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ABSTRACT 

 

 

A PARAMETRIC STUDY ON PLANETARY GEAR DYNAMICS 

 

 

 

Öztürk, Veysel Yalın 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

Co-Supervisor: Assoc. Prof. Dr. Ender Ciğeroğlu 

 

June 2018, 188 pages 

 

 

An extended parametric study is performed for Planetary Gear Train (PGTs) 

dynamics. A purely torsional, non-linear time-varying model is used for the dynamic 

simulation of PGTs. Time-dependent stiffness functions are calculated by using 

dedicated contact mechanics software that is specialized in gears. Multi-term 

Harmonic Balance Method (HBM) is used for the solution of the model. The 

fundamental modal characteristics of PGTs are explored. The initial parametric 

studies are performed for the basic dynamic factors in PGTs, namely for different 

mesh phasing configurations, varying damping levels, different amounts of backlash 

and different contact ratios for the mating sun-planet and ring-planet meshes. The 

effect of ring gear elasticity on torsional PGT dynamics is investigated in detail. The 

direct effects of parameters, which influence the ring gear elasticity, on PGT 

dynamics are studied. Tooth Profile Modifications (TPMs), which are one of the 

most effective means of reducing the vibration in gears, are first studied on spur 

gears. The differences between the ideal TPM designs for different objective 
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functions of minimizing Loaded Static Transmission Error (LSTE) and Dynamic 

Transmission Error (DTE) are analyzed for gears mounted on rigid and compliant 

shafts. The positive influence of proper TPM applications on increasing the bending 

fatigue lives are shown by analyzing the stress cycles on TPM applied spur gear 

pairs. Next, a comprehensive study is performed on the characteristics of ideal TPMs 

in PGTs. The dependence of ideal TPM designs on modal characteristics of PGTs 

is shown. The conditions in which the ideal TPM differs from the TPM 

configurations that minimize LSTE are explored. 

       

Keywords: Planetary gear dynamics, Tooth Profile Modifications, Harmonic 

Balance Method with multiple harmonics, Loaded Static Transmission Error, elastic 

ring gears, mesh phasing.  
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ÖZ 

 

 

GEZEGEN DİŞLİ DİNAMİĞİ ÜZERİNE PARAMETRİK BİR ÇALIŞMA 

 

 

 

Öztürk, Veysel Yalın 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

Ortak Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu 

 

Haziran 2018, 188 sayfa 

 

 

Gezegen dişli dinamiği için kapsamlı bir parametrik çalışma gerçekleştirilmiştir. 

Çalışma kapsamında yapılan dinamik benzetim çalışmalarında, yalnızca burulma 

yönündeki serbestlik derecelerini içeren, doğrusal olmayan değişken zamanlı bir 

model tercih edilmiştir. Zamana bağlı dişli kavrama direngenlikleri dişlilere 

özelleşmiş bir kontak mekaniği yazılımı vasıtasıyla hesaplanmıştır. Modeldeki 

denklemlerin çözümünde çok harmonikli Harmonik Dengeleme Metodu 

kullanılmıştır. Gezegen dişli dinamiğinin temel dinamik modal özellikleri 

incelenmiştir. Yapılan ilk parametrik çalışmalarda, farklı kavrama safhalaması 

özelliklerine, farklı sönümleme seviyelerine, farklı diş boşluklarına ve güneş-

gezegen ve halka-gezegen dişli çiftleri için farklı temas oranlarına sahip gezegen 

dişli sistemleri incelenmiştir. Halka dişli esnekliğinin gezegen dişli dinamiğine 

etkileri detaylı bir şekilde incelenmiştir. Halka dişli esnekliğini etkileyen faktörler 

ile gezegen dişli dinamiği karakteristikleri arasında direk ilişkiler kurulmuştur. Dişli 

titreşimini azaltmada kullanılan en etkili yöntemlerden biri dişli profil 
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değişiklikleridir. Dişli profil değişikliklerinin dişli dinamiğine etkileri ilk olarak düz 

dişliler özelinde çalışılmıştır. Yüklü Statik İletim Hatası’nı (YSİH) azaltmaya 

yönelik dişli profil değişiklikleri ile Dinamik İletim Hatası’nı (DİH) azaltmaya 

yönelik ideal dişli profil değişiklikleri arasındaki farklar, esnek ve rijit miller üzerine 

yerleştirilmiş düz dişliler için ortaya konmuştur. Dişli profil değişikliklerinin dişli 

eğilme ömürleri üzerindeki olumlu etkileri, uygun dişli profil değişikliği 

uygulanmış düz dişlilerde gerinim devirlerinin yorulma analizleri vasıtasıyla 

gösterilmiştir. Bir sonraki adımda, dişli profil değişikliklerinin gezegen dişli 

dinamiği üzerindeki etkileri incelenmiştir. İdeal dişli profil değişikliklerinin 

gezegen dişli dinamik mod tiplerine bağlılığı gösterilmiştir. Gezegen dişlilerde 

YSİH değerini en düşük veren dişli profil değişiklikleri ile dinamik etkileri en aza 

indirgeyen dişli profil değişikliği tasarımlarının birbirinden ayrıştığı koşullar ortaya 

konmuştur.  

 

 

Anahtar kelimeler: Gezegen dişli dinamiği, dişli profil değişikliği, çok harmonikli 

Harmonik Denge Yöntemi, Yüklü Statik İletim Hatası,  halka dişli esnekliği, dişli 

kavrama safhalaması  
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CHAPTER 1  

INTRODUCTION 

1.1   Introduction 

A planetary gear train (also known as epicyclic gear train) consists of two central 

geared members. The inner central member is named as “sun gear” whereas the 

outer central member which is an internal gear is called “ring (annulus) gear”. A 

number of “planet gears” (number of planets usually between 3 and 8) revolve 

around the sun gear with the help of a carrier, on which the planet gears are mounted.  

The planet gears also mesh with the ring gear. Figure 1-1 shows the schematic of a 

simple planetary gear train (PGT).  

 

 

Figure 1-1 A schematic of a simple planetary gear train [1] 
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Different speed and torque conversion ratios are obtained simply by different 

assignments of input, output and the fixed members between sun gear, ring gear and 

carrier. Since the power splits into a number of parallel planet branches, PGTs 

typically have higher power density (power transmitted / total volume) compared to 

counter-shaft gearbox configurations. Their coaxial design allows compact gearbox 

cross-sections with no or little radial support (bearings) requirements. All gear mesh 

and bearing forces on the transverse plane of the gear set cancel out nominally, 

leaving only pure torsion. They are less sensitive to variety of manufacturing errors 

since they can self-center (or deflect) to compensate for such errors. Moreover they 

are perceived to be quieter than their counter-shaft counterparts. 

 

PGTs are used extensively in automotive, rotorcraft and wind energy industries. 

Figure 1-2 and Figure 1-3 show examples for PGTs that are used in helicopters and 

wind turbines, respectively. Although they are being used in quiet a wide range of 

applications for many years, problems related to dynamic behavior of planetary 

gears are still common. In addition to the fatigue related problems because of the 

vibration; noise is also an important concern for many applications, including 

rotorcraft and wind turbine industries. In helicopters, planetary gears are held 

responsible for being the main source of cabin noise [2]. Cost of maintenance is an 

important factor in wind turbine industry because of the significant downtimes. It 

has been shown that planetary gearbox failures due to dynamic loading of the 

components is a very common failure mode for wind turbines [3]. Planetary gear 

dynamics studies are aimed at understanding the physical phenomena behind the 

problems similar to these examples and finding remedies for them. 



3 

 

 

Figure 1-2 Planetary gearbox for Bell-47 helicopter [4] 

 

 

Figure 1-3 Planetary gearbox for a wind turbine [5] 
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A detailed literature survey is presented here, to give the state of the art in the field 

and discuss the further needs in planetary gear dynamics studies. 

 

 

1.2   Literature Survey 

Although most of the PGT dynamics studies available in the literature stem from the 

research in parallel-axis gearing, the literature survey information provided here is 

going to be mostly limited to PGT dynamics studies. However it should be 

underlined here that fundamental knowledge regarding gear dynamics was obtained 

through many precious documented works in the literature, before going forward 

with PGT dynamics studies. 

 

The wide use of PGTs also made the PGT dynamics studies attractive for many 

researchers. The studies for PGT dynamics stem back to 1970s, following the start 

of the gear dynamics studies in 1960s [6]. Most of these studies aimed at the ultimate 

goal of reducing the vibration levels in PGTs, since vibration-induced dynamic loads 

are one of the major sources of failures of these components. Depending on the 

applications, PGT failures may result in serious consequences, ranging from 

extended downtimes (e.g. for wind turbines) to loss of lives (e.g. for helicopters). 

 

The use of lumped-parameter models is quite popular for PGT dynamics studies. 

Depending on the nature of the PGT design under consideration, the lumped-

parameter models vary from purely torsional (1D) models (e.g. models used in [7,8])  

to 3D models where the out-of-plane vibration is also considered along with the 

vibrations in torsional rotation and in-plane translation directions. The models used 

in [9,10] can be given as examples to those 3D models mentioned. 
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Similar to parallel-axis gear systems, the modeling of the mesh stiffness and tooth 

contact loss phenomenon play an important role in the accuracy of the dynamic 

simulation of PGTs. For modal analysis of PGTs, models employing constant mesh 

stiffness values for sun-planet and ring-planet meshes can be preferred as it is the 

case in the study of Kahraman [11]. In forced response analysis of a PGT, this 

modeling approach is also used frequently. In this methodology, forcing term is 

modeled as the static deflection of the respective meshes multiplied by a constant 

stiffness term. In parallel-axis gear terminology, this deflection is defined as the 

static transmission error. However, the use of this terminology in planetary gear 

systems may lead to ambiguity, as it is not clear whether one refers to the individual 

error due to the deflection of a single gear-pair or the global deflection of a planetary 

gear system [6]. Although this modeling approach is shown to have limitations when 

compared to time-varying mesh stiffness models [12], it also offers advantages in 

terms of model simplicity and ability to represent the fundamental features of PGT 

dynamics. References [13,14] are examples to the studies using this modeling 

approach. 

 

During the rotation of the gears, the stiffness of the contact between meshing gears 

vary, due to the geometry of the gears and the change in the number of teeth in 

contact. The parametric excitation due to the time-varying stiffness is especially 

important for PGTs comprised of spur gears. The effects of these parametric 

excitations are also studied for PGTs [15,16]. However calculating mesh stiffness 

as a function of time is usually a complicated task. The calculation of the time-

varying mesh stiffness is possible through using finite element methods or dedicated 

computational tools specialized in loaded tooth contact analysis.  

 

Models that include variable mesh stiffness and tooth contact loss phenomenon lead 

to more accurate forced response predictions. Both phenomena are especially 

important in PGTs with spur gears as the experimental studies [17,18] showed 
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strong nonlinear behavior for spur gears. Although similar experiments are not 

conducted yet for PGTs, the analytical studies performed for PGTs showed also that 

nonlinear effects can also be expected for PGTs in general [16,19–22]. 

 

PGTs show distinct modal properties mostly due to their cyclic symmetry and these 

modal characteristics are also analyzed in the literature. In the earlier studies of 

Cunliffe [23] and Botman [24], which were limited to example planetary gear sets 

consisting of 3 planets, a first classification was made as the natural modes are 

categorized as “axisymmetric” and “nonaxisymmetric” modes. An improved and 

more detailed classification is made by Kahraman for the torsional modes [11]. Later 

the classification is extended to 2D and 3D models by Parker [25]. Ericson and 

Parker also correlated these findings with experiments [26]. Various researchers 

extended the related studies for simple PGTs to compound PGTs [27–29].   

  

As the studies on the modal characteristics of PGTs showed, the phasing 

relationships between gear pairs are also very important regarding the forced 

response characteristics of PGTs. These phase relationships depend on the number 

of planets and number of gear teeth of sun and ring gears [30]. The effectiveness of 

mesh phasing in reducing the PGT vibration is studied extensively by many 

researchers [31–33]. It is possible to suppress some of the natural modes of a PGT 

by configuring the design via modification of the mentioned parameters. This 

approach is very effective in reducing the dynamic response of PGTs [34].  

  

In some applications like rotorcraft PGTs, use of thin-rimmed ring gears is preferred 

due to the advantages in weight and load-sharing [35]. Kahraman et al. [36] used a 

combined FE-contact mechanics tool to study the dynamic characteristics of such 

PGTs. An analytical model incorporating the effect of elastic thin ring gears with 

time-varying mesh stiffness is used by Canchi and Parker [33] in their related study. 

Abosleiman and Velex combined their lumped-parameter model with a FE 
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formulation to analyze the effects of ring gear elasticity [37,38]. Chen et al. [39] 

performed time-integration simulation on their model which includes the torsional 

effects of having compliant ring gears. The effects of having compliant members in 

a PGT are extensively studied by Helsen et al. [40–42] for wind turbines both 

analytically and experimentally.  

 

The initial studies on profile modifications were mainly focused on the effect of 

these modifications on reducing the loaded static transmission error (LSTE) on 

parallel-axis gearing. LSTE optimization efforts go back to the study of Tavakoli 

and Houser in 1986 [43]. In their study, an objective function based on the mean 

value of the transmission error harmonics under different design torques was used 

in search of optimal tooth profile. In 2005, Fonseca et al. [44] employed a genetic 

optimization algorithm to the same static model of Tavakoli and Houser. These 

studies reveal that optimization efforts based on LSTE fluctuation minimization are 

very effective when torque is the only parameter considered regarding the 

operational characteristics of gear pairs. Different concepts regarding the 

application of profile modifications were studied in order to improve the 

effectiveness of these modifications at different torque levels [45].  

 

Afterwards, effect of profile modifications on reducing the vibration in geared 

systems was studied by using the direct approach of including profile modifications 

in the dynamic models. The references [12,18,46] are only a few examples to the 

mentioned studies. The experiments on parallel-axis have also shown us that the use 

of proper tooth profile modifications is a very effective way of reducing the gear 

vibration [47,48]. Further improvement towards reducing actual vibration levels can 

be achieved via optimization efforts targeted at DTE minimization. Bonori et al. 

[49] performed dynamic analyses on a spur gear pair to check the quality of their 

genetic algorithm based LSTE optimization method. In 2011, Faggioni et al. [50] 

developed an optimization model with 8 parameters and concluded that optimization 
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which is directly targeted minimizing DTE produced better results than an 

optimization study which aims to minimize LSTE for spur gears. 

 

Similar to parallel-axis gear systems, profile modifications are also effective in 

decreasing the vibration levels in PGTs. Abousleiman and Velex [37] showed that 

it is possible to eliminate resonances by applying proper profile modifications. In 

another study, Bahk and Parker [51] studied the effect of linear profile modifications 

on PGTs and concluded that a full-system approach is necessary in evaluating the 

effects of profile modifications on PGTs. They showed that static evaluations for 

individual sun-planet and ring-planet pairs are inadequate. When compared to the 

parallel-axis gear systems, because of the more complex nature of PGTs, there is 

still a need for studies which would address the different aspects of the PGT design 

and tooth profile modifications together. 

 

 

1.3   Motivation, Scope and Objective 

Gear dynamics have been extensively studied during the last 40 years. PGTs present 

unique features when compared to parallel-axis geared systems, which need special 

attention. The number of studies which focused on planetary gear dynamics started 

to increase steadily during the 2000s. 

 

Many parameters, including mesh stiffness of gears, nonlinearity due to backlash, 

damping characteristics, component elasticity, errors due to manufacturing and 

assembly, profile modifications and mesh phasing, have strong effects on dynamic 

characteristics of planetary gears. Some of these parameters are irrelevant for the 

parallel-axis gear systems, whereas some of them affect the dynamics of PGTs in a 

different manner when compared with how they affect parallel-axis gear sets. 

Although the influence of some of these parameters on PGT dynamics have been 
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studied extensively, there is still need for research in order to fully understand the 

influence of some parameters on PGT dynamics.  

 

This dissertation aims to address the following topics: 

 

 A review of planetary gear dynamics and torsional modal characteristics of 

PGTs based on the analytical formulations using a nonlinear time-variant 

modeling scheme. Information about solution using HBM with arc-length 

continuation (Chapter 2). 

 

 Parametric study related to PGTs with different mesh phasing 

configurations. Investigations on the effects of backlash, level of damping, 

external force and gear mesh contact ratio on PGT dynamics (Chapter 3).  

 

 Investigation of rim stiffness effects on torsional dynamics of PGTs. Study 

of the effects of rim design parameters on PGT dynamics (Chapter 4). 

 

 Analyses of the effects of TPMs on spur gear dynamics by using both SDoF 

and MDoF dynamic models. Demonstration of the effects of proper TPMs 

on reducing the dynamic loads and increasing the bending fatigue lives of 

spur gears (Chapter 5). 

 

 Investigation of the effects of TPMs on PGT dynamics. The relationship 

between the static mesh displacements and dynamic response for various 

natural modes of PGTs. The sensitivity of TPM designs to dynamic response 

considering applied loads, operational speed intervals, manufacturing 

tolerances, wear, etc. (Chapter 6).  
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 Investigation of the effects of double-relief TPMs on the dynamic 

characteristics of PGTs with high contact ratio (HCR) spur gears. 

Comparisons between dynamic responses of PGTs with linear TPMs and 

PGTs with double-relief TPMs (Chapter 7).  
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CHAPTER 2  

OVERVIEW of PLANETARY GEAR DYNAMICS 

2.1   Mathematical model 

In this study, a purely torsional mathematical model, as shown in Figure 2-1, is used. 

It is a time-varying nonlinear model, including time-varying stiffness and backlash 

nonlinearity. Kahraman [9] showed that a purely torsional model for PGT dynamics 

is reasonably accurate even for the cases where floating central members are present. 

Each gear blank is assumed to be rigid and only the mesh stiffness between 

interfacing gear teeth is modeled. Sun and ring gears are mounted on rigid bearings. 

Similarly planets are mounted on rigid carriers through rigid planet bearings. Each 

gear and the planet carrier are assumed to move in the torsional direction only, i.e. 

the model has (number of planets + sun + ring + carrier) degrees of freedom. 

