective thermal

conductivity (knf ) and the effective electrical conductivity (σnf ) of the nanofluid are

presented by the Maxwell-Garnetts model as [52]:

knf
kf

=
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

,
σnf
σf

= 1 +
3( σs

σf
− 1)φ

( σs
σf

+ 2)− ( σs
σf
− 1)φ

. (1.56)

Equations (1.51)-(1.54) can be written in the stream function-vorticity-temperature

form by defining ū =
∂ψ̄

∂ȳ
, v̄ = −∂ψ̄

∂x̄
, ω̄ =

∂v̄

∂x̄
− ∂ū

∂ȳ
as follows:

∇2ψ̄ = −ω̄ (1.57)

∇2ω̄ =
1

νnf

[
(
∂ω̄

∂t̄
+ ū

∂ω̄

∂x̄
+ v̄

∂ω̄

∂ȳ
)− βnfg

∂T̄

∂ȳ

−σnfB
2
0

ρnf
((
∂ū

∂x̄
− ∂v̄

∂ȳ
) sinλ cosλ− ∂v̄

∂x̄
cos2 λ+

∂ū

∂ȳ
sin2 λ)

]
(1.58)

∇2T̄ =
1

αnf
(ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
). (1.59)

Then, the non-dimensional form of Equations (1.57)-(1.59) becomes:

∇2ψ = −ω (1.60)
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∇2ω =
µfρnf

µnfρfPrf

[
(
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
)−RafPrf

βnf
βf

∂θ

∂x
−Ha2Prf

σnfρf
σfρnf

×((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)

]
(1.61)

∇2θ =
(ρCp)nfkf
(ρCp)fknf

(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
) (1.62)

by introducing the following non-dimensional variables [86]

x =
x̄

`
, y =

ȳ

`
, ω =

ω̄`2

αf
, ψ =

ψ̄

αf
, θ =

T̄ − T̄c
(q′′`/kf )

, u =
ū`

αf
, v =

v̄`

αf
, t =

t̄αf
`2
·

The dimensionless physical parameters for the base fluid are the Rayleigh number

Raf = (βfg`
4q
′′
)/(kfαfνf ), Prandtl number Prf = νf/αf and the Hartmann num-

ber Ha = `B0

√
σf/µf . Moreover, the coefficients are

µfρnf
µnfρf

= (1− φ)2.5

[
(1− φ) +

ρs
ρf
φ

]
,

βnf
βf

= (1− φ) +
βs
βf
φ,

σnfρf
σfρnf

=

[
1 +

3( σs
σf
− 1)φ

( σs
σf

+ 2)
− (

σs
σf
− 1)φ

]
1

(1− φ) + ρs
ρf
φ
,

(ρCp)nfkf
(ρCp)fknf

=

[
(1− φ) +

(ρCp)s
(ρCp)f

φ

]
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

.

(1.63)

1.4.3 The steady MHD convection of ferrofluid flow equations

In the present section, we consider the convective ferrofluid flow equations under

the effect of spatially variable magnetic sources (i.e. one nodal or multiple nodal

magnetic sources, i.e. magnets). The combination of magnetohydrodynamic and

ferrohydrodynamic effects will be taken into account. The governing equations are

obtained by using the same assumptions given in Section 1.4.2. Moreover, the flow is

assumed to be steady here. For the expression of the magnetic field strength, it can be

considered that the magnetic sources represent the magnetic wires placed vertically to

the xy- plane. The components of magnetic field intensity (H̄x, H̄y) and the strength

of magnetic field (H̄) for a single or multiple magnetic nodal sources can be written
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as, respectively, for a single nodal magnetic source:

H̄x =
γ

2π

1

(x̄− ā)2 + (x̄− b̄)2
(ȳ − b̄), H̄y = − γ

2π

1

(x̄− ā)2 + (x̄− b̄)2
(x̄− ā)

H̄ =
√
H̄2
x + H̄2

y =
γ

2π

1√
(x̄− ā)2 + (x̄− b̄)2

(1.64)

and for two nodal magnetic sources:

H̄x =
γ

2π

1

(x̄− ā1)2 + (ȳ − b̄1)2
(ȳ− b̄1)+

γ

2π

1

(x̄− ā2)2 + (ȳ − b̄2)2
(ȳ− b̄2), (1.65)

H̄y = − γ

2π

1

(x̄− ā1)2 + (ȳ − b̄1)2
(x̄− ā1)− γ

2π

1

(x̄− ā2)2 + (ȳ − b̄2)2
(x̄− ā2),

(1.66)

H̄ =

√
H̄x

2
+ H̄y

2
. (1.67)

Here, γ is the magnetic field strength at the source of the wire and (ā, b̄), (ā1, b̄1) and

(ā2, b̄2) are the positions where the sources (magnetic wires) are located vertically on

the xy-plane for a single and two nodal magnetic sources, respectively.

Thus, the dimensional governing equations of the steady, two-dimensional and lam-

inar ferrofluid flow under the effect of a nodal or multiple magnetic sources can be

written as follows:
∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (1.68)

ρnf (ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = −∂p̄

∂x̄
+ µnf (

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) + µ0M

∂H̄

∂x̄

− σnf B̄2
ȳ ū+ σnf B̄xB̄yv̄

(1.69)

ρnf (ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
) = −∂p̄

∂ȳ
+ µnf (

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) + µ0M

∂H̄

∂ȳ

− σnf B̄2
xv̄ + σnf B̄xB̄yū+ ρnfβnfg(T̄ − T̄c)

(1.70)

(ρCp)nf (ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
) = knf (

∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
) + σnf

(
ūB̄y − v̄B̄x

)2

− µ0T̄
∂M

∂T̄
(ū
∂H̄

∂x̄
+ v̄

∂H̄

∂ȳ
)

+ µnf

{
2(
∂ū

∂x̄
)2 + 2(

∂v̄

∂ȳ
)2 + (

∂ū

∂ȳ
+
∂v̄

∂x̄
)2

} (1.71)
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where µ0 is the magnetic permeability of the vacuum (4π × 10−7Tm/A), B̄ is the

magnetic induction (B̄ = µ0H̄). The effective density (ρnf ), the heat capacitance

(ρCp)nf , the thermal expansion coefficient (βnf ), the thermal diffusivity (αnf ) and

the dynamic viscosity (µnf ) of the nanofluid are given Section 1.4.2.

The terms µ0M
∂H̄

∂x̄
and µ0M

∂H̄

∂ȳ
in Equations (1.69)- (1.70), represent the compo-

nents of magnetic force per unit volume in x and y-directions, respectively. These

two terms are called Kelvin force and they come from FHD. The terms −σnf B̄2
y ū +

σnf B̄xB̄yv̄ and −σnf B̄2
xv̄ + σnf B̄xB̄yū which appear in Equations (1.69)-(1.70) rep-

resent the Lorentz force per unit volume in the x and y-directions respectively, and

they arise due to the electrical conductivity of the fluid. These two terms are known in

MHD. The term −µ0T̄
∂M

∂T̄
(ū
∂H̄

∂x̄
+ v̄

∂H̄

∂ȳ
) in Equation (1.71) represents the thermal

power per unit volume due to the magneto-caloric effect. Also the term σnf (ūB̄y −
v̄B̄x)

2 in Equation (1.71) represents the Joule heating. The magnetization M is given

by M = K
′
H̄(T

′
c − T̄ ), where H̄ and T ′c are the magnetic field intensity and the

Curie temperature, respectively, and K ′ is a constant.

By introducing the non-dimensional variables:

a =
ā

`
, b =

b̄

`
, a1 =

ā1

`
, b1 =

b̄1

`
, a2 =

ā2

`
, b2 =

b̄2

`

x =
x̄

`
, y =

ȳ

`
, θ =

T̄ − Tc
Th − Tc

, u =
ū`

αf
, v =

v̄`

αf
, H =

H̄

H̄0

Hx =
H̄x

H̄0

, Hy =
H̄y

H̄0

, p =
p̄

ρf (αf/`)
2

where H̄0 = H̄(ā, 0) =
γ

2π|b̄|
for a nodal magnetic source while H̄0 = H̄(ā, 0) =

γ

2π
| b̄1 + b̄2

b̄1b̄2

| where ā1 = ā2 = ā for multiple nodal magnetic sources. One can obtain

the dimensionless form of Equations (1.68)-(1.71) as:

∂u

∂x
+
∂v

∂y
= 0 (1.72)
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u
∂u

∂x
+ v

∂u

∂y
= − ρf

ρnf

∂p

∂x
+ Prf

µnf/µf
ρnf/ρf

(
∂2u

∂x2
+
∂2u

∂y2
)

+MnfPr(
ρf
ρnf

)(ε2 − ε1 − θ)H
∂H

∂x

−Ha2Prf
σnf/σf
ρnf/ρf

(H2
yu−HxHyv)

(1.73)

u
∂v

∂x
+ v

∂v

∂y
= − ρf

ρnf

∂p

∂y
+ Prf

µnf/µf
ρnf/ρf

(
∂2v

∂x2
+
∂2v

∂y2
)

+MnfPrf (
ρf
ρnf

)(ε2 − ε1 − θ)H
∂H

∂y

−Ha2Prf
σnf/σf
ρnf/ρf

(H2
xv −HxHyu) +RaPrf

βnf
βf

θ

(1.74)

u
∂θ

∂x
+ v

∂θ

∂y
=

knf
kf

(ρCp)nf
(ρCp)f

(
∂2θ

∂x2
+
∂2θ

∂y2
) +Ha2Ec

σnf
σf

(ρCp)nf
(ρCp)f

(uHy − vHx)
2

+MnfEc
(ρCp)f
(ρCp)nf

(u
∂H

∂x
+ v

∂H

∂y
)H(ε1 + θ)

+ Ec

µnf
µf

(ρCp)nf
(ρCp)f

(2(
∂u

∂x
)2 + 2(

∂v

∂y
)2 + (

∂u

∂y
+
∂v

∂x
)2)

(1.75)

where Raf = gβf`
3(T − Tc)/(αfνf ), P rf = νf/αf , Ha = `µ0H0

√
σf/µf , ε1 =

T1/∆T, ε2 = T ′c/∆T, Ec = (µfνf )/ [(ρCp)f∆T`
2] and Mnf = µ0H

2
0K
′(Th −

Tc)`
2/(µfαf ) are the Rayleigh number, Prandtl number, Hartmann number arising

from MHD, temperature number, Curie temperature number, Eckert number and

magnetic number arising from FHD for the base fluid, respectively. Equations (1.72)-

(1.75) can be written in the stream function-vorticity-temperature form as:

∇2ψ = −ω (1.76)
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∇2ω =
ρnf/ρf

Prf (µnf/µf )
(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
)

−Mnf
ρnf/ρf
µnf/µf

(
ρf
ρnf

)[−∂θ
∂x
H
∂H

∂y
+
∂θ

∂y
H
∂H

∂x
]

+Ha2 ρnf/ρf
µnf/µf

σnf/σf
ρnf/ρf

[2Hx
∂Hx

∂x
v +H2

x(
∂v

∂x
)

− ∂Hx

∂x
Hyu−Hx

∂Hy

∂x
u−HxHy(

∂u

∂x
)− 2Hy

∂Hy

∂y
u

−H2
y (
∂u

∂y
) +

∂Hx

∂y
Hyv +Hx

∂Hy

∂y
v +HxHy(

∂v

∂y
)]

−Ra ρnf/ρf
µnf/µf

βnf
βf

∂θ

∂x

(1.77)

∇2θ =

(ρCp)nf
(ρCp)f
knf
kf

(
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
)

−Ha2Ec

(ρCp)nf
(ρCp)f
knf
kf

σnf
σf

(ρCp)nf
(ρCp)f

(uHy − vHx)
2

−MnfEc

(ρCp)nf
(ρCp)f
knf
kf

(ρCp)f
(ρCp)nf

[u
∂H

∂x
+ v

∂H

∂y
]H(ε1 + θ)

− Ec

(ρCp)nf
(ρCp)f
knf
kf

µnf
µf

(ρCp)nf
(ρCp)f

[2(
∂u

∂x
)2 + 2(

∂v

∂y
)2 + (

∂u

∂y
+
∂v

∂x
)2].

(1.78)

The intensity (Hx, Hy) and the strength of the magnetic field (H) for a single mag-
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netic source are given in non-dimensional form as follows:

Hx =
|b|(y − b)

(x− a)2 + (x− b)2
, Hy = − |b|(x− a)

(x− a)2 + (x− b)2
,

H =
|b|√

(x− a)2 + (x− b)2
·

(1.79)

While for two nodal mgnetic sources we have:

Hx = | b1b2

b1 + b2

|( y − b1

(x− a1)2 + (y − b1)2
+

y − b2

(x− a2)2 + (y − b2)2
),

Hy = −| b1b2

b1 + b2

|( x− a1

(x− a1)2 + (y − b1)2
+

x− a2

(x− a2)2 + (y − b2)2
),

H = | b1b2

b1 + b2

|

√
(2x− a1 − a2)2 + (2y − b1 −b 2)2

[(x− a1)2 + (y − b1)2][(x− a2)2 + (y − b2)2]
·

(1.80)

1.5 Nusselt Number

In order to examine the heat transfer between heated and cooled surfaces, the Nusselt

number is used, which is the ratio of convection heat transfer to conduction heat

transfer.

The derivation of the Nusselt number is obtained by the following process. Suppose

that a cold fluid stream cools a hot surface. The heat, which has a constant tempera-

ture, is diffused through a boundary layer from hot surface to cold surface. This idea

is defined by Newton’s law of cooling per unit surface area as follows [9]

h(Th − Tc) = −k∂T̄
∂n

(1.81)

where h is the heat transfer coefficient, k is the thermal conductivity of fluid, Tc

free stream temperature of the fluid and n is the normal direction to the heat transfer

surface. Equation (1.81) can be written as

h`

k
= − 1

Th − Tc
∂T̄

∂n
` (1.82)

where ` is the characteristic length. Applying non-dimensional scales which are dis-

cussed in Equation (1.47), Equation (1.82) can be written as

Nu = −∂θ
∂n

(1.83)
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where Nu is the local Nusselt number, which is equal to the local, dimensionless,

normal temperature gradient. This definition is valid whether the surface temperature

is constant or a temperature of reference wall is known. All the above discussions are

about the local part of the surface but, it is necessary to have the average heat transfer

coefficient to get off the dependence on the spatial variables x and y. The average

heat transfer coefficient, referred as the average Nusselt number, can be obtained by

integrating local results over an appropriate length (in two dimensions) or surface (in

three dimensions). For example, the average Nusselt number along the heated wall is

Nu =
1

S

∫ s

0

Nu ds (1.84)

where s is the coordinate along the heated surface, S is the arc length of the boundary

of the surface and ds is the arc length element.

1.6 Plan of the Thesis

In Chapter 2, the basic formulations of the BEM and DRBEM for solving the Laplace

and Poisson type equations, respectively, are presented. The applications of the BEM

to the Laplace equation and of the DRBEM to the unsteady Poisson’s type equations

are explained in details. Converting the unsteady problems into a system of first order

time-dependent ordinary differential equations via DRBEM is explained and a two-

level time integration scheme is introduced for the solution of the time-dependent

system. Finally, the stability of the DRBEM for the unsteady problems is explained.

In Chapter 3, the steady/unsteady two-dimensional, laminar flow of an incompress-

ible, viscous and electrically conducting fluid subject to an externally applied uniform

magnetic field is solved numerically by DRBEM in space-two level time integration

scheme in time. First, the steady, mixed convection flow in a channel of square cross-

section with a moving left wall and a right wall involving heaters of different shapes

(semi-circular, semi-rectangular or sinusoidal wavy heaters) subject to an externally

applied uniform magnetic field is considered. Later, the problem in a lid-driven cav-

ity with sinusoidal wavy hot right wall is solved for the unsteady case to analyze the

numerical stability of dual reciprocity BEM with a two-level time integration scheme.

In Chapter 4 and Chapter 5, the dual reciprocity BEM solution of steady/unsteady
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two-dimensional, laminar flow of an incompressible, viscous and electrically con-

ducting nanofluid and ferrofluid, respectively, in semi-annulus with either circular or

sinusoidal wavy inner walls is considered. In the nanofluid flow, the effect of uniform

inclined magnetic field is investigated while in the ferrofluid flow the effect of mag-

netic field produced by a single or multiple nodal magnetic sources is studied. The

physical problems and their mathematical models are introduced, and then the appli-

cation of the numerical method which is the combination of DRBEM in space and

the two-level scheme in time to the problems under consideration is explained briefly.

The numerical simulations are carried out in semi-annulus with different shape of in-

ner walls determined by the number of undulation. For the unsteady problems, the

stability analysis of the numerical method is also performed.
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CHAPTER 2

THE BOUNDARY AND THE DUAL RECIPROCITY BOUNDARY

ELEMENT METHODS

The numerical solution of partial differential equations (PDEs) encountered in math-

ematical physics and engineering can be obtained with one of the known methods

such as finite difference method (FDM), finite element method (FEM), finite volume

method (FVM) and boundary element method (BEM). In finite difference, finite el-

ement and finite volume methods the domain of the problem is discretized into a

number of cells and the governing equations of the problem are approximated over

the whole domain by functions which fully or partially satisfy the boundary condi-

tions. On the other hand, the boundary element method is a boundary-only nature

technique which discretize only the boundary of the computational domain to obtain

the solution of the problem under consideration. In this sense, BEM offers an ele-

gant and economic alternative to the domain discretization methods. The advantage

of using BEM lies in the fact that the dependence of complete problem is reduced

to only on the boundary, which provides simplicity in computer code and reduces

the time for data preparation in the solution process of partial differential equations.

However, the main drawback of BEM occurs in partial differential equations with

non-homogeneous and non-linear terms that do not have an explicit fundamental so-

lution since BEM requires an inherent use of the fundamental solution to the whole

governing equations of the problem under consideration. In this case, the domain

integrals appearing in the integral equation prevent the dimensional reduction of the

problem due to the internal discretization. This causes the BEM lose its main useful-

ness, which is the boundary-only formulation of the problem.

In order to deal with this problem, some alternative methodologies have been re-
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vealed. The most accomplished one is the dual reciprocity BEM (DRBEM). The

basic idea of the DRBEM is to treat all the terms except the ones for which the funda-

mental solution is known as the non-homogeneity and these non-homogeneous terms

are approximated by some well-known interpolation functions called radial basis (co-

ordinate) functions (RBFs). Basically, the differential equation is transformed into

an equivalent integral equation which contains both domain and boundary integrals

by weighting the differential equation with the appropriate fundamental solution and

integrating over the computational domain through the Divergence theorem. The re-

sulting domain integrals are treated by means of so called RBFs which are linked to

the particular solution of the governing terms for which the fundamental solution is

employed.

In this chapter, the basic formulations of the BEM and DRBEM for solving the

Laplace and Poisson type equations, respectively, are presented. In Section 2.1.1,

the application of the BEM to the Laplace equation is explained in details including

the discretization of the boundary (see Section 2.1.2) with both constant and linear

elements. Then, the BEM idea in obtaining the integral formulation is extended for

the Poisson’s equation in Section 2.2. Section 2.3 deals with the DRBEM solution

of Poisson’s type equations. The application of DRBEM to Poisson’s equation by

taking all the terms except the Laplacian operator to the right hand side and treat-

ing them as non-homogeneity is given in Section 2.3.1. The approximation of the

non-homogeneous terms by several kinds of radial basis functions, such as linear

polynomials, multi-quadratics, inverse multi-quadratics and thin-plate splines is ex-

plained in Section 2.3.2. The idea of DRBEM is extended further for the Poisson’s

type equation in which the right hand side involves the unknown and its derivatives

with respect to both time and space variables (see Section 2.3.3). The application of

DRBEM to the unsteady problems converts the system into an initial value problem

represented by a system of first order time-dependent ordinary differential equations.

For the solution of the time-dependent system, a time integration scheme introduced

in Section 2.3.3.1 is employed. Finally, the stability of the DRBEM for the time

dependent problems is explained in Section 2.4.
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2.1 Boundary Element Method

The boundary element formulation for the solution of boundary value problems can

be presumed as a weighted residual technique. That is, the general integral formula-

tion for the governing partial differential equations is obtained by multiplying them

with a weight function and integrating them over the problem domain. Then, the re-

sulting integral equation is transformed into an equivalent boundary integral by the

use of the fundamental solution of the governing equations and the application of Di-

vergence Theorem as explained in [12]. This procedure is going to be illustrated in

details for the solution of Laplace equation in Section 2.1.1 and 2.1.2, and given in

general for the Poisson’s equation in Section 2.2.

2.1.1 Application of BEM to the Laplace equation

The two dimensional Laplace equation

∇2u = 0 in Ω (2.1)

with the boundary conditions:

u = ū on Γ1 (Dirichlet Type), (2.2)

q =
∂u

∂n
= q̄ on Γ2 (Neumann Type) (2.3)

is considered. Here,∇2 is the Laplace operator, ū, q̄ are given functions, q is the nor-

mal derivative of unknown u and n denotes the outward unit normal to the boundary

Γ = Γ1 + Γ2 (see Figure 2.1).

Ω

n

Γ1 Γ2

u = ū

q = q̄

y

x

Figure 2.1: Geometry of the problem
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The replacement of the exact values u and q with the approximate values û and q̂ in

Equations (2.1)-(2.3) results in the following errors (so-called residuals):

ε = ∇2û 6= 0 in Ω

ε1 = û− ū 6= 0 on Γ1

ε2 =
∂û

∂n
− q̄ 6= 0 on Γ2

(2.4)

which are minimized by orthogonalizing them with respect to the weight functions

u∗, ū∗, ¯̄u∗ as: ∫
Ω

εu∗dΩ +

∫
Γ1

ε1ū
∗dΓ +

∫
Γ2

ε2 ¯̄u∗dΓ = 0. (2.5)

Once the residuals are inserted in Equation (2.5), we have∫
Ω

(∇2û)u∗dΩ +

∫
Γ1

(û− ū)ū∗dΓ +

∫
Γ2

(
∂û

∂n
− q̄)¯̄u∗dΓ = 0. (2.6)

The application of Divergent theorem results in

−
∫

Ω

∂û

∂n

∂u∗

∂n
dΩ+

∫
Γ1+Γ2

∂û

∂n
u∗dΓ+

∫
Γ1

(û− ū)ū∗dΓ+

∫
Γ2

(
∂û

∂n
− q̄)¯̄u∗dΓ = 0 (2.7)

and when u∗ is taken as −¯̄u∗ one gets

−
∫

Ω

∂û

∂n

∂u∗

∂n
dΩ +

∫
Γ1

∂û

∂n
u∗dΓ +

∫
Γ1

(û− ū)ū∗dΓ +

∫
Γ2

q̄u∗dΓ = 0. (2.8)

When the the Divergence theorem is employed for the second time with the choice of

ū∗ = ∂u∗/∂n, Equation (2.8) becomes∫
Ω

û∇2u∗dΩ−
∫

Γ2

ûq∗dΓ +

∫
Γ1

q̂u∗dΓ−
∫

Γ1

ūq∗dΓ +

∫
Γ2

q̄u∗dΓ = 0 (2.9)

where q∗ =
∂u∗

∂n
and q̂ =

∂û

∂n
. The domain integral is eliminated by the use of a

special type of weight function u∗ called the fundamental solution. Thus, the weight-

ing function u∗ is taken as the fundamental solution of Laplace equation, that is, u∗

satisfies the following Poisson’s equation

∇2u∗ = −δi (2.10)

where δi represents the Dirac delta function [12]. Thus, the domain integral in Equa-

tion (2.5) can be written as∫
Ω

û∇2u∗ =

∫
Ω

û(−δi)dΩ = −ciûi (2.11)
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since the integral of Dirac delta function multiplied by any function is equal to the

value of the latter at i = (xi, yi), and here the subscript i represents the source point.

The constant ci is equal to

ci =


θi
2π
, if i ∈ Γ,

1, if i ∈ Ω \ Γ,

with the internal angle θi at the point i in radians. Thus, Equation (2.9) becomes

− ciûi +

∫
Γ1

q̂u∗dΓ +

∫
Γ2

q̄u∗dΓ−
∫

Γ1

ūq∗dΓ−
∫

Γ2

ûq∗dΓ = 0. (2.12)

For a two-dimensional medium the fundamental solution u∗ of the Laplace equation

and its normal derivative q∗ are

u∗ =
1

2π
ln(

1

r
) = − 1

2π
ln r, q∗ =

∂u∗

∂n
=

1

2π

(r− ri) · ~n
|r− ri|2

(2.13)

where r = |r− ri| =
√

(x− xi)2 + (y − yi)2 is the distance between the field point

r = (x, y) and the source point ri = (xi, yi). Equation (2.12) is rewritten in the

following compact form

ciũi +

∫
Γ

ũq∗dΓ =

∫
Γ

q̃u∗dΓ (2.14)

where ũ and q̃ are defined as

ũ =

ū, if i ∈ Γ1

û, if i ∈ Γ2

, q̃ =

q̄, if i ∈ Γ1

q̂, if i ∈ Γ2

. (2.15)

In order to simplify the notation, the symbol ∼ will be dropped in the remaining

formulations. Thus, Equation (2.14) can be written as

ciui +

∫
Γ

uq∗dΓ =

∫
Γ

qu∗dΓ (2.16)

which is the integral equation only on the boundary and is generally used as the

starting point for the boundary element formulation.

