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ABSTRACT

A PARAMETRIC STUDY ON PLANETARY GEAR DYNAMICS

Oztiirk, Veysel Yalin
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven
Co-Supervisor: Assoc. Prof. Dr. Ender Cigeroglu

June 2018, 188 pages

An extended parametric study is performed for Planetary Gear Train (PGTS)
dynamics. A purely torsional, non-linear time-varying model is used for the dynamic
simulation of PGTs. Time-dependent stiffness functions are calculated by using
dedicated contact mechanics software that is specialized in gears. Multi-term
Harmonic Balance Method (HBM) is used for the solution of the model. The
fundamental modal characteristics of PGTs are explored. The initial parametric
studies are performed for the basic dynamic factors in PGTs, namely for different
mesh phasing configurations, varying damping levels, different amounts of backlash
and different contact ratios for the mating sun-planet and ring-planet meshes. The
effect of ring gear elasticity on torsional PGT dynamics is investigated in detail. The
direct effects of parameters, which influence the ring gear elasticity, on PGT
dynamics are studied. Tooth Profile Modifications (TPMs), which are one of the
most effective means of reducing the vibration in gears, are first studied on spur

gears. The differences between the ideal TPM designs for different objective



functions of minimizing Loaded Static Transmission Error (LSTE) and Dynamic
Transmission Error (DTE) are analyzed for gears mounted on rigid and compliant
shafts. The positive influence of proper TPM applications on increasing the bending
fatigue lives are shown by analyzing the stress cycles on TPM applied spur gear
pairs. Next, acomprehensive study is performed on the characteristics of ideal TPMs
in PGTs. The dependence of ideal TPM designs on modal characteristics of PGTs
is shown. The conditions in which the ideal TPM differs from the TPM

configurations that minimize LSTE are explored.
Keywords: Planetary gear dynamics, Tooth Profile Modifications, Harmonic

Balance Method with multiple harmonics, Loaded Static Transmission Error, elastic

ring gears, mesh phasing.
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0z

GEZEGEN DiSLi DINAMIiGi UZERINE PARAMETRIK BiR CALISMA

Oztiirk, Veysel Yalin
Doktora, Makina Miihendisligi Boliimii
Tez Yéneticisi: Prof. Dr. H. Nevzat Ozgiiven
Ortak Tez Yoneticisi: Dog. Dr. Ender Cigeroglu

Haziran 2018, 188 sayfa

Gezegen disli dinamigi i¢in kapsamli bir parametrik ¢alisma gerceklestirilmistir.
Calisma kapsaminda yapilan dinamik benzetim calismalarinda, yalnizca burulma
yoniindeki serbestlik derecelerini igeren, dogrusal olmayan degisken zamanli bir
model tercih edilmistir. Zamana bagh disli kavrama direngenlikleri dislilere
Ozellesmis bir kontak mekanigi yazilimi vasitasiyla hesaplanmistir. Modeldeki
denklemlerin ¢6zlimiinde ¢ok harmonikli Harmonik Dengeleme Metodu
kullanilmistir. Gezegen disli dinamiginin temel dinamik modal 6zellikleri
incelenmistir. Yapilan ilk parametrik ¢alismalarda, farkli kavrama sathalamasi
ozelliklerine, farkli soniimleme seviyelerine, farkli dis bosluklarina ve glines-
gezegen ve halka-gezegen disli ¢iftleri i¢in farkli temas oranlarina sahip gezegen
disli sistemleri incelenmistir. Halka disli esnekliginin gezegen disli dinamigine
etkileri detayli bir sekilde incelenmistir. Halka disli esnekligini etkileyen faktorler
ile gezegen disli dinamigi karakteristikleri arasinda direk iligkiler kurulmustur. Disli

titresimini  azaltmada kullanilan en etkili yontemlerden biri disli profil

vii



degisiklikleridir. Disli profil degisikliklerinin disli dinamigine etkileri ilk olarak diiz
disliler 6zelinde calistlmustir. Yiikli Statik Iletim Hatasi’m (YSIH) azaltmaya
yonelik disli profil degisiklikleri ile Dinamik Iletim Hatasi’'mi (DiH) azaltmaya
yonelik ideal disli profil degisiklikleri arasindaki farklar, esnek ve rijit miller {izerine
yerlestirilmis diiz disliler i¢in ortaya konmustur. Disli profil degisikliklerinin disli
egilme Omiirleri tizerindeki olumlu etkileri, uygun disli profil degisikligi
uygulanmis diiz dislilerde gerinim devirlerinin yorulma analizleri vasitasiyla
gosterilmistir. Bir sonraki adimda, disli profil degisikliklerinin gezegen disli
dinamigi {izerindeki etkileri incelenmistir. Ideal disli profil degisikliklerinin
gezegen disli dinamik mod tiplerine baglilig1 gosterilmistir. Gezegen dislilerde
YSIH degerini en diisiik veren disli profil degisiklikleri ile dinamik etkileri en aza
indirgeyen disli profil degisikligi tasarimlarinin birbirinden ayristigi kosullar ortaya

konmustur.

Anahtar kelimeler: Gezegen disli dinamigi, disli profil degisikligi, ¢ok harmonikli
Harmonik Denge Yéntemi, Yiiklii Statik Iletim Hatasi, halka disli esnekligi, disli

kavrama safhalamasi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A planetary gear train (also known as epicyclic gear train) consists of two central
geared members. The inner central member is named as “sun gear” whereas the
outer central member which is an internal gear is called “ring (annulus) gear”. A
number of “planet gears” (number of planets usually between 3 and 8) revolve
around the sun gear with the help of a carrier, on which the planet gears are mounted.
The planet gears also mesh with the ring gear. Figure 1-1 shows the schematic of a
simple planetary gear train (PGT).

Sun gear Carrier

Planet Ring

gear

Figure 1-1 A schematic of a simple planetary gear train [1]



Different speed and torque conversion ratios are obtained simply by different
assignments of input, output and the fixed members between sun gear, ring gear and
carrier. Since the power splits into a number of parallel planet branches, PGTs
typically have higher power density (power transmitted / total volume) compared to
counter-shaft gearbox configurations. Their coaxial design allows compact gearbox
cross-sections with no or little radial support (bearings) requirements. All gear mesh
and bearing forces on the transverse plane of the gear set cancel out nominally,
leaving only pure torsion. They are less sensitive to variety of manufacturing errors
since they can self-center (or deflect) to compensate for such errors. Moreover they
are perceived to be quieter than their counter-shaft counterparts.

PGTs are used extensively in automotive, rotorcraft and wind energy industries.
Figure 1-2 and Figure 1-3 show examples for PGTs that are used in helicopters and
wind turbines, respectively. Although they are being used in quiet a wide range of
applications for many years, problems related to dynamic behavior of planetary
gears are still common. In addition to the fatigue related problems because of the
vibration; noise is also an important concern for many applications, including
rotorcraft and wind turbine industries. In helicopters, planetary gears are held
responsible for being the main source of cabin noise [2]. Cost of maintenance is an
important factor in wind turbine industry because of the significant downtimes. It
has been shown that planetary gearbox failures due to dynamic loading of the
components is a very common failure mode for wind turbines [3]. Planetary gear
dynamics studies are aimed at understanding the physical phenomena behind the

problems similar to these examples and finding remedies for them.



Figure 1-3 Planetary gearbox for a wind turbine [5]



A detailed literature survey is presented here, to give the state of the art in the field

and discuss the further needs in planetary gear dynamics studies.

1.2 Literature Survey

Although most of the PGT dynamics studies available in the literature stem from the
research in parallel-axis gearing, the literature survey information provided here is
going to be mostly limited to PGT dynamics studies. However it should be
underlined here that fundamental knowledge regarding gear dynamics was obtained
through many precious documented works in the literature, before going forward
with PGT dynamics studies.

The wide use of PGTs also made the PGT dynamics studies attractive for many
researchers. The studies for PGT dynamics stem back to 1970s, following the start
of the gear dynamics studies in 1960s [6]. Most of these studies aimed at the ultimate
goal of reducing the vibration levels in PGTs, since vibration-induced dynamic loads
are one of the major sources of failures of these components. Depending on the
applications, PGT failures may result in serious consequences, ranging from

extended downtimes (e.g. for wind turbines) to loss of lives (e.g. for helicopters).

The use of lumped-parameter models is quite popular for PGT dynamics studies.
Depending on the nature of the PGT design under consideration, the lumped-
parameter models vary from purely torsional (1D) models (e.g. models used in [7,8])
to 3D models where the out-of-plane vibration is also considered along with the
vibrations in torsional rotation and in-plane translation directions. The models used

in [9,10] can be given as examples to those 3D models mentioned.



Similar to parallel-axis gear systems, the modeling of the mesh stiffness and tooth
contact loss phenomenon play an important role in the accuracy of the dynamic
simulation of PGTs. For modal analysis of PGTs, models employing constant mesh
stiffness values for sun-planet and ring-planet meshes can be preferred as it is the
case in the study of Kahraman [11]. In forced response analysis of a PGT, this
modeling approach is also used frequently. In this methodology, forcing term is
modeled as the static deflection of the respective meshes multiplied by a constant
stiffness term. In parallel-axis gear terminology, this deflection is defined as the
static transmission error. However, the use of this terminology in planetary gear
systems may lead to ambiguity, as it is not clear whether one refers to the individual
error due to the deflection of a single gear-pair or the global deflection of a planetary
gear system [6]. Although this modeling approach is shown to have limitations when
compared to time-varying mesh stiffness models [12], it also offers advantages in
terms of model simplicity and ability to represent the fundamental features of PGT
dynamics. References [13,14] are examples to the studies using this modeling

approach.

During the rotation of the gears, the stiffness of the contact between meshing gears
vary, due to the geometry of the gears and the change in the number of teeth in
contact. The parametric excitation due to the time-varying stiffness is especially
important for PGTs comprised of spur gears. The effects of these parametric
excitations are also studied for PGTs [15,16]. However calculating mesh stiffness
as a function of time is usually a complicated task. The calculation of the time-
varying mesh stiffness is possible through using finite element methods or dedicated

computational tools specialized in loaded tooth contact analysis.

Models that include variable mesh stiffness and tooth contact loss phenomenon lead
to more accurate forced response predictions. Both phenomena are especially

important in PGTs with spur gears as the experimental studies [17,18] showed



strong nonlinear behavior for spur gears. Although similar experiments are not
conducted yet for PGTs, the analytical studies performed for PGTs showed also that
nonlinear effects can also be expected for PGTs in general [16,19-22].

PGTSs show distinct modal properties mostly due to their cyclic symmetry and these
modal characteristics are also analyzed in the literature. In the earlier studies of
Cunliffe [23] and Botman [24], which were limited to example planetary gear sets
consisting of 3 planets, a first classification was made as the natural modes are
categorized as “axisymmetric” and ‘“nonaxisymmetric” modes. An improved and
more detailed classification is made by Kahraman for the torsional modes [11]. Later
the classification is extended to 2D and 3D models by Parker [25]. Ericson and
Parker also correlated these findings with experiments [26]. Various researchers
extended the related studies for simple PGTs to compound PGTs [27-29].

As the studies on the modal characteristics of PGTs showed, the phasing
relationships between gear pairs are also very important regarding the forced
response characteristics of PGTs. These phase relationships depend on the number
of planets and number of gear teeth of sun and ring gears [30]. The effectiveness of
mesh phasing in reducing the PGT vibration is studied extensively by many
researchers [31-33]. It is possible to suppress some of the natural modes of a PGT
by configuring the design via modification of the mentioned parameters. This

approach is very effective in reducing the dynamic response of PGTs [34].

In some applications like rotorcraft PGTs, use of thin-rimmed ring gears is preferred
due to the advantages in weight and load-sharing [35]. Kahraman et al. [36] used a
combined FE-contact mechanics tool to study the dynamic characteristics of such
PGTs. An analytical model incorporating the effect of elastic thin ring gears with
time-varying mesh stiffness is used by Canchi and Parker [33] in their related study.

Abosleiman and Velex combined their lumped-parameter model with a FE



formulation to analyze the effects of ring gear elasticity [37,38]. Chen et al. [39]
performed time-integration simulation on their model which includes the torsional
effects of having compliant ring gears. The effects of having compliant members in
a PGT are extensively studied by Helsen et al. [40-42] for wind turbines both

analytically and experimentally.

The initial studies on profile modifications were mainly focused on the effect of
these modifications on reducing the loaded static transmission error (LSTE) on
parallel-axis gearing. LSTE optimization efforts go back to the study of Tavakoli
and Houser in 1986 [43]. In their study, an objective function based on the mean
value of the transmission error harmonics under different design torques was used
in search of optimal tooth profile. In 2005, Fonseca et al. [44] employed a genetic
optimization algorithm to the same static model of Tavakoli and Houser. These
studies reveal that optimization efforts based on LSTE fluctuation minimization are
very effective when torque is the only parameter considered regarding the
operational characteristics of gear pairs. Different concepts regarding the
application of profile modifications were studied in order to improve the

effectiveness of these modifications at different torque levels [45].

Afterwards, effect of profile modifications on reducing the vibration in geared
systems was studied by using the direct approach of including profile modifications
in the dynamic models. The references [12,18,46] are only a few examples to the
mentioned studies. The experiments on parallel-axis have also shown us that the use
of proper tooth profile modifications is a very effective way of reducing the gear
vibration [47,48]. Further improvement towards reducing actual vibration levels can
be achieved via optimization efforts targeted at DTE minimization. Bonori et al.
[49] performed dynamic analyses on a spur gear pair to check the quality of their
genetic algorithm based LSTE optimization method. In 2011, Faggioni et al. [50]

developed an optimization model with 8 parameters and concluded that optimization



which is directly targeted minimizing DTE produced better results than an

optimization study which aims to minimize LSTE for spur gears.

Similar to parallel-axis gear systems, profile modifications are also effective in
decreasing the vibration levels in PGTs. Abousleiman and Velex [37] showed that
it is possible to eliminate resonances by applying proper profile modifications. In
another study, Bahk and Parker [51] studied the effect of linear profile modifications
on PGTs and concluded that a full-system approach is necessary in evaluating the
effects of profile modifications on PGTs. They showed that static evaluations for
individual sun-planet and ring-planet pairs are inadequate. When compared to the
parallel-axis gear systems, because of the more complex nature of PGTSs, there is
still a need for studies which would address the different aspects of the PGT design

and tooth profile modifications together.

1.3 Motivation, Scope and Objective

Gear dynamics have been extensively studied during the last 40 years. PGTs present
unique features when compared to parallel-axis geared systems, which need special
attention. The number of studies which focused on planetary gear dynamics started

to increase steadily during the 2000s.

Many parameters, including mesh stiffness of gears, nonlinearity due to backlash,
damping characteristics, component elasticity, errors due to manufacturing and
assembly, profile modifications and mesh phasing, have strong effects on dynamic
characteristics of planetary gears. Some of these parameters are irrelevant for the
parallel-axis gear systems, whereas some of them affect the dynamics of PGTs in a
different manner when compared with how they affect parallel-axis gear sets.

Although the influence of some of these parameters on PGT dynamics have been



studied extensively, there is still need for research in order to fully understand the

influence of some parameters on PGT dynamics.

This dissertation aims to address the following topics:

e A review of planetary gear dynamics and torsional modal characteristics of
PGTs based on the analytical formulations using a nonlinear time-variant
modeling scheme. Information about solution using HBM with arc-length
continuation (Chapter 2).

e Parametric study related to PGTs with different mesh phasing
configurations. Investigations on the effects of backlash, level of damping,

external force and gear mesh contact ratio on PGT dynamics (Chapter 3).

e Investigation of rim stiffness effects on torsional dynamics of PGTs. Study
of the effects of rim design parameters on PGT dynamics (Chapter 4).

e Analyses of the effects of TPMs on spur gear dynamics by using both SDoF
and MDoF dynamic models. Demonstration of the effects of proper TPMs
on reducing the dynamic loads and increasing the bending fatigue lives of

spur gears (Chapter 5).

e Investigation of the effects of TPMs on PGT dynamics. The relationship
between the static mesh displacements and dynamic response for various
natural modes of PGTs. The sensitivity of TPM designs to dynamic response
considering applied loads, operational speed intervals, manufacturing

tolerances, wear, etc. (Chapter 6).



e Investigation of the effects of double-relief TPMs on the dynamic
characteristics of PGTs with high contact ratio (HCR) spur gears.
Comparisons between dynamic responses of PGTs with linear TPMs and
PGTs with double-relief TPMs (Chapter 7).
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CHAPTER 2

OVERVIEW of PLANETARY GEAR DYNAMICS

2.1 Mathematical model

In this study, a purely torsional mathematical model, as shown in Figure 2-1, is used.
It is a time-varying nonlinear model, including time-varying stiffness and backlash
nonlinearity. Kahraman [9] showed that a purely torsional model for PGT dynamics
is reasonably accurate even for the cases where floating central members are present.
Each gear blank is assumed to be rigid and only the mesh stiffness between
interfacing gear teeth is modeled. Sun and ring gears are mounted on rigid bearings.
Similarly planets are mounted on rigid carriers through rigid planet bearings. Each
gear and the planet carrier are assumed to move in the torsional direction only, i.e.
the model has (number of planets + sun + ring + carrier) degrees of freedom.
Damping between the mating gear teeth is modeled as viscous damping with
constant damping coefficients. The mesh stiffness is modeled with a time-varying
parameter in order to simulate the variation of stiffness during rotation of the gears
caused by changing contact point and number of teeth in contact. Variation of mesh
stiffness is known to act as a parametric excitation to the dynamic system.

11



Carrier

Figure 2-1 Schematic for the PGT dynamics model

Equations of motion for the torsional model given in Figure 2-1 can be written as

follows
M s).(.s (t) + Cspi Z.si (t) + i gsi (t) + ksXs (t) = fs ’ (21)
MR ©)+6, 32,0+ 8,0+kx O 1, @)
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M cxc (t) - Csp Zp Z‘si (t) - Crp Zp Z.ri (t) - Zp gsi (t) - Zp o (t) + chc (t) = fc ’ (23)

I\/Iixi (t) +Cspzsi (t) _Crpzri (t) + 0 (t) — 0 (t) = O’ fori =1 2’ sy np ) (24)

where,

1, 1, I,

M= Mespe Me=tienm, 29
T T

LU S (2.6)
rS rr rC

Here x(t) and X, (t) denote the linear displacement of sun gear and ring gear along

the respective line of actions (angular rotation times the gear base radii). X.(t)
denotes the linear displacement of the carrier (angular rotation times the radius to

the center of a planet); whereas, x(t) is the linear displacement of the i planet

along its line of action. z,(t) and z,(t) are mesh displacement functions for the i ™

sun-planet and ring-planet meshes, respectively. They can be expressed as

2,(0) = %, (0 + % () %, (1) e (1), (2.7)
2,(0) = % (1)~ X% () - X, () e, 1), (2.8)

where e (t) and e, (t) are the geometric error terms for the i " sun-planet and ring-
planet meshes. The error terms e (t) and e, (t) are used both for profile deviations
as well as the intended tooth profile modifications (TPMs). M, M, and M_are the

equivalent masses for sun, ring and carrier, respectively. Similarly, f., f, and f,

denote the equivalent external forces applied on sun, ring and carrier, respectively.

k,, k. and k_are the terms representing the constant stiffness between ground and

the respective components. Note that for the fixed member, the respective stiffness

13



value can be assumed to be infinite; whereas, they can be set equal to zero for the

other members. ¢, and c,, are the constant damping coefficients for sun-planet and
ring-planet meshes, respectively. n  stands for the number of planets; whereas, m,

is the mass of the i™ planet. g (t) and g,(t) are the nonlinear spring force

functions due to the backlash between the mating gear teeth for the sun-planet and
ring-planet meshes, respectively. Loss of contact between the teeth of mating gears
is one of the most dominant and the most studied nonlinear phenomena in gear
dynamics studies. The sudden loss of contact results in a softening type of behavior
that results in shift of resonance frequencies to the left in frequency domain. The
backlash is included in the model as a gap element. Therefore the nonlinear spring
force functions can be defined as

ksi (t) [Zsi (t) - b] for Zsi (t) > b
g, () =40 for —b<z,(t)<b | (2.9)
ky (D)2, (t)+b] for z,(t)<—b

and

kri (t) [Zri (t) - b] for Zri (t) > b
g, (=40 for —b<z,(t)<b . (2.10)
ki (O[z:(t)+b] for z,(t)<—b

One can refer to “List of Symbols” section given at the beginning of the thesis, for

the remaining symbols that are not explained here.

2.2 Harmonic Balance Method

Solution of differential equations of motion using direct time integration is

computationally expensive for parametric studies of planetary gear dynamics that
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require a vast number of simulations. Since steady state solutions are of interest, in
this study, Harmonic Balance Method (HBM) is used. HBM is based on the simple
idea where an assumed form of periodic solution, which is expressed as Fourier
series, is inserted into the nonlinear equation where the periodic excitation is
similarly expressed as Fourier series and coefficients of similar terms are balanced

to determine the unknown ones.

Using multi-term HBM, nonlinear differential equations of motion given by Egs.
2.1 - 2.4 can be converted into a set of nonlinear algebraic equations. The periodic
parametric excitations for both sun-planet and ring-planet meshes given by Eqgs. 2.9
and 2.10, can be represented in Fourier series as

N

Ky (£) =K1+ D (Kg 20 COS (N@t) +Kg 5,1 SIN (N 01)), (2.11)
n=1
N

K (®) =Ky + Y (Ky oy COS (N@t) + K,y 5, SIN(N01)). (2.12)

n=1

Similarly, the periodic error terms which may represent gear profile errors or TPMs,

i.e. e4(t) and e, (t), can be expressed as

N
ey (t) = Eg, + D (Eq o cOS(Not) + E

n=1

sin(not)), (2.13)

si,2n+1

N
eri (t) = Eri,l + Z( Eri,2n Cos (n a)t) + E

n=1

sin(not)). (2.14)

ri,2n+l

In PGTs, phase relationships shall be considered in formulating the mesh stiffness
and error terms, based on a reference mesh, both for sun-planet and ring-planet

meshes. The related phasing equations can be expressed as follows
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For sun-planet mesh:

Kqi 2n = K20 COS(NZ,D;), (2.15)
K 2ns1 = Koz onia SIN(NZ,D;) . (2.16)
Egon = Eg o0 COS(NZ,D)), (2.17)
Egioni = Eqona SIN(NZ, D). (2.18)

For ring-planet mesh:

Kion =KiionCOS(NZ D, +Ng,.), (2.19)
Ki i = Kip o SINNZ, D, +N g, ) - (2.20)
Eizn =EnnCOS(NZ,D, +ng, ), (2.21)
Eiznt = EonaSINNZ, D, +ng, ). (2.22)

Here Z, and Z, denote the number of teeth for sun and ring gears, respectively. @,
is the angular position of the i™ planet (i.e. for an equally spaced 4-planet system,
planets are positioned at 0, 7/2, © and 37/2, respectively). ¢, is the phase difference

between the sun-planet and the ring-planet meshes.

The assumed solutions for Egs. 2.1 - 2.4 can be expressed in Fourier series as follows

X, (1) = X, + ZN:(XM cos(Nwt) + X, ,,,, sin(nwt)) (2.23)

a,2n+l

Here X, where a=s,r,c,i,i+1,...,n_, represents the harmonic terms of the

a’ 1 ilpy

displacement of the sun, ring, carrier and planets, respectively.

16



The resulting nonlinear algebraic equation vector is

T
(Rs,11"" Rs,2N+17 Rr,l""’ Rr,2N+1’ Rc,l"“’ Rc,2N+l)
R= . (2.24)

T
(R1,1""’ R1,2N+l’ Rz,ll"'v R2,2N+1""’ Rnp,ll"'f Rnp,2N+l)

The equations can be listed for sun gear as
Rs,l = ksxs,l + ZGsi,O - Fs,l =0 ) (225)
i=1
s,2n — "'s/Vs.2n n

Ry 20 = K X 20 =NO*M X, 0 +2n0Cy D Z g pna+ > Ggon = Fopn =0, (2.26)
i=1 i=1

Rs,2n+l = ksxs,2n+l - nsz s Xs,2n+l - znwcsp Z Zsi,2n + ZGsi,ZnJrl - I:s,2n+1 =0. (227)
i=1 i=1

For ring gear:

R.=kX,+>.G,,-F,=0, (2.28)

r,
i=1

=0, (2.29)

rn2n

Np Np
2
Rr,2n = kr Xr,2n -no'M r Xr,2n + 2n(’)crp Z Zri,2n+1 + ZGri,Zn -F
i=1 i=1l

Rr,2n+1 = kr Xr,2n+l - nsz r Xr,2n+l - 2r](’)Crpz Zri,2n + ZGri,Zml - I:r,2n+1 =0. (230)
i=1 i=1

For carrier:

Rc,l = chc,l_ZGsi,l_ZGri,l_ Fc,l =0, (2.31)
i1 i-1
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Rc,2n = kc Xc,2n - n(’OZM c Xc,Zn - 2no‘)csp Z Zsi,2n+l - 2r-](Dcrp Z Zri,2n-¢—1 - ZGsi,Zn
i=1 i=1 i=1 ’ (2'32)

Rc,2n-¢-1 = chc,2n+l - n(DZM cXc,2n+l + 2r](")cspZ:Zsi,Zn + 2r](’OcrpZ:Zri,Zn - sti,zn

. o = = (2.33)
_Z Gri,2n+l - I:c,2n+l =0

i=1
For planets:
R,=G4,-G,;,=0, (2.34)
Ri,2n = _n(’OZMi Xi,2n + 2n®Csszi,2n+l - 2n('ocrpzri,ZnJrl +Gsi,2n _Gri,2n =0 ) (235)
Ri,2n+1 = _n(DZM i Xi,2n+1 - 2n(’ocspzsi,Zn + 2r](’Ocrpzri,Zn + Gsi,2n+l _Gri,2n+1 =0, (236)

where n=1, 2, ..., N, N being the total number of harmonics used in the solution.