Damping between the mating gear teeth is modeled as viscous damping with 

constant damping coefficients. The mesh stiffness is modeled with a time-varying 

parameter in order to simulate the variation of stiffness during rotation of the gears 

caused by changing contact point and number of teeth in contact. Variation of mesh 

stiffness is known to act as a parametric excitation to the dynamic system. 
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Figure 2-1 Schematic for the PGT dynamics model 

 

 

Equations of motion for the torsional model given in Figure 2-1 can be written as 

follows 

1 1

( ) ( )( ) ( )
p pn n

s s sp sii ss s

i i

sM x t c g t fz t k x t
 

    ,     (2.1)

1 1

( ) ( )( ) ( )
p pn n

r r rp rii rr r

i i

rM x t c g t fz t k x t
 

    ,                             (2.2) 

Ring
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11 1 1

( ) ( )( ) ( ) (( ) )
p p p pn n

s

n n

c c sp rp si ri c

i

i ri c c

ii i

z t z t k x tM x t c c g t g t f
 

       , (2.3)  

( ) ( ) ( ) 0,   for 1,2,..( ) ,) ( .i i sp rp ssi r i ri i pM x t c cz t z t g t g t i n     , (2.4) 

where, 

2 2 2
,     ,     s cr

s r c p i

s r c

I II
M M M n m

r r r
    ,    (2.5) 

s
s

s

T
f

r
 , r

r

r

T
f

r
 , c

c

c

T
f

r
 .   (2.6) 

 

Here ( )sx t  and ( )rx t  denote the linear displacement of sun gear and ring gear along 

the respective line of actions (angular rotation times the gear base radii). ( )cx t  

denotes the linear displacement of the carrier (angular rotation times the radius to 

the center of a planet); whereas, ( )ix t  is the linear displacement of the i th planet 

along its line of action. ( )siz t  and ( )riz t  are mesh displacement functions for the i th 

sun-planet and ring-planet meshes, respectively. They can be expressed as 

 

( ) ( ) ( ) ( ) ( )si s i c siz t x t x t x t e t    ,   (2.7) 

( ) ( ) ( ) ( ) ( )ri r i c riz t x t x t x t e t    ,   (2.8) 

 

where ( )sie t  and ( )rie t  are the geometric error terms for the i th sun-planet and ring-

planet meshes. The error terms ( )sie t  and ( )rie t  are used both for profile deviations 

as well as the intended tooth profile modifications (TPMs). sM , rM  and cM are the 

equivalent masses for sun, ring and carrier, respectively. Similarly, sf , rf  and cf  

denote the equivalent external forces applied on sun, ring and carrier, respectively. 

sk , rk  and ck are the terms representing the constant stiffness between ground and 

the respective components. Note that for the fixed member, the respective stiffness 
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value can be assumed to be infinite; whereas, they can be set equal to zero for the 

other members. spc  and rpc  are the constant damping coefficients for sun-planet and 

ring-planet meshes, respectively. pn  stands for the number of planets; whereas, im  

is the mass of the i th planet. ( )sig t  and ( )rig t  are the nonlinear spring force 

functions due to the backlash between the mating gear teeth for the sun-planet and 

ring-planet meshes, respectively. Loss of contact between the teeth of mating gears 

is one of the most dominant and the most studied nonlinear phenomena in gear 

dynamics studies. The sudden loss of contact results in a softening type of behavior 

that results in shift of resonance frequencies to the left in frequency domain. The 

backlash is included in the model as a gap element. Therefore the nonlinear spring 

force functions can be defined as 

 

 

 

( )    for   

( ) 0                

( ) b ( ) b

( )  for b

( )    for  

b

( ) b ( ) b

si

si

s

si si

si

si sii

z tk t

g t

k

z

z

z t z tt

t

t








 



  

 



, (2.9) 

and 

 

 

( )    for   

( ) 0                

( ) b ( ) b

( )  for b

( )    for  

b

( ) b ( ) b

ri

ri

r

ri ri

ri

ri rii

z tk t

g t

k

z

z

z t z tt

t

t








 



  

 



.  (2.10) 

 

One can refer to “List of Symbols” section given at the beginning of the thesis, for 

the remaining symbols that are not explained here. 

 

2.2   Harmonic Balance Method 

Solution of differential equations of motion using direct time integration is 

computationally expensive for parametric studies of planetary gear dynamics that 
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require a vast number of simulations. Since steady state solutions are of interest, in 

this study, Harmonic Balance Method (HBM) is used. HBM is based on the simple 

idea where an assumed form of periodic solution, which is expressed as Fourier 

series, is inserted into the nonlinear equation where the periodic excitation is 

similarly expressed as Fourier series and coefficients of similar terms are balanced 

to determine the unknown ones. 

 

Using multi-term HBM, nonlinear differential equations of motion given by Eqs. 

2.1 - 2.4 can be converted into a set of nonlinear algebraic equations. The periodic 

parametric excitations for both sun-planet and ring-planet meshes given by Eqs. 2.9 

and 2.10, can be represented in Fourier series as 

 

 1 ,2 1, ,2

1

co( ) ( in) ( )s ss

N

si ni n

n

i sisk t k n t k tk n 



   , (2.11) 

 1 ,2 1, ,2

1

co( ) ( in) ( )s sr

N

ri ni n

n

i rirk t k n t k tk n 



   . (2.12) 

 

Similarly, the periodic error terms which may represent gear profile errors or TPMs, 

i.e. ( )sie t  and ( )rie t , can be expressed as  

 

 1 ,2 1, ,2

1

co( ) ( in) ( )s ss

N

si ni n

n

i sise t E n t E tE n 



   , (2.13) 

 1 ,2 1, ,2

1

co( ) ( in) ( )s sr

N

ri ni n

n

i rire t E n t E tE n 



   . (2.14) 

 

In PGTs, phase relationships shall be considered in formulating the mesh stiffness 

and error terms, based on a reference mesh, both for sun-planet and ring-planet 

meshes. The related phasing equations can be expressed as follows 
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For sun-planet mesh: 

 

,2 1,2 cos(n )si n s n s ik k Z  ,             (2.15) 

,2 1 1,2 1 sin (n )si n s n s ik k Z   .             (2.16) 

,2 1,2 cos(n )si n s n s iE E Z  ,             (2.17) 

,2 1 1,2 1 sin (n )si n s n s iE E Z   .                        (2.18) 

 

For ring-planet mesh: 

 

,2 1,2 cos(n n )ri n r n r i srk k Z    ,            (2.19) 

,2 1 1,2 1 sin(n n )ri n r n r i srk k Z     .            (2.20) 

,2 1,2 cos(n n )ri n r n r i srE E Z    ,            (2.21) 

,2 1 1,2 1 sin (n n )ri n r n r i srE E Z     .            (2.22) 

 

Here sZ  and rZ  denote the number of teeth for sun and ring gears, respectively. i

is the angular position of the i th planet (i.e. for an equally spaced 4-planet system, 

planets are positioned at 0, π/2, π and 3π/2, respectively). sr  is the phase difference 

between the sun-planet and the ring-planet meshes. 

 

The assumed solutions for Eqs. 2.1 - 2.4 can be expressed in Fourier series as follows 

  

 , ,2 ,2 1

1

1 c( ) ( ) (n )os sia a

N

a n a n

n

x t X n t X tX n 



            (2.23) 

 

Here aX , where , , , , 1,..., pa s r c i i n  , represents the harmonic terms of the 

displacement of the sun, ring, carrier and planets, respectively. 
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The resulting nonlinear algebraic equation vector is 

 

 

,1 ,2 1 r,1 r,2 1 c,1 c,2 1

1,1 1,2 1 2,1 2,2 1 n ,1 n ,2 1

, , , , , , , ,

, , , , , , , , ,
p p

T

s s N N N

T

N N N

R R R R R R

R R R R R R

  

  

 
 

  
 
 

R . (2.24) 

 

The equations can be listed for sun gear as  

,1 ,0s,1 ,1

1

0
pn

s si s

i

s X G FR k


  ,  (2.25) 

2

,2 ,2n ,2n

1

s,2n ,2 ,2 1

1

02
p p

s s n si

n n

s n s sp si sn

i i

X nR k c GnM FZX 



       , (2.26) 

s,2n 1

2

,2 1 ,2n 1 ,,2 1 , 2n 1

1

2

1

02
p p

s s n si

n n

s n s sp si s

i i

nR k n ZX n M X c G F   



        . (2.27) 

 

For ring gear: 

,1 ,1r,1 r,1

1

0
pn

r ri

i

r X G FR k


  ,  (2.28) 

2

,2 ,2n r,2n

1

r,2n r,2 ,2 1

1

2 0
p p

r n ri

n n

r n r rp ri

i

n

i

X n M X c Gk FR n Z






        , (2.29) 

r,2n 1 r

2

,2 1 ,2n 1 r,2n 1

1

,2 1 ,2

1

02
p p

r n

n n

r n r ri n

i

rp ri

i

R k n ZX n M X c G F   



        . (2.30) 

 

For carrier: 

,1 ,1 ,1 c,1

1 1

c,1 0
p pn n

c si ri

i i

cR X G G Fk
 

     ,  (2.31) 
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c,2n c,2

2

,2 ,2n

1

,

,2 1 ,2 1

1

2n c, n

1

1

2

2 2

0

p p p

p

n n n

c n c sp rp si

i

c n si n ri n

i

n

ri

i

i

R k n Z nX n M X c c G

G F

Z 

 





     





 





 
, (2.32) 

c,2n 1 c,2 1 ,2 ,2

1 1

2

,2 1 ,2n

1

,2n 1 c,2n 1

1

2 2

0

p p p

p

n n n

c n c sp rp si

i

n

c n si n ri

r

i i

i

n

i

X n M X c cR k n Z GZ

G F

n



 



 

 

    



  

 





 
. (2.33) 

 

For planets:  

,1 ,1 ,1 0i si riG GR    ,  (2.34) 

i,2 ,2 1

2

,2n ,2 ,2 n 21 n,2 2 0i i sp rp si rn si n ri n iR n Z nn M X c c GZ G        , (2.35) 

2

,2 1 ,i, 2n 1 ,2n 12 1 ,2 ,22 2 0n si n rii n i sp rp sn i riR n Z n Zn M X c c G G           , (2.36) 

 

where 1, 2, ...,n N , N  being the total number of harmonics used in the solution. 

siZ  and riZ , where 1, 2, ..., pi n , denote the harmonic terms of sun-planet and ring-

planet mesh displacement functions given in Eqs. 2.7 and 2.8, respectively. 

Similarly siG  and riG are the harmonic terms of non-linear spring force functions 

for sun-planet and ring-planet meshes given in Eqs. 2.9 and 2.10, respectively. n  

stands for the harmonic number and   represents the mesh frequency.  

 

2.2.1   Newton’s Method with Arc-Length Continuation 

The nonlinear algebraic equations obtained for PGT model (Eqs. 2-25 – 2.36) can 

be solved iteratively by utilizing Newton’s method, for the unknown displacement 

vector of: 
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 

 

,1 ,2 1 r,1 r,2 1 c,1 c,2 1

1,1 1,2 1 2,1 2,2 1 n ,1 n ,2 1

, ,X ,X , , X ,X , ,X

, ,X ,X , ,X , ,X , , X
p p

T

s s N N N

T

N N N

X

X

  

  

 
 

  
 
 

X .  (2.37) 

 

However, during solution, the solution path can reverse its direction which causes 

Jacobian matrix to become very close to being singular and hence leads to 

convergence problems. This problem can be avoided by introducing a new 

continuation parameter, arc-length, instead of the frequency. By using arc-length 

parameter, it is possible to follow the solution path, even at turning points. Arc-

length parameter, s , is defined as the radius of a hypothetical n-dimensional sphere 

having its center located at the previous converged iteration. To apply arc-length 

continuation method, the vector of unknowns is expanded as  ,
T

T v X . The 

solution of the new system of nonlinear equations is located on the surface of this 

n-dimensional sphere, defined by 2 T

k ks    v v . The additional equations are 

introduced as 

 

2( ) 0T

k k kh s     v v v ,   (2.38) 

1k k k  v v v  .  (2.39) 

 

Here 1kv  is the converged solution at the previous solution point; whereas, kv  is 

the current solution point. Eqn. 2.38 is added to Eqs. 2.25 – 2.36 to obtain a new set 

of nonlinear algebraic equations for the PGT model,  ( ) ( ) ( )
T

T hS R X vv . A 

single step of Newton iteration is therefore formulated as 

 

   
1

( ) ( 1) ( 1) ( 1)m m m m

k k k k


   v v J v S v ,   (2.40) 
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where  ( 1)m

k


J v  is the Jacobian matrix of S  calculated at the ( 1)m  th iteration for 

the k th solution point. The iterations continue until the norm of  ( )m

kS v  settles 

within the given tolerance band. 

 

Further details of Newton’s method with arc-length continuation can be found in 

references [52–54]. 

 

2.3   Validation of Multi-Term HBM with Direct Time Integration 

Besides its advantages in terms of computational speed, HBM coupled with a path 

followıng algorithm such as arc-length continuation is able to show multiple 

solutions for the speed ranges where nonlinear effects are still dominant. Using time 

integration method, one can obtain only a single solution depending on the initial 

conditions. In order to validate HBM solutions, for an example PGT, the solution of 

the system is obtained by utilizing direct time integration and results are compared 

with HBM solutions. Parameters of this example gear set are given in Table 2-1. 



21 

 

Table 2-1 Parameters for example planetary gear set used in HBM vs. time 

integration comparison 
 

SUN PLANET RING 

Number of planets 4 

Number of teeth 38 22 82 

Module [mm] 4 

Pressure angle [deg] 21.3 

Effective outside diameter [mm] 158 95 323 

Root diameter [mm] 142 80 336 

Facewidth [mm] 30 

Transverse tooth thickness [mm] 5.3 6.8 5.3 

Diameter at measured tooth 

thickness 

152 88 328 

Average mesh stiffness [1E6 N/m] 538.0 665.5 

Mesh damping coefficients [Ns/m] 1872.7 2078.5 

Inertia/r2 [kg] 2.42 0.82 10 

Torque applied [Nm] 2400 - - 

Young’s modulus [GPa] 206.8 

 

In this example PGT, the ring gear is fixed and carrier is modeled as a large inertia. 

No TPM is applied on any of the gears. The mesh stiffness for the example PGT is 

calculated from gear contact mechanics tool WindowsLDP of Ohio State University. 

6 harmonic terms are used for representation of time-dependent mesh stiffness 

functions in HBM solution. Table 2-2 and Table 2-3 give the information related to 

the mesh stiffness harmonics regarding the example PGT in Table 2-1, for sun-

planet and ring-planet meshes, respectively. 

 

 

 



22 

 

Table 2-2 Sun-planet mesh stiffness harmonics 

Mesh Stiffness 

Harmonic # 

Amplitude 

[1E6 N/m] 

Phase angle 

[deg] 

1 141.35 -134.41 

2 90.94 -57.54 

3 16.10 39.22 

4 34.58 -131.63 

5 37.37 -57.74 

6 11.27 13.21 

 

Table 2-3 Ring-planet mesh stiffness harmonics 

Mesh Stiffness 

Harmonic # 

Amplitude 

[1E6 N/m] 

Phase angle 

[deg] 

1 174.14 -122.02 

2 119.06 -65.34 

3 28.77 -6.99 

4 34.94 -132.87 

5 49.12 -74.32 

6 17.06 -25.17 

  

Figure 2-2 and Figure 2-3 show the calculated mesh stiffness functions along with 

their 6-harmonic approximations.  



23 

 

 

Figure 2-2 Exact sun-planet mesh stiffness and 6-harmonic approximation 

 

Figure 2-3 Exact ring-planet mesh stiffness and 6-harmonic approximation 

  

Eqs. 2.1 – 2.4 are solved by using direct time integration for the example PGT. Time-

integration solution is obtained using the ODE45 routine in MATLAB©. For time-
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reached. Similarly for HBM solution, rms of the harmonic terms of the displacement 

response is calculated for sun gear and planet gear, respectively, as 

 

1

2 2 2
,2n ,2 1

1 2

N
s s nrms

s

n

X X
X





   
    
   
  ,  (2.41) 

1

2 2 2
i,2n i,2 1

1

, 1, 2,..., .
2

N
nrms

i p

n

X X
X i n





   
    
   
           (2.42) 

 

Comparisons between results obtained using direct time-integration and HBM 

solution using 6 harmonics are shown in Figure 2-4 and Figure 2-5 for sun 

displacement and planet displacement, respectively. 

  

Figure 2-4 TI vs HBM comparison for sun displacement (rms) 
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Figure 2-5 TI vs HBM comparison for planet displacement (rms) 

 

Results of the comparison study show that HBM with 6 harmonics captures the 

steady state response of the PGT system under consideration accurately. Multiple 

solutions are obtained with HBM at the resonant frequency around 3000 rpm which 

are not determined by TI. In the rest of the study, HBM is used to determine the 

steady state response of gear trains. 

 

2.4   Modal characteristics of PGTs 

PGTs show unique characteristics in terms of modal properties. Modal analysis is 
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Table 2-4 shows the natural frequencies for these different cases. 

Table 2-4 Natural frequencies of the example PGT for different boundary 

conditions 

Mode 

number 

Natural 

frequency in 

Hz (Ring-fixed) 

Natural 

frequency in 

Hz (Sun-fixed) 

Natural 

frequency in Hz 

(Carrier-fixed) 

1 0 0 0 

2 4559 3775 3709 

3 6099 6099 6099 

4 6099 6099 6099 

5 6099 6099 6099 

6 7146 6469 7256 

 

 

Table 2-5, Table 2-6 and Table 2-7 show the mass-normalized mode shapes for the 

configurations in Table 2-4. The first mode for each configuration is the rigid-body 

mode where the relative sun-planet and ring-planet mesh displacements are zero. 

Modes 3-5 are pinion modes in which neither of sun, carrier or ring gears rotate. 