2.1.2 Discretization of the boundary

We consider now how the boundary integral Equation (2.16) can be discretized to

construct the system of equations from which the boundary values are obtained. The
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discretization can be made by partitioning the boundary into small line segments or

elements which are called boundary elements, and the points where the unknown

values are considered, are called nodes [61]. The elements of which the nodes are

taken to be in the middle of each elements are called constant elements (see Figure

2.2(a)) and the elements for which the nodes are at the ends of each elements are

called linear elements (see Figure 2.2). The discretization of the boundary with the

constant and linear elements for Equation (2.16) will be performed here in details.

Element

Nodes

(a) Constant Elements

ElementElement

Nodes

(b) Linear Elements

Figure 2.2: Meshing with constant and linear elements

2.1.2.1 Discretization with constant elements

We first consider the discretization of the boundary with constant elements. Equa-

tion (2.16) can be discretized for a given point (xi, yi) before applying any boundary

conditions as

ciui +
N∑
j=1

∫
Γj

uq∗dΓ =
N∑
j=1

∫
Γj

qu∗dΓ (2.17)

where N is the number of boundary elements. In constant element case, the values

of u and q are assumed to be constant over each element and equal to the value at the

middle-node of the elements. The end points of the elements are used only to define

the geometry of the problem. Moreover, for the constant elements the boundary is

always smooth at the nodes since these are located at the center of elements. Since

u and q are constants on each elements, they can be taken out of the integrals. Thus,

Equation (2.17) becomes

1

2
ui +

N∑
j=1

uj

∫
Γj

q∗dΓ =
N∑
j=1

qj

∫
Γj

u∗dΓ (2.18)
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in which u and q are denoted by uj and qj for each element j. The integrals H̄ij =∫
Γj

q∗dΓ and Gij =

∫
Γj

u∗dΓ relate the node i where the fundamental solution is

applied to any other node j. Hence for a particular point i, Equation (2.18) can be

written as
N∑
j=1

Hijuj =
N∑
j=1

Gijqj (2.19)

where Hij = H̄ij +
1

2
δij for i = 1, . . . , N . Thus, a system of equations is obtained

which can be expressed in matrix form as

Hu = Gq (2.20)

where H and G are the BEM matrices of size N × N , and u and q are vectors of

length N .

The elements of H and G for the two-dimensional Laplace equation are

Hij =
1

2
δij +

1

2π

∫
Γj

(r− ri) · n
|r− ri|2

dΓj, Gij =
1

2π

∫
Γj

ln
1

|r− ri|
dΓj,

i, j = 1, . . . , N

(2.21)

which are calculated by some numerical integration techniques i.e Gaussian quadra-

ture, when i 6= j. When i = j, a more accurate integration scheme is required due

to the singularity of the fundamental solution. For the constant element case, the co-

efficients H̄ii are zero since the normal n and the distance vector (r − ri) from the

source point are always perpendicular to each other, and the entries Gii are calculated

analytically by

Gii =
l

2π

{
ln(

2

l
) + 1

}
(2.22)

where l is the length of the element, [61].

Finally, to introduce the boundary conditions into the system (2.20), the system is

rearranged by moving the columns of H and G from one side to other so that all un-

knowns are passed to the left-hand side. Hence, we have a system of linear equations

Ax = y (2.23)

where A is invertible matrix, x is the vector containing the unknown boundary values

of u and q, and y is obtained by multiplying the corresponding columns of H and G
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by the known values of u or q. Once the system (2.23) is solved, the values of u and

q will be obtained on the whole boundary, and the value of u at any internal point i is

calculated using Equation (2.17) by taking ci = 1, that is

ui =
N∑
j=1

qj

∫
Γj

u∗dΓ−
N∑
j=1

uj

∫
Γj

q∗dΓ =
N∑
j=1

Gijqj −
N∑
j=1

Hijqj (2.24)

where the coefficients Gij and Hij are calculated with formulas given in Equation

(2.21) for each internal point i.

2.1.2.2 Discretization with linear elements

In this case, the linear variation of u and q will be considered for which the nodes are

taken to be the end points of the elements. When the boundary is discretized into N

linear elements, Equation (2.16) can be written as in the case of constant elements:

ciui +
N∑
j=1

∫
Γj

uq∗dΓ =
N∑
j=1

∫
Γj

qu∗dΓ (2.25)

where u and q are not constant anymore but vary linearly over each element Γj , and

hence they can not be taken out the integrals.

The values of u and q at any point on the element can be defined in terms of their

nodal values and two linear interpolation functions φ1 and φ2 as follows:

u(ξ) = φ1u1 + φ2u2 =
[
φ1 φ2

] u1

u2


q(ξ) = φ1q1 + φ2q2 =

[
φ1 φ2

] q1

q2

 (2.26)

where φ1 and φ2 are given in terms of the dimensionless coordinates ξ ∈ [−1, 1]:

φ1 =
1

2
(1− ξ), φ2 =

1

2
(1 + ξ). (2.27)

Then the integral on the left and right-hand sides of Equation (2.25) can be written

respectively as

∫
Γj

uq∗dΓ =

∫
Γj

[
φ1 φ2

]
q∗dΓ

 u1

u2

 =
[
h1
ij h2

ij

] u1

u2

 (2.28)
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and ∫
Γj

qu∗dΓ =

∫
Γj

[
φ1 φ2

]
u∗dΓ

 q1

q2

 =
[
g1
ij g2

ij

] q1

q2

 (2.29)

where

h1
ij =

∫
Γj

φ1q
∗dΓ, h2

ij =

∫
Γj

φ2q
∗dΓ, g1

ij =

∫
Γj

φ1u
∗dΓ, g2

ij =

∫
Γj

φ2u
∗dΓ.

(2.30)

Substitution of Equations (2.28) and (2.29) into Equation (2.25) for each element j

results in

ciui +
[
H̄i1 H̄i2 . . . H̄iN

]

u1

u2

...

uN

 =
[
Gi1 Gi2 . . . GiN

]

q1

q2

...

qN


(2.31)

for node i, where H̄ij is the summation of the h1
ij term of element j and h2

i,j−1 term

of element j − 1. The entries of Gij are similarly obtained by adding the g1
ij term of

the element j and g2
i,j−1 term of element j − 1. Then, Equation (2.31) which is the

assembled equation for node i can be written as

ciui +
N∑
j=1

H̄ijuj =
N∑
j=1

Gijqj, (2.32)

where j is the node in between two elements. Then, the matrix form becomes

Hu = Gq (2.33)

as in the case of constant elements. Once the system is solved after the insertion of the

boundary conditions, the unknown values of u and q are obtained on the boundary.

Then, the value of u at any internal point i can be calculated by taking ci = 1 in

Equation (2.32) with a new calculated entires of H̄ij and Gij for each internal point i

similar to the case of constant elements.

2.2 Integral Formulation of The Poisson’s Equation

In this section, the integral formulation will be derived for the Poisson’s equation

∇2u = b in Ω (2.34)
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where b is a known function. The basic integral equation can be derived by weighting

Equation (2.34) by an appropriate weight function and integrating over the domain Ω,

similar to the case of Laplace Equation given in Section 2.1.1. That is,∫
Ω

(∇2u− b)u∗dΩ =

∫
Γ2

(q − q̄)u∗dΓ−
∫

Γ1

(u− ū)q∗dΓ. (2.35)

The application of integration by parts twice results in∫
Ω

(∇2u∗)udΩ−
∫

Ω

bu∗dΩ = −
∫

Γ2

q̄u∗dΓ−
∫

Γ1

qu∗dΓ +

∫
Γ2

uq∗dΓ +

∫
Γ1

ūq∗dΓ.

(2.36)

When the weight function u∗ is taken as the fundamental solution of Laplace equation

and grouping all boundary terms as in Equation (2.15), one can obtain

ciui +

∫
Γ

uq∗dΓ−
∫

Γ

qu∗dΓ = −
∫

Ω

bu∗dΩ (2.37)

which contains not only boundary but also a domain integral. The domain integral

can be calculated by subdividing the region into a series of internal cells on each of

which a numerical integration scheme is applied. However, this causes the BEM lose

its most important property of boundary-only nature. That is, it requires integration

over the domain rather than only on the boundary. Therefore, some other approaches

have been introduced to simplify the evaluation of these integrals. One of the most

efficient technique, which is subject to this thesis, is the DRBEM that transforms the

domain integrals to the boundary integrals by using particular solutions through radial

basis function approximation.

2.3 Dual Reciprocity Boundary Element Method

The boundary element method always requires a fundamental solution to the orig-

inal partial differential equations to avoid domain integrals in the resulting integral

equation, which is one of the drawbacks of the method. Another is that the non-

homogeneous and non-linear terms are inserted in the formulation by means of do-

main integrals. These domain integrals can be evaluated using internal discretization,

which increases the cost of the solution in terms of time and allocated memory. There-

fore, the boundary element method loses the attraction of its boundary-only character

compared to other numerical techniques which require domain discretization.
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In order to deal with this problem, as previously mentioned many different method-

ologies have been developed. One of the well-developed techniques is the dual reci-

procity boundary element method. The main idea of DRBEM is to employ a funda-

mental solution corresponding to a simpler equation involving some of the dominant

terms in the governing equation, and to treat the remaining terms involving the non-

homogeneous and non-linear terms in the original equation via a procedure in which

some special approximation functions are used through the application of reciprocity

principles.

This section provides a detailed explanation of the DRBEM application for Poisson

equation which contains the non-homogeneous terms as a known function of space,

i.e. b = b(x, y) (see Section 2.3.1). Moreover, this technique is extended to the

time-dependent problems in which the right hand side function b is an unknown func-

tion which is a linear combination of the problem variable u and its derivatives with

respect to space and time, i.e. b = b(x, y, u, ux, uy, ut) (see Section 2.3.3).

2.3.1 DRBEM for Poisson’s equation

In this section, the dual reciprocity boundary element method is given for the Poisson

equation

∇2u = b (2.38)

where b is considered to be a known function of position, i.e. b = b(x, y). The

solution to Equation (2.38) can be expressed as

u = uh + û (2.39)

where uh is the solution of a homogeneous Laplace equation and û is a particular

solution of the Poisson’s equation such that

∇2û = b. (2.40)

In general to find a solution û which satisfies Equation (2.40) is difficult, mainly in

the case of non-linear and time-dependent problems. The DRBEM proposes the use

of a series of particular solutions ûj instead of a single function û. The number of

ûj is equal to the total number of nodes used in the problem. Then, the function b is
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approximated as

b ≈
N+L∑
j=1

αjfj (2.41)

whereN andL represent the boundary and internal nodes, respectively. The constants

αj are a set of unknown coefficients and fj are approximating functions which are

linked to the particular solutions ûj through the relation

∇2ûj = fj. (2.42)

The functions fj are only geometry-dependent and there is no restriction on these

functions. In fact, many different types of fj may be used, each of which results in a

different function ûj as determined from Equation (2.42).

Substituting Equation (2.42) into Equation (2.41) gives

b ≈
N+L∑
j=1

αj(∇2ûj) (2.43)

and substitution of Equation (2.43) into the original Equation (2.38) results in

∇2u =
N+L∑
j=1

αj(∇2ûj). (2.44)

The process explained in Section 2.1.1 to develop the BEM for the Laplace equation

can now be applied, [61]. That is, Equation (2.44) is multiplied with the fundamental

solution u∗ of the Laplace equation and is integrated over the domain Ω, which results

in ∫
Ω

(∇2u)u∗dΩ =
N+L∑
j=1

αj

∫
Ω

(∇2ûj)u
∗dΩ. (2.45)

Integrating by parts twice, the Laplacian terms in Equation (2.45) as in Section 2.1.1,

produces the following integral equation for each source node i:

ciui +

∫
Γ

q∗udΓ−
∫

Γ

u∗qdΓ =
N+L∑
j=1

αj

(
ciûij +

∫
Γ

q∗ûjdΓ−
∫

Γ

u∗q̂jdΓ

)
(2.46)

where

q̂j =
∂ûj
∂n

=
∂ûj
∂x

∂x

∂n
+
∂ûj
∂y

∂y

∂n
. (2.47)

Equation (2.46) involves no domain integrals, that is, the domain integral of the source

term b in Equation (2.37) has now been substituted with the boundary integrals by
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means of approximating functions. The discretized form of Equation (2.46) for a

source node i becomes

ciui +
N∑
k=1

∫
Γk

q∗udΓ−
N∑
k=1

∫
Γk

u∗qdΓ =
N+L∑
j=1

αj(ciûij +
N∑
k=1

∫
Γk

q∗ûjdΓ

−
N∑
k=1

∫
Γk

u∗q̂jdΓ)

(2.48)

when the boundary Γ is discretized by using N boundary elements. The functions ûj

and q̂j are known once fj are defined. After introducing the interpolation functions

and integrating over each element, we have

ciui +
N∑
k=1

Hikuk −
N∑
k=1

Gikqk =
N+L∑
j=1

αj(ciûij +
N∑
k=1

Hikûk −
N∑
k=1

HGikq̂k)

(2.49)

where index k is used for the boundary nodes. After the application to all boundary

nodes using a collocation technique, Equation (2.49) can be expressed in matrix form

as

Hu−Gq =
N+L∑
j=1

αj(Hûj −Gq̂j) (2.50)

in which the matrices H and G are the same with the ones given in Section 2.1.2.1

when constant elements are used or in Section 2.1.2.2 when linear elements are used.

If each of the vectors ûj and q̂j are considered to be one column of the matrices Û

and Q̂ of size N × (N + L), respectively, then Equation (2.50) can be written as

Hu−Gq = (HÛ−GQ̂)α (2.51)

where α is the vector of size (N +L) containing the unknown coefficients αj . Equa-

tion (2.51) is the basis of the application of DRBEM which requires discretization

of the boundary only. The definition of interior nodes is not necessary to obtain a

boundary solution, however, the solution will be more accurate if a number of such

nodes is used. One can calculate the values of u at the internal nodes by redefining

the entries Hik and Gik in Equation (2.49) in such a way given in Section 2.1.2 that

they contain the point i as an interior node. That is, Equation (2.51) can be written

for the solution of the boundary nodes as

Hbsubs −Gbsqbs = (HbsÛbs −GbsQbs)α (2.52)
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and for the solution of the internal nodes as

Hisuis −Gisqis = (IÛis + HisÛis −GisQis)α (2.53)

where bs and is refer to boundary and internal solutions, respectively, and I is the

identity matrix of size L × L. When Equations (2.51) and (2.53) are combined, one

can write them in an enlarged matrix form: Hbs 0

His 0

 ubs

uis

−
 Gbs 0

Gis 0

 qbs

0

 =

 Hbs 0

His I

 Ûbs

Ûis

−
 Gbs 0

Gis 0

 Q̂bs

0

 α

(2.54)

where 0 denotes zero matrix and this system can be represented in a compact form:

Hu−Gq = (HÛ−GQ̂)α. (2.55)

Here, all matrices are of size (N + L) × (N + L). Thus, one need to use (N + L)

nodes in DRBEM in order to obtain the solution at both boundary and interior nodes

at one stroke. By taking the value of b at (N +L) points, a set of equations like (2.41)

is obtained which can be written in matrix form as

b = Fα (2.56)

where F is called the coordinate matrix and each column of F consists of a vector fj

containing values of fj at (N + L) nodes. Thus, α is obtained as

α = F−1b (2.57)

and when it is substituted in Equation (2.55), one get the system

Hu−Gq = (HÛ−GQ̂)F−1b. (2.58)

Applying boundary conditions to Equation (2.58) as given in Section 2.1.2.1, we get

Ax = y (2.59)

where x contains the N unknown boundary values of u or q and L unknown interior

values of u.
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2.3.2 Approximating functions fj

The particular solution û, its normal derivative q̂ and the corresponding approximating

function f used in DRBEM application are not limited except that the resulting co-

ordinate matrix F should be non-singular. These functions are commonly defined by

proposing an expansion for f , and then computing û and q̂ using Equations (2.42) and

(2.47). Thus, one can use different types of approximating functions, namely polyno-

mials (f = 1 + r + r2 + · · · + rm), thin-plate splines (f = r2 ln r), multi-quadratics

(f =
√
r2 + c2 with shape parameter c), inverse multi-quadratics (f = 1/

√
r2 + c2).

In this thesis, basically polynomial type radial basis functions are employed in the

application of DRBEM. Thus, if the approximating functions fj are distance or radial

basis functions of the form

f = 1 + r + r2 + · · ·+ rm (2.60)

where r2 = r2
x + r2

y in the two-dimensional case. Writing Equation (2.42) in polar

coordinates we have

∇2û =
1

r

∂

∂r
(r
∂û

∂r
) = 1 + r + r2 + · · ·+ rm = f (2.61)

and the corresponding particular solution û is obtained as

û =
r2

4
+
r3

9
+ · · ·+ rm+2

(m+ 2)2
. (2.62)

Further, the substitution of û in Equation (2.47), gives the normal derivative q̂ as

q̂ = (rx
∂x

∂n
+ ry

∂y

∂n
)(

1

2
+
r

3
+ · · ·+ rm

m+ 2
). (2.63)

2.3.3 DRBEM for the time-dependent Poisson’s type equations

In this section, the application of the DRBEM explained in previous section is ex-

tended to the problems governed by the equation

∇2u = b(x, y, t, u, ux, uy, ut) (2.64)

where the non-homogeneous term b consists of a linear combination of the unknown

u itself, the convection terms ux and uy, and the time derivative term ut. Then, the

function b can be written as

b = ut + b1(x, y) + b2(x, y)u+ b3(x, y)ux + b4(x, y)uy (2.65)
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which can be approximated by radial basis functions fj as

b = ut + b1 + b2u+ b3ux + b4uy ≈
N+L∑
j=1

αj(t)fj(x, y) (2.66)

where αj are unknown functions of time. The approximating functions fj are linked

with the particular solutions ûj through Equation (2.42). Similar to Section 2.3.1,

the DRBEM application results in the same enlarged matrix form given in Equation

(2.55)

Hu−Gq = (HÛ−GQ̂)α. (2.67)

The vector α is obtained from Equations (2.57) and (2.66) as

α = F−1(ut + b1 + B2u + B3ux + B4uy) (2.68)

where F is the coordinate matrix given in Equation (2.56), b1 is the vector with

components b1(xi, yi) at nodes i = 1, . . . , (N +L). The (N +L)× (N +L) matrices

B2, B3 and B4 represent the diagonal matrices with b2(xi, yi), b3(xi, yi), b4(xi, yi)

(i = 1, . . . , N + L) on the diagonal entries, respectively. Moreover, the matrices H,

G, Û and Q̂ are of size (N+L)×(N+L). When the solution u is also approximated

by using the same coordinate functions fj

u ≈
N+L∑
j=1

βj(t)fj(x, y) (2.69)

where βj 6= αj are the unknown coefficients of time. Equation (2.69) can also be

written in matrix form as

u = Fβ. (2.70)

The space derivatives of u with respect to x and y are

∂u
∂x

=
∂F
∂x
β and

∂u
∂y

=
∂F
∂y
β (2.71)

and by rewriting Equation (2.70) as β = F−1u, then Equation (2.71) becomes

ux =
∂u
∂x

=
∂F
∂x

F−1u and uy =
∂u
∂y

=
∂F
∂y

F−1u. (2.72)

Thus, by substituting the approximations for the convective terms in Equation (2.68)

and inserting the resulting vector α in Equation (2.67), we have

Hu−Gq = (HÛ−GQ̂)F−1(ut+b1+B2u+B3
∂F

∂x
F−1u+B4

∂F

∂y
F−1u). (2.73)
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Finally, rearranging Equation (2.73), the following first order system of ordinary dif-

ferential equations in time is obtained as

Cu̇ + (H + R) u = Gq−Cb1 (2.74)

where superscript dot denotes the time derivative. The matrices C and R of size

(N + L)× (N + L) are

C = −(HÛ−GQ̂)F−1, R = C(B2 + B3
∂F

∂x
F−1 + B4

∂F

∂y
F−1). (2.75)

The system (2.74) can be solved by using any time integration scheme. However, in

this thesis, a two-level time integration scheme combined with a forward difference

formula for the time derivative is employed for discretizing Equation (2.74) with re-

spect to time.

2.3.3.1 Time integration scheme

In this section, a two-level time integration scheme [61] is applied to the resulting

DRBEM system (2.74). The first order time derivative in Equation (2.74) is approxi-

mated by

u̇ =
1

∆t
(um+1 − um) (2.76)

where m denotes the time level and ∆t is the time step size. Further, a linear approx-

imation for the variation of u and q within each time level can be suggested in the

following form

u = (1− βu)um + βuum+1 (2.77)

q = (1− βq)qm + βqqm+1 (2.78)

where βu and βq are parameters which position the values of u and q, respectively,

between the time levelsm andm+1. Substituting these approximations and Equation

(2.76) into Equation (2.74) yields:[
1

∆t
C + βu(H + R)

]
um+1 − βqGqm+1 =

[
1

∆t
C− (1− βu)(H + R)

]
um

+ (1− βq)Gqm −Cb1

(2.79)
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in which the right hand side is known since it consists of the values specified as initial

conditions or calculated previously. After employing the boundary conditions at the

(m+ 1)-st time level, the left hand side of Equation (2.79) can be rearranged and the

solution can be obtained for each time level. It is also noted that the matrices H, G,

C and R can be computed once and stored because their components depend only on

the geometrical data, which will reduce the computational effort.

2.4 Numerical Stability Analysis

The numerical stability analysis of the present combined technique of dual reciprocity

BEM with a two-level time integration scheme is explained in the present section.

First, we are going to consider the stability analysis of a single step method for the

numerical solution of an initial value problem. Later, we will extend this analysis to

the DRBEM solution of Poisson’s type equations where the non-homogeneous term

b consists of a linear combination of the unknown u itself, the convection terms ux

and uy, and the time derivative ut (see Section 2.3.3).

2.4.1 Stability Analysis of single step method

In this section, the stability of a single step method for the system of first order dif-

ferential equations will be discussed. The system of m equations in the vector form

may be written as

y′ =
dy

dt
= f(t,y), t0 ≤ t ≤ b

y(t0) = y0,

(2.80)

where

y =


y1

y2

:

ym

 , f(t,y) =


f1(t, y1, y2, · · · , ym)

f2(t, y1, y2, · · · , ym)

:

fm(t, y1, y2, · · · , ym)

 and y0 =


y1,0

y2,0

:

ym,0

 .
Further, the single step method developed for the system of first order equations can

be written as

yi+1 = yi + hΦ(ti,yi, h) (2.81)
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where

Φ(ti,yi, h) =


φ1(ti, y1,i, y2,i, · · · , ym,i, h)

φ2(ti, y1,i, y2,i, · · · , ym,i, h)

:

φm(ti, y1,i, y2,i, · · · , ym,i, h)

 . (2.82)

Φ is the increment function for the single step method. When the functions fi have

continuous partial derivatives ∂fi/∂yj = aij , 1 ≤ i, j ≤ m, the first order system of

equations (2.80) can be written as
dy

dt
= Ay (2.83)

where A denotes the m × m Jacobian matrix [aij]. Equation (2.83) is the homoge-

neous locally linearized form of Equation (2.80) and the stability characteristics of

Equations (2.80) and (2.81) are similar.

Here, we observe that the matrix A depends on the variables y and t, but considering

a simple case of A the general behavior of the solution of Equation (2.83) can be

estimated. Let A is a constant matrix with distinct eigenvalues, then the analytic

solution y(t) to Equation (2.83) is given by [36]

y(t) = eAty0 (2.84)

where y0 is the initial condition and the exponential matrix eAt is defined as a matrix

function

eAt = I + At+
(At)2

2!
+

(At)3

3!
· · · (2.85)

with the identity matrix I.

Moreover, for a diagonalizable matrix A, there exists an invertible matrix P satisfying

P−1AP = D where D is a diagonal matrix with the eigenvalues of A, λi, i =

1, . . . ,m on the diagonals, i.e. D = diag(λ1, · · · , λm). Further, P also diagonalizes

eAt with the following relation [36]

P−1eAtP = eDt (2.86)

in which eDt represents the diagonal matrix with eλ1t, eλ2t, . . . , eλmt on the diagonals.

If λj are distinct or possibly complex eigenvalues of A with negative real parts then

Equation (2.83) can be written as
dv

dt
= Dv, v0 = P−1v0 (2.87)
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by defining v = P−1y. Hence, the analytic solution to Equation (2.84), obtained by

using Equation (2.86), can be written as

v(t) = eDtv0. (2.88)

The numerical values of the vector function v(t) can be obtained for each ti by using

the recurrence relation

y(ti+1) = eAhy(ti) (2.89)

in the system (2.84), but its applicability depends on the computation of eAh or

PeDhP−1.