Z; and Z,;, where i=1, 2, Ny, denote the harmonic terms of sun-planet and ring-

planet mesh displacement functions given in Egs. 2.7 and 2.8, respectively.
Similarly G, and G, are the harmonic terms of non-linear spring force functions
for sun-planet and ring-planet meshes given in Egs. 2.9 and 2.10, respectively. n

stands for the harmonic number and o represents the mesh frequency.

2.2.1 Newton’s Method with Arc-Length Continuation

The nonlinear algebraic equations obtained for PGT model (Egs. 2-25 — 2.36) can
be solved iteratively by utilizing Newton’s method, for the unknown displacement
vector of:
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T
(Xs,l""’Xs,2N+1’Xr,1""’Xr,2N+1’Xc,1""’Xc,2N+1)

X = ot (2.37)
(Xl,li""X1,2N+1’X2,1’"'vX2,2N+1v""X ,1""’an,2N+1)

Mo

However, during solution, the solution path can reverse its direction which causes
Jacobian matrix to become very close to being singular and hence leads to
convergence problems. This problem can be avoided by introducing a new
continuation parameter, arc-length, instead of the frequency. By using arc-length
parameter, it is possible to follow the solution path, even at turning points. Arc-
length parameter, s, is defined as the radius of a hypothetical n-dimensional sphere

having its center located at the previous converged iteration. To apply arc-length
continuation method, the vector of unknowns is expanded asv=(xT,a))T. The

solution of the new system of nonlinear equations is located on the surface of this
n-dimensional sphere, defined bys®* = Av{ x Av, . The additional equations are

introduced as

h(v,) = Av] x Av, —s* =0, (2.38)

Av, =V, =V, . (2.39)

Here v, , is the converged solution at the previous solution point; whereas, v, is

the current solution point. Eqn. 2.38 is added to Egs. 2.25 — 2.36 to obtain a new set
T

of nonlinear algebraic equations for the PGT model, S(v) = (R(X)T h(v)) A

single step of Newton iteration is therefore formulated as

Vf(m) _ V(km—l) -J (V(km—l) )71 S(Vﬁm_l)) , (240)
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where J (v{"™) is the Jacobian matrix of S calculated at the (m—1) ™ iteration for

the k ™ solution point. The iterations continue until the norm of S(vﬁm)) settles

within the given tolerance band.

Further details of Newton’s method with arc-length continuation can be found in

references [52-54].

2.3 Validation of Multi-Term HBM with Direct Time Integration

Besides its advantages in terms of computational speed, HBM coupled with a path
following algorithm such as arc-length continuation is able to show multiple
solutions for the speed ranges where nonlinear effects are still dominant. Using time
integration method, one can obtain only a single solution depending on the initial
conditions. In order to validate HBM solutions, for an example PGT, the solution of
the system is obtained by utilizing direct time integration and results are compared

with HBM solutions. Parameters of this example gear set are given in Table 2-1.
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Table 2-1 Parameters for example planetary gear set used in HBM vs. time
integration comparison

SUN PLANET RING
Number of planets 4
Number of teeth 38 22 82
Module [mm] 4
Pressure angle [deg] 21.3
Effective outside diameter [mm] 158 95 323
Root diameter [mm] 142 80 336
Facewidth [mm] 30
Transverse tooth thickness [mm] 5.3 6.8 5.3
Diameter at measured tooth 152 88 328
thickness
Average mesh stiffness [1IE6 N/m] 538.0 665.5
Mesh damping coefficients [Ns/m] 1872.7 2078.5
Inertia/r? [kg] 2.42 0.82 10
Torque applied [Nm] 2400 - -
Young’s modulus [GPa] 206.8

In this example PGT, the ring gear is fixed and carrier is modeled as a large inertia.
No TPM is applied on any of the gears. The mesh stiffness for the example PGT is
calculated from gear contact mechanics tool WindowsLDP of Ohio State University.
6 harmonic terms are used for representation of time-dependent mesh stiffness
functions in HBM solution. Table 2-2 and Table 2-3 give the information related to
the mesh stiffness harmonics regarding the example PGT in Table 2-1, for sun-

planet and ring-planet meshes, respectively.

21



Table 2-2 Sun-planet mesh stiffness harmonics

Mesh Stiffness Amplitude Phase angle
Harmonic # [1E6 N/m] [deq]
1 141.35 -134.41
2 90.94 -57.54
3 16.10 39.22
4 34.58 -131.63
5 37.37 -57.74
6 11.27 13.21

Table 2-3 Ring-planet mesh stiffness harmonics

Mesh Stiffness Amplitude Phase angle
Harmonic # [LE6 N/m] [deg]
1 174.14 -122.02
2 119.06 -65.34
3 28.77 -6.99
4 34.94 -132.87
5 49.12 -74.32
6 17.06 -25.17

Figure 2-2 and Figure 2-3 show the calculated mesh stiffness functions along with

their 6-harmonic approximations.
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Figure 2-3 Exact ring-planet mesh stiffness and 6-harmonic approximation

Egs. 2.1 - 2.4 are solved by using direct time integration for the example PGT. Time-
integration solution is obtained using the ODE45 routine in MATLAB®. For time-

integration solution, rms of the response is calculated after the steady state is
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reached. Similarly for HBM solution, rms of the harmonic terms of the displacement

response is calculated for sun gear and planet gear, respectively, as

n=1

1
- XS n2+Xs n+2 E
x;ms:{z . J} , (2.41)

1
J ><i n2+xi n+2 2 -
xi”“s={z 2 > 20+ ]} , i=12,..,n,. (2.42)

n=1

Comparisons between results obtained using direct time-integration and HBM
solution using 6 harmonics are shown in Figure 2-4 and Figure 2-5 for sun

displacement and planet displacement, respectively.

70

= Time-integration
N —HBM with arc-length continuation

\

[o)]
o

a
o

N
o

w
o

\

\
fk /\
5\
1300 2000 3000 4000 5000 6000 7000 8000
Sun speed [rpm]

N
o

Sun displacement [um]

=
o

Figure 2-4 Tl vs HBM comparison for sun displacement (rms)

24



a1
o

A = Time-integration

45 \\ —HBM with arc-length continuation
—4
£ \
3
=35
: \\
g 30
: \\
@ 25
8 \ N\
215 k
@®
HE I\ A

1300 2000 3000 4000 5000 6000 7000 8000

Sun speed [rpm]

Figure 2-5 Tl vs HBM comparison for planet displacement (rms)

Results of the comparison study show that HBM with 6 harmonics captures the
steady state response of the PGT system under consideration accurately. Multiple
solutions are obtained with HBM at the resonant frequency around 3000 rpm which
are not determined by TI. In the rest of the study, HBM is used to determine the
steady state response of gear trains.

2.4 Modal characteristics of PGTs

PGTs show unique characteristics in terms of modal properties. Modal analysis is
performed for the example PGT provided in Table 2-1, except that this time the
carrier has a finite equivalent inertia of 10kg, in order to clearly understand and draw

conclusions regarding the characteristics of torsional modes.

Modal analyses are performed for the different cases where sun, ring and carrier are
fixed in each case.
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Table 2-4 shows the natural frequencies for these different cases.

Table 2-4 Natural frequencies of the example PGT for different boundary

conditions
Natural Natural Natural
Mode . : i
number freql_Jency in frequenc_y in freque_ncy in Hz
Hz (Ring-fixed) Hz (Sun-fixed) (Carrier-fixed)
1 0 0 0
2 4559 3775 3709
3 6099 6099 6099
4 6099 6099 6099
5 6099 6099 6099
6 7146 6469 7256

Table 2-5, Table 2-6 and Table 2-7 show the mass-normalized mode shapes for the
configurations in Table 2-4. The first mode for each configuration is the rigid-body
mode where the relative sun-planet and ring-planet mesh displacements are zero.
Modes 3-5 are pinion modes in which neither of sun, carrier or ring gears rotate.
Natural frequencies for these modes are also observed to be independent of the
number of planets. Moreover sum of rotations for the planets equal to zero in these
modes. These modes are called as “sequentially-phased” modes. The mode shapes
for the second and 6™ modes are such that all planets rotate equally. These modes
are categorized as “in-phase” modes. The details of the terms “in-phase” and

“sequentially-phased” will be given in Chapter 3.
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Table 2-5 Mass-normalized modal vectors for fixed sun gear configuration

Fixed sun

nt"ﬂ‘igzr 1 2 3 4 5 6
Carrier 0137 -0,281 0 0 0 -0,047

Ring 0274 0,116 0 0 0 0,108
Planet-1 0137 0153 -0,169 0831 0442  -0513
Planet-2  -0,137 0153 00904  -0268 0160  -0,513
Planet-3 0137 0153 -0,140 0105  -0,040 -0513
Planet-4  -0,137 0153 -0595  -0,668 0338  -0,513

Table 2-6 Mass-normalized modal vectors for fixed ring gear configuration

Fixed ring

nmgzr 1 2 3 4 5 6
Carrier 0209 0281 0 0 0 -0047

sun 0417 0309 0 0 0 -0379
Planet-1  -0209 0258 0189 0863 0366  -0,441
Planet-2  -0209 0258 0644  -0630 0320  -0,441
Planet-3  -0209 0258 0876  -0275 0269  -0,441
Planet-4  -0209 0258 0042 0042 0954 -0,441
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Table 2-7 Mass-normalized modal vectors for fixed carrier configuration

Fixed carrier

ntﬂrﬂgzr 1 2 3 4 5 6
Ring 0252 0,178 0 0 0 10,067
sun 0252 0,484 0 0 0 0,339

Planet-1  -0252 0,187 -0411 0776  -0378 0,454

Planet2  -0252 0,187 0935 0005  -0200 0,454

Planet-3  -0252 0,187 -0401  -0,785 -0370 0,454

Planet-4  -0252 -0,187 -0123 0004 0948 0454

Table 2-5, Table 2-6 and Table 2-7 show that the characteristics mentioned here are

independent of which member of the PGT is fixed, i.e. similar modal characteristics

are observed for different PGTs irrespective of the power configuration. Figure 2-6

shows mode shapes for the fixed-ring configuration given in Table 2-6. Note that

carrier is not shown in this figure for clarity.

The modal characteristics of PGTs are important for the forced response dynamic

analyses. It is possible to suppress some of these natural modes through proper

configuration of mesh phasing. The details of mesh phasing for PGTs are provided

in the next chapter. Moreover these mode shapes also affect the design of TPMs

which are applied in order to reduce vibration of PGTs. The effect of mode shapes

on the design of ideal TPMs are addressed in Chapter 6.
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CHAPTER 3

BASIC CONCEPTS IN PLANETARY GEAR DYNAMICS

3.1 Mesh Phasing in Planetary Gear Trains

Phase differences between gear mesh actions for planet-sun and planet-ring gear
meshes are important in characterizing the dynamic properties of a PGT. In order to
reduce the vibration in planetary gears, one of the most effective remedies is the
proper phasing of the contact between different teeth of a planetary gear system. By
doing so, it is possible to cancel out some of the harmonics of the gear mesh forces.

Since it is one of the key elements affecting the characteristics of PGT dynamics,
additional care should be taken when defining the phase relationships between the
multiple tooth pairs that continuously come into contact with each other. These
phase relationships have great influence on the dynamic response of planetary gear

sets.

There exists a difference in the phase for mesh stiffness functions between gear pairs
in a PGT. The mesh phasing difference between individual sun-planet and ring-
planet meshes depend on the number of teeth of sun and ring gears and the position
of the planets. Therefore number of planets in a PGT also indirectly affects the mesh

phasing characteristics.

In order to also show the effect of contact ratio on the mesh stiffness, consider a
rectangular wave approximation for mesh stiffness functions of both sun-planet and
ring-planet pairs. The stiffness functions for different sun-planet and ring-planet

pairs can be defined as [7]:
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For sun gear:

N
kg (£) =Kz + 2 (Kg 5, COS(N @ 1) +K

n=1

sin(nwt))

si,2n+1

Kg,, =K

61 2C sin(nz(Csp—E))cos(nZsm

nzC,,

si,2n

k

sin(nz(C,, —C))sin(nZ,4)

si,2n+1 = si,1
sp

For ring gear:

N
K (0) =Ky, + 2 (Ky 5y COS(N 1) +K

n=1

sin(n wt))

ri,2n+1

k

ri,2n
p

k

ri,2n+1 = ri,1

sy

=K., 2 sin(nz(C,, —C))cos(NZ,4 +ny,.)
“nzC

sin(nz(C,, - C))sin(nZ,4 +ny,)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

In these equations, C_ and C,_ are contact ratios between sun-planet and ring-planet

gear meshes respectively. C denotes the minimum number of tooth pairs in contact

during a mesh cycle, which can be defined as the periodic amount of gear rotation

after which the next tooth arrives at the position of the present tooth which is in

contact with its mating tooth. ¢ is the angular position of the planet i. Z, and Z,

are the number of teeth for sun and ring gears, respectively. n stands for the

harmonic number and y,, is the phase difference between sun-planet and ring-planet

meshes.
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The mesh phasing relationships between individual sun-planet and ring-planet pairs
can be classified under 2 categories. When the meshing action between individual
sun-planet or ring-planet pairs occur simultaneously, the gear meshes are “in-
phase”. For “sequentially-phased” meshes, adjacent sun-planet or ring-planet
meshing actions are out-of-phase. A special case for sequentially-phased meshes is
“counter-phased” meshes where the phase difference between adjacent meshes is
7, 1.e. diametrically-opposed planets are at the same phase and the phase difference
with the other mesh pair is half of the mesh cycle. This is a possible configuration

for PGTs with number of planets equal to 4.

Figure 3-1 shows example sun-planet mesh stiffness plots for such mesh-phasing
configurations for a PGT with 4 planets.
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Figure 3-1 Example sun-planet mesh stiffness plots for a) sequentially-phased, b)
in-phase, ¢) counter-phased mesh configurations. Note that in b), all stiffness curves
overlap with each other while in c), P1-S overlaps with P3-S and P2-S overlaps with
P4-S
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For a PGT having equally-spaced planets, the i ™ harmonic of parametric stiffness

excitation for individual sun-planet gear pairs will be in phase if iZ_/n is integer
and sequentially phased if iZ, /n is not an integer [55]. The same is also valid for

ring-planet meshes.

Table 3-1 lists different configurations for mesh-phasing based on the number of
gear teeth. Dynamic simulations are performed for these configurations of the

example PGT given in Table 2-1.

Table 3-1 Different mesh-phasing configurations for the example PGT in Table 2-1

Configuration

Mesh-phasing configuration Z, 7 z,
number
1 Sequentially-phased (counter-phased) 38 82 18
2 In-phase 36 80 18
3 Sequentially-phased 35 81 18

Figure 3-2 and Figure 3-3 show an initial comparison of sun-planet and ring-planet
displacements for the configurations listed in Table 3-1. For this comparison, the
performed analyses are limited to linear solutions; in order clearly address the
resonance regions with the harmonics of the parametric excitations of respective
configurations. All damping ratios for the performed simulations are equal to 0.035.
Damping ratio definitions are provided in section 3.2.2. It is clearly apparent from
both Figure 3-2 and Figure 3-3 that dynamic responses of PGTs are strongly
dependent on their mesh phasing characteristics.
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Figure 3-2 Sun-planet mesh displacement (rms) for different mesh phasing
configurations given in Table 3-1
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Figure 3-3 Ring-planet mesh displacement (rms) for different mesh phasing
configurations given in Table 3-1

The first observation is that “sequentially-phased” PGT configurations are much

quieter than their “in-phase” counterparts. The excitations tend to cancel each other

for equally spaced planets. Table 3-2 provides information regarding the natural
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frequencies of the PGT, parameters of which are given in Table 2-1. Information
regarding the harmonics of the mesh stiffness for this PGT is already provided in
Table 2-5 and Table 2-6.

Table 3-2 Natural frequencies for the example PGT in Table 2-1

Mode number (n) 1 2 3 4 5 6
Natural frequency, ® [Hz] 0 2994 6033 6033 6033 7038

Another important outcome of the comparison study is that the excited natural
modes depend on the phasing configuration. “In-phase” modes are only excited by
“in-phase” harmonics of excitation, whereas the same also holds for the
“sequentially-phased” modes. This also results in the fact that, for “in-phase” PGT
configurations, “sequentially-phased” modes never get excited. For the example
PGT under consideration, in configuration 1, excitation of the first in-phase mode
was possible through the parametric excitation of the second and the 4™ harmonics
of the mesh stiffness. Moreover the second in-phase mode is also excited by the
second harmonic of the mesh stiffness for this configuration. For the second
configuration, all 6 harmonics of the mesh stiffness excitations excited the first in-
phase mode. The second in-phase mode is also excited by the first harmonic of the
mesh stiffness functions. For the 3™ configuration, although the responses are
relatively lower, the 4" harmonic of the mesh stiffness excitation excited the first
in-phase mode. The sequentially-phased modes are excited by the first 3 harmonics
and the 5™ harmonic of the mesh stiffness excitation. The excited dynamic modes
for this configuration can be clearly identified in Figure 3-4, using the natural

frequency information provided in Table 3-2.
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Figure 3-4 Sun-planet mesh displacement for 3" configuration, excited modes and
excitation sources

The amplitudes of the sequentially-phased modes are also observed to be much
lower than the amplitudes of the in-phase modes. Especially, response amplitudes
at the first in-phase mode are significantly higher compared to the amplitudes at
other modes. However, this observation may not be valid for the TPM applied PGTSs.
This subject is going to be investigated in detail in Chapter 6. Although the response
of sequentially-phased modes are not as high as those for “in-phase” modes, the
dynamic effects can still be considered as significant and therefore, additional means
for improvement, such as application of TPMs, may be required. Dynamic loading
factors, which can be simply defined as the ratio of dynamic load to the static load
at a single gear mesh, may still be high enough to reduce the fatigue lives of PGTs
for sequentially-phased modes.

Mesh phase differences are inevitably dependent on the number of planets for
equally-spaced PGTs. It is possible to use equally spaced planets in the first
configuration, i.e. sequentially-phased, given in Table 3-1. Dynamic responses
obtained for PTGs with 3, 4 and 5 planets are given in Figure 3-5 and Figure 3-6.
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For this comparison, static mesh loads between all meshes are kept constant in all
cases, irrespective of the number of planets, by adjusting the external torque applied
on the sun-gear, which is equal to 2400Nm for the example PGT with 4 planets. The
excitation of in-phase mode by the 3™ harmonic of the 4-planet configuration
resulted in the highest vibration. This figure suggests that it is good practice to avoid
in-phase modes in the first harmonics of mesh stiffness excitation. Since mesh
stiffness variation shows similar frequency decomposition characteristics with a
rectangular wave, the excitation will be lower for higher harmonics of the mesh
stiffness variation. Another interesting outcome of these simulations is that the 3-
planet configuration, which has a phase-difference of 27/3 between respective
sun-planet and ring-planet gear meshes, resulted in the most favorable dynamic
response. Moreover, it is also clearly seen that the natural frequencies for the
sequentially-phased modes are independent of the number of planets; however, the
natural frequencies for the in-phase modes slightly change depending on the number
of planets.

Based on the mentioned effects of different mesh phasing scenarios on the dynamics
of PGT, the design of a PGT should consider achieving favorable mesh-phasing
configurations in order to reduce the dynamic effects, provided an operational
spectrum defining the expected speed intervals. It is possible to eliminate some of
the resonances within the operational speed range by the selection of proper mesh-
phasing arrangements. Harmonics of mesh stiffness have to be considered when
performing such a study which aims to optimize the dynamic characteristics of a
PGT. For a wide range of operational speed, one can also consider to give priority
to the elimination of in-phase modes, as these modes show the highest dynamic

response amplitudes.
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3.2 Effects of PGT Model Parameters on PGT Dynamics

Aside from mesh-phasing, PGT dynamics are also dependent on many design
parameters. In this chapter, effects of backlash, damping ratio, external force and
contact ratio on PGT dynamics are investigated. The effect of ring gear thickness is
analyzed in Chapter 4. Chapter 6 is dedicated to a detailed discussion of the effects
of TPMs on PGT dynamics.

3.2.1 Backlash

Backlash is simply defined as the clearance between the mating gear teeth. The main
purpose of backlash is to allow for a film of lubricating oil to form such that tooth
damage due to overheating is avoided. Moreover, in practice, backlash is also
necessary for installation of the gears. On the contrary side, backlash has negative
effects for the positioning equipment such as those used in robots etc. due to the loss

in accuracy.

In gear dynamics, backlash is the primary source for nonlinearity. Effect of backlash
on spur gears can be found in several references [56,57]. The example PGT given
in Table 2-1 is considered here for investigating the effect of backlash amount. Note

that the “in-phase” configuration (Z, =36, Z, =80) of this example PGT is used in

order to make a clear demonstration of the effect of backlash, due to the fact that
higher dynamic responses are observed for in-phase configuration relative to the
sequentially-phased PGTs. All parameters other than the amount of backlash are
kept the same for all simulations. Results obtained for sun displacement and planet
displacement are given in Figure 3-7 and Figure 3-8, respectively. All damping

ratios are equal to 0.08 in these simulations.
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Figure 3-8 Planet displacement (rms) response with different amount of backlash
A softening-type nonlinearity is observed for the example PGT due to backlash. A

shift of resonance frequency to the lower frequencies occurs. This shows that,

similar to parallel-axis spur gears, modeling of nonlinearity is critical for the forced-
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response analysis of PGTs with spur gears. It should also be noted that the
occurrence of the nonlinear resonances are also possible at the speed intervals where
a natural mode is excited by a higher harmonic of mesh stiffness excitation. For
Figure 3-7 and Figure 3-8, this phenomenon is observed for the second harmonic of
the mesh stiffness, i.e. at ®=~1500Hz where 2w=w, (the first in-phase natural
frequency of the system). Around resonance frequencies, multiple solutions are
observed. It is also apparent from Figure 3-7 and Figure 3-8 that, for smaller
backlash (i.e. backlash values less than 0.04mm), double-sided contact occurs for
the mating gear teeth. The double-sided contact cannot be observed beyond a certain
value of backlash. Accordingly, the responses shown in Figure 3-7 and Figure 3-8
for backlash values greater or equal to 0.04mm, are the same. Therefore, for
dynamic analyses, one can avoid to model the double-sided contact phenomenon
provided that the estimated response amplitudes are lower than the amount of
backlash.

Figure 3-9 and Figure 3-10 show the dynamic elastic mesh forces between sun-

planet and ring-planet pairs.
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Figure 3-9 Dynamic sun-planet elastic force (rms) for different amount of backlash
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The maximum dynamic force increases with decreasing amount of backlash, while
the frequencies at which maximum dynamic force is obtained shift to higher speeds.
Therefore, it is a better design practice to have sufficient backlash which would
prevent having double-sided contact, especially, for the cases where the operational

speed range covers resonance frequencies.

Here, it should also be underlined that the effect of external force also plays a role
regarding the effect of backlash, i.e. double-sided contact condition is also
dependent on the external force along with the amount of backlash. For higher

external forces, double-sided contact can occur for a given amount of backlash.

Next, following case is investigated: The amount of backlash for either one of sun-
planet or ring-planet pairs is such that double-sided contact occurs for one of the

pairs; whereas, for the other pairs, only loss of contact is observed. In order to

simulate such a condition, for the “in-phase” configuration (Z, =36, Z, =80) of the

example PGT given in Table 2-1, backlash amount of sun-planet pairs is kept
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constant at Imm, which is large enough to avoid a double-sided contact, whereas
the backlash of the ring-planet pairs is 0.01mm. The dynamic response in terms of
rms of the sun displacement is given in Figure 3-11, for the resonance region around

2800Hz. Note that all damping ratios are taken as 0.06 in this simulation.
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Figure 3-11 Sun displacement (rms) for b=0.5mm for sun-planet and b=0.005mm
for ring-planet pairs, respectively. Region 1: No-impact for sun-planet, single-sided
impact for ring-planet, Region 2: No-impact for sun-planet, double-sided impact for
ring-planet, Region 3: Single-sided impact for sun-planet, double-sided impact for
ring-planet pairs.

Figure 3-11 shows the different contact conditions near the resonance region.
Although no double-sided contact occurs for sun-planet pairs, the sun-planet
dynamics are also affected from the double-sided contact occurring at ring-planet
meshes. Figure 3-12 gives dynamic sun-planet and ring-planet mesh forces for the
example frequencies which fall into different regions depicted in Figure 3-11. From
the time histories of the dynamic mesh forces, which are given for duration of a

single mesh cycle, the contact conditions stated in Figure 3-11 are clearly identified.
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Note that a dynamic force which is equal to 0 denotes no-contact condition, whereas

a negative value indicates a back-side contact.
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Another interesting case, which can be considered as a limit condition to the
previous one, is that either one of sun-planet or ring-planet pairs have no backlash,

whereas the other pairs have different amounts of backlash.