Natural frequencies for these modes are also observed to be independent of the 

number of planets. Moreover sum of rotations for the planets equal to zero in these 

modes. These modes are called as “sequentially-phased” modes. The mode shapes 

for the second and 6th modes are such that all planets rotate equally. These modes 

are categorized as “in-phase” modes. The details of the terms “in-phase” and 

“sequentially-phased” will be given in Chapter 3. 

 

 

  



27 

 

Table 2-5 Mass-normalized modal vectors for fixed sun gear configuration 

Fixed sun 

Mode 

number 
1 2 3 4 5 6 

Carrier -0,137 -0,281 0 0 0 -0,047 

Ring -0,274 0,116 0 0 0 0,108 

Planet-1 -0,137 0,153 -0,169 0,831 0,442 -0,513 

Planet-2 -0,137 0,153 0,904 -0,268 0,160 -0,513 

Planet-3 -0,137 0,153 -0,140 0,105 -0,940 -0,513 

Planet-4 -0,137 0,153 -0,595 -0,668 0,338 -0,513 

 

Table 2-6 Mass-normalized modal vectors for fixed ring gear configuration 

Fixed ring 

Mode 

number 
1 2 3 4 5 6 

Carrier 0,209 -0,281 0 0 0 -0,047 

Sun 0,417 0,309 0 0 0 -0,379 

Planet-1 -0,209 -0,258 0,189 0,863 0,366 -0,441 

Planet-2 -0,209 -0,258 0,644 -0,630 0,320 -0,441 

Planet-3 -0,209 -0,258 -0,876 -0,275 0,269 -0,441 

Planet-4 -0,209 -0,258 0,042 0,042 -0,954 -0,441 
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Table 2-7 Mass-normalized modal vectors for fixed carrier configuration 

Fixed carrier 

Mode 

number 
1 2 3 4 5 6 

Ring -0,252 0,178 0 0 0 -0,067 

Sun 0,252 0,484 0 0 0 0,339 

Planet-1 -0,252 -0,187 -0,411 0,776 -0,378 0,454 

Planet-2 -0,252 -0,187 0,935 0,005 -0,200 0,454 

Planet-3 -0,252 -0,187 -0,401 -0,785 -0,370 0,454 

Planet-4 -0,252 -0,187 -0,123 0,004 0,948 0,454 

 

Table 2-5, Table 2-6 and Table 2-7 show that the characteristics mentioned here are 

independent of which member of the PGT is fixed, i.e. similar modal characteristics 

are observed for different PGTs irrespective of the power configuration. Figure 2-6 

shows mode shapes for the fixed-ring configuration given in Table 2-6. Note that 

carrier is not shown in this figure for clarity. 

 

The modal characteristics of PGTs are important for the forced response dynamic 

analyses. It is possible to suppress some of these natural modes through proper 

configuration of mesh phasing. The details of mesh phasing for PGTs are provided 

in the next chapter. Moreover these mode shapes also affect the design of TPMs 

which are applied in order to reduce vibration of PGTs. The effect of mode shapes 

on the design of ideal TPMs are addressed in Chapter 6.   
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Figure 2-6 Mode shapes for fixed-ring configuration 
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CHAPTER 3  

BASIC CONCEPTS IN PLANETARY GEAR DYNAMICS 

 

3.1   Mesh Phasing in Planetary Gear Trains 

Phase differences between gear mesh actions for planet-sun and planet-ring gear 

meshes are important in characterizing the dynamic properties of a PGT. In order to 

reduce the vibration in planetary gears, one of the most effective remedies is the 

proper phasing of the contact between different teeth of a planetary gear system. By 

doing so, it is possible to cancel out some of the harmonics of the gear mesh forces.  

 

Since it is one of the key elements affecting the characteristics of PGT dynamics, 

additional care should be taken when defining the phase relationships between the 

multiple tooth pairs that continuously come into contact with each other. These 

phase relationships have great influence on the dynamic response of planetary gear 

sets. 

 

There exists a difference in the phase for mesh stiffness functions between gear pairs 

in a PGT. The mesh phasing difference between individual sun-planet and ring-

planet meshes depend on the number of teeth of sun and ring gears and the position 

of the planets. Therefore number of planets in a PGT also indirectly affects the mesh 

phasing characteristics. 

 

In order to also show the effect of contact ratio on the mesh stiffness, consider a 

rectangular wave approximation for mesh stiffness functions of both sun-planet and 

ring-planet pairs. The stiffness functions for different sun-planet and ring-planet 

pairs can be defined as [7]: 
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For sun gear: 
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For ring gear: 
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In these equations, 
spC and 

rpC  are contact ratios between sun-planet and ring-planet 

gear meshes respectively. C  denotes the minimum number of tooth pairs in contact 

during a mesh cycle, which can be defined as the periodic amount of gear rotation 

after which the next tooth arrives at the position of the present tooth which is in 

contact with its mating tooth. i  is the angular position of the planet i . sZ  and rZ  

are the number of teeth for sun and ring gears, respectively. n  stands for the 

harmonic number and sr  is the phase difference between sun-planet and ring-planet 

meshes. 
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The mesh phasing relationships between individual sun-planet and ring-planet pairs 

can be classified under 2 categories. When the meshing action between individual 

sun-planet or ring-planet pairs occur simultaneously, the gear meshes are “in-

phase”. For “sequentially-phased” meshes, adjacent sun-planet or ring-planet 

meshing actions are out-of-phase. A special case for sequentially-phased meshes is 

“counter-phased” meshes where the phase difference between adjacent meshes is  

 , i.e. diametrically-opposed planets are at the same phase and the phase difference 

with the other mesh pair is half of the mesh cycle. This is a possible configuration 

for PGTs with number of planets equal to 4.  

 

Figure 3-1 shows example sun-planet mesh stiffness plots for such mesh-phasing 

configurations for a PGT with 4 planets. 

 

 

Figure 3-1 Example sun-planet mesh stiffness plots for a) sequentially-phased, b) 

in-phase, c) counter-phased mesh configurations. Note that in b), all stiffness curves 

overlap with each other while in c), P1-S overlaps with P3-S and P2-S overlaps with 

P4-S   
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For a PGT having equally-spaced planets, the i th harmonic of parametric stiffness 

excitation for individual sun-planet gear pairs will be in phase if /siZ n  is integer 

and sequentially phased if /riZ n  is not an integer [55]. The same is also valid for 

ring-planet meshes. 

 

Table 3-1 lists different configurations for mesh-phasing based on the number of 

gear teeth. Dynamic simulations are performed for these configurations of the 

example PGT given in Table 2-1. 

Table 3-1 Different mesh-phasing configurations for the example PGT in Table 2-1 

Configuration 

number 
Mesh-phasing configuration sZ  rZ  pZ  

1 Sequentially-phased (counter-phased) 38 82 18 

2 In-phase 36 80 18 

3 Sequentially-phased 35 81 18 

 

Figure 3-2 and Figure 3-3 show an initial comparison of sun-planet and ring-planet 

displacements for the configurations listed in Table 3-1. For this comparison, the 

performed analyses are limited to linear solutions; in order clearly address the 

resonance regions with the harmonics of the parametric excitations of respective 

configurations. All damping ratios for the performed simulations are equal to 0.035. 

Damping ratio definitions are provided in section 3.2.2. It is clearly apparent from 

both Figure 3-2 and Figure 3-3 that dynamic responses of PGTs are strongly 

dependent on their mesh phasing characteristics. 
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Figure 3-2 Sun-planet mesh displacement (rms) for different mesh phasing 

configurations given in Table 3-1 

 

Figure 3-3 Ring-planet mesh displacement (rms) for different mesh phasing 

configurations given in Table 3-1 

 

The first observation is that “sequentially-phased” PGT configurations are much 
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frequencies of the PGT, parameters of which are given in Table 2-1. Information 

regarding the harmonics of the mesh stiffness for this PGT is already provided in 

Table 2-5 and Table 2-6. 

 

Table 3-2 Natural frequencies for the example PGT in Table 2-1 

Mode number (n) 1 2 3 4 5 6 

Natural frequency, ω [Hz] 0 2994 6033 6033 6033 7038 

 

Another important outcome of the comparison study is that the excited natural 

modes depend on the phasing configuration. “In-phase” modes are only excited by 

“in-phase” harmonics of excitation, whereas the same also holds for the 

“sequentially-phased” modes. This also results in the fact that, for “in-phase” PGT 

configurations, “sequentially-phased” modes never get excited. For the example 

PGT under consideration, in configuration 1, excitation of the first in-phase mode 

was possible through the parametric excitation of the second and the 4th harmonics 

of the mesh stiffness. Moreover the second in-phase mode is also excited by the 

second harmonic of the mesh stiffness for this configuration. For the second 

configuration, all 6 harmonics of the mesh stiffness excitations excited the first in-

phase mode. The second in-phase mode is also excited by the first harmonic of the 

mesh stiffness functions. For the 3rd configuration, although the responses are 

relatively lower, the 4th harmonic of the mesh stiffness excitation excited the first 

in-phase mode. The sequentially-phased modes are excited by the first 3 harmonics 

and the 5th harmonic of the mesh stiffness excitation. The excited dynamic modes 

for this configuration can be clearly identified in Figure 3-4, using the natural 

frequency information provided in Table 3-2. 
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Figure 3-4 Sun-planet mesh displacement for 3rd configuration, excited modes and 

excitation sources 

 

The amplitudes of the sequentially-phased modes are also observed to be much 

lower than the amplitudes of the in-phase modes. Especially, response amplitudes 

at the first in-phase mode are significantly higher compared to the amplitudes at 

other modes. However, this observation may not be valid for the TPM applied PGTs. 

This subject is going to be investigated in detail in Chapter 6. Although the response 

of sequentially-phased modes are not as high as those for “in-phase” modes, the 

dynamic effects can still be considered as significant and therefore, additional means 

for improvement, such as application of TPMs, may be required. Dynamic loading 

factors, which can be simply defined as the ratio of dynamic load to the static load 

at a single gear mesh, may still be high enough to reduce the fatigue lives of PGTs 

for sequentially-phased modes. 

 

Mesh phase differences are inevitably dependent on the number of planets for 

equally-spaced PGTs. It is possible to use equally spaced planets in the first 

configuration, i.e. sequentially-phased, given in Table 3-1. Dynamic responses 

obtained for PTGs with 3, 4 and 5 planets are given in Figure 3-5 and Figure 3-6. 
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Figure 3-5 Sun-planet displacements (rms) for PGTs with different number of 

planets with Sequentially-phased (SP) and Counter-phased (CP) configurations 

 

 

Figure 3-6 Ring-planet displacements (rms) for PGTs with different number of 

planets with Sequentially-phased (SP) and Counter-phased (CP) configurations 
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For this comparison, static mesh loads between all meshes are kept constant in all 

cases, irrespective of the number of planets, by adjusting the external torque applied 

on the sun-gear, which is equal to 2400Nm for the example PGT with 4 planets. The 

excitation of in-phase mode by the 3rd harmonic of the 4-planet configuration 

resulted in the highest vibration. This figure suggests that it is good practice to avoid 

in-phase modes in the first harmonics of mesh stiffness excitation. Since mesh 

stiffness variation shows similar frequency decomposition characteristics with a 

rectangular wave, the excitation will be lower for higher harmonics of the mesh 

stiffness variation. Another interesting outcome of these simulations is that the 3-

planet configuration, which has a phase-difference of 2 / 3   between respective 

sun-planet and ring-planet gear meshes, resulted in the most favorable dynamic 

response. Moreover, it is also clearly seen that the natural frequencies for the 

sequentially-phased modes are independent of the number of planets; however, the 

natural frequencies for the in-phase modes slightly change depending on the number 

of planets. 

 

Based on the mentioned effects of different mesh phasing scenarios on the dynamics 

of PGT, the design of a PGT should consider achieving favorable mesh-phasing 

configurations in order to reduce the dynamic effects, provided an operational 

spectrum defining the expected speed intervals. It is possible to eliminate some of 

the resonances within the operational speed range by the selection of proper mesh-

phasing arrangements. Harmonics of mesh stiffness have to be considered when 

performing such a study which aims to optimize the dynamic characteristics of a 

PGT. For a wide range of operational speed, one can also consider to give priority 

to the elimination of in-phase modes, as these modes show the highest dynamic 

response amplitudes. 
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3.2   Effects of PGT Model Parameters on PGT Dynamics 

Aside from mesh-phasing, PGT dynamics are also dependent on many design 

parameters. In this chapter, effects of backlash, damping ratio, external force and 

contact ratio on PGT dynamics are investigated. The effect of ring gear thickness is 

analyzed in Chapter 4. Chapter 6 is dedicated to a detailed discussion of the effects 

of TPMs on PGT dynamics. 

 

3.2.1   Backlash 

Backlash is simply defined as the clearance between the mating gear teeth. The main 

purpose of backlash is to allow for a film of lubricating oil to form such that tooth 

damage due to overheating is avoided. Moreover, in practice, backlash is also 

necessary for installation of the gears. On the contrary side, backlash has negative 

effects for the positioning equipment such as those used in robots etc. due to the loss 

in accuracy. 

 

In gear dynamics, backlash is the primary source for nonlinearity. Effect of backlash 

on spur gears can be found in several references [56,57]. The example PGT given 

in Table 2-1 is considered here for investigating the effect of backlash amount. Note 

that the “in-phase” configuration ( sZ  =36, rZ  =80) of this example PGT is used in 

order to make a clear demonstration of the effect of backlash, due to the fact that 

higher dynamic responses are observed for in-phase configuration relative to the 

sequentially-phased PGTs. All parameters other than the amount of backlash are 

kept the same for all simulations. Results obtained for sun displacement and planet 

displacement are given in Figure 3-7 and Figure 3-8, respectively. All damping 

ratios are equal to 0.08 in these simulations. 
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Figure 3-7 Sun displacement (rms) response with different amount of backlash 

  

Figure 3-8 Planet displacement (rms) response with different amount of backlash 
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response analysis of PGTs with spur gears. It should also be noted that the 

occurrence of the nonlinear resonances are also possible at the speed intervals where 

a natural mode is excited by a higher harmonic of mesh stiffness excitation. For 

Figure 3-7 and Figure 3-8, this phenomenon is observed for the second harmonic of 

the mesh stiffness, i.e. at ω≈1500Hz where 2ω=ω2 (the first in-phase natural 

frequency of the system). Around resonance frequencies, multiple solutions are 

observed. It is also apparent from Figure 3-7 and Figure 3-8 that, for smaller 

backlash (i.e. backlash values less than 0.04mm), double-sided contact occurs for 

the mating gear teeth. The double-sided contact cannot be observed beyond a certain 

value of backlash. Accordingly, the responses shown in Figure 3-7 and Figure 3-8 

for backlash values greater or equal to 0.04mm, are the same. Therefore, for 

dynamic analyses, one can avoid to model the double-sided contact phenomenon 

provided that the estimated response amplitudes are lower than the amount of 

backlash. 

 

Figure 3-9 and Figure 3-10 show the dynamic elastic mesh forces between sun-

planet and ring-planet pairs. 

 

Figure 3-9 Dynamic sun-planet elastic force (rms) for different amount of backlash 
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Figure 3-10 Dynamic ring-planet elastic force (rms) for different amount of backlash 
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Here, it should also be underlined that the effect of external force also plays a role 

regarding the effect of backlash, i.e. double-sided contact condition is also 
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planet or ring-planet pairs is such that double-sided contact occurs for one of the 

pairs; whereas, for the other pairs, only loss of contact is observed. In order to 
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constant at 1mm, which is large enough to avoid a double-sided contact, whereas 

the backlash of the ring-planet pairs is 0.01mm. The dynamic response in terms of 

rms of the sun displacement is given in Figure 3-11, for the resonance region around 

2800Hz. Note that all damping ratios are taken as 0.06 in this simulation. 

 

 

Figure 3-11 Sun displacement (rms) for b=0.5mm for sun-planet and b=0.005mm 

for ring-planet pairs, respectively. Region 1: No-impact for sun-planet, single-sided 

impact for ring-planet, Region 2: No-impact for sun-planet, double-sided impact for 

ring-planet, Region 3: Single-sided impact for sun-planet, double-sided impact for 

ring-planet pairs. 

 

Figure 3-11 shows the different contact conditions near the resonance region. 

Although no double-sided contact occurs for sun-planet pairs, the sun-planet 

dynamics are also affected from the double-sided contact occurring at ring-planet 

meshes. Figure 3-12 gives dynamic sun-planet and ring-planet mesh forces for the 

example frequencies which fall into different regions depicted in Figure 3-11. From 

the time histories of the dynamic mesh forces, which are given for duration of a 

single mesh cycle, the contact conditions stated in Figure 3-11 are clearly identified. 
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Note that a dynamic force which is equal to 0 denotes no-contact condition, whereas 

a negative value indicates a back-side contact.   

 

 

Figure 3-12 Time histories for sun-planet and ring-planet mesh forces, a) 

ω=2553Hz, Region 1, b) ω=2600Hz, Region 2, c) ω=2660Hz, Region 3. 
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previous one, is that either one of sun-planet or ring-planet pairs have no backlash, 

whereas the other pairs have different amounts of backlash. 

 

In such an example, for the “in-phase” configuration ( sZ  =36, rZ  =80) of the 

example PGT considered, two different backlash conditions for the ring-planet pairs 

are compared; whereas, no backlash is defined for sun-planet. The backlash values 

of the ring-planet pairs used for the response comparison are 0.1mm and 0.03mm, 

respectively. Figure 3-13 shows the sun displacement response (rms) for the 

mentioned parameter sets.  
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Figure 3-13 Sun displacement (rms) response with different amount of backlash for 

ring-planet pair – no backlash for sun-planet 

 

It is observed that although the sun-planet mesh does not include any backlash, the 

effect of both loss of contact and double sided contact situations are also observed 

on the sun gear response. 
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damping is hard to measure and dependents on many parameters such as the oil type, 

operating temperature etc., it is a usual practice to apply damping ratios ranging 

from 0.01 to 0.1 depending on the gearbox under consideration in gear dynamics 

studies. 

