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ABSTRACT 

 

 

 

HEURISTIC AND EXACT METHODS FOR THE LARGE-SCALE DISCRETE 

TIME-COST TRADE-OFF PROBLEMS 

 

Aminbakhsh, Saman 

Ph.D., Department of Civil Engineering 

Supervisor:   Prof. Dr. Rifat Sönmez 

Co-Supervisor: Assoc. Prof. S. Tankut Atan 

 

May 2018, 231 Pages 

 

Construction industry necessitates formulating impeccable plans by decision 

makers for securing optimal outcomes. Managers often face the challenge of 

compromising between diverse and usually conflicting objectives. Particularly, 

accurate decisions on the time and cost must be made in every construction project 

since project success is chiefly related to these objectives. This is realized by 

addressing the time-cost trade-off problem (TCTP) which is an optimization 

problem and its objective is to identify the set of time-cost alternatives that provide 

the optimal schedule(s). Due to discreteness of many resources in realistic projects, 

discrete version of this problem (DTCTP) is of great practical relevance. The Pareto 

front extension of DTCTP is a multi-objective optimization problem that facilities 

preference articulation of decision makers by providing them with a set of mutually 

non-dominated solutions of same quality. Due to the complex nature of DTCTP, 

the literature on large-scale problems is virtually void; besides, most of the existing 

methods do not suit actual practices and popular commercial planning software lack 

tools for solution of DTCTP.
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The main focus of this thesis relates to providing means for optimization of real-

life-scale Pareto oriented DTCTPs and it aims to contribute to both researchers and 

practitioners by tightening the gap between the literature and the real-world 

requirements of the projects. The results of the comparative studies reveal that the 

proposed methods are successful for solving large-scale DTCTPs and provide the 

management with a quantitative basis for decisions on selection of the proper 

alternatives for the real-life-scale construction projects. 

 

Keywords: Discrete Time-Cost Trade-Off Problem, Heuristic, Mixed-Integer 

Linear Programming, Pareto Front, Particle Swarm Optimization 
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ÖZ 

 

 

 

BÜYÜK ÖLÇEKLİ KESİKLİ ZAMAN-MALİYET ÖDÜNLEŞİM 

PROBLEMLERİ İÇİN SEZGİSEL VE KESİN YÖNTEMLER 

 

Aminbakhsh, Saman 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi:   Prof. Dr. Rifat Sönmez 

Ortak Tez Yöneticisi: Doç. Dr. S. Tankut Atan 

 

Mayıs 2018, 231 Sayfa 

 

İnşaat sektöründeki artan rekabet koşulları, verimli ve başarılı sonuçların sağlaması 

için karar vericilerin kusursuz planları oluşturmasını gerekli kılmaktadır. Proje 

yöneticileri, proje hedeflerini  sağlamak doğrultusunda çelişkili olabilen hedefler 

arasında tercih yapmanın zorluğu ile yüzleşebilmektedir. Özellikle, proje başarısı 

yüksek orantıda bu hedeflere bağlı olduğundan dolayı, her inşaat projesinde zaman 

ve maliyet konusunda doğru kararlar alınması gerekmektedir. Bir optimizasyon 

problemi olan zaman-maliyet ödünleşim problemi (ZMÖP)’nin amacı optimal 

proje program(lar)’ı sağlayan zaman-maliyet alternatiflerini bulmaktır. Yapım 

projelerinde birçok kaynağın kesikli olması nedeni ile bu problemin kesikli 

versiyonu (KZMÖP) pratik açıdan büyük önem taşımaktadır. Çok amaçlı 

optimizasyon problemi olan KZMÖP Pareto eğrisi, aynı kalitede olan ve domine 

edilmeyen bir dizi çözüm sunarak karar vericilerin tercihlerinin belirlenmesine 

olanak sağlamaktadır. KZMÖP'nin karmaşık yapısından dolayı, literatürde büyük 

ölçekli problemler ile ilgili önemli boşluklar bulunmaktadır; ayrıca, mevcut 

yöntemlerin birçoğu büyük ölçekli uygulamalar için uygun değildir ve yaygın 
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olarak kullanılan paket planlama programları KZMÖP’n çözümüne yönelik hiçbir 

alternatif sunmamaktadır. 

 

Bu tezin temel odak noktası gerçek hayat ölçeğindeki KZMÖP'lerin çözümü için 

Pareto optimizasyonuna yönelik yöntemler geliştirmek, ve literatür ile inşaat 

projeleri gereksinimleri arasındaki boşluğu azaltarak araştırmacılara ve 

uygulamacılara katkıda bulunmaktır.  Karşılaştırmalı sonuçlar, bu tezde önerilen 

yöntemlerin büyük ölçekli KZMÖP'lerin çözümünde başarılı olduklarını 

göstermektedir. Geliştirilen yöntemler proje yöneticilerine büyük ölçekli projelerde 

uygun alternatiflerin seçimine ilişkin niceliksel bir temel yöntem sağlamaktadır. 

 

Anahtar Kelimeler: Karışık Doğrusal Tamsayılı Programlama, Kesitli Zaman-

Maliyet Ödünleşim Problemi, Sezgisel, Kuş Sürüsü Algoritması, Pareto Eğrisi
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

Construction industry necessitates formulating impeccable plans by decision 

makers and construction planners for securing optimal outcomes. Managers often 

face the challenge of compromising between diverse and usually conflicting 

objectives of each project. Particularly, accurate decisions on the time, cost, quality, 

and resource utilization of a project are essential prerequisites of an exhaustive plan. 

Focusing on the noted aspects coupled with consideration of other impartible 

components of prosperous project deliveries – such as provision of safety and 

productivity upkeeps – further narrow the field for the project management team. 

Of the specified aspects, time and cost are regarded as two of the most significant, 

yet counteracting factors that need to be considered in every construction project 

since project success is chiefly related to these objectives. A key process for 

achieving the anticipated resolutions is preparation of a schedule. Logical 

relationships – known as the precedence constraints, lag times, working calendars, 

resource requirements, and contingency plans are some of the many essential 

concerns for preparing a decent schedule. Idle labor and equipment, delays, 

dissatisfied customers, disputes, bad reputation are some of the adverse outcomes 

that might arise in the absence of an adequate schedule. More importantly, in capital 

intensive construction projects, major financial losses might occur in the light of a 

suboptimal schedule, or because of small deviations from an optimal solution to the 

scheduling problem. In contrast, a flawless schedule can obviate occurrence of such 

problems which ultimately results in completion of a project on or ahead of time.
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In project scheduling, critical path method (CPM) is used to determine the 

completion time of a project by calculating the longest sequence of the activities in 

the project network which is known as the critical path. Critical path plays a crucial 

role in planning of a project since any delay in realization of an activity on this path 

results in overall project delay. Classical network analyses like CPM merely 

incorporates the time aspect of the projects. Such methods attempt to minimize 

duration of the project without taking into account the availability of resources (both 

nonrenewable and physical resources). Generally, it is desirable for the involved 

parties to minimize the duration in order to finish a construction project ahead of a 

prescribed completion deadline. Delay penalties can be avoided by finishing a 

project earlier; besides, managers accelerate a schedule due to many factors like 

improving cash-flow, avoiding unfavorable climate conditions, early 

commissioning, earning early-completion incentive, starting another project earlier, 

and mainly in the interest of increasing profit margins. Known as crashing, any 

reduction in project duration is facilitated by compression or acceleration of the 

project schedule. Decision makers speed up the project by optimally crashing 

selected critical activities that levy least additional cost. Crashing a project schedule 

is usually facilitated by provisioning resource overloads – i.e. allocating additional 

manpower and machinery resources or recruiting subcontractors – or by 

implementing alternative speedy construction techniques. Although shortening the 

project duration below its normal level enables reducing indirect cost and avoiding 

potential delay penalties, all the schedule expedition techniques add to the total cost 

of a project. Obviously, it is because of the fact that the aforementioned crashing 

approaches require greater financial expenditures known as the direct costs. This 

trade-off between time and non-renewable resources (e.g., money) of the project is 

known as the time-cost trade-off problem which is abridged as TCTP and is one of 

the most important and applicable research areas in project management; especially 

because of the prevailing emphasis on time-based completion of the construction 

firms. The objective of general time-cost trade-off problem is to identify the set of 

time-cost modes (alternatives) that will provide the optimal schedule under certain 
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conditions. It is a problem solving and decision-making science which provides the 

management with a quantitative basis for decisions on selection of the proper 

alternatives. The importance of TCTP has been recognized since development of 

the CPM (De, Dunne, Ghosh, and Wells, 1995). Starting since early 1960’s, several 

different researches have been conducted to address this problem in the literature. 

 

In the literature, three types of TCTP have been commonly studied; the deadline 

problem, the budget problem, and the Pareto front problem. The objective of the 

deadline problem is to determine the set of time-cost alternatives that will minimize 

the total cost – including direct and indirect costs, penalties and bonuses – for a 

given project deadline. The budget problem aims to identify the time-cost 

alternatives to minimize the project duration without exceeding the budget. The 

Pareto front problem which is also the chief focus of this thesis, is a multi-objective 

optimization problem and involves determination of the non-dominated time-cost 

profile over the set of feasible project durations to generate Pareto fronts of the 

problems (Vanhoucke and Debels, 2007). Pareto front optimization of TCT 

problems is recognized to be the ultimate resolution of TCTP analyses (e.g., Zheng, 

Ng, and Kumaraswamy, 2005; Yang, 2007b; Eshtehardian, Afshar, and Abbasnia, 

2008; Aminbakhsh and Sonmez, 2017). The importance of Pareto front is 

emphasized since preferences of decision makers can be articulated by providing 

them with a set of mutually non-dominated solutions of same quality instead of a 

single optimal solution. This way decision makers can choose the best solutions 

based on their own concerns. 

 

Over the years, numerous studies have been conducted to model the time-cost 

relationship of the project. Early research on TCTP assumed the relation between 

time and cost to be continues (Kelley and Walker, 1959; Fulkerson, 1961, Siemens, 

1971; Goyal, 1975). In recent years there has been increased attention toward the 

discrete version of the problem due to its great practical relevance. This 

consideration is imperative to TCT analyses since in practice many resources (e.g., 
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workforce, equipment) are available in discrete units; in addition, time-cost 

function of any type can be estimated by discrete functions. Being the main focus 

of this thesis, the discrete version of TCTP considers discrete sets of time-cost 

options for the activities and it is known as the discrete time-cost trade-off problem 

– abridged as DTCTP – in the literature. 

 

All of the three extensions of DTCTP that were mentioned earlier are Non-

deterministic polynomial-time hard (NP-hard) problems in the strong sense (De, 

Dunne, Ghosh, and Wells, 1997). That is to say, solution of DTCTP requires 

concurrent searches over the solution space and that any escalation in the size of 

the project (any growth in the number of activities, modes, or both simultaneously) 

contributes to the significantly higher computational burden. Due to this fact, 

exhaustive enumeration is incapable of providing an efficient and convenient mean 

for DTCT analyses; therefore, researchers have come up with numerous 

optimization techniques for solution of DTCT problems. The methods proposed for 

DTCTP could be categorized into three areas: exact methods, heuristics, and meta-

heuristics. Traditionally, solution of DTCTP has been modelled by mathematical 

programming – known as the exact methods – such as linear programming (Kelley, 

1961), dynamic programming (Butcher, 1967), hybrid LP/IP programming (Liu, 

Burns, and Feng, 1995), and branch-and-bound algorithm (Demeulemeester, De 

Reyck, Foubert, Herroelen, and Vanhoucke, 1998). The literature on heuristics for 

DTCTP is limited to the methods proposed by Fondahl (1961), Siemens (1971), 

Goyal (1975), Moselhi (1993), and Bettemir and Birgonul (2017). Evolutionary 

algorithms are among the meta-heuristics practiced in solution of DTCT problems. 

Meta-heuristics include genetic algorithm (GA) (Feng, Liu, and Burns, 1997; 

Zheng, Ng, and Kumaraswamy, 2004), ant colony optimization (ACO) (Xiong and 

Kuang, 2008), and particle swarm optimization (PSO) (Yang, 2007b). 

 

Generally, exact methods are incapable of obtaining optimal solutions for large-

scale problems efficiently. The proposed exact algorithms, while requiring massive 
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computational resources, are more difficult to implement and are prone to being 

stagnated in local optima in non-convex solution spaces (De et al., 1995; Feng et 

al., 1997; Eshtehardian et al., 2008; Afshar, Ziaraty, Kaveh, and Sharifi, 2009). Due 

to the alleged drawbacks of the mathematical programming models, researchers 

have turned their interests toward alternative optimization methods. Of the 

alternative optimization techniques, existing studies providing heuristic algorithms 

acknowledge that they are problem dependent and cannot handle large-scale 

problems efficiently (Siemens, 1971). Most of the present heuristics assume merely 

linear time-cost functions and they fail to solve the Pareto front problem (Feng et 

al., 1997; Zheng et al., 2005). In addition, the existing meta-heuristics inability to 

escape from local optima is observed as their main deficiency (Zheng et al., 2005; 

Sonmez and Bettemir, 2012). In fact, it is worth mentioning that although a large 

body of the literature has hitherto been dedicated to development of optimization 

methods for DTCTP, only some of these methods are used in real-life practices. 

That is largely resulting from the fact that they do not suit actual practices and that 

major domain of the literature focus on proving applicability of various 

optimization models rather than providing means for optimization of real 

construction projects. Accordingly, it might be perceived that there exists a gap 

between the theoretical achievements of scholars and practical applications of 

professionals in the field of construction. To expand on this, majority of the past 

research have used problems including up to only eighteen activities in 

computational experiments. Very few of the existing methods can be applied to 

optimization of real-life construction projects which typically comprise more than 

300 activities (Liberatore, Pollack-Johnson, and Smith, 2001). Furthermore, a few 

methods that are tested for real-life-size large-scale problems, require enormous 

computation time and resources thanks to the inherent complexity of solving 

DTCTPs. Last but not least, despite the fact that any scientific decision support tool 

would have a pivotal role in the decision-making process, none of the commercial 

scheduling software packages (e.g., Microsoft Project, Primavera) include tools or 

modules for TCT analyses of the scheduling problems. 
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As mentioned earlier, DTCTP has been unraveled for relatively small instances and 

the literature on large-scale DTCTP is virtually void thanks to the complex nature 

of the problem. It was also stated that the ultimate resolution and the most complex 

extension of DTCTP is the Pareto front problem. Further, despite the dramatic 

increase in computing speed of the modern computers, they might prove to be 

insufficient for practical applications. Accordingly, an efficient optimization model 

for tackling Pareto oriented optimization of real world DTCT problem is long 

overdue. Recognizing this, the main focus of this thesis is set as Pareto oriented 

optimization of large-scale DTCT problems and it aims to contribute to both 

researchers and practitioners by tightening the gap between the literature and the 

real-world requirements of the projects. In this respect, new models applicable in 

real projects are developed which are believed that will suit the actual practices of 

construction managers. 

 

1.1. Problem Description and Mathematical Model 

 

The objective of general DTCTP is to determine the optimal set of time-cost modes 

that will minimize the sum of direct and indirect costs by taking into account the 

liquidated damages and bonuses for a project. 

 

1.1.1. Assumptions  

 

The assumptions of the general DTCTP are as follows: 

 

- There is a linear relation between the indirect costs and the project duration; 

- The duration of project activities is a discrete, non-increasing function of the 

amount of resources assigned to them (Vanhoucke and Debels, 2007); 

- An activity can start after all of its predecessors are finished; 

- Activities cannot be interrupted. Each activity is executed without interruption 

from its start time to its finish time. 
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1.1.2. Mathematical Model 

 

The general DTCTP can be formulated by modifying the formulation of De et al. 

(1995) to include the indirect costs and the delay penalty as follows: 
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where; jkdc  is the direct cost of mode k  for activity j ; jkx  is a binary (0/1) 

variable and is set to 1 when activity j  is undertaken with mode k ; ic  is the daily 

indirect cost; D  is the project duration; dlD  is the project deadline; T  is the delay 

amount of the project; dp  is the daily delay penalty; db  is the daily bonus; jkd  is 

the duration of mode k  for activity j ; jSt  and jFt  are the start time and the finish 

time for activity j , respectively; and jSc  is the set of immediate successors for 

activity j . 
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Objective function of a general DTCTP is defined as Eq. (1.1) which attempts to 

minimize the summation of the direct and the indirect costs, i.e., the total cost of 

the project. The constraint defined as Eq. (1.2) secures selection of only a single 

time-cost alternative for each of the activities. The project delay is calculated using 

Eq. (1.3) by subtracting the imposed completion deadline from the total duration. 

The precedence relationships are maintained by means of Eq. (1.4). Completion 

time of the project is determined using Eq. (1.5) which ensures total duration not to 

be smaller than the finish time of the final activity. Eq. (1.6) reflects the start time 

of the initial activity which is set to be equal to zero. 

 

1.2. Scope and Objectives 

 

1.2.1. Scope  

 

This study concerns development of an exact, a heuristic, and a meta-heuristic for 

the deadline and Pareto front classes of DTCTP. The main focus of the study is the 

Pareto front optimization of large-scale projects. 

 

1.2.2. Objectives 

 

The primary objective of this thesis is to design and develop state-of-the-art 

methods that can achieve successful results for discrete time-cost optimization of 

large-scale projects. For Pareto oriented optimization of large-scale projects, the 

proposed method aims to provide a large number of non-dominated solutions with 

minimal or no deviations from the optimal solutions in a short amount of 

computation time. 
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1.3. Research Methodology 

 

New models applicable in real projects are designed and developed to achieve the 

research objectives. The new proposed models include Mixed-Integer Linear 

Programming techniques that use Gurobi solver version 6.0.5, new Particle Swarm 

Optimizers, and new Cost-Slope Heuristics. For all the proposed methods, two 

variants have been designed and developed to address both the deadline and the 

Pareto front classes of DTCT problems. Since, exact procedures are the only 

methods guaranteeing optimality of the solutions and that heuristics and meta-

heuristics are incapable of securing the optimality of the solutions, the proposed 

Mixed-Integer Linear technique is used in performance evaluation of the developed 

heuristic and meta-heuristic methods. Exact solutions are used to validate the 

accuracy of the results obtained by the proposed algorithms. The developed Mixed-

Integer Linear Programming technique incorporates an efficient Upper-bound 

calculation for reducing the size of the solution space and a new merging technique 

is also applied which exponentially decreases the scale of the practiced problems. 

Resultantly, computation time of DTCTP analyses is significantly reduced in the 

light of the implemented procedures. The proposed Particle Swarm Optimizer is 

equipped with a unique semi-deterministic initialization technique and uses new 

principles for Presentation and Position-updating of the particles. Regarded as the 

chief contribution of this thesis, the novel Cost-Slope Heuristic engages unique 

scientific and programmable rules which enjoys the fastness for solving DTCTP. 

For the proposed Cost-Slope Heuristic, an original method for CPM calculations is 

designed to accelerate the solutions process. Furthermore, similar to the Mixed-

Integer Linear Programming method, a merging technique is implemented to the 

Cost-Slope Heuristic for the sake of reducing scale and computation cost of the 

practiced problems.  

 

This thesis study also presents integration of DTCTP optimization modules into 

Microsoft Project – a widely used commercial planning software in the construction 
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industry – by means of an add-in which is capable of solving two variants of 

DTCTP, namely, deadline and Pareto problems. The integrated modules include 

both the proposed Particle Swarm Optimizer and the Cost-Slope Heuristic. 

Benefiting from the presented add-in, users of Microsoft Project will readily be able 

to visualize the optimized schedules for the practiced projects; hence, the proposed 

methods are supposed to be more readily accepted and used by the parties to 

construction projects. It is expected that these approaches might prove to be an 

efficient and effective base for exerting this highly challenging problem. 

 

In order for better evaluation of the capabilities of the proposed optimization models 

and methods, new sets of DTCT problems have been generated by means of a 

project instance generator ProGen/Max that includes multi-mode problems with up 

to 500 activities; in addition, a random network generator RanGen2 is also used to 

generate new sets of multi-mode DTCTPs including up to 990 activities, with more 

complex networks and more realistic sets of time-cost alternatives. Along with the 

systematically generated large-scale instances, benchmark problems – acquired 

from the literature – and case projects are also simulated and solved using the 

proposed methods and their performances are evaluated and compared against 

existing optimization approaches according to a set of performance comparison 

indices. All the proposed algorithms and performance evaluation procedures have 

been implemented in C++ and C# programming languages using Microsoft Visual 

Studio 2013. The proposed approaches engage CPM calculations for logical 

relationships of type finish-to-start, considering no lags in between. The results of 

the comparative studies are promising and reveal that the obtained solutions not 

only are comparable, but also are better than previous approaches. Experiments also 

attest to the efficacy of the proposed methods for successful solution of real-life-

size large-scale DTCT problems within only moderate computational effort. 

 

The sequel of the thesis is structured as follows. Chapter 2 starts with an 

introduction on CPM and TCTP, followed by a detailed review of the existing 
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research on TCTP in the construction management domain. Chapter 3 presents the 

background and theoretical properties of PSO and SAM approaches; furthermore, 

the details of the proposed DPSO method for cost minimization and deadline 

extensions of DTCTP, as well as comparative studies on DPSO’s performance are 

described in this chapter. In Chapter 4, followed by an introduction on the Pareto 

optimality, the proposed PFPSO model for Pareto front extension of DTCTP is 

explained along with the results of the computational experiments and performance 

comparisons conducted for this method. Chapter 5 includes the major body of this 

thesis study, which illustrates new techniques used in development of different 

variants of CS-Heuristic and MILP methods. This chapter also covers results of the 

inclusive performance measurements and comparative studies carried out over 

benchmark problems and new sets of complex instances, for validation of all the 

proposed approaches. Chapter 6 explains the methodology implemented to develop 

a Microsoft Project add-in. Chapter 7 includes the concluding remarks and points 

out some directions for the future research.  
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 

In this chapter, the principles of project scheduling are outlined. Insight is given 

into one of the major classical network analyses, the Critical path method (CPM). 

Different types of construction project expenses are also described in this chapter. 

The time-cost trade-off problem (TCTP) is elaborated in addition to the existing 

solution techniques proposed for this problem. Prospects of exact, heuristic, and 

meta-heuristic methods for practical solution of large-scale TCT problem are 

presented. 

 

2.1. Critical Path Method (CPM) 

 

Scheduling is defined by Mubarak (2010) as making judgments on timing and 

sequence of the work-packages, by means of which, the overall completion date of 

a project is determined. Preparing schedules for projects is facilitated by conducting 

network analysis (Lock, 2007). CPM is widely used for network analysis and 

scheduling of construction projects. This method is capable of calculating the 

overall completion date of a project by computing the longest path in the project 

network. In CPM method the longest path in the network show the shortest amount 

of time required to complete the project (Kerzner, 2009). 

 

CPM calculations take place based on the duration and precedence constraints of 

the activities. Network illustrations – known as logic diagrams – are used as 

medium of tracking the critical paths of a project network. In general, the activity
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networks of the projects are illustrated either by using the activity on arrow (AoA) 

or the activity on node (AoN) notation systems. As the names imply, in the first 

system (AoA) the activities are represented by arrows intersecting nodes which 

resemble events; while, in the second system (AoN) activities are represented by 

nodes and the logical relationships are traced by arrows. In this thesis, the activity 

on node representation system is preferred due to the following reasons: 

 

- They are more flexible and simple to construct; 

- Most of the modern project management software support this network chart; 

- It is easy to build Gantt-Chart based on the AoN network; 

- This representation does not require dummy activities as the arrows represent 

only the dependencies; 

- It is easier to track parallel and serial paths in the network for merging purposes. 

 

In CPM scheduling technique, there might be more than a single critical path of the 

same length. The remainder of the paths are shorter in length, which contributes to 

a certain degree of freedom in starting and finishing of the non-critical activities. In 

contrast, a critical activity without a degree of freedom that its allowable delay is 

equal to zero, must be started as soon as its predecessors are finished. This degree 

of freedom, which is hailed as the float or slack time in the project scheduling 

domain, can be calculated by evaluating the difference between an activity’s earliest 

and latest dates (either start or finish dates). Slack time can be interpreted as the 

amount an activity can be delayed without affecting the overall completion of the 

project. Earliest and latest dates of the activities can be determined by implementing 

forward-pass and backward-pass, respectively. 

 

Consideration of a completion deadline is imperative for construction projects, 

since, in practice majority of projects include a target date which is stipulated in the 

contract by the client. Completion deadline of a project is generally the earliest 

possible date decided by dint of the network analyses such as CPM; nevertheless, 
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the definite completion date might also be targeted on a later date. The main 

resolution in time-limited projects is to secure completion of the project on a date, 

no later than the prescribed deadline. In such projects, any projected resource over-

allocation might be dealt with hiring subcontract workforce or by making 

alternative short-term resource provisions. 

 

In this thesis, due to the practical relevance of the completion deadline in projects, 

all the systematically generated instances are tackled by assuming a target 

completion date. In addition, all the proposed methods are equipped with CPM 

technique for calculation of the early and late dates and floats of the work-packages, 

as well as the overall completion date of the practiced instances. Original to this 

thesis, the proposed Cost-Slope Heuristic is also complemented with a unique 

CPM-esque approach for faster network analyses. 

 

2.2. Time-Cost Trade-off Problem (TCTP) 

 

Of the specified aspects, time and cost are regarded as two of the most significant, 

yet counteracting factors that need to be considered in every construction project 

since project success is chiefly related to these objectives in today’s market-driven 

economy. Generally, it is a desirable resolution for the involved parties to minimize 

the duration in order to finish a construction project ahead of a prescribed 

completion deadline. Unambiguously, finishing on or under the specified budget is 

another favorable achievement; hence, simultaneous realization of the noted 

objectives is sought after undeniably. For this purpose, decision makers evaluate 

the cost per unit time (cost-Slope) as well as a feasible budget (cash-flow) region 

for the project. Hence, one of the dominant prospects of the network analysis can 

be concluded as finding a solution that not only satisfies the completion deadline, 

but also has the lowest feasible total cost that resides within the feasible budget 

boundaries. In network analysis, normal duration is defined as the time required to 

complete the project under ordinary conditions without deliberate delay or 
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acceleration; further, normal cost is the amount that is required for completion of 

the project within the normal duration. Despite the fact that it is possible to avoid 

delay penalties by finishing a project earlier, managers accelerate a schedule due to 

many other factors like improving cash-flow, avoiding unfavorable climate 

conditions, early commissioning, earning early-completion incentive, starting 

another project earlier, and mainly in the interest of increasing profit margins. 

Usually, the contractor knows the expected mobilization date to another project; in 

this regard, the contractor might esteem to accelerate the current project in favor of 

supplying the required resources so that they can be allocated to the new project. 

 

Accelerating a project schedule might be profitable only up to a certain level. This 

is because of the fact that in practice alternatives of the activities are mutually 

incomparable with convex relationships; that is, the faster it gets to execute an 

activity, the more expensive it gets. The act of accelerating (compressing) or 

crashing a project schedule literally means reducing the duration of a project. 

Though, there is a fine line between these two approaches. Whilst both the 

techniques aim at advancing the completion date of a project, accelerating does not 

necessarily mean targeting to reach the least possible duration. It must be also 

clarified that the possibility of schedule acceleration or availability of the crashing 

alternatives for the activities of a project is highly affiliated with its typology. Those 

with complex precedence constraints usually offer less flexibility regarding the 

schedule acceleration compared with those with less strict logical relationships. 

 

Decision makers speed up the project by optimally crashing selected critical 

activities that levy least additional cost. Crashing a project schedule is usually 

facilitated by provisioning resource overloads – i.e. allocating additional manpower 

and machinery resources or recruiting subcontractors – or by implementing 

alternative speedy construction techniques. Although shortening the project 

duration below its normal level enables reducing indirect cost and avoiding 

potential delay penalties, all the schedule expedition techniques add to the total cost 
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of a project. Obviously, it is because of the fact that the aforementioned crashing 

approaches require greater financial expenditures known as the direct costs. 

 

According to the Construction Industry Institute (1988), acceleration of a project 

schedule can be facilitated by using more than 90 techniques. Mubarak (2010) has 

summarized some of the more significant schedule acceleration methods as: 

 

- Reviewing or evaluating the schedule for errors or imperfect precedence 

relationships; 

- Applying fast-tracking; 

- Studying constructability and value engineering; 

- Assigning over-time schedule or using shift-works; 

- Setting incentives for the more productive work-forces; 

- Increasing the size of the allocated work-forces; 

- Employing more efficient construction techniques; 

- Using materials with faster installation processes; 

- Enhancing project management and supervision; 

- Preventing communications breakdowns. 

 

Since schedule acceleration remarkably influence both the direct and indirect costs 

of a project, shedding some light on their differences is inevitable and necessary. 

The main principle for distinguishing the direct expenses from the indirect costs 

can be depicted as a direct cost item is directly associated with an explicit work 

item; whereas, the indirect costs cannot be related to any specific task or a particular 

project. Direct expenses may include labor, material, equipment, subcontractor, 

machinery, and costs related to fees and permits. On the other hand, indirect costs 

might include project overhead and general overhead expenditures that contain 

salaries of the guard, cook, and office personnel as well as the energy costs. 
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It was already mentioned that in practice, the time-cost relation is convex among 

the alternatives of an activity. Therefore, the more an activity accelerates, the more 

the daily cost of acceleration increases. This is because of the fact that over-staffing 

or working over-time notably decreases the productivity which in turn, increases 

the ratio of unit cost per unit output. A realistic nonlinear time-direct-cost profile is 

shown in Figure 2.1. 

 

 
 

Figure 2.1 – Nonlinear progression of direct cost resulted from schedule acceleration. 

 

The indirect costs, on the other hand, consists of time-dependent and time-

independent types. Besides, they usually tend to increase faster at the initial stages 

of the project and then to remain constant. Nevertheless, they are usually assumed 

to be linearly comparative to the duration of the project for schedule acceleration 

purposes. Likewise, for the sake of simplified cost computations, second order cost 

components (e.g., insurance and bond payments) are usually not included in the 

daily indirect expenses. As shown in Figure 2.2, the indirect cost is assumed to 

decrease linearly in case of schedule acceleration. 
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Figure 2.2 – Linear decline of indirect cost resulted from schedule acceleration. 

 

As shown in Figure 2.3, the total cost profile of a project can be obtained by adding 

up the direct and indirect costs together. Starting from the normal schedule – which 

consists of least direct cost/largest duration alternatives – the total cost of the project 

decreases as a result of acceleration till reaching an optimal point; after this point, 

as the acceleration gets closer to the crash schedule – which consists of largest direct 

cost/shortest duration alternatives – the total cost surges up at an increasing rate. 

 

 
 

Figure 2.3 – Variation of total cost resulted from schedule acceleration. 

 

This trade-off between time and cost of the project is known as the time-cost trade-

off problem which is abridged as TCTP and is one of the most important and 

applicable research areas in project management. The objective of general time-

cost trade-off problem is to identify the set of time-cost modes (alternatives) that 

will provide the optimal schedule under certain conditions. TCTP mainly attempt 

to speed up the critical activities while relaxing non-critical ones (Siemens, 1971). 
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It is a problem solving and decision-making science which provides the 

management with a quantitative basis for decisions on selection of the proper 

alternatives. The importance of TCTP has been recognized since development of 

the CPM (De et al., 1995). 

 

In the literature, three types of TCTP has been commonly studied; the deadline 

problem, the budget problem, and the Pareto front problem. The objective of the 

deadline problem is to determine the set of time-cost alternatives that will minimize 

the total cost – including direct and indirect costs, penalties and bonuses – for a 

given project deadline. The budget problem aims to identify the time-cost 

alternatives to minimize the project duration without exceeding the budget. The 

Pareto front problem which is also the chief focus of this thesis, is a multi-objective 

optimization problem and involves determination of the non-dominated time-cost 

profile over the set of feasible project durations to generate Pareto fronts of the 

problems (Vanhoucke and Debels, 2007). Pareto front optimization of TCT 

problems is recognized to be the ultimate resolution of TCTP analyses (e.g., Zheng 

et al., 2005; Yang, 2007b; Eshtehardian et al., 2008; Aminbakhsh and Sonmez, 

2017). The importance of Pareto front is emphasized since preferences of decision 

makers can be articulated by providing them with a set of mutually non-dominated 

solutions of same quality instead of a single optimal solution. This way decision 

makers can choose the best solutions based on their own concerns. 

 

Over the years, numerous studies have been conducted to model the time-cost 

relationship of the project. Early research on TCTP assumed the relation between 

time and cost to be linear (Kelley and Walker, 1959; Fulkerson, 1961; Siemens, 

1971; Goyal, 1975). Subsequently, the assumption of linearity was relaxed allowing 

for consideration of other types of the objective function, namely, concave function 

(Falk and Horowitz, 1972), convex function (Foldes and Soumis, 1993), a hybrid 

of concave and convex functions (Moder, Phillips, and Davis, 1983), and quadratic 

function (Deckro, Hebert, Verdini, Grimsrud, and Venkateshwar, 1995). In recent 
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years there has been increased attention toward the discrete version of the problem 

(Skutella, 1998; Zheng et al., 2004) due to its great practical relevance. This 

consideration is imperative to TCT analyses since in practice many resources (e.g., 

workforce, equipment) are available in discrete units; in addition, time-cost 

function of any type can be estimated by discrete functions. Being the main focus 

of this thesis, the discrete version of TCTP considers discrete sets of time-cost 

options for the activities and it is known as the discrete time-cost trade-off problem 

– abridged as DTCTP – in the literature. 

 

All the three extensions of DTCTP that was mentioned earlier are Non-

deterministic polynomial-time hard (NP-hard) problems in the strong sense (De et 

al., 1997). That is to say, solution of DTCTP requires concurrent searches over the 

solution space and that any escalation in the size of the project (any growth in the 

number of activities, modes, or both simultaneously) contributes to the significantly 

higher computational burden. Moreover, any variation in selection of the 

alternatives modifies the project schedule which requires rescheduling the project 

for potential changes in its total cost and total duration amounts. It is obvious that 

any rescheduling process necessitates reanalyzing the network using the critical 

path method. Exhaustive enumeration even with the modern computers is, 

therefore, not a convenient and economically feasible method for solution of 

DTCTP. Therefore, since the early 1960’s – concurrent with introduction of project 

analysis techniques by Fulkerson (1961) and Kelley (1961) – researchers have come 

up with several different optimization techniques to address this problem in the 

literature. Heuristic method of Nicolai Siemens (1971) remains the first notable 

approach developed for solution of TCTP. The methods proposed for DTCTP can 

be categorized into three areas: exact methods, heuristics, and meta-heuristics. 

Sections 2.3, 2.4, and 2.5 present the existing literature on the exact, heuristic, and 

meta-heuristic methods, respectively. 
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2.3. Exact methods for TCTP 

 

Traditionally, solution of DTCTP has been modelled by mathematical 

programming, known as the exact methods. These approaches attempt to explore 

the entire solution space to find the exact optimal solution. Generally, exact 

methods are incapable of obtaining optimal solutions for large-scale problems 

efficiently. The proposed exact algorithms, while requiring massive computational 

resources, are more difficult to code and implement and are prone to being stagnated 

in local optima in non-convex solution spaces (De et al., 1995; Feng et al., 1997; 

Eshtehardian et al., 2008; Afshar et al., 2009). Due to the alleged drawbacks of the 

mathematical programming models, researchers have turned their focus toward 

alternative optimization methods. Nevertheless, exact procedures are the only 

methods guaranteeing optimality of the solutions. Owing to this very reason, they 

play a crucial role in performance evaluation of alternative optimization methods, 

viz., heuristics and meta-heuristics. In the absence of an exact solution, the accuracy 

of the results obtained by other methods cannot be calculated. Some of the most 

popular variants of the exact algorithms include linear programming, dynamic 

programming, mixed-integer programming, branch-and-bound algorithm, hybrid 

LP/IP programming, and Benders decomposition method. 

 

Of the exact methods, mixed-integer programming (MIP) consists of decision 

variables constrained to include integer values, with objective function and other 

variables allowed to select non-integer (continuous) values. MIP is a subset of the 

broader linear programming (LP) in which all the variables and objective functions 

are linear. TCT problems of any type can be converted into LP/MIP and solved by 

implementing a commercial optimization solver. LP/MIP approaches suit the nature 

of real-life TCTPs with convex time-cost relationships. Though, as the number of 

activities of a project increases, the number of parameters to define for LP/MIP 

approaches grows significantly. 
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The MIP approach of Meyer and Shaffer (1965), remains the pioneering attempt for 

exact solution of TCTP. Another early MIP for TCTP analysis includes the method 

proposed by Crowston and Thompson (1967). A rather small sample problem with 

eight activities is used in their study. Liu et al. (1995) proposed a hybrid approach 

combining linear and integer programming (IP) together. The hybrid approach uses 

LP to set lower-bounds for cost and uses IP to find the exact solutions. This model 

is implemented as a macro in Microsoft Excel environment and tested using a small-

scale seven activity problem. Moussourakis and Haksever (2004) present a flexible 

MIP model that tackles deadline and budget TCT problems with linear, piecewise 

linear, or discrete objective functions. Piecewise linearity of nonlinear continuous 

functions is the only assumption required for this approach. This method is studied 

using a seven-activity sample problem. Another MIP is proposed by Chassiakos 

and Sakellaropoulos (2005) for Pareto front TCT problem, objective function of 

which includes delay penalty and incentive payments. A small-scale 29-activity 

sample problem – including finish-to-start with lag/lead time relationship – is fed 

into the model. A more recent study on MIP is carried out by Szmerekovsky and 

Venkateshan (2012). This method is capable of handling problems with time-cost 

alternatives defined as different cost functions. This model is able to minimize Net 

Present Value (NPV) of costs and maximize Cash Availability (CA) with applying 

adjustments to the objective function. Sample problems of size 30 to 90 are used 

and the results are compared with three other MIP methods. This method is shown 

to obtain better results for denser networks in the light of its tight LP relaxation, 

sparse constraint matrix, and small number of binary constraints. Bilir (2015) 

propose a MIP approach for large-scale TCTPs. This method is tested using a set 

of new samples generated using ProGen/Max random network generator. This 

model is able to obtain solutions for the deadline TCTP with 1000 activities and 20 

time-cost alternatives. The Pareto front problem is also solved for problems with 

200 activities and five time-cost modes. A more recent mixed-integer linear 

programming (MILP) approach is introduced by Zou, Fang, Huang, and Zhang 

(2016) for repetitive deadline TCTPs with fixed logic by considering multiple crews 
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for each activity. In addition to MILP, an alternative approximate model with less 

number of constraints and variables is also presented for unraveling larger 

problems. Test instances are generated by means of ProGen random network 

generator including 30, 40, 50, 80, 90, and 100 activities and CPLEX MIP Solver 

is used for solving these instances. MILP is shown to provide solutions for problems 

with up to 50 activities within the implemented computation time-frame of one 

hour. It is also revealed that this MILP cannot solve problems that include more 

than 50 activities even in three hours. Therefore, the approximate method is used 

for the solution of problems with up to 100 activities within the enforced maximum 

CPU-time of one hour. Dragović, Vulević, Todosijević, Kostadinov, and Zlatić 

(2017) presents an LP model for direct cost minimization of deadline TCTP. This 

approach is implemented using MATLAB toolbox and is applied for direct cost 

minimization of torrent-control projects including 10, 12, and 13 activities. The 

effect of daily indirect cost is not considered in this optimization procedure results 

of which are revealed as direct cost reductions ranging from 5.58% to 9.19%. 

 

Dynamic programming (DP) is another category of exact procedures which aims at 

reducing the size of a practiced network by merging its activities. DP reduces the 

network size by decomposing it into a sequence of smaller sub-problems. Though, 

this reduction cannot be applied to a network with complex logical relationships 

among its activities. DP imposes a reasonable computation burden for small and 

simple problems; however, it might not be practical to use DP for larger and more 

complex networks. 