In such an example, for the “in-phase” configuration (Z, =36, Z, =80) of the

example PGT considered, two different backlash conditions for the ring-planet pairs
are compared; whereas, no backlash is defined for sun-planet. The backlash values
of the ring-planet pairs used for the response comparison are 0.1mm and 0.03mm,
respectively. Figure 3-13 shows the sun displacement response (rms) for the

mentioned parameter sets.
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Figure 3-13 Sun displacement (rms) response with different amount of backlash for
ring-planet pair — no backlash for sun-planet

It is observed that although the sun-planet mesh does not include any backlash, the
effect of both loss of contact and double sided contact situations are also observed

on the sun gear response.
3.2.2 Damping

Damping in geared systems is usually achieved by the lubrication. The amount of
lubricating oil used is tried to be optimized in order to achieve a sufficient cooling
of the geared systems which at the same time will not result in an excessive loss of

power.
Since gearbox lubrication is the main source of damping in geared systems, in most

of the gear dynamic studies, damping is modeled as viscous damping and usually

defined by a constant viscous damping coefficient. Although the exact amount of
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damping is hard to measure and dependents on many parameters such as the oil type,
operating temperature etc., it is a usual practice to apply damping ratios ranging
from 0.01 to 0.1 depending on the gearbox under consideration in gear dynamics

studies.

Damping ratios can be formulated in PGTs as follows

C C C
§S :2 SF;\/I !gr :2 rF;\/I ’fSC :2 sp'\/l
a)S S a)l’ r a)SC C (3 7)
. Ty
© 20.M.7* 20,M, " 20, M,
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The example PGT given in Table 2-1 is used for investigating the effect of damping

on the dynamic response. Note that the “in-phase” configuration (Z, =36, Z, =80)

of this example PGT is used in order to make a clear demonstration of the effect of
damping, due to the fact that higher dynamic effects are observed for in-phase
configuration relative to the sequentially-phased PGTs. Figure 3-14 and Figure 3-15
show the dynamic response of the example PGT with different damping coefficients.
Figure 3-14 and Figure 3-15 give rms sun displacement and rms sun-planet dynamic
mesh force. In these simulations, all damping coefficients outlined in Equation 3.7

are equal to the given value of damping. Backlash values for both sun-planet and
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ring-planet pairs are equal to 1.0mm.Other parameters besides damping are kept the

same for simulations.
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Figure 3-15 Dynamic elastic sun-planet force (rms) for different damping ratios
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It is clear that damping not only reduces the dynamic response but also reduces the
effect of nonlinearity, which is an expected result. The magnitude of the response is
reduced and the resonant frequency shifts towards to linear resonant frequency as

the damping ratio increases.
3.2.3 Contact ratio

Gear contact ratio is defined as the average number of gear tooth pairs in contact
during a mesh cycle. It is a key parameter of gear design which also plays an
important role in gear dynamics. In practice, most of the spur gears have contact
ratios between 1 and 2, as higher contact ratios are often difficult to obtain
considering limitations from other aspects of gear design. A higher contact ratio is
known to be advantageous in terms of load sharing and static torque capacity.
Besides these advantages, gear dynamics are also positively influenced for higher
contact ratios, especially when the contact ratio is close to an integer value. As
contact ratio gets closer to an integer value, the variation of mesh stiffness decreases;
therefore, spur gears having contact ratios closer to 2 usually show more favorable

dynamic characteristics.

To check the validity of these characteristics for PGTs composed of spur gear pairs,
simulations are done for different sun-planet and ring-planet contact ratios,
respectively. In all simulations in this section, backlash between mating gear pairs
are constant at 1mm; whereas, all damping ratios are equal to 0.06. Three harmonics
are used in the solution. In the first set of simulations, the contact ratio for ring-
planet pair is kept as constant at 1.937. For this set, example PGT in Table 2-1 is

used with Z_, =36, Z, =80. Figure 3-16 shows the dynamic responses for both cases

in terms of sun-planet dynamic elastic forces.
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Figure 3-16 Dynamic sun-planet elastic forces (rms) for different contact ratios of
sun-planet gears

Maximum of the sun-planet dynamic forces, which occur as a result of the excitation
of the second in-phase mode by the first harmonic of mesh stiffness variation, is
lower for the higher contact ratio of 1.924 compared contact ratio of 1.423. The
same statement can also be made for the first in-phase mode. A similar comparison
study is also performed for varying ring-planet contact ratios to observe the effects
on ring-planet dynamic forces (Figure 3-17). Here contact ratio for the sun-planet
meshes are held constant at 1.924; whereas, two different contact ratios for ring-
planet meshes are studied. These results also show that contact ratios closer to an
integer are favorable for better dynamic response. Slight increase in resonance
frequencies is also observed for the higher contact ratio, due to the increased mean

stiffness between sun and planet pairs.
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Figure 3-17 Dynamic ring-planet elastic forces (rms) for different contact ratios of
ring-planet gears

For PGTs, since the sun-planet dynamics are coupled with ring-planet pairs, the
effect of changing the contact ratio of the planet-ring pair also affects the dynamic
response of sun gear. Figure 3-18 and Figure 3-19 show the response in terms of sun
displacement and sun-planet dynamic forces respectively for the cases where sun-
planet gear contact ratio is held constant at 1.924, whereas the contact ratios for ring-
planet gear are 1.507 for the first case and 1.937 in the second one.
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Figure 3-18 Sun displacement (rms) for different contact ratios of ring-planet gears
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Figure 3-19 Dynamic sun-planet elastic forces (rms) for different contact ratios of
ring-planet gears

The maximum values for both response types are lower for the case where the

contact ratio of the ring-gear planet is 1.937, since the first harmonic of the mesh
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stiffness variation is lower for this case. However for other harmonics of mesh
stiffness excitation, different outcomes may be reached as this is also evident from
Figure 3-18 and Figure 3-19.

A similar behavior is also observed for the ring-planet response for the first case
where contact ratios of the ring-planet gears are held constant at 1.937. Two
simulations with different sun-planet contact ratios are performed (Figure 3-20).
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Figure 3-20 Ring-planet displacement (rms) for different contact ratios of sun-planet
gears

The dynamic response in terms of ring-planet displacement is lower for the case

where the contact ratio of sun-planet gear is higher.

Although gear designers usually do not want to have low contact ratios due to
inferior static load carrying characteristics than their higher ratio counterparts; it is
still interesting to observe the dynamic characteristics of such gears. Figure 3-21
shows the dynamic responses in terms of planet displacement for three different

contact ratio scenarios. In the first case, both sun-planet and ring-planet pairs have
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contact ratios that are very close to 1.0; whereas, in the second case, sun-planet and
ring-planet pairs have contact ratios close to 2.0. Both contact ratios for the third

case are equal to 1.52.
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Figure 3-21 Dynamic ring-planet elastic forces (rms) for different contact ratios of
sun-planet gears

Figure 3-21 shows that contact ratios close to 1.0 have also disadvantages in terms
of dynamic characteristics; whereas, one can obtain very quiet gears when the
contact ratios are close to 2.0. There is not much difference between vibration levels
of the case with contact ratios close to 1.0 and the case with contact ratio around 1.5.
The different resonance frequencies due to the different average mesh stiffness

values are also apparent in Figure 3-21.
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3.3 Summary and Conclusion

Effects of different mesh-phasing configurations and fundamental parameters of
PGTs are investigated within this chapter. Important findings come forward as the

outcome of the related studies.

Mesh phasing is one of the most important tools to tune the vibration characteristics
of the PGTs. Mesh phasing characteristics of the PGTs define which modes can be
excited within the operational speed range. In-phase modes are excited by in-phase
harmonics of excitation whereas sequentially-phased modes are excited by

sequentially-phased harmonics only.

In-phase modes are dynamically more dominant than their sequentially-phased
counterparts. Therefore, for wide operational speed ranges, it is best to avoid such a
configuration for a PGT design. Although sequentially-phased modes are less
violent, there can still be a need for reduction of the dynamic response for these

modes.

Backlash is one of the major sources of nonlinearity for PGTs with spur gears.
Depending on the amount of backlash and the external force, double-sided contact
may occur in addition to the loss of contact phenomenon. At a constant torque level,
having a sufficient amount of backlash removes the possibility of double-sided
contact, which causes higher dynamic forces when compared with dynamic forces
in loss of contact condition.

Damping is usually a parameter which cannot be precisely designed for gear trains.

An increased damping results in reduction of dynamic response and nonlinear

effects.
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Contact ratio is one of the key design parameters not only for PGTs but all geared

systems. For low contact ratio spur PGTs, having a contact ratio closer to 2 greatly

reduces the dynamic response levels. The contact ratio value for a sun-planet gear

also affects the dynamics of the ring-planet pairs and vice versa.

The following suggestions can be made when the dynamic response of a PGT is

required to be tuned and/or reduced:

The first step is going to be to adjust mesh phasing of the respective PGT
according to the operational speed ranges. Avoid excitation of in-phase

modes by the first few harmonics of mesh stiffness function.

Design PGT in such a way that the contact ratios between both sun-planet

and ring-planet pairs are close to 2.

If the damping of a PGT is not high enough to avoid nonlinear dynamic
response and if it is not possible to provide any additional damping to the
system, make sure that the amount of backlash is sufficient to avoid double-

sided contact condition.

Here, it should be repeated that the above guideline is valid for the cases
where TPM is not considered. Other design limitations may also result in
deviations from the suggested plan. TPM is also an effective means for the
reduction of dynamic response in geared systems. The effect of TPM in spur
gear pairs are investigated in Chapter 5; whereas, Chapter 6 is dedicated to

the effects and characteristics of TPMs in PGT dynamics.
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CHAPTER 4

EFFECTS of RING GEAR ELASTICITY on PGT DYNAMICS

4.1 Introduction

It is common practice in rotorcraft industry to use PGTs with thin rims. Thin-rimmed
PGTs have advantages not only in terms of weight but also load sharing. In terms of
load sharing, the effect of using a thin-rimmed ring gear is shown to be similar to
using a “floating” sun gear [35], i.e. a sun gear that is mounted such that the sun gear
is compliant in translational directions. Floating sun gear configurations are known
for their ability to compensate the assembly errors. Increased compliance of thinner
ring gears similarly allow to compensate for the manufacturing errors induced in the

design of PGTs, which have a negative effect on load sharing characteristics.

In this chapter, the focus is on the investigation of the effects of thin-rimmed ring
gears on torsional dynamics of PGTs. In-plane translational motions are not
considered. The effects of the rim thickness and mounting configuration of the ring
gear on the mesh stiffness of ring-planet pairs are analytically modeled. Afterwards,
direct relationships between the mentioned parameters and dynamic responses of
PGTs are analyzed in frequency domain using HBM. Solutions of the nonlinear
algebraic equations are obtained by using Newton’s method with arc-length

continuation.

4.2 Analytical modeling of ring gear elasticity

When the effect of rim stiffness is taken into account, one can formulate the mesh

stiffness between the ring and the planets as follows:
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t __t 1 (4.1)
K K

mesh, rigid rim

K

mesh, elastic

Here the system is modeled as two springs in series; the mesh stiffness between ring

and planet gear teeth is denoted as K, .« Whereas the elasticity of the rim region

of the ring gear is denoted asK . . .

Calculation of K is performed using WindowsLDP, which is a contact

mesh, rigid

mechanics tool specialized in spur and helical gears, similar to previous studies.

For the calculation of the stiffness term of the elastic rim structure, the analytical
formulas provided in the study of Gasmi et al. [58] are used. Authors utilized
Timoshenko curved beam theory combined with virtual work principles to attain
closed-form formulas for deformation of extensible and shear-deformable curved

beams.

Schematics for the uniformly deformed curved beam model can be found in Figure
4-1. Note that no distributed loading is considered, since the ring gear of a PGT is
of interest, and the rim in this case is expected to be loaded only by gear mesh action
between the ring gear and the planets, which can be modeled as a number of

concentrated loads.
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Figure 4-1 Uniformly deformed curved beam

Ring gear is modeled as (n+m) uniformly deformed curved beams. At the end of
each uniformly deformed curved beam, either a boundary condition or an external
forcing is present. Here n is the number of points where boundary conditions
(supports) are defined and m is the number of points on which external
forces/moments are applied. The schematics for the ring gear model can be found in

Figure 4-2.

Equations of motion for the uniformly deformed curved beam can be defined as

follows

v(a)=-C, -C,cosa +C,sina —C, (acosa + Bsina ) + C; (asina —Pcosar ), (4.2)

u(a)=C, +C,a+Cgsina +C,cosa +Casina +Ciacosa (4.3)
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o(a)= Cl%"'cz %+C5P2C0806—C6P28ina,

;0

T(a)= E“(Cssina +Cgcosa),

V(a)= %(—Cscow +Cgsina),
M (a) =C, ——P,(Cssina + Cscosr) ,

where

R’°GAEA+ EIEA-EIGA

' R’GAEA+EIEA+EIGA’ 2 R?GAEA+EIEA+EIGA’

5 _ 2EIGAEA
" R®GAEA+EIEA+EIGA’

Details of the derivation of the these equations can be found in [58].
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BC / external
force point

Figure 4-2 Ring gear model as a combination of uniformly deformed curved beams

The unknowns Ci to Cs can be found using the boundary conditions. Boundary

conditions for “fixed” supports are given as follows

u(er)=0, u(e,;)=0, v(e;)=0,

i+1

4.9
V(am) =0, (0(ai ) = ¢(ai+1)v M (ai ) =M (am)-

For the support points, when Eq. 4.9 is inserted in to Eqgs. 4.2 - 4.7, the equations of

motion are obtained

C| +Cla, +Clsing, +C, cosa, +Cle, sing, +Cle, cosa, =0 (4.10)
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Cit4Ci* =0, (4.11)

C,+Clcosa, —C;sina, +C; (e, cose, +P,sine,)—Ci(e; sina, — P, cosa;)

RN . , (4.12)
—C; _C3I+1_CEI;+1P1 =O
Cicosa, —Cising, —Cl" =0 , (4.13)
1 i 1 i i i H 1 i+1 i+l
ECl—FECzai +C,P, cosa, —CP,sing, _Ecl -C;"P, =0, (4.14)
i El i H i i+1 El i+1
CZE—CS%SInoxi—C6P3cosozi—C2 ?+C6 P, =0. (4.15)

For the connection point between the segments of the ring gear, if an external force
and moment are applied, the compatibility equations for the respective point can be

defined as

u(ai):u(ai+1), V(ai):v(am), (P(ai):§0(ai+1)’
(4.16)
M ()M (a)=M, V(a,)-V(x)=F, T(a)-T(a,)=F.

Substituting Eqg. 4.16 into Egs. 4.10 - 4.15, the following equations are obtained

—C, —Cja, —Clsing, —C, cose, —Cle; sine, —Clar, cosa, +C™ +C; =0, (4.17)

C, +Clcosa, —C;sina, +C,(a, cosa, +P,sine,)—Ci (e, sina, — P, cosa,)

i+ i+ i+ ’ (418)
_Czl_Csl_CeslPl:O
Lo Llcin —CiP cosa +CIP,sing +=Ci + G, =0 (4.19)
R R 2% 5 i 62 TR 5 =Y, .
i E L cipsing +CiP cosa, —Cit EL s citp 4.20
2 R? sM3 -l G, 613 a; 2R2+63_ 0 (4.20)
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%(C; cosa, —Csing, ~CI")=F. , (4.21)

%(Cg sing, +C.cosa, —C{™M) =F, . (4.22)

Figure 4-3 shows a schematic of the decomposition of the gear forces and

displacements on to the rim structure.

Figure 4-3 Mesh displacements and mesh forces imposed on the rim structure

F=Fsing, F =Fcosg, M,=F|CB|-F,|AB|. (4.23)

External forces acting on the curved beam segments are the radial and tangential

components of the gear mesh forces, F, and F, , respectively, and the moment

created by these forces at the centroid of the uniformly deformed curved beam,

M, .

The displacement along the line of action which is defined by the pressure angle of

the gears is given by

d o =VCosB+using+g|CAsing, . (4.24)
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Therefore the stiffness of the rim is calculated as

K, =—. (4.25)

rim
LoA

o

The validity of the analytical modeling of the rim of the ring gears using uniformly
deformed beams is verified by comparing the results of the model with FE results.
Parameters of an example ring model considered for this study are given in Table
4-1.

Table 4-1 Parameters for analytical rim model validation study

Radius from centroid of the ring [mm] 115
Width of the ring [mm] 10
Thickness of the ring [mm)] 10
Elastic modulus [GPa] 206
Tangential force [N] 4762
Radial force [N] 1856

Figure 4-4 shows the FE model and the boundary conditions and force application
points. FE model is created in Msc Patran and it consists of 1D elements with
CBEAM formulation. The boundary conditions and the external forces represent an
example case of a 3-planet PGT, which is fixed at 3 points. The tangential and radial
components of forces are present due to the respective gear mesh forces, where the
pressure angle is 21.3° between ring gear and mating planets. The tangential

component represents the forcing along the tangential direction of the pitch circle of
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the ring gear, whereas radial component is perpendicular to the tangential direction

of the pitch circle of the ring gear. A mesh force of 5111N results in the force

components provided in Table 4-1. The force application points and boundary

condition points are selected such that they represent an arbitrarily random case,

where the spacing of each force between the respective adjacent boundary

conditions is different. The boundary conditions are located at 6=0°, 8=90° and

0=240°, while the gear mesh forces are applied at 6=60°, 8=180° and 6=300°.
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Figure 4-4 1D FE model with applied forces and boundary conditions

Figure 4-5 shows the comparison of radial displacement results between the

analytical model and FE model which verify the analytical model used, and hence

65



the calculation method for rim stiffness. Therefore, the analytical method is used for
the calculation of rim stiffness in order to investigate the effects of rim stiffness on
PGT dynamics.

—FE model
- Analytical model

Radial displacement [mm]

-1 I I I I |
0 45 90 135 180 225 270 315 360

Angular position [°]

Figure 4-5 Comparison of radial displacement results between analytical model and
FE model

Effects of rim stiffness on PGTs are investigated considering two parameters, i.e.
rim thickness and the number of constraints. A non-dimensional parameter for the

rim thickness can be defined as

T= 2(Rout - Rroot) . (426)

R +R

out root

Here R_, is the outer radius of the ring gear where as R _ . is the radius of the tooth

out root

root circle of the ring gear. The variation of mesh stiffness with respect to

dimensionless rim thickness parameter, T ,is analyzed for the parameter set given in
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Table 4-2. Different rim thickness parameters are obtained by changing the rim
thickness only, i.e. root diameter of the ring is kept as constant. In order to observe

the effect of rim thickness on the overall mesh stiffness, K., ..qic - @0 €Xample case

with 6 equally-spaced constraints is considered. K 4 1S assumed to be constant

mesh, rigi

in these analyses.

Table 4-2 Parameters of ring gear for mesh stiffness variation study

Pressure angle [°] 21.3
Tooth thickness [mm] 6.784
Root diameter of ring [mm] | 320
Facewidth [mm] 30
Number of constraints 6
Number of planets 3

E [GPa] 206

\Y% 0.3

K nes.rigia [IN/mm] 6.35e5

Figure 4-6 gives the ring-planet mesh stiffness variation between the fixed
constraints for a planet gear traveling between two constraints for the parameter set
provided in Table 4-2.
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Figure 4-6 Variation of mesh stiffness between constraints for different rim
thickness parameters

It is observed that a thinner rim results in more variation of the mesh stiffness as the
planet goes from one support to the other. However as the rim gets thicker, the
change in the mesh stiffness becomes very small; hence, above certain rim thickness

value the deviation due to rim size can be neglected.

Another important parameter is the number of constraints, which dictates the
periodicity of mesh stiffness variation. As the number of constraints increases, the
period of mesh stiffness variation increases; however, the amplitude of this variation
is expected to be smaller.

Figure 4-7 shows an example case for the parameter set given in Table 4-2, where

rim thickness parameter is kept constant.
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Normalized rotational distance

Figure 4-7 Effect of number of constraints (Nc) for the mesh stiffness of the ring
planet pair, T=0.04

For the dynamic analyses, instead of an average value, a time-varying K 418

mesh, rigi

combined with the analytically calculated K. , according to Eq. 4.1. Figure 4-8

shows a typical mesh stiffness function for a PGT with an elastic ring. This plot is
obtained for a case where the number of planets is 4 and there are 12 constraints
around the ring gear. The higher mesh harmonics are combined with the lower
frequency content of variation due to ring elasticity. The periodicity of this lower
frequency content of variation is dependent on the number of constraints on the ring

gear.
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Figure 4-8 Ring-planet mesh stiffness for a PGT with 4 planets and 12 constraints
around ring gear, a) Rigid ring gear, b) Elastic ring gear

4.3 Effects of ring gear elasticity parameters on PGT dynamic response

As a first step, before investigating the effects of the related ring gear elasticity
parameters on the PGT dynamic response, a comparison study is performed on an
example PGT (Table 4-3). The dynamic responses are compared for 2 different
variations of the example PGT. In the first one, the ring gear is modeled as rigid;

whereas, in the second one, it is modeled as flexible.
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Table 4-3 PGT used in elastic rim dynamic response simulations

Sun Planet Ring
Number of planets 3
Number of teeth 36 21 81
Module [mm] 4
Pressure angle [deg] 21.3
Effective outside diameter

146 91 320
[mm]
Root diameter [mm)] 135 76 333
Facewidth [mm] 30
Transverse tooth thickness

5.3 6.8 5.3
[mm]
Diameter at measured tooth

_ 144 84 324

thickness
Torque applied [Nm] 1800 - -
Young’s modulus [GPa] 206.8
Number of constraints (for 9
elastic ring gear)
T (for elastic ring gear) 0.058

In order to show the resonant frequency characteristics, the comparisons are to be
made with a linear model. Figure 4-9 shows the response plot of PGT with elastic
rim in terms of sun-planet displacement for the compliant rim model. For this case

study, overall mesh stiffness, K is represented by 6 harmonics. Use of two

mesh,elastic ?
harmonics is evaluated to be sufficient for the representation of rim elasticity

contribution to the variation of mesh stiffness, K. , since this variation resembles

rim ?

to a sine wave; whereas, tooth mesh stiffness, K is represented by four

mesh,rigid ?
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harmonics, since the higher tooth mesh stiffness harmonics have much lower

amplitudes when compared with the first 4 harmonics.
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Figure 4-9 Sun-planet displacement (rms) comparison for elastic vs. rigid ring gear

The reduced mean ring-planet mesh stiffness resulted in lower natural frequencies
for the PGT with elastic ring gear compared to the rigid ring gear. Moreover, for the
elastic ring gear case, the additional harmonic content due to the rim elasticity is
also able to excite the first in-phase natural mode of the system at higher speeds, as
the frequency of the stiffness excitation due to rim elasticity is much lower than
frequency of the tooth stiffness variation. In Figure 4-9, the peaks observed at sun
speed of 43000 rpm and 21500 rpm correspond to the excitation of the first in-phase
mode of the example PGT by the first and the second harmonics of the rim stiffness

variation, respectively.

The effects of the ring thickness parameter on dynamic response of PGTs are going
to be investigated next. A comparison study is performed for 4 different cases in
terms of rim thickness, including the rigid ring gear case. The example PGT given
in Table 4-3 is going to be used for this purpose. The number of constraints of ring
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gear for these analyses is arbitrarily kept constant at 9. Figure 4-10 and Figure 4-11
show the sun gear displacement and planet displacement, respectively, for different

rim thickness values.
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The decrease in mean mesh stiffness between ring and planet gears resulted in a
slight increase in terms of planet response and sun displacement response.
Moreover, natural frequencies also decrease for the PGT configurations with thinner
rims. Figure 4-12 shows the dynamic sun-planet elastic force as a function of sun
speed in the 1000-9000 rpm interval.
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Figure 4-12 Sun-planet dynamic elastic force (rms) for different rim thickness
values (T between 1000-9000 rpm

The first in-phase mode of the PGT is excited by the gear mesh excitation and its
harmonics. For this mode, it is observed that the dynamic elastic forces of the sun-
planet meshes decrease as the torsional rigidity of the ring gear decreases. However
Figure 4-13 shows that this characteristic observed for the first in-phase mode

cannot be generalized for all natural modes of the PGTs.

Figure 4-13 shows the dynamic sun-planet elastic force plot for 12000-20000 rpm
interval. It is observed that as the torsional compliance of the rim increases, the
dynamic elastic forces for the sun-planet mesh increase. The common peak observed

for all rim thickness configurations in this speed interval corresponds to the second
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in-phase mode of the PGT. Therefore depending on the operational speed, compliant

ring gears may provide reduction or increase in dynamic mesh forces.
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Figure 4-13 Sun-planet dynamic elastic forces (rms) for different rim thickness
values (T) between 12000-20000 rpm

Figure 4-14 shows the ring-planet dynamic elastic forces for the speed interval of
1000-20000 rpm. The effect of second in-phase mode is negligible for ring-planet
dynamic mesh forces, and the ring-planet dynamic elastic forces decrease with

increasing compliance for the first in-phase mode.

In Figure 4-13 and Figure 4-14, for the example PGT configuration with T =0.045
, a nonlinear increase in dynamic mesh forces are observed around a sun speed of
18000. These peaks correspond to the excitation of the first in-phase mode by the
second harmonic of the rim stiffness contribution to the ring-planet mesh stiffness.
As the rim thickness decreases, the contribution of rim stiffness to the overall mesh
stiffness becomes dominant and the variation in rim stiffness is able to excite the
first in-phase mode of the PGT.
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Next the effects of the number of ring gear constraints are investigated in detail.
Figure 4-15 shows the sun displacement for different number of constraints for the

example PGT given in Table 4-3. For this study, rim thickness parameter, T , is
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Similar to the ring thickness effect, increasing the number of constraints result in
stiffer ring-planet meshes; thus the natural frequencies increase and the response in
terms of displacement decreases. Figure 4-16 and Figure 4-17 show response in

terms of elastic sun-planet forces for different speed intervals.
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Figure 4-16 Sun-planet dynamic elastic force (rms) for different number of
constraints (Nc), 2000-9000 rpm

As the compliance of ring-planet meshes increase due to the decrease in the number
of constraints, sun-planet mesh forces decrease; similar to the behavior observed for
the variation of the rim thickness of the PGT.