 

Damping ratios can be formulated in PGTs as follows 

  

   ,    ,     
2    2    2   

  ,    ,  
2    2    2   
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s sc
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where  
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k k k

M M M

  

  

  

  

.  (3.8) 

 

The example PGT given in Table 2-1 is used for investigating the effect of damping 

on the dynamic response. Note that the “in-phase” configuration ( sZ  =36, rZ  =80) 

of this example PGT is used in order to make a clear demonstration of the effect of 

damping, due to the fact that higher dynamic effects are observed for in-phase 

configuration relative to the sequentially-phased PGTs. Figure 3-14 and Figure 3-15 

show the dynamic response of the example PGT with different damping coefficients. 

Figure 3-14 and Figure 3-15 give rms sun displacement and rms sun-planet dynamic 

mesh force. In these simulations, all damping coefficients outlined in Equation 3.7 

are equal to the given value of damping. Backlash values for both sun-planet and 
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ring-planet pairs are equal to 1.0mm.Other parameters besides damping are kept the 

same for simulations. 

 

Figure 3-14 Dynamic sun displacement (rms) for different damping ratios 

 

Figure 3-15 Dynamic elastic sun-planet force (rms) for different damping ratios 
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It is clear that damping not only reduces the dynamic response but also reduces the 

effect of nonlinearity, which is an expected result. The magnitude of the response is 

reduced and the resonant frequency shifts towards to linear resonant frequency as 

the damping ratio increases. 

3.2.3   Contact ratio 

Gear contact ratio is defined as the average number of gear tooth pairs in contact 

during a mesh cycle. It is a key parameter of gear design which also plays an 

important role in gear dynamics. In practice, most of the spur gears have contact 

ratios between 1 and 2, as higher contact ratios are often difficult to obtain 

considering limitations from other aspects of gear design. A higher contact ratio is 

known to be advantageous in terms of load sharing and static torque capacity. 

Besides these advantages, gear dynamics are also positively influenced for higher 

contact ratios, especially when the contact ratio is close to an integer value. As 

contact ratio gets closer to an integer value, the variation of mesh stiffness decreases; 

therefore, spur gears having contact ratios closer to 2 usually show more favorable 

dynamic characteristics. 

 

To check the validity of these characteristics for PGTs composed of spur gear pairs, 

simulations are done for different sun-planet and ring-planet contact ratios, 

respectively. In all simulations in this section, backlash between mating gear pairs 

are constant at 1mm; whereas, all damping ratios are equal to 0.06. Three harmonics 

are used in the solution. In the first set of simulations, the contact ratio for ring-

planet pair is kept as constant at 1.937. For this set, example PGT in Table 2-1 is 

used with sZ  =36, rZ  =80. Figure 3-16 shows the dynamic responses for both cases 

in terms of sun-planet dynamic elastic forces. 
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Figure 3-16 Dynamic sun-planet elastic forces (rms) for different contact ratios of 

sun-planet gears 

 

Maximum of the sun-planet dynamic forces, which occur as a result of the excitation 

of the second in-phase mode by the first harmonic of mesh stiffness variation, is 

lower for the higher contact ratio of 1.924 compared contact ratio of 1.423. The 

same statement can also be made for the first in-phase mode. A similar comparison 

study is also performed for varying ring-planet contact ratios to observe the effects 

on ring-planet dynamic forces (Figure 3-17). Here contact ratio for the sun-planet 

meshes are held constant at 1.924; whereas, two different contact ratios for ring-

planet meshes are studied. These results also show that contact ratios closer to an 

integer are favorable for better dynamic response. Slight increase in resonance 

frequencies is also observed for the higher contact ratio, due to the increased mean 

stiffness between sun and planet pairs. 
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Figure 3-17 Dynamic ring-planet elastic forces (rms) for different contact ratios of 

ring-planet gears 

 

For PGTs, since the sun-planet dynamics are coupled with ring-planet pairs, the 

effect of changing the contact ratio of the planet-ring pair also affects the dynamic 

response of sun gear. Figure 3-18 and Figure 3-19 show the response in terms of sun 

displacement and sun-planet dynamic forces respectively for the cases where sun-

planet gear contact ratio is held constant at 1.924, whereas the contact ratios for ring-

planet gear are 1.507 for the first case and 1.937 in the second one. 
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Figure 3-18 Sun displacement (rms) for different contact ratios of ring-planet gears 

 

 

Figure 3-19 Dynamic sun-planet elastic forces (rms) for different contact ratios of 

ring-planet gears 
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stiffness variation is lower for this case. However for other harmonics of mesh 

stiffness excitation, different outcomes may be reached as this is also evident from 

Figure 3-18 and Figure 3-19. 

 

A similar behavior is also observed for the ring-planet response for the first case 

where contact ratios of the ring-planet gears are held constant at 1.937. Two 

simulations with different sun-planet contact ratios are performed (Figure 3-20). 

 

Figure 3-20 Ring-planet displacement (rms) for different contact ratios of sun-planet 

gears 

  

The dynamic response in terms of ring-planet displacement is lower for the case 

where the contact ratio of sun-planet gear is higher. 
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contact ratios that are very close to 1.0; whereas, in the second case, sun-planet and 

ring-planet pairs have contact ratios close to 2.0. Both contact ratios for the third 

case are equal to 1.52.  

 

 

Figure 3-21 Dynamic ring-planet elastic forces (rms) for different contact ratios of 

sun-planet gears 

 

Figure 3-21 shows that contact ratios close to 1.0 have also disadvantages in terms 

of dynamic characteristics; whereas, one can obtain very quiet gears when the 

contact ratios are close to 2.0. There is not much difference between vibration levels 

of the case with contact ratios close to 1.0 and the case with contact ratio around 1.5. 

The different resonance frequencies due to the different average mesh stiffness 

values are also apparent in Figure 3-21. 
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3.3   Summary and Conclusion 

Effects of different mesh-phasing configurations and fundamental parameters of 

PGTs are investigated within this chapter. Important findings come forward as the 

outcome of the related studies.  

 

Mesh phasing is one of the most important tools to tune the vibration characteristics 

of the PGTs. Mesh phasing characteristics of the PGTs define which modes can be 

excited within the operational speed range. In-phase modes are excited by in-phase 

harmonics of excitation whereas sequentially-phased modes are excited by 

sequentially-phased harmonics only. 

 

In-phase modes are dynamically more dominant than their sequentially-phased 

counterparts. Therefore, for wide operational speed ranges, it is best to avoid such a 

configuration for a PGT design. Although sequentially-phased modes are less 

violent, there can still be a need for reduction of the dynamic response for these 

modes. 

 

Backlash is one of the major sources of nonlinearity for PGTs with spur gears. 

Depending on the amount of backlash and the external force, double-sided contact 

may occur in addition to the loss of contact phenomenon. At a constant torque level, 

having a sufficient amount of backlash removes the possibility of double-sided 

contact, which causes higher dynamic forces when compared with dynamic forces 

in loss of contact condition. 

 

Damping is usually a parameter which cannot be precisely designed for gear trains. 

An increased damping results in reduction of dynamic response and nonlinear 

effects. 
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Contact ratio is one of the key design parameters not only for PGTs but all geared 

systems. For low contact ratio spur PGTs, having a contact ratio closer to 2 greatly 

reduces the dynamic response levels. The contact ratio value for a sun-planet gear 

also affects the dynamics of the ring-planet pairs and vice versa. 

 

The following suggestions can be made when the dynamic response of a PGT is 

required to be tuned and/or reduced:  

 

 The first step is going to be to adjust mesh phasing of the respective PGT 

according to the operational speed ranges. Avoid excitation of in-phase 

modes by the first few harmonics of mesh stiffness function. 

 

 Design PGT in such a way that the contact ratios between both sun-planet 

and ring-planet pairs are close to 2. 

 

 If the damping of a PGT is not high enough to avoid nonlinear dynamic 

response and if it is not possible to provide any additional damping to the 

system, make sure that the amount of backlash is sufficient to avoid double-

sided contact condition. 

 

Here, it should be repeated that the above guideline is valid for the cases 

where TPM is not considered. Other design limitations may also result in 

deviations from the suggested plan. TPM is also an effective means for the 

reduction of dynamic response in geared systems. The effect of TPM in spur 

gear pairs are investigated in Chapter 5; whereas, Chapter 6 is dedicated to 

the effects and characteristics of TPMs in PGT dynamics. 
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CHAPTER 4  

EFFECTS of RING GEAR ELASTICITY on PGT DYNAMICS  

4.1   Introduction 

It is common practice in rotorcraft industry to use PGTs with thin rims. Thin-rimmed 

PGTs have advantages not only in terms of weight but also load sharing. In terms of 

load sharing, the effect of using a thin-rimmed ring gear is shown to be similar to 

using a “floating” sun gear [35], i.e. a sun gear that is mounted such that the sun gear 

is compliant in translational directions. Floating sun gear configurations are known 

for their ability to compensate the assembly errors. Increased compliance of thinner 

ring gears similarly allow to compensate for the manufacturing errors induced in the 

design of PGTs, which have a negative effect on load sharing characteristics. 

 

In this chapter, the focus is on the investigation of the effects of thin-rimmed ring 

gears on torsional dynamics of PGTs. In-plane translational motions are not 

considered. The effects of the rim thickness and mounting configuration of the ring 

gear on the mesh stiffness of ring-planet pairs are analytically modeled. Afterwards, 

direct relationships between the mentioned parameters and dynamic responses of 

PGTs are analyzed in frequency domain using HBM. Solutions of the nonlinear 

algebraic equations are obtained by using Newton’s method with arc-length 

continuation.  

 

4.2   Analytical modeling of ring gear elasticity 

When the effect of rim stiffness is taken into account, one can formulate the mesh 

stiffness between the ring and the planets as follows: 
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, ,

1 1 1

mesh elastic mesh rigid rimK K K
     (4.1) 

 

Here the system is modeled as two springs in series; the mesh stiffness between ring 

and planet gear teeth is denoted as ,mesh rigidK  whereas the elasticity of the rim region 

of the ring gear is denoted as rimK . 

 

Calculation of ,mesh rigidK  is performed using WindowsLDP, which is a contact 

mechanics tool specialized in spur and helical gears, similar to previous studies. 

 

For the calculation of the stiffness term of the elastic rim structure, the analytical 

formulas provided in the study of Gasmi et al. [58] are used. Authors utilized 

Timoshenko curved beam theory combined with virtual work principles to attain 

closed-form formulas for deformation of extensible and shear-deformable curved 

beams. 

 

Schematics for the uniformly deformed curved beam model can be found in Figure 

4-1. Note that no distributed loading is considered, since the ring gear of a PGT is 

of interest, and the rim in this case is expected to be loaded only by gear mesh action 

between the ring gear and the planets, which can be modeled as a number of 

concentrated loads. 
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Figure 4-1 Uniformly deformed curved beam 

 

Ring gear is modeled as ( n m ) uniformly deformed curved beams. At the end of 

each uniformly deformed curved beam, either a boundary condition or an external 

forcing is present. Here n  is the number of points where boundary conditions 

(supports) are defined and m  is the number of points on which external 

forces/moments are applied. The schematics for the ring gear model can be found in 

Figure 4-2. 

 

Equations of motion for the uniformly deformed curved beam can be defined as 

follows  

 

     2 3 4 5 1 6 1v C C cos C sin C cos Psin C sin Pcos                ,  (4.2) 

  1 2 3 4 5 6u C C C sin C cos C sin C cos             ,  (4.3) 
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  1 2 5 2 6 2

1
C C C P cos C P sin

R R


      ,  (4.4) 

   3
5 6

P
T C sin C cos

R
    ,   (4.5) 

   3
5 6

P
V C cos C sin

R
     ,   (4.6) 

   2 3 5 6

EI
M C P C sin C cos

R
     ,   (4.7) 

where 

2

1 22 2

3 2

2
,    ,

2
.

R GAEA EIEA EIGA RGAEA
P P

R GAEA EIEA EIGA R GAEA EIEA EIGA

EIGAEA
P

R GAEA EIEA EIGA

 
 

   


 

  (4.8) 

 

Details of the derivation of the these equations can be found in [58]. 
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Figure 4-2 Ring gear model as a combination of uniformly deformed curved beams 

 

The unknowns C1 to C6 can be found using the boundary conditions. Boundary 

conditions for “fixed” supports are given as follows 

 

     

         

1

1 1 1

0,   0, 0,

0,  ,  .    
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i

i

i iii

u u v

v M M

  
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

  

  

  

  (4.9) 

 

For the support points, when Eq. 4.9 is inserted in to Eqs. 4.2 - 4.7, the equations of 

motion are obtained 

 

1 2 3 4 5 6sin cos sin cos 0i i i i i i

i i i i i i iC C C C C C             , (4.10) 
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1 1

1 4 0i iC C   ,   (4.11) 

2 3 4 5 1 6 1

1 1 1

2 3 6 1

cos sin ( cos sin ) ( sin cos )

0

i i i i i

i i i i i i i i

i i i

C C C C P C P

C C C P

       
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For the connection point between the segments of the ring gear, if an external force 

and moment are applied, the compatibility equations for the respective point can be 

defined as 
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Substituting Eq. 4.16 into Eqs. 4.10 - 4.15, the following equations are obtained  
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Figure 4-3 shows a schematic of the decomposition of the gear forces and 

displacements on to the rim structure. 

 

  

Figure 4-3 Mesh displacements and mesh forces imposed on the rim structure 

 

0sin ,       cos ,     M    .t r t rF F F FF CB F AB       (4.23) 

 

External forces acting on the curved beam segments are the radial and tangential 

components of the gear mesh forces, rF  and tF  , respectively, and the moment 

created by these forces at the centroid of the uniformly deformed curved beam,     

0M . 

 

The displacement along the line of action which is defined by the pressure angle of 

the gears is given by 

 

1LoAd vcos u sin CA sin       .  (4.24) 
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Therefore the stiffness of the rim is calculated as 

 

rim

LoA

F
K

d
 .   (4.25) 

 

The validity of the analytical modeling of the rim of the ring gears using uniformly 

deformed beams is verified by comparing the results of the model with FE results. 

Parameters of an example ring model considered for this study are given in Table 

4-1. 

 

Table 4-1 Parameters for analytical rim model validation study 

Radius from centroid of the ring [mm] 115 

Width of the ring [mm] 10 

Thickness of the ring [mm] 10 

Elastic modulus [GPa] 206 

Tangential force [N] 4762 

Radial force [N] 1856 

 

 

Figure 4-4 shows the FE model and the boundary conditions and force application 

points. FE model is created in Msc Patran and it consists of 1D elements with 

CBEAM formulation. The boundary conditions and the external forces represent an 

example case of a 3-planet PGT, which is fixed at 3 points. The tangential and radial 

components of forces are present due to the respective gear mesh forces, where the 

pressure angle is 21.3° between ring gear and mating planets. The tangential 

component represents the forcing along the tangential direction of the pitch circle of 
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the ring gear, whereas radial component is perpendicular to the tangential direction 

of the pitch circle of the ring gear. A mesh force of 5111N results in the force 

components provided in Table 4-1. The force application points and boundary 

condition points are selected such that they represent an arbitrarily random case, 

where the spacing of each force between the respective adjacent boundary 

conditions is different. The boundary conditions are located at θ=0°, θ=90° and 

θ=240°, while the gear mesh forces are applied at θ=60°, θ=180° and θ=300°. 

  

 

Figure 4-4 1D FE model with applied forces and boundary conditions 

 

Figure 4-5 shows the comparison of radial displacement results between the 

analytical model and FE model which verify the analytical model used, and hence 
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the calculation method for rim stiffness. Therefore, the analytical method is used for 

the calculation of rim stiffness in order to investigate the effects of rim stiffness on 

PGT dynamics. 

 

 

 

Figure 4-5 Comparison of radial displacement results between analytical model and 

FE model 

 

Effects of rim stiffness on PGTs are investigated considering two parameters, i.e. 

rim thickness and the number of constraints. A non-dimensional parameter for the 

rim thickness can be defined as 

 

 2  

 

out root

out root

R R

R R


 


.  (4.26) 

 

Here outR  is the outer radius of the ring gear where as rootR  is the radius of the tooth 

root circle of the ring gear. The variation of mesh stiffness with respect to 

dimensionless rim thickness parameter, ,is analyzed for the parameter set given in 
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Table 4-2. Different rim thickness parameters are obtained by changing the rim 

thickness only, i.e. root diameter of the ring is kept as constant. In order to observe 

the effect of rim thickness on the overall mesh stiffness, ,mesh elasticK , an example case 

with 6 equally-spaced constraints is considered. ,mesh rigidK  is assumed to be constant 

in these analyses. 

 

Table 4-2 Parameters of ring gear for mesh stiffness variation study 

Pressure angle [°] 21.3 

Tooth thickness [mm] 6.784 

Root diameter of ring [mm] 320 

Facewidth [mm] 30 

Number of constraints 6 

Number of planets 3 

E [GPa] 206 

ν 0.3 

,mesh rigidK [N/mm] 6.35e5 

 

 

Figure 4-6 gives the ring-planet mesh stiffness variation between the fixed 

constraints for a planet gear traveling between two constraints for the parameter set 

provided in Table 4-2. 
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Figure 4-6 Variation of mesh stiffness between constraints for different rim 

thickness parameters 

 

It is observed that a thinner rim results in more variation of the mesh stiffness as the 

planet goes from one support to the other. However as the rim gets thicker, the 

change in the mesh stiffness becomes very small; hence, above certain rim thickness 

value the deviation due to rim size can be neglected. 

 

Another important parameter is the number of constraints, which dictates the 

periodicity of mesh stiffness variation. As the number of constraints increases, the 

period of mesh stiffness variation increases; however, the amplitude of this variation 

is expected to be smaller. 