 

Early study on DP includes Butcher’s (1967) method. This approach is capable of 

unraveling budget TCTPs with plain series or plain parallel networks. Another DP 

for budget TCTP is developed by Robinson (1975). This method is also based on 

network decomposition. Specific assumptions and conditions are set for reducing 

the network into a one-dimensional problem. However, taking a multidimensional 

optimization approach is suggested for problems with more complex networks, due 
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to their difficult decomposition processes. DP method of Panagiotakopoulos (1977) 

implements problem simplification to solve the TCT problems by means of 

enumeration. De et al. (1995), giving an inclusive literature review on previous 

approaches, discuss the scant and sparse attention toward discrete version of TCTP. 

By implementing modular decomposition and incremental reduction, this thesis 

study introduces a centralized DP model for Pareto front TCT problems with 

parallel modules. Demeulemeester, Herroelen, and Elmaghraby (1996) present two 

DP methods for Pareto front DTCTP. The first method uses node-reduction to 

convert the problem network into a series-parallel network and the second model 

reduces the number of possible time-cost alternative combinations. Both the 

methods are coded in C programming language and a sample problem with 45 

activities is practiced.  

 

Other major exact methods which are classified as branch-and-bound (B&B) 

algorithms were first introduced by Land and Doig (1960). B&Bs are generally used 

for combinatorial optimization problems. B&B consists of systematic enumeration 

of all possible combinations of time-cost alternatives in the solution space. B&B 

implicitly searches only certain portions of the solution space by implementing 

upper and lower estimated bounds on the optimal solution. It portions the problem 

into subsets and is able to identify and discard those schedules that will not lead to 

any improvements in the objective function value. 

 

Early B&B methods for Pareto front TCTP include horizon-varying approach of 

Demeulemeester et al. (1998). Lower boundaries are calculated by setting convex 

piecewise linear underestimations of activity time-cost curves. The quality of the 

underestimations is assessed using a vertical distance calculation. This method 

applies branching to time-cost alternatives by identifying the activity with the 

largest vertical distance. Branching divides time-cost options into two subset 

groups. This approach is implemented in Visual C++ platform and instances with 

10, 20, 30, 40, and 50 activities with up to 11 time-cost alternatives are practiced. 
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The results are compared with Demeulemeester et al.’s (1996) method which reveal 

capability of this approach in providing solutions for instances with up to 30 

activities and 4 time-cost options. It is also shown that nearly half of the problems 

including 50 activities with six or more alternatives cannot be solved using this 

B&B algorithm. Vanhoucke, Demeulemeester, and Herroelen (2002) present a 

B&B algorithm for deadline TCTP incorporating the time-switch constraints of 

Yang and Chen (2000) and the lower-bound calculation procedure of 

Demeulemeester et al. (1998). Contrary to CPM, time-switch constraints impose 

specific intervals for execution of the activities which are designed to deal with day, 

night, and weekend shifts. This algorithm is coded in Visual C++ environment and 

tested using a sample problem with 20 activities. Another B&B algorithm is 

developed by Vanhoucke (2005) for deadline TCTP with time-switch constraints. 

The branching process creates three child nodes as it divides the start time of 

activities into three sections. Branching ignores time-switch constraints of those 

activities that cause exceeding the project deadline. This method is implemented in 

Visual C++ platform and tested using instances with 10, 20, and 30 activities having 

up to seven time-cost alternatives. On average, this newer B&B requires less than 

seven seconds to unravel 30-activity sample with seven time-cost options which is 

four times faster than Vanhoucke et al.’s (2002) approach. A more recent B&B is 

generated by Degirmenci and Azizoglu (2013) for budget TCTP. This method aims 

to find the solution with the least cost among the solutions having the minimum 

completion time. This method embeds a mode elimination procedure and a network 

size reduction technique. Time-cost alternatives not leading to a feasible or an 

optimal solution are eliminated. Lower and upper-bounds for total cost are 

calculated using linear programming relaxation. Two procedures of LPR-based and 

naïve are proposed for calculation of lower-bounds. This approach is implemented 

in C# environment used for solution of 360 problems including up to 35 activities 

with up to 20 time-cost alternatives. The optimal solutions are found by means of 

CPLEX 10.1. 
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Benders decomposition (BD) is another exact procedure which was first introduced 

by Benders (1962). It is generally used for solution of large-scale stochastic/linear 

programming problems which partitions the practiced problem into multiple 

simpler sub-problems. Benders decomposition consists of two stages, in first of 

which a lower-bound is set and the master problem is solved for a subset of 

variables and in the second stage, an upper-bound is set and the remaining variables 

are calculated for a sub-problem using the values determined in the preceding stage. 

If an infeasibility of first stage decision is identified in the latter stage, additional 

constraints are used to solve the master problem. 

 

Hazır, Haouari, and Erel (2010) propose a BD method for budget TCTP by 

modifying the original method of Benders. It includes an improved decomposition 

approach and as well as a branch-and-cut procedure. Problems networks with 85 to 

136 activities are solve using this procedure. It is shown that this BD can outperform 

both Benders and IBM’s CPLEX 9.1 methods. Another BD was presented by Hazır, 

Erel, and Gunalay (2011) for deadline TCTP with uncertain cost parameters. Three 

alternative optimization models are proposed that assume interval uncertainty for 

unknown parameters. This model assumes certain start and finish times for 

activities as their time-cost alternatives are associated with fixed durations. All the 

uncertainty is reflected on the cost of an activity using probabilistic intervals. This 

method is tested using problems with 85 to 136 activities. 

 

2.4. Heuristic methods for TCTP 

 

In contrast to the exact procedures, heuristic methods are convenient tools of 

optimization, requiring non-substantial computation time and resources. Some of 

the heuristics can be implemented even short of a computer’s assist. Derived from 

the Greek word “Heuriskein” meaning “to find”, heuristics involve simple rules for 

finding solutions to difficult optimization problems. Nonetheless, the optimality is 

not guaranteed in the heuristic methods. The solutions obtained by means of 
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heuristics are rather satisfactory since they are either optimal or near-optimal. The 

constructive and the improvement heuristics are the most revered variants of the 

heuristic algorithms. The former uses a stepwise procedure to generate solutions, 

generating them one at a time until a feasible solution is met. Generally, a feasible 

solution is not obtained in the course of the construction heuristics unless the 

conclusion of the procedure is reached. The latter type of the heuristic algorithms 

i.e. the improvement heuristics, initiate with a feasible solution and successively 

improve it via a series of modifications. In the course of this procedure, usually a 

feasible solution is preserved regardless of the progression of the process 

(Aminbakhsh, 2013). Existing studies providing heuristic algorithms acknowledge 

that they are problem dependent and cannot handle large-scale problems efficiently 

(Siemens, 1971). Most of the present heuristics assume merely linear time-cost 

functions and they fail to solve the Pareto front problem (Feng et al., 1997; Zheng 

et al., 2005). 

 

Early heuristics in the literature of TCTP include the procedure proposed by 

Siemens (1971). Known as SAM (Siemens Approximation Method), a logical 

systematic procedure is developed to minimize the overall project cost which is 

suited for both manual and computer aided calculations. It is capable of obtaining 

solution for convex nonlinear TCTPs by making multiple piecewise linear curve 

approximations. The procedure initiates with the construction of the project 

network, thereby, crashing critical activities one at a time based on some specific 

rules. Of these rules, the most important is selection of a critical activity with 

minimum amount of cost-slope. The act of crashing continues until either all the 

activities are crashed, or those with normal duration have cost-slopes greater than 

the daily indirect cost. The major drawback related to this approach is that it 

requires determination of all the critical paths in the network which might prove 

expensive to solve complex problems. A sample problem with eight activities is 

fitted into the model and it is shown that the results compare well with the results 

of a linear programming approach. Goyal (1975) proposes a modified version of 
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SAM which uses effective cost-slopes instead of the plain cost-slopes and is capable 

of obtaining solutions for TCTPs with convex nonlinear cost-slopes. This method 

also introduces a de-shortening technique which is applied to the excessively 

shortened paths. The same eight activity network of Siemens (1971) is used to test 

the proposed heuristic. An alternative heuristic is proposed by Moselhi (1993) to 

minimize the overall project cost which involves replacing CPM network with a 

corresponding structure. Using the analogy between the support settlement of 

structural analysis and the completion deadline of TCTPs, the overall cost of 

schedule compression is calculated using the sum of all member forces. 

Aminbakhsh (2013) and Aminbakhsh and Sonmez (2016, and 2017) develop a new 

cost-slope-based heuristic approach for their hybrid optimization method which is 

regarded as one of the first TCTP heuristics operating in discrete search space. 

Named as modified-SAM, this method is designed for problems with discrete time-

cost relationships. Modified-SAM, unmatched by any other previous heuristic for 

TCTP, is capable of obtaining multiple non-dominated solutions in a single run for 

Pareto front problem. Bettemir and Birgonul (2017) explain another discrete 

heuristic method called Network Analysis Algorithm (NAA) for deadline and cost 

minimization TCTP. Least cost-slope activities are crashed under three conditions 

of single critical path, multi-critical path, and necessity of crashing non-critical 

activities. This approach uses an elimination algorithm to reduce the number of 

crashing options by excluding those critical activities that are shared with all the 

critical paths. 18-activity problem of Feng et al. (1997) and 63-activity problem of 

Sonmez and Bettemir (2012) are used for performance measurement of NAA. 

Compared with hybrid-GA of Sonmez and Bettemir (2012), NAA is concluded to 

require one percent of meta-heuristics computation burden and contributing to 

higher accuracy. Su, Qi, and Wei (2017) propose an equivalent simplification-based 

approach for solution of nonlinear continuous deadline TCTP. This algorithm 

transforms TCTP into a simple activity float problem then uses a polynomial 

algorithm to unravel the transformed problem. Both the simplification and 

polynomial algorithms are implemented using LINDO optimization software. This 
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method narrows the domain of direct cost for each activity duration to achieve 

higher efficiency and accuracy. Redundant activities are also discarded to reduce 

the scale of the TCTP. This algorithm is experimented on a 116-activity problem 

which requires 30 minutes of processing time in the absence of the simplification 

method, and takes 2 seconds when the problem is simplified to a 33-activity 

network. 

 

2.5. Meta-heuristic methods for TCTP 

 

Inspired by the stochastic occurrences of the nature, evolutionary algorithms are 

among the meta-heuristics practiced in solution of DTCT problems. “Meta”, 

meaning “beyond” is an indication of higher-level algorithms when compared with 

the heuristics. This is because of the fact that heuristics are problem dependent 

while meta-heuristics are independent of the nature of the problem. Existing meta-

heuristics unravel an optimization problem by randomly searching the solution 

space. Contrary to heuristic methods, meta-heuristics are designed to explore a 

problem in an iterative fashion. This is mainly performed in view of prevention of 

meta-heuristic from getting stuck into the local optima. Ironically, the main 

deficiency of the existing meta-heuristics is observed as their inability to escape 

from local optima (Zheng et al., 2005; Sonmez and Bettemir, 2012). In addition, 

similar to the heuristics, meta-heuristics are incapable of securing the optimality of 

the solutions; rather, they can provide near-optimal solutions within only moderate 

computational effort. This category of optimization methods is well associated with 

the modern studies, including genetic algorithms (GA), ant colony optimization 

(ACO), particle swarm optimization (PSO), shuffled frog leaping (SFL), and 

simulated annealing (SA). 

 

Of the meta-heuristic methods, Genetic algorithms (GA) are the most popular and 

highly practiced approaches. GA was first introduced by Holland (1975) which as 

the name implies, is inspired by the natural selection and genetic reproduction 
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process. Feng et al. (1997) present a GA for solution of Pareto front TCT problem. 

Addressing the lack of sound methods for coping with large-scale TCTPs, a GA is 

generated in which normal and crash modes of an activity are defined as two 

chromosomes. This method develops new solutions by iterative cross-overs and 

mutations, fitness values of which are evaluated using their minimal distances to a 

convex hull. Genetic drift (raised by Goldberg and Segrest, 1987) is avoided by 

retaining each string for the next generation. An 18–activity problem is used to test 

the proposed model, different variants of which has since been used extensively 

within the TCTP literature. It is shown that this method is capable of locating more 

than 95% of the non-dominated solutions for the benchmark problem. Li and Love 

(1997) introduce a GA based approach for deadline TCTP with improved mutation 

and crossover processes. A sample problem of 10 activities is fitted into both the 

proposed and the original GAs and the results are compared. It is indicated that the 

presented method outperforms the original GA due to its higher search efficiency. 

 

Hegazy (1999) comes up with another GA for deadline TCTP. This method requires 

shorter computation time as it employs the same techniques proposed by Li and 

Love (1997). This GA is implemented as a macro in Microsoft Project 1995 and is 

tested using instances with 18, 36, 108, and 360 activities. It is concluded that 

although this method is capable of obtaining solutions for all the practiced 

instances, the computation time increases as the problem becomes more 

complicated. Meanwhile, the core 18-activity problem is actually the same instance 

introduced by Feng et al. (1997) with a slight difference in one of its activities. 

Zheng et al. (2005) introduce a GA model for Pareto front TCTP. A modified 

adaptive weight approach (MAWA) is used to adjust the priority of each objectives 

of time and cost with regard to performance of preceding generation. As the 

generations evolve, MAWA administers a decreasing pattern for the mutation rate 

to prevent premature convergence. Pareto ranking and niche formation are also 

implemented to this model with the former serving as a selection criterion and the 

latter as a population diversifier. This approach is implemented as a macro in 
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Microsoft Project 2000 and is practiced using Feng et al.’s (1997) 18-activity 

problem. The results indicate robustness of this method and it is shown that the 

results keep improving as generation count is increased beyond 300. 

 

Kandil and El-Rayes (2006) present a GA with two parallel processing techniques. 

Global parallel and coarse-grained GAs are used for solution of Pareto front TCTPs. 

Instances with 180, 360, and 720 activities are generated by using the time-cost 

alternatives of Feng et al. (1997) and by copying a slightly modified version of the 

18-activity network of Feng et al. (1997) in serial several times. Global parallel GA 

is able to find 267 solutions for the 180-activity problem in 42.6 minutes. The 

coarse-grained GA, on the other hand, achieves 68 Pareto solutions in 11.4 minutes. 

Similarly, global parallel GA is able to find 232 solutions for the 360-activity 

problem in 173.4 minutes. The coarse-grained GA, on the other hand, achieves 94 

Pareto solutions in 30.6 minutes. 136.5 hours on a single processor, and 15.4 hours 

over a supercomputing cluster of 50 processors is required for global parallel GA 

to achieve 303 Pareto front solutions for the 720-activity problem and the coarse-

grained GA achieves 132 non-dominated solutions in 118.18 minutes. Eshtehardian 

et al. (2008) discuss a GA which can reflect the uncertainties in time and cost of 

project activities using the fuzzy sets theory of Zadeh (1965). This method can 

obtain solution for stochastic Pareto front TCTP by assigning triangular fuzzy 

numbers to time and cost of the work-packages. Hamming-distance and Euclidian-

distance techniques are implemented to GA and α cut approach is used in ranking 

the non-dominated solutions in accord with the decision maker’s acceptance of risk 

level. The GA based approach is tested using the 18-activity problem of Feng et al. 

(1997). 

 

Eshtehardian, Afshar, and Abbasnia (2009) demonstrate another fuzzy-based multi-

objective GA for Pareto front optimization of TCTPs with uncertainties in their 

activity time-cost pairs. This model addresses risk acceptance level and degree of 

optimism of a decision maker employing α cut approach and optimism index, 
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respectively. Fuzzy set theory is explicitly embedded into this optimization process 

which ranks fuzzy numbers using an approximate method in reference to the left 

and right dominance. This GA model uses the general concepts of NSGA-II 

combined with single cut cross over, uniform mutation, and tournament selection 

procedures. Time-cost options of 7-activity problem of Zheng et al. (2005) and 18-

activity problem of Feng et al. (1997) are defined as triangular fuzzy numbers. 

These instances are fed into the GA, deterministic results of which are compared 

with the original studies mentioned. Sonmez and Bettemir (2012) present a hybrid-

GA for both the deadline and cost minimization TCTPs. This method combines the 

complementary capabilities of simulated annealing (SA) and quantum simulated 

annealing (QSA) together with the GA approach. This method is coded in Visual 

C++ environment, SA module of which aims to improve hill-climbing, while its 

QSA module aims to improve local search capabilities of the hybrid model. 

Problem sizes ranging from 18 to 630 activities are fitted into the model and the 

results are compared with the optimal solutions achieved by mixed integer 

programming technique implemented in AIMMS optimization software. Test 

instances are based on the 18-activity problem of Feng et al. (1997), 29-activity 

problem of Chassiakos and Sakellaropoulos (2005), and a hypothetical 63-activity 

problem. Outputs of paired t-test is given which verifies improved convergence 

capability of this model against a typical GA. 

 

Mungle, Benyoucef, Son, and Tiwari (2013) demonstrate a fuzzy clustering-based 

GA for Pareto TCTPs with uncertainties in their time-cost amounts. The anticipated 

qualities of execution alternatives are measured by means of analytical hierarchy 

process (AHP). This approach combines NSGA-II with external repository concept 

and linkage-based hierarchical clustering technique for storing and managing 

diversity of the Pareto solutions, respectively. Implemented in MATLAB, this GA 

incorporates crowded-comparison, crowding distance, two-point crossover, and bit-

flip mutation operators. This model is used for analyzing 7-activity problem of 

Burns, Liu, and Feng (1996), a hypothetical 12-activity problem, and 18-activity 
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problem of Feng et al. (1997). Findings of this approach is compared with HS of 

Geem (2010), SPEA-II of Zitzler, Laumanns, and Thiele (2001), and exact method 

of Burns et al. (1996). Generational distance (GD) and Range Variance (RV) 

metrics are used for measuring convergence and diversity of the obtained Pareto 

solutions, respectively. These metrics are then measured for PSO of Zhang and Li 

(2010) and GA of Feng et al. (1997) to carry out comparisons. Zhang, Zou, and Qi 

(2015) introduce a GA for repetitive projects with soft logic. A mixed-integer 

nonlinear programming approach is used to combine TCTP and the soft logic 

concept which allows for changes to be made in the logical relationships, in view 

of a faster and cheaper project realization. This approach is tested using a sample 

problem with five activities including a single resource for execution of each of its 

activities. 

 

Koo, Hong, and Kim (2015) demonstrate GA-based integrated multi-objective 

optimization (iMOO) model for Pareto front TCTP. This model is able to carry out 

optimization using four different fitness functions including trade-offs between 

time-cost, cost-quality, sustainability-cost, and productivity-safety. Prior to GA 

phase, heuristic module of this model defines the minimum and maximum extreme 

points in the solution space. OptQuest tool of Crystal Ball is used to implement the 

GA procedure. Capabilities of this approach for the time-cost objective function is 

tested using the 7-activity problem of Zheng et al. (2005). It is declared that this 

model is able to find the Pareto front identical to the previous studies. Huang, Zou, 

and Zhang (2016) develop another GA-based model for repetitive deadline TCTPs 

with soft logic by considering a single crew for each activity. They aim to reduce 

the overall cost of project by implementing a proper sequencing. They use linear 

programming for reducing a repetitive construction projects to a classical TCTP, 

afterwards, they use a GA to tackle the reduced problem which is programmed in 

MATLAB. This approach is tested using a 5-activity problem solved considering 

two sequencings as well as a 6-activity project solved considering three sequencing 

strategies. El-Abbasy, Elazouni, and Zayed (2016) develop an elitist non-dominated 
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sorting GA for Pareto front TCTP that considers multiple projects with multiple 

objectives. This method unravels TCTP by taking into account the financing cost, 

maximum required credit, profit, and resource levelling of the project. Of the three 

models implemented, scheduling model is validated using the 18-activity problem 

of Feng et al. (1997). This model which is also able to tackle pure TCTPs is shown 

to locate 31 non-dominated solutions for this instance which are compared visually 

to the results of Feng et al. (1997). 

 

A more recent and notable GA-based approach is introduced by Agdas, Warne, 

Osio-Norgaard, and Masters (2018) for large-scale cost minimization and deadline 

TCTPs. Parallel GA is developed by applying the Scalable Concurrent Operations 

method to the open source Distributed Evolutionary Algorithms framework of 

Python programming language. A custom GA is developed employing a new 

problem encoding, implementing weighted graph method instead of iterative CPM 

calculations, a parallel fitness evaluation technique, and a new stagnation criterion. 

This model is shown to run four times faster in the light of parallel computing on a 

high-performance computing facility with eight CPU cores. Combined with their 

modifications, this GA is proved to be 100 times faster than a typical GA running 

on the same computer on a single CPU core. Large-scale problems with 630, 1800, 

3150, and 6300 activities are practiced and the results are compared with Sonmez 

and Bettemeir (2012). The 1800-activity problem is based on the 18-activity 

network of Feng et al. (1997) and the remaining instances are based on the 63-

activity problem of Sonmez and Bettemir (2012) which are generated by copying 

the same network in serial several times. Performance of the parallel GA is 

evaluated with respect to its accuracy and processing time in two stages; viz., before 

and after applying the modifications. It is contended that the results of unmodified 

parallel GA exceed the accuracy of Sonmez and Bettemir’s (2012) hybrid-GA 

approach for the 630-activity problem; though, it requires more than four hours to 

unravel this project. The accuracy of the modified version however is demonstrated 

to be on par with hybrid-GA of Sonmez and Bettemir (2012) with much less runtime 
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requirements. CPU time for the larger problems is reported to vary from 5.82 to 

16.76 hours with average deviations ranging from 4.73% to 14.72%. 

 

An alternative meta-heuristic approach covers Ant Colony Optimization (ACO) 

methods. ACO was first proposed by Colorni, Dorigo, and Meniezzo (1992) which 

is inspired by the coordinated interactions of ant colonies in search for sources of 

food. Ng and Zhang (2008) present an ACO based model for Pareto front TCTP. 

This model is equipped with modified adaptive weight approach of Zheng et al. 

(2004) for fitness function evaluations. This model is programmed in Visual Basic 

platform and its results on the 18-activity problem of Feng et al. (1997) are 

compared with Elbeltagi, Hegazy, and Grierson’s (2005) typical ACO method. This 

method is shown to decrease the computation resource requirements of the original 

ACO. Xiong and Kuang (2008) develop another ACO employing the modified 

adaptive weight approach of Zheng et al. (2004) for Pareto front TCTP. This 

method incorporates two selection criteria for the alternatives. The first selection is 

made regarding a maximization criterion and the second involves a probability 

distribution function. The performance of this method is evaluated using 7-activity 

problem of Zheng et al. (2004) and the 18-activity of Feng et al. (1997). This 

method is capable of obtaining solutions by exploring rather smaller portion of the 

solution space. 

 

Afshar et al. (2009) develop a multi-colony non-dominated archiving ACO for 

Pareto front TCTP. Separate ant colonies are assigned to time and cost objectives. 

These separate colonies are designed to share solutions to be evaluated with regard 

to the counteracting objective. Performance of this method is measured using the 

18-activity problem of Feng et al. (1997) under three assumptions regarding the 

amount of daily indirect cost. For all the cases, the results prove to be better than 

the solutions achieved by ACO-based and GA-based methods of Zheng et al. 

(2005). Kalhor, Khanzadi, Eshtehardian, and Afshar (2011) explain a fuzzy-based 

non-dominated archiving ACO for Pareto front optimization of TCTPs with 
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uncertainties in their activity time-cost pairs. In this model α cut approach accounts 

for the risk acceptance level of the decision maker. Degree of optimism of a 

decision maker is also embedded to this method using an optimism index. Left and 

right dominance rule is employed for conducting comparison in the non-dominated 

sorting process. Coded in MATLAB, this ACO uses one colony for minimization 

of fuzzy cost and another for minimization of fuzzy duration. The iteration best 

solution inside the colonies and the best-so-far solution are used for pheromone trail 

updates. 18-activity network of Feng et al. (1997) with fuzzy time-cost pairs of 

Eshtehardian et al. (2009) is practiced by assuming non-symmetric triangular shape 

for each activity execution alternative. The extent of convergence and spread of the 

obtained Pareto front is assessed using Euclidean distance and delta (Δ) metrics, 

respectively. Findings of this model are demonstrated to be fully compatible with 

outcomes of Eshtehardian et al. (2009). Zhang and Ng (2012) propose another ACO 

approach for cost minimization and Pareto front TCTPs. This method is 

implemented in VBA and is integrated into Microsoft Project. 18-activity problem 

of Feng et al. (1997) is practiced and the results are compared with GA-based 

method of Zheng et al. (2005). 

 

One other domain of meta-heuristics includes the Particle Swarm Optimization 

(PSO) algorithms. Developed by Kennedy and Eberhart (1995), PSO is a 

population-based algorithm imitating the choreography of bird flocks that 

communicate together as they fly. Elbeltagi et al. (2005) studies performance of 

five different evolutionary algorithms for cost minimization TCTP, one of which is 

a PSO-based model. The five meta-heuristics include GA, memetic algorithm 

(MA), PSO, ACO, and shuffle frog leaping (SFL) all of which are coded in Visual 

Basic platform. The practiced test instances also contain the 18-activity network of 

Feng et al. (1997). The results of this comparison reveal PSO outperforming other 

techniques based on the solution quality and placing second regarding the 

computation time requirements. Yang (2007b) presents a modified PSO for Pareto 

front TCTPs. Pbest is updated in case the solution is strongly dominating and gbest 
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accepts only the particle that dominates fewest solutions. Non-dominated solutions 

are stored and updated in a separate archive of elite solutions. Indirect cost is not 

included in the optimization process; however, it is added to the final Pareto front 

solutions. Performance of this algorithm is measured for solution of a 14-activity 

problem. Yang (2007a) proposes another PSO method for Pareto front TCTP. This 

model is coded in MATLAB programming environment and the indirect cost is 

implemented exogenously to the final Pareto front solutions. A hypothetical 

example with 8 activities and a case problem with 28 activities is practiced to test 

the algorithm. Small average percent deviation (APD) amounts from the optima is 

reported for this approach. 

 

Zhang and Li (2010) introduce a PSO for Pareto front TCTP. Sparse-degree and 

roulette-wheel selection are implemented to improve diversity of particles and 

convergence capabilities of the model. Gbest is determined using the combined 

scheme used in this model which is coded in Visual C++ environment. Results of 

this model for a 7-activity and an 18-activity (of Feng et al., 1997) problem is shown 

to best GA of Feng et al. (1997). Fallah-Mehdipour, Bozorg Haddad, Rezapour 

Tabari, and Mariño (2012) explain revised multi-objective PSO and GA models for 

Pareto front TCTP. Both methods are modified for problems with discrete domains, 

e.g., PSO is provided with a classification technique which divides a feasible 

continuous space into discrete units and the continuous decision is rounded to the 

closest integer value. Capabilities of these two approached are assessed and 

compared using the 18-activity problem of Feng et al. (1997). PSO and GA are 

compared with each other with respect to Generational Distance (GD) of their 

results also using each method’s share of non-dominated solutions in the final 

Pareto front; GA is revealed to be more successful for solution of the practiced 

instance. Aminbakhsh and Sonmez (2016) propose a discrete PSO for cost 

minimization and deadline TCTP. This method is based on the novel principles for 

representation, initialization and position-updating of the particles which facilitate 

adequate representation of the discrete search space and enhance accuracy due to 
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improved quality of the initial swarm. This method uses semi-deterministic 

initialization scheme by employing the modified-SAM (Aminbakhsh, 2013) 

heuristic. This approach is implemented in C++ and tested using benchmark 

problems and large-scale instances generated using ProGen/Max network 

generator. Different variants of 18-activity problem of Feng et al. (1997), 63-

activity and 630-activity problems of Sonmez and Bettemir (2012), and large-scale 

problems including 200 and 500 activities with two to five time-cost options are 

used for performance measurement of this procedure. Findings of this approach is 

compared with outcomes of numerous previous studies and the deviations from the 

optimal solutions are calculated using exact solutions of a MIP method. 

 

In a more recent study, Aminbakhsh and Sonmez (2017) present a Pareto front PSO 

for Pareto oriented optimization of large-scale TCTPs. This model is treated with 

unique particle representation, initialization, and position-updating techniques. This 

multi-objective PSO is also embedded with a modified version of SAM which is 

named simplified-SAM; though, unlike any other variant of SAM, instead of 

determining the least-cost-slope critical activities for all of the multiple parallel 

critical paths, one critical activity at a time is crashed to circumvent the bottleneck 

of finding all the critical activities of the network. This PSO incorporates the 

external repository concept and redefines position update and gbest  calculation 

routines. C++ is used for coding of this approach. This model is experimented on 

different variants of 18-activity problem of Feng et al. (1997), 180-activity, 360-

activity, and 720-activity problems of Kandil and El-Rayes (2006). Pareto fronts 

obtained by this approach are compared with the results of existing methods and 

the deviations from the true Pareto fronts are calculated for some of the practiced 

instances by means of a MIP method. 

 

Another meta-heuristic approach is categorized as Shuffle Frog Leaping (SFL) 

algorithm. SFL imitates the behavior of a group of frogs locating a source with the 

maximum amount of available food which was originally developed by Eusuff and 
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Lansey (2003). Elbeltagi, Hegazy, and Grierson (2007) explain an SFL for cost 

minimization TCTP. The original SFL is modified by implementing a search-

acceleration parameter to avoid getting stuck into the local optima. This parameter 

is designed to sustain the balance between the local and the global search of the 

algorithm. The proposed SFL is implemented as a VBA code in Microsoft Project. 

The performance of this model is validated using benchmark problems as well as  

instances with 18, 90, and 180 activities all of which are based on the 18-activity 

network of Feng et al. (1997). Results reveal less computation time requirement and 

high success rate of this model compared with the original SFL and a GA algorithm. 

 

Of the meta-heuristic algorithms, Simulated Annealing (SA), being first proposed 

by Kirkpatrick, Gellat, and Vecchi (1983), is inspired by the heating and controlled 

cooling of alloys subject to tempering. At higher temperatures, the molecules move 

freely in any direction which can be restricted by lowering the temperature. 

Anagnostopoulos and Kotsikas (2010) analyze five variants of SA for cost 

minimization of TCTP. Visual Basic is used to implement SA and problems with 

100, 200, and 300 activities are practiced for performance evaluation. All the 

instances are generated by means of RanGen random network generator. Analysis 

of variance (ANOVA) and Duncan Multiple Range Test are used to measure the 

performance and to rank the five SA algorithms. 

 

An alternative meta-heuristic algorithm is developed by Vanhoucke and Debels 

(2007). TCTP is exerted considering time/switch constraints, work continuity 

constraints, and net present value maximization. This method is coded in Visual 

C++ platform and is a hybrid of a heuristic and a truncated dynamic programming 

technique. The first module undertakes neighborhood search and diversification 

steps and the second module relaxes non-critical activities. The quality of the 

solutions obtained by this method is measured using the B&B algorithm of 

Demeulemeester et al. (1998). 
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Geem (2010) introduce Harmony Search (HS) meta-heuristic algorithm for Pareto 

front TCTP which is based upon the analogy between musician’s experience and 

the optimization process. This method involves a phenomenon-mimicking 

approach which is programmed in Microsoft Excel. Unlike GA that uses two 

solutions vectors, this method considers all the solutions in generating a new one. 

Performance of this model is measured using the 7-activity problem of Zheng et al. 

(2005) and the 18-activity network of Feng et al. (1997). The provided results stack 

up well against GA of Zheng et al. (2004) and ACO of Xiong and Kuang (2008). 

 

Abdel-Raheem and Khalafallah (2011) come up with another meta-heuristic 

method hailed as Electimize for cost minimization TCTP. This approach simulates 

the behavior of electrons as they tend to move through a multi-branch electric 

circuit via the branch with the least resistance. Each solution is represented by a 

wire, segments of which represents the activity options. Coded as a macro in 

Microsoft Project, Electimize uses Ohm’s law and Kirchhoff’s rule through its 

simulation process which assess quality of each solution using their global 

resistance value. This method is applied for solution of the 18-activity problem of 

Feng et al. (1997). 

 

In a similar fashion, Vanhoucke (2015) develops Electromagnetic (EM) model for 

four different variants of deadline TCTP. Time/switch constraints, work continuity 

constraints, and net present value maximization are also considered in optimization 

of the deadline problem. EM relies on the law of Coulomb and uses the principles 

of Birbil and Fang (2003) to calculate charges and forces. This method incorporates 

two local searches; one for crashing and one for relaxing activities. Projects with 

10, 20, 30, 40, and 50 activities with up to 11 time-cost options are fitted into the 

model which is coded in Visual C++ platform. Results are compared with the exact 

solutions obtained using the procedures described in Demeulemeester et al. (1998) 

and Vanhoucke (2005) and by using LINDO optimization software. Results of this 

method is contended to best Vanhoucke and Debels’s (2007) solutions. 
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The major existing exact, heuristic, and meta-heuristic approaches for TCTP are 

summarized in Table 2.1. Entries are arranged in a chronological order in this table, 

including the practiced problem types, implemented platforms, size of the instances 

used with their daily indirect cost rate (IC), computation time of the proposed 

methods (CPU time), their number of consecutive runs, and their associated average 

percent deviation from optima (APD). The last column of this table gives a brief 

explanation and highlights remarkable points of each study. Unreported details are 

tabulated as ‘na’ in Table 2.1. Different TCT problem types are abridged as follows 

in this table: 

 

- TCT: Cost minimization problem; 

- TCT-BT: Budget problem; 

- TCT-DL: Deadline problem; 

- TCT-PF: Pareto front problem; 

- St. TCT-DL: Stochastic deadline problem; 

- St. TCT-PF: Stochastic Pareto front problem. 
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Respecting the state of the existing research on TCTP in the construction industry, 

it can be observed that GAs are the most prominent methods used in a multitude of 

studies. Above all, it can be concluded that the majority of the articles address 

instances with small problem networks and that detailed performance evaluation on 

accuracy and efficiency of most of the presented approaches appear to be lacking. 

In fact, performances of the algorithms are often only reported for the small 

benchmark network of Feng et al. (1997) that includes 18 activities with up to five 

time-cost alternatives. Kalhor et al. (2011), Fallah-Mehdipour et al. (2012) and 

Mungle et al. (2013) are among the few studies reporting on different performance 

metrics of their proposed models. Besides, it is worth mentioning that although a 

large body of the literature has hitherto been dedicated to development of 

optimization methods for DTCTP, only some of these methods are used in real-life 

practices. That is largely resulting from the fact that they do not suit actual practices 

and that major domain of the literature focus on proving applicability of various 

optimization models rather than providing means for optimization of real 

construction projects. To expand on this, very few of the existing methods can be 

applied to optimization of real-life construction projects which typically comprise 

more than 300 activities (Liberatore et al., 2001). Furthermore, a few methods that 

are tested for real-life-size large-scale problems, require enormous computation 

time and resources thanks to the inherent complexity of solving DTCTPs. The few 

efforts that handle large-scale problems include parallel GA of Kandil and El-Rayes 

(2006), constrained programming of Menesi, Golzarpoor, and Hegazy (2013), and 

parallel GA of Agdas et al. (2018) employing problems including up to 720, 2000, 

and 6300 activities, respectively. However, all the practiced large-scale problems 

are based on small networks which are generated by copying the base problem in 

serial several times; hence, these problems are believed to have limitations in 

reflecting the complexity of the real-life construction projects. In addition, the few 

studies practicing large-scale instances require an unreasonably large computation 

time; for instance, GA-based approach of Kandil and El-Rayes (2006) require 15.4 

hours over a supercomputing cluster of 50 processors to solve a 720-activity 
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problem. Likewise, GA-based approach of Agdas et al. (2018) require 16.7 hours 

on a high-performance computing facility with eight CPU cores to unravel a 6300-

activity problem. Nevertheless, for any solution method to be practically viable, 

accuracy needs to be accompanied with the efficiency. The main reasons behind the 

gap between the theoretical achievements of researchers and practical applications 

of professionals is not only related to the inherent computational complexity of 

large-scale networks, but also due to the dearth of real-life-scale problems. 

Therefore, presenting performance of large-scale, realistic TCTP instances is one 

of the most important contributions of this thesis. In order for better evaluation of 

the capabilities of the proposed optimization models, new sets of multi-mode large-

scale DTCT problems have been generated by means of random project instance 

generators. Unlike a large body of the existing literature, performance 

measurements are carried out by taking a more holistic approach that involves a set 

of performance comparison indices. Hence, the presented findings are highly 

relevant for real-life applications. 

 

With regard to the summary of the past research given in Table 2.1, it can also be 

observed that the literature is not rich with the more complex Pareto oriented 

optimization in the domain of TCTP, especially for the discrete version of this 

problem. This is despite the fact that obtaining non-dominated sets of solutions is 

widely acknowledged as the ultimate resolution of TCTP studies (e.g. Zheng et al., 

2005; Yang, 2007b; Eshtehardian et al., 2008; Aminbakhsh and Sonmez, 2017). 

This thesis study emphasizes the importance of discrete and Pareto front TCTPs 

due to their practical relevance and because they facilitate expressing decision 

makers preferences so that they can select the best solution based on their own 

concerns. To the respect of this, new models with exceptional accuracy and 

efficiency, applicable in real-life-scale projects are designed and developed in this 

thesis. This research study aims to contribute to both researchers and practitioners 

by tightening the gap between the literature and the real-world requirements of the 

projects. The new proposed models include Mixed-Integer Linear Programming 
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techniques that use Gurobi solver version 6.0.5, new Particle Swarm Optimizers, 

and new Cost-Slope Heuristics. For all the proposed methods, two variants have 

been designed and developed to address both the deadline and the Pareto front 

classes of DTCT problems. Since, exact procedures are the only methods 

guaranteeing optimality of the solutions and that heuristics and meta-heuristics are 

incapable of securing the optimality of the solutions, the proposed Mixed-Integer 

Linear technique is used in performance evaluation of the developed heuristic and 

meta-heuristic methods. 

 

Last but not least, despite the fact that any scientific decision support tool would 

have a pivotal role in the decision-making process, none of the commercial 

scheduling software packages (e.g., Microsoft Project, Primavera) include tools or 

modules for TCT analyses of the scheduling problems. Therefore, this thesis study 

also presents integration of DTCTP optimization modules into Microsoft Project – 

a widely used commercial planning software in the construction industry – by 

means of an add-in which is capable of solving two variants of DTCTP, namely, 

cost minimization/deadline and Pareto problems. The integrated modules include 

both the proposed Particle Swarm Optimizer and the Cost-Slope Heuristic. By 

means of this, the new models are envisioned to be applicable in real projects and 

to suit the actual practices of construction managers. In the ensuing chapters, 

characteristics of the proposed particle swarm optimizers, Cost-Slope Heuristics, 

and Mixed-Integer Linear Programming methods developed for solution of 

different extensions of discrete time-cost trade-off problems are going to be 

presented. Meanwhile, since the approaches presented in this thesis are non-

domain-specific, they can easily be used for solution of similar optimization 

problems. 
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CHAPTER 3  

 

 

DISCRETE PARTICLE SWARM OPTIMIZATION METHOD 

FOR DTCTP 

 

 

 

As is clear, there is a lack of Particle Swarm Optimization (PSO) exemplars in the 

existing literature with the capacity to tackle realistic large-scale construction 

DTCT problems efficiently and effectively to make them practicable in real-life 

projects. Accordingly, this chapter includes the background and theoretical 

properties of PSO method. This chapter also covers a background of Siemens 

Approximation Method (SAM), a modified variant of which is used for 

development of a new PSO model. Following the definitions and principles of the 

base models, the proposed discrete particle swarm optimization method for cost 

minimization and deadline extensions of DTCTP is described. Results of inclusive 

comparative studies are presented which prove the outstanding performance of the 

proposed approach with solid convergence capabilities. 