Figure 4-17 shows how the lower frequency (when compared with the mesh
harmonics) excitations of the rim stiffness contribution to the ring-planet mesh
stiffness can directly affect the PGT response. For the example PGT configuration
with Nc = 9, both the first and the second harmonics of the ring-planet mesh
stiffness variation due to the rim elasticity are able to excite the first in-phase mode
of the related PGT configuration, at around 22000 rpm and 18000rpm, respectively.
As the number of constraints increase, these mentioned excitations occur at lower

speed values. For Nc = 18, only the first harmonic of rim elasticity contribution to
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the ring-planet mesh stiffness excites the first in-phase mode at around 17000 rpm.
As the number of constraints increase, the compliance of the ring gear decreases,
therefore rim-based excitations become weaker. For Nc = 27, both the first in-phase
mode (at around 15000 rpm) and the second in-phase mode (at around 47000 rpm)
are excited by the first rim stiffness harmonic excitation, however the response

levels are not as high as those observed for lower number of constraints.
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Figure 4-17 Ring-planet dynamic elastic force (rms) for different number of
constraints, 12000-60000 rpm

4.4 Summary and Conclusion

Effects of the torsional elasticity of the ring gear on PGT dynamics is investigated
in this chapter. The rim section of the ring gear is modeled using analytical curved
beam theory to include the rim elasticity effect on the mesh stiffness of ring-planet
pairs. The analytical model is also verified by a conventional FE tool and hence, it
is used in later studies as a fast and effective way of including the rim stiffness

effects on ring-planet mesh stiffness.
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In the PGTs where ring gear is fixed, the ring gears are usually connected to a
housing member by using bolts or studs. The compliance of the rim gear mainly

depends on the number of these mentioned constraints and the rim thickness.

After a brief overview of the effects of the mentioned parameters on the ring-planet
mesh stiffness, direct effects of these parameters on PGT dynamics are investigated
in detail. Besides the obvious effect of decreasing natural frequencies with

increasing compliance of ring gears, some other interesting outcomes are observed.

The displacement response increases slightly with increasing compliance of the ring
gears. However, for the sun-planet dynamic force response, the opposite is observed
for the first in-phase mode of the example PGT under consideration. As the rim
thickness decreases, the sun-planet mesh forces also decrease. On the contrary, for
the speed intervals in which the second in-phase mode is excited, this is not the case
as the dynamic forces are higher for the PGT configurations with more compliant

ring gears than their counterparts with stiffer ring gears.

The number of constraints on a PGT with a fixed ring gear not only changes the
elasticity of the ring gear but also dictates the periodicity of the lower frequency
content of the mesh stiffness excitation due to the rim effects. As the number of
constraints increase, this low frequency content approaches to the higher frequency
content of the mesh harmonics in frequency-wise. However due to the increasing
stiffness because of the increased number of constraints, the amplitude of these
mentioned harmonics may be low such that their effects are negligible on the
dynamic response of PGTs. These outcomes are observed on the dynamic response

studies for the example PGT with different number of constraints.
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Although results of the performed analyses signal for the aforementioned outcomes,
it is still hard to reach general conclusions regarding how exactly rim stiffness
affects the dynamic characteristics of PGTs, mostly because of the interactions of
rim stiffness effects with different characteristics of the PGTs. However the distinct
dynamic features that come along with ring gear compliance, which show
themselves in the results of the performed analyses, indicate the necessity to include
the rim elasticity effects for dynamic modeling of PGTs with compliant ring gears.
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CHAPTER 5

EFFECTS OF TOOTH PROFILE MODIFICATIONS IN SPUR GEAR

DYNAMICS

5.1 Introduction

Tooth profile modifications (TPMs) are known to be effective means of reducing
the dynamic response of spur gears. Before dealing with different aspects of TPMs
in PGTs, firstly the effects of TPMs on spur gear dynamics are investigated. These

investigations also aim to address topics that are rarely found in the literature, if any.

In spur gears, TPMs are used in order to avoid the corner contact between mating
gear teeth and to diminish the adverse dynamic effects by reducing the dynamic
factors which can simply be defined as the ratio of the dynamic mesh loads over

static mesh loads.

Linear and parabolic modifications are the most common type of TPMs. Figure 5-1
shows diagrams of the mentioned profile modification types on respective examples.
In these examples, modifications are applied both at the tip and the root sections of

one of the mating gears.

Firstly, an optimization study is performed target being the reduction of dynamic
transmission error (DTE) for a given operational range, where the operating torque
and speed ranges are defined. For this purpose, two different models, i.e. a single
degree of freedom (SDOF) lumped gear dynamics model and a multi-degree of
freedom (MDOF) lumped model of a gear pair which is combined with shaft and

bearing dynamics are employed. The differences between the optimization results
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obtained through loaded static transmission error (LSTE) minimization and DTE

minimization using different models are presented based on example spur gear pairs.
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Figure 5-1 Linear and parabolic profile modifications

The second part of the study provided in this chapter deals with the direct effects of
TPMs on tooth bending fatigue lives of spur gears. A gear tooth profile optimization
study is performed where the target is defined as the maximization of tooth bending
fatigue life for a selected operational range. In this optimization, torque and speed
ranges are defined along with their corresponding durations. For this purpose, a
nonlinear lumped gear dynamics model is combined with the S/N curve of the gear
material in order to estimate tooth bending fatigue life of the spur gear pair. The
differences between the predicted lives of the optimally modified and unmodified
gear pairs are presented based on example spur gear pairs. The proposed tooth

bending fatigue life estimation is compared with the standard AGMA procedure.
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5.2 Optimum profile modifications for the minimization of dynamic

transmission error

There exists a variety of spur gear dynamics models in the literature, which can be
categorized under many different groups. A comprehensive review of gear dynamics
models can be found in the study of Ozgiiven and Houser [59], and more recently it

is given by Wang et al. [60].

In the current study, first, the model proposed by Ozgiiven and Houser in 1988 [61]
is used in optimization. This model is based on a validated approximation, which
uses LSTE rather than static transmission itself, as an excitation to a SDOF model
with an average constant mesh stiffness. The equation of motion of a gear pair is

given in terms of dynamic transmission error, X, as:

M (1) +2¢ MK e X () + Ko X (1) = Ko X (1) (5.1)

Here m, is the equivalent mass of the gear pair, { is the viscous damping ratio, K.,
is the average mesh stiffness and x; is the loaded static transmission error. It should

be noted that even though an average (constant) mesh stiffness is used, the excitation
effect of variable mesh stiffness is included into the model indirectly through LSTE.
It was concluded that the displacement excitation effect of time varying mesh
stiffness is more important than the effect of it in natural frequency of the system.
This model was shown to be a very effective one by using experimental results for
gear pairs that have no profile modification. However, the accuracy of the model is
not shown for gear pairs with profile modification, especially for gears with
optimum tooth profile for a given load, where the resulting LSTE variation (hence

the dynamic excitation) is at very low levels.
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The following equation represents the differential equation of a SDOF model of a
gear pair, in which time-varying mesh stiffness is used without any approximation:

m.X(t)+cx(t)+k(t)x(t)=F —m.&(t) (5.2)

e

In this model, c is the viscous damping coefficient, k(t) is the time-dependent mesh
stiffness, F is the constant gear mesh force and e(t) is the static transmission error

due to gear errors and profile modifications (also called non-loaded transmission
error) (NLTE). In 2007, it has been shown by Tamminana et al. [18] that this model
yields accurate results for gear pairs with profile modification, comparing

theoretical DTE values with experimental data.

Although Eq. 5.2 yields accurate results without making an approximation for the
time-varying mesh stiffness, the model proposed by Ozgiiven and Houser is
preferred in several applications as it can be easily implemented to MDOF models
of gears and gear-shaft-bearing systems, providing solutions in frequency domain.
However, it is found necessary to study the accuracy of this model when it is used
for gears with tooth modification where LSTE is minimized.

For this purpose, dynamic analysis of the gear system described in Table 5-1 is
carried out using both of the models described above. The gear pair, which is
composed of identical gears, has tooth modification such that LSTE variation is
reduced to a very low level for a given torque value at which the dynamic analysis
is performed. Thus, when the first model is used, as the internal excitation due to
mesh stiffness variation is represented by LSTE, the level of excitation on the system
becomes very low. Comparison of the dynamic analysis results obtained for such a
case with those of the variable mesh stiffness model will reveal the accuracy of the
constant mesh stiffness model when used for gears with optimum tooth profile

modification.
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Table 5-1 Properties of gear pair used for comparison of both models

Number of teeth 25
Module [mm] 4
Equivalent mass [kg] 0.23
Base diameter [mm] 93.97
Face width [mm)] 15
Torque applied [Nm] 107.9
Peak-to-peak LSTE (non-modified )[um] 51
Peak-to-peak LSTE (modified) [pm] 0.6

Comparison is made for two damping ratio values, namely ¢ =0.1 and £ =0.05.

Figure 5-2 shows the comparisons of DTEs by using both models for the specified
damping values. Peak-to-peak DTE (PPDTE) values are plotted against normalized

frequency, which is defined as % .

e
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Figure 5-2 Model comparison for a) (=0.1 and b) {=0.05

Although some minor discrepancies are observed between the results obtained by
two models, recalling that these differences are observed only at a very extreme case
where LSTE variation is minimum. It is concluded that results match well enough
to safely continue with the constant mesh stiffness model in optimization studies,
which makes it possible to use a MDOF model for the dynamic analysis of a gear-

shaft-bearing system in frequency domain.

Along with the SDOF model, a MDOF gear dynamics model which is based on the
approximation proposed by Ozgiiven and Houser [61] is used while performing
optimization studies. The model takes into account the shaft and bearing dynamics,
onto which the gear pair is mounted. This model is a linear version of the model
developed by Maliha et al. [62]. Nonlinear effects due to backlash are not included

in the model.

For the finite element modeling of the shafts, the axial motions are assumed to be

negligible; hence, each node in the finite element model of the shaft will have five
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degrees of freedom (DOFs), i.e. 2 translational and 3 rotational DOFs. The flexible

bearings are modeled in terms of radial stiffness and damping elements.

The gear pair is modeled by two disks, representing the inertia of the gears, which
are connected to each other by a linear spring and a damper that represents the gear
mesh. The system is excited by the displacement excitation represented by the
LSTE. Further details of the model can be found in the study of Maliha et al. [62].

In both SDOF and MDOF models, the profile modification is represented by Fourier
series with 5-harmonics which are found to be sufficient. The average mesh stiffness
and the harmonics of LSTE, which are the necessary input parameters, are supplied
to the dynamic model by using the computer code STEP (Spur Gear Transmission
Error Program) developed at the Ohio State University. A MATLAB code is
developed in order to perform the dynamic analysis and optimizations required in
this study.

Next, the differences between the responses, in terms of PPDTE, obtained by using
SDOF and MDOF models are presented for two different configurations. In the first
configuration, the gear pair is mounted on relatively short (hence more rigid in
transverse direction) shafts; whereas, for the second configuration, the same gears

are mounted on longer shafts. The second configuration is shown in Figure 5-3.

Figure 5-3 Second MDOF model configuration
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Details of the gear-shaft- bearing systems under consideration are given in Table
5-2. It should be noted that all other properties except lengths of the shafts used in
both configurations are identical and the bearings used at the ends of the shafts have

the same stiffness and damping properties.

Table 5-2 Characteristics of the dynamic system

Gears

Number of teeth 75

Module 3.2mm
Equivalent mass 2.47 kg
Base diameter 232 mm
Face width 30 mm
Shafts

Outer radius 55 mm
Inner radius 40 mm
Density 7800 kg/m?3
Elastic Modulus 206 GPa
Length of short shafts 0.1m
Length of long shafts 1m
Bearings

Stiffness 1x10'2 N/m
Damping coefficient 1x10° Ns/m

In the first example, gears are placed in the middle of the shafts that are 0.1 m long.
The response of the system (DTE) for an arbitrary torque and profile modification
in a wide speed range is shown in Figure 5-4. Note that wnorm is the normalized

shaft speed where the normalization is with respect to the natural frequency of the
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SDOF model. Investigating the figure, it can be clearly seen that responses of the
SDOF model and the MDOF model are very close to each other due to the rigidity
of the shafts considered. Therefore, it is expected that optimization studies carried
out by using either of the models (SDOF or MDOF models), for this particular case,

will lead to similar results.

%107

1.5~ N, —-SDOF model
—MDOF model

PPDTE [m]

0.2 0.4 0.6 0.8 1 1.2 1.4
wnorm [-]

Figure 5-4 Response of MDOF and SDOF models for “short shafts” case

In the second case, gears are placed in the middle of 1 m long shafts. Figure 5-5
shows that, in this case, the shaft flexibility affects the total response of the gear pair
considerably, and therefore SDOF and MDOF models yield considerably different

results, as expected.
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Figure 5-5 Response of MDOF and SDOF models for “long shafts” case

Figure 5-5 reveals that the coupled transverse-rotational modes along with the multi-
harmonic LSTE input make the dynamic response more complex compared to the
case of short shafts. In case those modes fall in the operating speed range,
optimization using a SDOF or a MDOF dynamic model can make a significant
difference. Note that this figure corresponds to an arbitrary torque and profile
modification case, i.e. one may even find more differences between the results
obtained with SDOF and MDOF models depending on the configuration and the

relative values of system parameters.

Then, optimization is carried out by using both of the dynamic models, and optimum
values obtained are compared. Optimum profiles obtained by using DTE
optimization are also compared with those calculated by using LSTE optimization.
The objective of the optimization is set as the minimization of the maximum amount
of peak-to-peak transmission error. The reason for such an objective function is to
decrease the maximum value of the dynamic force at the gear mesh, which has the

most dominant effect on the fatigue life of a gear pair. The only parameter to be
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optimized is selected as the amount of the linear tip relief. The starting positions of
the modifications, which are applied to both gears, are fixed at the highest point of
single tooth contact.

Since a single-parameter optimization study is carried out, a brute-force
optimization technique is applied because of the respectively lower computational
cost. For the whole set of possible profile modifications, a solution is performed at
each point in the given parameter domain which is characterized by certain speed
and torque ranges. The maximum of PPDTE value is thereafter extracted from the
obtained responses for the respective profile modification and compared with the
others. The profile modification which leads to the minimum of the maximum
PPDTE is labeled as the optimum profile modification. Note that when LSTE
optimization is made, only a single torque range is considered and the objective

function is taken as the minimization of the maximum peak to peak LSTE.

Since the responses of SDOF and MDOF models differ significantly from each other
for longer shaft case, in the rest of this study, optimization is performed for only the

long shafts configuration.

Some example cases are presented in order to show the differences between the
optimization results obtained from different models. The details of the example
cases can be found in Table 5-3. Note that in all cases, the design torque is taken as
1000 Nm.
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Table 5-3 Details of the example cases

Case 1

Torque range
Speed range
Initial modification

Modification increment

50-100% of design torque
2200-2400 rpm

3 um

5 um

Case 2

Torque range
Speed range
Initial modification

Modification increment

0-50% of design torque
1600-1800 rpm

0 um

S5 pm

Case 3

Torque range
Speed range
Initial modification

Modification increment

20-40% of design torque
1600-1800 rpm

2 um

2 um

Case 4

Torque range
Speed range
Initial modification

Modification increment

80-100% of design torque
1000-1200 rpm

10 pum

2 um

Case 5

Torque range
Speed range
Initial modification

Modification increment

0-20% of design torque
600-800 rpm

0 um

2 um
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For the first two cases, where optimization in a wide torque range is considered, the
comparisons are made between the optimization results obtained through the static,
SDOF-dynamic and MDOF-dynamic models. The results (normalized with respect
to the minimum of the maximum PPDTE obtained) for these cases are presented in

Figure 5-6.
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Figure 5-6 Sample optimization results for Case 1 and Case 2

It is observed from the results obtained that, for Case 1, while the SDOF model
proposes the 3" modification (i.e. 13 um) as the optimum one, which is also
proposed by the LSTE model, the MDOF model suggests that the minimum DTE is
obtained when the second modification (i.e. 8 um) is applied to the gear teeth. In
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Case 2, the difference between the optimum profile modifications proposed by the
SDOF model (5 um) and MDOF model (15 pm) is as large as 10 um. The
differences between LSTE based optimization and DTE based optimization are also
clearly observable for Case 2, which are in agreement with the findings of the study

of Faggioni et.al. [50].

In Case 3-Case 5, torque ranges considered in the optimization are limited to 20%
of the design torque. The increment of profile modification is kept as low as 2 um,
in order to observe if discrepancies still exist between the results of different models
even under such minor modification differences. For these cases, only the
comparison of the optimization results between SDOF and MDOF models are

considered and the results are given in Figure 5-7.

In this case study, the torque range considered is smaller compared to that of the
previous case study; hence, the optimum profile modifications obtained from the
SDOF and MDOF models are slightly different from each other. The comparison of
the results obtained by using SDOF and MDOF models for the same gear system
indicates that those differences can be more important under the influence of
operational conditions. Case 3 can be used to explain the differences. MDOF model
suggests that, considering wear on the gears, the first modification (2 um) can be
preferred instead of the second modification (4 um), which is the optimum one,
since DTE increases significantly if due to tooth wear profile modification reaches
to 6 um. However, if SDOF model is used, the 3rd modification (6 pm), which is
the optimum one, can be used, since the increase, as well as the rate of increase in

DTE is small even wear occurs.
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Figure 5-7 Sample optimization results for Case 3, Case 4 and Case 5

5.3 Optimization of Tooth Bending Fatigue Characteristics using TPMs

In this section, a tooth bending fatigue life estimation procedure which is based on
gear dynamics will be presented. A single-degree of freedom model is preferred in
this study for its simplicity, although such a model will be insufficient for the cases
where the compliances of the other elements of the drive system cannot be
neglected. The procedure will be explained in detail with an example spur gear pair
which is made of high strength alloy steel 42CrMo6. A tooth profile optimization
study will be performed in which the aim is to achieve the maximum tooth bending

life for the example gear pair, taking the operational spectrum into account. Tooth
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root stress cycles will be calculated based on a SDoF nonlinear gear dynamics model
using rainflow counting method. Those stress values will be input to the fatigue
model which is based on the S/N curve of the gear pair material.

The LSTE-based dynamic model will be used to obtain dynamic root stresses,
resulting from dynamic mesh forces. The equation for dynamic mesh force (in case

of no tooth separation) is given in [61] as follows:

W (1) =W, + Ky, (X(1) =X, (1)) +2¢ \Jmk, X(t) (5.3)

Here W, is the static load. Along with the LSTE and average mesh stiffness input,

the moment arm (with respect to root of the gears) information is also gathered from
STEP, enabling to obtain stress numbers, which are simply the multiplication of
mesh forces with the respective moment arms. The real stress values are obtained
through a correlation of stress numbers with the static stress results obtained through
WindowsLDP of OSU, which is capable of employing finite element formulation
for the calculation of root stresses. With this approach, it is aimed to achieve as

realistic a stress calculation as possible.

The dynamic root stress data is then directed to the rainflow counting algorithm, in
order to extract stress cycle information, which, along with the rpm and duration of

the operating condition data, is used in life estimation analysis.

Gears in most applications are subject to relatively low stress levels, so that in
comparison to crack propagation period, most of the fatigue life is spent in the crack
initiation phase. Therefore, the stress-life (S-N) approach can be considered as an

appropriate method of predicting bending fatigue life of gears.

96



Although in a traditional S-N curve, it is assumed that below a certain level of stress
(endurance limit), no fatigue damage occurs, existence of such a limit is widely
questioned for most of the engineering materials, including the steels used in gearing
industry. For this reason, a two-slope S-N curve [63] is used to capture the damage

in regions both above and below the fatigue limit separately.

Following equations can be used for stress values above and below the fatigue limit

respectively:

Ao %
Ni:NFL(A )", Ao >Aoy

Ok
. (5.4)

Ao 24
), Ao <Aocg

Ni = N (

FL

In these equations, Nr. stands for the number of cycles at the endurance limit Aor,
Ao is the applied stress level and b is the slope of the S-N curve in the region where
the stresses are above the endurance limit, in log-log scale. These are the general S-
N curve equations which can be employed to many engineering materials, including
steel, with the constants varying for each different material. In this study, 42CrMo6
is selected as the gear material and the required parameters are taken from [64].

Table 5-4 shows these parameters.

Table 5-4 S-N Curve Properties for 42CrMo6

Material AdorL NEL b

42CrMo6 550 3e6 -0.0816
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Rainflow ranges have been widely used for estimating fatigue damage from variable
amplitude loading. Rainflow cycle counting method is based on the analogy of
raindrops falling on a pagoda roof and running down the edges of the roof. As per
the SAE and the ASTM standards, the three-point cycle counting rule uses three
consecutive points in a load-time history to determine whether a cycle is formed.

Details of rainflow counting algorithm used in this study can be found in [65].

For this study, the stress-time history data is run through a three-point rainflow cycle
counting algorithm and stress cycles are extracted. Respective damage for the
operating duty cycle under consideration is then calculated using the material S/N

curve by implementation of Miner’s rule for damage accumulation.

The procedure proposed in this study for estimating the tooth bending fatigue life
for a spur gear pair is a combination of the previously mentioned gear dynamics

model and the fatigue model. This procedure is shown in Figure 5-8.

The procedure is explained below in detail for a sample spur gear pair with a defined
duty cycle. The tooth bending fatigue life is going to be estimated for the following
gear pair (Table 5-5). The gear pair under consideration consists of 2 identical spur
gears. Tooth profiles are unmodified. The damping ratio is taken as 0.05 since it is

used in many gear dynamics modeling studies including [61].
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Read the duty cycle data, enter torque info into
STEP input file

Solve STEP, obtain necessary input for the
dynamic code

Solve dynamics for the input rpm, obtain
dynamic stress data for a mesh cycle

Extract stress cycles via rainflow counting

Obtain equivalent Soderberg stress values

Calculate damage for a single case using S-N
information

Employ Miner’s rule to calculate damage for
the whole duty cycle

Figure 5-8 Procedure for gear tooth bending life estimation
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Table 5-5 Example spur gear pair

Number of teeth 50

Module 3mm
Equivalent mass 0.7824 kg
Base diameter 140.95 mm
Tip diameter 153.74 mm
Center distance 150 mm
Damping ratio 0.05

When the operating speeds are near the natural frequency of the gear pair system, or
correspond to those levels at which the system can be excited by the higher
harmonics of the excitation due to the LSTE, the dynamic effects can become
dominant and hence a dynamic response analysis becomes a necessity. The tooth
bending life of this spur gear pair is going to be estimated for the given duty cycle
(Table 5-6). Note that the duty-cycle given in Table 5-6 may as well be interpreted
as a portion of a total duty cycle which only contains the critical intervals regarding

the fatigue life.

Table 5-6 Duty cycle under consideration

Case  Torque [Nm]  Speed[rpm] Duration [hours]

1 550 1160 400
2 600 1240 40
3 730 940 80
4 600 1140 200
5 600 1850 20

100



The steady state normal tooth bending stress results for the different cases of the
duty cycle are shown in Figure 5-9. The assumption of a uniaxial stress state is
reasonable because of the geometry and the loading characteristic of a spur gear.
The static case when a torque of 600Nm is applied is also given for comparison as
Case 0.
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Figure 5-9 Tooth root normal stress results

As expected, the dynamic stress results show a more complex behavior than that of
the static case. Not only the peak stress levels go higher, but also the number of
stress cycles which can be effective in damaging of the teeth increases. One can also
observe the loss of contact phenomenon in Case 1 and Case 5, where the root stress
levels drop to 0. The stress cycles are extracted with the Rainflow counting method.
Table 5-7 shows the stress cycles for Case 3. Note that here the minor cycles (i.e.

cycles with very low stress ranges) are not shown.
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Table 5-7 Rainflow stress cycles for Case 3

No. of From To Range Mean Equivalent Soderberg
cycles [MPa] [MPa] [MPa] [MPa] Stress [MPa]

1 237 613 376 425 359

1 556 50 506 303 383

1 580 160 420 370 359

1 629 0 629 314.5 486

The last column in Table 5-7 shows the equivalent Soderberg stress values. The
following operation is used in order to compensate for the tensile mean stress effects
on high-cycle fatigue strength. Note that other stress correction methods can also be

employed at this step.

g, =—a (5.5)

In this equation S, is the fully-reversed stress amplitude, S, is the stress amplitude,
Sm is the mean stress level and S, is the yield strength of the material. The Soderberg
stress values are entered into the S/N curve equation along with the rpm and duration
information in order to check if the gear pair can survive in the projected lifetime.
Table 5-8 shows the damages related to the respective cases.
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Table 5-8 Fatigue live summary for the gear pair

Case  Cycles Cyclestofail Damage [%]

1 2.78e7 5.00e8 55
2 2.98e6 1.94e7 154
3 4.51e6 5.52e7 8.2
4 1.37e7 6.66e8 2.1
5 2.22e6 3.96e6 56.1
Total - - 87.3

Although a direct comparison with the fatigue calculation concept in AGMA
standard is not possible, it is safe to say that AGMA does not consider the mentioned
effect of secondary stress cycles due to dynamic effects. AGMA considers the cyclic
nature of loading in the factor Yn, stress cycle factor for bending strength [66].
However calculation of this factor does not take into account the possibility of
having more than one stress cycle during a single mesh cycle, as the formula for the

number of stress cycles (N) is given as:

N=60Lng (5.6)

Here L islifein hours, n isrpmand g is number of contacts per revolution. AGMA

gives several S/N charts for finding Yn, which is used in calculating an allowable

bending stress number.