 

Figure 4-7 shows an example case for the parameter set given in Table 4-2, where 

rim thickness parameter is kept constant. 
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Figure 4-7 Effect of number of constraints (Nc) for the mesh stiffness of the ring 

planet pair, = 0.04 

  

For the dynamic analyses, instead of an average value, a time-varying ,mesh rigidK is 

combined with the analytically calculated rimK , according to Eq. 4.1. Figure 4-8 

shows a typical mesh stiffness function for a PGT with an elastic ring. This plot is 

obtained for a case where the number of planets is 4 and there are 12 constraints 

around the ring gear. The higher mesh harmonics are combined with the lower 

frequency content of variation due to ring elasticity. The periodicity of this lower 

frequency content of variation is dependent on the number of constraints on the ring 

gear. 
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Figure 4-8 Ring-planet mesh stiffness for a PGT with 4 planets and 12 constraints 

around ring gear, a) Rigid ring gear, b) Elastic ring gear 

    

4.3   Effects of ring gear elasticity parameters on PGT dynamic response 

As a first step, before investigating the effects of the related ring gear elasticity 

parameters on the PGT dynamic response, a comparison study is performed on an 

example PGT (Table 4-3). The dynamic responses are compared for 2 different 

variations of the example PGT. In the first one, the ring gear is modeled as rigid; 

whereas, in the second one, it is modeled as flexible. 
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Table 4-3 PGT used in elastic rim dynamic response simulations 
 

Sun Planet Ring 

Number of planets 3 

Number of teeth 36 21 81 

Module [mm] 4 

Pressure angle [deg] 21.3 

Effective outside diameter 

[mm] 
146 91 320 

Root diameter [mm] 135 76 333 

Facewidth [mm] 30 

Transverse tooth thickness 

[mm] 
5.3 6.8 5.3 

Diameter at measured tooth 

thickness 
144 84 324 

Torque applied [Nm] 1800 - - 

Young’s modulus [GPa] 206.8 

Number of constraints (for 

elastic ring gear) 
9 

  (for elastic ring gear) 0.058 

 

In order to show the resonant frequency characteristics, the comparisons are to be 

made with a linear model. Figure 4-9 shows the response plot of PGT with elastic 

rim in terms of sun-planet displacement for the compliant rim model. For this case 

study, overall mesh stiffness, ,mesh elasticK , is represented by 6 harmonics. Use of two 

harmonics is evaluated to be sufficient for the representation of rim elasticity 

contribution to the variation of mesh stiffness, rimK , since this variation resembles 

to a sine wave; whereas, tooth mesh stiffness, ,mesh rigidK , is represented by four 
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harmonics, since the higher tooth mesh stiffness harmonics have much lower 

amplitudes when compared with the first 4 harmonics. 

 

Figure 4-9 Sun-planet displacement (rms) comparison for elastic vs. rigid ring gear 

 

The reduced mean ring-planet mesh stiffness resulted in lower natural frequencies 

for the PGT with elastic ring gear compared to the rigid ring gear. Moreover, for the 

elastic ring gear case, the additional harmonic content due to the rim elasticity is 

also able to excite the first in-phase natural mode of the system at higher speeds, as 

the frequency of the stiffness excitation due to rim elasticity is much lower than 

frequency of the tooth stiffness variation. In Figure 4-9, the peaks observed at sun 

speed of 43000 rpm and 21500 rpm correspond to the excitation of the first in-phase 

mode of the example PGT by the first and the second harmonics of the rim stiffness 

variation, respectively. 
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gear for these analyses is arbitrarily kept constant at 9. Figure 4-10 and Figure 4-11 

show the sun gear displacement and planet displacement, respectively, for different 

rim thickness values. 

 

 

Figure 4-10 Sun displacement (rms) for different values of rim thickness values           

( ) 

 

 

Figure 4-11 Planet displacement (rms) for different values of rim thickness values 

( ) 
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The decrease in mean mesh stiffness between ring and planet gears resulted in a 

slight increase in terms of planet response and sun displacement response. 

Moreover, natural frequencies also decrease for the PGT configurations with thinner 

rims. Figure 4-12 shows the dynamic sun-planet elastic force as a function of sun 

speed in the 1000-9000 rpm interval. 

 

 

Figure 4-12 Sun-planet dynamic elastic force (rms) for different rim thickness 

values ( ) between 1000-9000 rpm 

  

The first in-phase mode of the PGT is excited by the gear mesh excitation and its 

harmonics. For this mode, it is observed that the dynamic elastic forces of the sun-

planet meshes decrease as the torsional rigidity of the ring gear decreases. However 

Figure 4-13 shows that this characteristic observed for the first in-phase mode 

cannot be generalized for all natural modes of the PGTs.  
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in-phase mode of the PGT. Therefore depending on the operational speed, compliant 

ring gears may provide reduction or increase in dynamic mesh forces. 

 

 

Figure 4-13 Sun-planet dynamic elastic forces (rms) for different rim thickness 

values ( ) between 12000-20000 rpm 

 

Figure 4-14 shows the ring-planet dynamic elastic forces for the speed interval of 

1000-20000 rpm. The effect of second in-phase mode is negligible for ring-planet 

dynamic mesh forces, and the ring-planet dynamic elastic forces decrease with 

increasing compliance for the first in-phase mode. 

 

In Figure 4-13 and Figure 4-14, for the example PGT configuration with  0.045

, a nonlinear increase in dynamic mesh forces are observed around a sun speed of 

18000. These peaks correspond to the excitation of the first in-phase mode by the 
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As the rim thickness decreases, the contribution of rim stiffness to the overall mesh 
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Figure 4-14 Ring-planet dynamic elastic forces (rms) for different rim thickness 

values ( ) between 1000-20000 rpm 

 

Next the effects of the number of ring gear constraints are investigated in detail. 

Figure 4-15 shows the sun displacement for different number of constraints for the 

example PGT given in Table 4-3. For this study, rim thickness parameter,   , is 

kept constant at 0.056. 

 

 

Figure 4-15 Sun displacement (rms) for different number of constraints (Nc) 
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Similar to the ring thickness effect, increasing the number of constraints result in 

stiffer ring-planet meshes; thus the natural frequencies increase and the response in 

terms of displacement decreases. Figure 4-16 and Figure 4-17 show response in 

terms of elastic sun-planet forces for different speed intervals. 

 

Figure 4-16 Sun-planet dynamic elastic force (rms) for different number of 

constraints (Nc), 1000-9000 rpm 
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the ring-planet mesh stiffness excites the first in-phase mode at around 17000 rpm. 

As the number of constraints increase, the compliance of the ring gear decreases, 

therefore rim-based excitations become weaker. For Nc = 27, both the first in-phase 

mode (at around 15000 rpm) and the second in-phase mode (at around 47000 rpm) 

are excited by the first rim stiffness harmonic excitation, however the response 

levels are not as high as those observed for lower number of constraints. 

 

Figure 4-17 Ring-planet dynamic elastic force (rms) for different number of 

constraints, 12000-60000 rpm 

  

4.4   Summary and Conclusion 

Effects of the torsional elasticity of the ring gear on PGT dynamics is investigated 

in this chapter. The rim section of the ring gear is modeled using analytical curved 
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In the PGTs where ring gear is fixed, the ring gears are usually connected to a 

housing member by using bolts or studs. The compliance of the rim gear mainly 

depends on the number of these mentioned constraints and the rim thickness. 

 

After a brief overview of the effects of the mentioned parameters on the ring-planet 

mesh stiffness, direct effects of these parameters on PGT dynamics are investigated 

in detail. Besides the obvious effect of decreasing natural frequencies with 

increasing compliance of ring gears, some other interesting outcomes are observed. 

 

The displacement response increases slightly with increasing compliance of the ring 

gears. However, for the sun-planet dynamic force response, the opposite is observed 

for the first in-phase mode of the example PGT under consideration. As the rim 

thickness decreases, the sun-planet mesh forces also decrease. On the contrary, for 

the speed intervals in which the second in-phase mode is excited, this is not the case 

as the dynamic forces are higher for the PGT configurations with more compliant 

ring gears than their counterparts with stiffer ring gears. 

 

The number of constraints on a PGT with a fixed ring gear not only changes the 

elasticity of the ring gear but also dictates the periodicity of the lower frequency 

content of the mesh stiffness excitation due to the rim effects. As the number of 

constraints increase, this low frequency content approaches to the higher frequency 

content of the mesh harmonics in frequency-wise. However due to the increasing 

stiffness because of the increased number of constraints, the amplitude of these 

mentioned harmonics may be low such that their effects are negligible on the 

dynamic response of PGTs. These outcomes are observed on the dynamic response 

studies for the example PGT with different number of constraints.  
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Although results of the performed analyses signal for the aforementioned outcomes, 

it is still hard to reach general conclusions regarding how exactly rim stiffness 

affects the dynamic characteristics of PGTs, mostly because of the interactions of 

rim stiffness effects with different characteristics of the PGTs. However the distinct 

dynamic features that come along with ring gear compliance, which show 

themselves in the results of the performed analyses, indicate the necessity to include 

the rim elasticity effects for dynamic modeling of PGTs with compliant ring gears. 
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CHAPTER 5  

EFFECTS OF TOOTH PROFILE MODIFICATIONS IN SPUR GEAR 

DYNAMICS 

5.1   Introduction 

Tooth profile modifications (TPMs) are known to be effective means of reducing 

the dynamic response of spur gears. Before dealing with different aspects of TPMs 

in PGTs, firstly the effects of TPMs on spur gear dynamics are investigated. These 

investigations also aim to address topics that are rarely found in the literature, if any. 

 

In spur gears, TPMs are used in order to avoid the corner contact between mating 

gear teeth and to diminish the adverse dynamic effects by reducing the dynamic 

factors which can simply be defined as the ratio of the dynamic mesh loads over 

static mesh loads. 

 

Linear and parabolic modifications are the most common type of TPMs. Figure 5-1 

shows diagrams of the mentioned profile modification types on respective examples. 

In these examples, modifications are applied both at the tip and the root sections of 

one of the mating gears.  

 

Firstly, an optimization study is performed target being the reduction of dynamic 

transmission error (DTE) for a given operational range, where the operating torque 

and speed ranges are defined. For this purpose, two different models, i.e. a single 

degree of freedom (SDOF) lumped gear dynamics model and a multi-degree of 

freedom (MDOF) lumped model of a gear pair which is combined with shaft and 

bearing dynamics are employed. The differences between the optimization results 
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obtained through loaded static transmission error (LSTE) minimization and DTE 

minimization using different models are presented based on example spur gear pairs. 

 

 

Figure 5-1 Linear and parabolic profile modifications 

  

The second part of the study provided in this chapter deals with the direct effects of 

TPMs on tooth bending fatigue lives of spur gears. A gear tooth profile optimization 

study is performed where the target is defined as the maximization of tooth bending 

fatigue life for a selected operational range. In this optimization, torque and speed 

ranges are defined along with their corresponding durations. For this purpose, a 

nonlinear lumped gear dynamics model is combined with the S/N curve of the gear 

material in order to estimate tooth bending fatigue life of the spur gear pair. The 

differences between the predicted lives of the optimally modified and unmodified 

gear pairs are presented based on example spur gear pairs. The proposed tooth 

bending fatigue life estimation is compared with the standard AGMA procedure. 
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5.2   Optimum profile modifications for the minimization of dynamic 

transmission error 

There exists a variety of spur gear dynamics models in the literature, which can be 

categorized under many different groups. A comprehensive review of gear dynamics 

models can be found in the study of Özgüven and Houser [59], and more recently it 

is given by Wang et al. [60]. 

 

In the current study, first, the model proposed by Özgüven and Houser in 1988 [61] 

is used in optimization. This model is based on a validated approximation, which 

uses LSTE rather than static transmission itself, as an excitation to a SDOF model 

with an average constant mesh stiffness. The equation of motion of a gear pair is 

given in terms of dynamic transmission error, x, as: 

 

       2e e ave ave ave sm t m k x t k x t k x tx      (5.1) 

 

Here em  is the equivalent mass of the gear pair, ζ is the viscous damping ratio, avek  

is the average mesh stiffness and sx  is the loaded static transmission error. It should 

be noted that even though an average (constant) mesh stiffness is used, the excitation 

effect of variable mesh stiffness is included into the model indirectly through LSTE. 

It was concluded that the displacement excitation effect of time varying mesh 

stiffness is more important than the effect of it in natural frequency of the system. 

This model was shown to be a very effective one by using experimental results for 

gear pairs that have no profile modification. However, the accuracy of the model is 

not shown for gear pairs with profile modification, especially for gears with 

optimum tooth profile for a given load, where the resulting LSTE variation (hence 

the dynamic excitation) is at very low levels. 
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The following equation represents the differential equation of a SDOF model of a 

gear pair, in which time-varying mesh stiffness is used without any approximation: 

 

         e em t cx t k t x t F m e tx        (5.2) 

 

In this model, c  is the viscous damping coefficient, ( )k t  is the time-dependent mesh 

stiffness, F   is the constant gear mesh force and ( )e t  is the static transmission error 

due to gear errors and profile modifications (also called non-loaded transmission 

error) (NLTE). In 2007, it has been shown by Tamminana et al. [18] that this model 

yields accurate results for gear pairs with profile modification, comparing 

theoretical DTE values with experimental data.  

 

Although Eq. 5.2 yields accurate results without making an approximation for the 

time-varying mesh stiffness, the model proposed by Özgüven and Houser is 

preferred in several applications as it can be easily implemented to MDOF models 

of gears and gear-shaft-bearing systems, providing solutions in frequency domain. 

However, it is found necessary to study the accuracy of this model when it is used 

for gears with tooth modification where LSTE is minimized. 

 

For this purpose, dynamic analysis of the gear system described in Table 5-1 is 

carried out using both of the models described above. The gear pair, which is 

composed of identical gears, has tooth modification such that LSTE variation is 

reduced to a very low level for a given torque value at which the dynamic analysis 

is performed. Thus, when the first model is used, as the internal excitation due to 

mesh stiffness variation is represented by LSTE, the level of excitation on the system 

becomes very low. Comparison of the dynamic analysis results obtained for such a 

case with those of the variable mesh stiffness model will reveal the accuracy of the 

constant mesh stiffness model when used for gears with optimum tooth profile 

modification. 
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Table 5-1 Properties of gear pair used for comparison of both models 

Number of teeth 25 

Module [mm] 4 

Equivalent mass [kg] 0.23 

Base diameter [mm] 93.97 

Face width [mm] 15 

Torque applied [Nm] 107.9 

Peak-to-peak LSTE (non-modified )[µm] 5.1 

Peak-to-peak LSTE (modified) [µm] 0.6 

 

Comparison is made for two damping ratio values, namely 0.1    and 0.05  . 

Figure 5-2 shows the comparisons of DTEs by using both models for the specified 

damping values. Peak-to-peak DTE (PPDTE) values are plotted against normalized 

frequency, which is defined as  ave

e

k

m
 . 
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Figure 5-2 Model comparison for a) ζ=0.1 and b) ζ=0.05 

 

Although some minor discrepancies are observed between the results obtained by 

two models, recalling that these differences are observed only at a very extreme case 

where LSTE variation is minimum. It is concluded that results match well enough 

to safely continue with the constant mesh stiffness model in optimization studies, 

which makes it possible to use a MDOF model for the dynamic analysis of a gear-

shaft-bearing system in frequency domain. 

 

Along with the SDOF model, a MDOF gear dynamics model which is based on the 

approximation proposed by Özgüven and Houser [61] is used while performing 

optimization studies. The model takes into account the shaft and bearing dynamics, 

onto which the gear pair is mounted. This model is a linear version of the model 

developed by Maliha et al. [62].  Nonlinear effects due to backlash are not included 

in the model.  

  

For the finite element modeling of the shafts, the axial motions are assumed to be 

negligible; hence, each node in the finite element model of the shaft will have five 
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degrees of freedom (DOFs), i.e. 2 translational and 3 rotational DOFs. The flexible 

bearings are modeled in terms of radial stiffness and damping elements.  

 

The gear pair is modeled by two disks, representing the inertia of the gears, which 

are connected to each other by a linear spring and a damper that represents the gear 

mesh. The system is excited by the displacement excitation represented by the 

LSTE. Further details of the model can be found in the study of Maliha et al. [62]. 

 

In both SDOF and MDOF models, the profile modification is represented by Fourier 

series with 5-harmonics which are found to be sufficient. The average mesh stiffness 

and the harmonics of LSTE, which are the necessary input parameters, are supplied 

to the dynamic model by using the computer code STEP (Spur Gear Transmission 

Error Program) developed at the Ohio State University. A MATLAB code is 

developed in order to perform the dynamic analysis and optimizations required in 

this study. 

 

Next, the differences between the responses, in terms of PPDTE, obtained by using 

SDOF and MDOF models are presented for two different configurations. In the first 

configuration, the gear pair is mounted on relatively short (hence more rigid in 

transverse direction) shafts; whereas, for the second configuration, the same gears 

are mounted on longer shafts. The second configuration is shown in Figure 5-3. 

 

Figure 5-3 Second MDOF model configuration 
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Details of the gear-shaft- bearing systems under consideration are given in Table 

5-2. It should be noted that all other properties except lengths of the shafts used in 

both configurations are identical and the bearings used at the ends of the shafts have 

the same stiffness and damping properties. 

 

Table 5-2 Characteristics of the dynamic system 

Gears  

Number of teeth 75 

Module 3.2 mm 

Equivalent mass 2.47 kg 

Base diameter 232 mm 

Face width 30 mm 

Shafts   

Outer radius 55 mm 

Inner radius 40 mm 

Density 7800 kg/m3 

Elastic Modulus 206 GPa 

Length of short shafts 0.1 m 

Length of long shafts 1 m 

Bearings  

Stiffness  1x1012 N/m 

Damping coefficient 1x105 Ns/m 

         

In the first example, gears are placed in the middle of the shafts that are 0.1 m long. 

The response of the system (DTE) for an arbitrary torque and profile modification 

in a wide speed range is shown in Figure 5-4. Note that wnorm is the normalized 

shaft speed where the normalization is with respect to the natural frequency of the 
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SDOF model. Investigating the figure, it can be clearly seen that responses of the 

SDOF model and the MDOF model are very close to each other due to the rigidity 

of the shafts considered. Therefore, it is expected that optimization studies carried 

out by using either of the models (SDOF or MDOF models), for this particular case, 

will lead to similar results.  