 

3.1. Particle Swarm Optimization (PSO) 

 

Studies on biological evolution and collective behavior extant in natural systems 

such as animal herds, schools of fish, and flocks of bird established the primitive 

initiatives for development of methods based on swarm intelligence. The earliest 

precursor for swarm intelligence-based optimization approach encompass the first 

paradigm of the PSO developed by Kennedy and Eberhart (Eberhart and Kennedy, 

1995; Kennedy and Eberhart, 1995) who later introduced the binary version of this 

algorithm for problems with discrete search spaces (Kennedy and Eberhart, 1997).
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PSO is rooted upon imitating the choreography of bird flocks that communicate 

together as they fly; therefore, the population is called “swarm”, while, the potential 

solutions are named as “particles”. This algorithm conceptually resembles 

evolutionary algorithms and vastly relies on stochastic procedures. 

 

The system initializes with a population of random potential solutions. Particles 

iteratively fly over the search space in explicit directions and are attracted to self-

attained historical best position (personal best; pbest ), as well as the best position 

among the entire swarm (global best; gbest ). Each particle records the coordinates 

associated with the best location it has visited so far. At each time step, particles 

evaluate their own positions with respect to fitness criteria, then by comparing the 

fitness values, they communicate to identify the particle located at the best position. 

Each particle moves towards the best position using a velocity that incorporates 

coordination of the personal best location as well; then, it evaluates the domain from 

its new location, and the process reiterates until either the swarm reaches to a 

predefined target, or a computational limit. 

 

3.2. Siemens Approximation Method (SAM) 

 

Siemens approximation method (SAM) (Siemens, 1971) is one of the first heuristics 

developed for TCTP. SAM involves a logical and systematic procedure to minimize 

the overall project cost. It was originally developed for the continuous TCT problem 

and is capable of obtaining solution for convex nonlinear TCTPs by making 

multiple piecewise linear curve approximations. The procedure initiates with the 

construction of the project network, thereby, crashing critical activities one at a time 

based on some specific rules. Of these rules, the most important is selection of a 

critical activity with minimum amount of cost-slope. The act of crashing continues 

until either all the activities are crashed, or those with normal duration have cost-

slopes greater than the daily indirect cost rate. Nevertheless, SAM accelerates the 

project based on the minimum cost-slope calculated at each iteration with respect 
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to the all-normal (uncrashed) and all crashed options. However, in discrete 

problems, it is possible to have more than two options for each of the activities. 

Thus, 1m   number of cost-slopes can be calculated for an activity with m  number 

of alternatives. This study extends the use of SAM to discrete TCT problems by 

modifying some of the major steps of this heuristic method. This modified variant, 

hereafter called modified-SAM, is later embedded into the discrete PSO in order to 

improve the quality of the initial swarm. The new SAM-based heuristic – similar to 

the original method – is initiated with the construction of the project network using 

the normal modes. The activity with minimum cost-slope is identified and crashed 

according to Eq. (3.1). In case of a tie, the activity leading to a shorter project 

duration is selected, if the tie is not broken, the activity with the smaller activity 

number is selected. 

 

 
1

( 1) ( 1)( )( )

{1,..., } , {1,..., ( )}

j jk j k jk j kCS dc dc d d

j S k m j


   

   
  (3.1) 

 

where; S  is the number of activities, ( )m j  is the number of available time-cost 

options for activity j , jkdc  is the direct cost of k th time-cost option of activity j ,

jkd  is the duration of the k th time-cost option of activity j . The cost-slopes of the 

first network are evaluated by setting ( )k m j  initially; and then, decreasing the 

value of option k , one at a time, as the j th activity is crashed. 

 

3.3. Discrete Particle Swarm Optimization Method (DPSO) 

 

Few researches have presented PSO algorithms for the DTCTP (Yang, 2007a; 

Bettemir, 2009; Zhang and Xing, 2010; Fallah-Mehdipour et al., 2012) which have 

operated in continuous space. In this thesis, a discrete particle swarm optimization 

(DPSO) algorithm is designed to achieve an improved particle swarm 

representation for cost minimization and deadline DTCTPs. Previous researches 
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employ random initialization schemes to produce the first generation of particles. 

However, the proposed DPSO method is equipped with a semi-random pattern for 

generation of the initial particles. To this end, DPSO is designed to create a certain 

percentage, pct , of the initial population of size N  by using the modified-SAM 

method and generating the rest of the swarm randomly. The solutions obtained by 

using modified-SAM are fed into the particle swarm optimizer of DPSO. Positions 

for the remaining 1 pct  percent of the population are set randomly. That is, for an 

S -dimensional problem, PSO generates S  number of random values for each 

variable j  which are selected from the feasible range {1, ( )}m j . In the case of 

TCTP, S  resembles the number of activities and the feasible range {1, ( )}m j  

represents the available time-cost alternatives for the j th activity. Solutions are 

denoted by ijkx which represents a binary value that holds i th particle’s position for 

the j th activity, which can only have one k  value equal to one while all the 

remaining positions for the j th activity of the same particle are set to zero (

( ) ( )
1 1m j t

jkk x  ). Logical sequencing of the activities for the generated particles are 

implemented according to Eq. (3.2). 

 

  ( ) ( ) 0    ,      tt t
j j jlES d ES l Sc       (3.2) 

 

where; t  is the generation number; jd  is activity j ’s duration; jES  is the early 

start time of j th activity; and jSc  are the immediate successors of the j th activity. 

In the first iteration, bound by the feasible region max max[ , ]v v , random velocity 

vectors, (1)
ijkv , are determined for all the initial seeds (i.e., deterministic and random 

particles). Velocities of the individuals are clamped to avoid swarm divergence. 

Generation of the initial particles is completed with the determination of the pbest

, 0t
iP  and the gbest , 0t

gP  positions. The indices of the particle’s best and best 
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particle among the entire swarm are represented by i  and g , respectively. Each 

particle acquires the “best” positions, using Eq. (3.3) as follows: 

 

  0 0 1t t
ijk gjk ijkP P x    (3.3) 

 

Each particle i ’s fitness is evaluated with respect to the Eq. (3.4) and Eq. (3.5), 

which minimize the sum of direct and indirect costs. Incentive and disincentive 

payments are explicitly considered in project cost calculations. 

 

    

1 1

max
S m

t t
i jk jk

j k

D d x
 

 
  

 
   (3.4) 

 

 
   

( )
( ) ( )

1 1

( )
( ) ( )

1 1

0

 1, , ,  1, , ( )

m jS
t t

ijk jk
j k

i
m jS

t t
ijk jk

j k

dc x D ic T dp if T

C

dc x D ic T db otherwise

j S k m j

 

 

     
 
    

     




  (3.5) 

 

where; jkd  and jkdc  represent duration and direct cost of the k th options of the j

th activity, respectively; ic  denotes the daily indirect cost rate; iD  and iC  represent 

duration and cost of the project for the i th particle; dlD  is the project deadline; dp  

is the daily delay penalty; db  denotes the daily bonus. 

 

The qualities of the solutions are compared with each other according to Eq. (3.6): 

 

 u vu v if C C   (3.6) 
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which makes the discrimination in favor of decision vector u  in case the total cost 

of that particle is less than decision vector v ; while, in case of equality ( u vC C ) 

discrimination is made in favor of the particle with smaller duration by Eq. (3.7). 

 

  u v

u v

C Cu v if D D

   (3.7) 

 

For the occasion in which both particles u  and v  have the same total costs and 

durations, discrimination is made randomly. iP ’s and gP ’s are updated after 

identification of the better fitted individuals. Particles are flown to their new 

positions using the velocity vector given in Eq. (3.8), which incorporates Kennedy 

and Eberhart’s (1997) linearly decreasing time-varying inertia weight ( w ) (Eq. 

(3.9)). This parameter provides the PSO with more exploration ability at the initial 

stages followed by more exploitation ability at the closing cycles. According to Eq. 

(3.8), each particle updates its velocity using current velocity, the distance to 

personal best experience, and the distance to best position of the entire swarm. 

 

              1 ( )
1 1 2 2 t t t t t tt

ijk ijk ijk ijk gjk ijkv w v c r P x c r P x        (3.8) 

 

  
1

max
min max min

max

t t
w w w w

t

      
  (3.9) 

 

where; 1r  and 2r  are random vectors with uniformly distributed components within 

the range [0,1]; the constants 1c  and 2c  are the cognitive and social parameters, 

respectively; minw  and maxw  denote lower and upper-bounds of inertia weight, 

respectively; and maxt  is the total number of iterations. 

 

The values of 1c  and 2c  parameters control the convergence capabilities of a 

particle by biasing its movement toward pbest  or gbest  positions, respectively. 



 

65 

 

Velocity vectors are transformed into probabilities (Aminbakhsh, 2013) and are 

normalized to the range [0,1] using a logistic transformation function given in Eq. 

(3.10). Each particle is then migrated to a new position subject to the probabilistic 

condition according to Eq. (3.11). 

 

     
1

1 exp ( )
t

ijk t
ijk

sig v
v


 

  (3.10) 

 

 

    1 1

( 1)

1          ( ) max ( )

0                  

t t
ijk ijk

t
ijk

if sig v sig v
x

otherwise

 



 
 



  (3.11) 

 

where each  ( )t
ijksig v  represents the probability that ( 1)t

ijkx   would be selected. 

 

Eq. (3.11) differs from the position update equation of the binary PSO proposed by 

Kennedy and Eberhart (1997), in that, it involves determination of the alternative(s) 

associated with the maximum amount of probability for every activity. This 

condition indicates that in each row of position matrix, a single alternative with the 

largest probability will have a value of one. If the value of  ( 1)max ( )t
ijksig v   is same 

for more than one alternative, then, discrimination is made randomly. 

 

3.3.1. Case Example 

 

Given in Figure 3.1, a hypothetical case example including six non-dummy and two 

dummy activities is introduced herein which will be used to elucidate various 

concepts, definitions, and applicability of the approaches that are proposed within 

the context of this thesis study. This case example is used in this section to illustrate 

the binary representation for particles’ positions. 
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3. (26, $14,000)

1. (16, $52,000)
2. (20, $45,000)
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1. (7,   $38,000)
2. (10, $26,000)
3. (12, $20,000)

1. (5,  $52,000)
2. (8,  $34,000)

1. (3,  $36,000)
2. (5,  $24,000)

1. (Dur., Cost)
m. (Dur., Cost)

1

3

2

4 6

ID

1. (10, $40,000)
2. (15, $24,000)
3. (16, $22,000)

5

Start Finish

 
 

Figure 3.1 – Case Example. 

 

Figure 3.2 illustrates the probability matrix for the 5th particle in the 2nd iteration for 

the case example. The velocity matrix (2)
5v , which is calculated by Eq. (3.8), is 

transformed to the probability matrix   2
5sig v  using the sigmoid function given in 

Eq. (3.10). 

 

    Modes   

  Activities 1k  2k  3k    

  1j  0.71 0.11 0.73   

  2j  0.94 0.94 0.97   

  3j  0.82 0.12 0.27   

  4j  0.75 0.96    

 5j  0.28 0.97 0.31  

 6j  0.69 0.51   

            
 

Figure 3.2 – Probability matrix. 

 

The 5th particle’s new position matrix ( (3)
5x ) in the 3rd iteration is determined by 

using the Eq. (3.11) as shown in Figure 3.3. 
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    Modes   

  Activities 1k  2k  3k    

  1j  0 0 1   

  2j  0 0 1   

  3j  1 0 0   

  4j  0 1    

 5j  0 1 0  

 6j  1 0   

            
 

Figure 3.3 – Position matrix. 

 

The discrete position matrix in Figure 3.3, assigns a value of “one” to the mode 

selected, and a value of “zero” to the remaining modes, to make a clear 

discrimination of the selected modes. For example, for the first activity the third 

mode is selected, hence the position 13x  is assigned a value of “one”, and the 

remaining positions of the first activity ( 11x  and 12x ) are assigned a value of “zero”. 

If a continuous position matrix was used instead, the probability of 11x  (0.71) would 

be very close to that of 13x  (0.73), hence a clear discrimination between the first 

mode and the third mode would not be made as the two probabilities are very close 

to each other. 

 

The optimization process is reiterated until the preset number of iterations is 

reached. DPSO returns the final gbest  particle as the solution for the DTCT 

problem when the optimization process is terminated. The proposed DPSO method 

is graphically explained as a flowchart in Figure 3.4 and the pseudo-code of this 

algorithm is illustrated in Figure 3.5. 
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Figure 3.4 – Flowchart of the proposed discrete PSO algorithm. 
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Begin 
 For ∀ j ∈ [1, S] 
  For ∀ k ∈ [1, m] 
   Retrieve Values; 
  End; 
 End; 
 Construct network; 
 While ∃ j ∈ Critical-Acts: Fully-Crashed  True ∧ .i pct N  

  Calculate CPM; 
  Calculate Dur/Cost; 
  Store Solution; 
  Calculate CS; 
  Crash Min-CS; 
  Set ix  as pbest  and gbest ; 

  Set random Velocity; 
 Break; 
 For ∀ i ∈ (pct.N, N] 
  For ∀ j ∈ Acts 
   Set random Position; 
   Set random Velocity; 
   Set xi as pbest  and gbest ; 
  End; 
 End; 
 While t  tmax 
  For ∀ i ∈ [1, N] 
   Calculate CPM; 
   Calculate Dur/Cost; 
   For ∀ j ∈ Acts 
    Set w; 
    If i ix P  

     Set ix  as pbest ; 

     If i gP P  

      Set iP  as gbest ; 

     End; 
    End; 
    Calculate Velocity; 
    Transform Velocity to Probability; 
    Update Position; 
   End; 
   Update w; 
  End; 
 Break; 
 Return gbest ; 

End; 
 

Figure 3.5 – Pseudo-code of the proposed discrete PSO algorithm. 
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3.4. Computational Experiments of DPSO 

 

Computational experiments are conducted to evaluate the performance of the 

proposed DPSO method for the DTCTP using a set of benchmark instances 

acquired from the literature as well as a set of large-scale problems introduced in 

this section. The proposed optimization algorithm is coded in C++ and compiled 

within Visual Studio 2013 on a 64-bit platform. All of the tests are carried out on a 

desktop computer with a P9X79 Chipset motherboard, 16 GB 667 MHz DDR3 

random-access memory (RAM), Intel Core i7-3.40 GHz CPU, and 64-bit Windows 

10 operating system. DPSO is executed solely (no other software is ran 

simultaneously) on a single processor and overclocking is not performed. 

 

3.4.1. Parameter Configuration of DPSO 

 

It is broadly acknowledged that evolutionary algorithms are very sensitive to 

configuration of their parameters and the proposed DPSO is not an exception to 

this. Hence, pilot experiments were conducted to determine an adequate set of 

parameter values for the DPSO. The pilot experiments revealed that the set of 

parameters that are summarized in Table 3.1 provided an adequate combination for 

the DPSO. 

 

Table 3.1 – Parameter configuration of the DPSO. 
 

Parameter Description Value 
i  # of Birds 250 

pct  % of deterministic swarm 0.8 

1c  Cognitive Parameter 5 

2c  Social Parameter 1 

maxw  Max. Inertia Weight 1.2 

minw  Min. Inertia Weight 0.0 

maxv  Max. Velocity 3.7 
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50,000 schedules (objective function evaluations) is used as the stopping criterion 

in all of the experiments (Kolisch and Hartmann, 2006; Sonmez and Bettemir, 

2012). Since PSO is a stochastic search algorithm, performance of DPSO is 

evaluated for ten consecutive runs for each instance, and average percent deviation 

(APD) from the global optimal solution is reported. 

 

3.4.2. Small-Scale Benchmark Problems 

 

The performance of the proposed DPSO method was first tested using the small-

scale DTCTP test instances which are commonly used in the literature (Elbeltagi et 

al., 2005; Zheng et al., 2005; El-Rayes and Kandil, 2005; Kandil and El-Rayes, 

2006; Elbeltagi et al., 2007; Ng and Zhang, 2008; Xiong and Kuang, 2008; Afshar 

et al., 2009; Fallah-Mehdipour et al., 2012; Sonmez and Bettemir, 2012; Zhang and 

Ng, 2012; Monghasemi, Nikoo, Khaksar Fasaee, and Adamowski, 2015) for 

performance evaluations. The small-scale test instances consisted of an 18-activity 

network (Feng et al., 1997) with the time-cost alternatives defined in Hegazy 

(1999). Although it has not been pointed out by any other preceding study, it is 

worth mentioning that this problem is flawed since the cost of third time-cost 

alternative of the eighth activity must have been selected from the interval 

DU(208,215) ; however, the assigned cost is $200. Nevertheless, in order to 

conduct a fair comparison with the previous studies, the benchmark problem is used 

without applying any corrections. The activity on node (AoN) representation of this 

instance can be obtained from Feng et al. (1997) and the time-cost data can be 

attained from Hegazy (1999). This problem includes one activity with two modes, 

ten activities having three modes, two activities with four modes, and five activities 

with five modes; accounting for a total of 95.9 10  possible schedules. This 

benchmark problem is examined under three different conditions. In problem 18a, 

the indirect cost figure is $200/day, the delay penalty is set as $20,000/day, the 

incentive payment is assumed as $1,000/day, and the completion deadline is 

assigned as 110 days. In problem 18b, the indirect cost rate is $1,500/day, and in 
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problem 18c, the indirect cost is $500/day. The optimal solutions for the practiced 

small-scale problems are determined by applying the mixed-integer programming 

formulation given in Eqs. (1.1)-(1.6) using AIMMS 4.2 optimization software. The 

optimal results are also verified by means of a mixed-integer linear programming 

technique that employs Gurobi solver 6.0.5. This method is discussed in detail in 

Section 5.2.3. The optimal solutions for problems 18a, 18b, and 18c are calculated 

as $128,270, $271,270, and $161,270. Snapshots of the performance of the results 

for problems 18a, 18b, and 18c are given in Table 3.2, Table 3.3, and Table 3.4, 

respectively. The average percent deviations from global optima of DPSO compare 

favorably with the existing methods which are summarized in the following tables. 

 

 

Table 3.2 – Performance of DPSO for problem 18a. 
 

Algorithm # of runs APD (%)

GA (Hegazy, 1999) 1 8.139 
GA (Sonmez and Bettemir, 2012) 10 2.17 
HA (Sonmez and Bettemir, 2012) 10 0.00 
DPSO (Section 3.3) 10 0.00 

 

 

Table 3.3 – Performance of DPSO for problem 18b. 

Algorithm # of runs APD (%)

MAWA-GA (Zheng et al., 2005) 1 0.903 
ACS-TCO (Ng and Zhang, 2008) 1 0.018 
NA-ACO (Afshar et al., 2009) 1 0.00 
ACS-SGPU (Zhang and Ng, 2012) 1 0.698 
ACS (Zhang and Ng, 2012) 1 0.018 
GA (Sonmez and Bettemir, 2012) 10 1.29 
HA (Sonmez and Bettemir, 2012) 10 0.00 
DPSO (Section 3.3) 10 0.00 
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Table 3.4 – Performance of DPSO for problem 18c. 

Algorithm # of runs APD (%) 

GA (Elbeltagi et al., 2005) 20 2.171 
MA (Elbeltagi et al., 2005) 20 0.759 
PSO (Elbeltagi et al., 2005) 20 0.415 
ACO (Elbeltagi et al., 2005) 20 3.351 
SFL (Elbeltagi et al., 2005) 20 2.960 
MSFL (Elbeltagi et al., 2007) 20 0.00 
ACS-TCO (Ng and Zhang, 2008) 1 0.00 
Electimize (Abdel-Raheem and Khalafallah, 2011) 20 0.00 
ACS-SGPU (Zhang and Ng, 2012) 1 0.00 
ACS (Zhang and Ng, 2012) 1 0.00 
DPSO (Section 3.3) 10 0.00 

 

In all of the ten trials for the three problems, DPSO was able to obtain the global 

optimal results within 50,000 schedules by searching only 48.47 10   percent of 

the entire solution space. As a result, DPSO was able to solve all the small-scale 

test instances in 0.4 seconds on average. 

 

The comparison of DPSO with the state-of-the-art methods proves that proposed 

DPSO is among the top performing algorithms for the small-scale DTCTP. The 

DPSO has outperformed the genetic algorithms (Hegazy, 1999; Sonmez and 

Bettemir, 2012) for instance 18a (Table 3.2). Similarly, for instance 18b, DPSO was 

better than the genetic algorithms (Zheng et al., 2005; Sonmez and Bettemir, 2012), 

ant colony system time-cost optimization algorithm (ACS-TCO) of Ng and Zhang 

(2008), and ant colony system (ACS) and ant colony system with global updating 

strategy (ACS-SGPU) algorithms of Zhang and Ng (2012) for obtaining the optimal 

solution. The proposed DPSO also outperformed the genetic, memetic, PSO, ant 

colony optimization (ACO), and shuffled frog-leaping optimization (SFL) 

algorithms of Elbeltagi et al. (2005) for the problem 18c. 

 

The modified shuffled frog-leaping optimization algorithm (MSFL) (Elbeltagi et 

al., 2007), the nondominated archiving ACO (NA-ACO) (Afshar et al., 2009), the 
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Electimize algorithm (Abdel-Raheem and Khalafallah, 2011), and the hybrid 

genetic algorithm with simulated annealing (HA) (Sonmez and Bettemir, 2012) are 

among the state-of-the-art methods that are competitive with the proposed DPSO 

for obtaining high quality solutions for the small instances having no more than 18 

activities. Though, the elapsed CPU time for MSFL was eight seconds compared 

with 0.4 seconds of the DPSO. Besides, except for GA and HA (Sonmez and 

Bettemir, 2012), none of the existing state-of-the-art methods were tested for larger 

instances. 

 

3.4.3. Medium-Scale Benchmark Problems 

 

The medium-scale instances used for performance evaluation of DPSO consisted 

of the 63-activity problem of Sonmez and Bettemir (2012). The activity on node 

(AoN) topological representation and the time-cost data of this instance can be 

obtained from Sonmez and Bettemir (2012). This benchmark problem contains two 

activities with three modes, fifteen activities with four modes, and forty-six 

activities having five modes, totaling 421.37 10  different schedules. This test 

instance is fitted into the model by assuming two indirect cost figures. In the first 

problem, 63a, the indirect cost is set as $2,300/day, and in the second problem, 63b, 

the indirect expense is assumed as $3,500/day. The optimal solutions for the 

practiced medium-scale problems are determined and verified by the methods 

pointed out in Section 3.4.2. The MIP/AIMMS and the MILP/Gurobi approaches 

provided the optimal solutions for problems 63a and 63b as $5,421,120 and 

$6,176,170, respectively. By evaluating only 363.64 10   percent of the solution 

space, DPSO achieved APD values of 0.02% and 0.05% for instances 63a and 63b, 

respectively. The proposed DPSO algorithm was very successful for obtaining high 

quality solutions for the medium-scale test instances and outperformed the sole-

genetic algorithm and hybrid-genetic algorithm (Sonmez and Bettemir, 2012) as 

shown in Table 3.5. 

 



 

75 

 

Table 3.5 – Performance of DPSO for problems 63a and 63b. 
 

Algorithm 
 63a  63b 

 # of runs APD (%)  # of runs APD (%)

GA (Sonmez and Bettemir, 2012)  10 5.86  10 5.16 
HA (Sonmez and Bettemir, 2012)  10 2.61  10 2.50 
DPSO (Section 3.3)  10 0.02  10 0.05 

 

The contents of Table 3.5 shed some light on exceptional performance of DPSO for 

solution of medium-scale problems. By searching the same amount of 50,000 

solutions, HA was able to achieve APD values of 2.61% and 2.50%. DPSO was 

able to determine very high-quality solutions, with very marginal deviations from 

the optimal in just 1.3 seconds on average. 

 

3.4.4. Large-Scale Benchmark Problems 

 

The large-scale problem used for performance measurement of the proposed DPSO 

comprise 630 activities. In fact, this problem is generated by copying the 63-activity 

problem of Sonmez and Bettemir (2012) ten times in serial. The approach of 

creating multiple copies of the base problem has the benefit of knowing the 

expected optimal solution. This instance incorporates 20 activities with three 

modes, 150 activities with four modes, and 460 activities having five modes, 

totaling 4212.38 10  possible realizations. This instance represents the size of a 

realistic construction project and is studied under two assumptions regarding the 

amount of the daily indirect cost. In the first problem, 630a, the indirect cost is set 

as $2,300/day, and in the second problem, 630b, the indirect expense is assumed to 

be $3,500/day. The optimal solutions for the practiced large-scale problems are 

calculated as the multiples of the optimal solutions of 63-activity instance used in 

Section 3.4.3. Accordingly, the optimal solutions for problems 630a and 630b are 

determined as $54,211,200 and $61,761,700, respectively. The performance of the 

DPSO for large-scale instances is summarized in Table 3.6. DPSO achieved very 
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successful results and outperformed the hybrid genetic algorithm (HA) (Sonmez 

and Bettemir, 2012) for large-scale instances. 

 

Table 3.6 – Performance of DPSO for problems 630a and 630b. 
 

Algorithm 
 630a  630b 

 # of runs APD (%)  # of runs APD (%) 

GA (Sonmez and Bettemir, 2012)  10 8.83  10 7.50 
HA (Sonmez and Bettemir, 2012)  10 2.41  10 2.47 
DPSO (Section 3.3)  10 0.33  10 0.34 

 

The APD values for instances 630a and 630b were 0.33% and 0.34%, respectively; 

and the processing time of DPSO was 14.6 seconds on average. By searching only 

50,000 solutions out of 4212.38 10  potential solutions, DPSO was able to achieve 

high quality solutions for the large-scale instances. HA was able to provide 

solutions with APD values of 2.41% and 2.47% by evaluating the same amount of 

50,000 schedules. It was also revealed by Bettemir (2009) that HA was able to 

achieve an APD value of 2% by solving the 630-activity problem in 73 minutes 

through 1,000,000 schedule evaluations. Compared with HA, DPSO was able to 

achieve significantly better solutions in a much shorter computational time. 

 

3.4.5. New Sets of Instances 

 

As is clear, the network and the data for the large-scale benchmark problem 

included in the literature are generated by copying a simpler problem several times 

that might not fully reflect the complexity of some real-life-scale construction 

projects. To this end, 80 new large-scale instances with more complex activity 

networks are generated to further evaluate the performance of the proposed DPSO. 

ProGen/Max network generator developed by Schwindt (1995) (Figure 3.6) is used 

to generate the networks for the new sets of problems. 

 



 

77 

 

 
 

Figure 3.6 – ProGen/Max Interface. 

 

Project networks are developed using four different complexity indices which are 

represented by Thesen restrictiveness coefficient in ProGen/Max. For each Thesen 

restrictiveness coefficient value of 0.2, 0.4, 0.6, and 0.8, ten networks are generated 

totaling 40 networks of size 200 and 40 networks with 500 activities. The 

parameters of ProGen/Max are configured so as to let “Minimal number of Initial 

acivities” and “Minimal number of terminal activities” be one and “Maximal 

number of initial activities”, “Maximal number of terminal activities”, “Maximal 

number of predecessors”, and “Maximal number of successors” be 20. Microsoft 

Excel is used to generate time-cost alternatives for each network. First, the available 

number of time-cost alternatives is decided by randomly selecting a value from the 

interval DU(2,5)  (i.e., discrete uniform distribution with parameters 2 and 5) for 

each of the activities. Thereafter, using the procedure described in Akkan, Drexl, 

and Kimms (2005), duration of each time-cost alternative is selected from the range 

obtained by dividing the interval DU(3,123)  into the number of alternatives. Cost 

of time-cost alternatives are generated using convex cost functions as proposed by 

Akkan et al. (2005). Cost for the normal (uncrashed) mode is randomly selected 
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from the range DU(100,50000) . Cost of the remaining alternatives are calculated 

using Eq. (3.12). In addition, the indirect cost rate is set as $500/day for both the 

networks sizes. 

 

 
( 1) ( 1)( )

{1,..., } , {2,..., ( )}

jk j k jk j k jkdc dc CS d d

j S k m j

    

   
  (3.12) 

 

where jdc  is the direct cost of the k th alternative for the j th activity; jkCS  is the 

cost-slope which is generated randomly between the range U(0.1,1) ; jkd  is the 

duration of the k th options of the j th activity. 

 

The new instances were solved to optimality by means of the mixed integer 

programming model presented in Eqs. (1.1)-(1.6) and using Gurobi solver version 

6.0.5; this method will later be discussed in detail in Section 5.2.3. Optimal 

solutions were achieved for all the 40 instances with 200 activities, and for 36 of 

the instances with 500 activities within a CPU time limit of five hours for each. The 

results of the proposed DPSO at the end of the 50,000 schedules are compared with 

the optimal solutions for the 76 instances that are solved by the mixed integer 

programming method. As shown in Table 3.7, DPSO achieved an average 0.19% 

deviation from the optimal solutions within an average CPU time of 4.61 seconds 

for 40 instances with 200 activities. As illustrated in Table 3.8, it also succeeded an 

average 0.21% deviation from the optimal solutions within an average CPU time of 

17.24 seconds for 36 instances with 500 activities. Unavailable values are tabulated 

as ‘na’ in Table 3.8. 
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Table 3.7 – Performance of DPSO for 200-activity instances. 
 

    Optimal DPSO 

Problem  Dur. 
(day) 

Cost ($)  Dur. 
(day) 

Cost ($) 
CPU 

Time (s) 
APD 
(%) 

T200_1  1120 6,379,332 1141 6,393,871 3.58 0.23 
T200_2  1006 5,809,665 875 5,847,638 3.58 0.65 
T200_3  1534 6,124,407 1534 6,128,020 4.00 0.06 
T200_4  1064 5,957,758 1066 5,979,991 3.75 0.37 
T200_5  1264 5,726,445 1264 5,730,567 3.59 0.07 
T200_6  1085 6,182,999 1087 6,184,392 3.61 0.02 
T200_7  1316 6,430,572 1316 6,446,318 3.88 0.24 
T200_8  1008 5,812,144 1005 5,832,495 3.72 0.35 
T200_9  1186 5,863,689 1190 5,878,431 3.84 0.25 
T200_10  1341 6,006,200 1344 6,020,848 3.66 0.24 
T200_11  1690 6,364,254 1686 6,368,641 4.25 0.07 
T200_12  1965 6,728,040 1966 6,734,137 4.16 0.09 
T200_13  1744 5,955,149 1737 5,978,204 4.61 0.39 
T200_14  2143 6,567,311 2143 6,569,344 4.81 0.03 
T200_15  1420 5,939,672 1420 5,952,793 4.27 0.22 
T200_16  2121 6,996,398 2121 7,030,999 4.80 0.49 
T200_17  1534 6,075,423 1543 6,085,157 4.13 0.16 
T200_18  1484 6,271,532 1484 6,285,156 4.20 0.22 
T200_19  1398 6,114,428 1398 6,127,591 4.33 0.22 
T200_20  1421 6,476,044 1422 6,481,519 4.41 0.08 
T200_21  2194 6,671,598 2194 6,677,859 5.09 0.09 
T200_22  1494 6,258,513 1519 6,281,031 4.81 0.36 
T200_23  1625 6,422,509 1626 6,430,370 4.55 0.12 
T200_24  2110 6,047,807 2110 6,056,395 4.97 0.14 
T200_25  2170 6,544,127 2171 6,546,307 4.97 0.03 
T200_26  2114 6,908,248 2114 6,915,186 5.24 0.10 
T200_27  1988 6,728,935 1987 6,745,455 4.86 0.25 
T200_28  1668 6,404,964 1668 6,429,866 4.70 0.39 
T200_29  1849 6,792,867 1850 6,806,045 4.63 0.19 
T200_30  1302 6,159,162 1292 6,178,588 4.55 0.32 
T200_31  2139 6,440,172 2121 6,445,376 5.24 0.08 
T200_32  1913 6,361,151 1913 6,372,306 5.44 0.18 
T200_33  1733 6,254,230 1731 6,271,461 5.33 0.28 
T200_34  1820 6,541,587 1810 6,547,852 5.39 0.10 
T200_35  2446 6,966,652 2450 6,974,364 5.53 0.11 
T200_36  1496 6,400,397 1496 6,408,169 5.28 0.12 
T200_37  3235 7,404,801 3235 7,405,375 6.36 0.01 
T200_38  2009 6,496,720 1999 6,507,846 5.27 0.17 
T200_39  2380 6,504,650 2394 6,509,194 5.44 0.07 
T200_40  2604 6,396,572 2599 6,399,542 5.69 0.05 
Total    4.61 0.19 
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Table 3.8 – Performance of DPSO for 500-activity instances. 
 

   Optimal   DPSO 

Problem  Dur. 
(day) 

Cost ($)  Dur. 
(day) 

Cost ($) 
CPU 

Time (s) 
APD 
(%) 

T500_1 3155 14,960,582 3132 14,997,226 12.68 0.24 
T500_2 2601 15,204,223 2597 15,234,850 11.39 0.20 
T500_3 2586 15,449,875 2518 15,477,452 11.97 0.18 
T500_4 2328 15,365,411 2255 15,410,429 11.39 0.29 
T500_5 2774 15,120,770 2676 15,189,132 12.01 0.45 
T500_6 na na 1934 15,401,892 11.45 na 
T500_7 2999 15,524,026 3018 15,572,852 12.27 0.31 
T500_8 2858 15,599,044 2870 15,642,713 11.99 0.28 
T500_9 2910 15,059,136 2932 15,109,956 11.97 0.34 
T500_10 2990 15,568,991 2990 15,601,912 12.48 0.21 
T500_11 3763 15,726,437 3768 15,751,034 15.49 0.16 
T500_12 2962 14,609,048 2962 14,686,697 13.93 0.53 
T500_13 3968 15,234,093 3968 15,259,241 15.75 0.17 
T500_14 3102 15,644,352 3094 15,689,067 14.66 0.29 
T500_15 4425 16,040,457 4424 16,058,224 16.13 0.11 
T500_16 5248 16,037,675 5252 16,052,318 16.84 0.09 
T500_17 3140 16,250,370 3142 16,282,414 14.55 0.20 
T500_18 3710 15,189,213 3709 15,207,328 15.60 0.12 
T500_19 4017 15,707,877 4017 15,746,844 15.87 0.25 
T500_20 3655 15,544,444 3657 15,556,715 15.49 0.08 
T500_21 na na 2963 15,613,104 16.91 na 
T500_22 3396 15,789,889 3406 15,830,346 17.26 0.26 
T500_23 4633 16,926,601 4651 16,959,989 18.66 0.20 
T500_24 5014 16,267,849 5014 16,330,184 18.94 0.38 
T500_25 6379 18,519,422 6379 18,555,704 21.52 0.20 
T500_26 5135 16,939,792 5100 16,972,161 19.72 0.19 
T500_27 3521 16,046,011 3467 16,102,094 17.13 0.35 
T500_28 3498 15,170,906 3502 15,208,054 16.94 0.24 
T500_29 3087 15,361,432 2994 15,432,948 16.50 0.47 
T500_30 na na 3050 15,074,188 15.97 na 
T500_31 6518 18,446,098 6518 18,462,904 24.13 0.09 
T500_32 8273 17,863,876 8273 17,864,920 25.69 0.01 
T500_33 na na 3210 15,519,551 18.48 na 
T500_34 6592 17,611,269 6588 17,641,231 21.67 0.17 
T500_35 5643 16,910,284 5641 16,929,501 21.20 0.11 
T500_36 4606 16,475,275 4603 16,486,769 20.08 0.07 
T500_37 8824 19,047,488 8824 19,052,000 26.27 0.02 
T500_38 7101 17,258,066 7111 17,263,832 24.25 0.03 
T500_39 6706 16,986,421 6706 17,004,162 22.16 0.10 
T500_40 7545 18,633,690 7545 18,641,215 25.98 0.04 
Total         17.08 0.21 
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Computational results demonstrate the effectiveness and accuracy of DPSO for the 

new instances that were more complex than the problems practiced by a major body 

of the literature. The performance of DPSO was consistent for the large-scale 

problems and was able to produce good feasible solutions in an acceptable 

timeframe. The obtained results for more complex problems are considered 

practically reasonable, since, an average deviation of 0.21% from the optima of 

500-activity problems is not high. To the best of author’s knowledge, the proposed 

DPSO is one of the first methods capable of obtaining high quality solutions for the 

large-scale DTCTP within seconds. 

 

A more comprehensive study on the performance of DPSO is given in Section 5.2.4 

using a set of benchmark instances acquired from the literature. Based on 

performance indices demonstrated in Section 5.2.2, effectiveness and efficiency of 

this method is measured and compared with a new heuristic algorithm which is 

presented in Section 5.1.3.  
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CHAPTER 4  

 

 

PARETO FRONT PARTICLE SWARM OPTIMIZATION 

METHOD FOR DTCTP 

 

 

 

Discussion on the contents of Table 2.1 revealed that the literature is not rich with 

the more complex Pareto oriented optimization in the domain of TCTP, especially 

for the discrete version of this problem. This is despite the fact that obtaining non-

dominated sets of solutions is widely acknowledged as the ultimate resolution of 

TCTP analyses. This thesis study emphasizes the importance of discrete and Pareto 

front TCTPs due to their practical relevance and because they facilitate expressing 

decision makers preferences so that they can select the best solution based on their 

own preferences. It was also discovered that there is a lack of Particle Swarm 

Optimization (PSO) exemplars in the existing literature with the capacity to tackle 

real-life-size Pareto front DTCT problems. Therefore, followed by an introduction 

on the Pareto optimality, an efficient and effective multi-objective particle swarm 

optimization (PSO) model is presented in this chapter. The Pareto front particle 

swarm optimizer, hereafter called PFPSO, is treated with a simplified heuristic 

method in order to improve the quality of the initial swarm for an accelerated 

optimization process. PFPSO is equipped with high capacity to solve large-scale 

Pareto front problems using unique principles for initialization, representation, and 

position updating of the particles. The descriptions on background and theoretical 

properties of PSO and Siemens Approximation Method (SAM) can be found in 

Sections 3.1 and 3.2, respectively. The mutual aspects of DPSO (Section 3.3) and 

PFPSO will not be repeated for sake of brevity and only the major modifications 
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will be pointed out in this chapter. Results of the comparative studies are presented 

which reveal a performance unmatched by the existing meta-heuristic algorithms. 

 

4.1. Pareto Optimality 

 

Multi-objective problems, such as Pareto front TCTP, often do not have a single 

optimum solution which makes all the objectives optimal simultaneously. However, 

for such problems there exist a series of non-dominated solutions. The non-

dominated solutions cannot be further improved for one of the objectives and cannot 

be further worsened for the others (Zhang and Li, 2010). In other words, compared 

with dominated solutions, non-dominated ones not only are as good as in all 

measures, but also are better in at least one of them (Zheng et al., 2004). Originally 

introduced by Vilfredo Pareto, the series consisting of optimal solutions for a multi-

objective problem with conflicting objectives is known as the Pareto front or the 

efficient frontier. The components located on this front are mutually non-dominated 

with respect to multiple criteria. According to this concept, it is normally not 

possible to improve one objective without sacrificing at least one other objective. 

 

As such, Pareto front – also known as time-cost curve – extension of the TCT 

problem is a multi-objective decision making problem, and any of its objectives 

might reach their optimal amounts at miscellaneous points. Obtaining the Pareto 

front for TCT problem in essence involves concurrent optimization of budget and 

deadline TCTPs. Within this domain, the Pareto-dominance optimality is defined 

according to the following conditions: 

 

- With respect to Eq. (4.1), a decision vector u  is said to weakly dominate another 

solution v  if and only if u vD D  and u vC C  which is denoted as u v . 