The application of the single step method (2.81) to the system (2.87) gives the relation

vi+1 = E(Dh)vi, (2.90)

where E(Dh) is an approximation to eDh. The matrix E(Dh) is diagonal and each

of its diagonal entries (Ej(λjh), j = 1, 2, · · · ,m) is an approximation to the diago-

nal entires (eλjh, j = 1, 2, · · · ,m) of the matrix eDh. This means that the stability

analysis of the single step method applied to the system (2.83) is equivalent to the

application of single step method to the scalar equation

y′ = λjy (2.91)

where λj’s are the eigenvalues of the matrix A. Hence, the single step method is

absolutely stable if

|Ej(λjh) < 1|, j = 1, 2, · · · ,m, (2.92)

where the real parts of eigenvalues λj are negative.

In the next section, we are going to consider the stability analysis of the dual reci-

procity BEM applied to non-linear systems. We must solve the non-linear system

at each step by using the iterative process, this means that the stability requirement

depends on not only the choice of step size but also the relaxation parameters and the

other problem parameters.

52



2.4.2 Stability analysis of DRBEM

In this section, the stability analysis will be performed for the resulting time-dependent

DRBEM system (2.79)[
1

∆t
C + βu(H + R)

]
um+1 − βqGqm+1 =

[
1

∆t
C− (1− βu)(H + R)

]
um

+ (1− βq)Gqm −Cb1

which is obtained in Section 2.3.3 for the time-dependent Poisson’s type equation.

The stability of dual reciprocity BEM will be discussed through the eigenvalue analy-

sis similar to the one explained Section 2.4.1. The corresponding boundary conditions

are inserted into Equation (2.79) at both time levels, and then the known and unknown

values are shuffled according to the given boundary conditions in order to obtain the

following equation [64, 70]

Kum+1 + Lum = b. (2.93)

Here K and L are the matrices for which the components are constructed by shuf-

fling the columns of the coefficient matrices in Equation (2.79), corresponding to the

unknown values and its normal derivatives at the (m+ 1)th time level and the known

values and its normal derivatives at themth time level, respectively. In addition, um+1

includes the unknown values of u and uq at the time level m + 1, while um contains

the known values of u and uq at the time levelm. Similarly, the right hand side vector

b includes the known values of u and uq at both time levels. The equation given in

(2.93) is rearranged as

Kum+1 = b− Lum, (2.94)

and finally we get

um+1 = K−1b−K−1Lum. (2.95)

Therefore, this iterative technique will be stable when the spectral radius of the matrix

K−1L is smaller than unity, [36], that is ρ(K−1L) < 1.
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CHAPTER 3

MIXED CONVECTION FLOW IN LID-DRIVEN CAVITIES IN THE

PRESENCE OF UNIFORM MAGNETIC FIELD

In this chapter, the DRBEM solution to the steady/unsteady two-dimensional, lami-

nar flow of an incompressible, viscous and electrically conducting fluid subject to an

externally applied uniform magnetic field in channels with irregular cross-sectional

enclosures is presented. The equations governing the mixed convection MHD flow

and the application of the numerical method are given briefly in Section 3.1 and Sec-

tion 3.2, respectively. First, the steady, mixed convection flow in a channel of square

cross-section with a moving left wall and a right wall involving heaters of different

shapes subject to an externally applied uniform magnetic field is considered in Sec-

tion 3.3. In this sense, the flow characteristics and the temperature distribution for a

wide range of physical problem parameters are investigated in irregular cavities with

one and two semi-circular or semi-rectangular heaters along the right wall in Section

3.3.1 and Section 3.3.2, respectively, and finally when the right wall has a heater of

sinusoidal wavy shape in Section 3.3.3. Later, the problem in a lid-driven cavity with

sinusoidal wavy hot right wall is solved for the unsteady case to analyze the numerical

stability of dual reciprocity BEM with a two-level time integration scheme in Section

3.4.

3.1 Governing Equations for the Unsteady MHD Mixed Convection Flow

In this section, we are going to present the governing equations and the correspond-

ing boundary conditions of the unsteady hydromagnetic mixed convection flow and

the heat transfer under the effect of a uniform oblique magnetic field. The problem
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is defined in a two-dimensional square cavity with side length `, which is filled with

a viscous and electrically conducting fluid. The left wall of the cavity is kept at a

constant cold temperature Tc and moves upwards at a constant velocity U0 (which

is considered to be the characteristic velocity in non-dimensionalization of the equa-

tions), while the other walls remains stationary (i.e. no-slip walls). The right wall

involves a heat source of different types (i.e. semi-circular, semi-rectangular and si-

nusoidal heaters) which is kept at constant hot temperature Th > Tc for all problems

considered in this chapter. The type of the heater determines the shape of the irregular

cavity. The flat parts of the right wall not containing the heater and also the horizontal

walls of the cavity are considered to be thermally insulated, i.e. adiabatic. An oblique

magnetic field of strength B0 forming an angle λ with the x-axis is applied and the

gravity acts in the negative y-direction. The induced magnetic field is neglected by

the assumption that the magnetic Reynolds number is so small. Moreover, the flow

generated inside the cavity is assumed to be unsteady and laminar for which the Joule

heating effect is taken into account. The flow obeys the Boussinesq approximation

while the effects of the radiation and viscous dissipation are neglected. Air is se-

lected as the working fluid which yields Prandtl number of 0.71. Thus, following

the aforementioned assumptions, the non-dimensional governing equations given in

stream function ψ, vorticity ω and temperature θ form can be written as

∇2ψ = −ω (3.1)

1

Re
∇2ω =

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− Ha2

Re
(
∂u

∂x
sinλ cosλ− ∂v

∂y
sinλ cosλ

− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)− Ra

Re2Pr

∂θ

∂x

(3.2)

1

RePr
∇2θ =

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
− J (u sinλ− v cosλ)2 (3.3)

which is derived in Chapter 1 (see Equations (1.48)-(1.50)).

Equations (3.2)-(3.3) are subject to initial conditions

ω(x, y, 0) = ω0(x, y) and θ(x, y, 0) = θ0(x, y) (3.4)
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where ω0, θ0 are known functions of space at time t = 0. In the present numerical

calculations, the initial conditions for the vorticity and temperature are taken as ω0 =

θ0 = 0. The corresponding non-dimensional boundary conditions for stream function

and temperature are

At the horizontal walls : ψ =∂ψ/∂x = ∂ψ/∂y = 0, ∂θ/∂n = 0

At sliding left wall : ψ =∂ψ/∂y = 0, ∂ψ/∂x = −1, θ = 0

At flat parts of right wall : ψ =∂ψ/∂x = ∂ψ/∂y = 0, ∂θ/∂n = 0

At heat source : ψ =∂ψ/∂x = ∂ψ/∂y = 0, θ = 1 .

(3.5)

On the other hand, the unknown boundary conditions of the vorticity is derived from

the stream function equation (3.1) by using a radial basis function approximation

through the application of dual reciprocity BEM, which is one of the basic advantage

of DRBEM.

In each problem considered in the chapter, we focus on investigating the combined

effect of the shape of the heater and the physical controlling parameters, namely,

Joule heating parameter, Hartmann and Rayleigh numbers, not only on the flow and

temperature in terms of streamlines and isotherms but also on the heat transfer rate

analyzed through the average Nusselt number Nu on the hot wall of the cavity. The

average Nusselt numberNu is evaluated by the formula (given in Chapter 1, Equation

(1.84))

Nu =
1

S

∫ s

0

Nu ds (3.6)

where Nu = ∂θ/∂n is the local Nusselt number, s is the coordinate along the hot

surface and S is the arc length of the hot surface.

3.2 Numerical Method and Stability Analysis

This section is devoted for the numerical method and its stability analysis. Thus, in

Section 3.2.1 the application of the dual reciprocity BEM to Equations (3.1)-(3.3)

in space with a two level integration scheme in time is going to be explained in a

similar way given in Chapter 2, Section 2.3.3 for the time-dependent Poisson’s type

equations. Then, the numerical stability analysis explained in Chapter 2, Section 2.4
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will be modified for the DRBEM solutions of the MHD mixed convection flow in

Section 3.2.2.

3.2.1 Application of dual reciprocity boundary element method

The DRBEM is employed to transform the governing Equations (3.1)-(3.3) into the

equivalent boundary integrals by using the fundamental solution of Laplace equation

u∗ = 1/2π ln (1/r). Hence, Equations (3.1)-(3.3) are weighted with u∗ over the

computational domain Ω, and the application of the Divergence theorem successively

two times, results in the following integral equations:

ciψi +

∫
Γ

(q∗ψ − u∗∂ψ
∂n

)dΓ = −
∫

Ω

(−ω)u∗dΩ (3.7)

1

Re
(ciωi +

∫
Γ

(q∗ω − u∗∂ω
∂n

)dΓ) = −
∫

Ω

[
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− Ra

Re2Pr

∂θ

∂x

− Ha2

Re
(
∂u

∂x
sinλ cosλ− ∂v

∂y
sinλ cosλ

−∂v
∂x

cos2 λ+
∂u

∂y
sin2 λ)

]
u∗dΩ

(3.8)
1

RePr
(ciθi +

∫
Γ

(q∗θ − u∗ ∂θ
∂n

)dΓ) = −
∫

Ω

[
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y

−J(u sinλ− v cosλ)2
]
u∗dΩ

(3.9)

where q∗ = ∂u∗/∂n, Γ is the boundary of the domain Ω and the subscript i denotes

the source point. The constant ci is given by ci = θi/2π with the internal angle θi at

the source point.

The integrands of the domain integrals on the right hand side of equations (3.7)-(3.9)

are treated as non-homogeneity. Thus, they are approximated by a set of radial basis

functions fj(x, y) linked with the particular solutions ûj to the equation ∇2ûj = fj ,

[13]. That is, these approximations are given by

N+L∑
j=1

αjfj(x, y) =
N+L∑
j=1

αj∇2ûj (3.10)

N+L∑
j=1

βj(t)fj(x, y) =
N+L∑
j=1

βj(t)∇2ûj (3.11)
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N+L∑
j=1

γj(t)fj(x, y) =
N+L∑
j=1

γj(t)∇2ûj (3.12)

respectively for Equations (3.7), (3.8) and (3.9) where αj are undetermined constants

for the stream function and βj and γj are the undetermined time-dependent coeffi-

cients for the vorticity and temperature, respectively. The numbers of the boundary

and the internal nodes are denoted by N and L, respectively. After the insertion of

approximations (3.10)-(3.12) in Equations (3.7)-(3.9), their right hand sides will also

involve the multiplication of the Laplace operator with the fundamental solution u∗,

which can be treated in a similar manner by the use of DRBEM to obtain the follow-

ing boundary only integrals:

ciψi +

∫
Γ

(q∗ψ − u∗∂ψ
∂n

)dΓ =
N+L∑
j=1

αj

[
ciûji +

∫
Γ

(q∗ûj − u∗q̂j)dΓ

]
(3.13)

ciωi +

∫
Γ

(q∗ω − u∗∂ω
∂n

)dΓ =
N+L∑
j=1

βj(t)

[
ciûji +

∫
Γ

(q∗ûj − u∗q̂j)dΓ

]
(3.14)

ciθi +

∫
Γ

(q∗θ − u∗ ∂θ
∂n

)dΓ =
N+L∑
j=1

γj(t)

[
ciûji +

∫
Γ

(q∗ûj − u∗q̂j)dΓ

]
(3.15)

where q̂ = ∂ûj/∂n. After the discretization of boundary with constant elements the

following time-dependent DRBEM matrix-vector form of Equations (3.13)-(3.15) are

obtained as:

Hψ −Gψq = (HÛ −GQ̂)F−1(−ω), (3.16)

1

Re
(Hω −Gωq) =(HÛ −GQ̂)F−1

[
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y

− Ha2

Re
(
∂u

∂x
sinλ cosλ− ∂v

∂y
sinλ cosλ

−∂v
∂x

cos2 λ+
∂u

∂y
sin2 λ)− Ra

Re2Pr

∂θ

∂x

]
,

(3.17)

1

RePr
(Hθ −Gθq) =(HÛ −GQ̂)F−1(

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y

− J(u sinλ− v cosλ)2)

(3.18)

whereψ,ψq = ∂ψ/∂n, ω, ωq = ∂ω/∂n, u and v are the vectors containing the val-

ues atN+L points. The matrices G and H are the usual DRBEM matrices (obtained
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in Chapter 2, Section 2.3.3) with the components involving the integrals of funda-

mental solution and its normal derivative, respectively, at each boundary elements:

Hij = ciδij +
1

2π

∫
Γj

∂

∂n
ln(

1

r
)dΓj, Gij =

1

2π

∫
Γj

ln(
1

r
) dΓj,

Gii =
l

2π
(ln(2/l) + 1).

(3.19)

The (N+L)×(N+L) matrices Û and Q̂ are constructed by taking each of the vectors

ûj and q̂j as columns, respectively, and F is the coordinate matrix of size (N +L) as

given in Equation (2.56). The stream function, vorticity and energy equations can be

written as

Hψ −Gψq = b̃ (3.20)

−Cω̇ +Hωω −Gωωq = c̃ (3.21)

−Cθ̇ +Hθθ −Gθθq = d̃ (3.22)

where the superscript dot denotes the time derivative,C = (HÛ −GQ̂)F−1,Hω =

(1/Re)H −D, Gω = (1/Re)G, Hθ = (1/RePr)H −D, Gθ = (1/RePr)G

andD = C(u
∂F

∂x
F−1 + v

∂F

∂y
F−1). The right hand side vectors are as follows

b̃ =C(−ω)

c̃ = −C Ha2

Re
((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)

−C Ra

Re2Pr

∂θ

∂x

d̃ = −C J (u sinλ− v cosλ)2 .

(3.23)

Equation (3.21) and Equation (3.22) involve the time derivative for which a two-level

time integration scheme will be employed as given in Chapter 2, Section 2.3.3.1. That

is, linear approximations for the variation of ω and ωq within each time step

ω = (1− βω)ωm + βωω
m+1, ωq = (1− βωq)ωmq + βωqω

m+1
q (3.24)

are used where βω and βωq are the parameters which position the values of ω and

ωq, respectively, between the time levels m and m + 1. Then, the first order time

derivative is approximated by

∂ω

∂t
=

1

∆t
(ωm+1 − ωm). (3.25)
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The substitution of the approximations (3.24)-(3.25) into Equation (3.21) yields:

(
−C
∆t

+ βωHω)ωm+1 − βωqGωω
m+1
q =c̃m − (

C

∆t
+ (1− βω)Hω)ωm

+ (1− βωq)Gωω
m
q .

(3.26)

Similarly, the final form of the temperature equation is obtained as

(
−C
∆t

+ βθHθ)θ
m+1 − βθqGθθ

m+1
q =d̃m − (

C

∆t
+ (1− βθ)Hθ)θ

m

+ (1− βθq)Gθθ
m
q ,

(3.27)

where

θ = (1− βθ)θm + βθθ
m+1, θq = (1− βθq)θmq + βθqθ

m+1
q (3.28)

and
∂θ

∂t
=

1

∆t
(θm+1 − θm). (3.29)

The right hand sides of Equations (3.26) and (3.27) are known since it involves values

which have been specified as initial conditions or calculated previously. By introduc-

ing the boundary conditions at time (m + 1)∆t, one can rearrange the left sides of

Equations (3.26) and (3.27) and solve the resulting system of equations for each time

level iteratively, [13]. First, the stream function equation (3.20) is solved by using

the initial condition for the vorticity. Thus, we obtain both the interior and boundary

values of stream function, which will be used to calculate the spatial derivatives of

itself by means of radial basis functions in each time level. The insertion of these

derivative values in the vorticity equation (3.26) and the use of the initial value for

the temperature lead to the linearization of the vorticity equation. Once the vortic-

ity values are obtained at all points in the domain, a similar procedure is employed

for the solution of the energy equation (3.27). In each time level the required space

derivatives of the unknowns ψ, ω and θ and also the unknown vorticity boundary

conditions are obtained by using the coordinate matrix F as

∂R

∂x
=
∂F

∂x
F−1R,

∂R

∂y
=
∂F

∂y
F−1R, ω = −(

∂F

∂x
F−1∂ψ

∂x
+
∂F

∂y
F−1∂ψ

∂y
)

(3.30)

where R is used to represent the each unknown ψ, ω and θ. The iterative process is

terminated when a preassigned tolerance (ε = 10−4) is reached between two succes-

sive iterations.
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3.2.2 Stability analysis of the numerical method

In this section, the stability analysis of the numerical method which combines the

DRBEM in space with a two-level integration scheme in time is performed through

the eigenvalue analysis as given in Chapter 2, Section 2.4. That is, the boundary

conditions for the vorticity and the temperature at both time levels are inserted to

Equations (3.26)-(3.27), and the known and unknown values are shuffled accordingly

in order to obtain the following equations [64, 70]:

Kωx
m+1
ω + Lωx

m
ω = bω, Kθx

m+1
θ + Lθx

m
θ = bθ. (3.31)

Here Kω, Kθ, Lω and Lθ are the matrices for which the components are constructed

by shuffling the columns of the coefficient matrices in Equation (3.26) and Equation

(3.27), corresponding to the unknown values and its normal derivatives at the (m +

1)th time level and the known values and its normal derivatives at the mth time level,

respectively. In addition, xm+1
ω and xm+1

θ include the unknown values of ω, ωq and

θ, θq at the time level m + 1, while xm
ω , xm

θ contain the known values of ω, ωq and

θ, θq at the time level m. Likewise, the right hand side vectors bω and bθ include the

known values of ω, ωq and θ, θq at both levels.

The equations given in (3.31) are rearranged as

Kωx
m+1
ω = bω − Lωx

m
ω , Kθx

m+1
θ = bθ − Lθx

m
θ (3.32)

and finally, we get

xm+1
ω = K−1ω bω −K−1ω Lωx

m
ω , xm+1

θ = K−1θ bθ −K−1θ Lθx
m
θ . (3.33)

Thus, these iterative techniques will be stable when the spectral radius of the matrices

K−1ω Lω and K−1θ Lθ are smaller than unity, that is ρ(K−1ω Lω) < 1 and ρ(K−1θ Lθ) < 1.

3.3 Steady MHD Mixed Convection Flow in Lid-Driven Cavities with Different

Types of Heaters

As the first application of the DRBEM for the MHD mixed convection flow problems,

we consider a simpler form of the governing Equations (3.1)-(3.3) by considering
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the steady flow in a lid-driven cavity subject to a uniform magnetic field applied in

horizontal direction normal to the moving left wall (i.e. the inclination angle λ = 0).

Thus, the equation governing the steady flow can be written as

∇2ψ = −ω (3.34)

1

Re
∇2ω = u

∂ω

∂x
+ v

∂ω

∂y
+
Ha2

Re

∂v

∂x
− Ra

Re2Pr

∂θ

∂x
(3.35)

1

RePr
∇2θ = u

∂θ

∂x
+ v

∂θ

∂y
− Jv2 (3.36)

by taking λ = 0 in the corresponding unsteady form of Equations (3.1)-(3.3), and

the same type of boundary conditions given in Equation (3.5) are taken. That is, the

boundary conditions are

At the horizontal walls : ψ =∂ψ/∂x = ∂ψ/∂y = 0, ∂θ/∂n = 0

At sliding left wall : ψ =∂ψ/∂y = 0, ∂ψ/∂x = −1, θ = 0

At flat parts of right wall : ψ =∂ψ/∂x = ∂ψ/∂y = 0, ∂θ/∂n = 0

At heat source : ψ =∂ψ/∂x = ∂ψ/∂y = 0, θ = 1 .

(3.37)

When the DRBEM with the fundamental solution of Laplace equation is applied to

Equations (3.34)-(3.36), one can obtain the following system of equations for stream

function, vorticity and temperature, respectively as:

Hψ −G∂ψ

∂n
= (HÛ −GQ̂)F−1{−ω} (3.38)

1

Re
(Hω −G∂ω

∂n
) =(HÛ −GQ̂)F−1

{
u
∂ω

∂x
+ v

∂ω

∂y

− Ra

Re2Pr

∂θ

∂x
+
Ha2

Re

∂v

∂x

} (3.39)

1

RePr
(Hθ −G∂θ

∂n
) = (HÛ −GQ̂)F−1

{
u
∂θ

∂x
+ v

∂θ

∂y
− Jv2

}
. (3.40)

The DRBEM Equations (3.38)-(3.40) are coupled so that they are solved iteratively

with initial estimates for vorticity and temperature. In each iteration, the required

space derivatives of the unknown ψ, ω and θ, and also the unknown vorticity bound-

ary conditions are obtained by using the coordinate matrix F as in Equation (3.30).

In this section, three steady MHD mixed convection flow problems are considered

in an irregular lid-driven cavity of which the shape is determined by using differ-

ent types of heaters along the right vertical wall, i.e. semi-circular, semi-rectangular
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and sinusoidal wavy heaters. Thus, the effect of the shape of the heater under var-

ious combinations of physical parameters on the flow and temperature distribution

is investigated and the results are visualized in terms of streamlines, isotherms and

average Nusselt numbers along the hot wall.

3.3.1 Semi-rectangular and semi-circular heaters

The hydromagnetic mixed convection flow in a lid-driven square cavity involving

either a semi-rectangular or semi-circular heater, the schematic presentation of which

is given in Figure 3.1, is considered. The length of the vertical side of the rectangular

heater and the diameter of the semicircle is taken as 0.2`.
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g

`

ψ = 0, ∂θ/∂n = 0

ψ = 0, ∂θ/∂n = 0

0.2`

∂θ
∂n

= 0
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∂θ
∂n

= 0

(a)

ψ
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=
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=
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ψ = 0
θ = 1

U0

g
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ψ = 0, ∂θ/∂n = 0
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∂θ
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ψ = 0
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∂θ
∂n
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ψ
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Figure 3.1: Geometry of the problem: (a) semi-rectangular, (b) semi-circular heaters

The DRBEM analysis for the two-dimensional steady MHD mixed convection flow

under consideration is performed at fixed Reynolds number of Re = 100 and Prandtl

number of Pr = 0.71 to investigate the effects of the Hartmann number (0 ≤ Ha ≤
100), Rayleigh number (Ra = 103, 104, 105) and the Joule heating parameter (J = 0,

1, 3, 5) on the flow and temperature fields. The boundary of the cavity is discretized

by using N = 300 constant boundary elements. The choice of this grid based on the

grid refinement study conducted by using both constant and linear elements for the

case when Ha = 10, Ra = 105 and J = 1 in order to determine the appropriate

grid size required for the optimal relationship between the computational cost and

numerical accuracy. The results are visualized in terms of |ψ|max, |θ|max and the

average Nusselt number Nu along the hot wall. Figre 3.2 displays that the grid of
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N = 300 constant or linear boundary elements ensures the grid independence. Thus,

due to the easiness of the constant boundary elements in the application of DRBEM

when compared to the use of linear element, we prefer to use the constant elements

in the subsequent computations.
|ψ
| m

a
x

|θ
| m

a
x

N
u

N N

N

Figure 3.2: Grid dependency: Ha = 10, Ra = 105, J = 1.

For the visualization of the obtained results, two types of grid distribution, namely

equally-spaced and Gauss-Chebyshev-Lobatto (GCL) points, are performed for the

choice of interior points. The equally-spaced points in x and y-directions are given

by

xi =
i− 1

m− 1
(b− a), yi =

j − 1

n− 1
(d− c), i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(3.41)

in which m and n are the number of points taken in x and y-direction, respectively,

for a region Ω = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}. On the other hand, GCL points are

the Chebyshev collocation points xi which satisfy |Tm(xi)| = 1 where Tm(x) is the

Chebyshev polynomial. Thus, xi are given by [43]

xi = cos (
i− 1

m− 1
π), i = 1, 2, · · · ,m (3.42)

for the interval [−1, 1]. However, for an arbitrary interval [a, b] the GCL points are

given by [43]

xi =
b+ a

2
− b− a

2
cos(

i− 1

m− 1
π), i = 1, 2, · · · ,m. (3.43)
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Figure 3.3 shows the comparison of the results obtained by using either equally-

spaced or GCL points taken as the interior points for the visualization of the obtained

results for streamlines and isotherms inside the cavity when Ha = 50, Ra = 105,

J = 1. It is well observed that to capture the behavior of the flow along the moving

left vertical wall and around the heated surface on the right wall accurately, the GCL

points should be employed for the interior discretization. When the equally-spaced

points are used some disruptions in the region around the heater occur and the vortex

which is formed near the left wall due to its motion can not be well-captured. There-

fore, in all computations done in the present chapter the interior grids are taken as the

GCL points.

ψ θ ψ θ

(b)(a)

Figure 3.3: The streamlines and isotherms drawn by using (a) equally-spaced, (b)

GCL grids: Ha = 50, Ra = 105, J = 1.