AGMA also employs a dynamic factor, Ky, in order to account for the dynamic
loading. Studies [67] have shown that deviations from optimal profile modifications
often exceed the AGMA recommendations of dynamic factor for gears with non-
optimal modification. With this information, one can modify the dynamic factor to
be used by using a gear-dynamics model. However even this updated factor may not

103



be enough to cover all the dynamic effects in a fatigue calculation. Consider the
case shown in Figure 5-10 obtained at 620 Nm torque at 1155 rpm:
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Figure 5-10 Stress cycle information for the sample case

Note that the gear pair is the same gear pair that was investigated in the previous
section. Table 5-9 gives the expected fatigue damage information for this case, using
the S/N curve for 42CrMo6. The number of cycles to fail is highlighted for the peak

stress and for the total stress time history.

Table 5-9 Cycles to fail for the respective stress cycles

Stress cycle Equivalent Soderberg # of cycles to fail
Stress [MPa]

1 331 4.61ell
2 382 1.59e10
3 396 6.80e9
4 422 1.52e9
Total mesh cycle 1.15e9
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It can be clearly observed from Table 5-9 that the omission of stress cycles with
smaller ranges (secondary stress cycles) can lead to a miscalculation regarding the
lifetime of the gear pair. One should also consider that there may be even cases
which are more critical in terms of fatigue damage estimations than the case shown
in this example. The fatigue properties of the material and the severity of the loading

usually determine the level of the effect of the secondary stress cycles.

Although in most applications gear designers can end up with safe designs by using
the conventional dynamic factor and stress cycle factor approach, it should be kept
in mind that for some specific speed and torque levels, the secondary stress cycles
can also affect the tooth bending life of the gear pair.

Tooth profile modifications are known to be very effective in reducing the vibration
and noise in spur gears, since, when properly applied, they reduce the dynamic
excitation to the geared system, in terms of loaded static transmission error (LSTE).
This mentioned reduction of the dynamic loading of the system also means an

improvement in both bending and contact fatigue lives.

There have been many studies, both theoretical and experimental, showing the
improvement in dynamic load factors after the employment of proper profile
modifications [67,68].

In this study an optimization scheme which, instead of obtaining minimum dynamic
load factors, is directly targeted at obtaining the maximum tooth bending fatigue life
for a spur gear pair is suggested. Studies [50] have shown that DTE minimization
based optimization work can lead to better results than those based on LSTE
minimization, so a similar approach is followed here regarding the tooth bending

fatigue lives. A comparison with LSTE optimization is not in the scope of this work.
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A 4-parameter optimization model is used here, the variables being amount of tip
modification and the start of the modification both for the pinion and the gear. A
brute-force optimization technique is employed. The gear pair used in the
optimization model is the same as the one used throughout Section 6.3. The
optimization scheme can be applied on different duty cycles; here an example is

given for the duty cycle in Table 5-6.

Table 5-10 shows the results of the optimization study for various arbitrary profile
modification scenarios, including the optimum one for tooth bending fatigue life.
Note that a case with a life estimation which is worse than the no profile

modification case is also shown.

Table 5-10 Damage summaries obtained for different parameter configurations

Profile Pinion Pinion Gear  Gear Damage
Modification PM PM PM PM [9%6]
(PM) Amount Start Amount Start
[pm] [°RA]  [pm] [°RA]

No PM - - - - 87.3
1 25 24.6 25 24.3 42.7
2 28 24 25 24.6 1.0
3 31 24.6 28 24 14.8
4 31 24.6 31 24 4.6
5 28 24.6 31 24.6 271.7

Best PM 28 24 31 24 0.0012

As can be observed from Table 5-10, when combined with the nature of the fatigue
characteristics for the steel, an optimum profile modification can easily guarantee
the safe operation of a spur gear pair throughout its lifecycle, when tooth bending
fatigue is the only concern. Another important outcome of this study is that, a bad

selection for the profile modification can endanger the gear pair, making a premature
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failure possible such that even an unmodified gear pair behaves better, considering
tooth bending fatigue. Small variations in the optimization parameters tend to
change the fatigue characteristics very dramatically, which underlines the
importance of selection of the objective function as maximization of fatigue life,

instead of the minimization of LSTE.

The steady state stress cycle information for the duty cycle given in Table 5-6 is

shown in Figure 5-11 for the optimum tooth profile modification case.
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Figure 5-11 Tooth root normal stress time histories for the optimal TPM
configuration

With the application of the optimal profile modification, not only the stress-based
dynamic factors reduce, but also the secondary stress cycles decrease to such levels
that they can be neglected in bending fatigue life calculations. Therefore in terms of
improving the tooth bending fatigue life, the effect of a good tooth profile

modification is not limited to reduction of the maximum stress at the root region.
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5.4 Summary and Conclusion

For the studies performed within the scope of this section, initially, tooth profile
modification optimization is performed using 3 different models. The first model is
based on the minimization of LSTE variation. In the second and third models, profile
modification optimization is achieved through minimization of DTE variation. The
second model considers only the spur gear pair dynamics, whereas the third one,
which is a MDOF model, takes also the effects of shaft and bearing dynamics into
account. The differences between the optimization results obtained by using the

mentioned models are studied.

For the second and third models, which consider the dynamics of the respective
systems, gear pair dynamics is modeled based on a previous study by Ozgiiven and
Houser [61]. The mentioned model employs the approximation of using an average
value for gear mesh stiffness and includes the excitation effect of mesh stiffness
variation through a displacement excitation function in the form of LSTE. This
model is preferred in this study, since it can be easily implemented to a MDOF
model, providing solutions in frequency domain. In order to verify the accuracy of
the model for the cases where optimum profile modifications are used and therefore
very small LSTE variations are observed, first a comparison is made between DTES
obtained through this model and an exact gear dynamics model, which employs
time-variant mesh stiffness. The comparison revealed that the invariant mesh
stiffness approximation can also be used in the dynamic analysis of gear pairs where

LSTE excitation is at very low levels.

Before proceeding with optimization, possible different outcomes of using SDOF
and MDOF models are investigated on two different cases. The first case with

shorter shafts represents a relatively rigid configuration of a gear-shaft-bearing
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system, whereas the second case is an example of a significantly more compliant
system. The results obtained through both models turned out to be very similar for
the first case. However, for the second system under consideration, the responses
obtained with SDOF and MDOF models are found to be considerably different from
each other, as expected. It is shown that when combined with multi-harmonic
excitation, the complex dynamic nature of compliant systems resulting from coupled
transverse-rotational modes observed in operational speed ranges makes MDOF

models more suitable to be used in optimization studies.

In optimization studies, differences are observed between the best profile
modifications suggested by LSTE-based model and those obtained by using
optimization models based on DTE minimization. This observation is in line with
the findings of Faggioni et al. [50]. Therefore, the main emphasis is placed on the
comparison of the optimization results obtained from SDOF and MDOF dynamic
models in this study. Important differences are observed between the optimum
profile modifications obtained by SDOF and MDOF dynamic models for gears on
compliant shafts. It is therefore concluded that the optimum tooth profiles obtained
by considering only the dynamics of a gear pair may not represent the best tooth
profile modification when these gears are on flexible shafts and/or bearings. It is
also shown that when parameters such as quality of manufacturing and wear of the
gears are of concern, such differences can be even more important. Therefore, it can
be said that for compliant systems, neglecting the shaft and bearing dynamics and
employing SDOF gear dynamics models may lead to incorrect decisions for

determination of the optimum profile modification.

Here it should be noted that for the study of TPMs in spur gears, only the amount of
tip relief is taken as a parameter to be optimized. However, when more parameters
such as shape of the profile modification (linear, parabolic) and the starting position
(in terms of roll angles) of profile modifications are included in the optimization
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study, the differences between the results obtained from SDOF-based and MDOF-

based optimization models may be even more significant.

In the second part of the TPM studies on spur gears, a procedure to estimate the
tooth bending fatigue lives of spur gear pairs is explained. Gear dynamics model is
incorporated into the life estimation model in order to get more accurate stress cycles
at the actual operating scenarios. This procedure is then employed in a 4-parameter
profile modification optimization study where the target is to obtain maximum tooth

bending fatigue life for an example spur gear pair with a pre-defined duty cycle.

Gear pair dynamics is modeled based on a previous study by Ozgiiven and Houser
[61]. The mentioned model employs the approximation of using an average value
for gear mesh stiffness and includes the effect of mesh stiffness variation through a

displacement excitation in the form of LSTE.

The relatively low bending stress levels expected at the root region of spur gears
make it appropriate to apply HCF theory for fatigue life estimation. A 2-slope S-N
curve is used here in order not to neglect the stresses below the fatigue limit.
Soderberg equation is used to take into account the effects of mean tensile stresses.
For calculating the accumulation of the damage during a duty cycle, Miner’s rule is
preferred. It should be noted here that different theories also exist in the literature as

alternatives to both the Soderberg equation and the Miner’s rule.

The dynamic stress plots show that depending on the operation speed, it is possible
to observe that secondary stress cycles are also critical in terms of damaging of the
gears when tooth bending fatigue is considered. A 3-point rainflow counting
algorithm is employed for detecting the stress cycles during a single gear mesh

period.
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When a safety analysis is performed for a gear pair, the common approach is to
apply certain factors in order to compensate for the dynamic nature of loading and
stress cycles. The calculations can further be improved by the replacement of
dynamic factors stated in gearing standards (AGMA, ISO, DIN) by more accurate
ones based on a dynamic analysis. However the effect of secondary stress cycles can
still be neglected with such an approach, misleading to overestimated bending
fatigue lives. A more accurate life estimation is possible using the procedure

explained in this study.

A proper tip modification design is sought for both of the mating gears by optimizing
the modification parameters, i.e. start and magnitude of the tip reliefs. When the
overall solution domain is investigated, the sensitivity of the fatigue life estimations
turns out to be quite high. With a properly optimized tip relief, it is possible to
eliminate the adverse dynamic effects, hence obtain life estimations which
practically guarantee a safe operation throughout the whole life cycle of the gear
pair. On the other hand, an improper profile modification (even with slightly
different parameters) could lead to a premature failure of the gear pair. The stress
plots for the best profile modification scenario are also investigated using the
example gear pair. It is observed that not only the dynamic stress factors reduce but

also the secondary stress cycles disappear.
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CHAPTER 6

TOOTH PROFILE MODIFICATIONS FOR IDEAL DYNAMIC

RESPONSE OF PGTS

6.1 Introduction

In this section, profile modification concept in PGTs is addressed. Both linear and
parabolic modifications are considered. A purely-torsional mathematical model
which is a variant of Ozguven’s “Loaded Static Transmission Error (LSTE)”
concept for parallel-axis gears [61] is proposed. A comparison of the proposed
model is made using the Transmission3D software, which uses a combined
analytical contact mechanics - FE approach for geared systems. The profile
modifications for PGTs are then investigated on the proposed model, using
harmonic balance method (HBM) with arc-length continuation. In a first step the
effectivity of TPMs in reducing the dynamic mesh forces are investigated using
linear and parabolic TPMs. The sensitivity of dynamic characteristics of a PTG to
the design parameters of TPM is also analyzed. Ideal TPMs in terms of reducing
PGT vibration are examined for speed intervals where different normal modes
dominate the dynamic behavior. Finally the relationship between loaded static

transmission error and dynamic mesh displacement is addressed.

6.2 Nonlinear time-variant mathematical model using LSTE

A purely torsional mathematical model is used for all the profile modification

studies performed. It is a time-varying stiffness model which also includes backlash
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nonlinearity. Egs. 2.1 - 2.10 provide the equations of motion for the mathematical
model used in TPM studies for PGTs.

The distinction of the proposed model lies in how the time-varying stiffness term is
calculated. In their study related to correlating dynamic transmission error values to
dynamic forces, Tamminana et al. [69] proposed a time-varying nonlinear dynamic
model for spur gears where they estimate the time-dependent stiffness parameter as
a function of LSTE and an error term. Results of this study show excellent
correlation on profile-modified spur gears with both experimental and FE results.
This approach can also be used to estimate the mesh stiffness functions of a PGT
with profile modifications. Utilizing this method, mesh stiffness variations can be

represented as follows,

T, ‘ 1
kSi (t) B s'p [LSTESI (t) - esi (t)] (61)
K (t) = Lf L (6.2)

r-rnp . [LSTEn (t) —€; (t)]

where profile modifications are included in e; (t) and e, (t). This method combines

the advantages of both LSTE-excitation based models and time-varying stiffness
models. By calculating the LSTE term only, since applied TPM is already known,
it is possible to include a time-varying stiffness parameter in the related
mathematical model with relative ease. This also helps to avoid the disadvantages
of constant-stiffness dynamic models, such as accuracy problems especially for

nonlinear response and response due to higher harmonics [6].
Firstly, it is required to validate the mathematical model proposed for PGT systems,

before using it to study the effects of profile modifications. Although the proposed

approach for mesh stiffness approximation has been shown to be accurate for spur

114



gears, it is still necessary to perform a validation study for the complete model
proposed for PGTs, as the use of this mesh stiffness approximation has not been
employed before in a planetary gear dynamics model. For this purpose, combined
FE-contact mechanics software Transmission3D and its solver Calyx, are used. This
software is preferred due to its computational efficiency in solving the non-linear
contact problem. In conventional FE tools, this problem requires a very fine mesh
of finite elements for an accurate solution. This results in infeasible amount of
computation times, especially for dynamic simulations where steady-state analyses
are sought. However, Calyx approaches the non-linear contact problem with analytic
means [70] and combines the analytical solution of the contact region with FE
solution of the rest of the model under consideration. Calyx is widely used as a
validation tool in gear dynamics studies where analytic models are employed
[18,55,71].

An example PGT is studied for forced response comparisons of proposed analytical
model with 3D FE model (Table 6-1). Here torque input is from the sun gear and
output member is carrier, whereas the ring gear is fixed. In this case study, a
relatively thick ring gear is considered in order to avoid any dynamic effects due to
rim elasticity [72]. Profile modifications are applied on the tip and the root regions
of the respective gears. The modifications start from HPSTC for tip and from
LPSTC for root modifications. The carrier is modeled as a very large inertia
compared to other members of PGT, which is the case for PGTs that are commonly
employed in main rotor drive systems of helicopters. In most of the helicopters, main
rotor shaft, which is connected to the main rotor system, acts as the carrier of the
planetary reduction stage. All bearings are modeled as very rigid stiffness elements

for a valid comparison with the purely torsional analytical model.
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Table 6-1 Example planetary gear set used in analytical model validation

Sun Planet Ring
Number of planets 3
Number of teeth 36 21 78
Module [mm] 4
Pressure angle [deg] 21.3
Effective outside diameter [mm] 150 91 330
Root diameter [mm] 135 76 321
Facewidth [mm] 30
Transverse tooth thickness [mm] 5.3 6.8 5.3
Diameter at measured tooth 144 84 312
thickness
Torque applied [Nm] 1800 - -
Mesh damping coefficients [Ns/m] 158 164
Profile modification at tip and 15 0 155
root [um]
Young’s modulus [GPa] 206.8

Figure 6-1 shows the FE model of the PGT under consideration. The FE mesh is
kept as coarse as possible for computational speed. Final mesh configuration is
obtained by running successive trial simulations with different mesh resolutions

which guarantees the accuracy of the solution while keeping the solution time at a

minimum.
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Figure 6-1 A view of the FE model for the example planetary gear train used in
validation study

The damping is modeled in Transmission3D as Rayleigh damping, and the
corresponding Rayleigh damping coefficients for all gear bodies (sun, planets and
ring) are a =479 stand g = 1.4e-7 s. The mesh damping coefficients provided in
Table 6-1 are used in time-integration solution of the proposed lumped-parameter
model, which represent similar damping characteristics to Transmission3D model.
At each speed point, time step is adjusted to represent a mesh cycle by 64 points.

Around 3000 time-steps is required in order to reach to the stable solution region.

The analytical model is run in Matlab using ode45 time-integration method which

uses Runge-Kutta-Fehlberg method. Time-dependent mesh stiffness parameters
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required for analytical model are obtained through Transmission3D, using LSTE

data from single-pair solutions of sun-planet and ring-planet meshes.

A speed range which covers third, fourth and fifth superharmonics of the first natural
frequency, is selected for this comparison study. Such a speed sweep through a
number of harmonics of an initial natural frequency is again a common case for
helicopter PGTs during the start-up and slow-down phases of operation. The first
natural frequency for such systems is usually much above the operational speed

level, which is more or less constant during the flight for most of the helicopters.

A comparison of forced-response results of both models, in terms of rms sun
displacement, can be seen in Figure 6-2. Similar to the findings of Tamminana et
al. [69] for spur gears, response obtained through the analytical model agrees well

with FE solutions.
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Figure 6-2 Comparison of the frequency response for analytical and FE models
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The time histories of sun displacement obtained at 1680 rpm and 2230 rpm are also
shown in Figure 6-3. These results also support that developed method agrees well

with the commercial Transmission 3D software.

The results of this validation study show that the proposed mathematical model,
which requires significantly less computational effort, is appropriate for performing
detailed parametric studies regarding TPMs in planetary gear systems. Therefore,
using only LSTE data, which contains both the geometric error terms and the static
transmission error due to static deflection of the respective gear pairs, it is possible

to obtain an accurate estimation of dynamic response of PGTs with TPMs.
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Figure 6-3 Time histories for sun displacement at a) 1680rpm and b) 2230 rpm
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Egs. 2.25 - 2.36, obtained through HBM, are solved using Newton’s method with
arc-length continuation. Proper TPMs are expected to diminish the vibration levels
and eliminate any possible nonlinear effects, but nevertheless arc length
continuation is able to show multiple solutions for the speed ranges where nonlinear

effects are still dominant.

In order to validate HBM solutions, a comparison study is performed between the
numerical integration results and HBM solution, for an example gear set with TPMs.

The parameters for this example gear set are given in Table 6-2.

Table 6-2 Example planetary gear set used in HBM vs. time integration comparison

Sun Planet Ring
Number of planets 4
Number of teeth 38 22 82
Module [mm] 4
Pressure angle [deg] 21.3
Effective outside diameter [mm] 158 95 323
Root diameter [mm] 142 80 336
Facewidth [mm] 30
Transverse tooth thickness [mm] 53 6.8 53
Diameter at measured tooth 152 88 328
thickness
Inertia/r? [kg] 2.42 0.82 10
Torque applied [Nm] 2400 - -
Profile modification at tip and 6 6 0
root [um]
Young’s modulus [GPa] 206.8
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In this PGT, the ring gear is fixed and the carrier is modeled as a large inertia. In
order to check the validity of the solution with TPMs, gears with different TPMs are
considered. In HBM, 6 harmonic terms are used for the representation of the time-
dependent parameters. Response comparison in terms of rms sun displacement is

given in Figure 6-4.
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Figure 6-4 Comparison of HBM and time integration response

Itis apparent in Figure 6-4 that HBM method agrees well with direct time integration
and it is successful in obtaining the steady state response of the PGT under
consideration. Therefore, HBM is used in the rest of the study for determining the

steady-state response.

6.3 Parametric studies

The dynamic effects of TPMs are extensively studied by running dynamic

simulations on the aforementioned PGT dynamics model. The LSTE data is

121



collected from WindowsLDP software for each simulation, without any
approximations (such as a rectangular modeling of LSTE). The PGT configuration
outlined in Table 6-2 is used for this study as the basic configuration. For sun-planet
gear pairs, the modifications are applied on the tip and root regions of the sun gear
teeth. For ring-planet pairs, the modifications are applied on the tip and root regions
of the teeth of planet gears. Linear modifications start from HPSTC and LPSTC for
tip and root, respectively for both sun-planet and ring-planet pairs. Parabolic
modifications start 0.5 °“prior to HPSTC and LPSTC points for sun-planet pairs and
1.0 “prior to HPSTC and LPSTC points for ring-planet pairs (i.e. modifications start
just before HPSTC and LPSTC points, slightly in double-contact region). These
locations are selected since they result in the least possible variation in LSTE, when
a proper amount of modification is applied. Note that the “proper” amount of the
respective modification to obtain minimum variation of LSTE is dependent on the
level of the applied torque. In all TPM configurations throughout the parametric
study, the amount of the applied profile modification is kept the same both for the

tip and root regions of the respective gears.

Figure 6-5 shows the ratio of the maximum sun-planet dynamic mesh force to static
mesh force for various amounts of TPMs. The simulations are run between sun
speed of 1000-6000 rpm for the example gear train considered. It is already known
that proper TPMs are able to reduce the dynamic response. However, Figure 6-5
also reveals some other important characteristics of TPMs which can be translated

into design guidelines.
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In order to obtain an ideal response in terms of dynamic mesh forces, depending on
the speed range, one should apply TPM on both sun-planet and ring-planet meshes.
In all of the simulations, an ideal dynamic force response is obtained via a proper
combination of sun-planet and ring-planet modifications, since the sun-planet and

ring-planet mesh forces are coupled with each other.

At all load levels, a minimum of the maximum dynamic forces is achieved by
applying linear TPMs rather than parabolic ones. However, depending on the
criticality of the application, the differences between the minimum values obtained

by linear TPMs and parabolic TPMs can be considered to be negligible.

Figure 6-5 also shows that parabolic TPMs are less sensitive to the variation in the
amount of TPM. In most of the applications the order of magnitudes for TPMs is in
micron-level. Therefore such findings regarding the sensitivity of TPM design
parameters are especially important when the manufacturing tolerances and tooth
wear are considered. It is also worth noting that as the torque level decreases, the

sensitivity of the dynamic forces to the amount of TPM increases.

Figure 6-6 provides the ratios of the maximum dynamic mesh force to static mesh
force as functions of sun and planet TPMs, for sun-planet and ring-planet meshes,
at two different torque levels. Parabolic TPMs are applied at 1600Nm, whereas
linear TPMs are applied at 4000Nm.
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Although sun-planet and ring-planet meshes do not necessarily give the least
dynamic forces at the same TPM configuration, it is safe to say that they behave
very similarly. It is also evident from Figure 6-6 that the sensitivities of mesh forces

to amount of TPM are different for sun-planet and ring-planet meshes.

Effectivity of a TPM design is strongly dependent on the level of loading. It is
investigated next how an ideal TPM designed for a specific torque level behaves
under different torque levels. Firstly, TPMs which minimize the maximum rms
displacement responses for both sun-planet and ring-planet meshes in the speed
range of 1000 to 6000rpm are calculated for torque levels in the range 1600-
4800Nm, with 800Nm intervals. Then simulations are performed for these TPMs at

other torque levels in the defined range. Figure 6-7 shows rms sun-planet (Z,) and
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rms ring-planet (Z, ) displacements obtained as a result of this set of simulations,
in a normalized form. The normalized values are obtained by dividing Z_ and Z |

by the respective minimum values Z and Z Note that 4800Nm is

sp,min rp,min *
considered as an upper limit in terms of loading, since the tooth bending and contact
stresses beyond this level are found to be critical in terms of gear life calculations.
Therefore it is defined as the maximum design load, and hence any increased torque

level is unrealistic for this particular study.
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Although not shown here, in the torque range under consideration, all of the ideal
TPMs resulted in dynamic response which is less than the cases with no TPMs.
However, it is also apparent that ideal TPMs for lower torque values (e.g. for
1600Nm) mean a loss of potential for higher torque levels in terms of reducing the
dynamic response. With the ideal linear TPM for 1600Nm, obtained sun-planet
response at 4800Nm is 25um. However, with the application of optimum TPM for
4800Nm, this value is found to be as low as 7.5 um. A similar conclusion can also
be reached for the opposite case. If one chooses to apply a linear TPM optimized for
4800Nm, at 1600Nm, the sun-planet displacement response is 10 times the response

achieved by using the optimum TPM at that load level (22.5um vs 2.5um).

When lower torque values are considered, optimum parabolic TPMs for a specific
torque level result in better dynamic response than their linear counterparts. As an
example, ideal parabolic TPMs designed for 4000Nm also resulted in respectively
comparable response levels for 32200Nm.

The above conclusions can be useful when an optimization study is performed to
determine the optimum TPM for a specified operational spectrum consisting of
different load and speed levels and their contributions to the total operational life.

PGTSs have distinct torsional natural modes that can only be excited by certain mesh
phasing configurations. Kahraman [11] defined these torsional modes as “in-phase”
and “sequentially-phased” modes in his study in which he also analytically
formulated the natural frequencies associated with these modes. The first and the
second “in-phase” modes can only be excited by in-phase excitations; whereas,
“sequentially-phased” modes can be excited by sequentially-phased excitations.
More information regarding this phenomenon and the rules of mesh phasing in PGTs
are available in the literature [32,55,73]. The mode shapes associated with these

modes are also different for each natural mode. For in-phase modes, all planets have
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identical rotations, while the relative movements between sun-planets and ring-
planets may change from one mode to the other. In sequentially-phased modes, the
sun and ring gears do not move, whereas the sum of the displacement vectors for
planets sum up to 0. These differences in mode shapes are also expected to affect
the ideal TPM configurations, which lead to most favorable dynamic behavior of

PGTs in terms of vibration and dynamic forces.

Table 6-3 lists the approximate undamped natural frequencies for the example PGT,
calculated by the analytical formulation proposed by Kahraman [11] which is based
on mean mesh stiffness values for the unmodified teeth. For dynamic simulations
with TPM, these values are subject to minor changes due to the effect of TPM on

mesh stiffness.