 

 : ( ) ( )y yu v iff y f u f v    (4.1) 

 



 

85 

 

- Regarding Eq. (4.2), solution v  is considered to be dominated if and only if 

there is already another solution u  in the efficient frontier such that u vD D  

while u vC C , and one of these inequalities holds strictly; this dominance rule 

is notated as u v . 

 

 : ( ) ( ) : ( ) ( )y y y yv iff y f u f v au nd y f u f v      (4.2) 

 

- A shown in Eq. (4.3), decision vector u  is said to strongly dominate solution v  

if and only if u vD D  and u vC C ; this dominance condition is denoted as 

u v . 

 

 : ( ) ( )y yv iff y f uu f v     (4.3) 

 

where; yf  represents the y th objective function. Subsequently, solution u  is said 

to be Pareto optimal as , :u v O if v v u   ; union of all of which forms the 

Pareto front denoted by O . 

 

4.2. Simplified Heuristic 

 

Earlier, Aminbakhsh (2013) presented a method that was similar to SAM which 

crashed critical activities considering their cost-slopes. Since it is perfectly feasible 

for the construction schedules to have more than a single critical path, in the course 

of this method, critical activities on all the multiple parallel critical paths were 

discovered and the one with the minimum amount of cost-slope was crashed first. 

However, particularly for large-scale problems with complex networks, the process 

of identifying the activities having the least cost-slope from a massive pool of 

critical activities contributes to a substantial computational burden. On the other 

hand, any variation in selection of the alternatives modifies the project schedule 

which requires rescheduling of the project for potential changes using the CPM 
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procedure. That is, this SAM-based method necessitates completing the topological 

sorting and calculation of CPM iteratively for each cycle of crashing. 

 

In this study, inspired by SAM, a simplified heuristic is developed and embedded 

into a multi-objective particle swarm optimization method which significantly 

improves the quality of the initial population. This heuristic is similar to the 

modified-SAM method introduced in Section 3.2. Though, in the simplified 

heuristic, instead of determining the complete set of least-cost-slope critical 

activities for all of the multiple parallel critical paths, one critical activity is selected 

by examining a single critical path at a time. Crashing is performed by selecting the 

least-cost-slope activity on the first critical path identified. By doing so, an adequate 

number of high quality solutions is achieved in a short amount of computation time. 

The cost-slopes are calculated according to Eq. (3.1) given in Section 3.2. In case 

there exist multiple least-cost-slope critical activities, this method selects the one 

leading to a shorter project duration; if the tie is not broken, the activity with the 

smaller activity number is selected. The procedure is repeated until all of the critical 

activities in the latest schedule are fully crashed. In order to increase the number of 

deterministic solutions of high quality, this method reiterates in a similar fashion, 

by selecting the activity leading to a longer project duration in case of multiple 

least-cost-slope critical activities. The non-dominated solutions obtained by means 

of the simplified heuristic are then fed into the particle swarm optimizer. 

 

4.2.1. Case Example 

 

The same case example given in Figure 3.1 of Section 3.3.1 is used to describe the 

simplified heuristic process. The indirect cost for the case example is assumed to 

be $1,000/day. For the all-normal (uncrashed) schedule, the project duration is 59 

days and the total cost is $206,000 as shown in Table 4.1. 
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Table 4.1 – Candidate solutions found by simplified heuristic. 
 
# of 
Schedule 

Activity Crash 
Dur. 
(day) 

Direct 
Cost ($) 

Indirect 
Cost ($) 

Total 
Cost ($) 

1  Normal 59 147,000 59,000 206,000 
2 1 M3 to M2 47 150,000 47,000 197,000
3 3 M3 to M2 39 162,000 39,000 201,000 
4 3 M2 to M1 35 169,000 35,000 204,000
5 1 M2 to M1 33 173,000 33,000 206,600 
6 5 M3 to M2 33 175,000 33,000 208,600
7 6 M2 to M1 31 187,000 31,000 218,600 

 

In the Schedule-1 which consists of normal modes, activities 1, 3, and 6 are on the 

critical path. Among the critical activities, Activity-1 with a cost-slope of $250/day 

has the minimum cost-slope as shown in Table 4.2, and is crashed first, to its second 

mode (M2). 

 

Table 4.2 – Cost-slopes of crash modes. 
 

Activity Crash Mode Cost-slope ($/Day) 

1 M3 to M2 250 
1 M2 to M1 2,300 
2 M3 to M2 3,000 
2 M2 to M1 4,000 
3 M3 to M2 1,500 
3 M2 to M1 1,750 
4 M2 to M1 6,000 
5 M3 to M2 2,000 
5 M2 to M1 3,200 
6 M2 to M1 6,000 

 

The resulting schedule Schedule-2, has a duration of 47 days, and a total cost of 

$197,000 (Table 4.1). In Schedule-2, activities 1, 3, and 6 are still on the critical 

path, and among the critical activities Activity-3 has the minimum cost-slope and 

is crashed to its second mode. In Schedule-3, Activity-3 is crashed again as it has 

the minimum cost-slope among critical activities. The resulting schedule Schedule-

4, has a duration of 35 days, and a total cost of $204,000 and the critical paths 

include activities 1, 2, 3, 5, and 6, with activities 2, 5, and 6 yet to be crashed. 
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Similarly, crashing is continued with Activity-5 by crashing it to its second mode. 

Finally, Activity-6 with the least-cost-slope is crashed to its first mode to obtain a 

solution of 31 days and total cost of $218,600 as shown in Table 4.1. 

 

The solution that is included in Schedule-1 is dominated by schedules 2, 3, and 4. 

Likewise, the solution obtained in Schedule-6 is dominated by Schedule-5. The 

remaining non-dominated solutions that are included in schedules 2, 3, 4, 5, and 7 

are recorded as the Pareto front solutions at the end of the first heuristic run. The 

procedure is repeated while considering the activity leading to a longer project 

duration in case of a tie between the critical activities during crashing. The second 

heuristic run also provides exactly the same solutions since in none of the crashing 

cycles of the heuristic runs a condition for discrimination arises. Although it is not 

encountered in this specific case problem, should there be a critical path consisting 

of only Activity-4 and Activity-6, since they both have equal rates of cost-slopes 

(6,000) for crashing to their first modes, in the first heuristic run the 4th activity, and 

through the second heuristic run the 6th activity would have been selected. At the 

end of second heuristic run, the non-dominated solutions are stored, certain 

percentage of which is transferred to the particle swarm optimizer. 

 

4.3. Pareto front Particle Swarm Optimizer (PFPSO) 

 

Particle swarm optimization is a stochastic, population-based computational 

optimization method which imitates choreography of bird flocks that forage and fly 

in unison (for a more comprehensive definition, readers are referred to Section 3.1). 

Few researches have presented particle swarm optimization methods for single 

objective DTCTP (Elbeltagi et al., 2005), multi-objective time-cost optimization 

(Yang, 2007b; Zhang and Li, 2010), times-cost-quality optimization (Fallah-

Mehdipour et al., 2012; Zhang and Xing, 2010), and multi-objective time-cost-

resource optimization (Ashuri and Tavakolan, 2012). A relatively scant work 

(Zhang and Li, 2010) is carried out to adopt PSO in locating Pareto front for time-
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cost trade-off problems. Existing particle swarm optimization methods are designed 

to operate in continuous space and are often tested using the small 18-activity 

problem of Feng et al. (1997). The original single-objective PSO is designed to 

administer a dominance-based approach for selection of the best particles. This 

approach cannot guarantee the diversity of the solutions located along the Pareto 

front, especially for problems with continuous or dense solution spaces. On the 

other hand, the few studies that extend PSO for optimization of multi-objective 

problems use aggregating methodology such as weighting or ε-constraint 

techniques which transform the problem into a single-objective optimization 

problem with different combinations of weighting and constraints. The method 

proposed in this chapter aims to achieve diverse non-dominated solutions for Pareto 

front DTCTP by introducing a new scheme for selection of the best particle by using 

a Pareto-oriented methodology. 

 

Similar to the DPSO which is covered in Section 3.3, the proposed PFPSO operates 

in discrete space to present an adequate solution architecture for the DTCTP. While 

previous research incorporates random generation of the initial particles, the 

proposed PFPSO incorporates a semi-random initialization scheme presented in 

Section 3.3. In contrast to DPSO, PFPSO is designed to employ the simplified 

heuristic introduced in Section 4.2 for generation of the deterministic portion of the 

initial population. Solutions of simplified heuristic are fed into particle swarm 

optimizer to improve swarm optimization, by starting the search from high quality 

solutions. Just like DPSO, the remaining part of the initial swarm population are 

created randomly to achieve diversification. The maximum percentage of the 

heuristic solutions that will be included in the initial swarm population is 

determined by the parameter, percentage ( pct ). An external archive, O , is 

dedicated to the PFPSO, to store all of the non-dominated solutions identified. 

Primarily, this repository stores the non-dominated solutions obtained in the 

heuristic phase, which is then used to record the new non-dominated particles 

identified through the subsequent stages of the PFPSO. The remaining initial 
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population is then generated using a random generation scheme. A controller is 

implemented in the optimizer to identify the non-dominated particles to be stored 

in the external archive. As given in Eq. (4.4), for any decision vector u , this 

controller applies the following criteria based on the measured values of uD  and 

uC : 

 

 

               

                         

                   

u v

u v

u v

Accept if D D

D D
or

C C

Reject otherwise

















  (4.4) 

 

where; vD  and vC  represent duration and cost of solution v  – an existing solution 

in the archive O . Accordingly, through each iteration the size of the external 

archive changes dynamically by storing the non-dominated particles while 

discarding the dominated ones. 

 

Logical sequencing of activities, selection of best positions, objective function 

evaluations, comparisons, velocity updating, and position updating of the particles 

are carried out according to Eqs. (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), 

(3.10), and (3.11), respectively. 

 

Since the optimal solution for a multi-objective problem comprise a set of non-

dominated solutions rather than a single optimum solution, identification of the 

global best particle from the archived non-dominated ones is crucial to the Pareto-

oriented PSO. To the respect of this, PFPSO incorporates a multiple global best 

approach to determine the gP  position of the particles, in which gbest  is selected 

randomly from the external repository of non-dominated particles at each iteration. 

Hence, in multiple global best approach, equal chance is given to each of the 

archived solutions in gbest  selection. Since the objective of Pareto front DTCTP 
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is to locate the non-dominated time-cost profile over the set of feasible project 

durations, all the archived non-dominated Pareto front solutions are considered to 

be of equal quality and are given equal chance to be the gbest . Besides, unlike 

some of the previous multi-objective PSO’s that record only parts of the non-

dominated solutions for faster calculations (Coello, Pulido, and Lechuga, 2004), 

PFPSO considers all the non-dominated particles within the archive for selection of 

the global best particle. The multiple global best approach also enables dynamic 

exploitation of the archived solutions to locate additional Pareto front solutions and 

prevents converging to a local optimum. 

 

A 3D illustration of PFPSO’s position update scheme for a hypothetical swarm of 

eight particles for a 3-activity problem is shown in Figure 4.1 and Figure 4.2, in 

which six non-dominated solutions ( gP ’s) are archived in the external repository. 

The first member of the swarm ( 1i ) flies toward a new position ( 1i  ) using a velocity 

vector which involves a randomly selected archive member ( 4gP ) and the first 

particle’s pbest  ( 1P ) position, as shown in Figure 4.1. 
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Figure 4.1 – Schematic diagram of PFPSO at time-step t . 

 

 
 

Figure 4.2 – Schematic diagram of PFPSO at time-step t +1. 
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The external archive is updated according to the new position of the first particle. 

The positions of the particles 2i  through 8i  and the external archive are updated 

similarly. The procedure is repeated for the new position of the first particle ( 1i  ) 

in the next iteration along with the new randomly selected archive member ( 2gP ). 

The i th particle proceeds to its new position ( 1i  ) at time-step 1t   as shown in 

Figure 4.2. The optimization process is repeated until the pre-specified number of 

iterations is reached. PFPSO terminates by returning the ultimate archived non-

dominated solutions after discarding the dominated ones according to Eq. (4.5). 

 

  , :u v O if vu e ev R mov      (4.5) 

 

The simplified heuristic, initial swarm population creation, and position updating 

stages of the proposed PFPSO are graphically explained as a flowchart in Figure 

4.3 and the pseudo-code of this method is demonstrated in Figure 4.4. The proposed 

PFPSO starts the search with the initial swarm consisting of the deterministic 

solutions of the simplified heuristic and random particles of PSO, as shown in 

Figure 4.3. Afterwards, PFPSO iteratively improves the entire population and 

identifies the non-dominated ones to be stored in the set containing the Pareto 

solutions. 
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Figure 4.3 – Flowchart of the proposed Pareto front PSO algorithm. 
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Begin; 
 For ∀ j ∈ [1, S] 
  For ∀ k ∈ [1, m] 
   Retrieve Values; 
  End; 
 End; 
 Construct network; 
 While ∃ j ∈ Critical-Acts: Fully-Crashed  True ∧ .i pct N  

  Calculate CPM; 
  Calculate Dur/Cost; 
  If ∀ Sol ∈ O: (Sol.Dur ≠ Dur) ∨ (Sol.Dur = Dur ∧ Sol.Cost ≤ Cost) 
   Add Sol to O; 
  End; 
  Calculate CS; 
  Crash Min-CS; 
  Set ix  as pbest  and gbest ; 

  Set random Velocity; 
 Break; 
 For ∀ i ∈ (pct.N, N] 
  For ∀ j ∈ Acts 
   Set random Position; 
   Set random Velocity; 
   Set xi as pbest  and gbest ; 

  End; 
  Calculate CPM; 
  Calculate Dur/Cost; 
  If ∀ Sol ∈ O: (Sol.Dur ≠ Dur) ∨ (Sol.Dur = Dur ∧ Sol.Cost ≤ Cost) 
   Add Sol to O; 
  End; 
 End; 
 While t  tmax 
  For ∀ i ∈ [1, N] 
   Calculate CPM; 
   Calculate Dur/Cost; 
   For ∀ j ∈ Acts 
    Set w; 
    If ∀ Sol ∈ O: (Sol.Dur ≠ Dur) ∨ (Sol.Dur = Dur ∧ Sol.Cost ≤ Cost) 
     Add Sol to O; 
    End; 
    If i ix P  

     Set ix  as pbest ; 

    End; 
    Set a random Sol ∈ O as gbest ; 
    Calculate Velocity; 

 
Figure 4.4 – Pseudo-code of the proposed Pareto front PSO algorithm. 
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    Transform Velocity to Probability; 
    Update Position; 
   End; 
    Transform Velocity to Probability; 
    Update Position; 
   End; 
   Update value of w; 
  End; 
 Break; 
 For ∀ Sol ∈ O: Non-dominated ≠ True  
  Remove Sol; 
 End; 
 Return O; 
End; 

 
Figure 4.4 – Pseudo-code of the proposed Pareto front PSO algorithm (Continued). 

 

4.4. Computational Experiments of PFPSO 

 

Computational experiments are conducted to evaluate the performance of the 

proposed PFPSO model for solution of Pareto front DTCTP using a set of 

benchmark instances acquired from the literature. The proposed optimization 

algorithm is coded in C++ and compiled within Visual Studio 2013 on a 64-bit 

platform. All of the tests are carried out on a desktop computer with a P9X79 

Chipset motherboard, 16 GB 667 MHz DDR3 random-access memory (RAM), 

Intel Core i7-3.40 GHz CPU, and 64-bit Windows 10 operating system. PFPSO is 

executed solely (no other software is ran simultaneously) on a single processor and 

overclocking is not performed. 

 

4.4.1. Parameter Configuration of PFPSO 

 

Evolutionary algorithms are broadly recognized to be very sensitive to 

configuration of their parameters and the proposed PFPSO is not an exception to 

this. Therefore, pilot experiments were conducted to determine an adequate set of 

parameter values for the PFPSO. The parameters of PFPSO were configured based 

on the experiments which included all combinations of two parameter levels (low 
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and high) for seven parameters. The pilot experiments revealed that the set of tuned 

parameters that are summarized in Table 4.3 provided an adequate combination for 

the PFPSO. 

 

Table 4.3 – Parameter configuration of the PFPSO. 
 

Parameter Description 
Factor Levels

Selected Value 
Low High 

i  # of Birds S  3 S  3 S  
pct  % of deterministic swarm 0.5 0.8 0.8 

1c  Cognitive Parameter 1 2 2 

2c  Social Parameter 1 2 2 

maxw  Max. Inertia Weight 1 1.2 1 

minw  Min. Inertia Weight 0 0.4 0.4 

maxv  Max. Velocity 3 6 3 

 

250,000 schedules (objective function evaluations) is used as the termination 

criterion in all of the experiments (Kolisch and Hartmann, 2006; Sonmez and 

Bettemir, 2012). The performance of the PFPSO is explored for the Pareto front 

optimization of small, medium, and large-scale benchmark DTCTP problems. 

 

4.4.2. Small-Scale Benchmark Problems 

 

The performance of the proposed Pareto front particle swarm optimizer is first 

tested with the well-known DTCTP benchmark problems that include 18 activities 

and up to five time-cost modes. The activity on node (AoN) representation of this 

instance can be obtained from Feng et al. (1997) and the time-cost data can be 

attained from Hegazy (1999). As mentioned earlier, even though it has not been 

pointed out by any other preceding study, it is worth mentioning that this problem 

is flawed since the cost of third time-cost alternative of the eighth activity must have 

been selected from the interval DU(208,215) ; however, the assigned cost is $200. 

Nevertheless, in order to conduct a fair comparison with the previous studies, the 

benchmark problem is used without applying any corrections. The first test problem 
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(18d) consisted of the DTCTP presented in Feng et al. (1997) which had an indirect 

cost of $0/day. Problem 18d includes one activity with a single mode, ten activities 

having three modes, two activities with four modes, and five activities with five 

modes; accounting for a total of 92.95 10  possible schedules. The small-scale 

benchmark problems 18e, 18f, and 18g were slightly modified version of the same 

problem (Hegazy, 1999) with an indirect cost of $0/day, $200/day, and $1,500/day, 

respectively. 18e, 18f, and 18g all include one activity having two modes, ten 

activities with three modes, two activities with four modes, and five activities 

having five modes; accounting for a total of 95.9 10  possible schedules. Although 

construction projects would typically include an indirect cost, many of the previous 

studies on Pareto front optimization (Feng et al., 1997; Kandil and El-Rayes, 2006; 

Afshar et al., 2009; Geem, 2010; Zhang and Li, 2010) used problems with an 

indirect cost of $0/day in their performance evaluations. Therefore, the same 

problems were also practiced in the performance evaluation of PFPSO. The optimal 

solutions for the practiced small-scale problems are determined by applying the 

mixed-integer programming formulation given in Eqs. (1.1)-(1.6) using AIMMS 

4.2 optimization software. The optimal results are also verified by means of a 

mixed-integer linear programming technique that employs Gurobi solver 6.0.5. 

This method is explained in detail in Section 5.2.3. Snapshots of the performance 

of the PFPSO for the four small-scale DTCTP benchmark problems against those 

of other previous multi-objective optimization techniques is given in Table 4.4. 

Unavailable values are tabulated as ‘na’ in Table 4.4. 
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Table 4.4 – Performance comparison of PFPSO for small-scale problems. 
 

Method Problem 
CPU Time 

(s) 
# of Pareto 

Front Solutions

MAWA-GA (Zheng et al., 2005) 18g na 4 

ACS-TCO (Ng and Zhang, 2008) 18g na 4 

NA-ACO (Afshar et al., 2009) 18e na 44 

 18f na 18 

 18g na 4 
Fuzzy-MOGA (Eshtehardian et al., 2009) 18f 900 18 
Harmony Search (Geem, 2010) 18d 5 19 

CSMO-PSO (Zhang and Li, 2010) 18e 205 42 

ACS (Zhang and Ng, 2012) 18g na 4 

PFPSO (Section 4.3) 18d 2 39 

 18e 2 44 

 18f 2 18 

 18g 2 4 

 

In problem 18d, PFPSO determined 39 non-dominated solutions in 2 seconds which 

were significantly more than the 19 non-dominated solutions of the harmony search 

method of Geem (2010). The solutions of the PFPSO for the 19 project durations 

reported in Geem (2010) are presented along with the solutions of the harmony 

search method in Table 4.5. 

 

Table 4.5 – Comparison of 19 non-dominated solutions for problem 18d. 
 

Duration (day) 
Cost ($) 

Geem (2010)  

PFPSO 
(Section 4.3) 

105 127,320  127,270 
106 127,100  127,020 
107 126,900  126,770 
108 119,415  119,270 
109 119,070  119,020 
110 118,915  118,770 
112 118,620  118,470 
114 105,270  105,270 
115 105,100  105,020 
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Table 4.5 – Comparison of 19 non-dominated solutions for problem 18d (Continued). 
 

Duration (day) 
Cost ($) 

Geem (2010)  

PFPSO 
(Section 4.3) 

116 104,770  104,770 
118 104,470  104,470 
119 104,270  104,220 
120 104,020  103,970 
122 103,850  103,720 
124 103,070  103,070 
125 102,908  102,820 
126 102,708  102,570 
128 102,400  102,320 
131 102,320  102,170 

 

The results of Table 4.5 can be summarized as follows. The solutions of the PFPSO 

in comparison with those of the harmony search are of higher quality. This 

comparison shows PFPSO is able to achieve better solutions for 15 project 

durations while obtaining the same results for the remaining four durations. 

 

The combined scheme-based multi-objective particle swarm optimization (CSMO-

PSO) method of Zhang and Li (2010) was able to obtain 42 non-dominated 

solutions for 18e in 205 seconds. PFPSO located 44 non-dominated solutions in 2 

seconds for the same problem. The proposed Pareto front particle swarm optimizer 

captured larger number of non-dominated solutions in a significantly less 

computation time compared with CSMO-PSO of Zhang and Li (2010). The multi-

colony ant algorithm of Afshar et al. (2009) also achieved 44 non-dominated 

solutions for problem 18e, however, the computational time requirement of this 

method was not reported. 

 

PFPSO was able to capture 18 non-dominated solutions for 18f in 2 seconds. 

Likewise, the multi-objective genetic algorithm (MOGA) of Eshtehardian et al. 

(2009) is shown to be able to achieve 18 non-dominated solutions for the same 

problem, but it requires 900 seconds to locate the Pareto front. One genetic (Zheng 
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et al., 2005) and three ant colony algorithms (Ng and Zhang, 2008; Afshar et al., 

2009; Zhang and Ng, 2012) reported four non-dominated solutions for 18g. 

Computation times of the methods were not included. PFPSO also obtained four 

non-dominated solutions for 18g in 2 seconds. All of the four non-dominated 

solutions of the PFPSO were better than those of Zheng et al. (2005), and one of 

the non-dominated solutions was better than the solution of Ng and Zhang (2008) 

and Zhang and Ng (2012) as shown in Table 4.6. 

 

Table 4.6 – Comparison of four non-dominated solutions for problem 18g. 
 

Duration 
(day) 

 
Zheng et 

al. 
(2005) 

Ng and 
Zhang 
(2008) 

Zhang and Ng 
(2012) 

PFPSO 
(Section 

4.3) 

100  287,720 283,320 283,320 283,320 
101  284,020 279,820 279,820 279,820 
104  280,020 276,320 276,320 276,320 
110  273,720 271,320 271,320 271,270 

 

The computational experiments reveal that the performance of the PFPSO on the 

well-known small-scale benchmark problems is unmatched by the previous meta-

heuristic methods. Results indicate that PFPSO can locate large number of high 

quality Pareto front solutions. Although the test configuration details, such as the 

CPU speed, are not available for majority of the previous approaches, the results 

reveal that the computation time requirement of PFPSO is significantly less than 

the time requirement of the existing methods. The computational efficiency of 

PFPSO is more prominent in comparison with the existing methods that are capable 

of locating large number of Pareto front solutions for the small-scale problems. 

 

In addition to the comparative study with the existing multi-objective methods, the 

convergence degree of PFPSO is also investigated by means of the optimal Pareto 

front solutions obtained using mixed-integer programming technique. The optimal 

solutions prove that the time-cost curves captured by PFPSO for problems 18d, 18e, 

18f, and 18g were indeed true Pareto fronts consisting of the optimum non-
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dominated solutions. True Pareto fronts generated by PFPSO for problems 18d, 

18e, 18f, and 18g are illustrated in Table 4.7, Table 4.8, Table 4.9, and Table 4.10, 

respectively. 

 

Table 4.7 - Performance of PFPSO for problem 18d. 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

104 132,270 132,270 0 5 1 1 1 2 3 1 1 5 3 1 4 1 1 1 1 3 3 

105 127,270 127,270 0 5 1 1 1 1 3 1 1 5 3 1 4 1 1 1 1 3 3 

106 127,020 127,020 0 4 1 1 1 1 3 1 1 5 3 1 4 1 1 1 1 3 3 

107 126,770 126,770 0 3 1 1 1 1 3 1 1 5 3 1 4 1 1 1 1 3 3 

108 119,270 119,270 0 5 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3 

109 119,020 119,020 0 4 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3 

110 118,770 118,770 0 3 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3 

112 118,470 118,470 0 5 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 2 3 

113 118,220 118,220 0 4 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 2 3 

114 105,270 105,270 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3 

115 105,020 105,020 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3 

116 104,770 104,770 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3 

118 104,470 104,470 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 2 3 

119 104,220 104,220 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 2 3 

120 103,970 103,970 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 2 3 

122 103,720 103,720 0 3 1 1 1 1 1 1 1 5 3 1 3 1 1 1 1 2 3 

124 103,070 103,070 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

125 102,820 102,820 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

126 102,570 102,570 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

128 102,320 102,320 0 3 1 1 1 1 1 1 1 5 3 1 3 1 1 1 1 1 3 

131 102,170 102,170 0 2 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

132 101,970 101,970 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 2 

133 101,820 101,820 0 4 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

134 101,570 101,570 0 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

137 101,510 101,510 0 3 1 1 1 1 1 1 1 4 3 1 1 1 1 1 1 1 3 

138 101,470 101,470 0 5 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2 

139 101,170 101,170 0 2 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

140 100,970 100,970 0 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2 

142 100,870 100,870 0 1 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

143 100,770 100,770 0 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 1 
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Table 4.7 - Performance of PFPSO for problem 18d (Continued). 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

145 100,570 100,570 0 2 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2

148 100,270 100,270 0 1 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2

151 100,070 100,070 0 1 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 1

154 100,010 100,010 0 1 1 1 1 1 1 1 1 4 3 1 1 1 1 1 1 1 1

156 99,950 99,950 0 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1

158 99,900 99,900 0 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1

159 99,870 99,870 0 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1

161 99,820 99,820 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

169 99,740 99,740 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

APD (%) 0      

 

Table 4.8 – Performance of PFPSO for problem 18e. 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100 133,320 133,320 0 5 1 1 1 2 3 1 1 5 3 2 4 1 1 2 1 3 3

101 128,320 128,320 0 5 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3

102 128,070 128,070 0 4 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3

103 127,820 127,820 0 3 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3

104 120,320 120,320 0 5 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

105 120,070 120,070 0 4 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

106 119,820 119,820 0 3 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

107 119,770 119,770 0 3 1 1 1 1 2 1 1 5 3 1 4 1 1 2 1 3 3

108 119,270 119,270 0 5 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3

109 119,020 119,020 0 4 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3

110 106,270 106,270 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

111 106,020 106,020 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

112 105,770 105,770 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

114 105,270 105,270 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3

115 105,020 105,020 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3

116 104,770 104,770 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3

118 104,470 104,470 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 2 3

119 104,220 104,220 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 2 3

120 103,970 103,970 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 2 3
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Table 4.8 – Performance of PFPSO for problem 18e (Continued). 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

121 103,820 103,820 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 1 3 

122 103,570 103,570 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 1 3 

124 103,070 103,070 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

125 102,820 102,820 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

126 102,570 102,570 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

128 102,320 102,320 0 3 1 1 1 1 1 1 1 5 3 1 3 1 1 1 1 1 3 

131 102,170 102,170 0 2 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3 

132 101,970 101,970 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 2 

133 101,820 101,820 0 4 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

134 101,570 101,570 0 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

137 101,510 101,510 0 3 1 1 1 1 1 1 1 4 3 1 1 1 1 1 1 1 3 

138 101,470 101,470 0 3 1 1 1 1 1 1 1 5 3 1 2 1 1 1 1 1 2 

139 101,170 101,170 0 2 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

140 100,970 100,970 0 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2 

142 100,870 100,870 0 1 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 3 

143 100,770 100,770 0 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 1 

145 100,570 100,570 0 2 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2 

148 100,270 100,270 0 1 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 2 

151 100,070 100,070 0 1 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1 1 1 

154 100,010 100,010 0 1 1 1 1 1 1 1 1 4 3 1 1 1 1 1 1 1 1 

156 99,950 99,950 0 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 

158 99,900 99,900 0 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 

159 99,870 99,870 0 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 

161 99,820 99,820 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

169 99,740 99,740 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

APD (%) 0    

 

Table 4.9 – Performance of PFPSO for problem 18f. 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

100 153,320 153,320 0 5 1 1 1 2 3 1 1 5 3 2 4 1 1 2 1 3 3 

101 148,520 148,520 0 5 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3 

102 148,470 148,470 0 4 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3 
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Table 4.9 – Performance of PFPSO for problem 18f (Continued). 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

103 148,420 148,420 0 3 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3

104 141,120 141,120 0 5 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

105 141,070 141,070 0 4 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

106 141,020 141,020 0 3 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

108 140,870 140,870 0 5 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3

109 140,820 140,820 0 4 1 1 1 1 2 1 1 5 3 1 4 1 1 1 1 3 3

110 128,270 128,270 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

111 128,220 128,220 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

112 128,170 128,170 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

114 128,070 128,070 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3

115 128,020 128,020 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3

116 127,970 127,970 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 3 3

124 127,870 127,870 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3

125 127,820 127,820 0 4 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3

126 127,770 127,770 0 3 1 1 1 1 1 1 1 5 3 1 4 1 1 1 1 1 3

APD (%) 0      

 

Table 4.10 – Performance of PFPSO for problem 18g. 
 

Pareto Front Mode Selection 

Duration Cost ($) Deviation Activities 

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100 283,320 283,320 0 5 1 1 1 2 3 1 1 5 3 2 4 1 1 2 1 3 3

101 279,820 279,820 0 5 1 1 1 1 3 1 1 5 3 2 4 1 1 2 1 3 3

104 276,320 276,320 0 5 1 1 1 1 2 1 1 5 3 2 4 1 1 2 1 3 3

110 271,270 271,270 0 5 1 1 1 1 1 1 1 5 3 1 4 1 1 2 1 3 3

APD (%) 0      

 

 

4.4.3. Medium-Scale Benchmark Problem 

 

Kandil and El-Rayes (2006) created medium-scale DTCTP problems by using the 

time-cost alternatives of the 18-activity problem of Feng et al. (1997) and by 

copying a slightly modified version of the same network ten times in serial. The 
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network, which is used to create medium-scale and large-scale (Section 4.4.4) 

problems is demonstrated in Figure 4.5 (Kandil, 2005). 
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Figure 4.5 - Network diagram of the core problem for medium-scale and large-scale problems. 

 

The medium-scale problem consists of 180 activities which is practiced with an 

indirect cost rate of $0/day. The performance of the proposed PFPSO for 180-

activity problem is compared with the performances of the global parallel and 

coarse grained genetic algorithm approaches of Kandil and El-Rayes (2006) in 

terms of number of Pareto solutions and computation time requirements. The global 

parallel genetic algorithm module was implemented using 50 processors on the 

tungsten supercomputing cluster, which was composed of 640 Dell PowerEdge 

1750 servers, each with two Intel Xeon 3.2 GHz processors, 1.5 MB of cache 

memory, and a total of 3 GB of SDRAM (Kandil and El-Rayes, 2006). The 

supercomputing cluster had a peak performance of 6.4 Gflops. As summarized in 

Table 4.11, the global parallel GA of Kandil and El-Rayes (2006) obtained 267 

Pareto solutions for 180-activity problem running on a single processor (Kandil, 

2005) in 14,688 seconds. 
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Table 4.11 – Comparison of the results for 180-activity problem. 
 

Algorithm 
# of 

Processor(s) 
CPU 

Time (s) 
# of Pareto 

Front Solutions 

GP-GA (Kandil and El-Rayes, 2006) 1 14,688 267* 
GP-GA (Kandil and El-Rayes, 2006) 50 2,556 267* 
CG-GA (Kandil and El-Rayes, 2006) 50 684 68* 
PFPSO (Section 4.3) 1 21 304 

*Kandil (2005)    
 

The computation time requirement of the global parallel GA was reduced to 2,556 

seconds by using a cluster of 50 processors. The coarse-grained GA, on the other 

hand, located 68 Pareto solutions in 684 seconds over a cluster of 50 processors. 

The proposed particle swarm Pareto front optimizer was able to capture 304 Pareto 

solutions in 21 seconds on a single processor. PFPSO was able to position a rather 

larger set of non-dominated solutions along the efficient frontier than all of the three 

GA-based approaches of Kandil and El-Rayes (2006), in a significantly less 

computation time. 

 

In addition to the comparative study with the existing parallel GA methods of 

Kandil and El-Rayes (2006), the accuracy of PFPSO is also investigated by means 

of the optimal costs of Pareto front solutions obtained using mixed-integer 

programming technique. The optimal solutions reveal that the proposed PFPSO was 

able to capture high quality Pareto front solutions with an average deviation of only 

0.1% from the optimal costs. Results of PFPSO for the medium-scale problem is 

summarized in Table 4.12. However, for sake of brevity only the first nine solutions 

out of a total of 304 showing mode selection of only 17 activities out of 180 are 

pointed out in this table. 
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Table 4.12 – Performance of PFPSO for 180-activity problem. 
 

Pareto Front Mode Selection  

Duration Cost ($) Deviation Activities  

(day) Optimal PFPSO (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 …  

1040 1,335,650 1,339,700 0.303 5 1 1 1 2 3 1 5 5 3 2 4 1 3 1 3 3   

1041 1,330,385 1,334,700 0.324 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1042 1,325,120 1,329,700 0.346 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1043 1,319,855 1,324,700 0.367 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1044 1,314,590 1,319,700 0.389 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1045 1,309,325 1,314,700 0.411 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1046 1,304,060 1,309,100 0.386 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1047 1,298,795 1,304,100 0.408 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

1048 1,293,530 1,299,100 0.431 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

⁝              

APD (%) 0.095     

 

 

4.4.4. Large-Scale Benchmark Problems 

 

Experiments on large-scale problems comprise the 360-activity and 720-activity 

benchmark problems created by Kandil and El-Rayes (2006). Similar to their 

medium-scale problem, the time-cost alternatives of the 18-activity problem of 

Feng et al. (1997) were duplicated for networks of size 360 and 720 which were 

generated by copying the same network shown in Figure 4.5 several times in serial. 

 

Both of the large-scale problems are practiced with an indirect cost rate of $0/day. 

The performances of the proposed PFPSO for 360-activity and 720-activity 

problems are compared with the performances of the global parallel and coarse 

grained genetic algorithms of Kandil and El-Rayes (2006) with regard to number 

of Pareto solutions and computational time. The global parallel genetic algorithm 

module was implemented using a supercomputing cluster which is described in 

Section 4.4.3. Performance of the results for the large-scale 360-activity instance is 

presented in Table 4.13. 
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Table 4.13 – Comparison of the results for 360-activity problem. 
 

Algorithm 
# of 

Processor(s) 
CPU 

Time (s) 
# of Pareto 

Front Solutions 

GP-GA (Kandil and El-Rayes, 2006) 1 75,096 232 
GP-GA (Kandil and El-Rayes, 2006) 50 10,404 232 
CG-GA (Kandil and El-Rayes, 2006) 50 1,836 94 
PFPSO (Section 4.3) 1 43 536 

 

Over a cluster of 50 processors, the global parallel GA was able to obtain 232 non-

dominated solutions in 10,404 seconds, whereas the coarse-grained GA achieved 

94 non-dominated solutions in 1,836 seconds for 360-activity problem. The 

proposed particle swarm Pareto front optimization method was able to capture 536 

non-dominated solutions in 43 seconds for the same problem by running on a single 

processor. The exceptional performance of PFPSO was consistent for larger 

problems as it captured larger set of non-dominated solutions than all of the three 

GA-based approaches of Kandil and El-Rayes (2006), within a considerably less 

computational effort. Results of PFPSO for the 360-activity problem is summarized 

in Table 4.14. Though, in the consideration of briefness only the first nine solutions 

out of a total of 536 showing mode selection of only 17 activities out of 360 are 

tabulated as follows. 

 

Table 4.14 – Non-dominated solutions of PFPSO for 360-activity problem. 
 

Pareto Front Mode Selection  

Duration Cost Activities  

(day) ($) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 …  

2080 2,679,345 5 1 1 1 2 3 1 5 5 3 2 4 1 3 1 3 3   
2081 2,674,345 5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
2082 2,668,145 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   
2083 2,663,195 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   
2084 2,658,145 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   
2085 2,653,145 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   
2086 2,648,145 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   
2087 2,643,145 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   
2088 2,638,195 5 1 1 1 1 3 1 5 5 3 2 4 1 2 1 3 3   

⁝            
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The successful performance of the PFPSO is also consistent for the large-scale 720-

activity benchmark problem, as shown in Table 4.15. 

 

Table 4.15 – Comparison of the results for 360-activity problem. 
 

Algorithm 
# of 

Processor(s) 
CPU 

Time (s) 
# of Pareto 

Front Solutions 

GP-GA (Kandil and El-Rayes, 2006) 1 491,400 303 
GP-GA (Kandil and El-Rayes, 2006) 50 55,296 303 
CG-GA (Kandil and El-Rayes, 2006) 50 7,092 132 
PFPSO (Section 4.3) 1 92 1022 

 

PFPSO was able to capture 1022 non-dominated solutions in 92 seconds for the 

720-activity problem with a single processor on a desktop computer. Whereas, over 

a cluster of 50 processors, the global parallel GA provided 303 Pareto solutions in 

55,296 seconds, and the coarse-grained GA obtained 132 non-dominated solutions 

in 7,091 seconds for 720-activity problem. Results of PFPSO for the 720-activity 

problem is summarized in Table 4.16. However, due to length considerations only 

the first nine solutions out of a total of 1022 showing mode selection of only 17 

activities out of 720 are illustrated as follows. 

 

Table 4.16 – Non-dominated solutions of PFPSO for 720-activity problem. 
 

Pareto Front  Mode Selection  

Duration Cost  Activities  

(day) ($)  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 …  

4160 5,358,800  5 1 1 1 2 3 1 5 5 3 2 4 1 3 1 3 3   
4161 5,353,800  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4162 5,348,800  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4163 5,343,650  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4164 5,338,800  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4165 5,333,800  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4166 5,328,750  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4167 5,323,800  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   
4168 5,318,800  5 1 1 1 1 3 1 5 5 3 2 4 1 3 1 3 3   

⁝              

 



 

111 

 

Obtained by PFPSO, 304, 536, and 1022 non-dominated solutions constituting the 

Pareto fronts of 180-activity, 360-activity, and 720-activity problems are illustrated 

in Figure 4.6. 

 

 
 

Figure 4.6 – Pareto fronts located by PFPSO for 180, 360, and 720-activity problems. 

 

The mixed integer model mentioned in Section 3.4.2 was also used to determine the 

optimal costs for both 360-activity and 720-activity problems; nevertheless, optimal 

costs of these problems were not obtained within 72 hours. As is clear, not only the 

computation time requirement of the proposed Pareto front particle swarm 

optimizer was significantly less than earlier approaches but was also able to produce 

a large number of good feasible Pareto front solutions for the large-scale problems. 