In the application of DRBEM for the approximation of the non-homogeneity, sev-

eral types of radial basis functions are used for the solution of MHD mixed con-

vection with a semi-circular heater. The corresponding iteration number (iter) and

the allocated CPU times (T ) to reach the required preassigned tolerance are iter =

103 and T = 90.766sec for the linear polynomials (f = 1 + r), iter = 103 and

T = 110.782sec for the quadratic polynomials (f = 1 + r + r2), iter = 106 and

T = 97.910sec for thin-plate splines (r2 ln r) and iter = 280 and T = 224.972sec

for multi-quadratic (
√
r2 + c2 with c = 0.007), respectively. It is observed that using

the linear polynomial RBFs requires less number of iteration and computational time.

Thus, in all computations done in the thesis, the linear polynomial type RBFs will be

employed.

In order to assess the validity of our numerical scheme, we solve the problem in a lid-

driven cavity with a semi-circular heater for the cases when Ha = 10 and Ha = 50
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at Ra = 105, J = 1 to compare the present results with result of Rahman [67].

The streamlines and isotherms are displayed in Figure 3.4 and the obtained results

are in very well-agreement with the ones given in the work of Rahman (see Figure 3

in [67]). Moreover, the average Nusselt number along the circular heater calculated

ψ θ ψ θ

(b)(a)

Figure 3.4: Streamlines and isotherms for (a) Ha = 10, (b) Ha = 50: Ra = 105,

J = 1.

with the present numerical method are displayed and compared with the ones obtained

in the work of Rahman [67] in Table 3.1 for several values of Hartmann number. It is

observed that the present results agree well with those of [67].

Table 3.1: Average Nusselt number along the semi-circular heater: Ra = 105, J = 1

Ha Nu (Present study) Nu (Rahman [67])

10 4.540 4.52

20 4.960 4.89

50 4.072 4.10

100 2.947 2.99

First, the numerical simulations are conducted for the values of Hartmann number

Ha = 0, 25, 50 at fixed values of Ra = 105 and J = 1 to see the effect of Ha

on the flow field and temperature distribution. Figure 3.5 displays the streamlines

and isotherms when the right wall is heated with (a) semi-rectangular and (b) semi-

circular heaters. It is observed that two counter rotating vortices are formed inside the

cavity for streamlines in all cases. These two vortices are basically an outcome of the

forced flow as a result of the combination of lid-movement and the buoyancy-driven

flow due to the differential heating. The vortex adjacent to the left moving wall has
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Figure 3.5: Effect of Ha on streamlines and isotherms at Ra = 105, J = 1 : (a)

semi-rectangular heater, (b) semi-circular heater.

a clockwise (negative) rotation, since the lid moves from bottom to top. The main

vortex close to the right hot wall has a counterclockwise (positive) rotation due to the

thermal buoyancy effect. An increase in Ha enhances the strength of the magnetic

force, and hence the effect of thermal buoyancy on the flow and temperature fields

reduces. The positive vortex of an almost elliptical shape formed at the center of the

cavity moves slightly upward and becomes circular as Ha increases and the strength

of the main flow decreases. In addition, the secondary negative vortex expands hor-

izontally with increasing Ha. On the other hand, a thin thermal boundary layer in

isotherms is observed along the vertical left wall and around the heater for low values

of Ha, and the isotherms become more parallel to the vertical walls for higher Ha

indicating the dominance of conduction on heat transfer.

Secondly, Figure 3.6 displays the streamlines and isotherms for different values of

Rayleigh number at J = 1 and Ha = 10. At Ra = 103, a negative main eddy

with an almost circular core is formed in streamlines. When Ra increases, the main
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Figure 3.6: Effect of Ra on streamlines and isotherms at Ha = 10, J = 1 : (a)

semi-rectangular heater, (b) semi-circular heater.

eddy extends vertically taking a more elliptical shape and it shrinks towards the left

wall following the formation of a positive secondary vortex in front of the heater.

The secondary vortex expands towards the left wall and the flow is dominated by

this circulation as Ra increases. On the other hand, the isotherms accumulated above

the heater at Ra = 103 disperse horizontally along the top wall with an increase in

Rayleigh number toRa = 104. Further, the isotherms become horizontal at the center

of the cavity and form a boundary layer along the left wall and below the heater for

the highest value of Ra = 105 following the convection mode on the heat transfer.

Finally, the effect of Joule heating parameter on the fluid flow and temperature dis-

tribution is investigated by taking J = 0, 1, 3, 5 when Ra = 105 and Ha = 10 for

semi-rectangular and semi-circular heaters (see Figure 3.7). It is observed that as the

Joule heating parameter increases, the strength of the main vortex in streamlines de-

creases following the formation of a third vortex in the opposite direction with the

main vortex near the right top corner. On the other hand, the temperature of the fluid
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Figure 3.7: Effect of J on streamlines and isotherms at Ra = 105, Ha = 10 : (a)

semi-rectangular heater, (b) semi-circular heater.

inside the cavity increases by the additional heat due to the increase in J .

As it can be seen from Figures 3.5, 3.6 and 3.7, generally, no significant alterations

are observed in the profiles of streamlines and isotherms due to the shape of the heat

source and hence in the shape of the computational domain. However, the heat trans-

fer rate from the heater is more in the semi-rectangular heater compared to its semi-

circular counterpart, since the length of the heated portion is larger when the source

is semi-rectangular. This situation will be shown through the following analysis in

terms of average Nusselt number along the hot portion of the right vertical wall.

The influence of Hartmann and Rayleigh numbers with semi-rectangular and semi-
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circular heater on the average Nusselt number are graphically established in Figure

3.8 for J = 0 and in Figure 3.9 for J = 1. The results exhibit that, when J = 0,

Nu decreases as Ha increases (see Figure 3.8 (a)) which is an expected outcome

since the magnetic field intensity reduces the fluid velocity, and accordingly the rate

of convection heat transfer decreases at each Ra. On the other hand, Nu on the heat

Rectangular Heater

Circular Heater

N
u

N
u

N
u

N
u

Ha

Ha

Ra

Ra

(a) (b)

Figure 3.8: Effects of (a) Ra and (b) Ha on Nu at J = 0.

transfer shows increasing tendency with values Ra ≥ 104 at each Ha (see Figure

3.8 (b)). However, the heat transfer rate decreases when Ra increases from 103 to 104

since the heat transfer changes from conduction to convection and the buoyancy force

is not strong enough to resist the magnetic field effect. Furthermore, when J = 1,

it is interesting to note that the heat transfer rate increases with an increase in Ha

for Ha ≤ 25 at each Ra while Nu decreases at J = 0. At higher Ha ≥ 25, the

conduction contribution on heat transfer is more in comparison to the convection,

consequently Nu decreases at Ra = 103 and Ra = 105, while increasing Ha have

no significant effect on Nu at Ra = 104. On the other hand, Ra has similar effect

on Nu as in the case when J = 0. That is, Nu decreases as Ra enhances from 103

to 104 and Nu increases with a further increase in Ra to 105 at each Ha. Moreover,
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the average Nusselt number decreases with an increase in J from J = 0 to J = 1

for each combination of Ra and Ha. On the other hand, the variation of Nu with

respect to Ra and Ha is similar for both types of the heater. However, it is well-

observed that Nu is higher when the heater is rectangular irrespective of the values

of Ha, Ra and J (except the case when Ra = 105, J = 0), since the length of the

heated portion on the right wall is longer when the source is rectangular as mentioned

before. Thus, the heat transfer rate can be enhanced with the type of heat source.
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Figure 3.9: Effects of (a) Ra and (b) Ha on Nu at J = 1.

Further, the effects of the shape of the heater with respect to Ha at Ra = 104 (see

Figure 3.10(a)) and Ra = 105 (see Figure 3.10(c))) at J = 0 and with respect to

Ra at Ha = 10 (see Figure 3.10(b)) and Ha = 50 (Figure 3.10(d)) at J = 0 are

investigated. It is observed that Nu and hence the heat transfer rate increases when

the length of the heated portion on right wall increases (i.e. by inserting to the system

a circular and finally rectangular heaters instead of a flat heater) irrespective of Ha

andRa numbers. However, atRa = 105, the average Nusselt number of semi-circular

heater is greater than semi-rectangular counter part for the values for Ha < 50. This

means that the convective flow at Ra = 105 has more influence on the heat transfer
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rate when the heater has a curvy shape (i.e. circular) than the heater of flat shape for

Ha < 50. However, for higher Ha ≥ 50, the average Nusselt number in the case of

rectangular heater becomes higher than the one obtained for circular heater following

the suppression of the Ha on the convective mode on heat transfer.
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Figure 3.10: Effect of the shape of the heater on Nu at (a) Ra = 104, (b) Ha = 10,

(c) Ra = 105, (d) Ha = 50.

3.3.2 Two semi-rectangular and two semi-circular heaters

In this section, we extend the problem given in Section 3.3.1 by inserting two heaters

either rectangular or circular along the right vertical wall (see Figure 3.11) in order to

understand the effect of additional heaters on the flow field and temperature distribu-

tion. The boundary of the cavity is discretized by using N = 300 constant boundary

elements where the end points of each element are distributed using GCL points as in

the Section 3.3.1.

The effects of Hartmann and Rayleigh numbers on the flow field and temperature

distribution are displayed, respectively, in Figure 3.12 when Ra = 105, J = 1 and in
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Figure 3.11: Geometry of the problem: (a) semi-rectangular, (b) semi-circular heaters
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Figure 3.12: Effect of Ha on streamlines and isotherms at Ra = 105, J = 1 : (a)

semi-rectangular heaters, (b) semi-circular heaters.

Figure 3.13 when Ha = 10, J = 1. It is observed that there is no significant change

in the profiles of streamlines and isotherms when compared the case with only one

heater given in Section 3.3.1 (see Figures 3.5 and 3.6). That is, the flow field and

temperature distribution have the same behavior in terms of the formation of vortices

and the thermal boundary layers. However, one can notice from Figure 3.13 that

there is an increase in the magnitude of ψ especially for Ha = 0, 25 and the core of
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Figure 3.13: Effect of Ra on streamlines and isotherms at Ha = 10, J = 1 : (a)

semi-rectangular heaters, (b) semi-circular heaters.

the main vortex which is circular in the case of one heater (see Figure 3.5) extends

vertically towards the bottom wall at Ha = 50 by the inclusion of the second heater

to the right wall. On the other hand, as it is expected the temperature of the fluid all

over the cavity increases with the additional heat source when compared to the case

of one heater (see Figure 3.5 and 3.6).

The effect of the Joule heating parameter on the flow and temperature is further de-

picted in Figure 3.14. The flow and temperature show similar behavior as in the case

of one heater (see Figure 3.7). However, the third vortex formed on the right top

corner of the cavity at J = 5 in the one heater case now occurs for a smaller Joule

heating parameter J = 3 with the insertion of an additional second heater to the sys-

tem. That is, the increase in the number of heaters magnifies the effect of the Joule

heating, and as a result the third vortex becomes more strong and bigger in size for

a higher value of J = 5. Moreover, the increase in the temperature of the fluid in

the enclosure due to the Joule heating increases more with an additional heater; and
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Figure 3.14: Effect of J on streamlines and isotherms at Ra = 105, Ha = 10 : (a)

semi-rectangular heaters, (b) semi-circular heaters.

the isotherms moves upwards and are concentrated around the upper heater with an

increase in J .

Figure 3.15 shows the effect of Hartmann and Rayleigh numbers on the average Nus-

selt number along the hot portions of right wall when J = 1. The increase in the

temperature of the fluid inside the enclosure, and as a result in the heat transfer rate

by an additional heat source can be well-observed by the increase in Nu irrespective

of the values of Ha and Ra when compared to the case of one heater (see Figure 3.9).

Moreover, the additional heater magnifies the effect of Rayleigh number on Nu es-

pecially at Ra = 104, 105. That is, the decrease observed in Nu at Ra = 104 at each

Ha in the case of one heater vanishes with the additional heater, and actually the Nu

increases continuously with an increase in Ra at each Ha in the case of two heaters

(see Figures 3.9 (b) and 3.15 (b)). On the other hand, in the case of two heaters an

increase in Ha at Ra = 104 results in a decrease in Nu while Nu increases slightly

for Ha ≤ 10 and becomes constant for Ha > 10 in the case of one heater. Moreover,
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a similar behavior is observed in Nu for values of Ra = 103, 105 as Ha increases in

both cases of one or two heaters (see Figures 3.9 (a) and 3.15 (a)).
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N
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Figure 3.15: Effects of (a) Ra and (b) Ha on Nu at J = 1.

3.3.3 Sinusoidal heater

In this section, the steady MHD flow in a lid-driven cavity with a hot right wall of

sinusoidal shape is considered (see Figure 3.16) in which the effect of Joule heating

is neglected (i.e. J = 0 is taken in Equation (3.36)). The shape of the right wall is

defined by x = 1−A[1− cos(2nπy)] where A is the dimensionless amplitude of the

wavy surface and n is the number of undulations.

The numerical simulations are carried out for a wide range of physical parame-

ters, such as Hartmann number Ha = 0, 10, 25, 50, 100, Rayleigh number Ra =

103, 104, 105, 106 and the number of undulations (n = 0, 1, 2, 3) by keeping the am-

plitude of wavy wall, Reynolds and Prandtl numbers fixed as A = 0.05, Re = 100

and Pr = 0.71, respectively. The boundary of the cavity is discretized by using
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Figure 3.16: Geometry of the problem for sinusoidal heater

N = 350 constant boundary elements. The choice of this grid is based on the grid

resolution test performed for the case when Ha = 50, Ra = 105 and n = 3 in terms

of |Ψ|max, |θ|max and Nu along the hot wall. Figure 3.17 displays that the grid of

N ≈ 350 boundary elements ensures the grid independence, and hence is used in the

computations of the present section. Furthermore, in order to assess the validity of our

numerical procedure, a test problem of the mixed convection flow in a lid-driven cav-

ity with a heated wavy bottom wall of three undulations given in the work of Al-Amiri

et al. [1] is solved. It is observed that the present results Ψmin = −0.0928, −0.1351,

−0.2997 and Nu = 7.4325, 3.1515, 2.6646, respectively at Ri = 0.01, 1, 10, are in

good agreement with the numerical results of Al-Amiri et al. [1] Ψmin = −0.0919,

−0.1278, −0.2564 and Nu = 7.9331, 3.2711 , 2.7192 (calculated from the formula
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Figure 3.17: Grid dependency: Ra = 105, Ha = 50, n = 3.
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(18) given in [1]), respectively at Ri = 0.01, 1, 10.

Figure 3.18 and 3.19 visualize the influence of Hartmann and Rayleigh numbers on

the streamlines and isotherms, respectively, when the number of undulation n = 3.

The streamlines and isotherms show similar profiles at the same physical parameters

when compared to cases of rectangular and circular heaters (see Section 3.3.1). In the

conduction case at Ra = 103, a negative vortex in streamlines is formed along the

vertical left wall due to its upwards motion for each Ha. However, the core of this

vortex becomes weaker and extends vertically along the left wall as Ha increases.

For higher values of Ra, the negative vortex extends vertically taking a more ellip-

tical shape and it shrinks towards the left wall and finally it vanishes at Ra = 106,

following the formation of a positive vortex in front of the heater at each Ha. The

positive vortex expands towards the left wall and flow becomes dominated by this

circulation as Ra increases at each Ha. The core of positive vortex extends verti-

cally as Ha increases and it tends to become diagonal and finally horizontal as Ra

increases. Moreover, ψ decreases in magnitude as Ha increases due to the retarding

H
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H
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=
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H
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Ra = 103 Ra = 104 Ra = 105 Ra = 106

Figure 3.18: Effects of Ha and Ra on streamlines at n = 3.
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Figure 3.19: Effects of Ha and Ra on isotherms at n = 3.

effect of the magnetic field on the fluid flow, while it increases at higher values of

Ra. On the other hand, the isotherms distribute uniformly in the cavity displaying

almost similar behavior for each Ha at low values of Ra(= 103 and 104) when the

heat transfer is due to the conduction. By an increase in Ra, the flow becomes con-

vection dominated. As a result, isotherms change their profiles from being vertical to

almost horizontal at the centre of the cavity forming a thermal boundary layer along

the vertical walls as Ra increases. However, Ha has a reverse effect on isotherms,

that is, the isotherms tend to go from horizontal to vertical (especially at Ra = 105)

indicating the suppression of convective flow for higher Ha.

The effect of the number of undulation n on the average Nusselt number at different

values of Ra is shown in Figure 3.20 (a) Ha = 0, (b) Ha = 10, (c) Ha = 25,

(d) Ha = 50. At each Ha, the Nu is increasing as Ra increases from Ra = 104

to 106 for all n since the heat transfer becomes dominated by convection for higher

values of Ra as in the case of rectangular/circular heater. However, Nu decreases

slightly when the flow is transferred from the conducting regime (i.e. Ra = 103) to

the transition regime (from conduction to convective) at Ra = 104 regardless of the
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values of Ha and n similar to the case of rectangular/circular heater. Moreover, the

number of undulation has no significant effect onNu atRa = 104. It is well observed

that, an increase in the number of undulation results in a slight increase in Nu at each

Ha and Ra numbers.

N
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N
u

N
u

N
u

(a) Ha = 0 (b) Ha = 10

(c) Ha = 25 (d) Ha = 50

Ra Ra

Ra Ra

Figure 3.20: Variation of Nu with Ra at different numbers of undulation n when

J = 0: (a) Ha = 0, (b) Ha = 10, (c) Ha = 25, (d) Ha = 50 .

In Figure 3.21 the variation of Nu along the hot wall of n = 3 undulations with

Hartmann and Rayleigh numbers are shown. The average Nusselt number varies

similar to the cases of rectangular and circular heaters (see Figure 3.8). That is, Nu

decreases as Ha increases at each Ra and Nu increases as Ra increases from 104 to

106 at each Ha. However, as mentioned before as Ra increases from Ra = 103 to

Ra = 104, the Nu decreases especially for Ha ≥ 10 since at the transition regime

from conduction to convection (i.e. Ra = 104), the buoyancy force is not strong

enough to resist the magnetic field. Thus, the heat transfer rate reduces. Moreover,

the rate of decrease in Nu increases as Ra increases.
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Figure 3.21: Effects of (a) Ha and (b) Ra on Nu at n = 3.

3.4 Unsteady MHD Mixed Convection Flow in a Lid-Driven Cavity with Sinu-

soidal Heater

This section provides a detailed investigation of the numerical solution to the unsteady

MHD mixed convection flow in a lid-driven cavity with a sinusoidal hot right wall

subjected to a uniform inclined magnetic field. The equations governing this problem

and the application of combined numerical technique of DRBEM in space with a

two-level integration in time are given respectively in Section 3.1 and Section 3.2 in

details. The shape of the sinusoidal wall is defined by x = 1 − A[1 − cos(2nπy)]

as given in Section 3.3.3. The physical configuration of the problem is displayed in

Figure 3.22.
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Figure 3.22: Geometry of the unsteady problem for sinusoidal hot wall

The characteristics of the flow field and temperature distribution are investigated in
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order to understand the impact of Hartmann number (Ha = 0, 25, 50), Rayleigh num-

ber (Ra = 103, 104, 105), Joule heating parameter (J = 0, 1, 3, 5), inclination angle

(λ = 0,
π

6
,
π

4
,
π

2
) and number of undulation (n = 0, 1, 2, 3) by keeping the amplitude

of sinusoidal wall, Reynolds and Prandtl numbers fixed as A = 0.05, Re = 100 and

Pr = 0.71, respectively. It is observed from Figure 3.23 for the case when Ha = 50,

Ra = 105, J = 1, n = 3 and λ = 0 the grid of N ≈ 400 constant boundary elements

ensures the grid independence, and hence it is used in the subsequent computations.

As in the previous sections, in all computations the GCL points are taken as inte-

rior points and the linear polynomial type radial basis functions are used through the

DRBEM application. Moreover, the validity of the code has already been ascertained

in Section 3.3.3 for the test problem given in the work of Al-Amiri [1].
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Figure 3.23: Grid dependency: Ra = 105, Ha = 50, J = 1, n = 3 and λ = 0.

First, the stability of the numerical method is investigated in details for different time

increments and relaxation parameters by considering βω = βθ = β and βωq = βθq =

βq. Table 3.2 displays the relation between the maximum eigenvalues of the coeffi-

cient matrices and the relaxation parameters whenRa = 104,Ha = 25, J = 1, λ = 0

and the time step size ∆t = 0.8. One can observe that as the relaxation parameters

β and βq decrease, the spectral radius of vorticity and temperature decrease. But,

when β = βq = 0.6 only 1 of the 6 requested eigenvalues converges, and the method

becomes unstable with a further decrease to β = βq = 0.5. Depending on the results

of the Table 3.2, the optimum relaxation parameter is β = βq = 0.7 when Ra = 104,

Ha = 25, J = 1 and λ = 0.
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Table 3.2: Spectral radius of vorticity and temperature equations: Ra = 104, Ha =

25, ∆t = 0.8, J = 1, λ = 0, ε = 10−4.

β, βq spectral radius for vorticity spectral radius for temperature

0.9 0.83139 0.87018

0.8 0.82744 0.86767

0.7 0.82441 0.86407

0.6 0.82127 (only 1 of the 6 req. eig. con.) 0.86492

0.5 - -

Table 3.3 indicates the spectral radius of coefficient matrices for several time incre-

ments when Ra = 104 and Ha = 25, J = 1, λ = 0 by fixing β = βq = 0.7. It

can be seen that, increasing time increment leads to a decrease on maximum eigen-

values of vorticity and temperature, and reduces the number of iterations required to

reach the steady-state. However, when ∆t = 0.9 and ∆t = 1 only 5 and 3 of the

6 requested eigenvalues converge, respectively. Hence, the optimum time increment

for Ra = 104, Ha = 25, J = 1, λ = 0 with β = βq = 0.7 is ∆t = 0.8.

Table 3.3: Spectral radius of vorticity and temperature equations: Ra = 104, Ha =

25, J = 1, λ = 0, β = βq = 0.7, ε = 10−4.

∆t spectral radius for vorticity spectral radius for temperature

0.5 0.88495 0.91312

0.6 0.86413 0.897

0.7 0.84396 0.88126

0.8 0.82441 0.86589

0.9 0.80545 (only 5 of the 6 req. eig. con.) 0.85088

1 0.78706 (only 3 of the 6 req. eig. con.) 0.83621

On the other hand, Table 3.4 shows the relation between spectral radius of coefficient

matrices according to the different values of relaxation parameters for vorticity (βω =

βωq ) and temperature (βθ = βθq ) atRa = 104,Ha = 25, J = 1, λ = 0, ∆t = 0.8. It is

well observed that, when the relaxation parameter for vorticity βω, βωq decreases and
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the relaxation parameter for temperature βθ, βθq increases, the maximum eigenvalue

of coefficient matrices decrease and they reach the minimum (i.e. optimal) value

when βω = βωq = βθ = βθq = 0.7, as shown in Table 3.2. However, when βω =

βωq = 0.6 and βθ = βθq = 0.9 only 1 of the 6 requested eigenvalues of vorticity,

and only 3 of 6 requested eigenvalues of temperature converge. Further, when βω =

βωq = 0.5 and βθ = βθq = 0.9, the method becomes unstable.

Table 3.4: Spectral radius of vorticity and temperature equations: Ra = 104, Ha =

25, ∆t = 0.8, J = 1, λ = 0, ε = 10−4.

βω, βωq βθ, βθq spectral radius for vorticity spectral radius for temperature

0.9 0.5 - 1

0.9 0.6 0.83037 0.8694

0.8 0.7 0.82744 0.86767

0.7 0.8 0.82441 0.86589

0.7 0.7 0.82441 0.86407

0.6 0.9 0.82127 (only 1 of the 6 req. eig.) 0.86407 (only 3 of the 6 req. eig.)

0.5 0.9 - 1

The stability of the DRBEM discretization with a two-level time integration is further

checked for various values of Ra and Ha numbers by the choice of optimal values

obtained for ∆t = 0.8 and relaxation parameters β = βq = 0.7. It is well observed

from Tables 3.5 and Table 3.6 that these choices are also valid for various values of

Ra(= 103, 104, 105) andHa(= 10, 25, 50), that is they satisfy the stability conditions.

Thus, in the following computations, the optimal values (β = βq = 0.7 and ∆t = 0.8)

are used to guarantee the stability of the numerical method.

Table 3.5: Spectral radius of vorticity and temperature equations for several Ra:

Ha = 25, J = 1, λ = 0, β = βq = 0.7, ∆t = 0.8, ε = 10−4.

Ra spectral radius for vorticity spectral radius for temperature

103 0.82203 0.85205

104 0.82441 0.86589

105 0.84268 0.83932

85



Table 3.6: Spectral radius of vorticity and temperature equations for several Ha:

Ra = 104, J = 1, λ = 0, β = βq = 0.7, ∆t = 0.8, ε = 10−4.