Table 6-3 Natural modes of the example PGT with no TPM

Natural frequency [sun rpm] Associated mode
6920 First in-phase mode
13940 Sequentially phased modes
16264 Second in-phase mode

Figure 6-8 shows results of three different simulations for the conditions where the
applied loading is the same (sun torque of 2400Nm) but the speed ranges differ from
each other (2500-6000rpm, 6000-10000rpm and 12000-16000rpm, respectively). In
the first speed range, the second harmonic of the first in-phase mode is excited. The
excitation of the second harmonic of the second in-phase mode is expected in the
second speed range. In the third speed range, the effects of TPM on the sequentially
phased mode are investigated. Figure 6-8 shows the outcome of the simulations in
terms of the rms sun-planet and ring-planet mesh displacements, for different

amounts of linear TPMs.
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Outputs of these simulations reveal some important features regarding the design of

TPMs for PGTs. Optimum TPMs in terms of minimum rms sun-planet and ring-
planet displacement responses differ for each speed interval under consideration for
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this case study. For the sequentially-phased mode, TPMs do not seem to improve
the dynamic response significantly, as the cases with no TPMs also provide very
low vibration levels. Moreover, when the responses for two different in-phase
modes are compared, the regions of TPM configurations which would lead to the
maximum reduction of dynamic response are also different. For the example PGT,
optimum TPMs for the interval of 6000-10000 sun rpm leads to an inadequate
reduction of both sun-planet and ring-planet vibration in 2500-6000 sun rpm
interval. Therefore designers should also account for the speed intervals during
operation in their choice for TPMs for PGTs. This mentioned dependence on speed
lies in the phenomenon of different excitation modes that are expected to occur due
to the parameters of PGT design. Since a TPM cannot provide an ideal solution for
all excitation modes, one can also consider optimizing the number of gear teeth such
that only a certain mode is expected within a defined speed range. Therefore, a
combination of appropriate mesh phasing configuration along with proper TPMs
can lead to the most ideal solutions for PGT systems in order to reduce vibrations.

It is a common practice for gear designers to apply TPMs solely based on the applied
load searching for TPMs that result in a minimum variation of LSTE. However for
PGTs, as it is shown in this study, the dynamic mesh displacement depends
significantly on the unique features of PGTs. Bahk and Parker [51] also found in
their study that the TPMs which give minimum LSTEs do not necessarily result in
minimum dynamic mesh displacement. Therefore, even if applying TPMs which
result in minimum LSTE variation can be helpful in some operational speed ranges,
it is clear that it may not work at maximum efficiency for every speed interval.
Consequently, as a first step, speed intervals in which LSTE approach work and the
ones in which a minimum variation in LSTE does not result in a minimum variation
in dynamic mesh displacement are identified. Since different dynamic modes of the

system are excited depending on the speed intervals, the relationship between
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dynamic modes and effectivity of TPMs based on minimization of LSTE variation

are studied next.

Table 6-4 gives the TPMs for which a minimum LSTE is obtained for the load range
of 1600Nm — 4800Nm sun torque:

Table 6-4 TPMs leading to minimum LSTE for sun-planet and ring-planet meshes

Sun torque Sun TPM Planet TPM
[Nm] amount [um] amount [pum]
1600 12 9
2400 18 15
3200 22 18
4000 28 22
4800 33 25

Figure 6-5 and plot a) in Figure 6-8, when evaluated together with the information
in Table 6-4, show that when TPMs which minimize LSTE variation are applied,
the dynamic response is also reduced to a great extent in terms of dynamic mesh
displacements and dynamic mesh forces, respectively. These plots are obtained for
the sun speed interval between 1000- 6000 rpm and 2500-6000rpm, respectively. It
is already mentioned that in these speed ranges dynamic response is dominated by
the harmonics of the first in-phase mode. Hence for the dynamic behavior
characterized by this mode, minimizing LSTE variation is also helpful for an ideal
reduction of the vibration. However, as indicated previously, while discussing the
effect of different modes on the response of PGTs with TPMs, optimum TPMs are
different for the other cases where vibration is dictated by the harmonics of
“sequentially-phased” or second “in-phase” modes. Therefore, optimum TPMs for
these speed ranges are also different from the optimum TPMs obtained for the

minimization of LSTE variation.
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6.4 Summary and conclusion

In this chapter, the effects of linear and parabolic TPMs on the dynamic behavior of
PGTs are investigated in detail. Linear and parabolic TPMs are most commonly
used types of profile modifications, which are employed in order to improve the

dynamic characteristics of gear systems, including PGTSs.

A purely-torsional mathematical model is employed for the simulations of an
example PGT with various configurations of TPMs. Time-varying mesh stiffness
functions for the proposed non-linear, time-varying model are calculated based on
the LSTE values. A similar approach was used in the study of Tamminana et al. [69]
for spur gears which showed very good correlation with both experimental and FE
results. In order to check validity of this model for planetary gears, dynamic
response results of the theoretical model are compared for an example PGT, with
those that are obtained through Transmission3D, which is a combined FE-contact
mechanics tool that is widely used in the field. The outcome of the comparisons built
confidence in going forward with investigation of dynamic characteristics of PGTs

with TPMs, using the proposed model.

The solution for the proposed analytical model is performed using harmonic balance
method with arc length continuation. Multiple solutions may exist at the resonance
regions due to the backlash nonlinearity. The ability of arc-length continuation
scheme to find multiple solution points in non-linear response regions, without the
necessity for performing forward and backward sweeps through desired speed
ranges, makes this technique ideal for such a parametric study. The computational
speed advantage over time-integration makes this solution method suitable for
performing parametric studies. This solution method is also verified by comparing
HBM and time-integration solutions on an example PGT.
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Numerous dynamic simulations focusing different aspects of the effects of TPMs on
PGTs are performed using the proposed method on an example gear set. The LSTE
values required for the solution of the analytical model are obtained through the gear
contact mechanics tool WindowsLDP of OSU, for each load-TPM configuration.
LSTE data, by definition, contains the static deflection of the respective gear pairs
as well as various deviations from the conjugate profile, including those due to
profile modifications. Therefore, using the proposed method, it is possible to obtain
an accurate calculation of dynamic response of PGTs with TPMs, by utilizing LSTE
information only to estimate the mesh stiffness between respective gear pairs.
Simulations are run for specified torque levels covering different speed intervals.
Contour plots of dynamic response are presented to show the maximum dynamic
response under different amounts of TPMs for the specific speed intervals under

consideration.

When applied properly, the ability of TPMs in reducing the dynamic forces are
shown clearly for both linear and parabolic TPMs. It is also demonstrated that since
the mesh forces between sun-planet and ring-planet meshes are coupled, a
combination of TPMs for both sun-planet and ring-planet meshes are necessary in
order to benefit from an ideal reduction of dynamic mesh forces. Sensitivity of the
dynamic mesh forces to the amount of TPMs is also an important subject due to the
machining tolerances and wear. Parabolic modifications are observed to offer a
wider range of efficiently reduced dynamic response compared to their linear
counterparts. Moreover, when ideal TPMs for different load levels are considered,
parabolic TPMs are also observed to perform better than linear TPMs at load levels
that are lower than the design torque for that particular TPM.

PGTs have specific modal characteristics. Different natural modes dictate not only
the dynamic characteristics of PGTs but also the design of ideal TPMs for vibration
reduction. Ideal TPM configuration in terms of improving the dynamic

characteristics of PGT changes for different speed intervals due to excitation of
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harmonics of different natural modes. In the example case study performed, it is
found that for “sequentially-phased” mode, the ideal dynamic behavior is obtained
when no TPM is applied. Such conclusions can lead to design solutions where the
dynamic characteristics of a PGT can be optimized using a combination of proper

mesh phasing and TPMs.

This dependence of the ideal TPM configuration on the natural modes also answers
the question whether the minimization of LSTE variation for sun-planet and ring-
planet meshes certainly means a satisfactory improvement in dynamic behavior of
PGTs. For the example PGT, TPMs designed for minimization of variation of LSTE
lead to an efficient improvement of the dynamics for the speed intervals in which
the harmonics of the first in-phase mode are excited. However this is not the case
for the speed ranges in which various harmonics of the “sequentially-phased” and
“second in-phase” modes are excited. Therefore for reduction of vibration in PGTs,
a TPM configuration which results in minimizing LSTE variation for both sun-

planet and ring-planet meshes may not be considered as the ultimate remedy.

The above findings can be translated into design practices for TPMs on PGTs. The
load levels and speed intervals expected for the operation are very important in
selecting the ideal TPM for improvement of PGT dynamics. In addition, other
aspects of design such as manufacturing tolerances and wear on gears may play
major roles in selecting an ideal TPM configuration which can be taken into
consideration in the mathematical model proposed, since such effects are included
into the analysis through LSTE calculated by WindowsLDP.
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CHAPTER 7

DYNAMIC CHARACTERIZATION OF DOUBLE-RELIEF PROFILE

MODIFICATIONS IN PLANETARY GEAR SYSTEMS

7.1 Introduction

High contact ratio (HCR) spur gears are defined as gear pairs that have a contact
ratio between 2.0 and 3.0. Due to the increased contact ratio, expected load capacity
is higher than their low contact ratio (LCR) counterparts, since the load is shared
among 2 or 3 gear teeth instead of 1 or 2. Tooth geometry-wise, in order to end up
with HCR gears, addendum of the gears are generally kept higher than that of LCR
gears. Furthermore, a finer module is preferred for HCR gear pairs. However, such
modifications in geometry may result in gear teeth which can be more vulnerable to
bending, when compared with the tooth geometry of LCR gears.

In order to neutralize this disadvantage of HCR gears, a further improvement of the
dynamic condition is possible through a proper application of tooth profile
modifications (TPMs). In addition to the conventional linear and parabolic TPM
designs, Yildirim et al. [74] proposed double-relief type profile modifications,
which are claimed to combine the advantages of short-relief and long-relief types of
TPM designs. In a joint work with Leonardo Helicopters (formerly known as Agusta
Westland), Yildirim etal. [75] also presented some experimental evidence for better
dynamic characteristics of double-relief TPM design when compared with
conventional linear TPM design on a parallel-axis gearbox. They showed a
reduction of noise level between 7 to 11 dBA for the respective gearbox, in addition

to a highly-reduced housing vibration.
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Although experimental results are promising, there is still a need for dynamic
characterization of double-relief TPMs through mathematical modeling of gear
dynamics. In this study, dynamic characteristics of double-relief modifications are
investigated for planetary gear systems. A mathematical model of the planetary gear
system which uses an average (constant) mesh stiffness for the respective sun-planet
and ring-planet gear pairs, but includes mesh stiffness variation through LSTE is
employed for this purpose. Dynamic excitation, modeled using LSTE information
between the respective gear meshes includes mesh stiffness variation, as well as the
effects of gear errors and profile modifications. Multi-term Harmonic Balance
Method (HBM) with arc length continuation scheme is used for the solution of the

mathematical model.

Using the mathematical model, dynamic response of an example PGT is obtained at
different torque levels for two cases: with a conventional linear TPM and with
double-relief TPM. Comparisons are made between the calculated dynamic

responses, and the advantages of double-relief TPM over linear TPM are discussed.

7.2 Double-relief TPMs

Profile modification can be defined as an intended removal of material from the tip
and/or root regions of the gear tooth profile. TPMs are usually employed on the spur
gear pairs in order to improve their dynamic characteristics. This is also true for the

PGTs comprised of spur gears.

Aside from the improvement in dynamic characteristics, designers employ profile
modifications also to avoid a possible corner contact of gear teeth, even at maximum
design loads. When this is desired, then one can determine the amount of profile
modification based on the expected deformation of the gear teeth under the

maximum load. The location for the start of the modification is then a critical
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parameter which would define the characteristics of the profile modification. Both
for LCR and HCR gears, TPMs can be classified based on the initial point of
modification. A detailed explanation of this topic along with the advantages and

disadvantages of different relief types are given in reference [45].

For HCR gears, one can classify the conventional linear profile modifications as
“short-relief” and “long-relief” depending on the starting position of the TPM. For
“long-relief”, TPM is extended into the double-contact region. This approach results
in two nearly-smooth LSTE curves, one being at the maximum design load and the
other is at some intermediate load. However one major set-back for this type of
TPMs is that at maximum design load, a single tooth pair shares more than half of
the load, as a result of the modification in double-contact region. For “short-relief”,
modification starts at the highest point of triple-contact region. Therefore at
maximum load, a single tooth pair does not carry more than half of the load, which
makes “short-relief” more favorable in practice when compared with “long-relief”.
However for this case, it is possible to have only one nearly-smooth LSTE curve,
which occurs at maximum design load. This characteristic of LSTE results in poor

dynamic characteristics at lower torque levels.

In order to combine the advantages of the above mentioned two types of TPMs,
Yildirim et al. proposed a new relief type, which is named as “double-relief” such
that TPM is applied in 2 steps, with different slopes at double-contact and triple-
contact regions [74]. Thus, the maximum static load carried by a single tooth pair is
reduced compared with a similar long-relief modification. On the other side, LSTE
variation is still minimum at 2 load levels, unlike the minimum LSTE variation value

obtained at a single load level for short-relief modifications.

Figure 7-1 shows the combined tooth profile plot for an example gear pair with
double-relief TPM.
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Figure 7-1 Combined tooth profile plot for a gear pair with double-relief TPM

7.3 Mathematical Model and Solution Method

The employed mathematical model in this study is a nonlinear time invariant model.
Average mesh stiffness is assumed both for the sun-planet and ring-planet gear pairs.
The excitation effect of mesh stiffness variation is modeled by using LSTE between
the respective gear meshes. This modeling approach was first proposed by Ozguven
and Houser for spur gear pairs in 1988 [61]. Recent studies show that this model
yields accurate results for also the cases where TPMs are applied [76]. This model
has been frequently used in the literature for dynamic modeling of PGTs. References
[8,9] can be given as examples of planetary gear dynamics studies where such a

model is applied.

The equations of motion with the above listed conditions can be written as follows

M sxs (t) + Csp i Z.si (t) + i gsi (t) + ksXs (t) = kspiesi (t) ’ (71)
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M rxr (t) + Crpi Z.ri (t) + i gri (t) + err (t) = krp ieri (t) (72)

M cXc (t) - Cspi Z.si (t) - Crp Zp Z.ri (t) - Zp gsi (t) - Zp gri (t) + kcxc (t) =
_krp i € (t) - ksp i €, (t)

ML, (8) + €y 2 () = C 2, (8) + 04 () — 0, (©) = Ky () — K8, (1), (1=1,2,..1,) (7.4)

, (7.3)

where
M _1 M _ 1 M —|—°+nm (7.5)
s rsz’ r rrzl c rcz p it '

Note that ksp and krp are the average mesh stiffness parameters for the sun-planet and
ring-planet gear pairs, respectively. e, (t) is the LSTE between the sun and the i™

planet. Similarly, e, (t) is the LSTE between ring and the i ™ planet. The definitions

of the symbols and abbreviations, which are not given here, can be found in

Nomenclature. Nonlinear forcing due to the backlash between the sun-planet ( g (t)

) and ring-planet ( g, (t)) pairs are given as follows:

kg, [24 (1) —b] for z,(t)>b
g, (t) =40 for —b<z,(t)<b , (7.6)
kg, [24 (1) +b] for zg(t) <-b
and
ko [2:(t)—b] for z,(t)>b
g,(t)=40 for —b<z,(t)<b
Ky [2:(t)+b] for z,(t)<-b

(7.7)
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Sun-planet mesh displacement function (z,(t) ) and ring-planet mesh displacement

function (z,;(t) ) can be expressed as

Z,(t) = X, (1) +x (1) —x. (), (7.8)
z,(t)=x(t)—xt)—x.(1). (7.9)

Using multi-term HBM, nonlinear differential equations of motion given by Egs.
7.1 -7.4 can be converted into a set of nonlinear algebraic equations. The periodic
excitation in terms of LSTE for both sun-planet and ring-planet meshes,
respectively, can be expressed in Fourier series (using a total number of N

harmonics) as

N
ey (t) = Eg, + D (EqnC0s(Nwt) + E

n=1

sin(not)), (7.10)

si,2n+1

N
eri (t) = Eri,l + Z( Eri,ZnCOS (n a)t) + E

n=1

sin(not)) . (7.11)

ri,2n+1

Phase relationships are considered in formulating the excitation in terms of LSTE,
based on a reference mesh, both for sun-planet and ring-planet meshes. The phasing

equations for LSTE functions can be expressed as follows for sun-planet mesh:

Eg 2n = Eq1 o0 COS(NZ,D;), (7.12)

si,2n

E Egoni SIN(NZ,D;). (7.13)

si,2n+1 =
For ring-planet mesh:

Eion = Eron COS(NZ, D, +Ngp,. ), (7.14)

Ti,2n
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Eri,2n+l = Erl,2n+1 Sin (nzrq)i + ngosr) : (715)

Here Z and Z, denote the number of teeth for sun and ring gears, respectively. @,

is the angular position of the i planet (i.e. for an equally spaced 4-planet system,

planets are positioned at 0, n/2, ® and 37/2, respectively). ¢, is the phase difference

between sun-planet and ring-planet meshes.

The assumed solution to Egs. 7.1 — 7.4 can be expressed in Fourier series form as

follows

N
X, (1) = X1+ 2 (Xoz0 COS(N@2t) + X, 5, siN(N0Y)), (7.16)
n=1

where a=s,r,c,1,2,...,n,. The resulting nonlinear algebraic equations can be given

as shown below.

For sun gear:

F\)lS =ksxs,1+ZGsi,1_ksszsi,1 =0’ (717)
i=1 i=1

R25n = ks Xs,zn - n(’OZM S xs,2n + 2n(’ocspz Zsi,2n+1 + ZGsi,Zn - kspz Esi,2n = O ' (718)
i=1

i=1 i=1

Np Np

S 2
o2+l ks Xs,2n+1 —Nw Msxs,2n+l - 2n(DCsp z Zsi,2n + ZGsi,Zm—l

i = = . (7.19)
_kspz Esi,2n+l =0
i=1
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For ring gear:

R =KX+ Gy —kp > E; =0, (7.20)
i=1 i=1

Rzrn = err,Zn - nOJZM rX + 2r](’O(‘\'rpzzrl i T zGrl 2n krpz Eri,2n =0 ) (721)
i=1

=1

r
R2n+1 err2n+1 n(D M Xr2n+l 2r](’Ocrpzzrl 2n +ZGI’I 2n+1

i = . (7.22)
_krpz Eri,2n+1 0
i=1
For carrier:
Xcl - sti,l _ZGri,l - kspz Esi,l - krpz Eri,l =0, (723)
i=1 i=1 i=1 i=1

Np Np
c 2
I:QZn = kcxc,Zn —no'M cXc,Zn - 2nwc’spzzsi,ZnH - 2n(’Ocrp Z Zri,2n+1
i=1 i=1

) ) ) ) , (7.24)
_Z Gsi,2n - ZGri,Zn - kspz Esi,Zn - krpz Eri,2n =0
i=1 i=1 i=1 i=1
Rgn+1 k Xc 2n+l n(,O M Xc 2n+l + 2n(")csp Zzw 2n + 2I‘](’OCrp Zzn 2n ZGSI 2n
i i = = .(7.25)
_Z Gri,2n+1 - kspz si,2n+l ~ rp Z Erl nl T
i=1 i=1
For planets:
Rii = C;si,l - ksp ESI 1 + krp Erl 1 0 (726)
i 2
R =-no MIX + 2n(oc;spzm 2n+1 2n("‘)Crpzn 2n+1 Gsi,Zn _Gri,2n - ksp Esi,Zn ’ (727)
+krp Erl 2n — O
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G

Ry =—N’M, X, —20@Cy,Z 5. +2naC, Z,; ,. +G . (7.28)

sp<si,2n rp<ri,2n si,2n+l
-k E +k _E 0

sp —si,2n+1 rp ri,2n+1:

Therefore the nonlinear algebraic equation vector R is formed as

T
(Rs,11"" Rs,2N+l7 Rr,l""1 Rr,2N+1’ Rc,l"”’ Rc,2N+l)
R= . (7.29)

T
(Rl,l"”’ R1,2N+l7 Rz,1""1 R2,2N+1v"'1 Rnp,l"”7 Rnp,2N+l)

Solution of the nonlinear algebraic equation set is done by utilizing Newton’s
method with arc-length continuation. Details of the mentioned solution method can
be found in [52,77,78].

7.4 Validation of Solutions Obtained by Multi-Term HBM

Solutions obtained by multi-term HBM are compared with solutions obtained by
direct time-integration on an example PGT. For this PGT, sun gear is the input

member, whereas ring gear is fixed.

Short-relief TPMs are applied at the tip of the working flanks for all gears.
Modifications start from the lowest point of triple contact at the tip for the respective

gear teeth.

In this study, LSTE is calculated as a function of gear mesh stiffness, no-load
transmission error (due to TPMs) and the static mesh force. Mesh stiffness function
is assumed to be in rectangular form such that the mesh stiffness at a particular point
is equal to the number of teeth in contact times the respective mesh stiffness of a
single tooth pair. For details of the calculation of LSTE using this approach, one can
refer to [45].

145



6 harmonics are used in the Fourier series representation of LSTE functions between
sun-planet and ring planet gear meshes, respectively, and also in the representation

of the displacement vector.

Table 7-1 gives the parameters for the example PGT, on which short-relief TPM is

applied.
Table 7-1 Parameters of example PGT
SUN PLANET RING
Number of planets 4
Number of teeth 32 24 80
Contact ratio 2.31 2.28
Mesh stiffness of single tooth
_ 2.2e8 2.5e8
pair [N/m]
Equivalent inertia, I/rv? [kg] 1.2 0.624 12
Torque applied [Nm] 2400 - -
Viscous damping coefficients
1470 1380
[Ns/m]
Static mesh force [N] 5000
Amount of modification in triple
23 20
contact region [um]

Figure 7-2 shows the comparison of the sun gear displacement (rms) obtained by
using HBM and direct time integration. Time-integration solution is obtained by
using ODEA45 routine in Matlab. Results of the comparison study showed that HBM
with 6 harmonics captures the steady state response of the PGT system under
consideration accurately. Multiple solutions are obtained with HBM at several

resonant frequencies which cannot be determined by direct time integration.

146



N
o

o Time integration \

(> \

w
a1

w
o

N
a1

[EEN
S]]

[EnY
o

Sun displacement [um]
N
o

[9)]

]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Sun speed [rpm]

Figure 7-2 Comparison of sun gear displacement (rms) obtained by using T1 and
HBM

7.5 Comparison of Dynamic Response for HCR PGTs with Linear Relief and
Double-Relief TPMs

The advantages of double-relief TPMs in terms of dynamic response over the
conventional linear relief are investigated in this section. Comparisons will be made
with a “short-relief” design, where the TPM is applied from the start of the triple-
contact region at the tip of mating gears. The total amounts of modifications for both
TPM types are adjusted such that they are just enough to avoid corner contact at the
maximum load. TPM application scheme for the short-relief TPM is already
provided in Section 7.4. For double-relief TPM, constant slope modification starts
from the lowest point of double contact at the tip for the respective gear teeth, and
at the lowest point of triple contact the slope of the modification changes. Figure 7-3
gives the LSTE data for both TPM schemes. The maximum static mesh force (design
load) is given as 10kN. The curves are provided from “no-load” to design load in

10% intervals.
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It is obvious from Figure 7-3 that, for double-relief TPM, LSTE variation is nearly
non-existent at two load levels, one being at the design load (100%) and the other is
around 30% of the design load,. However, for this type of TPM, since extend of the
modification also includes double-contact region; one can end up with actual contact
ratios less than 2.0 for lightly loaded cases. This also results in increased LSTE

variation for the mentioned load levels.

x 10 X 10

2.5

5 Double relief (DR) 5 Short relief (SR)

15

C (>
C(r>»)
[ 2>)

LSTE [m]
|| A==311]]
o I ==5011]
S I ==0711]

/
0.5
% 1 2 3 %
Mesh cycle [-] Mesh cycle [-]

Figure 7-3 LSTE for double-relief (top) and linear TPMs (bottom). The load is
increased from no-load (curves at the bottom of the plots) to maximum design load
in 10% intervals.

The investigation is made in two steps. Firstly, the dynamic response in the interval
of 50 to 100% of the design load is analyzed for both types of TPMs, in 10%
increments. Figure 7-4 shows the dynamic response for both TPM types at each load

level in this interval, in terms of rms of sun displacement.
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Figure 7-4 Sun gear displacement (rms) for a) 50%, b) 60%, c) 70%, d) 80%, €)

90% and f) 100% design load

Figure 7-5 shows rms of planet displacement for both TPM types at each load level
in the interval of 50 to 100% of the design load.

Figure 7-4 and Figure 7-5 show that, considering the load levels away from the

design load at which the respective TPMs are designed for, double-relief TPM

shows better performance in terms of vibration. On the other hand, near the design

load, the vibration levels are comparable.
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Figure 7-5 Planet gear displacement (rms) for a) 50%, b) 60%, c) 70%, d) 80%, e)
90% and f) 100% design load

Figure 7-6 shows the maximum dynamic sun-planet mesh force and ring-planet

mesh force for different loads between 50-100% of the design load, in the whole

speed range under consideration.
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Figure 7-6 Maximum dynamic force for double-relief and short-relief cases in the
interval of 50-100% of the design load
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The results for the dynamic mesh forces are in line with those for the displacement
results. It is worth considering here that, when one gets away from the design load
to lower load levels, the dynamic forces can increase with a high rate. Since the
combination of static and dynamic mesh forces are important for gear fatigue, such
an increase in dynamic mesh forces can make an intermediate load level the most

critical loading in terms of fatigue, other than the (static) design load.