Due to the effectiveness and efficiency of the proposed particle swarm optimization 

method, it is expected to contribute to optimal planning of real-life-scale 

construction projects. To the best of author’s knowledge, the proposed PFPSO is 

one of the first methods capable of capturing high quality Pareto solutions for the 

large-scale DTCTP within seconds. 
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A more comprehensive study on the performance of PFPSO is given in Section 

5.2.5 using new sets of RanGen2 instances discussed in Section 5.2.1. Based on 

performance indices demonstrated in Section 5.2.2, effectiveness and efficiency of 

this approach is measured and compared with a new heuristic algorithm which is 

presented in Section 5.1.4. 
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CHAPTER 5  

 

 

COST-SLOPE HEURISTIC METHOD FOR DTCTP 

 

 

 

Respecting the state of the existing research on TCTP in the construction industry, 

it can be observed that the meta-heuristic approaches are the most prominent 

methods used in a multitude of studies. Nonetheless, it is broadly acknowledged 

that evolutionary algorithms are very sensitive to configuration of their parameters. 

In real-life situations, the experimental process for configuration of parameters for 

best values may become a tedious and arduous task. Yet, the parameters need to be 

retuned for each new problem at hand which might reduce the practicability of the 

meta-heuristic approaches. On the other hand, experimentation of DPSO (Section 

3.4) and PFPSO (Section 4.4) revealed that the exceptional performances of the 

noted approaches were largely resulting from their heuristic modules. It was also 

discovered that there exist only a handful of heuristic exemplars in the existing 

literature which is limited to the methods proposed by Fondahl (1961), Siemens 

(1971), Goyal (1975), Moselhi (1993), and Bettemir and Birgonul (2017). 

However, none of the earlier heuristics mentioned have the capacity to tackle real-

life-scale Pareto front discrete TCT problems since most of them are designed for 

rather simple and continuous deadline problems. The discrete Pareto front TCTP is 

considered as the most salient type this trade-off problem due to its practical 

relevance and also because of its potential for articulation of managers’ propensities 

which provides them with tools for selection of the best solution with respect to 

their preferences. These are some of the very reasons that inspired development of 

a new heuristic approach, hereafter called Cost-Slope Heuristic, for solution of 

TCTP in this thesis which is discussed in Section 5.1.
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Moreover, apart from the fact that the existing approaches have seldom been 

applied for solution of large-scale DTCTPs, it is interpreted that the dearth of real-

life-scale problems could possibly be another major reason for the lack of studies 

on realistic problems. Despite the fact that some studies have included problems 

including up to 720, 2000, and 6300 activities, all of the employed large-scale 

problems are generated using small-scale base networks and are generated by 

copying the core problem in serial several times; hence, these problems are believed 

to have limitations in reflecting the complexity of the real-life construction projects. 

To the respect of this, for better evaluation of the capabilities of the proposed 

optimization models, new sets of multi-mode large-scale DTCT problems have 

been generated in this thesis by means of random network generator, viz., RanGen2. 

The systematically generated large-scale instances comprise complex networks and 

realistic sets of time-cost alternatives which are elucidated in Section 5.2.1. 

 

On the other hand, it is also observed that the majority of the earlier research on 

DTCTP not only employ instances with small problem networks, but also the 

detailed performance evaluation on accuracy and efficiency of most of the 

presented approaches appear to be lacking, especially for the Pareto front problem. 

Unlike a large body of the existing literature, performance measurements are 

carried out by taking a more holistic approach that involves a set of performance 

comparison indices. In order to compare methods rigorously and to measure 

performances on a quantitative bases, efficiency, accuracy, diversity, and 

cardinality of the obtained solutions are evaluated using the indices explained in 

Section 5.2.2. 

 

Meanwhile, it is not possible to accurately assess quality of the solutions obtained 

from heuristic or meta-heuristic algorithms short of exact procedures since they are 

the only approaches guaranteeing optimality of the solutions. Owing to this very 

reason, they play a crucial role in performance evaluation of non-exact optimization 

algorithms. Therefore, a Mixed-Integer Linear programming technique with unique 
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features is also proposed for obtaining the optimal results of the practiced instances 

which is described in Section 5.2.3. 

 

The computational experiments include comparative studies on the performance of 

the Cost-Slope Heuristic (Section 5.1), DPSO (Section 3.3) and PFPSO (Section 

4.3). Benchmark instances attained from the literature as well the new sets of 

RanGen2 instances presented in Section 5.2.1 are used to conduct the comparative 

studies which prove remarkable efficiency and exceptional efficacy of the proposed 

Cost-Slope Heuristic for real-life practices. 

 

5.1. Cost-Slope Heuristic 

 

A heuristic method is defined as a logical sequence of steps – relying on rules of 

thumb, execution of which yields an optimum or near-optimum solution 

(Demeulemeester and Herroelen, 2002). The literature on heuristic algorithms for 

the TCTP is virtually restricted to Fondahl (1961), Siemens (1971), Goyal (1975), 

and Moselhi (1993). These methods assume linear time-cost relationships and are 

incapable of handling discrete TCT problems. The most recent heuristic approach 

is proposed by Bettemir and Birgonul (2017) which is one of the very few methods 

designed for unraveling the discrete TCT problems. Their method which is called 

Network Analysis Algorithm (NAA) can tackle deadline and cost minimization 

DTCT problems. To the best of author’s knowledge, there exists no alternative 

multi-objective heuristic method designed for Pareto oriented optimization of 

DTCTP other than the SAM-based approaches proposed by the author previously. 

Two concepts are introduced herein for reducing the size of the network and for 

faster CPM calculations which are described in detail in Section 5.1.1.1 and Section 

5.1.1.2, respectively. The details of the methodology implemented to develop the 

proposed Cost-Slope Heuristic, abridged as CS-Heuristic, for deadline and Pareto 

front TCTP are explained in Section 5.1.3 and Section 5.1.4, respectively. 
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5.1.1. Network Reduction Techniques 

 

Just as an increase in the scale of the problem causes an exponential growth in 

computational burden, a decrease in scale results in an exponential decline in 

computational burden. The simplification of the problem which is known as the 

network reduction technique, despite maintaining the abovementioned utility, has 

not received sufficient attention. Based on the methods proposed by Rothfarb, 

Frank, Rosebaum, Steiglitz, and Kleitman (1970) and Frank, Frisch, Van Slyke, and 

Chou (1971) two clever network reduction techniques are proposed in this chapter 

which will be explained in the ensuing sections. Unlike preceding work on this area 

which considered AoA networks, this thesis study proposes simplification methods 

for AoN notation systems. According to the proposed method, serial/parallel 

reducible problems can be simplified through replacing certain activities by 

merging them into an equivalent activity. In order to elucidate these concepts, a 

numerical example is presented based on the sample case problem introduced in 

Figure 3.1 of Section 3.3.1. This instance is exercised by assuming a completion 

deadline of 45 days, with delay penalty and indirect cost amounts of $2,000 and 

$1,000/day, respectively. 

 

5.1.1.1. Serial Merging Technique 

 

In a network if there exist two activities 1 2,j j Acts  such that 1j ’s unique 

successor is 2j  and 2j ’s unique predecessor is 1j , this network is said to be serial 

reducible through which activities 1j  and 2j  can be merged into an equivalent 

activity 1j  . The replaced activity 1j   will adopt the predecessors and successors 

from activities 1j  and 2j , respectively. Each time-cost alternative of 1j , 

1 1[1, ( )]jk m j , is then combined with each time-cost component of 2j , 

2 2[1, ( )]jk m j , forming the maximum 1 1 2( ) ( ) ( )m j m j m j    number of candidate 

time-cost alternatives for the equivalent activity 1j  . Each of the time-cost 
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components of activity 1j  , 1 1[1, ( )]jk m j  , is achieved by summation of the 

times, 
1 21 j jjk k kd d d


  ,  and costs, 

1 21 j jjk k kdc dc dc

  , of the corresponding 

time-cost alternatives. In case of ties two similar but not identical approaches are 

implemented for the CS-Heuristic described in Section 5.1.3 and Section 5.1.4 and 

for the Mixed-Integer Linear Programming presented in Section 5.2.3. For CS-

Heuristic, in case of a tie, all but one of the duplicate alternatives with 

1 1
( 1)j jk kd d

   and 
1 1

( 1)j jk kdc dc
   are eliminated. A dominance rule is also 

implemented to eliminate the dominated components as 
1 1

( 1)j jk k  , which 

indicates if 
1 1

( 1)j jk kd d
   while 

1 1
( 1)j jk kdc dc

   and one of these inequalities 

holds strictly, ( 1)k  th alternative of the equivalent activity 1j   will be discarded. 

Whereas, for the Mixed-Integer Linear Programming in case of a tie, all but one of 

the duplicate alternatives with 
1 1

( 1)j jk kd d
   and 

1 1
( 1)j jk kdc dc

   are eliminated. 

A dominance rule is also implemented to eliminate the dominated components as 

1 1
( 1)j jk k  , which indicates if 

1 1
( 1)j jk kd d

   while 
1 1

( 1)j jk kdc dc
  , ( 1)k  th 

alternative of the equivalent activity 1j   will be eliminated. The flowchart of the 

proposed serial merging technique is illustrated graphically in Figure 5.6 of Section 

5.1.3. 

 

The procedure is best elucidated by a case example which is presented in Section 

3.3.1. The original network shown in Figure 3.1 is serial reducible since Activity-1 

and Activity-3 satisfy the above conditions. Activity-1 has only Activity-3 as its 

succeeding activity, and Activity-1 is the unique predecessor of Activity-3. It must 

be also pointed out that in this example the numerator of those activities with ID 

numbers greater than three are decreased by one. As shown in Figure 5.1, the 

equivalent activity, Activity-1, fetches the predecessors of the original Activity-1 

(i.e., Start) and successors of the original Activity-3 (i.e., Activity-6 which is 

represented as Activity-5 in the reduced network). 
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1. (28, $73,600)
2. (30, $69,000)
3. (32, $66,600)
4. (34, $62,000)
5. (40, $54,600)
6. (42, $50,000)
7. (54, $47,000)

1. (7,   $38,000)
2. (10, $26,000)
3. (12, $20,000)

1. (5,  $52,000)
2. (8,  $34,000)

1. (3,  $36,000)
2. (5,  $24,000)

1. (Dur., Cost)
m. (Dur., Cost)

1

2

3 5

ID

1. (10, $40,000)
2. (15, $24,000)
3. (16, $22,000)

4

Start Finish

 
 

Figure 5.1 – Serial merge applied to the Case Example. 

 

In the absence of the mode elimination rule mentioned earlier, the equivalent 

Activity-1 would have a maximum of 3 3 9   alternatives. However, combining 

the second mode of the original Activity-1 with the third mode of the original 

Activity-3 yields the same duration of 42 days achieved by the combination of the 

third mode of the original Activity-1 with the first mode of the original Activity-3. 

Since the cost of the first combination is added as $50,000 and the cost of the second 

combination is summed as $66,000, the second combination is discarded. In 

addition, summation of the third mode of the original Activity-1 with the second 

mode of the original Activity-3 yields a component with a duration of 46 days and 

direct cost of $59,000 which is dominated by the sixth mode of the equivalent 

Activity-1 with less duration and direct cost amounts. The solution space of the 

original network comprises 324 realizations; however, the solution space of the 

reduced network includes 252 different realizations. As is clear, the smaller solution 

space of the reduced network contributes to significantly faster computations. 

 

 



 

119 

 

5.1.1.2. Parallel Merging Technique 

 

In a network if there exist two activities 1 2,j j Acts  such that both 1j  and 2j  

share a unique predecessor while sharing exactly the same set of successors, this 

network is said to be parallel reducible through which activities 1j  and 2j  can be 

merged into an equivalent activity 1j  . The replaced activity 1j   will adopt the 

single predecessor and the set of successors of the merged activities 1j  and 2j . 

Each time-cost alternative of 1j , 1 1[1, ( )]jk m j , is then combined with each time-

cost component of 2j , 2 2[1, ( )]jk m j , forming the maximum 

1 1 2( ) ( ) ( ) 1m j m j m j     number of candidate time-cost alternatives for the 

equivalent activity 1j  .Each of the time-cost components of activity 1j  , 

1 1[1, ( )]jk m j  , is achieved by using an iterative scheme which initially starts by 

combining the all-normal modes of the 1j  and 2j  activities, i.e., 1 1( )jk m j  and 

2 2( )jk m j . In each iteration of the pairwise combination, the larger duration is set 

as the duration of the new mode, 
1 21

max{ , }j jjk k kd d d

 , while the cost of the new 

mode is calculated by adding the direct costs of the time-cost alternatives, 

1 21 j jjk k kdc dc dc

  . Thereafter, pairwise combination is carried out by 

incrementing the index of the driving time-cost component, 1 2{ , }j j jk k k , which 

had the greater amount of duration in the previous iteration, 
1

{ | }jjj k kk d d

 . 

Thereby, the same procedure is repeated until the index of both the activities are 

promoted to their maximum amounts, viz., until all-crashed time-cost modes of the 

merged activities are experimented for combination, i.e., 1 1jk   and 2 1jk  . 

Unlike serial merge, no elimination or dominance rule is incorporated since no ties 

occur in the above described procedure. The flowchart of the proposed parallel 

merging technique is illustrated graphically in Figure 5.5 of Section 5.1.3. 



 

120 

 

The procedure is best illustrated using a case example which is presented in Section 

3.3.1. The original network shown in Figure 3.1 is parallel reducible since Activity-

4 and Activity-5 satisfy the above conditions. Both the Activity-4 and Activity-5 

has only Activity-2 as their preceding activity, and Activity-4 and Activity-5 only 

have Activity-6 in their set of successors which is common to both the activities 4 

and 5. It must be also pointed out that in this example the numerator of those 

activities with ID numbers greater than five are decreased by one. As shown in 

Figure 5.2, the equivalent activity, Activity-4, fetches the unique predecessor of the 

original Activity-4/Activity-5 (i.e., Activity-2) as well as the successors of the 

original Activity-4/Activity-5 (i.e., Activity-6 which is represented as Activity-5 in 

the reduced network). 

 

1. (12, $21,600)
2. (14, $17,000)
3. (26, $14,000)

1. (16, $52,000)
2. (20, $45,000)
3. (28, $33,000)

1. (7,   $38,000)
2. (10, $26,000)
3. (12, $20,000)

1. (3,  $36,000)
2. (5,  $24,000)

1. (Dur., Cost)
m. (Dur., Cost)

1 3

2

5

ID

1. (10, $74,000)
2. (15, $58,000)
3. (16, $56,000)

4

Start Finish

 
 

Figure 5.2 – Parallel merge applied to the Case Example. 

 

The equivalent Activity-4 would have a maximum of 2 3 1 4    alternatives. 

However, both the durations for both of the time-cost alternatives of the original 

Activity-4 (i.e., 5 and 8) are less than the duration of the all-crashed mode of the 

original Activity-5 (i.e., 10). Resultantly, the equivalent Activity-4 includes three 

time-cost modes with durations taken from the original Activity-5, while the costs 

are calculated by the summation of costs of the original Activity-5 with the least-

cost mode of the original Activity-4 which is the second mode in this case. As 
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mentioned earlier, the solution space of the original network comprises 324 

realizations; however, the solution space of the reduced network includes 162 

different realizations. As is clear, the considerably smaller solution space of the 

reduced network contributes to significantly faster computations. 

 

5.1.2. Partial-CPM Calculator 

 

The computational bottleneck in solution of real-life-scale TCT problems is the 

fitness evaluation of the generated solutions due to the iterative and repetitive 

computation of the network using the critical path method. Computational 

complexities arise from the necessity to calculate the longest path of the network 

since any variation in selection of the alternatives modifies the project schedule. 

These incessant modifications require rescheduling the project for potential changes 

in its total cost and total duration amounts. It is obvious that any rescheduling 

process demands reanalyzing the network using the critical path method. Repetitive 

classical CPM calculations even with the modern computers is, therefore, not a 

convenient method for solution of DTCTP. In order to reduce the computational 

burden of the repeated CPM calculations, new approaches are implemented in the 

proposed CS-Heuristic. In the conventional CPM calculation module of the 

proposed method, where applicable, instead of applying forward and backward pass 

calculations, only the forward pass is applied and the total duration of the project is 

determined using the early finish date of the last activity on the project network. By 

means of this procedure, computation time is reduced for conditions where it is not 

necessary to carry out the complete CPM calculations which include computation 

of the late dates and floats. Original to this thesis, the proposed CS-Heuristic is also 

complemented with a unique CPM-esque approach to accelerate the solution 

process. A significant contribution of this thesis study is development of this unique 

network analyzer which is called the Partial-CPM calculator. Networks of the 

problems are calculated using this robust and efficient method which improves the 

overall computation time substantially. 
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Primarily, the distinction between a modified activity and an updated activity must 

be made as the first term refers to an activity with a modified setting of its time-cost 

alternatives; whereas, the second term refers to an activity with updated early/late 

start/finish dates. Rather than analyzing the whole network for changes, the 

proposed Partial-CPM technique examines only a small portion of the network as 

an alternative execution mode gets selected for an activity. In forward pass, this 

technique only updates early dates of the successors to the modified activity which 

have early-start dates smaller than early-finish date of the modified activity. In a 

similar fashion, the same adjustments are also applied to successors of the updated 

activities. In backward pass, Partial-CPM only updates late dates of the 

predecessors of the modified activity which have late-finish dates greater than late-

start date of the modified activity. The same adjustments are also applied to 

predecessors of the updated activities. Following the forward pass and the backward 

pass calculations, total floats of all the updated activities are recalculated. To the 

best of author’s knowledge, no such study exists in the literature. The main 

advantage of using the proposed Partial-CPM to DTCTP is that the CPM 

calculation of the entire network needs only be completed once, thereby the 

influence of modifications is analyzed by only experimenting a small fraction of 

the network. 

 

Partial-CPM calculation procedure is described using a case example which is 

presented in Section 3.3.1. Figure 5.3 demonstrates the PERT chart for the all-

crashed schedule. By uncrashing Activity-2 to its next option, its duration increases 

by three days (effective DDiff  amount) to 10 days. 
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Figure 5.3 – PERT chart of all-crashed schedule for the Case Example. 

 

Resultantly, its early-finish date increases from 7 to 10. According to Partial-CPM, 

in the first forward pass iteration, early dates of successors to Activity-2, i.e., 

Activity-4 and Activity-5 need to be updated if their early-start dates are smaller 

than 10. The current early-start dates of both Activity-4 and Activity-5 are shown 

to be 8, which satisfies the updating condition in forward pass of the Partial-CPM. 

Thus, this date is updated to 10 1 11   and the early-finish date for each of these 

activities are updated by adding up their duration amounts to their early-start dates 

(Figure 5.4). Hence, early-finish dates of Activity-4 and Activity-5 are updated as 

15 and 20, respectively.  In the next iteration of forward pass, the successors to the 

updated activities, i.e., Activity-6 is evaluated. Since its early-start date of 29 is 

already greater than early-finish dates of both Activtiy-4 and Activity-5, and there 

exist no other successors to the updated activities, forward pass is terminated. In the 

first backward pass cycle, current late-finish date of the predecessors of the updated 

activities, i.e., Acitvity-2, is checked against late-start dates of both the updated 

activities Activity-4 and Activity-5. Backward pass is then terminated since late-

finish date of 18 for Activity-2 is not greater than late-start dates of 24 and 19 for 

Activity-4 and Activtiy-5, respectively. Following the forward pass and the 
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backward pass calculations, total floats of all the updated activities are recalculated. 

It is shown that for this case example, Partial-CPM is capable of rescheduling the 

project by analyzing and updating only the dates/floats which are underscored in 

Figure 5.4. It is shown that the proposed technique, rather than rescheduling the 

entire network, is able to obtain the same rescheduled network by updating only 8 

components (early dates, late dates, and floats) out of a total of 30. 
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Figure 5.4 – PERT chart of the updated schedule for the Case Example. 

 

 

5.1.3. CS-Heuristic for Deadline DTCTP 

 

A new Cost-Slope Heuristic is presented herein for cost minimization and deadline 

discrete TCT problem. This method incorporates the project deadline, since, in 

practice there is a completion deadline stipulated in the contract for the majority of 

the projects. In realistic projects, delay penalties which are usually in the form of 

liquidated damages are applied in case the project duration exceeds the 

predetermined deadline and the incentives are the bonus payments made for each 

day saved from the specified deadline. Generally, there is a negative correlation 



 

125 

 

between the deadline and the complexity of the problem. That is, projects with 

larger predetermined thresholds are simpler than the ones with shorter deadlines. 

Regarding the above fact, the completion deadline of the practiced problems is 

calculated in the proposed heuristic algorithm as follows. Firstly, the all-normal 

schedule with the largest critical path length, maxCPM , is calculated. Secondly, the 

all-crashed schedule with the shortest critical path, minCPM , is computed. Finally, 

the completion deadline is set to be equal to the average of the earliest allowable 

completion time of the project and the latest possible finishing time. 

 

The first step of the CS-Heuristic involves serial/parallel merging of the network 

activities. Based on the techniques presented in Section 5.1.1.1 and Section 5.1.1.2 

CS-Heuristic reduces the network of the problem to a simpler equivalent network. 

Thereafter it calculates the completion deadline based on the above described 

procedure. In the next step, CS-Heuristic calculates and records the cost-slopes (

CS ), and crash amounts (duration difference DDiff , and cost difference CDiff ) 

for every time-cost option of all the activities. The cost-slopes are calculated 

according to Eq. (3.1) given in Section 3.2. All these options are then indexed as 

follows. Time-cost alternatives are sorted in descending order by CDiff  values then 

by CS  values in descending order; thereby they are treated with an index named 

UFF index . Similar to the previous stage, time-cost alternatives are sorted in 

descending order by CS  values then by DDiff  values in ascending order, thereby 

an index called UCS index  is assigned to each alternative. According to 

UFF index , a component providing a greater cost saving is uncrashed first; in 

case of a tie, the component with a greater cost-slope rate is selected; if the tie is 

still not broken, the first component is selected. According to UCS index , a 

component with a greater cost-slope rate is uncrashed first; in case of a tie, the 

component providing a smaller duration reduction is selected; if the tie is still not 

broken, the first component is selected. 
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Unlike earlier heuristic approaches, in lieu of starting from the all-normal schedule, 

maxCPM , CS-Heuristic initiates from the all-crashed schedule, minCPM , by 

selecting the shortest/costliest time-cost alternative for the activities. Contrary to 

previous heuristics, in every cycle of CS-Heuristic, each new schedule is built upon 

an already non-dominated solution. Duration of this schedule is determined using 

CPM technique and the total cost is calculated by explicitly including the incentive 

and disincentive payments in the project cost formulation. Since CS-Heuristic starts 

from the all-crashed schedule, it is designed to optimize the solutions by performing 

an uncrashing scheme. The uncrashing scheme incorporates two different phases, 

namely, uncrash free-float (UFF ) and uncrash cost-slope (UCS ). Through UFF  

phase those activities with total floats greater than or equal to their effective 

(immediate available) crash amounts, jk jDDiff TF , are determined. The 

determined activities are then uncrashed to their next available option, by 

uncrashing one activity at a time, with respect to their UFF index  values. After 

performing each UFF , CS-Heuristic uses Partial-CPM technique (Section 5.1.2) to 

update the modified activities. The UFF  process is continued until either all the 

activities get fully uncrashed or their total floats become less than their effective 

crash amounts. It is after this step that the heuristic stores the current schedule as a 

solution. While each solution, Sol , obtained from the uncrashing phases are 

recorded in an archive called Solutions , an external repository, Result , is 

implemented to record the least-cost solution. Accordingly, the least-cost Sol  of 

Solutions  is stored in Result , subsequently, the schedules stored in Solutions  are 

wiped out at the end of each iteration. 

 

After the first schedule is generated and stored in Result , CS-Heuristic performs 

UCS  process to generate new schedules unless the status of the unique solution 

stored in Result  is “Closed”. Status of each solution which gets selected as a base 

for generation of new schedules, is switched to “Closed” at the end of each UCS  

phase, making it unavailable for re-selection. New schedules are generated based 

on the solutions that iteratively replace the single schedule recorded in Result , as 
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long as they are not “Closed”. Through UCS  phase those activities that are 

uncrashable, i.e., not fully uncrashed, are determined. The determined activities are 

then uncrashed to their next available option, by uncrashing one activity at a time, 

with respect to their UCS index  values. After performing each UCS , CS-

Heuristic implements the short procedure described in Section 5.1.2 to calculate the 

completion time of the obtained schedule. In case there exists no Sol  stored in 

Solutions  with the same duration, CPM calculation is carried out which is then 

followed by the UFF  process as mentioned earlier. It is after this step that the 

heuristic stores the current schedule as a solution. However, through UCS  phase, 

if the same duration already exists in Solutions  within the same cycle, that schedule 

is discarded without being stored as a Sol  in the archive. The UCS  process is 

continued until all the determined uncrashable activities are uncrashed to their 

longer durations. After completing each UCS  phase, the status of solution, 

Sol Result , which was selected at the start of the cycle is switched to “Closed”. 

UCS  and UFF  phases are iteratively applied to the identified uncrashable 

activities, ( ) :Sol Solutions or Result status Closed   , until obtaining a solution, 

all of the activities of which are uncrashed to their longest durations. CS-Heuristic 

terminates by returning the ultimate Sol  stored in Result  with “Closed” status. The 

flowcharts of parallel merge, serial merge, and uncrash free-float (UFF ) modules 

of the proposed CS-Heuristic are presented in Figure 5.5, Figure 5.6, and Figure 

5.7, respectively. The pseudo-code of the proposed CS-Heuristic for cost 

minimization and deadline DTCTP is illustrated in Figure 5.8. 
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Parallel Merge

Act. j has Two
Succs.: Sc1j, Sc2j

Succs. and
Preds. of  Sc1j and 

Sc2j  are Equal

Merge Sc1j and Sc2j

Merging Active
and j ≤ S

Increment j

Return

YesNo

Yes

Yes

No

No

 
 

Figure 5.5 – Flowchart of the proposed parallel merging technique. 

 

 

 

Serial Merge

Act. j has
One Succ.: Sc1j

Sc1j has One Pred.

Merge Sc1j and Sc2j

Merging Active
and j ≤ S

Increment j

Return

YesNo

Yes

Yes

No

No

 
 

Figure 5.6 – Flowchart of the proposed serial merging technique. 
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Uncrash Free-Float

k ≤ m

DDiff ≤ Total-Float

Uncrash based on 
UFF Index

j ≤ S

Increment k

Return

YesNo

Yes

Yes

No

Perform Partial-
CPM

Calculate Cost

Increment j

No

 
 

Figure 5.7 – Flowchart of the uncrash free-float module of the proposed CS-Heuristic. 

 

Begin; 
 For ∀ File in Directory 
  For ∀ j ∈ [1, S] 
   For ∀ k ∈ [1, m] 
    Retrieve Values; 
   End; 
  End; 
  For ∀ j ∈ Acts 
   Calculate Predecessors; 
  End; 
  Sort Acts; 
  If Perform Parallel Merge = True 
   For ∀ j ∈ Acts 
    If j has 2 Successors 
     If Successors of Successors to j ∧ Predecessors of Successors to j are same
      Merge Successors to j; 
     End; 
    End; 
   End; 
  End; 
  If Perform Serial Merge = True 
   For ∀ j ∈ Acts 

 
Figure 5.8 – Pseudo-code of the proposed CS-Heuristic for deadline DTCTP. 
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    If j has 1 Successor 
     If Successor to j has 1 Predecessor 
      Merge j and its Successor; 
     End; 
    End; 
   End; 
  End; 
  Calculate Project Deadline; 
  For ∀ j ∈ Acts 
   For ∀ k ∈ Modes 
    Calculate CS, DDiff, CDiff; 
    Sort and Index by CDiff then by CS for Uncrash Free-Float; 
    Sort and Index by CS then by DDiff for Uncrash Cost-Slope; 
   End; 
   Select 1st Mode; 
  End; 
  Calculate CPM; 
  Calculate Dur/Cost; 
  While ∃ j ∈ Acts: DDiff ≤ Total-Float 
   Add to Uncrashables; 
   Perform Uncrash Free-Float; 
   Perform Partial-CPM; 
   Calculate Cost; 
  Break; 
  Store Result; 
  While Result ≠ Closed 
   For ∀ Act ∈ Result: Fully-Uncrashed ≠ True 
    Add to Uncrashables; 
   End; 
   Perform Uncrash Cost-Slope; 
   Perform Partial-CPM; 
   Calculate Dur; 
   If ∃ Sol ∈ Solutions: Sol.Dur = Dur 
    ; 
   End; 
   Else 
    Calculate CPM; 
    Calculate Cost; 
    While ∃ j ∈ Acts: DDiff ≤ Total-Float 
     Add to Uncrashables; 
     Perform Uncrash Free-Float; 
     Perform Partial-CPM; 
     Calculate Cost; 
    Break; 
    Store Sol in Solutions; 
   End; 
   Close Result; 

 
Figure 5.8 – Pseudo-code of the proposed CS-Heuristic for deadline DTCTP (Continued). 
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   If ∃ Sol ∈ Solutions: Sol.Cost ≤ Result.Cost 
    Result = Sol; 
   End; 
  Break; 
  Return Result; 
 End; 
End; 

 
Figure 5.8 – Pseudo-code of the proposed CS-Heuristic for deadline DTCTP (Continued). 

 

The proposed CS-Heuristic is described by a case example which is presented in 

Section 3.3.1. The original network shown in Figure 3.1 is used to elucidate UFF  

and UCS  schemes of the CS-Heuristic. For the all-crashed schedule, the project 

duration is 31 days and the total cost is $270,600 as shown in Table 5.1. 

 

Table 5.1 – Candidate solutions found by CS-Heuristic for deadline DTCTP. 
 
# of 
Schedule 

Continue 
from 

Activity
Crash 
Level 

Uncrash 
Dur. 
(day) 

Direct 
Cost ($) 

Indirect 
Cost ($) 

Total Cost 
($) 

1   0 Crashed 31 239,600 31,000 270,600 

1.i 1 4 0 M1 to M2 31 221,600 31,000 252,600 

1.ii 1.i 5 0 M1 to M2 31 205,600 31,000 236,600 

1.iii 1.ii 2 0 M1 to M2 31 193,600 31,000 224,600 

1.iv 1.iii 2 0 M2 to M3 31 187,600 31,000 218,600 

1.v 1.iv 5 0 M2 to M3 31 185,600 31,000 216,600 

2 1.v 6 1 M1 to M2 33 173,600 33,000 206,600 

- 1.v 1 1 M1 to M2 33 - - - 

3 1.v 3 1 M1 to M2 35 178,600 35,000 213,600 

4 2 1 2 M1 to M2 35 169,000 35,000 204,000 

5 3 3 2 M1 to M2 37 166,600 37,000 203,600 

6 4 3 3 M1 to M2 39 162,000 39,000 201,000 

7 4 1 3 M2 to M3 47 166,000 47,000 213,000 

8 5 1 4 M1 to M2 39 162,000 39,000 201,000 

9 5 3 4 M2 to M3 45 154,600 45,000 199,600 

10 6 3 5 M2 to M3 47 150,000 47,000 201,000* 

11 6 1 5 M2 to M3 51 159,000 51,000 210,000 

12 9 1 6 M1 to M2 47 150,000 47,000 201,000* 

*Exceeds deadline by 2 days 
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In the Schedule-1 which consists of crashed modes, activities 2, 4, and 5 are non-

critical activities. According to UFF , among the non-critical activities, Activity-4 

with a CDiff  of $18,000 provides the greatest cost saving as shown in Table 5.2, 

and is uncrashed first, to its second mode (M2). 

 

Table 5.2 – Cost-slopes, DDiff s and CDiff s of crash modes. 

 

Activity Crash Mode Cost-slope ($/Day) DDiff  (day) CDiff  ($) 

1 M1 to M2 2,300 2 4,600 
1 M2 to M3 250 12 3,000 
2 M1 to M2 4,000 3 12,000 
2 M2 to M3 3,000 2 6,000 
3 M1 to M2 1,750 4 7,000 
3 M2 to M3 1,500 8 12,000 
4 M1 to M2 6,000 3 18,000 
5 M1 to M2 3,200 5 16,000 
5 M2 to M3 2,000 1 2,000 
6 M1 to M2 6,000 2 12,000 

 

The same procedure is applied to Activity-5 which is uncrashed to its second mode 

(M2), similarly, Activity-2 is uncrashed to its second mode (M2), as well. In 

schedules Schedule-1.iv and Schedule-1.v, Activity-2 and Activity-5 are uncrashed 

to their third option (M3), respectively. The resulting Schedule-1.v has a duration 

of 31 days and a total cost of $216,600 (Table 5.1) which is recorded in Result  as 

the first UFF  cycle terminates. Following UFF  phase, five uncrashing options 

could be identified for UCS  including Activity-1: M1 to M2, Activity-1: M2 to 

M3, Activity-3: M1 to M2, Activity-3: M2 to M3, and Activity-6: M1 to M2. 

However, M2 to M3 crash options of Activity-1 and Activity-3 are excluded from 

the uncrashables, since, only the effective (immediate available) crash options are 

considered throughout UCS  phase. Therefore, succeeding UFF  phase, Activity-6 

with largest cost-slope of $6,000/day is uncrashed through the UCS  process and 

stored as Schedule-2 in Solutions . The next least-cost-slope activity is Activity-1, 

however, uncrashing it to its second mode (M2) results in a solution with a duration 
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of 33 days which already exists as Schedule-2 in Solutions ; hence, this schedule is 

discarded. The final uncrashable activity in this cycle of UCS  is Activity-3, which 

is uncrashed to its second mode (M2). For none of the schedules of the first UCS  

cycle, UFF  process was applied since there were no uncrashable non-critical 

activities in the network. As mentioned earlier, status of each solution which gets 

selected as a base for generation of new schedules, is switched to “Closed” at the 

end of each UCS  phase. Accordingly, at the end of the first UCS  cycle the status 

of Schedule-1.v is changed to “Closed” and the solution in Result  is replaced by 

Schedule-2 having the least total cost found so far. Thereafter, the components of 

the Solutions  are erased. These iterative cycles are repeated for the remainder of 

the time-cost options. Since Schedule-10 and Schedule-12 exceed the deadline of 

45 days by two days, the overall cost is increased from $197,000 to $201,000 for 

these solutions. Finally, the CS-Heuristic terminates by returning the last Sol  

recorded in Result  – Schedule-9, highlighted in boldface in Table 5.1 – with a 

duration of 45 days and a total cost of $199,600. 

 

5.1.4. CS-Heuristic for Pareto front DTCTP 

 

Similar to the heuristic approach presented in Section 5.1.3, a new Cost-Slope 

Heuristic is presented herein for Pareto front discrete TCT problem. This method 

also incorporates the project deadline, since, in practice there is a completion 

deadline stipulated in the contract for the majority of the projects. In realistic 

projects, delay penalties which are usually in the form of liquidated damages are 

applied in case the project duration exceeds the predetermined deadline and the 

incentives are the bonus payments made for each day saved from the specified 

deadline. Generally, there is a negative correlation between the deadline and the 

complexity of the problem. That is, projects with larger predetermined thresholds 

are simpler than the ones with shorter deadlines. Regarding the above fact, the 

completion deadline of the practiced problems is calculated in the proposed 

heuristic algorithm as follows. Firstly, the all-normal schedule with the largest 
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critical path length, maxCPM , is calculated. Secondly, the all-crashed schedule with 

the shortest critical path, minCPM , is computed. Finally, the completion deadline is 

set to be equal to the average of the earliest allowable completion time of the project 

and the latest possible finishing time. 

 

The first step of the CS-Heuristic involves serial/parallel merging of the network 

activities. Based on the techniques presented in Section 5.1.1.1 and Section 5.1.1.2 

CS-Heuristic reduces the network of the problem to a simpler equivalent network. 

Thereafter it calculates the completion deadline based on the above described 

procedure. In the next step, CS-Heuristic calculates and records the cost-slopes (

CS ), and crash amounts (duration difference DDiff , and cost difference CDiff ) 

for every time-cost option of all the activities. The cost-slopes are calculated 

according to Eq. (3.1) given in Section 3.2. All these options are then indexed as 

follows. Time-cost alternatives are sorted in descending order by CDiff  values then 

by CS  values in descending order; thereby they are treated with an index named 

UFF index . Similar to the previous stage, time-cost alternatives are sorted in 

descending order by CS  values then by DDiff  values in ascending order, thereby 

an index called UCS index  is assigned to each alternative. According to 

UFF index , a component providing a greater cost saving is uncrashed first; in 

case of a tie, the component with a greater cost-slope rate is selected; if the tie is 

still not broken, the first component is selected. According to UCS index , a 

component with a greater cost-slope rate is uncrashed first; in case of a tie, the 

component providing a smaller duration reduction is selected; if the tie is still not 

broken, the first component is selected. 

 

Unlike earlier heuristic approaches, in lieu of starting from the all-normal schedule, 

maxCPM , CS-Heuristic initiates from the all-crashed schedule, minCPM , by 

selecting the shortest/costliest time-cost alternative for the activities. Contrary to 

previous heuristics, in every cycle of CS-Heuristic, each new schedule is built upon 
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an already non-dominated solution. Duration of this schedule is determined using 

CPM technique and the total cost is calculated by explicitly including the incentive 

and disincentive payments in the project cost formulation. Since CS-Heuristic starts 

from the all-crashed schedule, it is designed to optimize the solutions by performing 

an uncrashing scheme. The uncrashing scheme incorporates two different phases, 

namely, uncrash free-float (UFF ) and uncrash cost-slope (UCS ). Through UFF  

phase those activities with total floats greater than or equal to their effective 

(immediate available) crash amounts, jk jDDiff TF , are determined. The 

determined activities are then uncrashed to their next available option, by 

uncrashing one activity at a time, with respect to their UFF index  values. After 

performing each UFF , CS-Heuristic uses Partial-CPM technique (Section 5.1.2) to 

update the modified activities. The UFF  process is continued until either all the 

activities get fully uncrashed or their total floats become less than their effective 

crash amounts. It is after this step that the heuristic stores the current schedule as a 

solution. While each solution, Sol , obtained from the uncrashing phases are 

recorded in an archive called Solutions , an external repository, Pareto , is 

implemented to record the non-dominated solutions. Accordingly, the non-

dominated Sol s of Solutions  are copied to Pareto  and the solutions stored in 

Pareto  are sorted according to their durations in ascending order; subsequently, 

the schedules stored in Solutions  are wiped out at the end of each iteration. 