 

 

Figure 5-4 Response of MDOF and SDOF models for “short shafts” case 

 

In the second case, gears are placed in the middle of 1 m long shafts. Figure 5-5 

shows that, in this case, the shaft flexibility affects the total response of the gear pair 

considerably, and therefore SDOF and MDOF models yield considerably different 

results, as expected. 
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Figure 5-5 Response of MDOF and SDOF models for “long shafts” case 

 

Figure 5-5 reveals that the coupled transverse-rotational modes along with the multi-

harmonic LSTE input make the dynamic response more complex compared to the 

case of short shafts. In case those modes fall in the operating speed range, 

optimization using a SDOF or a MDOF dynamic model can make a significant 

difference. Note that this figure corresponds to an arbitrary torque and profile 

modification case, i.e. one may even find more differences between the results 

obtained with SDOF and MDOF models depending on the configuration and the 

relative values of system parameters. 

 

Then, optimization is carried out by using both of the dynamic models, and optimum 

values obtained are compared. Optimum profiles obtained by using DTE 

optimization are also compared with those calculated by using LSTE optimization. 

The objective of the optimization is set as the minimization of the maximum amount 

of peak-to-peak transmission error. The reason for such an objective function is to 

decrease the maximum value of the dynamic force at the gear mesh, which has the 

most dominant effect on the fatigue life of a gear pair. The only parameter to be 
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optimized is selected as the amount of the linear tip relief. The starting positions of 

the modifications, which are applied to both gears, are fixed at the highest point of 

single tooth contact. 

 

Since a single-parameter optimization study is carried out, a brute-force 

optimization technique is applied because of the respectively lower computational 

cost. For the whole set of possible profile modifications, a solution is performed at 

each point in the given parameter domain which is characterized by certain speed 

and torque ranges. The maximum of PPDTE value is thereafter extracted from the 

obtained responses for the respective profile modification and compared with the 

others. The profile modification which leads to the minimum of the maximum 

PPDTE is labeled as the optimum profile modification. Note that when LSTE 

optimization is made, only a single torque range is considered and the objective 

function is taken as the minimization of the maximum peak to peak LSTE. 

 

Since the responses of SDOF and MDOF models differ significantly from each other 

for longer shaft case, in the rest of this study, optimization is performed for only the 

long shafts configuration. 

 

Some example cases are presented in order to show the differences between the 

optimization results obtained from different models. The details of the example 

cases can be found in Table 5-3. Note that in all cases, the design torque is taken as 

1000 Nm. 
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Table 5-3 Details of the example cases 

Case 1  

Torque range 50-100% of design torque 

Speed range 2200-2400 rpm 

Initial modification 3 µm 

Modification increment 5 µm 

Case 2  

Torque range 0-50% of design torque 

Speed range 1600-1800 rpm 

Initial modification 0 µm 

Modification increment 5 µm 

Case 3  

Torque range 20-40% of design torque 

Speed range 1600-1800 rpm 

Initial modification 2 µm 

Modification increment 2 µm 

Case 4  

Torque range 80-100% of design torque 

Speed range 1000-1200 rpm 

Initial modification 10 µm 

Modification increment 2 µm 

Case 5  

Torque range 0-20% of design torque 

Speed range 600-800 rpm 

Initial modification 0 µm 

Modification increment 2 µm 
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For the first two cases, where optimization in a wide torque range is considered, the 

comparisons are made between the optimization results obtained through the static, 

SDOF-dynamic and MDOF-dynamic models. The results (normalized with respect 

to the minimum of the maximum PPDTE obtained) for these cases are presented in 

Figure 5-6. 

 

 

Figure 5-6 Sample optimization results for Case 1 and Case 2 

 

It is observed from the results obtained that, for Case 1, while the SDOF model 

proposes the 3rd modification (i.e. 13 µm) as the optimum one, which is also 

proposed by the LSTE model, the MDOF model suggests that the minimum DTE is 

obtained when the second modification (i.e. 8 µm) is applied to the gear teeth. In 

LSTE Model 

SDOF Model 

MDOF Model 

LSTE Model 

SDOF Model 

MDOF Model 

Case 1 Case 2 
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Case 2, the difference between the optimum profile modifications proposed by the 

SDOF model (5 µm) and MDOF model (15 µm) is as large as 10 µm. The 

differences between LSTE based optimization and DTE based optimization are also 

clearly observable for Case 2, which are in agreement with the findings of the study 

of Faggioni et.al. [50].  

 

In Case 3-Case 5, torque ranges considered in the optimization are limited to 20% 

of the design torque. The increment of profile modification is kept as low as 2 µm, 

in order to observe if discrepancies still exist between the results of different models 

even under such minor modification differences. For these cases, only the 

comparison of the optimization results between SDOF and MDOF models are 

considered and the results are given in Figure 5-7. 

 

In this case study, the torque range considered is smaller compared to that of the 

previous case study; hence, the optimum profile modifications obtained from the 

SDOF and MDOF models are slightly different from each other. The comparison of 

the results obtained by using SDOF and MDOF models for the same gear system 

indicates that those differences can be more important under the influence of 

operational conditions. Case 3 can be used to explain the differences. MDOF model 

suggests that, considering wear on the gears, the first modification (2 µm) can be 

preferred instead of the second modification (4 µm), which is the optimum one, 

since DTE increases significantly if due to tooth wear profile modification reaches 

to 6 µm. However, if SDOF model is used, the 3rd modification (6 µm), which is 

the optimum one, can be used, since the increase, as well as the rate of increase in 

DTE is small even wear occurs. 
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Figure 5-7 Sample optimization results for Case 3, Case 4 and Case 5 

 

 

5.3   Optimization of Tooth Bending Fatigue Characteristics using TPMs 

In this section, a tooth bending fatigue life estimation procedure which is based on 

gear dynamics will be presented. A single-degree of freedom model is preferred in 

this study for its simplicity, although such a model will be insufficient for the cases 

where the compliances of the other elements of the drive system cannot be 

neglected. The procedure will be explained in detail with an example spur gear pair 

which is made of high strength alloy steel 42CrMo6. A tooth profile optimization 

study will be performed in which the aim is to achieve the maximum tooth bending 

life for the example gear pair, taking the operational spectrum into account. Tooth 

SDOF Model MDOF Model 

Case 3 

Case 4 

Case 5 

SDOF Model 

SDOF Model 

MDOF Model 

MDOF Model 
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root stress cycles will be calculated based on a SDoF nonlinear gear dynamics model 

using rainflow counting method. Those stress values will be input to the fatigue 

model which is based on the S/N curve of the gear pair material. 

 

The LSTE-based dynamic model will be used to obtain dynamic root stresses, 

resulting from dynamic mesh forces. The equation for dynamic mesh force (in case 

of no tooth separation) is given in [61] as follows:  

 

        0 2ave s e aveW t W k x t x t m k x t      (5.3) 

 

Here 0W  is the static load. Along with the LSTE and average mesh stiffness input, 

the moment arm (with respect to root of the gears) information is also gathered from 

STEP, enabling to obtain stress numbers, which are simply the multiplication of 

mesh forces with the respective moment arms. The real stress values are obtained 

through a correlation of stress numbers with the static stress results obtained through 

WindowsLDP of OSU, which is capable of employing finite element formulation 

for the calculation of root stresses. With this approach, it is aimed to achieve as 

realistic a stress calculation as possible. 

 

The dynamic root stress data is then directed to the rainflow counting algorithm, in 

order to extract stress cycle information, which, along with the rpm and duration of 

the operating condition data, is used in life estimation analysis. 

 

Gears in most applications are subject to relatively low stress levels, so that in 

comparison to crack propagation period, most of the fatigue life is spent in the crack 

initiation phase. Therefore, the stress-life (S-N) approach can be considered as an 

appropriate method of predicting bending fatigue life of gears. 
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Although in a traditional S-N curve, it is assumed that below a certain level of stress 

(endurance limit), no fatigue damage occurs, existence of such a limit is widely 

questioned for most of the engineering materials, including the steels used in gearing 

industry. For this reason, a two-slope S-N curve [63] is used to capture the damage 

in regions both above and below the fatigue limit separately. 

 

Following equations can be used for stress values above and below the fatigue limit 

respectively: 
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In these equations, NFL stands for the number of cycles at the endurance limit ΔσFL, 

Δσ is the applied stress level and b is the slope of the S-N curve in the region where 

the stresses are above the endurance limit, in log-log scale. These are the general S-

N curve equations which can be employed to many engineering materials, including 

steel, with the constants varying for each different material. In this study, 42CrMo6 

is selected as the gear material and the required parameters are taken from [64]. 

Table 5-4 shows these parameters. 

 

Table 5-4 S-N Curve Properties for 42CrMo6 

Material ΔσFL NFL b 

42CrMo6 550 3e6 -0.0816 
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Rainflow ranges have been widely used for estimating fatigue damage from variable 

amplitude loading. Rainflow cycle counting method is based on the analogy of 

raindrops falling on a pagoda roof and running down the edges of the roof. As per 

the SAE and the ASTM standards, the three-point cycle counting rule uses three 

consecutive points in a load-time history to determine whether a cycle is formed. 

Details of rainflow counting algorithm used in this study can be found in [65].  

 

For this study, the stress-time history data is run through a three-point rainflow cycle 

counting algorithm and stress cycles are extracted. Respective damage for the 

operating duty cycle under consideration is then calculated using the material S/N 

curve by implementation of Miner’s rule for damage accumulation. 

 

The procedure proposed in this study for estimating the tooth bending fatigue life 

for a spur gear pair is a combination of the previously mentioned gear dynamics 

model and the fatigue model. This procedure is shown in Figure 5-8. 

 

The procedure is explained below in detail for a sample spur gear pair with a defined 

duty cycle. The tooth bending fatigue life is going to be estimated for the following 

gear pair (Table 5-5). The gear pair under consideration consists of 2 identical spur 

gears. Tooth profiles are unmodified. The damping ratio is taken as 0.05 since it is 

used in many gear dynamics modeling studies including [61]. 
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 Figure 5-8 Procedure for gear tooth bending life estimation 

 

Read the duty cycle data, enter torque info into 

STEP input file 

Solve STEP, obtain necessary input for the 

dynamic code 

Solve dynamics for the input rpm, obtain 

dynamic stress data for a mesh cycle 

Extract stress cycles via rainflow counting 

Obtain equivalent Soderberg stress values 

Calculate damage for a single case using S-N 

information 

Employ Miner’s rule to calculate damage for 

the whole duty cycle 
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Table 5-5 Example spur gear pair 

Number of teeth 50 

Module 3 mm 

Equivalent mass 0.7824 kg 

Base diameter 140.95 mm 

Tip diameter 153.74 mm 

Center distance 150 mm 

Damping ratio 0.05 

 

When the operating speeds are near the natural frequency of the gear pair system, or 

correspond to those levels at which the system can be excited by the higher 

harmonics of the excitation due to the LSTE, the dynamic effects can become 

dominant and hence a dynamic response analysis becomes a necessity. The tooth 

bending life of this spur gear pair is going to be estimated for the given duty cycle 

(Table 5-6). Note that the duty-cycle given in Table 5-6 may as well be interpreted 

as a portion of a total duty cycle which only contains the critical intervals regarding 

the fatigue life. 

Table 5-6 Duty cycle under consideration 

Case Torque [Nm] Speed [rpm] Duration [hours] 

1 550 1160 400 

2 600 1240 40 

3 730 940 80 

4 600 1140 200 

5 600 1850 20 
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The steady state normal tooth bending stress results for the different cases of the 

duty cycle are shown in Figure 5-9. The assumption of a uniaxial stress state is 

reasonable because of the geometry and the loading characteristic of a spur gear. 

The static case when a torque of 600Nm is applied is also given for comparison as 

Case 0. 

 

 

Figure 5-9 Tooth root normal stress results 

 

As expected, the dynamic stress results show a more complex behavior than that of 

the static case. Not only the peak stress levels go higher, but also the number of 

stress cycles which can be effective in damaging of the teeth increases. One can also 

observe the loss of contact phenomenon in Case 1 and Case 5, where the root stress 

levels drop to 0. The stress cycles are extracted with the Rainflow counting method. 

Table 5-7 shows the stress cycles for Case 3. Note that here the minor cycles (i.e. 

cycles with very low stress ranges) are not shown. 
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Table 5-7 Rainflow stress cycles for Case 3 

No. of 

cycles 

From 

[MPa] 

To 

[MPa] 

Range 

[MPa] 

Mean 

[MPa] 

Equivalent Soderberg 

Stress [MPa] 

1 237 613 376 425 359 

1 556 50 506 303 383 

1 580 160 420 370 359 

1 629 0 629 314.5 486 

 

The last column in Table 5-7 shows the equivalent Soderberg stress values. The 

following operation is used in order to compensate for the tensile mean stress effects 

on high-cycle fatigue strength. Note that other stress correction methods can also be 

employed at this step. 
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In this equation Sar is the fully-reversed stress amplitude, Sa is the stress amplitude, 

Sm is the mean stress level and Sy is the yield strength of the material. The Soderberg 

stress values are entered into the S/N curve equation along with the rpm and duration 

information in order to check if the gear pair can survive in the projected lifetime. 

Table 5-8 shows the damages related to the respective cases. 
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Table 5-8 Fatigue live summary for the gear pair 

Case Cycles Cycles to fail Damage [%] 

1 2.78e7 5.00e8 5.5 

2 2.98e6 1.94e7 15.4 

3 4.51e6 5.52e7 8.2 

4 1.37e7 6.66e8 2.1 

5 2.22e6 3.96e6 56.1 

Total - - 87.3 

 

Although a direct comparison with the fatigue calculation concept in AGMA 

standard is not possible, it is safe to say that AGMA does not consider the mentioned 

effect of secondary stress cycles due to dynamic effects. AGMA considers the cyclic 

nature of loading in the factor YN, stress cycle factor for bending strength [66]. 

However calculation of this factor does not take into account the possibility of 

having more than one stress cycle during a single mesh cycle, as the formula for the 

number of stress cycles (N) is given as: 

 

60     N Lnq    (5.6) 

 

Here L  is life in hours, n  is rpm and q  is number of contacts per revolution. AGMA 

gives several S/N charts for finding YN, which is used in calculating an allowable 

bending stress number. 

 

AGMA also employs a dynamic factor, Kv, in order to account for the dynamic 

loading. Studies [67] have shown that deviations from optimal profile modifications 

often exceed the AGMA recommendations of dynamic factor for gears with non-

optimal modification. With this information, one can modify the dynamic factor to 

be used by using a gear-dynamics model. However even this updated factor may not 
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be enough to cover all the dynamic effects in a fatigue calculation.  Consider the 

case shown in Figure 5-10 obtained at 620 Nm torque at 1155 rpm: 

 

Figure 5-10 Stress cycle information for the sample case 

 

Note that the gear pair is the same gear pair that was investigated in the previous 

section. Table 5-9 gives the expected fatigue damage information for this case, using 

the S/N curve for 42CrMo6. The number of cycles to fail is highlighted for the peak 

stress and for the total stress time history. 

Table 5-9 Cycles to fail for the respective stress cycles 

Stress cycle Equivalent Soderberg 

Stress [MPa] 

# of cycles to fail 

1 331 4.61e11 

2 382 1.59e10 

3 396 6.80e9 

4 422 1.52e9 

Total mesh cycle  1.15e9 
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It can be clearly observed from Table 5-9 that the omission of stress cycles with 

smaller ranges (secondary stress cycles) can lead to a miscalculation regarding the 

lifetime of the gear pair. One should also consider that there may be even cases 

which are more critical in terms of fatigue damage estimations than the case shown 

in this example. The fatigue properties of the material and the severity of the loading 

usually determine the level of the effect of the secondary stress cycles.  

 

Although in most applications gear designers can end up with safe designs by using 

the conventional dynamic factor and stress cycle factor approach, it should be kept 

in mind that for some specific speed and torque levels, the secondary stress cycles 

can also affect the tooth bending life of the gear pair. 

 

Tooth profile modifications are known to be very effective in reducing the vibration 

and noise in spur gears, since, when properly applied, they reduce the dynamic 

excitation to the geared system, in terms of loaded static transmission error (LSTE). 

This mentioned reduction of the dynamic loading of the system also means an 

improvement in both bending and contact fatigue lives. 

 

There have been many studies, both theoretical and experimental, showing the 

improvement in dynamic load factors after the employment of proper profile 

modifications [67,68]. 

     

In this study an optimization scheme which, instead of obtaining minimum dynamic 

load factors, is directly targeted at obtaining the maximum tooth bending fatigue life 

for a spur gear pair is suggested. Studies [50] have shown that DTE minimization 

based optimization work can lead to better results than those based on LSTE 

minimization, so a similar approach is followed here regarding the tooth bending 

fatigue lives. A comparison with LSTE optimization is not in the scope of this work. 
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A 4-parameter optimization model is used here, the variables being amount of tip 

modification and the start of the modification both for the pinion and the gear. A 

brute-force optimization technique is employed. The gear pair used in the 

optimization model is the same as the one used throughout Section 6.3. The 

optimization scheme can be applied on different duty cycles; here an example is 

given for the duty cycle in Table 5-6. 

 

Table 5-10 shows the results of the optimization study for various arbitrary profile 

modification scenarios, including the optimum one for tooth bending fatigue life. 

Note that a case with a life estimation which is worse than the no profile 

modification case is also shown. 