For the short-relief TPM case, the total (dynamic + static) mesh load values are very
close to each other in the range 50-80% of the design load. The maximum of total
mesh load values (e.g. for ring-planet meshes which is around 17kN) is also
observed in this range. The maximum value of the total mesh load for double-relief
TPM case is comparable to that of the short-relief TPM case. However, for short-
relief, the total mesh load makes a peak at 70% of the design load and decreases
steadily away from the peak location. Therefore the highest levels of the total mesh
load are not observed in a wide load range. When combined with the operational
spectrum, which gives information about the load levels and time spent at these
loads during the lifetime of the component, such information may show important

advantages of double-relief modification, compared to short-relief type of TPMs.

In a second case study, the load levels between 20-50% of the design load are
investigated. Figure 7-7 shows rms sun displacement for both TPM types at each
load level in this interval. It is observed from the figure that except very lightly
loaded cases (e.g. 20% design load), double-relief modification performs better than
short-relief modification in terms of sun gear vibration. A similar characteristic is

also valid for the planet gear vibration, although the related plots are not shown here.
For lightly loaded cases, contact ratio between mating gears is lower than 2.0 when

double-relief modification is applied. For the PGT under consideration, this

transition occurs at 32% percent of the maximum design load. The lower contact
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ratio for the double-relief modification also shows itself in slightly lower natural
frequencies than those of short-relief case. However, around this load level, since
the LSTE variation is very little, dynamic performance of double-relief modification
is still much better than that of the short-relief modification. However with
decreasing load, LSTE variation grows and this leads to poorer dynamic

characteristics for double-relief TPM in the example PGT.
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Figure 7-7 Sun gear displacement (rms) for a) 20%, b) 30%, c) 40%, d) 50%
design load

Figure 7-8 shows the maximum dynamic sun-planet and ring-planet mesh forces in

the range of 20-50% of the design load, in the whole speed range under

consideration.
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When combined with the outcomes of the analyses in the interval of 50-100% of the
design load, Figure 7-8 shows that double-relief modification is very effective at the
intermediate load levels. The maximum dynamic mesh forces are lower for double-
relief modification for static mesh loads between 30-70% of the design load. In this
interval, for the example PGT, the difference between dynamic mesh forces for
short-relief and double-relief TPMs is significant. Provided an operational spectrum
where mid-load levels are also important, this significant difference in dynamic
mesh loads can be critical in terms of the fatigue life of the example PGT. Both
TPM types are almost equally effective for the higher load levels that are closer to
the design load. For the low-load levels (i.e. 0-30% of the design load), short-relief
performs better than double-relief modification, mostly due to a higher contact ratio
achieved at those load levels for short-relief TPM. However, the maximum mesh
loads reached at low-load levels are not as high as those encountered at intermediate

load levels.
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7.6 Summary and Conclusion

In this study, dynamic analyses are performed for an example PGT with HCR spur
gears, with two different TPM schemes, i.e. conventional linear relief and double-
relief where TPM is applied in 2 steps with different slopes in triple contact region

and double-relief region.

The advantages of double-relief TPMs have been discussed in early studies [74], in
terms of static considerations, such as their ability to provide smooth LSTE curves
at intermediate loads as well as limiting the maximum static mesh force faced by a
single tooth pair. Regarding the dynamic effects of this TPM scheme, it was shown
that in a comparison with its conventional linear counterpart, a double-relief TPM
scheme resulted in less vibration and noise for a multi-mesh HCR spur gear system
that is used in a helicopter [75]. Therefore the motivation for the current study is to
show and characterize these improvements on an example PGT with HCR spur

gears, using a mathematical model.

Ozguven’s LSTE approach is used for this purpose, which is shown to be also
working effectively for profile-modified gears [12,76]. In this approach, dynamic
excitation to gears is modeled in terms of LSTE. Thus, although average mesh
stiffnesses for the respective gear meshes are assumed, dynamic excitation due to
tooth stiffness variation is included through loaded static transmission error (LSTE),
which also includes gear errors and tooth profile modifications. This method greatly
simplifies the complicated problem of modeling the mesh stiffness with profile
modifications, as it combines the gear errors and elastic deflection of the gear teeth

under one term, i.e. LSTE.

As the steady state solutions of the dynamic model are of interest, the model is

solved using HBM with arc length continuation. This method is computationally
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much more efficient than the numerical integration method in time domain. The
validity of the solution method is shown on an example simulation by comparing
solutions with HBM with those of time integration.

The dynamic characteristics of double-relief modifications are investigated on an
example PGT with HCR spur gears. Comparisons are made with those obtained for
the same PGT with conventional short-relief modification.

Both modifications are designed such that they are able to just avoid the corner
contact at the maximum design load and one ends up with a minimum LSTE
variation at the design load. Double-relief performed much better than short-relief
especially at the intermediate loads, both in terms of vibration levels and dynamic

mesh forces.

For the speed range under consideration, the maximum force (static mesh force +
dynamic mesh force) on the respective sun-planet and ring-planet gear pairs are
almost the same for the PGT with short-relief, for an extended range of loading.
When fatigue evaluations are made based on a given operational spectrum, this will
most probably mean that the PGT with short-relief spends more time on the critical
service load levels than the PGT with double-relief. Therefore fatigue life of the

example PGT is expected to be longer for the double-relief TPM case.

At load levels near to design load, both modification schemes perform equally well.
For lightly loaded cases (between 0-20% design load for this case), short-relief is
more successful than their double-relief counterpart from dynamics point of view.
This outcome is considered to be a result of the following: In short-relief TPM, gear
tooth profile is modified only on the triple contact region, therefore the contact ratio
is greater than 2 for all load levels, unlike the case in double-relief modification. The

dynamic mesh forces for double-relief TPM are higher than their short-relief
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counterparts at lower load levels. However, the difference is not very significant

when fatigue is considered.
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CHAPTER 8

SUMMARY and FUTURE WORK

8.1 Summary

An extensive parametric study of PGT dynamics is performed in this dissertation.
The effects of various design parameters on the dynamic behavior of PGTs are

studied, emphasis is being on the ways of improving the dynamic response of PGTs.

The purely torsional mathematical model used throughout the dissertation study is
introduced first. Information about the Harmonic Balance Method, which is used for
solution of the mathematical model, is provided. The modal characteristics of PGTs
are important both for understanding the dynamic response of PGTs and evaluating
the effects of parameters. Therefore, general information about the modal properties
of PGTs is also included in the dissertation.

Next, the concept of mesh phasing, which is also a key concept in PGT dynamics is
discussed in detail with the focus being at the relationship between the mesh phasing
and the natural modes of PGTs. Then the effects of the fundamental parameters,
namely the amount of backlash between gear meshes, damping levels and the gear
contact ratios, on PGT dynamic response are investigated. Feasible design
guidelines for reducing the dynamic response of PGTs are provided out of the
outcomes of the mentioned studies.

PGTs with thin ring gears are often used in rotorcraft main rotor drive systems not

only because of the advantages in terms of weight but also due to their positive
effects on the load sharing of PGTSs. In this study the effects of elasticity parameters
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on the torsional dynamics of PGTs are investigated. Uniformly curved beam theory

is used for calculating the stiffness contribution of elastic rims.

TPMs are very effective means of reducing the vibration and the associated
adversities such as noise and increased dynamic loading in spur gears. However
TPM designs are usually performed with the target being the minimization of the
loaded static transmission error. First it is shown for spur gears that a direct objective
function of minimizing the dynamic transmission error can lead to ideal TPM
designs. It is also demonstrated that the differences in response of rigid and
compliant systems can be critical in determining the optimum TPM using such an
approach. Next, the direct effect of TPMs on reducing the dynamic loads and

increasing the tooth bending fatigue lives of spur gears are investigated.

After a detailed work on the effects of TPMs in spur gears, the effects and
characteristics of TPMs on PGT dynamics are extensively studied. To begin with,
the proposed analytical model for the evaluation of TPMs is verified by comparisons
with a dedicated computational tool that is specialized in geared systems. After a
successful validation of the analytical model, the effects of linear and parabolic
TPMs on PGT dynamics are investigated under different operational conditions.
Important outcomes are reached in terms of both the effectivity of TPMs and
sensitivity of TPM parameters. A strong dependence of ideal TPM design on the
mode shapes is observed. Differences between the LSTE-optimized TPMs and
dynamically optimized TPMs are shown.

Finally effects of double-relief TPMs on the dynamic characteristics of the HCR
PGTs are investigated. Potential advantages of double-relief TPMs in terms of
fatigue are shown with comparisons between double-relief TPMs and conventional
linear TPMs.
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8.2 Future work

The study also reveals some points which can be studied extensively beyond the
scope of the current work.

e Comparison of the results of the time-integration method with the analytical
method showed that subharmonics can also be observed for nonlinear PGT
dynamics, at higher speeds. HBM solution therefore can be extended to

include the subharmonics.

e In this study, a purely torsional model is used since it is sufficient to address
the effects of many parameters; however the model can be extended to a 2D
model in order to investigate the effects of bearing stiffness on PGT

dynamics.

e While rim elasticity effects on PGT dynamics are studied, only the torsional
stiffness of compliant ring gears is taken into account. It would be interesting
also to investigate the effects of the bending modes of the elastic rings on

PGT dynamics.

e A brute-force optimization scheme is used throughout the dissertation work,
which is adequately efficient to derive fundamental characteristics of TPMs
on gear dynamics. In a further study where the emphasis is on finding the
optimum solution of TPMs, employing an efficient optimization algorithm

is going to be more convenient.
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ABSTRACT

A gear tooth profile optimization study is performed with the
target being defined as the maximization of tooth bending
fatigue life for a selected operational range, where the operating
torque and speed ranges are defined along with their
corresponding durations. For this purpose, a nonlinear lumped
gear dynamics model 1s combined with the S/N curve of the
gear material in order to estimate tooth bending fatigue life of
the spur gear pair. The differences between the predicted lives
of the optimally modified and non-modified gear pairs are
presented based on example spur gear pairs. The proposed tooth
bending fatigue life estimation is compared with the standard
AGMA procedure.

INTRODUCTION

Fatigue life of a gear pair is usually one of the greatest
concerns for the gear designer since an unexpected failure in
such components would typically lead to loss of power and
motion transmission, results of which can be catastrophic. One
of the most common gear failure mechanisms is the gear tooth
bending fatigue failure, which would stop the operation of
power and motion transmission immediately.

Although in the literature there exists a large number of
theories in fatigue field, those are yet to be fully adapted to the
case hardened materials, like gears. Having stated that, tooth
bending fatigue problem is relatively easier than the tooth
contact fatigue problem since it is not dependent on lubrication
or surface roughness. In a general gear bending fatigue
problem, stress levels are expected to be relatively low such
that plastic deformation is not expected for properly
manufactured gears. Then, using the stress-life (S-N) approach
is considered to be appropriate. The common approach to find
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an endurance limit, below which no fatigue failure occurs, is
widely disputed [1], as many engineering materials, including
high strength steels, may not have such a limit. Strain-life
approach for estimation of the fatigue lives of gears is also
employed by several researchers. Glodez et al. [2] employed
the strain-life based Coffin-Manson relation to model the crack
mnitiation phase of spur gears; for the prediction of the crack
propagation life, a linear elastic fracture mechanics (LEFM)
approach 1s employed.

Many parameters such as gear root geometry, load
distribution along the teeth, material properties, residual
stresses etc. have been identified which could affect the
bending fatigue lives of gears. Besides those, depending on the
application and operation conditions (speeds and loads), certain
measures can be of great help in order to improve the bending
fatigue characteristics of a gear pair. A more direct approach to
gear tooth bending fatigue, in which both the magnitude and
number of occurrence of bending stress cycles are considered,
1s possible by bridging the gear dynamics with operational
spectrum (in terms of load and speed) data. It 1s common
practice in gear industry to employ profile modifications in
micro-scale in order to both reduce the noise transmitted by the
geared system and to improve the fatigue characteristics of the
gear pair. Studies have shown that with proper profile
modifications, dynamic factors which can be thought as the
ratio of tooth loads (or bending moments at the root) in
dynamic condition to those values obtained at static condition
can be minimized.

Haranto [3] calculated several dynamic factors based on
different dynamic factor defimtions, both for the gears with
modified and non-modified tooth profiles. He concluded that
deviations from optimal profile modifications often exceed the
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AGMA recommendations of dynamic factor for non-optimal
modification gear.

Another possible positive effect of a proper profile
modification, which is disregarded most of the time, is that it
can reduce the number of bending stress cycles that the gear
pair is subjected to during its normal operation. Depending on
the operation speeds, this effect may even be more dominant
than the reduction of the dynamic factors. Hotait et al. [4]
showed experimentally that there is a linear relationship
between the dynamic factor and dynamic transmission error
(DTE) data such that one can be estimated by using the
measurement of the other. In his experimental work, it is also
possible to see that at some operating speeds, number of stress
cycles at the root is greater than one for a given single mesh
cycle.

Having stated that it is possible to improve the bending
fatigue characteristics of gear pairs by proper modifications, the
importance of finding an optimal profile modification scheme,
which can function efficiently for given torque and speed
values, has to be underlined. Loaded static transmission error
(L.STE) optimization efforts go back to the study of Tavakoli
and Houser in 1986 [5]. In their study, an objective function
based on the mean value of the transmission error harmonics
under different design torques was used in search of optimal
tooth profile. In 2005, Fonseca et al [6] employed a genetic
optimization algorithm to the same static model of Tavakoli and
Houser [5]. These studies reveal that optimization efforts based
on LSTE fluctuation minimization are very effective when
torque is the only parameter considered regarding the
operational characteristics of gear pairs.

Further improvement towards reducing actual vibration
levels can be achieved via optimization efforts targeted at DTE
minimization. Bonori et al. [7] performed dynamic analyses to
check the quality of their genetic algorithm based LSTE
optimization method. In 2011, Faggioni et al. [8] developed an
optimization model with 8 parameters and concluded that
optimization which is directly targeted minimizing DTE
produced better results than an optimization study which aims
to mimmize LSTE. Most recently in 2014, Ozturk et al [9]
showed that for some cases employing a DTE-minimization on
top of a multi-degree of freedom (MDoF) dynamic model is
necessary to avoid misleading results that can be obtained
otherwise with LSTE minimization using a single-degree of
freedom (SDoF) dynamics model.

In this study, a tooth bending fatigue life estimation
procedure which is based on gear dynamics will be presented. A
single-degree of freedom model is preferred in this study for its
simplicity, although such a model will be insufficient for the
cases where the compliances of the other elements of the drive
system cannot be neglected. The procedure will be explained in
detail with an example spur gear pair which 1s made of high
strength alloy steel 42CrMo6. A tooth profile optimization
study will be performed aimed at achieving the maximum tooth
bending life for the example gear pair, taking the operational
spectrum into account. Tooth root stress cycles will be
calculated based on a SDoF nonlinear gear dynamics model
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using rainflow counting method. Those stress values will be
input to the fatigue model which is based on the S/N curve of
the gear pair material.

GEAR DYNAMICS MODEL USED FOR TOOTH
BENDING FATIGUE OPTIMIZATION

There exists a variety of gear dynamics models in the
literature, which can be categorized under many different
groups. A comprehensive review of gear dynamics models can
be found in the study of Ozgiiven and Houser [10], and more
recently it is given by Wang et al. [11].

In the current study, first, the model proposed by Ozgiiven
and Houser in 1988 [12] 1s used in optimization. This model is
based on a validated approximation, which uses LSTE rather
than static transmission itself, as an excitation to a SDoF model
with average constant mesh stiffness. The linear equation of
motion of a gear pair is given in terms of dynamic transmission
eITOr, X, 48!
mA () + 20\ MekapeX (€) + kapex (1) = KapeXs (1) 0]

Here m, is the equivalent mass of the gear pair, ¢ is the
viscous damping ratio, k.. is the average mesh stiffness and x,
is the loaded static transmission error. It was concluded that the
displacement excitation resulting from time varying mesh
stiffness is more important than the change in the system
natural frequency resulting from the mesh stiffness variation
[12]. This model was shown to be a very effective one by using
experimental results for gear pairs that have no profile
modification. Moreover, recently, Ozturk et al. [9] showed that
the model provides a good level of accuracy even for the cases
where the resulting LSTE variation (hence the dynamic
excitation) is at very low levels. The nonlinear version of this
model is used throughout this study, where the nonlinearity due
to the backlash between the mating gears is also considered.
The nonlinear equation is solved in time domain using a 4th-5th
order Runge-Kutta integration. L.STE and average mesh
stiffness values are supplied to the dynamic model by using the
computer code STEP (Spur Gear Transmission Error Program)
developed at the Ohio State University. Using STEP, it is also
possible to obtain static load distribution solutions for modified
tooth profiles.

The dynamic model will be used to obtain dynamic root
stresses, resulting from dynamic mesh forces. The equation for
dynamic mesh force (in case of no tooth separation) is given in
[12] as follows:

W(I) = W() + kave(x(t) - xs(t)) + 25\/ mekm;ei(t) (2)

Here W, is the static load. Along with the LSTE and average
mesh stiffness input, the moment arm (with respect to root of
the gears) information is also gathered from STEP, enabling to
obtain stress numbers, which are simply the multiplication of
mesh forces with the respective moment arms. The real stress
values are obtained through a correlation of stress numbers with
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the static stress results obtained through WindowsLDP of OSU,
which is capable of employing finite element formulation for
the calculation of root stresses. With this approach, it is aimed
to achieve as realistic a stress calculation as possible.

The dynamic root stress data is then directed to the rainflow
counting algorithm, in order to extract stress cycle information,
which, along with the rpm and duration of the operating
condition data, is used in life estimation analysis.

FATIGUE MODEL FOR TOOTH BENDING LIFE
ESTIMATION

Gears in most applications are subject to relatively low stress
levels, so that in comparison to crack propagation period, most
of the fatigue life is spent in the crack initiation phase.
Therefore, the stress-life (S-N) approach can be considered as
an appropriate method of predicting bending fatigue life of
gears.

Although 1n a traditional S-N curve, it 1s assumed that below
a certain level of stress (endurance limit), no fatigue damage
occurs, existence of such a limit is widely questioned for most
of the engineering materials, including the steels used in
gearing industry. For this reason, a two-slope S-N curve [13] is
used to capture the damage in regions both above and below the
fatigue limit separately.

Following equations can be used for stress values above and
below the fatigue limit respectively

"

Ag
Ny = Ng, (_Ad
FL

)3 AG > Adg, @A)

re (2
N; = NFL(F;)I»” JAg < Aoy, €]

In these equations, Ny; stands for the number of cycles at the
endurance limit Aoy, 4o is the applied stress level and b is the
slope of the S-N curve in the region where the stresses are
above the endurance limit, in log-log scale. These are the
general S-N curve equations which can be employed to many
engineering materials, including steel, with the constants
varying for each different material. In this study, 42CrMo6 is
selected as the gear material and the required parameters are
taken from [2]. Table 1 shows those parameters:

Table 1. S-N CURVE PROPERTIES FOR 42CrMo6

Material Aogy Npr b
42CrMo6 550 3e6 -0.0816

Rainflow ranges have been widely used for estimating
fatigue damage from variable amplitude loading. Rainflow
cycle counting method is based on the analogy of raindrops
falling on a pagoda roof and running down the edges of the
roof. As per the SAE and the ASTM standards, the three-point
cycle counting rule uses three consecutive points in a load-time
history to determine whether a cycle is formed. Details of
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rainflow counting algorithm used in this study can be found in
[14].

For this study, the stress-time history data is run through a
three-point rainflow cycle counting algorithm and stress cycles
are extracted. Respective damage for the operating duty cycle
under consideration is then calculated using the material S/N
curve by implementation of Miner’s rule for damage
accumulation.

PROCEDURE FOR TCOTH BENDING FATIGUE LIFE
ESTIMATION

The procedure proposed in this study for estimating the tooth
bending fatigue life for a spur gear pair 1s a combination of the
previously mentioned gear dynamics model and the fatigue
model. This procedure is shown in Figure 1.

Read the duty cycle data,
enter torque info into STEP
input file
|
Solve STEP, obtain
necessary input for the
dynamic code
]

Solve dynamics fortheinput
rpm, obtain dynamic stress
data fora mesh cycle

Extract stress cycles via
rainflow counting

Obtain equivalent
Soderberg stress values

|
Calculate damage for a
single case using 5-N
information

|
Employ Miner’s rule to
calculate damage for the
whole duty cycle

Figure 1. PROCEDURE FOR GEAR TOOTH BENDING
LIFE ESTIMATION

The procedure is explained below in detail for a sample spur
gear pair with a defined duty cycle.

Copyright © 2015 by ASME



Example

The tooth bending fatigue life is going to be estimated for the
following gear pair (Table 2). The gear pair under consideration
consists of 2 identical spur gears. Tooth profiles are non-
modified. The demping ratio is taken as 0.05 since it is used in
many gear dynamics modeling studies including [12].

Table 2. EXAMPLE SPUR GEAR PAIR

Number of teeth 50
Module 3 mm
Equivalent mass 0.7824 kg
Base diameter 140.95 mm
Tip diameter 153.74 mm
Center distance 150 mm
Damping ratio 0.05

When the operating speeds are near the natural frequency of
the gear pair system, or correspond to those levels at which the
system can be excited by the higher harmonics of the excitation
due to the LSTE, the dynamic effects can become dominant and
hence a dynamic response analysis becomes a necessity. The
tooth bending life of this spur gear pair is going to be estimated
for the given duty cycle (Table 3). Note that the duty-cycle
given in Table 3 may as well be interpreted as a portion of a
total duty cycle which only contains the critical intervals
regarding the fatigue life.

Table 3. DUTY CYCLE UNDER CONSIDERATION

Case Torque [Nm] Speed [rpm] Duration
[hours]
1 550 1160 400
2 600 1240 40
3 730 940 80
4 600 1140 200
5 600 1850 20

The steady state normal tooth bending stress results for the
different cases of the duty cycle are shown in Figure 2. The
assumption of a uniaxial stress state 1s reasonable because of
the geometry and the loading characteristic of a spur gear. The
static case when a torque of 600Nm is applied 1s also given for
comparison as Case 0:
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Figure 2. TOOTH ROOT NORMAL STRESS RESULTS

As expected, the dynamic stress results show a more
complex behavior then that of the static case. Not only the peak
stress levels go higher, but also the number of stress cycles
which can be effective in damaging of the teeth increases. One
can also observe the loss of contact phenomenon in Case 1 and
Case 5, where the root stress levels drop to 0. The stress cycles
are extracted with the Rainflow counting method Table 4
shows the stress cycles for Case 3. Note that here the minor
cycles (i.e. cycles with very low stress ranges) are not shown.

Table 4. RAINFLOW STRESS CYCLES FOR CASE 3

No.of From To Range Mean Equivalent
cycles [MPa] [MPa] [MPa] [MPa] Soderberg
Stress
[MPa]
1 237 613 376 425 359
1 556 50 506 303 383
1 580 160 420 370 359
1 629 0 629 3145 486

The last column in Table 4 shows the equivalent Soderberg
stress values. The following operation is used in order to
compensate for the tensile mean stress effects on high-cycle
fatigue strength. Note that other stress correction methods can
also be employed at this step.

)
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In this equation S,, is the fully-reversed stress amplitude, S,
is the stress amplitude, Sy, is the mean stress level and S, is the
yield strength of the material. The Soderberg stress values are
entered into the S/N curve equation along with the rpm and
duration information in order to check if the gear pair can
survive in the projected lifetime. Table 5 shows the damages
related to the respective cases.

Table 5. FATIGUE LIVE SUMMARY FOR THE GEAR

PATR

Case Cycles Cycles to fail Damage [%]

1 2.78e7 5.00e8 55

2 2.98e6 1.94e7 15.4

3 4.51e6 5.52¢e7 8.2

4 1.37¢7 6.66e8 2.1

5 2.22e6 3.96e6 56.1
Total - - 87.3

Comparison with the AGMA approach

Although a direct comparison with the fatigue calculation
concept in AGMA standard is not possible, it is safe to say that
AGMA does not consider the mentioned effect of secondary
stress cycles due to dynamic effects. AGMA considers the
cyclic nature of loading in the factor Yy, stress cycle factor for
bending strength [15]. However calculation of this factor does
not take into account the possibility of having more than one
stress cycle during a single mesh cycle, as the formula for the
number of stress cycles (N) is given as:
N=60Lng ©)

Here L is life in hours, » is rpm and g is number of contacts
per revolution. AGMA gives several S/N charts for finding Yy,
which 1s used in calculating an allowable bending stress
number.

AGMA also employs a dynamic factor, K,, in order to
account for the dynamic loading. Studies [3] have shown that
deviations from optimal profile modifications often exceed the
AGMA recommendations of dynamic factor for gears with non-
optimal modification. With this information, one can modify
the dynamic factor to be used by using a gear-dynamics model.
However even this updated factor may not be enough to cover
all the dynamic effects in a fatigue calculation.

Consider the case shown below obtained at 620 Nm torque at
1155 rpm:

600

Stress Equivalent
50 cycle  Soderberg
g 400 # Stress
3 MPa
5 1 331
é 200 2 382

100 3 396
4 422

A

%% Mesh cyele [-]

Figure 3. STRESS CYCLE INFORMATION FOR THE
SAMPLE CASE

o
e
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Note that the gear pair is the same gear pair that was
investigated in the previous section. Table 6 gives the expected
fatigue damage information for this case, using the S/N curve
for 42CrMo6. The number of cycles to fail is highlighted for
the peak stress and for the total stress time history.

Table 6. CYCLES TO FAIL FOR THE RESPECTIVE
STRESS CYCLES

Stress cycle # of cycles to fail
1 4.6lell
2 1.59¢10
3 6.80e9
4 1.52¢9
Total mesh cycle 1.15¢9

It can be clearly observed from Table 6 that the omission of
stress cycles with smaller ranges (secondary stress cycles) can
lead to a miscalculation regarding the lifetime of the gear pair.
One should also consider that there may be even cases which
are more critical in terms of fatigue damage estimations than
the case shown in this example. The fatigue properties of the
material and the severity of the loading usually determine the
level of the effect of the secondary stress cycles.