 

After the first set of non-dominated schedules are generated and stored in Pareto , 

CS-Heuristic performs UCS  process on the first non-dominated solution – with the 

least duration – archived in Pareto  to generate new schedules unless the status of 

the selected solution is “Closed”. Status of each solution which gets selected as a 

base for generation of new schedules, is switched to “Closed” at the end of each 

UCS  phase, making it unavailable for re-selection. New schedules are generated 

based on the non-dominated solutions which are already stored in Pareto , as long 

as they are not “Closed”. Through UCS  phase those activities that are uncrashable, 

i.e., not fully uncrashed, are determined. The determined activities are then 
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uncrashed to their next available option, by uncrashing one activity at a time, with 

respect to their UCS index  values. After performing each UCS , CS-Heuristic 

implements the short procedure described in Section 5.1.2 to calculate the 

completion time of the obtained schedule. In case there exists no Sol  stored in 

Solutions  with the same duration, CPM calculation is carried out which is then 

followed by the UFF  process as mentioned earlier. It is after this step that the 

heuristic stores the current schedule as a solution in Solutions . However, through 

UCS  phase, if the same duration already exists in Solutions  within the same cycle, 

that schedule is discarded without being stored as a Sol  in the archive. The UCS  

process is continued until all the determined uncrashable activities are uncrashed to 

their longer durations. After completing each UCS  phase, the status of solution, 

Sol Pareto , which was selected at the start of the cycle is switched to “Closed” 

and the dominated solutions are removed from Solutions . UCS  and UFF  phases 

are iteratively applied to any of the uncrashable activities of the non-dominated 

solutions, ( ) :Sol Solutions or Pareto status Closed   , until obtaining a 

solution, all of the activities of which are uncrashed to their longest durations. CS-

Heuristic terminates by returning the ultimate non-dominated Sol s stored in 

Pareto  with “Closed” statuses. The flowcharts of parallel merge, serial merge, and 

uncrash free-float (UFF ) modules of the proposed CS-Heuristic are presented in 

Figure 5.5, Figure 5.6, and Figure 5.7 of Section 5.1.3, respectively. The proposed 

CS-Heuristic approach for Pareto front DTCTP is graphically explained as a 

flowchart in Figure 5.9 and the pseudo-code of this method is demonstrated in 

Figure 5.10. 
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Figure 5.9 – Flowchart of the proposed CS-Heuristic for Pareto front DTCTP. 
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Begin; 
 For ∀ File in Directory 
  For ∀ j ∈ [1, S] 
   For ∀ k ∈ [1, m] 
    Retrieve Values; 
   End; 
  End; 
  For ∀ j ∈ Acts 
   Calculate Predecessors; 
  End; 
  Sort Acts; 
  If Perform Parallel Merge = True 
   For ∀ j ∈ Acts 
    If j has 2 Successors 
     If Successors of Successors to j ∧ Predecessors of Successors to j are same
      Merge Successors to j; 
     End; 
    End; 
   End; 
  End; 
  If Perform Serial Merge = True 
   For ∀ j ∈ Acts 
    If j has 1 Successor 
     If Successor to j has 1 Predecessor 
      Merge j and its Successor; 
     End; 
    End; 
   End; 
  End; 
  Calculate Project Deadline; 
  For ∀ j ∈ Acts 
   For ∀ k ∈ Modes 
    Calculate CS, DDiff, CDiff; 
    Sort and Index by CDiff then by CS for Uncrash Free-Float; 
    Sort and Index by CS then by DDiff for Uncrash Cost-Slope; 
   End; 
   Select 1st Mode; 
  End; 
  Calculate CPM; 
  Calculate Dur/Cost; 
  While ∃ j ∈ Acts: DDiff ≤ Total-Float 
   Add to Uncrashables; 
   Perform Uncrash Free-Float; 
   Perform Partial-CPM; 
   Calculate Cost; 
  Break; 
  Store Sol in Pareto; 

 
Figure 5.10 – Pseudo-code of the proposed CS-Heuristic for Pareto front DTCTP. 
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  While ∃ Sol ∈ Pareto: Sol ≠ Closed 
   For ∀ Act ∈ Sol: Fully-Uncrashed ≠ True 
    Add to Uncrashables; 
   End; 
   Perform Uncrash Cost-Slope; 
   Perform Partial-CPM; 
   Calculate Dur; 
   If ∃ Sol ∈ Solutions: Sol.Dur = Dur 
    ; 
   End; 
   Else 
    Calculate CPM; 
    Calculate Cost; 
    While ∃ j ∈ Acts: DDiff ≤ Total-Float 
     Add to Uncrashables; 
     Perform Uncrash Free-Float; 
     Perform Partial-CPM; 
     Calculate Cost; 
    Break; 
    Store Sol in Solutions; 
   End; 
   Close Sol; 
   For ∀ Sol ∈ Solutions: Non-dominated ≠ True 
    Remove Sol; 
   End; 
   Copy Solutions to Pareto; 
  Break; 
  For ∀ Sol ∈ Pareto: Non-dominated ≠ True 
   Remove Sol; 
  End; 
  Return Pareto; 
 End; 
End; 
 

Figure 5.10 – Pseudo-code of the proposed CS-Heuristic for Pareto front DTCTP (Continued). 

 

The proposed CS-Heuristic is explained using the same case problem which is 

presented in Section 3.3.1. The original network shown in Figure 3.1 is used to 

elucidate UFF  and UCS  processes of the CS-Heuristic. For the all-crashed 

schedule, the project duration is 31 days and the total cost is $270,600 as shown in 

Table 5.3. 
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Table 5.3 – Candidate solutions found by CS-Heuristic for deadline DTCTP. 
 
# of 
Schedule 

Continue
from 

Activity 
Crash 
Level 

Uncrash 
Dur. 
(day) 

Direct 
Cost ($) 

Indirect 
Cost ($) 

Total Cost 
($) 

1   0 Crashed 31 239,600 31,000 270,600 

1.i 1 4 0 M1 to M2 31 221,600 31,000 252,600 

1.ii 1.i 5 0 M1 to M2 31 205,600 31,000 236,600 

1.iii 1.ii 2 0 M1 to M2 31 193,600 31,000 224,600 

1.iv 1.iii 2 0 M2 to M3 31 187,600 31,000 218,600 

1.v 1.iv 5 0 M2 to M3 31 185,600 31,000 216,600 

2 1.v 6 1 M1 to M2 33 173,600 33,000 206,600 

- 1.v 1 1 M1 to M2 33 - - - 

3 1.v 3 1 M1 to M2 35 178,600 35,000 213,600 

4 2 1 2 M1 to M2 35 169,000 35,000 204,000 

5 3 3 2 M1 to M2 37 166,600 37,000 203,600 

6 4 3 3 M1 to M2 39 162,000 39,000 201,000 

7 4 1 3 M2 to M3 47 166,000 47,000 213,000 

8 5 1 4 M1 to M2 39 162,000 39,000 201,000 

9 5 3 4 M2 to M3 45 154,600 45,000 199,600 

10 6 3 5 M2 to M3 47 150,000 47,000 201,000* 

11 6 1 5 M2 to M3 51 159,000 51,000 210,000 

12 9 1 6 M1 to M2 47 150,000 47,000 201,000* 

*Exceeds deadline by 2 days 

 

In the Schedule-1 which consists of crashed modes, activities 1, 3, and 6 are on the 

critical path. According to UFF , among the non-critical activities, Activity-4 with 

a CDiff  of $18,000 provides the greatest cost saving as shown in Table 5.2 given 

in Section 5.1.3. Thus, Activity-4 is uncrashed first, to its second mode (M2). The 

same procedure is applied to Activity-5 which is uncrashed to its second mode 

(M2), similarly, Activity-2 is also uncrashed to its second mode (M2). In schedules 

Schedule-1.iv and Schedule-1.v, Activity-2 and Activity-5 are uncrashed to their 

third option (M3), respectively. The resulting Schedule-1.v has a duration of 31 

days and a total cost of $216,600 (Table 5.3) which is recorded in Pareto  as the 

first UFF  cycle terminates. Following UFF  phase, five uncrashing options could 

be identified for UCS  including Activity-1: M1 to M2, Activity-1: M2 to M3, 

Activity-3: M1 to M2, Activity-3: M2 to M3, and Activity-6: M1 to M2. However, 

M2 to M3 crash options of Activity-1 and Activity-3 are excluded from the 
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uncrashables, since, only the effective (immediate available) crash options are 

considered throughout UCS  process. Therefore, succeeding UFF  phase, Activity-

6 with largest cost-slope of $6,000/day is uncrashed to its second mode (M2) in the 

course of UCS  phase and stored as Schedule-2 in Solutions . The next least-cost-

slope activity is Activity-1, however, uncrashing it to its second mode (M2) results 

in a solution with a duration of 33 days which already exists as Schehule-2 in 

Solutions ; hence, this schedule is discarded. The final uncrashable activity in this 

cycle of UCS  is Activity-3, which is uncrashed to its second mode (M2). For none 

of the schedules of the first UCS  cycle, UFF  process was applied since there were 

no uncrashable non-critical activities in the network. At the end of the first UCS  

cycle the non-dominated Sol  in Solutions ,  i.e., Schedule-2, is copied to Pareto . 

As mentioned earlier, status of each solutions which gets selected as a base for 

generation of new schedules, is switched to “Closed” at the end of each UCS  phase. 

Accordingly, the status of Schedule-1.v is then changed to “Closed” and the 

components of the Solutions  are erased. In the second cycle of UCS , the least-cost 

schedule is copied to now blank Solutions , unless its status is “Closed”. In this 

case, Schedule-2 is copied to the repository to carry out UCS . Based on this 

schedule, Schedule-4 is generated by uncrashing Activity-1 to its second mode 

(M2). Next, Activity-3 is uncrashed to its second mode (M2). Since Activity-3 is 

already uncrashed to its second mode (M2) in the preceding cycle of UCS , it is 

now possible for this activity to be uncrashed to its third mode (M3) in the third 

cycle of UCS , which results in Schedule-6 as shown in Table 5.3. The final 

uncrashable activity in this cycle of UCS  is Activity-1. The resulting schedule has 

a duration of 47 and total cost of $213,000, which is already dominated by 

Schedule-6 stored in Solutions . In fourth cycle of UCS , Schedule-5 is used as the 

base schedule. Uncrashing Activity-1 with the largest CS  results in exactly the 

same solution already recorded in Pareto  as Schedule-6. The final uncrashable 

activity of cycle five is Activity-3 which is uncrashed to its third option (M3). In 

the sixth cycle of UCS , Schedule-10 is obtained, completion time of which exceed 

the deadline by two days. The next schedule achieved in this cycle include 
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Schedule-11 as shown in Table 5.3. Through the last cycle of UCS , Schedule-12 is 

obtained which also exceeds the deadline of 45 days by two days, with an overall 

cost of $201,000. Finally, the CS-Heuristic terminates by returning the last non-

dominated Sol s recorded in Pareto  which includes Schedule-1.v, Schedule-2, 

Schedule-4, Schedule-5, Schedule-6, and Schedule-9. The highlighted schedules 

shown in boldface in Table 5.3 constitute the final set of non-dominated solutions 

found by the CS-Heuristic for the case problem. 

 

5.2. Computational Experiments of CS-Heuristic 

 

5.2.1. Generation of New Sets of Instances 

 

It is mentioned earlier that no standard test-bed is available in the literature that 

could be considered to be as complex as the real-life projects. Therefore, several 

random DTCTP instances are generated systematically in this thesis to measure the 

performances and evaluate the capabilities of the proposed optimization algorithms. 

There exist numerous random network generators proposed within the literature 

including ProGen/Max (Schwindt, 1995), RanGen (Demeulemeester, Dodin, and 

Herroelen, 1993; Demeulemeester, Vanhoucke, and Herroelen, 2003), DAGEN 

(Agrawal, Elmaghraby, and Herroelen, 1996), and RanGen2 (Vanhoucke, Coelho, 

Debels, Maenhout, and Tavares, 2008). Except for DAGEN, all the other network 

generators generate AoN type of networks. Since this thesis uses AoN notation 

system, DAGEN generator is dismissed. On the other hand, it is shown in the study 

by Demeulemeester et al. (2003) that RanGen is more advantageous compared with 

other earlier instance generators including ProGen/Max and DAGEN and 

topological sorting of the networks generated by means of RanGen are more 

complicated. In a more recent study, Vanhoucke et al. (2008) show their RanGen2 

generator outperforms ProGen (Kolisch, Sprecher, and Drexl, 1995), RanGen, and 

RiskNet (Tavares, 1999) generators with respect to the total amount of networks 

generated. RanGen2 is capable of generating networks with complexities on par 
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with the original RanGen. In addition, RanGen2 is shown to best the original 

RanGen since it starts from a larger pool of possible networks and is able to generate 

different networks, whereas, RanGen is able to generate exactly one network per 

run. Accordingly, in this thesis, RanGen2 random network generator (Figure 5.11) 

is implemented to generate strongly random activity networks. 

 

 
 

Figure 5.11 – RanGen2 Interface. 

 

RanGen2 is actually a modified version of RanGen which incorporates alternative 

topological indicators. RanGen2 aims at generating different topological structures 

using predefined values for 1I , 2I , 3I , 4I , 5I , and 6I  parameters. These 

parameters are defined as follows (Vanhoucke et al., 2008): 

 

- 1I : Network size indicator: Number of activities; 

- 2I : Serial/parallel indicator: Closeness of a network to a serial ( 2 1I  , a chain 

of activities) or parallel ( 2 0I  , no precedence relations) graph; 
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- 3I : Activity distribution indicator: Distribution of the activities over the 

network ( 3 0I  , uniform distribution of activities); 

- 4I : Short precedence relations indicator: Presence of short precedence 

relations; 

- 5I : Long precedence relations indicator: Presence of long precedence relations; 

- 6I : Topological float: Topological float of activities in the network ( 6 0I  , all 

activities have topological float of zero). 

 

New sets of DTCT problems are created as txt files by combining complex 

networks – generated by means of RanGen2 – with realistic sets of time-cost 

alternatives – developed by means of a code written in C# based on Eq. (5.1) given 

below. Characteristics of the generated random instances can be summarized as 

follows: 

 

- 1I : Number of activities include five levels of 50, 100, 200, 500, and 990; 

- 2I : Serial/Parallel factor is varied from 0.2 (almost parallel) to 0.8 (almost 

serial) in steps of 0.2, i.e., 0.2, 0.4, 0.6, and 0.8;  

- 3I  to 6I : These parameters are drawn randomly from U(0,1)  in order to make 

a balanced representation of different network properties; 

- m : Number of time-cost alternatives include three fixed levels of 3, 6, and 9. 

 

For each parameter level combination, i.e., 1I , 2I , and m , ten replications of 

networks are generated leading to a total of 5 4 3 10 600     instances. In doing 

so, a wide range of complexity with respect to the topological structure is captured. 

The reason behind generation of instances with 990 activities is simply because 

RanGen2 is unable to generate samples for greater 1I  values. Each of the project 

sizes can only have a fixed number of alternatives as 3, 6, or 9 which are generated 

by means of non-increasing convex time-cost functions using the procedure 

described in Akkan et al. (2005). Fixed number of time-cost alternatives are 
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assigned for the activities since according to Vanhoucke and Debels (2007), such 

problems are more difficult to solve than the instances that involve a random 

number selected from a predefined range. As stated by Vanhoucke and Debels 

(2007), variation in the number of modes through the activities reduces the 

complexity of the problems. 

 

For each activity, the time-cost alternatives are generated as follows: First the 

number of modes ( m ) is decided for all the activities, i.e., in an instance all the 

activities include either 3, 6, or 9 alternatives. Then, the durations of these modes 

are randomly sampled from DU(1,54)  (i.e., discrete uniform distribution with 

parameters 1 and 54) as follows: The range 1-54 is divided into m  number of 

intervals. Duration for the normal mode is selected randomly from the last interval, 

and the duration of each of the succeeding alternatives are assigned randomly from 

the corresponding preceding intervals; viz., duration for the crashed mode is 

selected from the first interval using a random scheme. After determining all the 

duration amounts, the costs of the modes are generated sequentially, starting with 

the normal mode (least-cost alternative) by multiplying its duration by a value (

Intdc ) randomly sampled from DU(500,2000) . Direct costs of the subsequent 

alternatives are generated using Eq. (5.1). 

  

 
( 1) ( 1)( )

{1,..., } , {2,..., ( )}

jk j k jk Int j k jkdc dc CS dc d d

j S k m j

     

   
  (5.1) 

 

where jkdc  is the direct cost of the k th alternative of the j th activity; ( 1)j kdc   is 

the direct cost of the ( 1)k  th alternative of th j th activity; jkCS  is the cost-slope 

percentage of k th option of j th activity which is randomly sampled from the 

uniform distribution U(0.1,0.5)  as follows: The range 10%-50% is divided into 

( 1)m  number of intervals, jkCS  for the k th alternative is selected randomly from 

the first interval and jkCS  of each of the succeeding alternatives are selected 
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randomly from the corresponding subsequent intervals which secures an 

incremental cost-slope pattern; Intdc  is a value randomly selected from 

DU(500,2000) ; ( 1)j kd   and jkd  are durations of ( 1)k  th and k th options, 

respectively. According to Eq. (5.1), mutually incomparable modes are generated 

for the activities. Besides, the implemented incremental cost-slopes scheme is 

capable of reflecting the realistic decline in productivity rate, since, activities are 

usually crashed by overstaffing or by working overtime. As a result of this, the 

realistic crash options lead to a convex solution space. The generated instances, akin 

to real-life projects, have a convex time-cost relationship for the projects as a whole 

and for each of its activities. 

 

Completion deadlines are also included in the new sets of instances, since, in 

practice there is a completion deadline stipulated in the contract for the majority of 

the projects. In realistic projects, delay penalties which are usually in the form of 

liquidated damages are applied in case the project duration exceeds the 

predetermined deadline. Generally, there is a negative correlation between the 

deadline and the complexity of the problem. That is, projects with larger 

predetermined thresholds are simpler than the ones with shorter deadlines. 

Regarding the above fact, the completion deadlines of the generated instances are 

calculated as follows. Firstly, the all-normal schedule with the largest critical path 

length, maxCPM , is calculated. Secondly, the all-crashed schedule with the shortest 

critical path, minCPM , is computed. Finally, the completion deadline is set to be 

equal to the average of the earliest allowable completion time of the project and the 

latest possible finishing time. The indirect cost rate is set as $1000/day for all the 

instances and a twofold of the indirect cost is used as the amount of the delay 

penalty, i.e., $2,000/day. The order of numbering for each setting of the generated 

instances is illustrated in Table 5.4. As presented in Section 5.2.3 and Section 

5.2.5.4, behavior of the proposed exact and heuristic/meta-heuristic methods are 

dissimilar for each corresponding setting of the parameters. According to the 

findings of Section 5.2.3, the nature of mixed-integer linear programming technique 
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tends to be more suitable for pseudo-serial networks with greater 2I  values that 

include smaller number of time-cost modes. Contrary to mixed-integer linear 

programming technique, results of Section 5.2.5.4 reveal that the nature of the 

proposed heuristic and meta-heuristic approaches are more suitable for solution of 

pseudo-parallel networks with smaller 2I  values that comprise larger number of 

time-cost alternatives. Thus, problems 21 to 30 are considered to be the most 

complicated, and the problems 91 to 100 are regarded as the simplest problems for 

the proposed exact algorithm. The contrary, problems 91 to 100 are experienced to 

be the most complex, while, problems 21 to 30 to be the least complicated instances 

for the proposed heuristic/meta-heuristic solution procedures. 

 

Table 5.4 – Complexity of the generated instances. 
 

  2I  

# of Modes 0.2 0.4 0.6 0.8 

3 1 to 10 31 to 40 61 to 70 91 to 100 
6 11 to 20 41 to 50 71 to 80 101 to 110 
9 21 to 30 51 to 60 81 to 90 111 to 120 

 

 

5.2.2. Performance Indices 

 

Obviously, the results obtained from multi-objective optimizations comprise a set 

of solutions rather than a single optimal solution. Of the multi-objective 

optimization problems, Pareto front DTCTP yields a sequence of solutions for the 

problems with conflicting objectives of time and cost. The obtained sets of results 

for Pareto oriented DTCTP are mutually incomparable and non-dominated with 

respect to multiple objectives of the project. Consequently, the definition of quality 

is complicated within this context and for Pareto front DTCTP it cannot be 

evaluated using the concept of optimality which is exercised in single objective 

optimizations. Owing to this fact, numerous performance indices have been 

proposed for performance evaluation of multi-objective methods which mainly 
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engage three aspects of the generated solutions as follows (Zitzler, Deb, and Thiele, 

2000): 

- The number of the located Pareto optimal solutions – measured using 

cardinality indices; 

- The accuracy of the captured Pareto fronts – measured using accuracy indices; 

- The diversity (distribution and spread) of the achieved Pareto optimal solutions 

– measured using diversity indices. 

 

There is also a second classification criterion which groups performance metrics 

into unary and binary indexes. The first group defines a value by considering a 

single set of solutions while the second group assigns relative values for two 

comparable sets. Overall Non-dominated Vector Generation (ONVG) and Error 

Ratio (ER) are among indices mainly used for measuring cardinality of the Pareto 

fronts (Knowles and Corne, 2002; Okabe, Jin, and Sendhoff, 2003). Generational 

Distance (GD) and Inverted Generational Distance (IGD) are among the indexes 

mainly utilized in evaluation of the accuracy of the solutions (Zitzler et al., 2000, 

Okabe et al. 2003, Zhang and Li 2010, Riquelme, Von Lucken, and Baran, 2015). 

Diversity of the Pareto fronts are measured using indices that include Range 

Variance (RV),  , Uniform Distribution (UD), and Chi-Square-Like Deviation 

(Zitzler et al., 2000; Okabe et al., 2003; Zhang and Li, 2010). Hypervolume (HV), 

also known as S -metric is able to capture all three aspects of cardinality, accuracy, 

and diversity of the Pareto solutions (Zitzler and Thiele, 1999; Riquelme et al., 

2015). According to Riquelme et al. (2015), HV, GD, Epsilon Indicator ( ), and 

IGD are the most practiced indexes in the domain of multi-objective optimization. 

Knowles and Corne (2002) after studying various indexes recommend utilization 

of R-metrics (Hansen and Jaskiewicz, 1998) and HV in performance evaluations. 

By comparing a multitude of performance indices, Okabe et al. (2003) argue that a 

single unary index cannot adequately reflect all the three aspect of the Pareto fronts 

and that binary indices are more suitable for comparing different sets of solutions. 

It is also discussed that the abovementioned indices might occasionally deliver 



 

149 

 

misleading information since they are not free of cons/caveats (Knowles and Corne, 

2002). Meanwhile, it is observed that the convergence speed is not emphasized 

sufficiently in the literature, however, it is one of the most important aspects of an 

optimization method. For any practical application of a solution method, the 

effectiveness needs to be accompanied with the efficiency. 

 

Respecting the findings on the metrics mentioned above, a more holistic approach 

is taken toward performance evaluation of the approaches introduced in this thesis 

by employing a collection of unary and binary performance indices along with the 

CPU times. The unary ONVG metric is used to measure cardinality of the obtained 

frontiers. A binary metric called ND pct  is also introduced in this thesis to measure 

the cardinality of the Pareto fronts. ND pct  measures the percentage of the non-

dominated solutions achieved by different optimization methods after discarding 

the dominated solutions from the unified front, UF . In the cases when true Pareto 

fronts are available, two sorts (unary and binary types) of Average Percent 

Deviation (APD) values are calculated to assess accuracy of the solutions. The 

binary index, APD bin , is calculated for the cost figures based only on the 

completion duration amounts located mutually by all of the different approaches; 

and the unary APDs are measured for each approach independently. A normalized, 

HV-based approach called Hyperarea Ratio (HR) (Veldhuizen, 1999) is adopted to 

measure convergence and diversity of the frontiers. Unary HR is measured by 

calculating the ratio as 
HV

HV
PF

TP

; where HVPF   is the Hypervolume of the 

approximated Pareto front and HVTP  is the Hypervolume of the true Pareto front. 

In the cases when the true Pareto fronts are unavailable, the binary HR is calculated 

as 
HV

HV
PF

UF

; where HVUF  is the Hypervolume of the unified front consisting of the 

individual solutions in all the approximate frontiers, excluding the dominated ones. 

Hypervolume indicates the partition of the solution space bounded by the non-

dominated frontier and a reference point ( R ) (Zitzler and Thiele, 1998). For each 
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Sol Pareto , an area is constructed using a reference point and Sol  as the diagonal 

corner of the area. The reference point for the first area, i.e., R , is defined by 

increasing each of the maximum objective function values by 0.5%. The maximum 

objective function values are derived with regard to both PF  and TP  in case the 

optimal front is at hand, or it is set by considering UF  if the true Pareto is 

unavailable. Intersection points of the preceding Sol s and R  are appointed as the 

reference points for the subsequent areas. The union of the constructed areas yields 

the Hypervolume for that frontier. Consequently, the value of HR belongs to U(0,1)

; where values close to one suggest the obtained frontier is close to the best-known 

Pareto front (either TP  or UF ). Higher values for ONVGs, ND pct , and HR are 

desirable; whereas, lower values for both the unary and binary APDs and CPU time 

are preferred. All the performance evaluation procedures have been implemented 

in C# programming language using Microsoft Visual Studio 2013. 

 

The procedure exercised for Hypervolume calculation of the solution sets is 

elucidated by means of a hypothetical case example. A shown in Table 5.5, a true 

Pareto, TP , is assumed to comprise three optimal solutions, on the other hand, two 

approximated Pareto fronts, aPF  and bPF , are assumed to include three and five 

solutions, respectively. 

 

Table 5.5 – Hypothetical Pareto fronts. 
 

TP   
aPF  bPF  

Dur. (day) Cost ($)  Dur. (day) Cost ($) Dur. (day) Cost ($) 

44 648,000  44 648,000 44 648,000 
53 621,000  53 642,000 53 621,000 
64 620,000  62 641,000 64 620,000 
   64 637,000  
   69 620,000  

 

As shown in Figure 5.12, the coordinates of the reference point R  are calculated 

with regard to the maximum duration and cost amounts among all the three sets of 
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TP , aPF , and bPF  as follows: . 1.05 69 72.45DurR     and 

1.005 648,000 651, 240CostR    . As a side note, .DurR  in this case example is 

calculated by augmenting the maximum duration by 5% to obtain an improved 

visualization of the Hypervolumes; though, both CostR  and .DurR  are set by 

increasing the worst objective functions by 0.5% in the following sections of this 

thesis. 

 

 
 

Figure 5.12 – Hypothetical Hypervolume comparison for aPF . 

 

As demonstrated in Figure 5.12, the area highlighted in red resembles HV aPF  and 

the area highlighted in green shows HVTP . HR for this set of solutions is calculated 

as a
163810

HR 0.48
334610

  . Similarly, Hypervolume of bPF  is shown in red in 

Figure 5.13 against the same Hypervolume of TP  shown in green. In Figure 5.12 

and Figure 5.13 Hypervolumes are extruded to enhance the graphical representation 

of the areas. 
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Figure 5.13 – Hypothetical Hypervolume comparison for bPF . 

 

HR for bPF  is calculated as 
334610

HR 1
334610

b   . This is a clear indication of why 

a multitude of performance metrics must be implemented. Although the ONVG of 

aPF  is greater than that of bPF , it has been shown that the second set of solutions 

with 1HR   have an exact compliance with the true Pareto front. bPF  with an HR 

value of one is shown to outclass aPF  with a lower HR value of 0.48, despite 

capturing fewer number of non-dominated solutions. Therefore, this thesis study 

uses the aforementioned performance indexes in a complementary fashion to come 

up with a more precise verdict on the performances of the proposed approaches. To 

the best of author’s knowledge, Zhang and Li (2010), Kalhor et al. (2011), Fallah-

Mehdipour et al. (2012), and Mungle et al. (2013) are among the few studies within 

the construction management literature reporting on different performance indices 

of their proposed optimization approaches. 
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5.2.3. Mixed-Integer Linear Programming Technique 

 

Since all the extensions of DTCTP are Non-deterministic polynomial-time hard 

(NP-hard) problems in the strong sense (De et al., 1997), only a few studies as 

discussed in Section 2.3 present exact methods for the DTCTP, especially for the 

more complex Pareto front problem. The nature of Mixed-Integer Linear 

Programming model, abridged as MILP (also known as MIP), is well-suited for the 

solution of DTCTP. The incremental cost-slopes scheme of realistic projects which 

captures the decline in productivity rate of the crashed activities lead to a convex 

solution space. The convexity of the solution space guarantees converging to global 

optimal solutions by means of a MILP algorithm. Any type of time-cost trade-off 

problem can be modeled using MILP and solved by means of a compatible 

commercial optimization software. MILP models for DTCTP problems generally 

include four to five parameters per each activity (Bettemir, 2009); thus, the large-

scale problems involve a considerably high number of parameters. Nonetheless, 

MILP is guaranteed to locate the optima for DTCTP unless there are physical 

limitations in the memory of the computing devices. Inasmuch as the exact methods 

are the only approaches guaranteeing optimality of the solutions, they play a crucial 

role in experimentation of heuristic and meta-heuristic algorithms. In order for 

adequate evaluation of the effectiveness of the proposed approaches by means of 

the performance metrics introduced in Section 5.2.2, a MILP model is developed 

using Gurobi solver version 6.0.5. 

 

Primarily, the proposed MILP employs the serial/parallel merging technique 

presented in Section 5.1.1.1 and Section 5.1.1.2 to reduce the network of the 

problem to a simpler equivalent network. As mentioned in Section 5.1.1.1, MILP 

takes a serial merging approach similar to that of CS-Heuristic described in Section 

5.1.3 and Section 5.1.4; however, for the MILP in case of a tie, all but one of the 

duplicate alternatives with 
1 1

( 1)j jk kd d
   and 

1 1
( 1)j jk kdc dc

   are eliminated. A 

dominance rule is also implemented to eliminate the dominated components as 
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1 1
( 1)j jk k  , which indicates if 

1 1
( 1)j jk kd d

   while 
1 1

( 1)j jk kdc dc
  , ( 1)k  th 

alternative of the equivalent activity 1j   will be eliminated. This procedure is 

explained using the case example presented in Section 3.3.1. It is shown in Figure 

5.1 that the equivalent Activity-1 would have included seven time-cost alternatives 

in case CS-Heuristic’s merging technique was applied. However, for MILP, the 

dominated time-cost alternative with a duration of 46 days and direct cost of 

$59,000 – resulted from adding the third mode of the original Activity-1 to the 

second mode of the original Activity-3 – is retained and added to the available 

options (Figure 5.14). The reason behind not discarding the dominated component 

is simply to prevent generation of incomplete true Pareto fronts. The solution space 

of the original network comprises 324 realizations; however, the solution space of 

the reduced network includes 288 different realizations. As is clear, the size of the 

solutions space shrinks only marginally which might provide a rather small benefit 

and might not justify the extra efforts involved in merging the activities serially. 

Owing to this very reason, only the parallel merging technique is exercised for 

optimal solution of the practiced instances in Section 5.2.5. 

 

1. (28, $73,600)
2. (30, $69,000)
3. (32, $66,600)
4. (34, $62,000)
5. (40, $54,600)
6. (42, $50,000)
7. (46, $59,000)
8. (54, $47,000)

1. (7,   $38,000)
2. (10, $26,000)
3. (12, $20,000)

1. (5,  $52,000)
2. (8,  $34,000)

1. (3,  $36,000)
2. (5,  $24,000)

1. (Dur., Cost)
m. (Dur., Cost)

1

2

3 5

ID

1. (10, $40,000)
2. (15, $24,000)
3. (16, $22,000)

4

Start Finish

 
 

Figure 5.14 – Serial merge applied to the Case Example. 
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After reducing the problem network, MILP calculates the completion deadline 

based on the procedure described in Section 5.1.3. The proposed MILP model is 

based on the modified formulation that explicitly includes bonus ( db ), delay 

penalty ( dp ), and daily indirect cost ( ic ) rates. The modified formulation for MILP 

(Bilir, 2015) is presented in Eqs. (1.1)-(1.6) in Section 1.1.2. Gurobi version 6.0.5 

is adopted among different commercial optimization software for solution of the 

MILP model for DTCTP. Gurobi is a high-speed powerful solver with an inclusive 

library for different programming environments such as C# and C++. Gurobi 

provides a flexible licensing along with a major collection of mathematical 

programming solvers, such as MILP. On the other hand, Gurobi is shown to be the 

fastest solver (Mittelmann, 2013) among different optimization software (e.g., 

CPLEX, MATLAB) to capture optimality, feasibility, and infeasibility of a set of 

benchmark problems (MIPLIB2010) which can be found in the “MILP 

Benchmark” section of the site maintained by Mittelmann. 

 

Typically, Gurobi is designed to read problems in LP-file format. However, an 

online converter (written as a block of code) is implemented to enable the MILP 

method to read from the generic txt file format which is universally used in all of 

the approaches proposed in this thesis. Presolve process, which is a preprocessing 

technique frequently applied within the MILP-models, is experienced to contribute 

to a larger computational time. Therefore, it is excluded from the optimization 

model. Two MILP models are designed and developed for deadline and Pareto front 

DTCTP separately. For Pareto front problem, upper and lower boundaries are set 

for the duration of the problem in accord with all-normal, maxCPM , and all-crashed, 

minCPM , schedules, respectively. Moreover, a horizon-varying approach is also 

implemented for unraveling Pareto front problem which involves iterative solution 

of deadline DTCTP by varying dlD  from minCPM  to maxCPM , in steps of one. 

Pareto oriented MILP is also complemented with an upper-bound calculation 

mechanism for the cost of the feasible durations. The value of the upper-bound is 

designed to update to the cost figure located in the preceding iteration of the 
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horizon-varying approach. This is facilitated by means of the Cutoff parameter of 

Gurobi which basically indicates that the solver should only consider solutions with 

total costs less than the specified amount. Inclusion of the upper-bound rules out 

the need for elimination of the dominated solutions from the final Pareto, since, it 

only locates the non-dominated solutions in the course of the optimization. 

 

Simulation routines of the proposed MILP method are coded in C# and compiled 

within Visual Studio 2013 on a 64-bit platform. All of the tests are carried out on a 

desktop computer with a P9X79 Chipset motherboard, 16 GB 667 MHz DDR3 

random-access memory (RAM), Intel Core i7-3.40 GHz CPU, and 64-bit Windows 

10 operating system. MILP is executed solely (no other software is ran 

simultaneously) on a single processor and overclocking is not performed. All the 

runs are truncated after a CPU time of one hour which is enforced using TimeLimit 

parameter of Gurobi. If it exceeds the runtime limit, the algorithm will terminate by 

reporting a non-optimal status. 

 

The new sets of instances presented in Section 5.2.1 are fitted into the proposed 

MILP model in order to locate the optimal solutions for deadline and Pareto front 

DTCTPs. The percentage of the instances solved within the enforced computation 

time limit of one hour are demonstrated for deadline and Pareto front DTCTPs in 

Table 5.6 and Table 5.8, respectively. These tables summarize percentages for 

every combination of different network sizes, network complexities, and mode 

numbers. The average CPU times required by MILP method for tackling every ten 

replicate problems of each parameter level combination are illustrated in Table 5.7 

and Table 5.9 for deadline and Pareto front DTCTPs, respectively. Unavailable 

values are tabulated as ‘na’ in Table 5.7 and Table 5.9. 
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The contents of Table 5.6 and Table 5.7 reveal MILPs successful convergence to 

optimum solutions for deadline problems that include up to 100 activities by solving 

an overall 99.16% of 50-activity and 100-activity instances within the imposed 

runtime limit. It is displayed that on average, MILP requires 0.35 and 38.45 seconds 

to locate the optimum solutions for 50-activity and 100-activity problems, 

respectively. The performance of MILP is consistent for the larger network of size 

200 and 500. MILP is shown to be able to solve all of the 200-activity and 500-

activity problems with 2I  values of 0.6 and 0.8 which contain virtually serial 

networks. Overall, 43.33% of 200-activity and 25% of 500-activity problems with 

smaller 2I  values are solved to optimality which indicates the networks with almost 

parallel graphs require greater processing times. MILP is experimented to locate 

the global optimum solutions in 376.50 and 426.58 seconds on average, for 200-

activity and 500-activity instances, respectively. MILP is also shown to be able to 

unravel 25% of the instances with 990 activities, comprising 3 to 9 time-cost 

alternatives. CPU time limit of one hour is experienced to be insufficient for the 

more complex (with regard to the nature of MILP) 990-activity instances with 2I  

values of 0.2 to 0.6; however, MILP is displayed to be capable of solving 3 sets of 

990-activity problems, i.e., 30 instances, with 2I  values of 0.8 in an average 

processing time of 13.61 seconds. 

 

The contents of Table 5.8 and Table 5.9 shed some light on the performance of 

MILP over capturing the true Pareto front of the complex RanGen2 instances. It is 

revealed that MILP is virtually able to locate the true Pareto fronts for all the 50-

activity instances in an average processing time of 379.77 seconds. Solving 50% of 

the most complex (with regard to the nature of MILP) set of 50-activity problems 

with 2I  values of 0.2 and 9 time-cost modes, MILP obtains exact solutions for an 

overall 95.83% of the 50-activity instances. MILP is shown to be able to solve all 

the pseudo-serial 100-activity and 200-activity problems with 2I  values of 0.8. 

MILP is displayed to be able to capture optimal frontiers for 53.33% of the 100-
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activity problems with smaller 2I  values of 0.4 and 0.6. With an overall average 

computation time of 609.56 seconds, MILP is experimented to require more than 

one hour to solve 100-activity problems with 2I  values of 0.2. 43.33% of the 200-

activity problems with 2I  value of 0.6 are solved for Pareto front problem within 

the enforced time limit. With an overall average processing time of 651.15 seconds, 

runtime limit of one hour is experienced to be inadequate for capturing the true 

Pareto fronts for pseudo-parallel 200-activity problems with smaller 2I  values of 

0.2 and 0.4. The successful performance of MILP is consistent for the larger sets of 

instances with 500 and 990 activities that include 3 modes with network of 2I = 0.8. 

MILP requires an overall average computation time of 1520.24 seconds to locate 

the efficient frontiers for 15% of the 500-activity problems. An overall average of 

2377.38 seconds is recognized to be sufficient for solution of 8.3% of the largest 

set of instances with 990 activities. 

 

In the light of the above interpretations, an overall picture of MILP’s performance 

can be obtained as the nature of this method tends to be more suitable for pseudo-

serial networks with greater 2I  values that include smaller number of time-cost 

alternatives. Thus, problems 21 to 30 are experimented to be the most complicated, 

and the problems 91 to 100 to be the simplest problems for the proposed exact 

algorithm. 

 

In the absence of the upper-bound (Cutoff parameter) and parallel merging (Section 

5.1.1.2) techniques, the proposed MILP is able to obtain optimal Pareto fronts for 

207 number of instances in an overall average processing time of 656.06 seconds; 

however, implementation these techniques increases the number of solved 

problems by more than 19% while reducing the overall average CPU time by more 

than 18%. To the best of author’s knowledge, this is the first contribution where 

global optimal costs and true Pareto fronts are captured for real-life-scale instances 

that are based upon the complex RanGen2 networks. With regard to the summary 

of the past research given in Table 2.1, it can also be observed that no previous 
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exact method, other than Bilir’s (2015) approach, has successfully been applied to 

large-scale DTCT problems. Nevertheless, MILP is proved to be capable of locating 

the optima for instances with up to 990 activities. 

 

5.2.4. Cost Minimization and Deadline DTCTPs 

 

Computational experiments are carried out to evaluate the performance of the 

proposed CS-Heuristic method for cost minimization and deadline DTCTPs using 

a set of benchmark instances acquired from the literature, based on the performance 

metrics presented in Section 5.2.2. The proposed optimization algorithm is coded 

in C# and compiled within Visual Studio 2013 on a 64-bit platform. All of the tests 

are carried out on a desktop computer with a P9X79 Chipset motherboard, 16 GB 

667 MHz DDR3 random-access memory (RAM), Intel Core i7-3.40 GHz CPU, and 

64-bit Windows 10 operating system. CS-Heuristic is executed solely (no other 

software is ran simultaneously) on a single processor and overclocking is not 

performed. 