Table 5-10 Damage summaries obtained for different parameter configurations 

Profile 

Modification 

(PM) 

Pinion 

PM 

Amount 

[µm] 

Pinion 

PM 

Start 

[°RA] 

Gear 

PM 

Amount 

[µm] 

Gear 

PM 

Start 

[°RA] 

Damage 

[%] 

No PM - - - - 87.3 

1 25 24.6 25 24.3 42.7 

2 28 24 25 24.6 1.0 

3 31 24.6 28 24 14.8 

4 31 24.6 31 24 4.6 

5 28 24.6 31 24.6 271.7 

Best PM 28 24 31 24 0.0012 

 

As can be observed from Table 5-10, when combined with the nature of the fatigue 

characteristics for the steel, an optimum profile modification can easily guarantee 

the safe operation of a spur gear pair throughout its lifecycle, when tooth bending 

fatigue is the only concern. Another important outcome of this study is that, a bad 

selection for the profile modification can endanger the gear pair, making a premature 



107 

 

failure possible such that even an unmodified gear pair behaves better, considering 

tooth bending fatigue. Small variations in the optimization parameters tend to 

change the fatigue characteristics very dramatically, which underlines the 

importance of selection of the objective function as maximization of fatigue life, 

instead of the minimization of LSTE. 

 

The steady state stress cycle information for the duty cycle given in Table 5-6 is 

shown in Figure 5-11 for the optimum tooth profile modification case. 

 

 

Figure 5-11 Tooth root normal stress time histories for the optimal TPM 

configuration 

  

With the application of the optimal profile modification, not only the stress-based 

dynamic factors reduce, but also the secondary stress cycles decrease to such levels 

that they can be neglected in bending fatigue life calculations. Therefore in terms of 

improving the tooth bending fatigue life, the effect of a good tooth profile 

modification is not limited to reduction of the maximum stress at the root region. 
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5.4   Summary and Conclusion 

For the studies performed within the scope of this section, initially, tooth profile 

modification optimization is performed using 3 different models. The first model is 

based on the minimization of LSTE variation. In the second and third models, profile 

modification optimization is achieved through minimization of DTE variation. The 

second model considers only the spur gear pair dynamics, whereas the third one, 

which is a MDOF model, takes also the effects of shaft and bearing dynamics into 

account. The differences between the optimization results obtained by using the 

mentioned models are studied. 

 

For the second and third models, which consider the dynamics of the respective 

systems, gear pair dynamics is modeled based on a previous study by Özgüven and 

Houser [61]. The mentioned model employs the approximation of using an average 

value for gear mesh stiffness and includes the excitation effect of mesh stiffness 

variation through a displacement excitation function in the form of LSTE. This 

model is preferred in this study, since it can be easily implemented to a MDOF 

model, providing solutions in frequency domain. In order to verify the accuracy of 

the model for the cases where optimum profile modifications are used and therefore 

very small LSTE variations are observed, first a comparison is made between DTEs 

obtained through this model and an exact gear dynamics model, which employs 

time-variant mesh stiffness. The comparison revealed that the invariant mesh 

stiffness approximation can also be used in the dynamic analysis of gear pairs where 

LSTE excitation is at very low levels.  

 

Before proceeding with optimization, possible different outcomes of using SDOF 

and MDOF models are investigated on two different cases. The first case with 

shorter shafts represents a relatively rigid configuration of a gear-shaft-bearing 
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system, whereas the second case is an example of a significantly more compliant 

system. The results obtained through both models turned out to be very similar for 

the first case. However, for the second system under consideration, the responses 

obtained with SDOF and MDOF models are found to be considerably different from 

each other, as expected. It is shown that when combined with multi-harmonic 

excitation, the complex dynamic nature of compliant systems resulting from coupled 

transverse-rotational modes observed in operational speed ranges makes MDOF 

models more suitable to be used in optimization studies. 

 

In optimization studies, differences are observed between the best profile 

modifications suggested by LSTE-based model and those obtained by using 

optimization models based on DTE minimization. This observation is in line with 

the findings of Faggioni et al. [50]. Therefore, the main emphasis is placed on the 

comparison of the optimization results obtained from SDOF and MDOF dynamic 

models in this study. Important differences are observed between the optimum 

profile modifications obtained by SDOF and MDOF dynamic models for gears on 

compliant shafts. It is therefore concluded that the optimum tooth profiles obtained 

by considering only the dynamics of a gear pair may not represent the best tooth 

profile modification when these gears are on flexible shafts and/or bearings. It is 

also shown that when parameters such as quality of manufacturing and wear of the 

gears are of concern, such differences can be even more important. Therefore, it can 

be said that for compliant systems, neglecting the shaft and bearing dynamics and 

employing SDOF gear dynamics models may lead to incorrect decisions for 

determination of the optimum profile modification.  

 

Here it should be noted that for the study of TPMs in spur gears, only the amount of 

tip relief is taken as a parameter to be optimized.  However, when more parameters 

such as shape of the profile modification (linear, parabolic) and the starting position 

(in terms of roll angles) of profile modifications are included in the optimization 
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study, the differences between the results obtained from SDOF-based and MDOF-

based optimization models may be even more significant. 

 

In the second part of the TPM studies on spur gears, a procedure to estimate the 

tooth bending fatigue lives of spur gear pairs is explained. Gear dynamics model is 

incorporated into the life estimation model in order to get more accurate stress cycles 

at the actual operating scenarios. This procedure is then employed in a 4-parameter 

profile modification optimization study where the target is to obtain maximum tooth 

bending fatigue life for an example spur gear pair with a pre-defined duty cycle. 

     

Gear pair dynamics is modeled based on a previous study by Özgüven and Houser 

[61]. The mentioned model employs the approximation of using an average value 

for gear mesh stiffness and includes the effect of mesh stiffness variation through a 

displacement excitation in the form of LSTE. 

 

The relatively low bending stress levels expected at the root region of spur gears 

make it appropriate to apply HCF theory for fatigue life estimation. A 2-slope S-N 

curve is used here in order not to neglect the stresses below the fatigue limit. 

Soderberg equation is used to take into account the effects of mean tensile stresses. 

For calculating the accumulation of the damage during a duty cycle, Miner’s rule is 

preferred. It should be noted here that different theories also exist in the literature as 

alternatives to both the Soderberg equation and the Miner’s rule. 

     

The dynamic stress plots show that depending on the operation speed, it is possible 

to observe that secondary stress cycles are also critical in terms of damaging of the 

gears when tooth bending fatigue is considered. A 3-point rainflow counting 

algorithm is employed for detecting the stress cycles during a single gear mesh 

period. 
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When a safety analysis is performed for a gear pair, the common approach is to 

apply certain factors in order to compensate for the dynamic nature of loading and 

stress cycles. The calculations can further be improved by the replacement of 

dynamic factors stated in gearing standards (AGMA, ISO, DIN) by more accurate 

ones based on a dynamic analysis. However the effect of secondary stress cycles can 

still be neglected with such an approach, misleading to overestimated bending 

fatigue lives. A more accurate life estimation is possible using the procedure 

explained in this study. 

 

A proper tip modification design is sought for both of the mating gears by optimizing 

the modification parameters, i.e. start and magnitude of the tip reliefs. When the 

overall solution domain is investigated, the sensitivity of the fatigue life estimations 

turns out to be quite high. With a properly optimized tip relief, it is possible to 

eliminate the adverse dynamic effects, hence obtain life estimations which 

practically guarantee a safe operation throughout the whole life cycle of the gear 

pair. On the other hand, an improper profile modification (even with slightly 

different parameters) could lead to a premature failure of the gear pair. The stress 

plots for the best profile modification scenario are also investigated using the 

example gear pair. It is observed that not only the dynamic stress factors reduce but 

also the secondary stress cycles disappear. 
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CHAPTER 6  

TOOTH PROFILE MODIFICATIONS FOR IDEAL DYNAMIC 

RESPONSE OF PGTS 

6.1   Introduction 

In this section, profile modification concept in PGTs is addressed. Both linear and 

parabolic modifications are considered. A purely-torsional mathematical model 

which is a variant of Ozguven’s “Loaded Static Transmission Error (LSTE)” 

concept for parallel-axis gears [61] is proposed. A comparison of the proposed 

model is made using the Transmission3D software, which uses a combined 

analytical contact mechanics - FE approach for geared systems. The profile 

modifications for PGTs are then investigated on the proposed model, using 

harmonic balance method (HBM) with arc-length continuation. In a first step the 

effectivity of TPMs in reducing the dynamic mesh forces are investigated using 

linear and parabolic TPMs. The sensitivity of dynamic characteristics of a PTG to 

the design parameters of TPM is also analyzed. Ideal TPMs in terms of reducing 

PGT vibration are examined for speed intervals where different normal modes 

dominate the dynamic behavior. Finally the relationship between loaded static 

transmission error and dynamic mesh displacement is addressed. 

  

6.2   Nonlinear time-variant mathematical model using LSTE 

A purely torsional mathematical model is used for all the profile modification 

studies performed. It is a time-varying stiffness model which also includes backlash 
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nonlinearity. Eqs. 2.1 - 2.10 provide the equations of motion for the mathematical 

model used in TPM studies for PGTs. 

 

The distinction of the proposed model lies in how the time-varying stiffness term is 

calculated. In their study related to correlating dynamic transmission error values to 

dynamic forces, Tamminana et al. [69] proposed a time-varying nonlinear dynamic 

model for spur gears where they estimate the time-dependent stiffness parameter as 

a function of LSTE and an error term. Results of this study show excellent 

correlation on profile-modified spur gears with both experimental and FE results. 

This approach can also be used to estimate the mesh stiffness functions of a PGT 

with profile modifications. Utilizing this method, mesh stiffness variations can be 

represented as follows, 
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where profile modifications are included in  sie t  and  rie t . This method combines 

the advantages of both LSTE-excitation based models and time-varying stiffness 

models. By calculating the LSTE term only, since applied TPM is already known, 

it is possible to include a time-varying stiffness parameter in the related 

mathematical model with relative ease.  This also helps to avoid the disadvantages 

of constant-stiffness dynamic models, such as accuracy problems especially for 

nonlinear response and response due to higher harmonics [6]. 

 

Firstly, it is required to validate the mathematical model proposed for PGT systems, 

before using it to study the effects of profile modifications. Although the proposed 

approach for mesh stiffness approximation has been shown to be accurate for spur 
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gears, it is still necessary to perform a validation study for the complete model 

proposed for PGTs, as the use of this mesh stiffness approximation has not been 

employed before in a planetary gear dynamics model. For this purpose, combined 

FE-contact mechanics software Transmission3D and its solver Calyx, are used. This 

software is preferred due to its computational efficiency in solving the non-linear 

contact problem. In conventional FE tools, this problem requires a very fine mesh 

of finite elements for an accurate solution. This results in infeasible amount of 

computation times, especially for dynamic simulations where steady-state analyses 

are sought. However, Calyx approaches the non-linear contact problem with analytic 

means [70] and combines the analytical solution of the contact region with FE 

solution of the rest of the model under consideration. Calyx is widely used as a 

validation tool in gear dynamics studies where analytic models are employed 

[18,55,71]. 

 

An example PGT is studied for forced response comparisons of proposed analytical 

model with 3D FE model (Table 6-1). Here torque input is from the sun gear and 

output member is carrier, whereas the ring gear is fixed. In this case study, a 

relatively thick ring gear is considered in order to avoid any dynamic effects due to 

rim elasticity [72]. Profile modifications are applied on the tip and the root regions 

of the respective gears. The modifications start from HPSTC for tip and from 

LPSTC for root modifications. The carrier is modeled as a very large inertia 

compared to other members of PGT, which is the case for PGTs that are commonly 

employed in main rotor drive systems of helicopters. In most of the helicopters, main 

rotor shaft, which is connected to the main rotor system, acts as the carrier of the 

planetary reduction stage. All bearings are modeled as very rigid stiffness elements 

for a valid comparison with the purely torsional analytical model. 
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Table 6-1 Example planetary gear set used in analytical model validation 
 

Sun Planet Ring 

Number of planets 3 

Number of teeth 36 21 78 

Module [mm] 4 

Pressure angle [deg] 21.3 

Effective outside diameter [mm] 150 91 330 

Root diameter [mm] 135 76 321 

Facewidth [mm] 30 

Transverse tooth thickness [mm] 5.3 6.8 5.3 

Diameter at measured tooth 

thickness 

144 84 312 

Torque applied [Nm] 1800 - - 

Mesh damping coefficients [Ns/m] 158 164 

Profile modification at tip and 

root [um] 

15 0 15.5 

Young’s modulus [GPa] 206.8 

 

 

Figure 6-1 shows the FE model of the PGT under consideration. The FE mesh is 

kept as coarse as possible for computational speed. Final mesh configuration is 

obtained by running successive trial simulations with different mesh resolutions 

which guarantees the accuracy of the solution while keeping the solution time at a 

minimum. 
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Figure 6-1 A view of the FE model for the example planetary gear train used in 

validation study 

 

The  damping is modeled in Transmission3D as Rayleigh damping, and the 

corresponding Rayleigh damping coefficients for all gear bodies (sun, planets and 

ring) are  = 479 s-1 and  = 1.4e-7 s. The mesh damping coefficients provided in 

Table 6-1 are used in time-integration solution of the proposed lumped-parameter 

model, which represent similar damping characteristics to Transmission3D model. 

At each speed point, time step is adjusted to represent a mesh cycle by 64 points. 

Around 3000 time-steps is required in order to reach to the stable solution region. 

 

The analytical model is run in Matlab using ode45 time-integration method which 

uses Runge-Kutta-Fehlberg method. Time-dependent mesh stiffness parameters 
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required for analytical model are obtained through Transmission3D, using LSTE 

data from single-pair solutions of sun-planet and ring-planet meshes. 

 

A speed range which covers third, fourth and fifth superharmonics of the first natural 

frequency, is selected for this comparison study. Such a speed sweep through a 

number of harmonics of an initial natural frequency is again a common case for 

helicopter PGTs during the start-up and slow-down phases of operation. The first 

natural frequency for such systems is usually much above the operational speed 

level, which is more or less constant during the flight for most of the helicopters. 

 

A comparison of forced-response results of both models, in terms of rms sun 

displacement, can be seen in Figure 6-2.  Similar to the findings of Tamminana et 

al. [69] for spur gears, response obtained through the analytical model agrees well 

with FE solutions.    

 

 

Figure 6-2 Comparison of the frequency response for analytical and FE models 
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The time histories of sun displacement obtained at 1680 rpm and 2230 rpm are also 

shown in Figure 6-3. These results also support that developed method agrees well 

with the commercial Transmission 3D software. 

 

The results of this validation study show that the proposed mathematical model, 

which requires significantly less computational effort, is appropriate for performing 

detailed parametric studies regarding TPMs in planetary gear systems. Therefore, 

using only LSTE data, which contains both the geometric error terms and the static 

transmission error due to static deflection of the respective gear pairs, it is possible 

to obtain an accurate estimation of dynamic response of PGTs with TPMs. 

 

Figure 6-3 Time histories for sun displacement at a) 1680rpm and b) 2230 rpm 
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Eqs. 2.25 - 2.36, obtained through HBM, are solved using Newton’s method with 

arc-length continuation. Proper TPMs are expected to diminish the vibration levels 

and eliminate any possible nonlinear effects, but nevertheless arc length 

continuation is able to show multiple solutions for the speed ranges where nonlinear 

effects are still dominant. 

 

In order to validate HBM solutions, a comparison study is performed between the 

numerical integration results and HBM solution, for an example gear set with TPMs. 

The parameters for this example gear set are given in Table 6-2. 

Table 6-2 Example planetary gear set used in HBM vs. time integration comparison 
 

Sun Planet Ring 

Number of planets 4 

Number of teeth 38 22 82 

Module [mm] 4 

Pressure angle [deg] 21.3 

Effective outside diameter [mm] 158 95 323 

Root diameter [mm] 142 80 336 

Facewidth [mm] 30 

Transverse tooth thickness [mm] 5.3 6.8 5.3 

Diameter at measured tooth 

thickness 

152 88 328 

Inertia/r2 [kg] 2.42 0.82 10 

Torque applied [Nm] 2400 - - 

Profile modification at tip and 

root [um] 

6 6 0 

Young’s modulus [GPa] 206.8 
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In this PGT, the ring gear is fixed and the carrier is modeled as a large inertia. In 

order to check the validity of the solution with TPMs, gears with different TPMs are 

considered. In HBM, 6 harmonic terms are used for the representation of the time-

dependent parameters. Response comparison in terms of rms sun displacement is 

given in Figure 6-4. 

  

Figure 6-4 Comparison of HBM and time integration response 

 

It is apparent in Figure 6-4 that HBM method agrees well with direct time integration 

and it is successful in obtaining the steady state response of the PGT under 

consideration. Therefore, HBM is used in the rest of the study for determining the 

steady-state response. 

 

6.3   Parametric studies 

The dynamic effects of TPMs are extensively studied by running dynamic 

simulations on the aforementioned PGT dynamics model. The LSTE data is 
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collected from WindowsLDP software for each simulation, without any 

approximations (such as a rectangular modeling of LSTE). The PGT configuration 

outlined in Table 6-2 is used for this study as the basic configuration. For sun-planet 

gear pairs, the modifications are applied on the tip and root regions of the sun gear 

teeth. For ring-planet pairs, the modifications are applied on the tip and root regions 

of the teeth of planet gears. Linear modifications start from HPSTC and LPSTC for 

tip and root, respectively for both sun-planet and ring-planet pairs. Parabolic 

modifications start 0.5  ̊ prior to HPSTC and LPSTC points for sun-planet pairs and 

1.0  ̊ prior to HPSTC and LPSTC points for ring-planet pairs (i.e. modifications start 

just before HPSTC and LPSTC points, slightly in double-contact region). These 

locations are selected since they result in the least possible variation in LSTE, when 

a proper amount of modification is applied. Note that the “proper” amount of the 

respective modification to obtain minimum variation of LSTE is dependent on the 

level of the applied torque. In all TPM configurations throughout the parametric 

study, the amount of the applied profile modification is kept the same both for the 

tip and root regions of the respective gears.  