Ha spectral radius for vorticity spectral radius for temperature

10 0.81927 0.85176

25 0.82441 0.86589

50 0.84356 0.87734

Figure 3.24 displays the variation of the stream function, vorticity and temperature

along (a) the vertical centerline (x = 0.5, 0 ≤ y ≤ 1) and (b) the horizontal center-

line (y = 0.5, 0 ≤ x ≤ 1), respectively, at different time levels t = 1, 3, 5, 10, 20, 50

when Ha = 25, Ra = 104 and ∆t = 0.8. In general, as time advances, the values

of ψ, ω and θ increase and converge to the steady-state both along the vertical and

horizontal centerlines. The temperature increases along the horizontal centerline as

expected since the left wall is cold while the right wall is heated. Thus, in the subse-

quent figures, the streamlines and isotherms are drawn at steady-state and the average

Nusselt number is calculated when the temperature reaches its steady-state.

ψ ω θ

(a)
yy y

xx x

(b)

Figure 3.24: Time evolution of ψ, ω, θ along (a) vertical centerline x = 0.5, and (b)

horizontal centerline y = 0.5: Ra = 104, Ha = 25, ∆t = 0.8, J = 1 and λ = 0.
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The steady-state streamlines and isotherms are drawn in Figure 3.25 and Figure 3.26,

respectively, at Ha(= 0, 25, 50) and Ra = (103, 104, 105) when the number of undu-

lation n = 3 under the horizontal magnetic field (λ = 0) and J = 1. As expected,

the obtained results are similar with the steady case given in Section 3.3.3 in Figures

3.18 and 3.19 when J = 0. Consideration of the effect of Joule heating results in a

slight decrease in the magnitude of ψ at each combination of Ra and Ha numbers

while the temperature of the fluid inside the cavity increases with the additional heat-

ing due to Joule heating at J = 1. In addition, the formation of thermal boundary

layer along the left vertical wall, which indicates that the temperature gradients are

strong in this region, becomes more observable at Ra = 105 when J = 1 compared

to the case when J = 0. However, Ha has an opposite effect on isotherms, that is, as

Ha increases the conduction contribution to the overall heat transfer enlarges and the

thermal boundary layer becomes weaker while the isotherms become vertical.
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Figure 3.25: Effects of Ha and Ra on streamlines: n = 3, λ = 0, J = 1.
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Figure 3.26: Effects of Ha and Ra on isotherms: n = 3, λ = 0, J = 1.

The impact of varying Joule heating parameter on hydrodynamic and the thermal

fields is further displayed in Figure 3.27 and Figure 3.28, respectively, for Ra = 103,

104, 105 at a fixed Ha(= 10), when n = 3 and λ = 0. At the conduction regime

when Ra = 103, there is no significant change on streamlines for each J , however,

a small decrease in the strength of positive vortex is observed with an increase in J

at Ra = 104. On the other hand, at the highest Ra = 105, when J = 0 two counter

rotating vortices are observed inside the streamline profile as in the case when J = 1

(see Figure 3.25). However, with a further increase to J = 3, a third negative eddy

is formed at the upper right corner of the cavity close to wavy wall and this eddy

becomes bigger and stronger as J increases to J = 5. Further, the positive vortex

becomes weaker and shrinks diagonally as a result of the formation and development

of the third vortex towards the left wall. Similar to streamlines, there is no signifi-

cant effect of J on isotherms for low values of Ra (= 103 and 104). However, the
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Figure 3.27: Effects of J and Ra on streamlines: n = 3, λ = 0, Ha = 10.

isotherms tend to move towards the left moving wall and start to form a boundary

layer as J increases at Ra = 103, 104. Finally, at the highest Ra = 105, the formation

of thermal boundary layer along the left vertical wall becomes more observable and

the temperature of the fluid increases following an increase in J at the convection

dominant mode. Moreover, when we compare the results at Ra = 105 with the rect-

angular/circular heaters (see Figures 3.7 and 3.14) it is observed that both the strength

of ψ and the temperature of the fluid increase when the right wall is sinusoidal at each

J .

The influence of the inclination angle of magnetic field λ on the velocity and the

temperature fields is shown in Figure 3.29 and Figure 3.30, respectively, when n = 3,

Ha = 10 and J = 1. At Ra = 103 and Ra = 104, there is no significant change in

the profiles of streamlines and isotherms as λ increases from π/6 to π/2. However,

at Ra = 105, the main positive vortex moves towards the left bottom corner of the
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Figure 3.28: Effects of J and Ra on isotherms: n = 3, λ = 0, Ha = 10.

cavity and becomes circular with an increase in λ. Moreover, the strength of the

positive vortex increases at Ra = 104, 105 as λ increases. On the other hand, at

Ra = 105, the isotherms move upwards following an increase in the temperature

inside the cavity as λ increases to π/2.

Further, the effect of the number of undulation on the flow structure and heat transfer

characteristics is demonstrated in Figure 3.31 and Figure 3.32, respectively when

Ha = 10, J = 1 and λ = 0. It is observed that at a fixed Ra both the velocity and

thermal fields remain almost similar throughout the cavity except the region close to

the right vertical wall where both streamlines and isotherms comply with the profile

of the wavy wall.

In the rest of this section, the heat transfer rate is investigated in terms of the average

Nusselt number along the hot wavy wall at various combinations of problem param-
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Figure 3.29: Effects of λ and Ra on streamlines: n = 3, Ha = 10, J = 1.

eters. In Figure 3.33, the variation of average Nusselt number on the heated wall

with Hartmann and Rayleigh numbers are displayed for the cavity with a right wavy

wall of n = 3 undulations at J = 0. The average Nusselt number increases as Ra

increases from Ra = 104 to Ra = 105 at each Ha since the heat transfer is due to the

convection. However, Nu decreases as Ra increases from Ra = 103 to Ra = 104

especially for Ha ≥ 10. The reason for this phenomena is that at Ra = 104, namely

at the transition regime from conduction to convection, the buoyancy force is not

strong enough to resist the magnetic field, and hence the heat transfer rate reduces.

On the other hand, the average Nusselt number decreases asHa increases at eachRa.

Moreover, the rate of decrease in Nu increases with an increase in Ra. Further, we

investigate the effect of Ra and Ha numbers on Nu along the hot wavy wall taking

into account the Joule heating parameter, i.e. J = 1 when n = 3 (see Figure 3.34).

Similar to the case when J = 0, Nu decreases as Ra increases from 103 to 104, while

Nu increases as Ra increases from 104 to 105 for each Ha. However, by the Joule
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Figure 3.30: Effects of λ and Ra on isotherms: n = 3, Ha = 10, J = 1.

effect, Nu increases with an increase in Ha for Ha < 25 when Ra = 104, Ra = 105

while Nu decreases when J = 0. Moreover, for Ha ≥ 25, Nu starts to decrease in

the conduction (Ra = 103) and convection (Ra = 105) modes, while increasing Ha

have no significant effect on Nu at the transition regime when Ra = 104.

In order to see the further effect of Joule heating parameter on the average Nusselt

number along the hot wavy wall, Figure 3.35 is drawn by fixing (a) Ra = 105 and

(b) Ha = 10. An increase in J results in a decrease in Nu since the temperature

inside the cavity becomes higher than the temperature of the wall. In the conduction

mode between Ra = 103 and Ra = 104, Nu decreases irrespective of values of J .

However, when the convection becomes dominant with a further increase in Ra to

105 for low J(= 0, 1) Nu increases whereas for higher J(= 3, 5) the average Nusselt

number along the hot wall continues to decrease indicating the suppressive effect of J

on the heat transfer rate at the convection mode. On the other hand, asHa increases to

92



n
=

2
n

=
1

n
=

0

Ra = 103 Ra = 104 Ra = 105

Figure 3.31: Effects of n and Ra on streamlines: Ha = 10, λ = 0, J = 1.

25 the average Nusselt number increases by the Joule effect. However, afterHa = 25

for J = 0, 1 average Nusselt number starts to decrease with an increase in Ha while

it continues to increase for higher values of J(= 3, 5). Thus, a strong Joule heating

parameter has a reverse effect on the variation of Nu with increasing Ha and Ra.

The effect of the shape of the wavy wall determined by different numbers of undu-

lation (n = 0, 1, 2, 3) is analyzed in terms of the average Nusselt number along the

hot wall. The variation of Nu with n at (a) Ha = 0, (b) Ha = 10, (c) Ha = 25,

(d) Ha = 50 is displayed for different values of Ra(= 103, 104, 105) at a fixed J = 0

in Figure 3.36 and for different values of J(= 0, 1, 3) at a fixed Ra = 103 in Figure

3.37, respectively. It is well observed from figures that an increase in n results in an

increase in Nu at each combination of the values of Ha, Ra and J , which indicates

the enhancement of the heat transfer rate following an increase in the length of the

heated surface. The increase rate in Nu with n is higher in the convection regime at
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Figure 3.32: Effects of n and Ra on isotherms: Ha = 10, λ = 0, J = 1.
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Figure 3.33: Effects of (a) Ha and (b) Ra on Nu: n = 3, J = 0, λ = 0.
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Figure 3.34: Effects of (a) Ha and (b) Ra on Nu: n = 3, J = 1, λ = 0.

N
u

N
u

(a) Ha (b) Ra

Figure 3.35: Effect of J onNu at n = 3, λ = 0 by fixing (a)Ra = 105, (b)Ha = 10.

Ra = 105 when compared with the ones in the conduction and transition regimes at

Ra = 103, 104. Moreover, Nu decreases when the flow is transfered from conducting

regime (Ra = 103) to the transition regime (Ra = 104) while it increases with a

further increase in Ra to 105 regardless of the values of n and Ha (see Figure 3.36).

On the other hand, Figure 3.37 displays that Joule effect results in a decrease in Nu

at each Ha in the conduction regime irrespective of the geometry of the problem do-

main. As mentioned previously, this occurs since the temperature inside the cavity

becomes higher than the temperature of the wavy wall. It is also observed from both

of the figures that an increase in the strength of the magnetic field leads to a general

decrease in Nu according to the given values of Ra, J and n.

Finally, variation of Nu for various inclination angles λ with Ra at (a) Ha = 10 and

(b) Ha = 100 is shown in Figure 3.38. When the conduction mode of heat transfer is
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Figure 3.36: Variation of Nu with n at Ra = 103, 104, 105 when J = 0, λ = 0:

(a) Ha = 0, (b) Ha = 10, (c) Ha = 25, (d) Ha = 50.

dominant (i.e. Ra = 103), it is clearly seen that the average Nusselt number decreases

by increasing inclination angle of magnetic field for both Ha = 10 and Ha = 100.

On the other hand, in the convection mode (i.e. Ra = 105),Nu slightly increases as λ

increases from 0 to
π

2
when Ha = 10 while a significant increase in Nu is observed

when Ha = 100. In the transition regime (Ra = 104), at Ha = 10 the average

Nusselt number increases by increasing values of angle of inclination λ, however, at

Ha = 100 no change is observed in Nu with a variation in λ. To conclude for small

Ha = 10, the effect of inclination angle on theNu is more pronounced in conduction

and transition regimes (i.e. Ra = 103, 104), whereas at Ha = 100 its effect is well

observed at the convection regime when Ra = 105. Thus, for high values of Ha

which causes a reduction in Nu to increase the heat transfer rate the magnetic field

can be applied horizontally to the hot wall i.e. λ = π/2.
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Figure 3.37: Variation of Nu with n at J = 0, 1, 3 when Ra = 103, λ = 0: (a) Ha =

0, (b) Ha = 10, (c) Ha = 25, (d) Ha = 50.
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Figure 3.38: Variation of Nu with Ra at different inclination angles of magnetic field

λ when J = 0, n = 3: (a) Ha = 10, (b) Ha = 100.

3.5 Summary of the Results Obtained in Chapter 3

To conclude, in the present chapter the effects of both number and shape of the heat

sources on the flow and temperature fields are investigated for several values of phys-

ical parameters and are displayed in terms of streamlines, isotherms and average Nus-
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selt number. It is observed that:

• As Hartmann number increases, the strength of stream function decreases in

magnitude due to the retarding effect of the magnetic field on the fluid flow,

further, the isotherms become more parallel to vertical walls because of the

dominance of conduction on heat transfer.

• When the Rayleigh number increases, the flow becomes convection dominated

which leads the isotherms change their profiles from being vertical to almost

horizontal at the center of the cavity forming a thermal boundary layer along

the vertical walls.

• An increase in Joule heating parameter reduces the magnitude of stream func-

tion whereas temperature of the fluid inside the cavity increases.

• The inclination angle of magnetic field λ has no significant effect on the stream-

line and isotherm profiles, however, at Ra = 105, as λ increases, the main

vortex moves towards the left bottom corner of the cavity, becomes circular,

and also its strength increases. On the other hand, the isotherms move upwards

following an increase in the temperature inside the cavity.

• Hartmann number has a negative effect on Nu, that is, Nu decreases with an

increase in Ha irrespective of values of Ra at J = 0. However, when J = 1,

the heat transfer rate increases with an increases in Ha for Ha ≤ 25 at each

Ra, which is observed for all heater types.

• The Nu increases, when Ra ≥ 104 since the heat transfer becomes dominated

by convection for higher values ofRa. However, Nu decreases asRa increases

fromRa = 103 to 104 at eachHa, since the flow is transferred from conduction

regime to transition regime, which occurs irrespective of the types of heater.

• For all types of heater, as J increases, the temperature inside the cavity becomes

higher than the wall temperature, thus Nu along the hot wall decreases.

• Insertion of a circular and rectangular heater instead of a flat heater to the sys-

tem makes no significant difference on streamline and isotherm profiles, but it

is observed that the average Nusselt number increases when the length of the

heated portion on the right wall increases in the case of rectangular heater.
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• It is observed that, the effect of the number of undulation has no significant

change on the profiles of streamlines and isotherms except the right wall where

both streamlines and isotherms comply with the profile of the wall.

• However, an increase in the number of undulation results in increase in Nu at

each Ha and Ra and J as a result of an enhancement of the heat transfer rate

following an increase in the length of the heated surface.

• All these results indicate that the strength of the magnetic field and the shape of

the computational domain play an important role on the flow and heat transfer,

thus these can be used to control the fluid flow and temperature distribution in

an enclosure.
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CHAPTER 4

NATURAL CONVECTION FLOW IN SEMI-ANNULUS ENCLOSURES

FILLED WITH WATER-BASED NANOFLUIDS UNDER THE EFFECT OF

UNIFORM MAGNETIC FIELD

The natural convection and heat transfer in enclosures under the influence of a mag-

netic field have a wide range of application areas in engineering and industry as men-

tioned in Introduction. On the other hand, there has been a considerable amount

of interest on the engineering applications related to the nanotechnology due to the

suitability of the nanofluids in the convective heat transfer phenomenas. The nanoflu-

ids are the fluids obtained by incorporating small-sized particles called nanoparticles

(e.g. metals, carbides or oxides) into base fluids (e.g. water, oil or ethylene gly-

col). Thus, the resulting nanofluid has a higher thermal conductivity compared to

conventional fluids, which plays an important role on the enhancement of the heat

transfer rate inside the enclosure. Thus, it is not only interesting but also significant

to investigate the convective heated flows in enclosures filled with nanofluids in the

presence of uniform magnetic field to control the flow behavior and to improve the

heat transfer capacitance inside the enclosures of especially irregular shapes with var-

ious thermal boundary conditions. Thus, the present chapter is devoted to consider

the dual reciprocity BEM solution of steady/unsteady two-dimensional laminar flow

of an incompressible, viscous and electrically conducting nanofluid in semi-annulus

with either circular or sinusoidal wavy inner walls subject to an externally applied

uniform magnetic field. The physical problem and its mathematical model are in-

troduced in Section 4.1, and then the application of the numerical method which is

the combination of DRBEM in space and the two-level scheme in time to the problem

under consideration is explained briefly in Section 4.2. The numerical simulations are

carried out in a semi-annulus with a circular or sinusoidal inner wall in the presence
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of a uniform inclined magnetic field in order to analyze the effects of these on the

natural convective heat transfer. First, the steady MHD natural convection flow in an

inclined channel of semi-circular cross-section with an inner wall involving constant

heat flux is solved in Section 4.3. Later, the unsteady case is considered in a more

complex problem domain enclosed by a semi-annulus with a sinusoidal inner wavy

wall and the stability analysis of the numerical method is performed in Section 4.4.

4.1 Governing Equations for the Unsteady MHD Natural Convection Nanofluid

Flow

In this section, the governing equations for the unsteady magnetohydrodynamic nat-

ural convection nanofluid flow and the heat transfer in two-dimensional geometries

filled with water-based nanofluid under the effect of a uniform inclined magnetic field

are presented. The applied magnetic field makes an angle λ with the x-axis and the

gravity acts in the negative y-direction. The radiation, viscous dissipation and Joule

heating are neglected. The induced magnetic field can also be neglected in compari-

son to the applied magnetic field since the magnetic Reynolds number is assumed to

be too small. The nanofluid is supposed to be Newtonian and incompressible; the flow

is unsteady, laminar and two-dimensional. The nanofluid has constant thermophysi-

cal properties and obeys the Boussinesq approximation. The thermal equilibrium is

assumed between the nanoparticles (Cu) and the base fluid (water). Under the light of

these assumptions the governing equations of unsteady, laminar, incompressible flow

of a viscous and electrically conducting nanofluid subjected to a uniform oblique

magnetic field can be written in the non-dimensional stream function ψ, vorticity ω

and temperature θ form as given in Chapter 1, Equations (1.51)-(1.54):

∇2ψ = −ω (4.1)

∇2ω =
µfρnf

µnfρfPrf

[
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
−RafPrf

βnf
βf

∂θ

∂x
−Ha2Prf

σnfρf
σfρnf

×((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)

]
(4.2)

∇2θ =
(ρCp)nfkf
(ρCp)fknf

(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
) (4.3)
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where

µfρnf
µnfρf

= (1− φ)2.5

[
(1− φ) +

ρs
ρf
φ

]
,

βnf
βf

= (1− φ) +
βs
βf
φ,

σnfρf
σfρnf

=

[
1 +

3( σs
σf
− 1)φ

( σs
σf

+ 2)
− (

σs
σf
− 1)φ

]
1

(1− φ) + ρs
ρf
φ
,

(ρCp)nfkf
(ρCp)fknf

=

[
(1− φ) +

(ρCp)s
(ρCp)f

φ

]
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

.

(4.4)

in which ρf , βf , σf , ρ(Cp)f , kf and ρs, βs, σs, ρ(Cp)s, ks represent the effective den-

sity, the thermal expansion coefficient, electrical conductivity, the heat capacitance,

thermal conductivity of the fluid and solid particles, respectively. The solid volume

fraction of nanoparticles is denoted by φ.

Equations (4.2)-(4.3) are subjected to initial conditions

ω(x, y, 0) = ω0(x, y), θ(x, y, 0) = θ0(x, y),

where ω0, θ0 are known functions of space at t = 0. In the present numerical compu-

tations, the initial conditions for vorticity and temperature are taken as ω0 = θ0 = 0.

The corresponding non-dimensional boundary conditions for stream function and

temperature is going to be given for each problems in the related sections, and the

unknown boundary conditions for the vorticity are derived from the stream function

equation (4.1) by using radial basis function approximation through the application

of dual reciprocity BEM as in Chapter 3, Section 3.1. Similarly, the average Nusselt

number Nu is evaluated by the formula given in Chapter 1, Equation (1.84) in which

Nu =
knf
kf

1

θ
.

Further, the nanoparticles (Cu) and the base fluid (water) are supposed to be in ther-

mal equilibrium and their thermo-physical properties are given in Table 4.1 [86].

Table 4.1: Thermo-physical properties of water and nanoparticle [86]

ρ(kg/m3) Cp(j/kgK) k(W/mk) β(K−1) σ(Ωm)−1

Pure water 997.1 4179 0.613 21× 10−5 0.05

Copper(Cu) 8933 385 401 1.67× 10−5 5.96× 107
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4.2 Numerical Method and Stability Analysis

In this section, the application of the numerical method to the unsteady MHD natural

convection nanofluid flow and its stability analysis is explained as in Section 3.2.1.

Hence, in Section 4.2.1 the discretization of the Equations (4.1)-(4.3) by the combined

technique of DRBEM and two-level time integration scheme is going to be explained.

Then, the stability of the numerical method will be given in Section 4.2.2.

4.2.1 Application of DRBEM

When Equations (4.1)-(4.3) are weighted with the fundamental solution of Laplace

equation u∗ = 1/2π ln(
1

r
) and the Divergence theorem is successively applied at two

times, the following integral equations

ciRi +

∫
Γ

(q∗R− u∗∂R
∂n

)dΓ = −
∫

Ω

bRu
∗dΩ (4.5)

are obtained through the process of DRBEM as in the same way given in Section

3.2. Here, R is used to represent each unknown ψ, ω and θ and bR denotes the right

hand sides of the stream function, vorticity and temperature equations (4.1), (4.2) and

(4.3), respectively, as

bψ = −ω (4.6)

bω =
µfρnf

µnfρfPrf

[
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− βnf

βf
RafPrf

∂θ

∂x

−σnfρf
σfρnf

Ha2Prf ((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)

] (4.7)

bθ =
(ρCp)nfkf
(ρCp)fknf

(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
). (4.8)

The non-homogeneous term bR is approximated by polynomial type radial basis func-

tions fj as

bR ≈
N+L∑
j=1

αRjfj =
N+L∑
j=1

αRj∇2ûj (4.9)
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where αRj are the undetermined constants for the stream function while they are

time-dependent for ω and θ, and fj satisfy the Poisson equation ∇2ûj = fj . Then,

Equation (4.5) becomes

ciRi +

∫
Γ

(q∗R− u∗∂R
∂n

)dΓ =
N+L∑
j=1

αRj

[
ciûji +

∫
Γ

(q∗ûj − u∗q̂j)dΓ

]
(4.10)

which is a boundary-only integral equation where q̂ = ∂û/∂n. When the boundary is

discretized with constant boundary elements, Equation (4.1)-(4.3) can be written as

Hψ −Gψq = (HÛ −GQ̂)F−1(−ω), (4.11)

µnfρf
µfρnf

Prf(Hω −Gωq) =(HÛ −GQ̂)F−1

[
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y

− σnfρf
σfρnf

Ha2Prf ((
∂u

∂x
− ∂v

∂y
) sinλ cosλ

−∂v
∂x

cos2 λ+
∂u

∂y
sin2 λ)− βnf

βf
RafPrf

∂θ

∂x

]
,

(4.12)

(ρCp)fknf
(ρCp)nfkf

(Hθ −Gθq) =(HÛ −GQ̂)F−1(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
) (4.13)

where H , G, Û , Q̂ and F are the usual DRBEM matrices obtained by the use of

fundamental solution of Laplace equation as given in Section 3.2.1. The compact

form of stream function, vorticity and energy equations is

Hψ −Gψq = b̃ (4.14)

−Cω̇ +Hωω −Gωωq = c̃ (4.15)

−Cθ̇ +Hθθ −Gθθq = d̃. (4.16)

similar to Equations (3.20-3.22). However, here

C = (HÛ −GQ̂)F−1, Hω =
µnfρf
µfρnf

PrfH −D,

Gω =
µnfρf
µfρnf

PrfG, Hθ =
knf (ρCp)f
kf (ρCp)nf

H −D,

Gθ =
knf (ρCp)f
kf (ρCp)nf

G and D = C(u
∂F

∂v
F−1 + v

∂F

∂y
F−1)
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and the right hand side vectors are

b̃ =C(−ω)

c̃ = −C σnfρf
σfρnf

Ha2Prf ((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)

−C βnf
βf

RafPrf
∂θ

∂x

d̃ =0.

(4.17)

Equation (4.15) and Equation (4.16) involve the time derivatives and a two-level time

integration scheme will be employed in similar way given in Chapter 3, Section 3.2.1.

Thus, a linear approximation is proposed for the variation of ω and ωq and θ and θq

within each time step as given in Equations (3.24) and (3.28). The first order time

derivative is also approximated as in Chapter 3, Equation (3.25). Substitution of

these approximations into Equations (4.15) and (4.16), results in:

(
−C
∆t

+ βωHω)ωm+1 − βωqGωω
m+1
q =c̃m − (

C

∆t
+ (1− βω)Hω)ωm

+ (1− βωq)Gωω
m
q ,

(4.18)

(
−C
∆t

+ βθHθ)θ
m+1 − βθqGθθ

m+1
q =d̃m − (

C

∆t
+ (1− βθ)Hθ)θ

m

+ (1− βθq)Gθθ
m
q ,

(4.19)

respectively for the vorticity and the temperature. The coupled equations in ψ, ω and

θ will be solved iteratively for each time level m as explained in Chapter 3, Section

3.2.1.