 

5.2.4.1. Small-Scale Benchmark Problems 

 

The performance of the proposed CS-Heuristic for deadline DTCTP is first tested 

using the small-scale benchmark instances which are commonly used in the 

literature (Elbeltagi et al., 2005; Zheng et al., 2005; El-Rayes and Kandil, 2005; 

Kandil and El-Rayes, 2006; Elbeltagi et al., 2007; Ng and Zhang, 2008; Xiong and 

Kuang, 2008; Afshar et al., 2009; Fallah-Mehdipour et al., 2012; Sonmez and 

Bettemir, 2012; Zhang and Ng, 2012; Monghasemi at al., 2015) for performance 

evaluations. Readers are referred to Section 3.4.2 for details on the practiced small-

scale instances including 18a, 18b, and 18c problems. Performance of CS-Heuristic 

is compared with DPSO algorithm (Section 3.3) which is shown in Section 3.4.2 to 

be able to outperform any of the previous optimization methods. Snapshots of the 
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performance of the results for problems 18a, 18b, and 18c are given in Table 5.10, 

Table 5.11, and Table 5.12, respectively. 

 

Table 5.10 – Performance of CS-Heuristic for problem 18a. 
 

Algorithm CPU Time (s) APD (%)

DPSO (Section 3.3) 0.4 0.00 
CS-Heuristic (Section 5.1.3) ~0 0.00 

 

Table 5.11 – Performance of CS-Heuristic for problem 18b. 
 

Algorithm CPU Time (s) APD (%)

DPSO (Section 3.3) 0.4 0.00 
CS-Heuristic (Section 5.1.3) ~0 0.00 

 

Table 5.12 – Performance of CS-Heuristic for problem 18c. 
 

Algorithm CPU Time (s) APD (%)

DPSO (Section 3.3) 0.4 0.00 
CS-Heuristic (Section 5.1.3) ~0 0.00 

 

According to the contents of the above tables, it is observed that CS-Heuristic is 

also able to locate the global optimum solutions for problems 18a, 18b, and 18c; 

however, by running on the same desktop computer, the processing time of this 

method is revealed to be less than that of the DPSO algorithm for all the small-scale 

instances. 

 

5.2.4.2. Medium-Scale Benchmark Problems 

 

The performance of the proposed CS-Heuristic for deadline DTCTP is also tested 

using the medium-scale problem of Sonmez and Bettemir (2012). Readers are 

referred to Section 3.4.3 for the explanations on the exercised medium-scale 

problems including 63a and 63b problems. Results of CS-Heuristic are compared 

with the DPSO algorithm (Section 3.3), detailed results of which was demonstrated 

in Section 3.4.3. DPSO was conceded to be more effective and efficient than both 
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the GA and HA methods of Sonmez and Bettemir (2012). Results of CS-Heuristic 

for the medium-scale instances are tabulated in Table 5.13. Unavailable values are 

tabulated as ‘na’ in Table 5.13. 

 

Table 5.13 – Performance of CS-Heuristic for problems 63a and 63b. 
 

Algorithm 
 63a  63b 

 
CPU 

Time (s) 
APD 
(%) 

 
CPU 

Time (s) 
APD 
(%) 

NAA (Bettemir and Birgonul, 2017)  na 0.04  na 0.07 
Parallel GA (Agdas et al., 2018)  111 0.26  88.8 1.24 
DPSO (Section 3.3)  1.3 0.02  1.3 0.05 
CS-Heuristic (Section 5.1.3)  0.01 0.08  0.01 0.07 

 

The comparison of CS-Heuristic with the state-of-the-art methods proves that the 

proposed CS-Heuristic is among the top performing algorithms for the medium-

scale deadline DTCTP. CS-Heuristic is displayed to outperform DPSO – using the 

same PC – and Parallel GA of Agdas et al. (2018) with regard to the required 

processing time. Bettemir and Birgonul (2017) do not report the computation time 

requirement of their Network Analysis Algorithm (NAA); though, its convergence 

capabilities are observed to be virtually equal to CS-Heuristic. Besides, accuracy of 

the solutions obtained by CS-Heuristic while being on par with DPSO, is shown to 

be significantly better than Parallel GA of Agdas et al. (2018). 

 

5.2.4.3. Large-Scale Benchmark Problems 

 

The large-scale problems used for performance measurement of the proposed CS-

Heuristic include problems comprising 630, 1800, 3150, and 6300 activities. The 

630-activity, 3150-activity, and 6300-activity problems are generated by copying 

the 63-activity problem of Sonmez and Bettemir (2012) ten, 50, and 100 times in 

serial, respectively. Readers are referred to Section 3.4.4 for the description of the 

63-activity-based large-scale problems. The 1800-activity problem, on the other 

hand, is generated by copying the 18-activity problem of Hegazy (1999) 100 times 
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in serial. Readers are referred to Section 4.4.2 for details on the base 18-activity 

problem. 

 

The performance of CS-Heuristic is tested against DPSO (Section 3.3) and Parallel 

GA of Agdas et al. (2018). In Section 3.4.4, it is illustrated that DPSO is 

significantly faster and more effective that GA and HA approaches of Sonmez and 

Bettemir (2012). Performance of the results for 630-activity problems are 

summarized in Table 5.14. 

 

Table 5.14 – Performance of CS-Heuristic for problems 630a and 630b. 
 

Algorithm 
 630a  630b 

 
CPU Time 

(s) 
APD 
(%) 

 
CPU Time 

(s) 
APD 
(%) 

Parallel GA (Agdas et al., 2018)  364.2 2.76  396.6 2.29 
DPSO (Section 3.3)  14.6 0.33  14.6 0.34 
CS-Heuristic (Section 5.1.3)  5.23 0.05  5.15 0.10 

 

Agdas et al. (2018) experimented 630-activity problems by applying parallel 

computing on a high-performance computing facility that included eight CPU 

cores. Though, both DPSO and CS-Heuristic running on a single CPU are shown 

to remarkably outperform Parallel GA of Agdas et al. (2018) with substantially 

smaller deviation and runtime amounts. CS-Heuristic is also observed to best DPSO 

with respect to both accuracy and the convergence speed. 

 

The performance of CS-Heuristic is also investigated using the 1800-activity 

problems which are used by Agdas et al. (2018). This problem is examined under 

two different conditions. In problem 1800a, the indirect cost rate is $200/day, the 

delay penalty is set as $20,000/day, and the incentive payment is assumed as 

$1,000/day. Whereas, in problem 1800b, the indirect cost rate is assumed to be 

$1,500/day. CS-Heuristic is experimented against the Parallel GA of Agdas et al. 

(2018), results of which are presented in Table 5.15. 
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Table 5.15 – Performance of CS-Heuristic for problems 1800a and 1800b. 
 

Algorithm 
 1800a  1800b 

 
CPU Time 

(s) 
APD 
(%) 

 
CPU Time 

(s) 
APD 
(%) 

Parallel GA (Agdas et al., 2018)  20,952 7.05  21,024 14.72 
CS-Heuristic (Section 5.1.3)  40.91 0.00  40.66 0.00 

 

CS-Heuristic is experienced to be able to locate the global optimum solutions for 

both the 1800a and 1800b problems within a processing time of less than 41 

seconds. Performance of CS-Heuristic is incomparable with Parallel GA (Agdas et 

al., 2018) for this large-scale problem, since, Parallel GA can find solutions with 

considerably larger deviations in substantially longer computation times of more 

than five hours. 

 

The CS-Heuristic is further experimented using the 3150-activity problems of 

Agdas et al. (2018). This problem is examined under two different conditions. 

Indirect cost rate for problems 3150a and 3150b are set as $2,300/day and 

$3,500/day, respectively. Performance of CS-Heuristic is compared with Parallel 

GA of Agdas et al. (2018) and the results are given in Table 5.16. 

 

Table 5.16 – Performance of CS-Heuristic for problems 3150a and 3150b. 
 

Algorithm 
 3150a  3150b 

 
CPU Time 

(s) 
APD 
(%) 

 
CPU Time 

(s) 
APD 
(%) 

Parallel GA (Agdas et al., 2018)  32,940 6.5  33,876 4.73 
CS-Heuristic (Section 5.1.3)  548.36 0.04  529.43 0.10 

 

It is discovered that the proposed CS-Heuristic can converge to global optimum 

solutions with only fractional deviations for 3150-activity problems. For this 

problem, as well, CS-Heuristic is shown to greatly outperform Parallel GA of 

Agdas et al. (2018) on the grounds of efficiency and effectiveness. Computational 

time of Parallel GA running on eight cores of a high-performance computing 

facility is measured to be nine hours more than that of CS-Heuristic. 
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Finally, performance of the proposed CS-Heuristic evaluated using the 6300-

activity problems of Agdas et al. (2018). This problem is also implemented under 

two different settings. Indirect cost rate for problems 6300a and 6300b are assigned 

as $2,300/day and $3,500/day, respectively. As shown in Table 5.17, performance 

of CS-Heuristic is measured by directing comparisons with Parallel GA of Agdas 

et al. (2018). 

 

Table 5.17 – Performance of CS-Heuristic for problems 6300a and 6300b. 
 

Algorithm 
 6300a  6300b 

 
CPU Time 

(s) 
APD 
(%) 

 
CPU Time 

(s) 
APD 
(%) 

Parallel GA (Agdas et al., 2018)  59,112 7.66  60,336 6.96 
CS-Heuristic (Section 5.1.3)  4484.56 0.04  4292.81 0.10 

 

The successful performance of CS-Heuristic is also consistent for the 6300-activity 

problems. It is proved that the proposed CS-Heuristic is capable of converging to 

global optimal solutions with only fractional deviations for problems 6300a and 

6300b. Performance of CS-Heuristic is unmatched by Parallel GA (Agdas et al., 

2018) for the largest and the most complex problem implemented. There is 

remarkable gap between the performance of the proposed CS-Heuristic and the 

Parallel GA for solution of this instance. Processing time requirement of Parallel 

GA running on eight cores of a high-performance computing facility is revealed to 

be more than 15 hours over the CPU time requirement of the proposed CS-

Heuristic. The average percent deviation of Parallel GA is measured to be almost 

191 and 70 times the amount of APDs for CS-Heuristic over problems 6300a and 

6300b, respectively. 

 

Comparative studies reveal superiority of the proposed CS-Heuristic over earlier 

approaches as well as the DPSO method. It is obvious that not only the computation 

time requirement of the innovative optimization model presented in this section is 

remarkably less than the earlier approaches, but also it is able to locate high quality 

solutions for all the practiced cost minimization/deadline problems. Owing to its 
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unprecedented efficacy and exceptional accuracy, Cost-Slope Heuristic is expected 

to contribute to optimal planning of real-life-scale construction projects. To the best 

of author’s knowledge, the proposed CS-Heuristic optimization model is the first 

method that outperforms state-of-the art meta-heuristics and is capable of 

unraveling large-scale problems comprising thousands of activities within 

practically reasonable timeframes with only fractional deviations. 

 

5.2.5. Pareto front DTCTP 

 

Computational experiments are carried out to measure the performance of the 

proposed CS-Heuristic method for Pareto front DTCTPs using a set of benchmark 

and case problems acquired from the literature as well as the RanGen2 instances 

introduced in Section 5.2.1, based on the performance indices presented in Section 

5.2.2. The proposed optimization algorithm is coded in C# and compiled within 

Visual Studio 2013 on a 64-bit platform. All of the tests are carried out on a desktop 

computer with a P9X79 Chipset motherboard, 16 GB 667 MHz DDR3 random-

access memory (RAM), Intel Core i7-3.40 GHz CPU, and 64-bit Windows 10 

operating system. CS-Heuristic is executed solely (no other software is ran 

simultaneously) on a single processor and overclocking is not performed. 

 

5.2.5.1. Small-Scale Benchmark Problems 

 

The performance of the proposed CS-Heuristic for Pareto front DTCTP is first 

tested using the small-scale benchmark instances that include 18 activities and up 

to five time-cost modes. This problem is widely used in the literature (Elbeltagi et 

al., 2005; Zheng et al., 2005; El-Rayes and Kandil, 2005; Kandil and El-Rayes, 

2006; Elbeltagi et al., 2007; Ng and Zhang, 2008; Xiong and Kuang, 2008; Afshar 

et al., 2009; Fallah-Mehdipour et al., 2012; Sonmez and Bettemir, 2012; Zhang and 

Ng, 2012; Monghasemi at al., 2015) for performance evaluations. Readers are 

referred to Section 4.4.2 for details on the practiced small-scale instances including 
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18d, 18e, 18f, and 18g problems. Performance of CS-Heuristic is compared with 

PFPSO model (Section 4.3) which is shown in Section 4.4.2 to be able to surpass 

any of the earlier optimization methods in the literature. Results of the performance 

assessment over problems 18d, 18e, 18f, and 18g are displayed in Table 5.18. 

 

Table 5.18 – Performance comparison of CS-Heuristic for small-scale problems. 
 

Method Problem ONVG
ND pct  

(%) 

APD 
(%) 

APD bin  
(%) 

HR 
CPU 

Time (s) 

PFPSO 
(Section 4.3) 

18d 39 100 0 0 1 2 

18e 44 100 0 0 1 2 

18f 18 100 0 0 1 2 

 18g 4 100 0 0 1 2 
CS-Heuristic 
(Section 5.1.4) 
with PM* 

18d 39 87.18 0.01 0.01 1 0.03 

18e 43 84.09 0.01 0.01 0.99 ~0 

18g 15 83.33 0 0 1 ~0 

 18d 4 100 0 0 1 ~0 
CS-Heuristic 
(Section 5.1.4) 
with SM** 

18d 39 87.18 0.01 0.01 1 0.01 

18e 42 75 0.02 0.02 0.99 0.01 

18f 10 55.56 0 0 0.99 ~0 

 18g 4 100 0 0 1 ~0 

*Parallel Merge 

**Serial Merge 

 

Performance of the proposed CS-Heuristic is experimented by using either of the 

merging techniques of serial and parallel, independently. Compared with PFPSO, 

both variants of CS-Heuristic are found to be able to locate the same number of 

non-dominated solutions for problems 18d and 18g. For the rest of the small-scale 

problems, the number of the obtained Pareto solutions by PFPSO are slightly more 

than CS-Heuristic with parallel merge which is followed by CS-Heuristic with 

serial merge. For problems 18d, 18e, and 18f, PFPSO is observed to perform 

marginally better than the CS-Heuristics with regard to the performance indexes, 

excluding the computation time. Results of all the methods are identical for problem 

18g with respect to any of the metrics. Nonetheless, executed on the same desktop 

computer, CS-Heuristics are experienced to require considerably less processing 



 

169 

 

time for all the 18d, 18e, 18f, and 18g problems which might justify the slight 

differences in the remainder of the performance indices. CS-Heuristic with serial 

merge, on the other hand, is shown to perform very close to CS-Heuristic with 

parallel merge; though, according to ND pct  values, parallel merge variant is 

capable of capturing solutions of higher quality for problems 18e and 18f. 

 

5.2.5.2. Medium-Scale Benchmark Problem 

 

The performance of the proposed CS-Heuristic for Pareto front DTCTP is also 

evaluated using the medium-scale problem of Kandil and El-Rayes (2006). Readers 

are referred to Section 4.4.3 for the explanations on the exercised medium-scale 

180-activity problem. Results of both the variants of CS-Heuristic are compared 

with PFPSO method (Section 4.3) detailed results of which was illustrated in 

Section 4.4.3. PFPSO was validated to be more effective and efficient than both the 

GP-GA and CG-GA approaches of Kandil and El-Rayes (2006). Results of CS-

Heuristics for the medium-scale instance are tabulated in Table 5.19. 

 

Table 5.19 – Comparison of the results for 180-activity problem. 
 

Algorithm ONVG
ND pct  

(%) 

APD 
(%) 

APD bin  
(%) 

HR 
CPU 
Time 

(s) 

PFPSO (Section 4.3) 304 34.86 0.09 0.09 0.99 21 
CS-Heuristic (Section 5.1.4) with PM* 586 69.95 0.27 0.21 0.99 1.37
CS-Heuristic (Section 5.1.4) with SM** 586 69.95 0.27 0.21 0.99 1.25

*Parallel Merge       
**Serial Merge       
 

Both variants of the proposed CS-Heuristic approach are able to capture 586 non-

dominated solutions in slightly over one second with average deviations of less than 

0.3%. CS-Heuristics are able to position a rather larger set of non-dominated 

solutions along the efficient frontier compared with PFPSO. All the approached are 

observed to achieve solutions with comparable diversities along the frontiers since 
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they share the same values for HR index. Performed on the same PC, the processing 

time requirements of CS-Heuristics are validated to be remarkably less than 21 

seconds of PFPSO approach. Although both the unary and binary average deviation 

amount of PFPSO are smaller than CS-Heuristic, it is indicated by ND pct  metric 

that the number of non-dominated solutions in the final unified front is significantly 

higher for CS-Heuristic. Faster convergence speed, larger ONVG, and larger 

ND pct  values of CS-Heuristic are believed to make up for its slightly larger 

deviation amounts. Computational time of serial variant of CS-Heuristic is 

experimented to be marginally shorter than the parallel variant for this instance. 

 

5.2.5.3. Large-Scale Benchmark Problems 

 

Experiments on large-scale benchmark instances comprise the 360-activity and 

720-activity problems created by Kandil and El-Rayes (2006). Readers are referred 

to Section 4.4.4 for the description of the 18-activity-based large-scale problems. 

Efficacy and efficiency of the two variants of CS-Heuristic are validated in 

comparison with PFPSO method (Section 4.3). PFPSO was displayed in Section 

4.4.4 to substantially outperform both the GP-GA and CG-GA approaches of 

Kandil and El-Rayes (2006). Performance of the results for 360-activity problem is 

summarized in Table 5.20. 

 

Table 5.20 – Comparison of the results for 360-activity problem. 
 

Algorithm ONVG
ND pct  

(%) 
HR 

CPU 
Time 

(s) 

PFPSO (Section 4.3) 536 32.48 0.99 43 
CS-Heuristic (Section 5.1.4) with Parallel Merge 1176 71.71 0.99 11.26 
CS-Heuristic (Section 5.1.4) with Serial Merge 1176 71.71 0.99 10.04 

 

Unary and binary APDs are not reported for this problem since the true Pareto fronts 

were not available. Both the CS-Heuristics with parallel and serial merge 

techniques are able to obtain 1176 non-dominated solutions in slightly over 10 and 
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11 seconds respectively. CS-Heuristics are able to capture more than two times the 

amount of non-dominated solutions achieved by PFPSO. All the optimization 

methods are revealed to be able to locate non-dominated solutions with 

commensurate diversities along the fronts since they share the same values for HR 

metric. Performed on the same desktop computer, the processing time requirements 

of CS-Heuristics are experienced to be almost one fourth of the 43 seconds required 

by PFPSO method. With respect to the values calculated for ND pct  index, the 

number of non-dominated solutions in the final unified front for CS-Heuristic is 

more than two times the amount of solutions positioned by PFPSO. CS-Heuristic 

with serial merge, on the other hand, is observed to require slightly less processing 

time for solution of this problem in comparison with the parallel variant. 

 

The CS-Heuristic is further experimented using the large-scale 720-activity 

problems of Kandil and El-Rayes (2006). Performance of CS-Heuristics are 

compared with PFPSO (Section 4.3) and the results are given in Table 5.21. 

PFPSO’s exceptional convergence capabilities was proved in Section 4.4.4 which 

outperformed GP-GA and CG-GA approaches of Kandil and El-Rayes (2006) by a 

large margin. 

 

Table 5.21 – Comparison of the results for 720-activity problem. 
 

Algorithm ONVG
ND pct  

(%) 
HR 

CPU 
Time 

(s) 

PFPSO (Section 4.3) 1022 27.74 0.99 92 
CS-Heuristic (Section 5.1.4) with Parallel Merge 2356 75.36 0.99 108.29 
CS-Heuristic (Section 5.1.4) with Serial Merge 2356 75.36 0.99 95.47 

 

Unary and binary APDs are not reported since the true Pareto fronts were not known 

for this problem. The successful performances of CS-Heuristics are also consistent 

for the large-scale 720-activity problems. It is displayed that the proposed CS-

Heuristics are capable of capturing 2356 non-dominated solutions along the 

efficient frontier within less than two minutes. Both the variants of CS-Heuristic 
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are able to achieve more than two times the amount of solutions located by PFPSO. 

While computational time requirement of CS-Heuristic with serial merge is 

virtually the same as PFPSO, the parallel variant is shown to demand moderately 

larger processing time on the same desktop computer. Indicated by equal HR 

values, all the optimization methods are capable of locating non-dominated 

solutions with comparable distribution and spread characteristics along the frontier. 

In accord with the values calculated for ND pct  index, the number of non-dominated 

solutions in the final unified front for CS-Heuristic is slightly shy of three time the 

amount of solutions obtained by PFPSO. 

 

Comparative studies reveal that the performance of CS-Heuristic is unmatched by 

any of the previous approaches including the PFPSO algorithm. Not only the 

computation time requirement of the innovative multi-objective optimization model 

presented in this section is substantially less than the earlier approaches, but it is 

also able to produce a large number of high quality non-dominated solutions for all 

the practiced Pareto front problems. Owing to its unprecedented efficacy and 

exceptional accuracy, Cost-Slope Heuristic is expected to contribute to optimal 

planning of realistic construction projects. To the best of author’s knowledge, the 

proposed CS-Heuristic optimization model is the first method capable of tackling 

large-scale problems consisting of hundreds of activities within reasonably short 

timespans and practically viable deviations. 

 

5.2.5.4. New Sets of Instances 

 

In this section, the new sets of realistic instances are used to compare the 

performance of PFPSO (Section 4.3) with CS-Heuristic (Section 5.1.4) on the basis 

of the performance comparison metrics presented in Section 5.2.2. Initially, all the 

instances are fitted into CS-Heuristic with parallel merge; afterwards, processing 

time required for solution of each of the 600 instances are extracted to be used as a 

runtime limit for PFPSO method. Hence, PFPSO is slightly modified to 
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accommodate new termination criteria. It is designed to terminate either if the 

enforced runtime limit or the maximum number of iterations is reached. The values 

for various performance indices for PFPSO and the two variants of CS-Heuristic, 

i.e., serial and parallel, over the new complex instances are reported in the following 

tables as follows. Table 5.22 and Table 5.23 compare cardinality of the solutions 

using ONVG and ND pct  values, respectively. Table 5.24 and Table 5.25 shed light 

on the accuracy of the results based on APD and APD bin  values, respectively. Table 

5.26 illustrates the convergence and diversity of the Pareto fronts using HR metric. 

Finally, Table 5.27 displays the convergence speed of each of the approaches by 

running on the same desktop computer. These tables summarize values for every 

combination of different network sizes, network complexities, and mode numbers. 

The average values for every ten replicate problems per each parameter setting are 

elucidated for the proposed optimization approaches. Unavailable values are 

tabulated as ‘na’ in Table 5.24 and Table 5.25. 

 

 

 

 

 

 

 



 

 

 

174

   
T

ab
le

 5
.2

2 
– 

C
om

pa
ri

so
n 

of
 O

N
V

G
 v

al
ue

s.
 

 

 
O

N
V

G
 

 
# 

of
 A

ct
s.

 
50

 
10

0 
20

0 
50

0 
99

0 

 
2I

 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6
0.

8

 
# 

of
 M

od
es

 
  

 
 

  
  

 
 

  
 

 
 

 
  

 
 

  
 

 
 

 

P
F

P
S

O
 

3 
45

 
23

 
11

 
4 

80
 

43
 

18
 

7 
14

5 
91

 
32

 
7 

39
3 

17
3 

70
 

15
 

69
9 

40
0 

13
1

16
 

6 
96

 
60

 
28

 
8 

18
1 

11
9 

42
 

15
 

30
3 

24
1 

93
 

15
 

90
2 

37
7 

19
1 

3 
15

90
10

22
24

8
1 

9 
13

6
87

 
45

 
17

 
25

4 
18

3 
77

 
19

 
43

1 
36

8 
13

9 
24

 
12

73
55

0 
30

8 
35

 
22

26
15

40
20

1
1 

C
S

-H
-P

M
 

3 
80

 
64

 
40

 
11

 
19

0 
15

9 
80

 
32

 
31

3 
34

1 
12

7 
30

 
11

28
27

1 
17

5 
63

 
14

96
77

9 
34

6
12

6

6 
16

4
13

0 
77

 
25

 
32

4 
28

5 
91

 
34

 
55

5 
55

5 
98

 
28

 
16

95
20

0 
14

7 
82

 
21

66
58

7 
20

7
12

7

9 
20

0
14

9 
93

 
28

 
38

5 
33

0 
98

 
27

 
61

8 
56

4 
59

 
26

 
19

00
15

4 
85

 
70

 
23

30
51

9 
17

5
14

4

C
S

-H
-S

M
 

3 
80

 
63

 
43

 
14

 
19

0 
15

8 
89

 
38

 
31

3 
34

8 
13

8 
46

 
11

27
31

6 
21

0 
96

 
14

97
84

2 
32

8
13

7

6 
16

4
13

7 
85

 
30

 
32

4 
29

2 
11

3 
47

 
55

5 
56

2 
15

8 
50

 
16

89
30

6 
16

5 
78

 
21

50
75

2 
19

2
73

 

9 
20

0
15

5 
96

 
37

 
38

5 
34

5 
13

5 
45

 
61

8 
60

7 
12

3 
45

 
19

02
22

2 
11

3 
51

 
24

09
62

8 
12

2
71

 

 



 

 

 

175

 

T
ab

le
 5

.2
3 

– 
C

om
pa

ri
so

n 
of

 N
D

pc
t

 v
al

ue
s.

 

 

 
N

D
pc

t
 (

%
) 

 
# 

of
 A

ct
s.

 
50

 
10

0 
20

0 
50

0 
99

0 

 
2I

 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 

 
# 

of
 M

od
es

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

P
F

P
SO

 
3 

0 
0.

48
2.

42
7.

73
0 

0 
0.

41
1.

86
0 

0 
0.

13
 

1.
38

0 
0.

10
0 

0.
37

0 
0.

86
3.

46
0.

09

6 
0.

12
 

0.
07

1.
21

2.
63

0 
0 

0 
1.

95
0 

0 
3.

20
 

1.
62

0 
12

.8
6

29
.6

0
0 

0 
33

.5
2

41
.5

7
0 

9 
0.

05
 

0.
39

1.
85

3.
36

0 
0 

3.
25

4.
95

0 
0.

64
19

.4
0 

7.
70

0 
48

.8
1

62
.4

0
16

.4
7

0.
48

54
.9

8
33

.7
9

0 

C
S

-H
-

P
M

 
3 

10
0 

94
.4

5
75

.6
0

67
.3

3
10

0 
82

.6
0

48
.8

9
44

.0
8

10
0 

53
.0

2 
38

.4
1 

39
.4

2
97

.6
9

23
.3

7
21

.3
3

22
.6

4
93

.9
3

37
.5

5
17

.7
5

21
.7

5

6 
99

.8
8 

81
.4

7
50

.6
4

34
.2

9
10

0 
64

.4
4

31
.8

9
33

.6
3

10
0 

42
.7

8 
17

.0
9 

17
.4

8
72

.2
3

12
.2

8
6.

73
26

.3
1

77
.8

8
10

.7
5

17
.6

0
45

.7
6

9 
10

0 
67

.8
2

50
.8

9
36

.3
5

10
0 

59
.9

6
21

.0
5

20
.4

7
10

0 
39

.1
8 

10
.6

3 
13

.5
0

64
.3

1
11

.5
8

4.
54

32
.5

7
92

.2
9

7.
63

42
.5

8
66

.2
6

C
S

-H
-

S
M

 
3 

10
0 

89
.1

5
76

.5
7

84
.1

4
10

0 
92

.5
4

71
.9

4
79

.1
5

10
0 

72
.3

4 
79

.7
3 

89
.2

8
98

.9
0

83
.7

5
77

.3
7

83
.4

9
96

.9
0

59
.7

1
75

.5
7

78
.3

0

6 
99

.8
8 

92
.8

3
67

.6
9

65
.6

6
10

0 
72

.7
3

72
.0

8
76

.4
4

10
0 

52
.2

3 
80

.4
9 

88
.8

9
77

.7
1

78
.3

3
52

.6
4

75
.6

5
72

.7
2

47
.1

9
37

.4
8

53
.7

9

9 
10

0 
77

.6
1

74
.7

4
73

.6
2

10
0 

47
.4

1
66

.5
4

87
.1

0
10

0 
59

.1
4 

73
.0

9 
84

.4
8

71
.6

5
36

.6
6

30
.9

2
53

 
92

.6
6

29
.7

1
18

.1
9

34
.2

5



 

 

 

176

  

T
ab

le
 5

.2
4 

– 
C

om
pa

ri
so

n 
of

 A
P

D
 v

al
ue

s.
 

 

 
A

P
D

 (
%

) 

 
# 

of
 A

ct
s.

 
50

 
10

0 
20

0 
50

0 
99

0 

 
2I

 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6
0.

8 

 
# 

of
 M

od
es

 
  

 
 

  
  

 
 

  
 

 
 

 
  

 
 

  
 

 
 

 

P
F

P
S

O
 

3 
1.

79
2.

08
0.

51
0.

10
na

 
1.

50
0.

89
0.

20
na

 
na

 
1.

33
0.

36
na

 
na

 
na

 
0.

51
na

 
na

 
na

 
0.

48

6 
1.

33
2.

34
0.

90
0.

38
na

 
na

 
1.

01
0.

47
na

 
na

 
1.

76
0.

82
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

9 
1.

25
2.

33
0.

94
0.

49
na

 
na

 
0.

94
0.

44
na

 
na

 
na

 
0.

82
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

C
S

-H
-P

M
 

3 
0.

17
0.

04
0.

05
0.

03
na

 
0.

13
0.

11
0.

06
na

 
na

 
0.

20
0.

04
na

 
na

 
na

 
0.

15
na

 
na

 
na

 
0.

13

6 
0.

20
0.

12
0.

15
0.

10
na

 
na

 
0.

28
0.

12
na

 
na

 
0.

81
0.

26
na

 
na

 
na

 
0.

20
na

 
na

 
na

 
na

 

9 
0.

26
0.

24
0.

23
0.

10
na

 
na

 
0.

26
0.

12
na

 
na

 
na

 
0.

27
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

C
S

-H
-S

M
 

3 
0.

17
0.

04
0.

06
0.

01
na

 
0.

12
0.

07
0.

04
na

 
na

 
0.

16
0.

05
na

 
na

 
na

 
0.

15
na

 
na

 
na

 
0.

15

6 
0.

20
0.

11
0.

12
0.

05
na

 
na

 
0.

25
0.

08
na

 
na

 
0.

76
0.

23
na

 
na

 
na

 
0.

25
na

 
na

 
na

 
na

 

9 
0.

26
0.

23
0.

17
0.

10
na

 
na

 
0.

25
0.

12
na

 
na

 
na

 
0.

30
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 



 

 

 

177

 

T
ab

le
 5

.2
5 

– 
C

om
pa

ri
so

n 
of

 A
P

D
bi

n
 v

al
ue

s.
 

 

 
A

P
D

bi
n

 (
%

) 

 
# 

of
 A

ct
s.

 
50

 
10

0 
20

0 
50

0 
99

0 

 
2I

 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6
0.

8 

 
# 

of
 M

od
es

 
  

 
 

  
  

 
 

  
 

 
 

 
  

 
 

  
 

 
 

 

P
F

P
S

O
 

3 
1.

79
1.

73
0.

32
0.

01
na

 
1.

24
0.

59
0.

07
na

 
na

 
0.

66
0.

07
na

 
na

 
na

 
0.

09
na

 
na

 
na

 
0.

03

6 
1.

33
2.

18
0.

48
0.

09
na

 
na

 
0.

51
0.

08
na

 
na

 
0.

83
0.

04
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

9 
1.

25
2.

12
0.

54
0.

14
na

 
na

 
0.

38
0.

11
na

 
na

 
na

 
0.

05
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

C
S

-H
-P

M
 

3 
0.

18
0.

02
0.

01
0.

00
na

 
0.

10
0.

06
0.

00
na

 
na

 
0.

10
0.

00
na

 
na

 
na

 
0.

02
na

 
na

 
na

 
0.

01

6 
0.

21
0.

11
0.

07
0.

02
na

 
na

 
0.

13
0.

02
na

 
na

 
0.

53
0.

02
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

9 
0.

27
0.

22
0.

12
0.

05
na

 
na

 
0.

14
0.

06
na

 
na

 
na

 
0.

03
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

C
S

-H
-S

M
 

3 
0.

18
0.

02
0.

00
0.

00
na

 
0.

10
0.

03
0.

00
na

 
na

 
0.

09
0.

00
na

 
na

 
na

 
0.

02
na

 
na

 
na

 
0.

01

6 
0.

21
0.

10
0.

06
0.

01
na

 
na

 
0.

12
0.

02
na

 
na

 
0.

47
0.

02
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

9 
0.

27
0.

20
0.

11
0.

05
na

 
na

 
0.

11
0.

04
na

 
na

 
na

 
0.

03
na

 
na

 
na

 
na

 
na

 
na

 
na

 
na

 

 



 

 

 

178

  

T
ab

le
 5

.2
6 

– 
C

om
pa

ri
so

n 
of

 H
R

 v
al

ue
s.

 
 

 
H

R
 

 
# 

of
 A

ct
s.

 
50

 
10

0 
20

0 
50

0 
99

0 

 
2I

 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 

 
# 

of
 M

od
es

 
  

 
 

  
  

 
 

  
 

 
 

 
  

 
 

  
 

 
 

 

P
F

P
S

O
 

3 
0.

79
0.

59
0.

57
0.

55
0.

77
0.

67
0.

57
0.

56
0.

68
0.

66
 

0.
46

0.
47

0.
81

0.
49

0.
44

0.
49

0.
74

0.
66

0.
73

0.
38

6 
0.

86
0.

67
0.

64
0.

57
0.

84
0.

75
0.

59
0.

58
0.

71
0.

79
 

0.
55

0.
36

0.
88

0.
72

0.
91

0.
00

0.
80

0.
93

0.
74

0.
00

9 
0.

88
0.

71
0.

67
0.

63
0.

86
0.

80
0.

68
0.

54
0.

74
0.

85
 

0.
74

0.
43

0.
91

0.
92

0.
96

0.
49

0.
84

0.
96

0.
48

0.
00

C
S

-H
-P

M
 

3 
0.

98
0.

99
0.

96
0.

91
1.

00
0.

97
0.

93
0.

87
1.

00
0.

99
 

0.
86

0.
79

1.
00

0.
96

0.
91

0.
62

1.
00

0.
98

0.
88

0.
63

6 
0.

98
0.

98
0.

90
0.

86
1.

00
0.

99
0.

81
0.

72
1.

00
0.

99
 

0.
71

0.
49

1.
00

0.
79

0.
72

0.
83

1.
00

0.
74

0.
66

0.
96

9 
0.

99
0.

96
0.

84
0.

73
1.

00
0.

99
0.

74
0.

57
1.

00
0.

98
 

0.
63

0.
41

1.
00

0.
58

0.
49

0.
88

1.
00

0.
62

0.
72

0.
99

C
S

-H
-S

M
 

3 
0.

98
0.

98
0.

95
0.

95
1.

00
0.

97
0.

95
0.

93
1.

00
1.

00
 

0.
89

0.
88

1.
00

1.
00

0.
99

0.
76

1.
00

0.
98

0.
98

0.
69

6 
0.

98
0.

98
0.

93
0.

88
1.

00
1.

00
0.

88
0.

82
1.

00
0.

99
 

0.
90

0.
71

1.
00

0.
97

0.
87

0.
88

1.
00

0.
88

0.
72

0.
99

9 
0.

99
0.

97
0.

86
0.

83
1.

00
0.

99
0.

86
0.

72
1.

00
0.

99
 

0.
94

0.
58

1.
00

0.
82

0.
65

0.
96

1.
00

0.
77

0.
72

0.
98



 

 

 

179

 

T
ab

le
 5

.2
7 

– 
C

om
pa

ri
so

n 
of

 C
P

U
 ti

m
es

. 
 

 
C

P
U

 T
im

e 
(s

) 

 
# 

of
 A

ct
s.

 
50

 
10

0 
20

0 
50

0 
99

0 

 
2I

 
0.

2 
0.

4 
0.

6
0.

8 
0.

2
0.

4
0.

6
0.

8 
0.

2
0.

4
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 
0.

2 
0.

4 
0.

6 
0.

8 

 
# 

of
 M

od
es

 
  

 
 

  
  

 
 

  
 

 
 

 
  

 
 

  
 

 
 

 

P
F

P
SO

 
3 

0.
06

 0
.0

4 
0.

02
0.

01
0.

45
0.

35
0.

16
0.

07
2.

18
2.

99
0.

97
0.

22
 

59
.6

8
11

.6
5

8.
07

 
2.

87
 

22
2.

09
13

1.
69

55
.0

8
18

.4
1 

6 
0.

15
 0

.0
9 

0.
06

0.
02

0.
89

0.
70

0.
22

0.
11

4.
22

5.
14

0.
86

0.
36

 
11

0.
12

10
.4

0
7.

32
 

4.
35

 
40

2.
96

11
0.

07
35

.7
4

21
.9

6 

9 
0.

21
 0

.1
4 

0.
10

0.
06

1.
19

0.
94

0.
36

0.
24

5.
32

5.
61

1.
14

0.
94

 
13

4.
76

11
.6

4
8.

33
 

7.
59

 
48

2.
16

11
1.

85
45

.6
5

39
.6

7 

C
S

-H
-

P
M

 
3 

0.
06

 0
.0

4 
0.

02
0.

01
0.

45
0.

35
0.

16
0.

07
2.

18
2.

99
0.

97
0.

22
 

59
.6

8
11

.6
5

8.
07

 
2.

87
 

22
2.

09
13

1.
69

55
.0

8
18

.4
1 

6 
0.

15
 0

.0
9 

0.
06

0.
02

0.
89

0.
70

0.
22

0.
11

4.
22

5.
14

0.
86

0.
36

 
11

0.
12

10
.4

0
7.

32
 

4.
35

 
40

2.
96

11
0.

07
35

.7
4

21
.9

6 

9 
0.

21
 0

.1
4 

0.
10

0.
06

1.
19

0.
94

0.
36

0.
24

5.
32

5.
61

1.
14

0.
94

 
13

4.
76

11
.6

4
8.

33
 

7.
59

 
48

2.
16

11
1.

85
45

.6
5

39
.6

7 

C
S

-H
-

SM
 

3 
0.

06
 0

.0
3 

0.
03

0.
32

0.
46

0.
34

0.
16

1.
30

2.
17

2.
93

1.
20

10
.0

9 
58

.7
9

11
.8

5
8.

54
 

10
7.

61
21

8.
20

13
1.

32
48

.0
2

83
8.

27
 

6 
0.

14
 0

.1
1 

0.
25

8.
40

0.
88

0.
72

1.
20

31
.7

0
4.

23
5.

21
15

.2
3

21
1.

04
 1

08
.3

1
26

.3
2

50
.2

7
18

47
.8

3
39

2.
90

14
1.

49
14

6.
22

89
24

.8
7

9 
0.

20
 0

.2
5 

0.
97

18
.6

1
1.

18
1.

06
5.

81
77

.0
0

5.
32

7.
24

58
.3

4
42

7.
82

 1
33

.3
6

76
.1

6
18

2.
71

33
61

.9
6

49
4.

23
18

1.
61

52
0.

39
12

97
3.