Although in most applications gear designers can end up with
safe designs by using the conventional dynamic factor and
stress cycle factor approach, it should be kept in mind that for
some specific speed and torque levels, the secondary stress
cycles can also affect the tooth bending life of the gear pair.

BENDING FATIGUE LIFE OPTIMIZATION USING
PROFILE MODIFICATIONS

Profile modifications are known to be very effective in
reducing the vibration and noise in spur gears, since, when
propetly applied, they reduce the dynamic excitation to the
geared system, in terms of loaded static transmission error
(LSTE). This mentioned reduction of the dynamic loading of
the system also means an improvement in both bending and
contact fatigue lives.

There have been many studies, both theoretical and
experimental, showing the improvement in dynamic load
factors after the employment of proper profile modifications [3,
16].

In this study an optimization scheme which, instead of
obtamning minimum dynamic load factors, is directly targeted at
obtaining the maximum tooth bending fatigue life for a spur
gear pair is suggested. Studies [8, 9] have shown that DTE
minimization based optimization work can lead to better results
than those based on LSTE minimization, so a similar approach
is followed here regarding the tooth bending fatigue lives. A
comparison with LSTE optimization is not in the scope of this
work.

A 4-parameter optimization model is used here, the variables
being amount of tip modification and the start of the
modification both for the pinion and the gear. A brute-force
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optimization technique is employed. The gear pair used in the
optimization model is the same as the one used throughout this
study. The optimization scheme can be applied on different
duty cycles; here an example 1s given for the duty cycle in
Table 3.

Table 7 shows the results of the optimization study for
various arbitrary profile modification scenarios, including the
optimum one for tooth bending fatigue life. Note that a case
with a life estimation which is worse than the no profile
modification case 13 also shown.

Table 7. DAMAGE SUMMARIES OBTAINED FOR
DIFFERENT PARAMETER CONFIGURATIONS

Profile Pinion Pinion Gear Gear Damage
Modification PM PM PM PM [%0]
PM) Amount Start Amount Start
[pm] ['RA] [nm] [PRA]
No PM - - - - 873
1 25 24.6 25 243 42.7
2 28 24 25 246 1.0
3 31 24.6 28 24 14.8
4 31 24.6 31 24 4.6
5 28 24.6 31 246 271.7
Best PM. 28 24 31 24 0.0012

As can be observed from Table 7, when combined with the
nature of the fatigue characteristics for the steel, an optimum
profile modification can easily guarantee the safe operation of a
spur gear pair throughout its lifecycle, when tooth bending
fatigue is the only concermn. Another important outcome of this
study is that, a bad selection for the profile modification can
endanger the gear peir, making a premature failure possible
such that even an unmodified gear pair behaves better tooth
bending fatigue-wise. Small variations in the optimization
parameters tend to change the fatigue characteristics very
dramatically, which underlines the importance of selection of
the objective function as maximization of fatigue life, instead
of a LSTE minimization.

The steady state stress cycle information for the duty cycle
given in Table 3 is given in Figure 4 for the optimum profile
modification case.
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Figure 4. TOOTH ROOT NORMAL STRESS TIME
HISTORIES FOR THE OPTIMAL PM CONFIGURATION

With the application of the optimal profile modification, not
only the stress-based dynamic factors reduce, but also the
secondary stress cycles decrease to such levels that they can be
neglected in bending fatigue life calculations. Therefore in
terms of improving the tooth bending fatigue life, the effect of a
good profile modification is not limited to reduction of the
maximum stress at the root region.

CONCLUSIONS

In this study, a procedure to estimate the tooth bending
fatigue lives of spur gear pairs is explained. A SDoF gear
dynamics model is incorporated into the life estimation model
in order to get more accurate stress cycles at the actual
operating scenarios. This procedure is then employed in a 4-
parameter profile modification optimization study where the
target is to obtain maximum tooth bending fatigue life for an
example spur gear pair with a pre-defined duty cycle.

The relatively low bending stress levels expected at the root
region of spur gears make it appropriate to apply HCF theory
for fatigue life estimation. A 2-slope S-N curve is used here in
order not to neglect the stresses below the fatigue limit.
Soderberg equation is used to take into account the effects of
mean tensile stresses. For calculating the accumulation of the
damage during a duty cycle, Miner’s rule is preferred.

The dynamic stress plots show that depending on the
operation speed, it 1s possible to observe more than one stress
cycle which can be effective in damaging of the gears when
tooth bending fatigue is considered. A 3-point rainflow
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counting algorithm 1s employed for detecting the stress cycles
during a single gear mesh period.

When a safety analysis is performed for a gear pair, the
common approach is to apply certain factors in order to
compensate for the dynamic nature of loading and stress cycles.
The calculations can further be improved by the replacement of
dynamic factors stated in gearing standards (AGMA, 1SO,
DIN) by more accurate ones based on a dynamic analysis.
However the effect of secondary stress cycles can still get
neglected with such an approach, misleading to overestimated
bending fatigue lives. A more accurate life estimation is
possible using the procedure explained in this study.

A proper tip modification design is sought for both of the
mating gears by optimizing the modification parameters, i.e.
start and magnitude of the tip reliefs. When the overall solution
domain is investigated, the sensitivity of the fatigue life
estimations turns out to be quite high. With a properly
optimized tip relief, it is possible to get rid of the adverse
dynamic effects hence obtain life estimations which practically
guarantee a safe operation throughout the whole life cycle of
the gear pair. On the other hand, an improper profile
modification (even with slightly different parameters) could
lead to a premature failure of the gear pair. The stress plots for
the best profile modification scenario are also investigated
using the example gear pair. It is observed that not only the
dynamic stress factors reduce but also the secondary stress
cycles disappear.
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Optimum profile modifications for the minimization
of dynamic transmission error

V.Y. Ozturk ™ E. Cigeroglu”, H.N. Ozgtiven”
Middle East Technical University, Mechanical Engineering Department, Turkey
Turkish Aerospace Industries, Turkey

An optimization study is performed target being the reduction of dynamic transmission
error {DTE) for a selected operational range, where the operating torque and speed
ranges are defined. For this purpose, two different models, i.e. a single degree of
freedom (SDOF) lumped gear dynamics model and a multi-degree of freedom (MDOF)
lumped model of a gear pair which is combined with shaft and bearing dynamics are
employed. The differences between the optimization results obtained through loaded
static transmission error {LSTE) minimization and DTE minimization using different
models are presented based on example spur gear pairs.

1 INTRODUCTION

Reduction of vibration and noise is mostly achieved by proper tooth profile
modifications in geared systems. Generally, minimization of the peak-to-peak values of
loaded static transmission errcr (LSTE) is found to be “effective enough” in eliminating
the vibration-based problems. Since it is not possible to have a profile modification on
gear teeth which will minimize LSTE variation at all loads, usually a further optimization
effort is necessary to find the optimum profile modification which will give the “best”
result for a drive system operating under different torque levels throughout its
operational life.

LSTE optimization efforts go back to the study of Tavakeli and Houser in 1986 {1). In
their study, an objective function based on the mean value of the transmission error
harmonics under different design torques was used in search of optimal tooth profile. In
2005, Fonseca et al (2) employed a genetic optimization algorithm to the same static
model of Tavakoli and Houser {1]. These studies reveal that optimization efforts based
on LSTE fluctuation minimization are very effective when torque is the only parameter
considered regarding the operational characteristics of gear pairs.

Further improvement towards reducing actual vibration levels can be achieved via
optimization efforts targeted at DTE minimization. Bonori et al. (3) performed dynamic
analyses to check the quality of their genetic algorithm based LSTE optimization
method. Recently in 2011, Faggioni et al. {4) developed an optimization model with 8
parameters and concluded that optimization which is directly targeted minimizing DTE
produced better results than an optimizaticn study which aims to minimize LSTE.

In the this study, a MDOF model is also employed along with a SDOF model in order to
investigate the differences between optimization results obtained by using different
models. The objective in the optimization is set as reducing the peak-to-peak
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stress cycles are considered, is possible by bridging the gear dynamics with operational
spectrum {in terms of load and speed) data. It is common practice in gear industry to
employ profile modifications in micro-scale in order to both reduce the noise
transmitted by the geared system and to improve the fatigue characteristics of the gear
pair. Studies have shown that with proper profile modifications, dynamic factors which
can be thought as the ratio of tooth leads (or bending moments at the root) in dynamic
condition to those values obtained at static condition can be minimized.

Harianto [3] calculated several dynamic factors based on different dynamic factor
definitions. He concluded that deviations from optimal profile modifications often
exceed the AGMA recommendations of dynamic factor for non-optimal modification
gear. Hotait et al. [4] showed experimentally that there is a linear relationship between
the dynamic factor and dynamic transmission error data such that one can be estimated
by using the measurement of the other. In his experimental work, it is also possible to
see that at some operating speeds, number of stress cycles at the roctis greater than one
for a given single mesh cycle.

Another possible positive effect of a proper profile modification, which is disregarded
most of the time, is that it can reduce the number of bending stress cycles that the gear
pair is subjected to during its normal operation. Depending on the operation speeds, this
effect may even be more dominant than the reduction of the dynamic factors.

LSTE optimization efforts go back to the study of Tavakoli and Houser in 1986 (1]. In
their study, an objective function based cn the mean value of the transmission error
harmonics under different design torques was used in search of optimal tooth profile. In
2005, Fonseca et al {2) employed a genetic optimization algorithm to the same static
model of Tavakeli and Houser {1). These studies reveal that optimization efforts based
on LSTE fluctuation minimization are very effective when torque is the only parameter
considered regarding the operational characteristics of gear pairs.

Further improvement towards reducing actual vibration levels can be achieved via
optimization efforts targeted at DTE minimization. Bonori et al. (3] performed dynamic
analyses to check the quality of their genetic algorithm based LSTE optimization
method. Recently in 2011, Faggioni et al. (4) developed an optimization model with 8
parameters and concluded that optimization which is directly targeted minimizing DTE
produced better results than an optimization study which aims to minimize LSTE.

In the this study, a MDOF model is also employed along with a SDOF model in corder to
investigate the differences between optimization results obtained by using different
models. The objective in the optimization is set as reducing the peak-to-peak
transmission error. The only parameter to be optimized is selected as the amount of tip
relief, where the starting position of the modifications is set at the highest point of single
tooth contact. A broad range of operating speeds along with various torque levels are
covered in the case studies considered.

2 VALIDATION OF THE GEAR DYNAMICS MODEL USED FOR DTE OPTIMIZATION

There exists a variety of gear dynamics models in the literature, which can be
categorized under many different groups. A comprehensive review of gear dynamics
models can be found in the study of Ozgiiven and Houser {5), and more recently it is
given by Wang et al. {6).
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In the current study, first, the model proposed by Ozgiliven and Houser in 1988 (7] is
used in optimization. This model is based on a validated approximation, which uses
LSTE rather than static transmission itself, as an excitation to a SDOF model with an
average constant mesh stiffness. The equation of motion of a gear pair is given in terms
of dynamic transmission error, x, as:

mejé(t) + 2§V mekavex(t) + kavex(t) = kavex.?(t) [1]

Here my, is the equivalent mass of the gear pair, { is the viscous damping ratio, k. is the
average mesh stiffness and x; is the lecaded static transmission error. It was concluded
that the displacement excitation resulting from time varying mesh stiffness is more
important than the change in the system natural frequency resulting from the mesh
stiffness variation. This model was shown to be a very effective one by using
experimental results for gear pairs that have no profile modification. However, the
accuracy of the model is not shown for gear pairs with profile medification, especially
for gears with optimum tocth profile for a given load, where the resulting LSTE variation
{hence the dynamic excitation) is at very low levels.

The following equation represents the differential equation of a SDOF model of a gear
pair, in which time-varying mesh stiffness is used without any approximation:

MEE) + cx(t) + k(D) x(t) = F —m,é{t) 2)

In this model, ¢ is the viscous damping coefficient, k{t} is the time-dependent mesh
stiffness, F is the constant gear mesh force and eft) is the static transmission error due to
gear errors and profile modifications {also called non-loaded transmission error)
(NLTE). In 2007, it has been shown by Tamminana et al (8) that this model yields
accurate results for gear pairs with profile modification, comparing theoretical DTE
values with experimental data.

Although Equation (2] yields accurate results without making an approximaticn for the
time-varying mesh stiffness, the model proposed by Ozgiiven and Houser (7) is
preferred in several applications as it can be easily implemented to MDOF models of
gears and gear-shaft-bearing systems, providing solutions in frequency domain.
However, it is found necessary to study the accuracy of this model when it is used for
gears with tooth modification where LSTE is minimized.

For this purpose, dynamic analysis of the gear system described in Table 1 is carried out
using both of the models described above. The gear pair, which is composed of identical
gears, has tooth modification such that LSTE variation is reduced to a very low level for a
given torque value at which the dynamic analysis is performed. Thus, when the first
model is used, as the internal excitation due to mesh stiffness variation is represented by
LSTE, the level of excitation on the system becomes very low. Comparison of the
dynamic analysis results obtained for such a case with those of the variable mesh
stiffness model will reveal the accuracy of the constant mesh stiffness model when used
for gears with optimum tooth profile modification.

Table 1 Properties of gear pair used for comparison of both models

Number of teeth 25
Module 4 mm
Equivalent mass 0.23 kg
Base diameter 93.97 mm
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Face width 15 mm

Torque applied 107.9 Nm
Peak-to-peak LSTE (non-modified) 5.1 pm
Peak-to-peak LSTE (modified) 0.6 pm

Comparison is made for two damping ratio values, namely { = 0.1 and { = 0.05. Figure
2 and Figure 3 show the comparisons of DTEs by using both models for the specified
damping values. Peak-to-peak DTE (PPDTE] values are plotted against normalized
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Figure 1 Model comparison for { = 0.1 (left) and { = 0.05(right)

Although some minor discrepancies are observed between the results obtained by two
models, recalling that these differences are observed only at a very extreme case where
LSTE variation is minimum. It is concluded that results match well enough to safely
continue with the constant mesh stiffness model in optimization studies, which makes it
possible to use a MDOF model for the dynamic analysis of a gear-shaft-bearing system in
frequency domain.

3 DESCRIPTION OF MDOF MODEL USED IN OPTIMIZATION STUDIES

Along with the SDOF model, a MDOF gear dynamics model which is based on the
approximation proposed by Ozgliven and Houser (7) is used while performing
optimization studies. The model takes into account the shaft and bearing dynamics, onto
which the gear pair is mounted. This model is a linear version of the model developed by
Maliha et al {9). Nonlinear effects due to backlash are not included in the model.

For the finite element modeling of the shafts, the axial motions are assumed to be
negligible; hence, each node in the finite element model of a shaft will have five degrees
of freedom {DOFs), i.e. 2 translational and 3 rotational DOFs. The flexible bearings are
modeled in terms of radial stiffness and damping elements.

The gear pair is modeled by two disks, representing the inertia of the gears, which are
connected to each other by a linear spring and a damper that represents the gear mesh.
The system is excited by the displacement excitation represented by the LSTE. Further
details of the model can be found in the study of Maliha et al. (8].

In both SDOF and MDOF muodels, the profile modification is represented by Fourier
series with 5-harmonics which are found to be sufficient. The average mesh stiffness and
the harmonics of LSTE, which are the necessary input parameters, are supplied to the
dynamic model by using the computer code STEP (Spur Gear Transmission Error
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Program] developed at the Ohio State University. A MATLAB code is developed in order
to perform the dynamic analysis and optimizations required in this study.

31 Comparison of Results Obtained by SDOF and MDOF Models

The differences between the responses, in terms of PPDTE, obtained by using SDOF and
MDOF models are presented for two different configurations. In the first configuration,
the gear pair is mounted on relatively short {hence more rigid in transverse direction)
shafts; whereas, for the second configuration, the same gears are mounted on longer
shafts. Details of the gear-shaft- bearing systems under consideration are given in Table
2. It should be noted that all other properties except lengths of the shafts used in both
configurations are identical and the bearings used at the ends of the shafts have the
same stiffness and damping properties.

Table 2 Characteristics of the dynamic system

Gears

Number of teeth 75

Module 3.2 mm
Equivalent mass 247 kg
Base diameter 232 mm
Face width 30 mm
Shalfts

Outer radius 55 mm
Inner radius 40 mm
Density 7800 kg/m?3
Elastic Modulus 206 GPa
Length of short shafts 0.1 m
Length of long shafts Tm
Bearings

Stiffness 1x1012N/m
Damping coefficient 1x105Ns/m

3.1.1 Short shafts

In the first example, gears are placed in the middle of the shafts that are 0.1 m long. The
response of the system {DTE) for an arbitrary torque and profile modification in a wide
speed range is shown in Figure 2. Note that wnorm is the normalized shaft speed where
the normalization is with respect to the natural frequency of the SDOF model.
Investigating the figure, it can be clearly seen that responses of the SDOF model and the
MDOF model are very close to each other due to the rigidity of the shafts considered.
Therefore, it is expected that optimization studies carried out by using either of the
models {SDOF or MDOF models), for this particular case, will lead to similar results.
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Figure 2 Response of MDOF and SDOF models for “short shafts” case

312 Long shafts

In the second case, gears are placed in the middle of 1 m long shafts. Figure 3 shows that,
in this case, the shaft flexibility affects the total response of the gear pair considerably,
and therefore SDOF and MDOF models yield relatively different results, as expected.
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Figure 3 Response of MDOF and SDOF models for “long shafts” case

Figure 3 reveals that the coupled transverse-rotational modes along with the mult-
harmonic LSTE input make the dynamic response more complex compared to the case
of short shafts. In case those modes fall in the operating speed range, optimization using
a SDOF or a MDOF dynamic model can make a significant difference. Mote that this figure
corresponds to an arbitrary torque and profile modification case, i.e. one may even find
more differences between the results obtained with SDOF and MDOF models depending
on the configurations and relative values of the system parameters.

4 OPTIMIZATION
The possible different dynamic responses due to using different dynamic models are

revealed in the previous section. In this section, optimization is carried out by using both
of the dynamic models, and optimum wvalues cbtained are compared. Optimum profiles
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obtained by using DTE optimization are also compared with those calculated by using
LSTE optimization. The objective of the optimization is set as the minimization of the
maximum amount of peak-to-peak transmission error. The reason for such an objective
function is to decrease the maximum value of the dynamic force at the gear mesh, which
has the most dominant effect on the fatigue life of a gear pair. The only parameter to be
optimized is selected as the amount of the linear tip relief. The starting positions of the
modifications, which are applied to both gears, are fixed at the highest point of single
tooth contact.

Since a single-parameter optimization study is carried out, a brute-force optimization
technique is applied because of the respectively lower computational cost. For the whole
set of possible profile modifications, a solution is performed at each point in the given
parameter domain which is characterized by certain speed and torque ranges. The
maximum of PPDTE value is thereafter extracted from the obtained responses for the
respective profile modification and compared with the others. The profile modification
which leads to the minimum of the maximum PPDTE is labelled as the optimum profile
modification. Note that when LSTE optimization is made, only a single torque range is
considered and the objective function is taken as the minimization of the maximum peak
to peak LSTE.

Since the responses of SDOF and MDOF models differ significantly from each other for
longer shaft case, in the rest of this study, optimization is performed for only the long
shafts configuration defined in section 3.1.2,

4.1 Results

In this section, some example cases are presented in order to show the differences
between the optimization results cbtained from different models. The details of the
example cases can be found in Table 3. Note that in all cases, the design torque is taken
as 1000 Nm.

Table 3 Details of the example cases

Case 1
Torque range 50-100% of design torque
Speed range 2200-2400 rpm

Initial modification
Modification increment

3 pm
5 pm

Case 2

Torque range

Speed range

Initial modification
Modification increment

0-50% of design torque
1600-1800 rpm

0 pm

5 pm

Case 3

Torque range

Speed range

Initial modification
Modification increment

20-40% of design torque
1600-1800 rpm

Z um

Z pm

Case 4

Torque range
Speed range

80-100% of design torque
1000-1200 rpm
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Initial modification 10 pm

Modification increment Z um

Case 5

Torque range 0-20% of design torque
Speed range 600-800 rpm

Initial modification 0 pm

Modification increment Z pm

For the first two cases, where optimization in a wide torque range is considered, the
comparisons are made between the optimization results obtained through the static,
SDOF-dynamic and MDOF-dynamic models. The results (normalized with respect to the
minimum of the maximum PPDTE obtained) for these cases are presented in Figure 4.
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Figure 4 Sample optimization results for Case 1 and Case 2

It is observed from the results obtained that, for Case 1, while the SDOF model proposes
the 3rd modification {i.e. 18 pm) as the optimum one, which is also proposed by the LSTE
model, the MDOF model suggests that the minimum DTE is obtained when the 2nd
modification (i.e. 13 pm) is applied to the gear teeth. In Case 2, the difference between
the optimum profile modifications proposed by the SDOF medel {5 pm) and MDOF
model (15 pum) is as large as 10 um. The differences between LSTE based optimization
and DTE based optimization are also clearly observable for Case 2, which are in
accordance with the findings of the study of Faggioni et.al (4).
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In Case 3-Case 5, torque ranges considered in the optimization are limited to 20% of the
design torque. The increment of profile medification is kept as low as 2 pm, in order to
observe if discrepancies still exist between the results of different models even under
such minor medification differences. For these cases, only the comparison of the
optimization results between SDOF and MDOF models are considered and the results
are given in Figure 5.
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Figure 5 Sample optimization results for Case 3, Case 4 and Case 5

In this case study, the torque range considered is smaller compared to that of the
previous case study; hence, the optimum profile modifications obtained from the SDOF
and MDOF models are slightly different from each other. The comparison of the results
obtained by using SDOF and MDOF models for the same gear system indicates that those
differences can be more important under the influence of operational conditions. Case 3
can be used to explain the differences. SDOF model suggests that, considering wear on
the gears, the 15t modification {2 pm) can be preferred instead of the 20 modification (4
pm), which is the optimum one, since DTE increases significantly if due to tooth wear
profile modification reaches to 6 um. However, if MDOF model is used, the 3rd
meodification {6 wm), which is the optimum one, can be used, since the increase, as well
as the rate of increase in DTE is small even wear occurs.

5 CONCLUSIONS
In this study, profile modification optimization is performed using 3 different models.

The first model is based on the minimization of LSTE variation. In the second and third
models, profile modification optimization is achieved through minimization of DTE
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variation. The second model considers conly the spur gear pair dynamics, whereas the
third one, which is a MDOF model, takes also the effects of shaft and bearing dynamics
intc account. The differences between the optimization results obtained by the
mentioned models are studied.

For the second and third models, which consider the dynamics of the respective
systems, gear pair dvnamics is modeled based on a previous study by Ozgliven and
Houser (5). The menticned model employs the approximaticn of using an average value
for gear mesh stiffness and includes the effect of mesh stiffness variation through a
displacement excitation in the form of LSTE. This model is preferred in this study, since
it can be easily implemented to a MDOF model, providing solutions in frequency domain.
In order to verify the accuracy of the model for the cases where optimum proefile
medifications are used and therefore very small LSTE variations are chserved, first a
comparison is made between DTEs obtained through this model and an exact gear
dynamics model, which employs time-variant mesh stiffness. The comparison revealed
that the invariant mesh stiffness approximaticon can alsc be used in the dynamic analysis
of gear pairs where LSTE excitation is at very low levels.

Before proceeding with optimization, possible different outcomes of using SDOF and
MDOF models are investigated on two different cases. The first case with shorter shafts
represents a relatively rigid configuration of a gear-shaft-bearing system, whereas the
second case is an example of a significantly more compliant system. The results obtained
through both models turned out to be very similar for the first case. However, for the
second system under consideration, the responses obtained with SDOF and MDOF
models are found to be considerably different from each other, as expected. It is shown
that when combined with multi-harmenic excitation, the complex dynamic nature of
compliant systems resulting from coupled transverse-rotational modes observed in
operational speed ranges makes MDOF models more suitable to be used in optimization
studies.

In optimization studies, differences are observed between the best profile modifications
suggested by LSTE-based model and those obtained by using optimization models based
on DTE minimization. This observation is in line with the findings of Faggioni et al. (4).
In this study, the main emphasis is placed on the compariscn of the optimization results
obtained from SDOF and MDOF dynamic models. Important differences are observed
between the optimum profile modifications obtained by SDOF and MDOF dynamic
models for gears on compliant shafts. It is therefore concluded that the optimum tooth
profiles obtained by considering only the dynamics of a gear pair may not represent the
best tooth proefile modification when these gears are on flexible shafts and/or bearings.
It has been also shown that when parameters such as quality of manufacturing and wear
of the gears are of concern, such differences can be even more important. Therefore, it
can be said that for compliant systems, neglecting the shaft and bearing dynamics and
employing SDOF gear dynamics models may lead to incorrect decisions for
determination of the optimum profile modification.

Finally, it should be noted that in this study only the amount of tip relief is taken as a
parameter to be optimized. However, when more parameters such as shape of the
profile modification (linear, parabolic) and the starting position {in terms of roll angles)
of profile modifications are included in the optimization study, the differences between
the results cbtained from SDOF-based and MDOF-based optimization models may be
even more significant.
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employing SDOF gear dynamics models may lead to incorrect decisions for
determination of the optimum profile modification.

Finally, it should be noted that in this study only the amount of tip relief is taken as a
parameter to be optimized. However, when more parameters such as shape of the
profile modification {linear, parabelic) and the starting position {in terms of roll angles)
of profile modifications are included in the optimization study, the differences between
the results obtained from SDOF-based and MDOF-based optimization models may be
even more significant.
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