4.2.2 Stability analysis of the numerical method

Stability analysis for the present numerical method will be carried out through Equa-

tions (4.18) and (4.19) as explained in Chapter 3, Section 3.2.2. Thus, Equations

(4.18) and (4.19) can be written as

xm+1
ω = K−1ω bω −K−1ω Lωx

m
ω , xm+1

θ = K−1θ bθ −K−1θ Lθx
m
θ (4.20)

whereKω, Lω,Kθ and Lθ are the matrices obtained by shuffling of the coefficient ma-

trices in Equation (4.18) and Equation (4.19), corresponding to the unknown values
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and its normal derivatives at the (m + 1)-th time level and the known values and its

normal derivatives at the m-th time level, respectively. The stability of the numerical

method is checked through the spectral radius of matrices K−1ω Lω and K−1θ Lθ. That

is, if ρ(K−1ω Lω) < 1 and ρ(K−1θ Lθ) < 1, then the iterative scheme is stable.

4.3 Steady MHD Convective Nanofluid Flow in an Inclined Semi-Annulus with

Circular Inner Wall

As a first application, the steady natural convection nanofluid flow in an inclined

semi-circular annulus filled with a water-based nanofluid involving Cu-nanoparticles

is solved by using DRBEM in the presence of a uniform inclined magnetic field.

The equations governing the steady counterpart of the unsteady Equations (4.1)-(4.3)

for the flow and heat transfer can be written as

∇2ψ = −ω (4.21)

∇2ω = (1− φ)2.5[(1− φ) +
ρs
ρf
φ]

1

Prf
[(u

∂ω

∂x
+ v

∂ω

∂y
)

−Raf [(1− φ) + φ
βs
βf

]
∂θ

∂x

− Ha2

(1− φ) + φ ρs
ρf

(1 +
3( σs

σf
− 1)φ

( σs
σf

+ 2)− ( σs
σf
− 1)φ

)

×((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)]

(4.22)

∇2θ = [(1− φ) +
(ρCp)s
(ρCp)f

φ]
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

(u
∂θ

∂x
+ v

∂θ

∂y
). (4.23)

The flow configuration of the problem is displayed in Figure 4.1. The enclosure

forms an angle β with the x-axis and it is subject to an inclined uniform magnetic

field making an angle λ with the x-axis. The enclosure with stationary walls (i.e.

no-slip boundary conditions are considered) is filled with Cu-water nanofluid. The

outer wall is kept at cold temperature (Tc) while the inner wall is under a constant

heat flux (q′′). The straight boundaries are thermally insulated, i.e. adiabatic. Thus,
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Figure 4.1: Geometry of the problem.

the non-dimensional boundary conditions for the ψ and θ become

At the stationary walls : ψ = ∂ψ/∂x = ∂ψ/∂y = 0, ∂θ/∂n = 0

At inner circular wall : ψ = ∂ψ/∂x = ∂ψ/∂y = 0, ∂θ/∂n = −1

At outer circular wall : ψ = ∂ψ/∂x = ∂ψ/∂y = 0, θ = 0 .

(4.24)

Finally, the corresponding DRBEM equations for Equations (4.21)-(4.23) can be ob-

tained as explained in Section 4.2.1 for the stream function, vorticity and temperature

as:

Hψ −G
∂ψ

∂n
= (HÛ−GQ̂)F−1{−ω} (4.25)

(Hω −G
∂ω

∂n
) = (1− φ)2.5[(1− φ) +

ρs
ρf
φ]

1

Prf
(HÛ−GQ̂)F−1

{(u∂ω
∂x

+ v
∂ω

∂y
)−Raf [(1− φ) + φ

βs
βf

]
∂θ

∂x

−(1 +
3( σs

σf
− 1)φ

( σs
σf

+ 2)− ( σs
σf
− 1)φ

)(
Ha2

(1− φ) + φ ρs
ρf

)

×((
∂u

∂x
− ∂v

∂y
) sinλ cosλ− ∂v

∂x
cos2 λ+

∂u

∂y
sin2 λ)}

(4.26)

(Hθ −G
∂θ

∂n
) = [(1− φ) +

(ρCp)s
(ρCp)f

φ]
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

(HÛ−GQ̂)F−1

×(u
∂θ

∂x
+ v

∂θ

∂y
).

(4.27)

The numerical simulations are carried out to investigate the effect of various control-

ling parameters, such as Hartmann number (Ha = 0, 20, 50, 100, 300, 500), Rayleigh
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Figure 4.2: Grid dependency: Ra = 105, Ha = 50, φ = 0.06, λ = β = 0.

number (Ra = 103, 104, 105), the inclination angles of the magnetic field (λ) and the

enclosure (β) (λ, β = 0,
π

6
,
π

4
,
π

3
,
π

2
) and the solid volume fraction of nanoparticles

(φ = 0, 0.02, 0.06, 0.1, 0.2) at a fixed Prandtl number of Prf = 6.2. The radius

of inner and outer circles are taken as rin = 1 and rout = 2, respectively, to con-

struct the computational domain. The grid independency test is performed in terms

of the variations of |ψ|max, |θ|max and Nu along the inner wall with respect to the

number of boundary elements N when Ha = 50, 105, φ = 0.06. Figure 4.2 dis-

plays that N ≈ 130 boundary elements are enough for the grid independence for a

moderate value of Ha = 50. However, for higher values of Ha and Ra, it is well-

known that a finer mesh is required, for example N ≈ 350 elements are used when

Ha = 500, Ra = 104. In addition, the CPU time is ranging from 88 (in seconds,

for the smallest values of Ha = 0 and Ra = 103) to 133 (in seconds, for the highest

values of Ha = 50, Ra = 105) at fixed λ = β = 0 and φ = 0.06 when the runs are

performed in a computer of Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz 16,00

GB, 64bit. It is also well-observed that using linear elements makes no difference

compared to constant elements, thus the subsequent computations are done by us-

ing constant elements since it is computationally easier than linear elements. The

code validation is performed by evaluating the average Nusselt number at various

combination of controlling parameters, namely Ha, Ra and inclination angles λ and

β, and the obtained results are compared with the ones given in the work of Sheik-

holeslami [86]. The present results Nu = 3.685, 3.558, 3.12 (Ha = 0, Ra = 104)

and Nu = 2.385, 2.495, 2.471 (Ha = 20, Ra = 104) respectively at λ = β = 0,
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π/4, π/2 are in good agreement with the numerical results of Sheikholeslami [86]

Nu ≈ 3.69, 3.55, 3.1 (Ha = 0, Ra = 104) and Nu ≈ 2.39, 2.49, 2.47 (Ha = 20,

Ra = 104) measured from Figure 7 given in [86], respectively at λ = β = 0, π/4,

π/2.

λ = 0 λ = π/6 λ = π/4

λ = π/3 λ = π/2

ψ

θ

ψ

θ

Figure 4.3: Effect of λ on streamlines and isotherms: β = 0, φ = 0.06, Ra = 104,

Ha = 20.

The effect of the inclination angle λ of the magnetic field on the streamlines and

isotherms are displayed in Figure 4.3 at Ha = 20, Ra = 104, φ = 0.06 and β = 0.

At λ = 0, two symmetric counter-rotating eddies are formed in streamlines. The

cores of eddies are located symmetrically along the vertical centerline of the cavity.

However, the positive vortex gets stronger and expands in the direction of magnetic

field which forces the negative vortex to shrink, thus the symmetry is destroyed with

an increase in λ to π/6. The core of the negative vortex is separated, and two small

negative eddies are formed around λ = π/4. As λ increases to π/3, one of these

negative eddies close to the bottom horizontal wall of the cavity gets larger, while the

other becomes smaller and finally it vanishes with a further increase in λ to π/2. As a

result, when λ = π/2 the counter-rotating vortices become again symmetric, but now

their cores are located above the thermally insulated walls instead of the center of the

cavity as in the case of λ = 0. On the other hand, the thermal plume formed at the

middle of the cavity just above the inner wall when λ = 0 moves along the inner wall
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in the direction of the magnetic field as expected.

Figures 4.4-4.6 show the effects of the Rayleigh and Hartmann numbers on the stream-

lines and isotherms when λ and β are taken as equal to each other (i.e. λ = β = 0,

π/4,π/2). The cores of the two equal counter-rotating vortices formed inside the

enclosure at λ = β = 0 (see Figure 4.4) move upward following the increase in ve-

locity of the fluid at high Ra for each Ha. The effect of convection on heat transfer

dominated by conduction at Ra = 103 becomes more significant as Ra increases,

and thus a thermal plume is formed above the inner wall. The plume gets bigger

leading the formation of a thermal boundary layer close to the outer wall at the high-

est Ra(= 105). However, the thermal plume over the inner wall vanishes with an

increase in Ha, which forces the isotherms to become more parallel to each, the sym-

metry of the eddies observed at λ = β = 0 is destroyed following the formation

Ra = 103 Ra = 104 Ra = 105

H
a

=
0

H
a

=
20

H
a

=
50

ψ

θ

ψ

θ

ψ

θ

Figure 4.4: Effects of Ha and Ra on streamlines and isotherms: λ = β = 0, φ =

0.06.
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Figure 4.5: Effects of Ha and Ra on streamlines and isotherms: λ = β = π/4,

φ = 0.06.
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of a bigger and stronger positive vortex in streamlines as in the case when β = 0

displayed in Figure 4.3. Moreover, positive vortex elongates with the inclination of

the enclosure and becomes dominant to the secondary negative vortex. Since the en-

closure is also inclined (i.e. β = π/4), the secondary vortex at λ = π/4 has only

one core while it has two cores in the case λ = π/4, β = 0 (see Figure 4.3). The

core of the main vortex moves upward closer to the negative vortex due to the con-

vection dominance for higher Ra at each Ha. However, velocity is reduced due to

the retarding effect of Lorentz force as Ha increases, which limits the motion of the

core in the upward direction. It is observed from Figure 4.6 that when the inclina-

tion angles are λ = β(= π/2) only one positive eddy occurs in streamlines and its

Ra = 103 Ra = 104 Ra = 105 Ra = 103 Ra = 104 Ra = 105

Ra = 103 Ra = 104 Ra = 105

H
a

=
0

H
a

=
20

H
a

=
50

ψ

θ

ψ

θ

ψ

θ

Figure 4.6: Effects of Ha and Ra on streamlines and isotherms: λ = β = π/2,

φ = 0.06.

113



core moves upwards as Ra increases similar to the other cases. On the other hand, at

λ = β = π/4, π/2, a formation of a plume in isotherms occurs on the surface of inner

wall in the direction of the magnetic field as Ra increases following the convection

mode of the flow. However, the intensity of convection and the plume become weaker

and isotherms becomes more parallel to each other as Ha increases. Moreover, irre-

spective of λ and β, the values of ψ decreases in magnitude as Ha increases, but it

increases with Ra.

Ha = 100 Ha = 300 Ha = 500

λ
=
β

=
0◦

λ
=
β

=
45

◦
λ

=
β

=
90

◦

ψ

θ

ψ

θ

ψ

θ

Figure 4.7: Streamlines and isotherms: Ra = 104, φ = 0.06, Ha = 100, 300, 500

λ = β = 0, π/4, π/2.
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The effect of high Ha(= 100,300, 500) on the streamlines and temperature profiles is

drawn in Figure 4.7 at the inclination angles (λ = β = 0, π/4, π/2) when Ra = 104,

φ = 0.06. As it is expected, an increase inHa results in a decrease on the values of the

stream function while the isotherms display the similar behavior at each inclination

angles since the high Ha reduces the effect of Ra on heat transfer. On the other hand,

some distortions are observed on the streamlines close to the outer circular boundary

at high Ha, especially when Ha = 500. It is well-known that a finer mesh should

be used when Ha increases. DRBEM matrices are full matrices and do not show a

special form although their sizes are small due to the boundary only discretization.

However, for large Ha, the number of boundary elements has to be increased which

results in larger DRBEM matrices that are full. Thus, they represent computational

difficulties for large values of Ha due to the resulting rather large-sized systems.

The pure effect of the inclination angle β of the enclosure on the flow field and tem-

perature distribution is visualized in terms of streamlines and isotherms in Figure 4.8

at fixed λ = π/4 when φ = 0.06, Ra = 104 and Ha = 20. When the enclosure is

horizontal (i.e. β = 0), the positive vortex expands upward in the direction of the

applied magnetic field (λ = π/4), and thus the negative vortex with two cores shrinks

in the right part of the annulus. As β increases, the negative vortex shrinks further

and its cores merge forming one vortex close to the straight wall of the annulus, and

finally it vanishes when β = π/2 due to the slip of the core of the positive vortex

in the direction of the enclosure. The thermal plume formed on the right part of the

inner circular wall in the direction of the magnetic field (λ = π/4) when β = 0, is

relocated by moving right on the surface of the inner wall as β increases. Finally,

when β = π/2 the plume is formed on the top of the enclosure.

Figure 4.9 displays the variation in the stream function, vorticity and temperature

along (a) the vertical centerline (x = 0, 1 ≤ y ≤ 2) and (b) the horizontal line

(y = 1.25, −2 ≤ x ≤ 2), respectively, at different solid volume fractions φ = 0,

0.02, 0.06, 0.1, 0.2 when Ha = 20 and Ra = 103. As φ increases, the values of

stream function increase in magnitude both along the vertical centerline x = 0 and

horizontal line y = 1.25, while no significant effect of φ is observed on the vorticity

and temperature variations. However, the temperature drops from inner to outer wall

along the vertical centerline as expected since the outer wall is cold. On the other
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β = 0 β = π/6

β = π/4 β = π/3 β = π/2

Figure 4.8: Effect of β on streamlines and isotherms: λ = π/4, φ = 0.06, Ra = 104,

Ha = 20.

hand, temperature rises in the left half of the annulus while it drops in the right half

of the enclosure along the line y = 1.25 irrespective of the values of φ.

The heat transfer rate inside the annulus is further investigated in terms of average

Nusselt number along the inner wall at various combination ofRa,Ha and inclination

angles of the magnetic field and enclosure at φ = 0.06. Figure 4.10(a) displays

the variation of Nu along the inner wall with respect to Ra at λ = β = 0, π/4,

π/2 by fixing Ha = 20. Nu increases as Ra increases indicating enhancement of

heat transfer inside the enclosure. Although there is no obvious difference in Nu at
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ψ ω θ

(a)

(b)

Figure 4.9: Variation of ψ, ω and θ along (a) vertical centerline x = 0, 1 ≤ y ≤ 2,

(b) horizontal line y = 1.25, −2 ≤ x ≤ 2 at different φ: Ra = 103, Ha = 20,

λ = β = 0.

different λ, β for Ra ≤ 104, Nu reaches its maximum at λ = β = π/4 for Ra > 104.

In addition, the variation of Nu versus Ha is shown in Figure 4.10(b) at λ = β = 0,

π/4, π/2 when Ra = 104. It is observed that Ha has an opposite effect on Nu

compared to Ra, that is, the average Nusselt number reduces for higher values of Ha

for each λ = β. The rate of decrease is slower at λ = β = π/2 than at λ = β = 0.

The maximum of Nu is observed at λ = β = 0 in the absence of magnetic field (i.e.

Nu Nu

(a) Ra (b) Ha
Figure 4.10: Effects of (a) Ra and (b) Ha on Nu: λ = β = 0, π/4, π/2.
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Ha = 0) while it occurs at λ = β = π/2 for higher values of Ha.

Finally, the effect of Hartmann number on (a) the horizontal velocity u and (b) vertical

velocity v along the vertical centerline of the enclosure are shown in Figure 4.11 at

Ra = 103, 104 when λ = β = 0, φ = 0.06. Due to the retarding effect of magnetic

force on the flow, both the horizontal and vertical velocities decrease in magnitude

as Ha increases. This phenomena is more significant at Ra = 103 in the conduction

mode which can be affected by the magnetic field. On the other hand, the horizontal

and vertical velocities increase with an increase in Ra due to the strong buoyancy

force.

y y

y y

u u

v v

Ra = 103 Ra = 104

(a)

(b)

Figure 4.11: Horizontal velocity u and vertical velocity v along the vertical centerline

x = 0, 1 ≤ y ≤ 2: Ra = 103, 104 for Ha = 0, 20, 50.

4.4 Unsteady MHD Natural Convection Nanofluid Flow in a Semi-Annulus

with a Sinusoidal Inner Wall

The unsteady case of the problem considered in Section 4.3 is solved in a semi-

annulus with an irregular wavy wall in order to see the effect of the irregular inner
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wall on the flow and temperature distributions at several combinations of problem

physical parameters. The equations governing the problem and the application of nu-

merical technique are given respectively in Section 4.1 and Section 4.2 in details. The

computational domain and boundary conditions are shown in Figure 4.12.

g
B

λ

ψ = θ = 0

∂θ
∂n = −1

ψ = ∂θ
∂n = 0 ψ = ∂θ

∂n = 0

ψ = 0

x

y

Figure 4.12: Geometry of the problem with boundary conditions.

The results are presented over a wide range of problem parameters: 103 ≤ Ra ≤
105, 0 ≤ Ha ≤ 100, 0 ≤ φ ≤ 0.1, 0 ≤ λ ≤ π

2
by keeping Prandtl number

fixed as Prf = 6.2. The problem domain is determined by taking several number

of undulation (0 ≤ n ≤ 6) of the inner wavy wall defined by r = rin + A cos(nζ)

in which A = 0.2, rin = 1 are the amplitude and radius of the sinusoidal wall,

respectively, and 0 ≤ ζ ≤ π. Figure 4.13 reveals that it is enough to use N ≈ 350

constant boundary elements to ensure the grid independence, for the highest values

of Ha = 50 and Ra = 105, and hence it is used in the following computations.

|ψ
| m

a
x

|θ
| m

a
x

N
u

N N

N
Figure 4.13: Grid dependency: Ra = 105, Ha = 50, φ = 0.06, A = 0.2, n = 4,

λ = 0.

The stability analysis of the numerical method is performed for different time incre-

ments and relaxation parameters by taking βω = βθ = β and βωq = βθq = βq. Table
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4.2 shows the variation of the spectral radius for the coefficient matrices of the vor-

ticity and temperature with respect to relaxation parameters and the time step size

when Ra = 104, Ha = 20, φ = 0.06, λ = 0, n = 4. One can observe that the

optimum relaxation parameter and time increment are β = βq = 0.9 and ∆t = 0.9,

respectively, since a decrease in both relaxation parameters and time step size results

in an increase in the spectral radius of coefficient matrices and moreover some of the

eigenvalues become to diverge. The symbol star given in the table indicates that some

of the eigenvalues diverges.

Table 4.2: Spectral radius of vorticity and temperature equations when Ra = 104,

Ha = 20, λ = 0, φ = 0.06, n = 4, ε = 10−4.

β = βq
∆t = 0.9 ∆t = 0.6 ∆t = 0.3

ρ(K−1ω Lω) ρ(K−1θ Lθ) ρ(K−1ω Lω) ρ(K−1θ Lθ) ρ(K−1ω Lω) ρ(K−1θ Lθ)

0.9 0.1111 0.11413 ∗ 0.15342 ∗ 0.31621

0.8 ∗ 0.253820 0.25 0.25574 ∗ ∗

0.7 0.42857 0.43419 0.42857 0.43607 ∗ 0.44366

0.6 0.66667 0.67432 0.66657 ∗ ∗ 0.68724

0.5 1 1 1 1 1 1

On the other hand, Table 4.3 indicates the relation between spectral radius of co-

efficient matrices considering different values of relaxation parameters for vorticity

(βω = βωq ) and temperature (βθ = βθq ) when Ra = 104, Ha = 20, λ = 0, φ = 0.06,

n = 4 and the time step size ∆t = 0.9. It can be seen that, as βω = βωq decreases

Table 4.3: Spectral radius of vorticity and temperature equations when Ra = 104,

Ha = 20, λ = 0, φ = 0.06, ∆t = 0.9, n = 4, ε = 10−4.

βω, βωq βθ, βθq ρ(K−1ω Lω) ρ(K−1θ Lθ)

0.9 0.5 * *

0.9 0.6 0.66667 0.66667

0.9 0.9 0.1111 0.11413

0.8 0.7 * *

0.7 0.8 0.42851 *

0.6 0.9 0.66658 *

0.5 0.9 1 1
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and βθ = βθq increases, the spectral radius of vorticity and temperature decrease up

to the case when βω = βωq = 0.7 and βθ = βθq = 0.9, however, some eigenvalues di-

verge. Hence, it can be said that the optimal values for the spectral radius of vorticity

and temperature are obtained when βω = βωq = βθ = βθq = 0.9 as observed in Table

4.2. When βω = βωq = 0.6 and βθ = βθq = 0.9 maximum eigenvalues of coefficient

matrices start to increase and the method becomes unstable with a further decrease in

βω = βωq = 0.5.

In order to verify that the choice of β = βq = 0.9 and ∆t = 0.9 are the optimal

values and satisfy the stability conditions for several combinations of Hartmann and

Rayleigh numbers, the spectral radius of the coefficient matrices for the vorticity and

temperature equations are calculated and presented in Table 4.4. The simulations are

done for Ra(= 103, 104, 105) at a fixed Ha = 20 and for Ha(= 10, 20, 50) at a fixed

Ra = 104. It is well observed that the choice of β = βq = ∆t = 0.9 is valid for each

Ra andHa, and hence in the subsequent computations these values are employed and

the results obtained at steady-state are drawn in terms of streamlines and isotherms.

Table 4.4: Spectral radius of vorticity and temperature equations: φ = 0.06, λ = 0,

β = βq = 0.9, ∆t = 0.9, ε = 10−4.

Ha = 20

Ra ρ(K−1ω Lω) ρ(K−1θ Lθ)

103 0.1111 0.11179

104 0.1111 0.11413

105 0.1111 0.15827

Ra = 104

Ha ρ(K−1ω Lω) ρ(K−1θ Lθ)

10 0.1111 0.11178

20 0.1111 0.11413

50 0.1111 0.14916

In Figure 4.14, the effect of the inclination angle of magnetic field λ on the flow and

temperature fields are displayed at Ra = 104, Ha = 20, n = 4 and φ = 0.06.

The profiles of both the stream function and temperature fields in each λ are similar

to the case in a semi-annulus with circular inner wall shown in Section 4.3, Figure

4.3. However, the sinusoidal inner wall causes an increase in the magnitude of the

stream function at each λ; and the two-cores for the negative vortex observed in the

circular inner wall when λ = π/4, π/3 merge forming a stronger vortex in the case

of sinusoidal inner wall. On the other hand, the thermal plume formed just above the

inner wall in the direction of applied magnetic field weakens when compared to the

case of annulus with circular wall at each λ.
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λ = 0 λ = π/6 λ = π/4

λ = π/3 λ = π/2

ψ

θ

ψ

θ

Figure 4.14: Effect of λ on the steady-state streamlines and isotherms: n = 4, φ =

0.06, Ra = 104, Ha = 20.

Figure 4.15 illustrates the variation of stream function, vorticity and temperature

along the (a) vertical centerline x = 0 and (b) horizontal line y = 1.6 at various

time levels t = 1, 3, 5, 10, 50, 155, when Ra = 104, Ha = 20, φ = 0.06, n = 4 and

ψ ω θ

(a)
yy y

xx x

(b)

Figure 4.15: Time evolution of ψ, ω, θ along (a) vertical centerline x = 0, 1.2 ≤
y ≤ 2, (b) horizontal line y = 1.6, −2 ≤ x ≤ 2: Ra = 104, Ha = 20, ∆t = 0.9,

φ = 0.06, n = 4, λ = 0.
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∆t = 0.9. It can be seen that as time advances the values of all unknowns ψ, ω and

θ increase in magnitude and reach to the steady-state. Thus, in the rest of the section

all figures drawn for stream function and temperature are obtained at steady-state.

The steady-state streamlines and isotherms are displayed in Figure 4.16 for 0 ≤ Ha ≤
50 and 103 ≤ Ra ≤ 105 when the number of undulation n = 4 and the magnetic

field is applied horizontally λ = 0. The obtained results for both flow field and

temperature distribution show a similar behavior with the case of inner circular wall

(see Figure 4.4) at each Ha and Ra. However, with the fluctuation in the inner wall,

the strength of stream function increases for each combination of Ha and Ra. On the

Ra = 103 Ra = 104 Ra = 105

H
a

=
0

H
a

=
20

H
a

=
50

ψ

θ

ψ

θ

ψ

θ

Figure 4.16: Effects of Ha and Ra on streamlines and isotherms: λ = 0, φ = 0.06,

n = 4.
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other hand, the isotherms are distributed smoothly taking the shape of the inner wavy

wall irrespective of the values of Ha and Ra, while there is no change in the values

of temperature when compared to the case with circular inner wall.

The effect of (a) Hartmann and (b) Rayleigh numbers onNu is shown in Figure 4.17.

It is observed that the average Nusselt number decreases with increasing Hartmann

number while it increase for high values of Ra.

N
u

N
u

(a) Ha (b) Ra

Figure 4.17: Effects of (a) Ha and (b) Ra on Nu: n = 4, φ = 0.06, λ = 0.

Further, the effect of solid volume fraction φ on Nu is displayed in Figure 4.18.