30



 

180 

 

The interpretation of the results tabulated in Table 5.22 to Table 5.27 can be 

summarized as follows. It is revealed that for the complete set of 50-activity 

problems, while being executed within the same timeframes, parallel variant of CS-

Heuristic is able to capture 88.8% more non-dominated solutions than PFPSO. Per 

120 problems of this size, parallel variant of CS-Heuristic with an average CPU 

time of 0.08 seconds, operates at least two seconds faster than the serial variant, on 

average; though, serial variant is observed to be able to achieve 4% more non-

dominated solutions. On average, PFPSO, parallel, and serial variants are 

discovered to account for 1.7%, 71.5%, and 83.5% of the non-dominated solutions 

over the final unified Pareto front, respectively. Per 120 number of 50-activity 

problems, parallel and serial CS-Heuristics with comparable average deviations of 

0.12% and 0.14%, are shown to be more accurate than PFPSO with an average APD 

of 1.2%. This remark is also true for the binary APD, since, PFPSO happens to have 

an average deviation of 1% from the optimal costs, for the mutually located duration 

amounts. This index for both CS-Heuristics is evaluated to be 0.1%. Solutions 

obtained by parallel and serial CS-Heuristics tend to be more accurate, well-

distributed and widely spread with average HR values of 0.92 and 0.94; whereas 

this value for PFPSO is measured as 0.67. 

 

Another interesting remark to note is that, for the 50-activity problems there is an 

increasing pattern in ONVG, APD, and APD bin  values of all the solution 

procedures with increasing mode numbers and decreasing 2I  parameters. This 

observation is also valid for the CPU times of the approaches, with the exception 

of serial variant of CS-Heuristic requiring more processing times for problems with 

larger 2I  values. For CS-Heuristics and PFPSO, HR values are determined to be 

larger for problems with smaller 2I s. Furthermore, HR values for PFPSO and CS-

Heuristics are discovered to vary conversely for problems with 2I  values of 0.6 and 

0.8. For these problems, HR of CS-Heuristics are observed to be inversely 

proportional to the number of modes, while, HR for PFPSO is directly related to 

the mode numbers. 
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Considering the whole set of 100-activity problems, parallel variant of CS-Heuristic 

is able to locate 96% more non-dominated solutions than PFPSO within the same 

execution time. Per 120 number of 100-activity problems, parallel variant of CS-

Heuristic with an average CPU time of 0.47 seconds, operates at least nine seconds 

faster than the serial variant, on average; nevertheless, serial variant is observed to 

be able to obtain 6% more non-dominated solutions. On average, PFPSO, parallel, 

and serial variants are found out to account for 1%, 58.9%, and 80.5% of the non-

dominated solutions located over the final unified Pareto front, respectively. Per 

120 problems of this size, parallel and serial CS-Heuristics with comparable 

average deviations of 0.15% and 0.13%, are discovered to contribute to higher 

levels of exactness compared to PFPSO with an average APD of 0.77%. Regarding 

the average binary APD values, the above statement is also valid for the average 

deviations from the exact costs of same-duration solutions located by different 

methods. PFPSO happens to have an average APD bin  of 0.42%, whereas, this 

metric for parallel and serial CS-Heuristics are measured as 0.07% and 0.06%, 

respectively. Solutions obtained by CS-Heuristics – specifically the serial variant – 

are observed to be more accurate, well-distributed and widely spread, with higher 

average HR values. HR for PFPSO is evaluated to be 0.68, while, this value for 

parallel and serial CS-Heuristics are determined to be 0.88 and 0.92, respectively.  

 

Moreover, an alternate conclusion can also be drawn for the 100-activity problems 

that there exists an increasing pattern in ONVG, APD, and APD bin  values of all the 

practiced methods with increasing mode numbers and decreasing 2I  rate. This 

observation is also valid for the computational times of the models, with the 

exception of serial variant of CS-Heuristic demanding significantly more CPU 

times for instances with larger 2I  values. For PFPSO, HR values are discovered to 

be inversely proportional to 2I  rate and directly proportional to the number of 

modes. For CS-Heuristics, however, HR values are determined to be inversely 

proportional to both 2I  parameter and the number of alternatives, with the 
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exception of problems with 2I  values of 0.2, all of which have HR values equal to 

1. 

 

It is identified that for the entire set of 200-activity problems, parallel variant of CS-

Heuristic is capable of capturing 75.4% more non-dominated solutions than PFPSO 

by running within the same CPU time. For 120 problems with 200 activities, serial 

variant of CS-Heuristic is found out to require significantly longer runtimes. 

Compared to overall average of 2.5 seconds for parallel variant, serial variant is 

experimented to require a further one minute to locate the Pareto fronts; 

nonetheless, serial variant is revealed to be able to locate 7% more non-dominated 

solutions. On average, PFPSO, parallel, and serial variants are discovered to 

account for 2.8%, 47.6%, and 81.6% of the non-dominated solutions over the final 

unified Pareto front, respectively. Parallel and serial CS-Heuristics with literally the 

same average deviations of 0.31% and 0.3%, are conceded to be more accurate than 

PFPSO with an average APD of 1%. The same scheme is also confirmed for the 

binary APD, since, PFPSO happens to have an average APD bin  of 0.33%. This 

index for parallel and serial CS-Heuristics are assessed to be 0.13% and 0.12%, 

respectively. Solutions obtained by CS-Heuristics – especially the serial variant – 

are observed to be more accurate, well-distributed and widely spread, with greater 

average HR values of 0.82 and 0.9; however, HR for PFPSO is assessed to be 0.62.  

 

Furthermore, another noteworthy conclusion can also be pointed out for the 200-

activity problems that there exists an increasing pattern in ONVG, APD, and 

APD bin  values of all the exercised methods with increasing mode numbers and 

decreasing 2I  parameter. This remark is also true for the processing times of the 

methods, with the exception of serial variant of CS-Heuristic which operates within 

considerably larger CPU times for instances with larger 2I  values. The average HR 

values for all the approaches over the problems with 2I  values of 0.8 are observed 

to be inversely proportional to the number of modes. This is also true for parallel 
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variant of CS-Heuristic over the problems with 2I  values of 0.6. For PFPSO, HR 

values are discovered to be inversely proportional to 2I  rate and directly 

proportional to the number of modes over the problems with 2I s of 0.2 to 0.6. For 

CS-Heuristics, except for problems with 2I  of 0.6, HR values are determined to be 

either one or very close to one with no obvious trend in between. 

 

For the complete set of 500-activity problems, parallel variant of CS-Heuristic is 

able to locate 39% more non-dominated solutions than PFPSO within the same time 

interval. Per 120 number of 500-activity problems, parallel variant of CS-Heuristic 

with an average CPU time of 31.39 seconds, runs within only 6.3% of the average 

computation time of serial variant; though, serial variant is observed to be able to 

capture 5% more non-dominated solutions. On average, PFPSO, parallel, and serial 

variants are discovered to provide 14.2%, 32.9%, and 68.3% of the non-dominated 

solutions positioned along the final unified Pareto front, respectively. Per 120 

problems with 500 activities, parallel and serial CS-Heuristics with commensurate 

average deviations of 0.17% and 0.2%, are discovered to contribute to solutions of 

higher quality compared to PFPSO with an average APD of 0.51%. Unlike 50, 100, 

and 200 activity problems, average APD value for parallel variant is less than the 

serial CS-Heuristic for 500-activity instances. This trend is also confirmed for the 

binary APD, since, PFPSO happens to have an average deviation of 0.09% from 

the optimal costs, for the mutually located duration amounts. This index for both 

CS-Heuristics is calculated to be 0.02%. Solutions obtained by CS-Heuristics – 

particularly the serial variant – are observed to be more accurate, well-distributed 

and widely spread, with greater average HR values of 0.81 and 0.9; however, HR 

for PFPSO is measured to be 0.66. 

 

Additionally, another remark can also be addressed for the 500-activity problems 

that there exists an increasing scheme for ONVG values of all the practiced methods 

with decreasing 2I  rate. For PFPSO, ONVG is observed to increase with the growth 

of mode numbers. For CS-Heuristics, however, the number of located non-
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dominated solutions are discovered to decrease with the growth of the number of 

modes, with the exception of problems with 2I s of 0.2. Since no 500-activity 

problems with 2I  values of 0.2 to 0.6 are solved to optimality, no clear pattern is 

captured for APDs and APD bin s of these problems. However, it is observed that 

deviation amounts of CS-Heuristics are directly proportionate to the number of 

modes. Computational times of the models are addressed to have an increasing 

pattern with increasing mode numbers and decreasing 2I  parameter, with the 

exception of serial variant of CS-Heuristic for problems with 2I  rates of 0.6 and 

0.8. Serial variant is experienced to require substantially greater runtimes for 

instances with larger 2I  values. While no clear scheme is detected for HR values 

of PFPSO, CS-Heuristics are observed to be inversely proportional to 2I  rate and 

the number of modes, except for the problems with 2I  values of 0.8 for which HRs 

increase with the growth of mode numbers. Besides, for both the CS-Heuristics, 

problems with 2I  values of 0.2 are shown to have HR values of one. 

 

Lastly, it is acknowledged that for the whole set of 990-activity problems, parallel 

variant of CS-Heuristic is capable of obtaining 11% more non-dominated solutions 

than PFPSO by running within the same CPU time. For 120 problems including 

990 activities, parallel variant of CS-Heuristic with an average processing time of 

139.77 seconds, operates within only 6.7% of the average computation time of the 

serial variant. Despite its significantly larger computational burden, serial variant 

captures only 2% more non-dominated solutions than the parallel variant. On 

average, PFPSO, parallel, and serial variants are determined to deliver 14%, 44.3%, 

and 58% of the non-dominated solutions located along the final unified Pareto front, 

respectively. For 990-activity problems, parallel and serial CS-Heuristics with close 

average deviations of 0.13% and 0.15%, are noted to be more accurate than PFPSO 

with an average APD of 0.48%. Unlike 50, 100, and 200 activity problems, average 

APD value for parallel variant is smaller than the serial CS-Heuristic for 990-

activity instances. This remark is also true for the binary APD, since, PFPSO 
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happens to have an average deviation of 0.03% from the exact costs, for the jointly 

located same-duration solutions. This index for both CS-Heuristics is measured to 

be 0.01%, on average. Solutions obtained by CS-Heuristics are validated to be more 

accurate, well-distributed and widely spread, with larger average HR values of 0.85 

and 0.89. HR metric for PFPSO, on the other hand, is measured to be 0.6. 

 

In addition, it can also be interpreted from the values of the performance metrics 

for the 500-activity problems that there exists an increasing scheme for ONVG 

values of all the practiced approaches with decreasing 2I  rate. For PFPSO, ONVG 

is discovered to increase with the growth of mode numbers. This is specifically true 

for problems with 2I  values of 0.2 and 0.6. For CS-Heuristics, however, the number 

of obtained non-dominated solutions are revealed to decrease with the growth of 

the number of modes, with the exception of problems with 2I s equal to 0.2. 

Inasmuch as no 990-activity problems with 2I  values of 0.2 to 0.6 are solved to 

optimality, no distinct pattern is captured for APDs and APD bin s of these instances. 

Computational times of the models are determined to have an increasing pattern 

with increasing mode numbers. For problems with 2I  values of 0.2, processing 

time of all the models are directly proportionate to the number of modes. However, 

for the remaining 2I  values, there exists an inverse relation between the average 

CPU time and the number of modes, with the exception of serial variant of CS-

Heuristic. Serial variant is experimented to contribute to remarkably larger 

computation times. While no clear pattern is identified for HR values, this index is 

noticed to be significantly lower for problems with 2I  values of 0.8 for PFPSO 

method. In addition, for problems with 2I  values of 0.2, CS-Heuristics are shown 

to be able to capture frontiers with HR values equal to one. 

 

In the light of the above interpretations, an overall picture of PFPSO’s and CS-

Heuristic’s performances can be obtained as follows. For the entire collection of the 

RanGen2 instances, both variants of CS-Heuristic are shown to be able to achieve 
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higher number of Pareto solutions, serial variant even more so than the others. It is 

also discovered that the number of non-dominated solutions located along the final 

unified frontier are significantly larger for CS-Heuristics. In fact, PFPSO only 

accounted for less than 7% of these solutions, while serial variant positioned 23% 

more than the parallel CS-Heuristic. Despite high levels of accuracy for all the 

experimented methods, CS-Heuristics are confirmed to be more successful in 

converging to the true Pareto fronts with fractional deviations. Average deviations 

for parallel and serial CS-Heuristic are shown to be literally the same; whereas, 

PFPSO’s average deviation value is calculated to be five to six times the amount 

for CS-Heuristics. Well-distributed and widely spread fronts are only obtained by 

means of CS-Heuristic since the area of the solution space covered by PFPSO, 

poorly represents the Hypervolume of the true/best Pareto front. 

 

Although the values for ONVG, ND pct , and HR performance metrics are 

sporadically higher for the serial variant of CS-Heuristic, it is experienced to 

contribute to remarkably higher computational costs. In fact, serial variant is 

conceded to operate within an average of 15 times the CPU time of parallel CS-

Heuristic. The reason behind this major increase in CPU time is due to the 

enormously large number of serially merged activities for the problems with 

pseudo-serial networks. It is observed that for higher 2I  values, viz., 0.6 and 0.8, 

the number of serial activities satisfying the conditions for the serial merge can 

reach up to almost 50% of the original network size. For instance, some 990-activity 

problems are observed to be reduced by merging 487 number of serial activities. As 

is clear, this technique is not suitable for networks with serial graphs and that the 

marginal improvements in the obtained solutions might not justify the additional 

processes and the extra efforts involved in merging the activities serially. 

 

Inclusion of parallel merge, on the other hand, is experimented to contribute to 

lower computational times, although by meager amounts, with the exception of 

problems with 500 and 990 activities and larger 2I  parameters. Parallel merge is 
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discovered to slightly increase the computation time for 500-activity problems, and 

even more so for 990-activity instances, with 2I  values of 0.8. The reason behind 

this slight growth in computation time is due to surging number of parallel reducible 

activities. As mentioned in Section 5.1.1.1, the first step for parallel merging is 

defined as to search for activities including only two successors. For the problems 

generated by means of RanGen2, the pseudo-parallel networks with smaller 2I  

values comprise a multitude of successors (generally more than two); however, as 

the value of 2I  increases, the number of successors for the activities of pseudo-

serial networks reduce to either one or two. That is the reason why a large 

percentage of the activities on the pseudo-serial networks satisfy the conditions for 

parallel merging. Meanwhile, it is also observed that both the serial and parallel 

merging techniques practically increase ONVG, ND pct , and HR values for 

problems with 500 and 990 activities. Furthermore, for the new sets of RanGen2 

instances, implementation of Partial-CPM technique (Section 5.1.2) is experienced 

to reduce the overall average computation time of CS-Heuristic by 5.2%. 

 

With respect to the number of the obtained non-dominated solutions and the 

diversity of the captured Pareto fronts, the nature of PFPSO and CS-Heuristic 

approaches, in contrast to MILP, appear to be more suitable for pseudo-parallel 

networks with smaller 2I  values that include greater number of time-cost 

alternatives. However, for this setting of problems the deviation and the 

computation time amounts are observed to increase, although by meager amounts. 

Comparative studies reveal that the performance of CS-Heuristic is unmatched by 

any of the previous approaches including the PFPSO algorithm. Owing to the 

unprecedented accuracy and diversity of the obtained Pareto fronts, as well as its 

exceptional efficiency, Cost-Slope Heuristic is expected to contribute to optimal 

planning of realistic large-scale construction projects. To the best of author’s 

knowledge, the proposed CS-Heuristic optimization model is the first method that 

outperforms highly capable meta-heuristics and is able to tackle large-scale 

problems consisting of hundreds of activities that are based upon the complex 
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RanGen2 networks, within reasonably short extents of time and practically viable 

deviations. 

 

5.2.5.5. Case-Problems 

 

Robustness of the proposed PFPSO and CS-Heuristics for Pareto front DTCTP are 

also validated using two real construction projects. The proposed solution 

procedures are tested on the same desktop computer. The proposed approaches are 

first experimented using a warehouse construction project which is obtained from 

Chen and Weng (2009). This project consists of 37 activities with up to two time-

cost alternatives. The indirect cost rate is $600/day, the delay penalty is set as 

$500/day, and the completion deadline is assumed as 240 days. The exact results of 

MILP (Section 5.2.3) and the approximations of CS-Heuristics (Section 5.1.4) and 

PFPSO (Section 4.3) are presented in Table 5.28. 

 

Table 5.28 – Comparison of the results for the first case problem. 
 

Algorithm ONVG
ND pct  

(%) 

APD 
(%) 

APD bin  
(%) 

HR 
CPU 
Time 

(s) 

MILP (Section 5.2.3) 1     0.06 
PFPSO (Section 4.3) 1 100 0 0 1 0.02 
CS-Heuristic (Section 5.1.4) with PM* 1 100 0 0 1 0.02 
CS-Heuristic (Section 5.1.4) with SM** 1 100 0 0 1 0.02 

*Parallel Merge       
**Serial Merge       
 

As shown in Table 5.28, all the proposed approaches are capable of capturing the 

true Pareto front of this real project which includes a single solution with a duration 

of 174 days and an overall cost of $253,400. The solution times of parallel and serial 

CS-Heuristics and PFPSO are discovered to be the same. 

The second real construction project used for experimentation of the proposed 

approaches include a process plant project which is acquired from Abbasi-Iranagh 

(2015). This project consists of 519 activities with up to four time-cost alternatives. 
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The indirect cost rate is $10,000/day, the delay penalty is assumed as $20,000/day, 

and the completion deadline is defined to be 540 days. Performance of results for 

MILP (Section 5.2.3), CS-Heuristics (Section 5.1.4), and PFPSO (Section 4.3) are 

summarized in Table 5.29. 

 

Table 5.29 – Comparison of the results for the second case problem. 
 

Algorithm ONVG
ND pct  

(%) 

APD 
(%) 

APD bin  
(%) 

HR 
CPU 
Time 

(s) 

MILP (Section 5.2.3) 1     1.10
PFPSO (Section 4.3) 2 0 1.09 1.09 0.34 0.07
CS-Heuristic (Section 5.1.4) with PM* 1 100 0.43 0.43 0.72 0.07
CS-Heuristic (Section 5.1.4) with SM** 1 0 0.49 0.49 0.69 0.13

*Parallel Merge       
**Serial Merge       
 

As shown in Table 5.29, MILP is able to capture the true Pareto front for the second 

real project in 1.1 seconds. The optimal Pareto front for this project comprise a 

unique non-dominated solution with a duration of 626 days and an overall cost of 

$12,620,417. Being executed within the same computational time, PFPSO is 

discovered to be able to locate two non-dominated solutions compared to a single 

non-dominated solution of all the other approaches. PFPSO, despite contributing to 

a greater ONVG value, is observed to provide solutions with slightly higher 

deviations. The area of the solution space covered by PFPSO is also observed to 

poorly represent the Hypervolume of the true Pareto front. Parallel CS-Heuristic is 

shown to be able to provide the best approximate Pareto front for this project with 

the greatest ND pct , smaller unary and binary deviation, and larger HR by running 

within a shorter timeframe. 

 

Based on the extremely successful performance of the proposed algorithms for the 

real projects, implications can be drawn out as the realistic projects tend to be 

relatively simpler than the instances generated in Section 5.2.1. The deviation and 

the runtime amounts are conceded to be small even for a large-scale 519-activity 
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construction project. According to the results obtained for the two real construction 

projects, practicability and real-life applicability of the proposed approaches are 

firmly validated. The proposed optimization models enjoy the fastness and are able 

to capture optimal/near optimal sets of non-dominated solutions for the multi-

objective DTCTP. The author proposes to employ the proposed CS-Heuristic and 

PFPSO methods in place of the MILP when the optimality is not regarded as the 

most crucial concern. 
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CHAPTER 6  

 

 

INTEGRATION OF THE PROPOSED METHODS INTO 

MICROSOFT PROJECT 

 

 

 

Despite the fact that any scientific decision support tool would have a pivotal role 

in the decision-making process, none of the commercial scheduling software 

packages (e.g., Microsoft Project, Primavera) include tools or modules for time-

cost trade-off analyses of the scheduling problems. To the respect of this, this 

chapter is dedicated to the development of a tool which bridges the gap between the 

scheduling software and the DTCTP optimization techniques. Therefore, the 

proposed discrete time-cost trade-off problem optimization algorithms are 

integrated into the Microsoft Project 2013 which is a widely used commercial 

planning software in the construction industry. Integration is facilitated by means 

of an add-in which is capable of solving two variants of DTCTP, namely, cost 

minimization/deadline and Pareto front problems. The integrated modules include 

the proposed CS-Heuristics (Section 5.1.3 and Section 5.1.4), DPSO (Section 3.3), 

and PFPSO (Section 4.3) approaches which are integrated by means of an add-in 

implemented in C# programming language using Microsoft Visual Studio 2013. By 

means of the built add-in, users will readily be able to visualize the optimized 

schedules for their projects. 

 

After installation of the created add-in, a ribbon named “TCTP” will appear among 

the existing tabs of the Microsoft Project. Selecting this new tab will direct users to 

a menu which includes two groups of “Heuristic” and “Meta-Heuristic”. Either of 

the mentioned groups comprise two buttons of “Optimize” and “Pareto front”.
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As the names imply, CS-Heuristic methods are classified under “Heuristic”, while 

DPSO and PFPSO are placed under “Meta-Heuristic” group. The “Optimize” 

button under “Heuristic” group invokes CS-Heuristic for deadline DTCTP (Section 

5.1.3) while “Pareto front” button recalls the CS-Heuristic for Pareto front DTCTP 

(Section 5.1.4). Likewise, the “Optimize” button under “Meta-Heuristic” group 

invokes DPSO (Section 3.3) while “Pareto front” button activates the PFPSO 

(Section 4.3) module. As displayed in Figure 6.1, a “Quick-Solve” option is also 

included under the “Meta-Heuristic” group on the main panel. When checked, this 

option avails PFPSO module to run up to five times faster by adjusting the 

parameters of this module. The user interface (UI) of the developed add-in is 

illustrated in Figure 6.1. 

 

 
 

Figure 6.1 – User Interface of the Microsoft Project Add-in. 

 

18a problem which is introduced in Section 3.4.2 is implemented to exemplify the 

application of the designed TCTP add-in. Precedence relationships are defined for 
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the project activities through the standard procedure. As shown in Figure 6.2, time-

cost alternatives of the activities are entered into the corresponding fields as 

follows. For each activity, “Duration 1” and “Cost 1” are filled in with the time and 

cost of the normal mode, respectively. That is, modes with the longest durations 

and the least direct costs are entered first. The remaining time-cost alternatives are 

entered into the succeeding cells (i.e., “Duration 2”/”Cost 2” to “Duration 

10”/”Cost 10”) in ascending order with regard to their direct cost figures. By 

default, Microsoft Project holds “0 days” and “$0.00” for any unfilled entries of 

time and cost, respectively. Hence, for the activities with fewer options than the 

maximum supported number of modes, i.e., ten, the extra fields are left unmodified. 

 

 
 

Figure 6.2 – Defining time-cost alternatives for Microsoft Project Add-in. 

 

As shown in Figure 6.3, by clicking on any of the buttons, “Project Details” window 

pops-up which prompts users to enter the rate of the indirect cost ($/day), project 

deadline (days), and the amount of delay penalty ($/day). 
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Figure 6.3 – Project Details window of Microsoft Project Add-in. 

 

In case the cost minimization/deadline problem is practiced by means of either CS-

Heuristic or DPSO modules, TCTP add-in, after acquiring the project information 

proceeds to a new window (Figure 6.4) which displays the unique optimal solution 

for the single-objective time-cost trade-off problem. 

 

 
 

Figure 6.4 – Optimal solution window of Microsoft Project Add-in. 

 

By pressing the “View Schedule” button on “Optimum Solution” window, users 

are directed to the optimal solution which demonstrates the optimal selection of the 

time-cost options that yields the optimum schedule. Information on the generated 

schedule, including early dates, late dates, and floats, can be obtained from 

Microsoft Project which also provides the visual view of the activities in the form 

of a Gantt chart (Figure 6.5). 
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Figure 6.5 – Optimal schedule generated by Microsoft Project Add-in. 

 

In case the Pareto front problem is practiced for the active project by means of either 

CS-Heuristic or PFPSO modules, TCTP add-in, after acquiring the project 

information proceeds to a new window which is illustrated in Figure 6.6. The 

“Pareto Front Solutions” window provides the sequence of the non-dominated 

solutions which are listed in ascending order with regard to duration amounts. 

 



 

196 

 

 
 

Figure 6.6 – Pareto front solutions window of Microsoft Project Add-in. 

 

The “Pareto Front Solutions” window prompts users to select the desired non-

dominated solution(s) from the schedules listed (Figure 6.7). 

 

 
 

Figure 6.7 – Selection of a non-dominated solution achieved by Microsoft Project Add-in. 

 

By pressing the “View Schedule” button for each of the selected solutions listed on 

“Pareto Front Solutions” window, users are directed to each non-dominated 

solution individually which reveal the arrangements of time-cost alternatives for the 

desired schedules. Details on the generated schedule, including early dates, late 
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dates, and floats, can be attained from Microsoft Project which also presents a visual 

view of the project activities in the form of a Gantt chart (Figure 6.8). 

 

 
 

Figure 6.8 – Schedule for the selected Pareto solution generated by Microsoft Project Add-in. 

 

TCTP add-in is acknowledged to enhance the practicability of the proposed DTCTP 

optimization algorithms. Benefiting from the presented add-in, users of Microsoft 

Project will readily be able to visualize the optimized schedules for the practiced 

projects; hence, the proposed methods are supposed to be more readily accepted 

and used by the parties to construction projects. By means of the developed add-in, 

the new optimization models are envisioned to be applicable in real projects and to 

suit the actual practices of construction managers. It is expected that these 

approaches might prove to be an efficient and effective base for exerting this highly 

challenging problem. 
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CHAPTER 7  

 

 

CONCLUSIONS 

 

 

 

The significance of the counteracting aspects of time and cost for construction 

projects is highly emphasized since project success is chiefly related to these 

factors. A key process for efficacious realization of the anticipated outcomes of 

time and cost is acknowledged to be the preparation of exhaustive plans and 

impeccable schedules. It is declared that construction projects are prone to major 

financial losses short of optimal schedules. Of the schedule optimization 

methodologies, exertion of time-cost trade-off problem is reckoned to play a crucial 

role in securing the pre-specified objectives of time and cost. It is a problem solving 

and decision-making science which provides the management with a quantitative 

basis for decisions on selection of the optimal time-cost alternatives. Despite its 

widely accepted practical significance, no major real-life applicable approach is 

discovered within the construction management literature. The author criticizes a 

large body of the existing research due to the insufficient details on test 

configurations as well as the inadequate size of the practiced problems. The 

literature on large-scale time-cost trade-off problem is discovered to be virtually 

void, with only a few studies using large-scale problems that are generated by 

cloning simple instances. In spite of practicability of discrete multi-objective 

variant of the time-cost trade-off problem, no real-life applicable contribution is 

observed within the earlier research. A few methods that are implemented for real-

life-size large-scale problems, are conceded to lead to unrealistically significant 

computational efforts. Though, for any solution method to be practically viable, 

accuracy needs to be accompanied with the efficiency. Notwithstanding the fact
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that achieving an adequate schedule boils down to utilization of scientific decision 

support tools, no commercial scheduling software provides tools for time-cost 

trade-off analyses. Accordingly, in order to bridge the gap between the theoretical 

and practical relevance in time-cost trade-off problem, new exact, heuristic, and 

meta-heuristic approaches with sound convergence capabilities are proposed, some 

of which are integrated to a popular scheduling software package within the context 

of this thesis. 

 

Apart from the fact that the existing approaches have seldom been applied for 

solution of large-scale DTCTPs, it is interpreted that the dearth of real-life-scale 

problems could possibly be another major reason for the lack of studies on realistic 

problems. Despite the fact that some studies have included problems including up 

to 720, 2000, and 6300 activities, all of the employed large-scale problems are 

generated using small-scale base networks and are generated by copying the core 

problem in serial several times; hence, these problems are anticipated to have 

limitations in reflecting the complexity of the real-life construction projects. In 

order to have a better understanding of the behavior and capabilities of the proposed 

optimization models, in addition to the existing benchmark and case problem, new 

sets of multi-mode large-scale DTCT problems including up to 990 activities have 

been generated by means of RanGen2 random network generator. The 

systematically generated large-scale instances comprise complex networks and are 

treated with realistic sets of time-cost alternatives. In order to compare methods 

rigorously and to quantitatively measure performance of different approaches over 

the benchmark and the RanGen2 instances, performance metrics are employed. The 

incorporated performance comparison indices are designed to measure cardinality, 

accuracy, diversity, and efficiency of the optimization models. Accuracy-based 

performance indices necessitate acquisition of exact optimal solutions; to this end, 

an exact optimization method is developed. 
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The proposed exact method is based on Mixed-Integer Linear Programming which 

engages Gurobi solver. Different variants of this method are introduced for two 

paradigms of cost minimization/deadline and Pareto front discrete time-cost trade-

off problems. Since, exact procedures are the only methods guaranteeing optimality 

of the solutions, the proposed exact methods are mainly used for validation of the 

performance of the developed heuristic and meta-heuristic approaches. The 

proposed exact methods are equipped with a new merging technique which 

exponentially decreases the scale of the practiced problems. The multi-objective 

variant of the proposed exact method is also equipped with an efficient upper-bound 

calculator designed to reduce the size of the solution space. In the light of the 

implemented techniques, computation time of the exact methods are significantly 

reduced. The presented single-objective exact method is shown to be able to 

successfully converge to optimal solutions for 100% of 50-activity, 100% of 100-

activity, 71.66% of 200-activity, 49.16% of 500-activity, and 25% of 990-activity 

deadline DTCTPs within the enforced runtime limit of one hour. Similarly, the 

multi-objective exact method is experimented to effectively capture true Pareto 

fronts for 95.83% of 50-activity, 51.66% of 100-activity, 35.83% of 200-activity, 

15% of 500-activity, and 8.3% of 990-activity Pareto front DTCTPs within the 

imposed CPU time limit of one hour. It is interpreted that the natures of these 

methods tend to be more suitable for pseudo-serial networks that include smaller 

number of time-cost alternatives. Implementation of the upper-bound and the 

merging techniques are confirmed to increases the number of solved problems by 

more than 19% and to reduce the overall average CPU time by more than 18%. To 

the best of author’s knowledge, this is the first contribution where global optimal 

costs and true Pareto fronts are captured for real-life-scale instances that are based 

upon the complex RanGen2 networks. 

 

It is alleged that the existing literature is not rich with particle swarm optimization 

exemplars with the capacity to tackle realistic large-scale DTCT problems. To the 

respect of this, different PSO algorithms are proposed for two extensions of cost 
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minimization/deadline and Pareto front DTCT problems. Both the introduced PSOs 

are equipped with unique semi-deterministic initialization techniques and use new 

principles for presentation and position-updating of the particles. The discrete PSO 

which is designed for the single-objective DTCTP, is complemented with the 

modified-SAM heuristic; whereas, the multi-objective Pareto front PSO is 

enhanced using the simplified Heuristic. The trajectories and velocities of the 

presented PSO-based approaches are defined as probabilities. 

 

The solid convergence capabilities of DPSO is first validated for solution of small, 

medium, and large-scale benchmark problems as well as new sets of instances 

generated by means of ProGen/Max random instance generator. Later, its 

performance is measured against the proposed Cost-Slope Heuristic. The 

comparison of DPSO with the state-of-the-art methods proved that DPSO is among 

the best, if not the best, meta-heuristic approach for single-objective DTCTP with 

respect to both solution quality and computation time. DPSO is shown to be able to 

produce good feasible solutions in acceptable timeframes even for the complex 

ProGen/Max instances. An average deviation of 0.21% from the optima of 500-

activity problems is considered to be practically reasonable which establishes 

DPSO as an effective and robust alternative for real-world applications. To the best 

of author’s knowledge, the proposed DPSO is one of the first methods capable of 

obtaining high quality solutions for the large-scale single-objective DTCTPs within 

seconds. 

 

The sound convergence capabilities of PFPSO is first illustrated for solutions of 

benchmark problems attained from the literature. Later, its performance is 

compared to the proposed Cost-Slope Heuristic using the new sets of RanGen2 

instances as well as case problems. The computational tests involving benchmark 

problems revealed that the proposed PFPSO can provide significantly larger 

number of non-dominated solutions for small, medium, and large-scale problems, 

and remarkably outperformed the well-developed methods. The results revealed 
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that the computation time requirement of PFPSO is considerably less than that of 

the existing methods. It is demonstrated that PFPSO is capable of locating high 

quality non-dominated solutions which are either optimal or very close to the 

optimal costs. To the best of author’s knowledge, this is one of the first 

contributions where a meta-heuristic algorithm is able to adequately solve real-life-

scale multi-objective DTCTPs within seconds, a performance which is unmatched 

by the previous meta-heuristic methods. 

 

It is broadly acknowledged that evolutionary algorithms are very sensitive to 

configuration of their parameters. In real-life situations, the experimental process 

for configuration of parameters for best values may become a tedious and arduous 

task. Yet, the parameters need to be retuned for each new problem at hand which 

might reduce the practicability of the meta-heuristic approaches. The proposed 

DPSO and PFPSO methods are not exceptions to this. On the other hand, 

experimentation of the PSO-based approaches revealed that their exceptional 

performances were largely resulting from their heuristic modules. It was also 

observed that none of the previous heuristics have the capacity to tackle large-scale 

Pareto front DTCT problems. Consequently, regarded as the chief contribution of 

this thesis, different variants of a new Cost-Slope Heuristic are designed and 

developed within the context of this thesis. The proposed CS-Heuristics include 

parallel and serial versions for both cost minimization/deadline and Pareto front 

classes of DTCTPs. CS-Heuristic engages unique scientific and programmable 

rules comprising an innovative Partial-CPM technique which is designed to 

accelerate the solutions process. Furthermore, similar to the proposed exact 

methods, parallel and serial merging techniques are implemented to reduce the scale 

and computation cost of the practiced problems. 

 

Comparative studies on the single-objective CS-Heuristic involving a set of small, 

medium, and large-scale benchmark problems not only confirmed its soundness, 

but also revealed its superiority over earlier state-of-the-art approaches. While it is 
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able to locate high quality solutions for all the practiced cost minimization/deadline 

problems, computation time requirement of this method is also demonstrated to be 

remarkably less than the earlier approaches. In fact, by running on the same desktop 

computer, the processing time of this method is experimented to be less than that 

of DPSO. It is proved that the proposed CS-Heuristic by outperforming the highly 

capable DPSO method, can converge to global optimal solutions with only 

fractional deviations. To the best of author’s knowledge, the proposed CS-Heuristic 

optimization model is the first method that outdoes state-of-the-art meta-heuristic 

approaches and is capable of unraveling large-scale problems comprising thousands 

of activities within practically reasonable timeframes with only fractional 

deviations. 

 

Comparative studies on the multi-objective CS-Heuristic involved a set of existing 

small, medium, and large-scale benchmark instances, case problems acquired from 

the literature, and new sets of RanGen2 instances. A collection of unary and binary 

performance metrics was measured in the course of performance evaluations 

including cardinality, accuracy, diversity, and efficiency indices. Results revealed 

an unmatched performance by CS-Heuristic in comparison with the previous 

approaches including PFPSO algorithm. It is concluded that not only the 

computation time requirement of the innovative multi-objective CS-Heuristic is 

substantially less than the earlier approaches, but it is also able to produce a large 

number of high quality non-dominated solutions for all the practiced Pareto front 

problems. Compared to results of PFPSO over the entire collection of the RanGen2 

instances, both parallel and serial variants of CS-Heuristic are shown to be able to 

achieve higher number of Pareto solutions, serial variant even more so than the 

others. It is also discovered that the number of non-dominated solutions located 

along the final unified frontier are significantly larger for CS-Heuristics. In fact, 

PFPSO only accounted for less than 7% of these solutions, while serial variant 

captured 23% more than the parallel CS-Heuristic. Despite high levels of accuracy 

for all the experimented methods, CS-Heuristics are confirmed to be more 
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successful in converging to the true Pareto fronts with fractional deviations. 

Average deviations for parallel and serial CS-Heuristic are shown to be literally the 

same; whereas, PFPSO’s average deviation value is calculated to be five to six times 

the amount for CS-Heuristics. Well-distributed and widely spread fronts are only 

obtained by means of CS-Heuristic since the area of the solution space covered by 

PFPSO, poorly represents the Hypervolume of the true/best Pareto front. It is also 

interpreted that the nature of PFPSO and CS-Heuristic approaches, in contrast to 

the proposed exact method, tend to be more suitable for pseudo-parallel networks 

that include greater number of time-cost alternatives. To the best of author’s 

knowledge, the proposed CS-Heuristic optimization model is the first method that 

outperforms the highly capable meta-heuristic approaches and is able to tackle 

large-scale problems consisting of hundreds of activities within reasonably short 

timespans and practically viable deviations. Owing to its unprecedented efficacy 

and exceptional accuracy, Cost-Slope Heuristic is expected to contribute to optimal 

planning of realistic construction projects. 

 

Practicability and real-life applicability of the proposed PFPSO and CS-Heuristics 

were firmly validated by means of real construction projects acquired from the 

literature. Due to the extremely successful performance of the proposed 

optimization approaches over the real projects, it is interpreted that the realistic 

projects tend to be relatively simpler than the instances generated within the course 

of this thesis. The deviation and the runtime amounts are conceded to be small even 

for the large-scale 519-activity construction project. In fact, all the methods are 

observed to be able to locate high quality solutions which are either optimal or very 

close to the optimal frontier within less than a second. 

 

Integration of the proposed optimization algorithms into Microsoft Project is also 

presented in this thesis. An add-in which is capable of solving cost 

minimization/deadline and Pareto problems is developed which includes both the 

PSO-based methods and the CS-Heuristics. It is acknowledged to enhance the 
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practicability of the proposed DTCTP optimization algorithms. Benefiting from the 

presented add-in, users of Microsoft Project will readily be able to visualize the 

optimized schedules for the practiced projects; hence, the proposed methods are 

supposed to be more readily accepted and used by the parties to construction 

projects. By means of the developed add-in, the new optimization models are 

envisioned to be applicable in real projects and to suit the actual practices of 

construction managers. It is expected that these approaches might prove to be a 

robust base for exerting this highly challenging problem. 

 

To wrap up, all the different proposed DTCTP optimization models are shown to 

be innovational and efficacious which are highly relevant for real-life applications. 

Particularly, the CS-Heuristic is regarded as a pioneering method which presents a 

new uncrashing concept along with salient techniques for network reduction and 

faster analysis of the networks. Experimentations attest to the efficacy and 

efficiency of the proposed methods for successful solution of real-life-scale 

problems. While the multi-objective variants of all the presented models enable 

articulation of decision makers’ preferences, the author proposes to employ the 

suggested heuristic or meta-heuristic approaches in place of the described exact 

method when the optimality is not regarded as the most crucial concern. 

 

The proposed models still have some limitations which are to be addressed in future 

studies. Firstly, all the developed methods are designed to solve problems with 

standard networks. They can only tackle networks with logical relationships of type 

finish-to-start, considering no lags in between. However, the proposed models 

should consider generalized precedence relationships by covering all the other types 

of constraints including finish-to-finish, start-to-finish, and start-to-start logical 

relationships. Besides, they should also allow for inclusion of positive and negative 

lag times between the activities. Secondly, the proposed Microsoft Project add-in 

accepts only up to ten time-cost alternatives. Though, it is possible for a project 
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activity to comprise more than ten options; hence, the proposed add-in should 

support a larger number of entries for time-cost options. 

Despite exceptional performance of the proposed models, there still remains room 

for improvements. The proposed models run on a single core of the CPU. Though, 

dividing the parallel calculations and processes of the algorithms into several cores 

would further enhance the convergence speed of the optimization approaches. 

Much research also remains to be done toward extending the developed models to 

incorporate other aspects of construction projects such as uncertainties, resource 

limitations, safety, productivity, and quality. Last but not least, development of a 

hybrid meta-heuristic algorithms by capitalizing on the solid convergence 

capabilities of the proposed CS-Heuristic appears to be a promising research area. 
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