The variation of Nu with Ha is drawn in Figure 4.18 (a) by fixing Ra = 104, and

its variation with respect to Ra is shown in Figure 4.18 (b) with fixed Ha = 10.

The average Nusselt number increases as φ increases at each Ha and Ra due to the

addition of nanoparticles with high thermal conductivity into the base fluid.

N
u

N
u

(a) Ha (b) Ra

Figure 4.18: Variation of Nu with (a) Ha and (b) Ra at different φ: n = 4, λ = 0.

The variation of Nu with Rayleigh number at different n are displayed in Figure 4.19
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(a) Ha = 0, (b) Ha = 10, (c) Ha = 50, (d) Ha = 100. At small Ha = 0, 10, an

increase in n results in an increase in Nu at each Ra. In addition, the increase rate in

Nu gets more asRa increases. On the other hand, whenHa ≥ 50 andRa = 103, 104

the increasing effect of n on Nu is deteriorated, while Nu reincreases with n in the

case of convective heat transfer at Ra = 105. This indicates that the heat transfer is

enhanced when the length of the hot surface gets longer by taking more number of

undulations at specific combinations of Ha and Ra.

N
u

N
u

N
u

N
u

(a) Ha = 0 (b) Ha = 10

(c) Ha = 50 (d) Ha = 100

Ra Ra

Ra Ra

Figure 4.19: Variation of Nu with Ra at different numbers of undulation n when

φ = 0.06, λ = 0: (a) Ha = 0, (b) Ha = 10, (c) Ha = 50, (d) Ha = 100.

Finally, the influence of the amplitude A of the inner wavy wall on Nu is investigated

at Ha = 0, 10, 50, 100, n = 4, φ = 0.06, λ = 0 (see Figure 4.20). It is well-

observed that an increase in the amplitude leads to an increase in the length of the

heated portion of the inner wall, which subsequently enhances the heat transfer with

increasing Nu irrespective of the values of Ha and Ra.
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Figure 4.20: Variation of Nu with Ra at different amplitudes A when n = 4, φ =

0.06, λ = 0: (a) Ha = 0, (b) Ha = 10, (c) Ha = 50, (d) Ha = 100.

4.5 Summary of the Results Obtained in Chapter 4

In this chapter, we investigated a steady/unsteady MHD natural convection flow of

a nanofluid in a semi-annulus enclosure with either circular or sinusoidal wavy in-

ner walls under the effect of uniform magnetic field. The numerical results for the

streamlines and isotherms, as well as the Nusselt number, are studied and depicted

graphically for the effect of pertinent physical parameters. Generally, our results re-

vealed that:

• When the inclination angle of magnetic field (λ) and the enclosure (β) are taken

as zero (λ = β = 0), at Ra = 103 and Ha = 0, the cores of two equal

counter-rotating vortices formed inside the enclosure. The strength of stream

function decreases in magnitude as the Ha increases whereas it increases with

an increase in Ra irrespective of the types of inner wall.

126



• On the other hand, a thermal plume is observed just above the inner circular/

sinusoidal wall, when the convection regime starts to dominate the convection

heat transfer. At Ra = 105, the plume gets bigger and the thermal boundary

layer is formed close to the outer wall.

• As the inclination angle of enclosure increases, the symmetry of the eddies ob-

served at λ = β = 0 is destroyed, positive vortex elongates with the inclination

of the enclosure and becomes dominant to the secondary vortex. On the other

hand, a formation of a plume in isotherms occurs on the surface of inner wall

in the direction of magnetic field.

• The inclination angle of magnetic field affects the streamline and isotherm pro-

file inside the enclosure for both circular and sinusoidal inner walls. When the

magnetic field applied in horizontal direction two symmetric counter-rotating

eddies are formed in streamlines, but, this symmetry is destroyed with an in-

crease in λ. As λ reaches π/2 the counter-rotating vortices become again sym-

metric. On the other hand, at λ = 0, the thermal plume formed at the middle of

the cavity just above the inner wall moves along the inner wall in the direction

of the magnetic field.

• As expected, average Nusselt number increases with an increase inRa whereas

it decreases as Ha increases. In addition, the maximum Nu is observed at

λ = β = 0 in the absence of magnetic field (Ha = 0) and λ = β = π/2 for

higher values of Ha.

• Average Nusselt number increases with increase of solid volume fraction, since

the addition of high thermal conductivity nanoparticles will increase the heat

transfer enhancement.

• Furthermore, at Ha = 0, 10, an increase in the number of undulation n of wavy

wall results in an increase inNu at eachRa. On the other hand, whenHa ≥ 50

and Ra = 103, 104, the increasing effect of n on Nu is degenerated, while Nu

again increases in the case of convective heat transfer at Ra = 105.

• Finally, an increase in the amplitude of the inner wall leads to an enhancement

in the heat transfer with increasing Nu.
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CHAPTER 5

NATURAL CONVECTION FLOW IN SEMI-ANNULUS ENCLOSURES

FILLED WITH WATER-BASED FERROFLUID IN THE PRESENCE OF

SPATIALLY VARIABLE MAGNETIC SOURCES

Thermal conductivity of fluid with metals, non-metals and their oxides are found

more effective than the commonly used fluids such as; water, ethyle gylicol, mineral

oils; since using small-sized solid particles inside fluids increases their thermal con-

ductivity as mentioned in Chapter 4. On the other hand, the dynamics of ferrofluid

in the presence of magnetic field plays a significant role for an external thermal con-

trol in industry, medical technology and bio-engineering. Ferrofluids, which have the

ability to reduce friction, are industrially prepared by magnetic fluids which consist

of ferromagnetic particles such as; magnetite (Fe3O4) and hematite (Fe2O3), as given

in details in Introduction. Briefly, ferrohydrodynamics is concerned with the me-

chanics of fluid motion which is influenced by strong force of magnetic polarization.

This chapter deals with the dual reciprocity BEM solution of the viscous, steady, two

dimensional, incompressible, laminar, ferrofluid flow in a complex geometry with si-

nusoidal inner wall under the effect of nodal magnetic sources. For the mathematical

formulation of the problem both magnetization and electrical conductivity effects on

ferrofluid are taken into account and thence the combined principles of MHD and

FHD are considered. The major difference between the studies in this chapter and

those in the previous chapters is to consider the effect of the magnetic field obtained

from a nodal source or multiple nodal sources. To achieve the above objective, this

chapter is organized as follows. The governing equations of the ferrofluid flow under

the action of the applied magnetic field due to nodal magnetic source(s) and corre-

sponding boundary conditions are introduced in Section 5.1. Section 5.2 is devoted

to the application of dual reciprocity BEM to the governing equations of the problem
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which is under consideration. The effect of externally applied magnetic field pro-

duced by one nodal magnet is examined in Section 5.3. In Section 5.4, the study is

extended to the discussion of the influence of multiple nodal magnetic sources.

5.1 Governing Equations for the Steady MHD Convection Ferrofluid Flow

In this section, we are going to consider the governing equations of steady convection

fluid flow and heat transfer in the presence of spatially variable magnetic sources

(i.e. one nodal or multiple nodal magnetic sources). The problem is defined in two-

dimensional semi-annulus cavity which has a sinusoidal inner wall. The shape of

inner sinusoidal profile is determined by r = rin+A cos(nξ) in which rin is the radius

of base circle,A, n and ξ are the amplitude, number of undulations and rotation angle,

respectively. The difference between radius of outer circle rout and the radius of inner

circle rin gives the characteristic length ` as defined in Chapter 4. The enclosure

with sinusoidal inner wall is filled with a water-based ferrofluid. The working fluid

is assumed to be Newtonian and incompressible with the flow set to operate in the

laminar convection regime. The magnetic Reynolds number is assumed to be so

small that the induced magnetic field is neglected in comparison to the externally

applied magnetic field. The governing equations are consistent with the principles of

FHD and MHD. The ferrofluid has constant thermophysical properties and obeys the

Boussinesq approximation. Under the above assumptions the equations governing

the flow under consideration, the stream function ψ, vorticity ω and temperature θ

formulation is adopted as given in Chapter 1, Equations (1.76)-(1.78):

∇2ψ = −ω (5.1)
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∇2ω =
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(5.3)

where Raf = gβf`
3(T − Tc)/(αfνf ), P rf = νf/αf , Ha = `µ0H0

√
σf/µf , ε1 =

T1/∆T, ε2 = T ′c/∆T, Ec = (µfνf )/ [(ρCp)f∆T`
2] and Mnf = µ0H

2
0K
′(Th −

Tc)`
2/(µfαf ) are the Rayleigh number, Prandtl number, Hartmann number arising
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from MHD, temperature number, Curie temperature number, Eckert number and

magnetic number arising from FHD for the base fluid, respectively.

The corresponding boundary conditions for stream function and temperature will be

given in related sections and the unknown boundary conditions for the vorticity will

be obtained from the stream function equation (5.1) by using radial basis functions

through the application of the dual reciprocity BEM as in the previous chapters.

In addition, the thermo-physical properties of the nanoparticles (Fe3O4) and base fluid

(water) are taken as in the work of Sheikholeslami [81] (see Table 5.1).

Table 5.1: Thermo-physical properties of water and nanoparticle [81]

ρ(kg/m3) Cp(j/kgK) k(W/mk) β × 105(K−1) σ(Ωm)−1

Pure water 997.1 4179 0.613 21 0.05

Fe3O4 5200 670 6 1.3 25.000

5.2 Application of Dual Reciprocity Boundary Element Method

The governing equations of the heat transfer and the ferrofluid flow problem are dis-

cretized by using the dual reciprocity boundary element method. When we weight

Equations (5.1)-(5.3) with the fundamental solution of Laplace equation u∗ =
1

2π
ln(

1

r
)

and apply the Divergence theorem, we get the following integral equations

ciRi +

∫
Γ

(q∗R− u∗∂R
∂n

) = −
∫

Ω

bRu
∗dΩ (5.4)

where R is used for each unknown ψ, ω and θ and the right hand side of equations

(5.1), (5.2), (5.3) are given respectively as

bψ = −ω (5.5)
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bω =

(1− φ)2.5((1− φ) + φ
ρs
ρf

)

Prf

∫
Ω

[(
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
)

− MnfPrf

(1− φ) + φ
ρs
ρf

(
∂θ

∂x
H
∂H

∂y
+
∂θ

∂y
H
∂H

∂x
)

− Ha2Prf

(1− φ) + φ
ρs
ρf

(1 +

3(
σs
σf
− 1)

(
σs
σf

+ 2)− (
σs
σf
− 1)φ

)[2Hx
∂Hx

∂x
v +H2

x

∂v

∂x

−∂Hx

∂x
Hyu−Hx

∂Hy

∂x
u−HxHy

∂u

∂x
− 2Hy

∂Hy

∂y
u−H2

y

∂u

∂y
+
∂Hx

∂y
Hyv

+Hx
∂Hy

∂y
v +HxHy

∂v

∂y
]−RaPrf ((1− φ) + φ

βs
βf

)
∂θ

∂x
]u∗dΩ

(5.6)

bθ =

((1− φ) + φ
(ρCp)s
(ρCp)f

)

knf
kf

∫
Ω

[(
∂θ

∂x

∂ψ

∂y
− ∂θ

∂y

∂ψ

∂x
)

− Ha2Ec

(1− φ) + φ
(ρCp)s
(ρCp)f

(1 +

3(
σs
σf
− 1)

(
σs
σf

+ 2)− (
σs
σf
− 1)φ

) (uHy − vHx)
2

− MnfEc

(1− φ) + φ
(ρCp)s
(ρCp)f

(u
∂H

∂x
+ v

∂H

∂y
)H(ε1 + θ)

− Ec

(1− φ)2.5((1− φ) + φ
(ρCp)s
(ρCp)f

)

{2(
∂u

∂x
)2 + 2(

∂v

∂y
)2)

+(
∂u

∂y
+
∂v

∂x
)2}]u∗dΩ

(5.7)

where q∗ = ∂u∗/∂n. The right hand side of Equations (5.1)-(5.3) denoted by bR, are

treated as inhomogeneity and they are approximated by using the thin-plate spline
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radial basis functions (fj = r2m ln r) fj as,

bR ≈
N+L∑
j=1

αRjfj =
N+L∑
j=1

αRj∇2ûj (5.8)

where the coefficients αRj are undetermined constants and fj’s are linked through the

particular solutions ûj of Poisson equation∇2ûj = fj . Thus, Equation (5.4) takes the

form

ciRi +

∫
Γ

(q∗R− u∗∂R
∂n

)dΓ =
N+L∑
j=1

αRj

[
ciûji +

∫
Γ

(q∗ûj − u∗q̂j)dΓ

]
(5.9)

which contains only the boundary integral equation and q̂ = ∂ûj/∂n. By discretizing

the boundary with constant elements, the matrix-vector form of Equation (5.9) can be

expressed for each unknowns R (= ψ, ω, θ), as

Hψ −Gψq = (HÛ−GQ̂)F−1(−ω) (5.10)

Hω −Gωq = (HÛ−GQ̂)F−1
(1− φ)2.5((1− φ) + φ

ρs
ρf

)

Prf

{
(u
∂ω

∂x
+ v

∂ω

∂y
)

− MnfPrf

(1− φ) + φ
ρs
ρf

(−∂θ
∂x

H
∂H

∂y
+
∂θ

∂y
H
∂H

∂x
)

− Ha2Prf

(1− φ) + φ
ρs
ρf

(1 +

3(
σs
σf
− 1)

(
σs
σf

+ 2)− (
σs
σf
− 1)φ

)

×
[
2Hx

∂Hx

∂x
v +H2

x

∂v

∂x
− ∂Hx

∂x
Hyu−Hx

∂Hy

∂x
u−HxHy

∂u

∂x

−2Hy
∂Hy

∂y
u−H2

y

∂u

∂y
+
∂Hx

∂y
Hyv +Hx

∂Hy

∂y
v +HxHy

∂v

∂y

]

−RaPrf ((1− φ) + φ
βs
βf

)
∂θ

∂x

}
(5.11)
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Hθ −Gθq = (HÛ−GQ̂)F−1
(1− φ) + φ

(ρCp)s
(ρCp)f

knf
kf

{
u
∂θ

∂x
+ v

∂θ

∂y

− Ha2Ec

(1− φ) + φ
(ρCp)s
(ρCp)f

(1 +

3(
σs
σf
− 1)

(
σs
σf

+ 2)− (
σs
σf
− 1)φ

)(uHy − vHx)
2

− MnfEc

(1− φ) + φ
(ρCp)s
(ρCp)f

(u
∂H

∂x
+ v

∂H

∂y
)H(ε1 + θ)

− Ec

(1− φ)2.5((1− φ) + φ
(ρCp)s
(ρCp)f

)

[2(
∂u

∂x
)2 + 2(

∂v

∂y
)2

+(
∂v

∂x
− ∂u

∂y
)2]

}
.

(5.12)

where the matrices Û and Q̂ are constructed by taking each of the vectors ûj and q̂j as

columns, respectively. The matrix F consists of vectors fj of size (N+L) as columns.

The components of the matrices G and H are obtained by taking the integral of the

fundamental solution u∗ and its normal derivative along each boundary elements Γj ,

respectively. The DRBEM equations (5.10)-(5.12) are coupled so that they are solved

iteratively. In each iteration, the required space derivatives of the unknowns ψ, ω

and θ, and also the unknown vorticity boundary conditions are obtained by using the

coordinate matrix F.

5.3 Steady MHD Convection Ferrofluid Flow in a Semi-Annulus with Sinu-

soidal Inner Wall under the Effect of a Nodal Magnetic Source

As a first application, the steady MHD convective fluid flow in a complex geometry

of half-annulus enclosure filled with water-based ferrofluid containing Fe3O4 parti-

cle is solved by using DRBEM. The flow is subjected to an external magnetic field

generated with a nodal magnetic source placed just below the inner wall. Hence, the
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intensity of the magnetic field depends on the position of a nodal magnet. The non-

dimensional form of ψ, ω and θ equations are given in Section 5.1 with Equations

(5.1)-(5.3).

The geometry and the boundary conditions of this problem are shown in Figure 5.1 for

(a) circular and (b) sinusoidal inner walls. The inner and outer walls are maintained

at constant hot (θ = 1) and cold (θ = 0) temperatures, respectively, while the flat

walls at the bottom are kept as adiabatic. No-slip boundary conditions are employed

at all walls.

~g

θ = 0

θ = 1

(a, b)

x

y

(a)

~g

θ = 0

θ = 1

(a, b)

x

y

(b)

Figure 5.1: Geometry of the problem with boundary conditions

The corresponding boundary conditions for ψ and θ are given as follows:

At the inner circular/sinusoidal wall: ψ = 0, θ = 1

At the outer circular wall: ψ = 0, θ = 0

At the flat parts of bottom walls: ψ = 0,
∂θ

∂n
= 0.

(5.13)

The unknown boundary conditions for the vorticity can be obtained by using the

stream function equation (5.1) through the application of DRBEM as in the previous

chapters.

A nodal magnetic source is placed below the mid of the inner wall at the position

(a, b). The intensity (Hx, Hy) and the strength of the magnetic field (H) are given in
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the following non-dimensional form (as given in Equation (1.79)):

Hx =
|b|(y − b)

(x− a)2 + (x− b)2
, Hy = − |b|(x− a)

(x− a)2 + (x− b)2
,

H =
|b|√

(x− a)2 + (x− b)2
·

In the present study, the magnetic source is located at (a = 0, b = 1.15).

The numerical simulations are performed to investigate the influence of the magnetic

field produced by a nodal magnet on the flow and heat transfer. The effects of the

controlling parameters, namely Rayleigh number (Ra = 103, 104, 105), Hartmann

number arising from MHD (Ha = 0, 5, 10), magnetic number arising from FHD

(Mnf = 0, 500), solid volume fraction (φ = 0, 0.02, 0.04, 0.1), number of undula-

tion (n = 0, 2, 4, 6) and amplitude (A = 0, 0.1, 0.2, 0.3) along the wavy wall are

examined for the convective heat transfer enhancement in a semi-annulus enclosure.

In all calculations, the Prandtl number (Pr = 6.8), temperature number (ε1 = 0) and

Eckert number (Ec = 10−5) are kept fixed.

Figure 5.2 shows the comparison between pure fluid (φ = 0) and nanofluid (φ = 0.04)

via streamlines and isotherm contours. As the solid volume fraction increases, the

intensity of streamlines increases, due to an increase in energy transport through the

flow because of irregular motion of the ultra fine particles. Hence, the strength of

stream function in magnitude (|ψ|max = 11.5867 when φ = 0.04 while |ψ|max =

11.0043 when φ = 0) increases with increasing the volume fraction of nanofluid.

(a) (b)

Figure 5.2: Comparison of streamlines and isotherm between nanofluid (φ = 0.04)

(999) and pure fluid (φ = 0) ( ) when Ra = 104, Ha = 5 and Mnf = 500.

In order to ensure that the computations are accurate and grid independent, the effect

of number of boundary elements has been examined in terms of |ψ|max, |θ|max and

Nu using both constant and linear element discretizations. In Figure 5.3, the grid
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independence test is displayed for the case when Ra = 104, Ha = 5, MnF = 500,

φ = 0.04. It is evident that Nu, |ψ|max and |θ|max show no significant change for

N > 450 in both constant and linear elements. Thus, in the following computations

maximum N = 450 constant boundary elements have been used.

|ψ
| m

a
x

|θ
| m

a
x

N
u

N N

N

Figure 5.3: Grid dependency: Ra = 104, Ha = 5, Mnf = 500, φ = 0.04, A = 0.2,

n = 4.

In order to demonstrate the validity and accuracy of the numerical scheme, the un-

steady natural convection in a nanofluid-filled square enclosure cavity with a heat

source at the bottom solved by Nugyen [58] and Aminossadati [5] has been consid-

ered as a test problem. The comparison of present results with previously published

results is displayed in Table 5.2 in terms of |ψ|max, |θ|max and Nu at different Ra. It

is observed that the present numerical procedure is accurate and there is a quite well

agreement between the present calculations and the previous works.

In Figure 5.4, 5.5 and 5.6, the effect of the Hartmann and magnetic numbers on the

flow and temperature fields are displayed in an enclosure with (a) circular and (b)

sinusoidal inner wall by fixing Ra = 103, Ra = 104 and Ra = 105, respectively.

In the absence of magnetic field (i.e. Mnf = Ha = 0) the formation of two sym-

metrical counter rotating vortices are observed inside the enclosure at each Ra. As

the Ha increases, the strength of stream function decreases in magnitude due to the

retarding effect of the magnetic field on the velocity. In addition, an increase in Ha

from 0 to 5 when Mnf = 0 and Ra = 103, Ra = 105 makes no significant dif-

ference on the profiles of the stream function and temperature, but the flow behavior
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Table 5.2: Code validation in terms of |ψ|max, |θ|max and Nu.

Present study Nugyen [58] Aminossadati [5]

Ra = 103

Nu 5.454 5.412 5.451

|ψ|max 0.020 0.023 0.023

|θ|max 0.205 0.203 0.205

Ra = 104

Nu 5.475 5.432 5.474

|ψ|max 0.216 0.204 0.205

|θ|max 0.206 0.204 0.205

Ra = 105

Nu 7.082 7.016 7.121

|ψ|max 2.494 2.966 2.988

|θ|max 0.177 0.171 0.172

Ha = 0 Ha = 5 Ha = 10

M
n
f

=
0

M
n
f

=
50

0

(a
)

(b
)

(a
)

(b
)

ψ θ ψ θ ψ θ

Figure 5.4: Effects of Ha and Mnf on streamlines and isotherms: Ra = 103, φ =

0.04, (a) n = 0, (b) n = 4.
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Figure 5.5: Effects of Ha and Mnf on streamlines and isotherms: Ra = 104, φ =

0.04, (a) n = 0, (b) n = 4.

inside the enclosure with circular wall alters dramatically for Ra = 104. That is, the

main vortex moves towards the bottom wall following the formation of small-sized

secondary eddy and with a further increase in Ha = 10 the secondary eddy gets

weaker near the vertical centerline. An increase in Mnf to 500 at low Ra = 103,

Ra = 104, results also the formation of a secondary eddy in the region just above

the magnetic source. This eddy vanishes at the highest Ra = 105. This indicates

that the convection dominance due to the high Ra, decreases the effect of Mnf . At

Ra = 105, the symmetric eddies in the streamline profile elongate upward towards

the magnetic source and they become stronger when compared to the cases Ra = 103

and Ra = 104. On the other hand, at Ra = 103 and Mnf = 0 the isotherms show

similar behavior for Ha = 0, Ha = 5 and Ha = 10 in all cases, which indicates that

Ha has no significant role on the temperature distribution. But, as magnetic number

increases toMnF = 500 whenRa = 103, three thermal plumes occur in the isotherm

profiles and the isotherms become dense in the region just above the magnetic source.
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Figure 5.6: Effects of Ha and Mnf on streamlines and isotherms: Ra = 105, φ =

0.04, (a) n = 0, (b) n = 4.

Thermal plumes become weaker and isotherms become more parallel to each other

as the Ha increases. Moreover, the thermal plumes formed at only high Mnf = 500

when Ra = 103, Ha = 0, 5 are observed in all cases when Ra = 104 and Ra = 105

since the heat transfer becomes dominated by convection. Further, at Ra = 105,

the thermal plumes become stronger and they crush on the outer wall. As a result,

the isotherms become dense just under the outer wall. It is also observed that Ha

and Mnf do not have much significant effects on both flow and temperature fields at

Ra = 105.

As it can be seen in Figures 5.4, 5.5 and 5.6, there is no significant changes in the

profiles of streamlines and isotherms due to shape of the heat source. However, the

strength of stream function in magnitude is bigger in the sinusoidal heater compared

to its circular counterpart. Moreover, the basic difference on the streamlines due to

the shape of the inner wall occurs when Ra = 104, Mnf = 0, Ha = 5 and Ha = 10.
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That is, an additional eddy is formed in the streamlines when the inner wall is circular,

while in the case of sinusoidal inner wall no secondary eddy is observed.

The effects of Hartmann and Rayleigh numbers on Nu are displayed in Figure 5.7

when n = 4 and φ = 0.04 at Mnf = 0 and Mnf = 500. It is observed that

the Nu increases with an increase in Ra whereas it decreases as the Ha increases.

On the other hand, magnetic number has different effect on Nu according to the

corresponding Ra. That is, Nu increases with an increase in magnetic number when

the conduction and transition regimes are dominant (Ra = 103 and 104). However, at

Ra = 105, Nu decreases as the magnetic number increases.

Figure 5.8 shows the variation ofNuwith Rayleigh number at different (a) number of

undulation n and (b) the amplitude A of the inner wall when Ha = 0 and Mnf = 0.

N
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N
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N
u

N
u

Mnf = 0

Mnf = 500

Ha Ra

Ha Ra

(a) Ha (b) Ra

Figure 5.7: Effects of (a) Ha and (b) Ra on Nu: n = 4, φ = 0.04.

In Figure 5.8(a), generally, an increase in n leads to an increase in Nu, but at small

Ra = 103, n increases from 0 to 2, Nu decreases. Also it can be seen from the Fig-

ure 5.8(a), Nu shows almost identical behavior when the transition and convection
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regimes are dominant at n = 0 and n = 2, and at n = 4 and n = 6, respectively.

On the other hand, Figure 5.8(b) displays that an increase in amplitude results in an

increase in the length of the hot surface, which leads to an increase in the heat transfer

rate with increasing Nu at each Ra.

N
u

N
u

RaRa

(a) (b)

Figure 5.8: Variation of Nu with Ra at different numbers of undulation n and ampli-

tude A when φ = 0.04, Ha = 0, Mnf = 0.

Moreover, Figure 5.9 shows the influence of solid volume φ on Nu by fixing Mnf =

500. In Figure 5.9 (a), the variation ofNuwithHa is displayed with fixedRa = 104,

and in Figure 5.9 (b), the variation of Nu with respect to Ra is shown by fixing

Ha = 5. The obtained results revealed that the Nu increases with an increase in φ at

eachHa andRa since adding nanoparticles to the fluid increases the energy transport

through the flow and subsequently enhances the heat transfer rate with increasingNu.

N
u

N
u

Ha Ra

(a) Ha (b) Ra

Figure 5.9: Variation of Nu with (a) Ha and (b) Ra at different φ: n = 4.
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5.4 Steady MHD Convection Ferrofluid Flow in a Semi-Annulus with Sinu-

soidal Inner Wall under the Effect of Multiple Nodal Magnetic Sources

A schematic description of the physical domain of the problem is shown in Figure

5.10 (a) where the outer wall is a rectangle and Figure 5.10 (b) where the outer wall

is a circle. The enclosure is filled with Fe3O4-water nanofluid. The inner sinusoidal

wall is under constant heat flux whereas the outer wall is maintained at constant cold

temperature; the bottom horizontal walls are assumed to be adiabatic. The shape of

the inner sinusoidal profile is defined by; r = rin +A cos(n(ξ)), where rin is the base

circle radius, A and n are amplitude and undulations respectively. ξ is the rotation

angle.
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∂θ

∂n
= −0.5

(a1, b1)
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(a2, b2)
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θ = 0

∂θ
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(b)

(a2, b2)

x

y

Figure 5.10: Geometry of the problem with boundary conditions

The corresponding boundary conditions are given as follows:

At the inner sinusoidal wall: ψ = 0,
∂θ

∂n
= −0.5

At the outer rectangular wall: ψ = 0, θ = 0

At the flat parts of bottom walls: ψ = 0,
∂θ

∂n
= 0.

(5.14)

The unknown boundary conditions for the vorticity can be obtained by using the

stream function equation (5.1) through the application of DRBEM, as in the previous

problems.

The non-dimensional form of the components of magnetic field intensity (Hx, Hy)

and the strength of magnetic field (H) for two nodal sources are given as in Section

144



1.4.3, Equation (1.80):

Hx = | b1b2

b1 + b2

|( y − b1

(x− a1)2 + (y − b1)2
+

y − b2

(x− a2)2 + (y − b2)2
),

Hy = −| b1b2

b1 + b2

|( x− a1

(x− a1)2 + (y − b1)2
+

x− a2

(x− a2)2 + (y − b2)2
),

H = | b1b2

b1 + b2

|

√
(2x− a1 − a2)2 + (2y − b1 −b 2)2

[(x− a1)2 + (y − b1)2][(x− a2)2 + (y − b2)2]
·

In the present study, the magnetic sources are located below the inner wall at (a1 =

0, b1 = 1.15) and above the upper wall at (a2 = 0, b2 = 2.05).

A computational analysis has been done to inspect the effect of magnetic field pro-

duced by two nodal magnetic sources on the flow and heat transfer. The considered

parameters are Rayleigh number (Ra = 103, 104, 105), Hartmann number (Ha = 0,

5, 10), magnetic number (Mnf = 0, 100), solid volume fraction (φ = 0, 0.04, 0.08,

0.1), number of undulation (n = 0, 2, 4, 6) and amplitude (A = 0, 0.1, 0.2, 0.3) along

the wavy wall. In all calculations, the Prandtl number (Pr = 6.8), temperature num-

ber (ε1 = 0) and Eckert number (Ec = 10−6) are kept fixed. Results are presented by

means of streamlines, isotherms and average Nusselt number.
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Figure 5.11: Grid dependency: Ra = 104, Ha = 10, Mnf = 100, φ = 0.04,

A = 0.2, n = 4.
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In Figure 5.11, a grid independent test is performed to ensure the numerical accuracy

of the computation via |ψ|max, |θ|max and Nu. It is well-observed that after reaching

the grid size having constant element number N ≈ 450, |ψ|max, |θ|max and Nu

becomes less sensitive to the number of boundary elements. Thus, for the present

problem N = 450 is taken as the optimum grid number of boundary elements and all

the simulations are carried out at this specified grid size.

Consequences of the magnetic field produced by multiple nodal magnetic sources on

streamlines and isotherms are illustrated in Figures 5.12, 5.13 and 5.14 with different

Hartmann numbers forMnf = 0 andMnf = 100. The effect of pertinent parameters

on flow and thermal conductivity are displayed in enclosures with (a) circular, (b) si-
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Figure 5.12: Effects of Ha and Mnf on streamlines and isotherms: Ra = 103,

φ = 0.04.
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Figure 5.13: Effects of Ha and Mnf on streamlines and isotherms: Ra = 104,

φ = 0.04.

nusoidal inner walls and rectangular outer wall, and (c) sinusoidal inner and circular

outer walls. The Hartmann and magnetic numbers have opposite effects on the flow

behavior when compared to Rayleigh number. That is, the strength of streamlines

in magnitude decreases with an increase in Hartmann number and magnetic number,

whereas it increases with an increase in Rayleigh number. In the absence of magnetic

field (Ha = 0, Mnf = 0), two counter rotating vortices are formed symmetrically in-

side the enclosure at each Ra as in the previous problem. When the magnetic number

increases, it is observed that a secondary eddy occurs in the region close to the vertical

centerline. When Ha increases to 10, the strength of this secondary eddy decreases

in magnitude. This secondary eddies vanish with an increase in Ra to Ra = 104

and 105. This indicates that the convection dominance due to the high Ra, decreases
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Figure 5.14: Effects of Ha and Mnf on streamlines and isotherms: Ra = 105,

φ = 0.04.

the effect of Mnf . On the other hand, the isotherms distribute smoothly inside the

annulus region being parallel to each other for small value of Ra = 103 when the

conduction mode is dominant at each Hartmann and magnetic numbers. For higher

Ra(= 104, 105), a thermal plume formed in the middle of the cavity as a result of con-

vection dominance in heat transfer. However, at Ha = 10 the strength of the plume

decreases when compared to the case of Ha = 0. It is also observed that magnetic

number has no significant effect on the strength and shape of the plume. It is also seen

in Figures 5.12, 5.13 and 5.14 that there is no remarkable variation in the profiles of

streamlines and isotherms due to the shape of enclosure and the heat source. But, the

strength of stream function in magnitude is bigger in an enclosure with the sinusoidal

inner wall compared to its circular counterpart whereas it is smaller in an enclosure
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with the circular outer wall compared to its rectangular counterpart.

Figure 5.15 presents the impact of Hartmann and Rayleigh numbers on Nu when

n = 4 and φ = 0.04 for Mnf = 0 and Mnf = 100. It is observed that Nu increases

with the increment of Ra, whereas it has a small decrease as Ha increases. Further,

there is no significant change when the magnetic number increases.
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N
u

N
u

N
u

Mnf = 0

Mnf = 500

Ha Ra

Ha Ra

(a) Ha (b) Ra

Figure 5.15: Effects of (a) Ha and (b) Ra on Nu: n = 4, φ = 0.04.

The variation of Nu with Rayleigh number at different (a) number of undulation n,

fixing A = 0.2 and (b) amplitude A of the inner wall fixing n = 4 when Ha = 0

and Mnf = 0 is illustrated in Figure 5.16. It is well-observed that, in general Nu

is an increasing function of both number of undulation n and amplitude A of inner

sinusoidal wall. However, in all cases as n increases from 0 to 2, Nu decreases since

the length of the inner wall at n = 2 becomes shorter than the one at n = 0.

Furthermore, Figure 5.17 displays the effect of solid volume fraction φ of ferrofluid

on Nu at Mnf = 100. In Figure 5.17 (a), the variation of Nu with Ha is displayed
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Figure 5.16: Variation of Nu with Ra at different numbers of undulation n and am-

plitude A when φ = 0.04, Ha = 0, Mnf = 0.

with a fixed Ra = 104, and in Figure 5.17 (b), the variation of Nu with respect to

Ra is shown by fixing Ha = 5. As in the previous problem, Nu increases with an

increase in φ due to the high thermal conductivity of nanoparticles irrespective of the

values of Ha and Ra.

N
u

N
u

Ha Ra

(a) Ha (b) Ra

Figure 5.17: Variation of Nu with (a) Ha and (b) Ra at different φ: n = 4.

Figure 5.18 displays the influence of the number of undulation n and amplitude A

of sinusoidal wall on the flow and thermal conductivity by means of streamlines and

isotherms in the absence of magnetic source for Ra = 104. When n = 0, the strength

of stream function decreases while A increases, but, A enhances the magnitude of

stream function for n ≥ 2. Since increasing A leads to a decrease in the gap between

the hot and cold walls, the heat transfer enhances. Moreover, the strength of stream

function in magnitude increases with an increase in n, except n = 5. When n = 5, it

starts to decrease. When n = 0 and n = 4, two symmetric eddies rotate in opposite

150



A = 0.1 A = 0.2 A = 0.3

n
=

0
n

=
3

n
=

4
n

=
5

ψ

θ

ψ

θ

ψ

θ

ψ

θ

Figure 5.18: The effects of the number of undulation n and the amplitude A of sinu-

soidal wall on streamlines and isotherms at Ha = 0, Mnf = 0, Ra = 104
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direction inside the streamline profiles. On the other hand, when n = 3 and n = 5,

the symmetry vanishes due to the deterioration of the symmetry of the computational

domain. In addition, as A increases when n = 3, the positive vortices in streamlines,

shrink towards the left wall while negative vortices start to spread towards left and

fulfill the domain. However, when n = 5 an opposite situation is observed. That

is, the negative vortices shrink following the extension of the positive vortices to the

right as A increases. Moreover, a thermal plume formed just above the inner wall for

each values of A and n. This plume becomes more powerful when A increases.

Figure 5.19 depicts the comparison of the effect of magnetic field produced by either

one or multiple magnetic sources at Ra = 104 and φ = 0.04. In the absence of

magnetic field (i.e. Ha = Mnf = 0) the behavior of streamlines and isotherms are

identical for both one and two magnets. Further, addition of the second magnetic

source leads to a decrease in the strength of stream function except the case Mnf =

500 and Ha = 0 when an increase in ψ is observed. A secondary eddy is formed

in the region close to the vertical centerline in the case of one nodal magnetic source

when Mnf = 500, while this secondary eddy does not observed in the presence of

Ha = 0 Ha = 5 Ha = 10

M
n
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)
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Figure 5.19: Effects of Ha and Mnf on streamlines and isotherms: Ra = 104,

φ = 0.04, (a) one nodal source, (b) multiple nodal sources.
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two nodal sources. Moreover, at Mnf = 0, the isotherm distribution has similar

behavior in both cases. However, at Mnf = 500 and Ha = 0, 5 only one thermal

plume is formed in the case of two sources while three plumes are observed in the

presence of one source.

Moreover, Table 5.3 shows the comparison of the influence of magnetic sources pro-

duced by either one or two nodal magnetic sources in terms of |ψ|max, |θ|max and

Nu. As mentioned previously, when two nodal magnetic sources are applied, the

strength of stream function decreases in magnitude and no significant change is ob-

served in temperature. However, increasing number of nodal magnetic source leads

to a decrease in Nu as expected due to the increasing magnetic field intensity.

Table 5.3: Comparison of the effect of magnetic field produced by either one magnet

or two magnets in terms of |ψ|max, |θ|max and Nu.

Mnf = 0 Mnf = 500

|ψ|max Nu |ψ|max Nu

One magnet

Ha = 0 14.917 4.280 14.213 5.367

Ha = 5 11.845 3.818 11.587 4.223

Ha = 10 8.486 3.271 8.464 3.278

Multiple magnets

Ha = 0 14.917 4.280 14.767 5.368

Ha = 5 11.134 3.791 11.074 3.724

Ha = 10 7.513 3.143 7.480 3.123

5.5 Summary of the Results Obtained in Chapter 5

This chapter is devoted to the dual reciprocity BEM solutions of the natural con-

vection flow in semi-annulus enclosures with wavy inner walls in the presence of

spatially variable magnetic sources and the following results are obtained:

• When the magnetic field is neglected (i.e. Ha = 0, Mnf = 0), two symmetri-

cal counter rotating vortices formed inside the enclosure when Ra = 103, 104,
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105 for both single and multiple magnetic sources.

• The strength of stream function decreases in magnitude with an increase inHa,

but it increases as the Ra increases irrespective of the number and the location

of magnetic sources.

• It is observed that Nu increases with an increase in Ra whereas it decreases as

Ha increases in both cases of one and two nodal magnetic sources.

• Adding nanoparticles leads to an enhancement in the heat transfer rate, and

hence it increases Nu independent of the spatially varied magnetic sources.

• An increase in amplitude and number of undulation lead to an increase in Nu.

In the case of one nodal magnetic source:

• A secondary eddy is formed at Ra = 103, 104 and as magnetic number in-

creases from Mnf = 0 to Mnf = 500 in all cases. This secondary eddy

vanishes with an increase in Ra to 105.

• When Ra = 103 and Mnf = 500, three thermal plumes are formed inside the

enclosure. In addition, when Ra increases to Ra = 104 the thermal plumes are

observed in all cases.

• When Ra = 103 and 104, the Nu increases with an increase in Mnf , but at

Ra = 105, the Nu decreases as Mnf increases.

• The strength of stream function in streamlines profile with sinusoidal heater

is bigger than the one in the enclosure with circular heater due to the larger

available space for the circulation.

• Moreover, when Ra = 104, Mnf = 0, Ha = 5 and Ha = 10, an additional

eddy occurs in the streamlines when the inner wall is circular whereas in the

case of sinusoidal inner wall no secondary eddy is observed.

In the case of multiple nodal magnetic sources:
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• At Ra = 103 and Mnf = 100, a secondary eddy occurs in the region close to

the vertical centerline. When Ha increases to 10, the strength of this secondary

eddy decreases in magnitude and it vanishes with a further increase in Ra to

104.

• The isotherms distribute smoothly inside the annulus region when Ra = 103

at each Hartmann and magnetic numbers. As Ra increases to 104, a thermal

plume formed in the middle of the cavity.

• The strength of stream function in magnitude is bigger in the enclosure with the

sinusoidal inner wall compared to its circular counterpart whereas it is smaller

in the enclosure with the circular outer wall compared to its rectangular coun-

terpart.

• The strength of stream function in magnitude increases with an increase in A

except n = 0. In addition, generally, the absolute value of stream function

increases as n increases.

• Generally, as the number of nodal magnetic source increases from 1 to 2, the

strength of stream function in magnitude decreases.

• The formation of secondary eddy, in the case of one nodal source whenMnf =

500 vanishes in the presence of two nodal sources due to the increasing effect

of magnetic field intensity.

• Further, increasing number of nodal magnetic sources leads to a decrease in

Nu since the increasing magnetic effect suppresses the convective heat transfer

mechanism.
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CHAPTER 6

CONCLUSION

This thesis is devoted to the numerical solutions of steady/unsteady MHD convec-

tive flows in enclosures or lid-driven cavities with irregular surfaces by the use of

a numerical method which is the coupling of the dual reciprocity BEM with a two

level time integration scheme. The boundary of the enclosure is discretized by us-

ing both constant and linear elements. Since no significant difference is occurred in

the results when the linear elements are employed, in the thesis, we prefer to use the

constant elements due to the easiness of the constant elements in the application of

DRBEM when compared to the use of linear elements. Moreover, in the application

of DRBEM several types of radial basis functions can be used for the approximation

of non-homogeneity. However, in the thesis the use of a linear polynomial type of

RBFs is preferred since the use of linear polynomial RBFs requires less number of

iteration and computational time to reach the preassigned tolerance when compared

to other types of RBFs as given in Chapter 3, Section 3.3.1, Page 66, Lines:14-22.

Basically, the thesis is divided into two topics according to the MHD flow of either

purefluids or nano/ferrofluids in irregular enclosures with wavy walls subject to uni-

form magnetic field and nodal magnetic sources.

First, we concentrate on the numerical solution of convective purefluid flow under

the effect of an inclined uniform magnetic field. The proposed numerical method is

employed for the solution of both steady and unsteady mixed convection MHD flow

in a lid-driven cavity with circular/rectangular and wavy walls for investigating the

effects of irregular surfaces on the flow field and temperature distribution. A stability

analysis of numerical method is also performed using physical controlling parameters

to be able to find appropriate values for the time increment and the time relaxation
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parameters. The results reveal that:

• As the value of the Hartmann number Ha increases, the strength of stream

function decreases in magnitude due to the retarding effect of the magnetic field

on the fluid flow, in addition, the isotherms become more parallel to vertical

walls due to the dominance of conduction on heat transfer (see Figure 3.25).

• With the increase in Rayleigh number the isotherms change their profiles from

being vertical to almost horizontal at the center of the cavity forming a thermal

boundary layer along the vertical walls because of the convection dominance

(see Figure 3.26).

• An increase in Joule heating parameter reduces the strength of stream function

in magnitude whereas temperature of the fluid inside the cavity increases (see

Figures 3.27,3.28).

• There is no significant effect of inclination angle of magnetic field λ on the

streamline and isotherm profiles, but, at Ra = 105 as λ increases the main

vortex moves towards the left bottom corner of the cavity, it becomes circular,

and its strength increases. Further, the isotherms move upwards and an increase

in the temperature inside the cavity is observed (see Figures 3.29,3.30).

• Alteration on the shape of the heater makes no significant difference on stream-

line and isotherm profiles, but it is observed that the average Nusselt number

increases when the length of the heated portion on the right wall increases (see

Figures 3.31,3.32, 3.36).

• When Joule heating effect is neglected, Hartmann number has a negative effect

on Nu, that is, Nu decreases with an increase in Ha irrespective of values

of Ra. However, in the presence of Joule heating when J increases the heat

transfer rate increases with an increase in Ha for Ha ≤ 25 at each Ra (see

Figures 3.33, 3.34).

• Moreover, the Nu increases when Ra ≥ 104. However, Nu decreases as Ra

increases from Ra = 103 to 104 at each Ha, since the flow is transferred from

conduction regime to transition regime, which occurs irrespective of the types

of heater.
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• In addition, for all types of heater, increasing J leads the temperature inside the

cavity to become higher than the wall temperature, thence Nu along the hot

wall decreases (see Figure 3.35).

In the second part of the thesis, the steady/unsteady differential equations of con-

vective heat transfer and flow of a nanofluid and ferrofluid in enclosures with com-

plex geometries under the effects of either uniform magnetic field or nodal magnetic

sources are solved by the proposed numerical method. The effect of the geometry

of the computational domain, the inclination angle of the uniform magnetic field, the

location and the number of nodal magnetic sources for the magnetic field on the flow

behavior and temperature distribution are investigated. The simulations are carried

out in terms of streamlines, isotherms and average Nusselt number for various com-

binations of pertinent physical parameters. The stability analysis of the numerical

method for the solution of the unsteady MHD convective flow of nanofluid problem

is also performed using the eigenvalue decomposition of the matrix system.

First, we consider the solution of MHD flow in a semi-annulus enclosure filled with

a water-based nanofluid subject to a uniform inclined magnetic field. The results

indicate that:

• Adding nanoparticles increases the intensity of streamlines and heat transfer

rate due to an increase in the energy transport through the flow because of

irregular motion of the ultra fine particles (see Figure 4.18).

• The strength of stream function decreases in magnitude asHa increases whereas

it increases with an increase in Ra irrespective of the types of inner wall. A

thermal plume is observed just above the inner circular/sinusoidal wall, when

the convection regime starts to dominate the heat transfer (see Figure 4.16).

• When the inclination angle of enclosure is taken as zero, two equal counter-

rotating vortices formed inside the enclosure. As the inclination angle of en-

closure increases, the symmetry of the eddies is destroyed. That is, the positive

vortex elongates with the inclination of the enclosure and becomes dominant to

the secondary vortex. In addition, it is observed that inside the isotherm profiles

a formation of a plume occurs on the surface of inner wall in the direction of
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magnetic field (see Figures 4.4,4.5, 4.6,4.8).

• When the magnetic field applied in horizontal direction two symmetric counter-

rotating eddies are formed in streamlines, but, this symmetry is destroyed with

an increase in λ. As λ reaches to π/2, the counter-rotating vortices become

again symmetric. On the other hand, at λ = 0, the thermal plume formed at the

middle of the cavity just above the inner wall moves along the inner wall in the

direction of the magnetic field irrespective of the shape of the inner wall (see

Figures 4.3, 4.14).

• As expected, average Nusselt number increases with an increase in Ra and

solid volume fraction whereas it decreases as Ha increases. In addition, the

maximum Nu is observed at λ = β = 0 in the absence of magnetic field

(Ha = 0) and λ = β = π/2 for higher values of Ha (see Figure 4.17).

• When Ha = 0, 10 as the number of undulation n of wavy wall increases, the

Nu increases at each Ra. On the other hand, when Ha ≥ 50 and Ra = 103,

104, the increasing effect of n on Nu is degenerated, while Nu again increases

in the case of convective heat transfer at Ra = 105 (see Figure 4.19).

• Increasing the amplitude of the inner wall leads to an enhancement in the heat

transfer rate and hence an increase in Nu (see Figure 4.20).

Secondly, the natural convection flow in semi-annulus enclosures with wavy inner

wall filled with water-based ferrofluids are investigated in the presence of a non-

uniform magnetic field, i.e. either single or multiple nodal magnetic sources. Ob-

tained results show that:

• In the absence of magnetic field the formation of two symmetrical counter rotat-

ing vortices are observed inside the enclosure whenRa = 103, 104, 105 for both

single and multiple magnetic sources (see Figures 5.4,5.5,5.6,5.12,5.13,5.14).

• As Ha increases, the strength of stream function decreases in magnitude ir-

respective of the number and the location of magnetic sources (see Figures

5.4,5.5,5.6,5.12,5.13,5.14).
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• Nu increases with an increase in Ra whereas it decreases as Ha increases

independent of the number of spatially varied magnetic sources (see Figures

5.7,5.15).

• The heat transfer rate enhances with an increase in solid volume fraction of

nanoparticles in the presence of both one and multiple nodal sources (see Fig-

ures 5.9,5.17).

• Further, an increase in amplitude and number of undulation lead to an increase

in Nu (see Figure 5.8,5.16).

• The strength of stream function in magnitude decreases, when the number of

nodal magnetic source increases (see Figure 5.19).

• When Mnf = 500, in the case of one nodal source the secondary eddy is

formed inside the enclosure but it vanishes in the presence of two nodal sources

(see Table 5.3).

• Nu decreases, as the number of nodal magnetic source increases (see Table

5.3).

In the case of one nodal magnetic source:

• At Ra = 103, 104, and Mnf = 500, a secondary eddy is formed in all cases

and this secondary eddy vanishes with an increase in Ra to 105 (see Figures

5.4,5.5,5.6).

• Three thermal plumes are observed inside the enclosure when Ra = 103, and

Mnf = 500. Further, at Ra = 104 the thermal plumes are formed in all cases

(see Figures 5.4,5.5).

• Nu increases with an increase in Mnf at Ra = 103 and 104, but at Ra = 105

Nu decreases as the Mnf increases (see Figures 5.5,5.6).

• When the inner wall is circular, the strength of stream function in magnitude is

smaller than the one when the enclosure is with sinusoidal heater. When Ra =

104, Mnf = 0, Ha ≥ 5, an additional eddy occurs in the streamlines which is

not observed in the case of sinusoidal inner wall (see Figures 5.4,5.5,5.6).
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In the case of multiple nodal magnetic sources:

• At Ra = 103, increasing Mnf leads to a formation of secondary eddy. As

Ha increases the strength of this eddy decreases in magnitude, and it vanishes

when Ra = 104 (see Figures 5.12,5.13,5.14).

• AtRa = 103, the isotherms distribute smoothly inside the annulus region while

a thermal plume is formed in the middle of the cavity with an increase in Ra to

104 (see Figures 5.12,5.13).

• The strength of stream function in magnitude is smaller in the enclosure with

a circular inner wall compared to its sinusoidal counterpart whereas it is big-

ger in the enclosure with the rectangular outer wall compared to its circular

counterpart (see Figures 5.12,5.13,5.14).

• The magnitude of stream function increases with an increase inA except n = 0.

In addition, it is also an increasing function of n (see Figure 5.18).
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