 

Figure 6-5 shows the ratio of the maximum sun-planet dynamic mesh force to static 

mesh force for various amounts of TPMs. The simulations are run between sun 

speed of 1000-6000 rpm for the example gear train considered. It is already known 

that proper TPMs are able to reduce the dynamic response. However, Figure 6-5 

also reveals some other important characteristics of TPMs which can be translated 

into design guidelines. 
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Figure 6-5 Maximum dynamic to static sun-planet mesh force ratios for a) 

Torque=1600Nm, linear TPM, b) Torque=1600Nm, parabolic TPM, c) 

Torque=2400Nm, linear TPM, d) Torque=2400Nm, parabolic TPM, e) 

Torque=3200Nm, linear TPM, f) Torque=3200Nm, parabolic TPM, g) 

Torque=4000Nm, linear TPM, h) Torque=4000Nm, parabolic TPM. 
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In order to obtain an ideal response in terms of dynamic mesh forces, depending on 

the speed range, one should apply TPM on both sun-planet and ring-planet meshes. 

In all of the simulations, an ideal dynamic force response is obtained via a proper 

combination of sun-planet and ring-planet modifications, since the sun-planet and 

ring-planet mesh forces are coupled with each other. 

 

At all load levels, a minimum of the maximum dynamic forces is achieved by 

applying linear TPMs rather than parabolic ones. However, depending on the 

criticality of the application, the differences between the minimum values obtained 

by linear TPMs and parabolic TPMs can be considered to be negligible. 

 

Figure 6-5 also shows that parabolic TPMs are less sensitive to the variation in the 

amount of TPM. In most of the applications the order of magnitudes for TPMs is in 

micron-level. Therefore such findings regarding the sensitivity of TPM design 

parameters are especially important when the manufacturing tolerances and tooth 

wear are considered. It is also worth noting that as the torque level decreases, the 

sensitivity of the dynamic forces to the amount of TPM increases. 

 

Figure 6-6 provides the ratios of the maximum dynamic mesh force to static mesh 

force as functions of sun and planet TPMs, for sun-planet and ring-planet meshes, 

at two different torque levels.  Parabolic TPMs are applied at 1600Nm, whereas 

linear TPMs are applied at 4000Nm. 
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Figure 6-6 Maximum dynamic to static mesh force ratio for a) Torque=1600Nm, 

parabolic TPM, sun-planet, b) Torque=1600Nm, parabolic TPM, ring-planet, c) 

Torque=4000Nm, linear TPM, sun-planet, d) Torque=4000Nm, linear TPM, ring-

planet 

 

Although sun-planet and ring-planet meshes do not necessarily give the least 

dynamic forces at the same TPM configuration, it is safe to say that they behave 

very similarly. It is also evident from Figure 6-6 that the sensitivities of mesh forces 

to amount of TPM are different for sun-planet and ring-planet meshes. 

 

Effectivity of a TPM design is strongly dependent on the level of loading. It is 

investigated next how an ideal TPM designed for a specific torque level behaves 

under different torque levels. Firstly, TPMs which minimize the maximum rms 

displacement responses for both sun-planet and ring-planet meshes in the speed 

range of 1000 to 6000rpm are calculated for torque levels in the range 1600-

4800Nm, with 800Nm intervals. Then simulations are performed for these TPMs at 

other torque levels in the defined range. Figure 6-7 shows rms sun-planet (
spZ ) and 
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rms ring-planet (
rpZ ) displacements obtained as a result of this set of simulations, 

in a normalized form. The normalized values are obtained by dividing 
spZ  and 

rpZ  

by the respective minimum values ,minspZ  and ,minrpZ . Note that 4800Nm is 

considered as an upper limit in terms of loading, since the tooth bending and contact 

stresses beyond this level are found to be critical in terms of gear life calculations. 

Therefore it is defined as the maximum design load, and hence any increased torque 

level is unrealistic for this particular study. 
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Figure 6-7 Maximum dynamic displacement response for ideal TPMs for a) 

Torque=1600Nm, b) Torque=2400Nm, c) Torque=3200Nm, d) Torque=4000Nm, 

e) Torque=4800Nm 
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Although not shown here, in the torque range under consideration, all of the ideal 

TPMs resulted in dynamic response which is less than the cases with no TPMs. 

However, it is also apparent that ideal TPMs for lower torque values (e.g. for 

1600Nm) mean a loss of potential for higher torque levels in terms of reducing the 

dynamic response. With the ideal linear TPM for 1600Nm, obtained sun-planet 

response at 4800Nm is 25µm. However, with the application of optimum TPM for 

4800Nm, this value is found to be as low as 7.5 µm. A similar conclusion can also 

be reached for the opposite case. If one chooses to apply a linear TPM optimized for 

4800Nm, at 1600Nm, the sun-planet displacement response is 10 times the response 

achieved by using the optimum TPM at that load level (22.5µm vs 2.5µm). 

 

When lower torque values are considered, optimum parabolic TPMs for a specific 

torque level result in better dynamic response than their linear counterparts. As an 

example, ideal parabolic TPMs designed for 4000Nm also resulted in respectively 

comparable response levels for 3200Nm. 

 

The above conclusions can be useful when an optimization study is performed to 

determine the optimum TPM for a specified operational spectrum consisting of 

different load and speed levels and their contributions to the total operational life. 

 

PGTs have distinct torsional natural modes that can only be excited by certain mesh 

phasing configurations. Kahraman [11] defined these torsional modes as “in-phase” 

and “sequentially-phased” modes in his study in which he also analytically 

formulated the natural frequencies associated with these modes. The first and the 

second “in-phase” modes can only be excited by in-phase excitations; whereas, 

“sequentially-phased” modes can be excited by sequentially-phased excitations. 

More information regarding this phenomenon and the rules of mesh phasing in PGTs 

are available in the literature [32,55,73]. The mode shapes associated with these 

modes are also different for each natural mode. For in-phase modes, all planets have 
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identical rotations, while the relative movements between sun-planets and ring-

planets may change from one mode to the other. In sequentially-phased modes, the 

sun and ring gears do not move, whereas the sum of the displacement vectors for 

planets sum up to 0. These differences in mode shapes are also expected to affect 

the ideal TPM configurations, which lead to most favorable dynamic behavior of 

PGTs in terms of vibration and dynamic forces. 

 

Table 6-3 lists the approximate undamped natural frequencies for the example PGT, 

calculated by the analytical formulation proposed by Kahraman [11] which is based 

on mean mesh stiffness values for the unmodified teeth. For dynamic simulations 

with TPM, these values are subject to minor changes due to the effect of TPM on 

mesh stiffness. 

Table 6-3 Natural modes of the example PGT with no TPM 

Natural frequency [sun rpm] Associated mode 

6920 First in-phase mode 

13940 Sequentially phased modes 

16264 Second in-phase mode 

 

Figure 6-8 shows results of three different simulations for the conditions where the 

applied loading is the same (sun torque of 2400Nm) but the speed ranges differ from 

each other (2500-6000rpm, 6000-10000rpm and 12000-16000rpm, respectively). In 

the first speed range, the second harmonic of the first in-phase mode is excited. The 

excitation of the second harmonic of the second in-phase mode is expected in the 

second speed range. In the third speed range, the effects of TPM on the sequentially 

phased mode are investigated. Figure 6-8 shows the outcome of the simulations in 

terms of the rms sun-planet and ring-planet mesh displacements, for different 

amounts of linear TPMs. 
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Figure 6-8 Effect of TPMs on rms sun-planet and ring-planet mesh displacements 

for a) 2500-6000 sun rpm, b) 6000-10000 sun rpm, c) 12000-16000 sun rpm 

 

Outputs of these simulations reveal some important features regarding the design of 

TPMs for PGTs. Optimum TPMs in terms of minimum rms sun-planet and ring-

planet displacement responses differ for each speed interval under consideration for 
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this case study. For the sequentially-phased mode, TPMs do not seem to improve 

the dynamic response significantly, as the cases with no TPMs also provide very 

low vibration levels.   Moreover, when the responses for two different in-phase 

modes are compared, the regions of TPM configurations which would lead to the 

maximum reduction of dynamic response are also different. For the example PGT, 

optimum TPMs for the interval of 6000-10000 sun rpm leads to an inadequate 

reduction of both sun-planet and ring-planet vibration   in 2500-6000 sun rpm 

interval. Therefore designers should also account for the speed intervals during 

operation in their choice for TPMs for PGTs. This mentioned dependence on speed 

lies in the phenomenon of different excitation modes that are expected to occur due 

to the parameters of PGT design. Since a TPM cannot provide an ideal solution for 

all excitation modes, one can also consider optimizing the number of gear teeth such 

that only a certain mode is expected within a defined speed range. Therefore, a 

combination of appropriate mesh phasing configuration along with proper TPMs 

can lead to the most ideal solutions for PGT systems in order to reduce vibrations. 

 

It is a common practice for gear designers to apply TPMs solely based on the applied 

load searching for TPMs that result in a minimum variation of LSTE. However for 

PGTs, as it is shown in this study, the dynamic mesh displacement depends 

significantly on the unique features of PGTs. Bahk and Parker [51] also found in 

their study that the TPMs which give minimum LSTEs do not necessarily result in 

minimum dynamic mesh displacement. Therefore, even if applying TPMs which 

result in minimum LSTE variation can be helpful in some operational speed ranges, 

it is clear that it may not work at maximum efficiency for every speed interval. 

Consequently, as a first step, speed intervals in which LSTE approach work and the 

ones in which a minimum variation in LSTE does not result in a minimum variation 

in dynamic mesh displacement are identified. Since different dynamic modes of the 

system are excited depending on the speed intervals, the relationship between 
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dynamic modes and effectivity of TPMs based on minimization of LSTE variation 

are studied next. 

 

Table 6-4 gives the TPMs for which a minimum LSTE is obtained for the load range 

of 1600Nm – 4800Nm sun torque: 

Table 6-4 TPMs leading to minimum LSTE for sun-planet and ring-planet meshes  

Sun torque 

[Nm] 

Sun TPM 

amount [µm] 

Planet TPM 

amount [µm] 

1600 12 9 

2400 18 15 

3200 22 18 

4000 28 22 

4800 33 25 

 

Figure 6-5 and plot a) in Figure 6-8, when evaluated together with the information 

in Table 6-4, show that when TPMs which minimize LSTE variation are applied, 

the dynamic response is also reduced to a great extent in terms of dynamic mesh 

displacements and dynamic mesh forces, respectively. These plots are obtained for 

the sun speed interval between 1000- 6000 rpm and 2500-6000rpm, respectively. It 

is already mentioned that in these speed ranges dynamic response is dominated by 

the harmonics of the first in-phase mode. Hence for the dynamic behavior 

characterized by this mode, minimizing LSTE variation is also helpful for an ideal 

reduction of the vibration. However, as indicated previously, while discussing the 

effect of different modes on the response of PGTs with TPMs, optimum TPMs are 

different for the other cases where vibration is dictated by the harmonics of 

“sequentially-phased” or second “in-phase” modes. Therefore, optimum TPMs for 

these speed ranges are also different from the optimum TPMs obtained for the 

minimization of LSTE variation. 
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6.4   Summary and conclusion 

In this chapter, the effects of linear and parabolic TPMs on the dynamic behavior of 

PGTs are investigated in detail. Linear and parabolic TPMs are most commonly 

used types of profile modifications, which are employed in order to improve the 

dynamic characteristics of gear systems, including PGTs. 

     

A purely-torsional mathematical model is employed for the simulations of an 

example PGT with various configurations of TPMs. Time-varying mesh stiffness 

functions for the proposed non-linear, time-varying model are calculated based on 

the LSTE values. A similar approach was used in the study of Tamminana et al. [69] 

for spur gears which showed very good correlation with both experimental and FE 

results. In order to check validity of this model for planetary gears, dynamic 

response results of the theoretical model are compared for an example PGT, with 

those that are obtained through Transmission3D, which is a combined FE-contact 

mechanics tool that is widely used in the field. The outcome of the comparisons built 

confidence in going forward with investigation of dynamic characteristics of PGTs 

with TPMs, using the proposed model. 

 

The solution for the proposed analytical model is performed using harmonic balance 

method with arc length continuation. Multiple solutions may exist at the resonance 

regions due to the backlash nonlinearity. The ability of arc-length continuation 

scheme to find multiple solution points in non-linear response regions, without the 

necessity for performing forward and backward sweeps through desired speed 

ranges, makes this technique ideal for such a parametric study. The computational 

speed advantage over time-integration makes this solution method suitable for 

performing parametric studies. This solution method is also verified by comparing 

HBM and time-integration solutions on an example PGT.  
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Numerous dynamic simulations focusing different aspects of the effects of TPMs on 

PGTs are performed using the proposed method on an example gear set. The LSTE 

values required for the solution of the analytical model are obtained through the gear 

contact mechanics tool WindowsLDP of OSU, for each load-TPM configuration.  

LSTE data, by definition, contains the static deflection of the respective gear pairs 

as well as various deviations from the conjugate profile, including those due to 

profile modifications. Therefore, using the proposed method, it is possible to obtain 

an accurate calculation of dynamic response of PGTs with TPMs, by utilizing LSTE 

information only to estimate the mesh stiffness between respective gear pairs. 

Simulations are run for specified torque levels covering different speed intervals. 

Contour plots of dynamic response are presented to show the maximum dynamic 

response under different amounts of TPMs for the specific speed intervals under 

consideration. 

   

When applied properly, the ability of TPMs in reducing the dynamic forces are 

shown clearly for both linear and parabolic TPMs. It is also demonstrated that since 

the mesh forces between sun-planet and ring-planet meshes are coupled, a 

combination of TPMs for both sun-planet and ring-planet meshes are necessary in 

order to benefit from an ideal reduction of dynamic mesh forces. Sensitivity of the 

dynamic mesh forces to the amount of TPMs is also an important subject due to the 

machining tolerances and wear. Parabolic modifications are observed to offer a 

wider range of efficiently reduced dynamic response compared to their linear 

counterparts. Moreover, when ideal TPMs for different load levels are considered, 

parabolic TPMs are also observed to perform better than linear TPMs at load levels 

that are lower than the design torque for that particular TPM. 

PGTs have specific modal characteristics. Different natural modes dictate not only 

the dynamic characteristics of PGTs but also the design of ideal TPMs for vibration 

reduction. Ideal TPM configuration in terms of improving the dynamic 

characteristics of PGT changes for different speed intervals due to excitation of 
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harmonics of different natural modes. In the example case study performed, it is 

found that for “sequentially-phased” mode, the ideal dynamic behavior is obtained 

when no TPM is applied. Such conclusions can lead to design solutions where the 

dynamic characteristics of a PGT can be optimized using a combination of proper 

mesh phasing and TPMs. 

 

This dependence of the ideal TPM configuration on the natural modes also answers 

the question whether the minimization of LSTE variation for sun-planet and ring-

planet meshes certainly means a satisfactory improvement in dynamic behavior of 

PGTs. For the example PGT, TPMs designed for minimization of variation of LSTE 

lead to an efficient improvement of the dynamics for the speed intervals in which 

the harmonics of the first in-phase mode are excited. However this is not the case 

for the speed ranges in which various harmonics of the “sequentially-phased” and 

“second in-phase” modes are excited. Therefore for reduction of vibration in PGTs, 

a TPM configuration which results in minimizing LSTE variation for both sun-

planet and ring-planet meshes may not be considered as the ultimate remedy. 

 

The above findings can be translated into design practices for TPMs on PGTs. The 

load levels and speed intervals expected for the operation are very important in 

selecting the ideal TPM for improvement of PGT dynamics. In addition, other 

aspects of design such as manufacturing tolerances and wear on gears may play 

major roles in selecting an ideal TPM configuration which can be taken into 

consideration in the mathematical model proposed, since such effects are included 

into the analysis through LSTE calculated by WindowsLDP.  
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CHAPTER 7  

DYNAMIC CHARACTERIZATION OF DOUBLE-RELIEF PROFILE 

MODIFICATIONS IN PLANETARY GEAR SYSTEMS 

7.1   Introduction 

High contact ratio (HCR) spur gears are defined as gear pairs that have a contact 

ratio between 2.0 and 3.0. Due to the increased contact ratio, expected load capacity 

is higher than their low contact ratio (LCR) counterparts, since the load is shared 

among 2 or 3 gear teeth instead of 1 or 2. Tooth geometry-wise, in order to end up 

with HCR gears, addendum of the gears are generally kept higher than that of LCR 

gears. Furthermore, a finer module is preferred for HCR gear pairs. However, such 

modifications in geometry may result in gear teeth which can be more vulnerable to 

bending, when compared with the tooth geometry of LCR gears. 

 

In order to neutralize this disadvantage of HCR gears, a further improvement of the 

dynamic condition is possible through a proper application of tooth profile 

modifications (TPMs). In addition to the conventional linear and parabolic TPM 

designs, Yildirim et al. [74] proposed double-relief type profile modifications, 

which are claimed to combine the advantages of short-relief and long-relief types of 

TPM designs. In a joint work with Leonardo Helicopters (formerly known as Agusta 

Westland), Yildirim  et al. [75] also presented some experimental evidence for better 

dynamic characteristics of double-relief TPM design when compared with 

conventional linear TPM design on a parallel-axis gearbox. They showed a 

reduction of noise level between 7 to 11 dBA for the respective gearbox, in addition 

to a highly-reduced housing vibration.  
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Although experimental results are promising, there is still a need for dynamic 

characterization of double-relief TPMs through mathematical modeling of gear 

dynamics. In this study, dynamic characteristics of double-relief modifications are 

investigated for planetary gear systems. A mathematical model of the planetary gear 

system which uses an average (constant) mesh stiffness for the respective sun-planet 

and ring-planet gear pairs, but includes mesh stiffness variation through LSTE is 

employed for this purpose. Dynamic excitation, modeled using LSTE information 

between the respective gear meshes includes mesh stiffness variation, as well as the 

effects of gear errors and profile modifications. Multi-term Harmonic Balance 

Method (HBM) with arc length continuation scheme is used for the solution of the 

mathematical model. 

 

Using the mathematical model, dynamic response of an example PGT is obtained at 

different torque levels for two cases: with a conventional linear TPM and with 

double-relief TPM. Comparisons are made between the calculated dynamic 

responses, and the advantages of double-relief TPM over linear TPM are discussed. 

 

7.2   Double-relief TPMs 

Profile modification can be defined as an intended removal of material from the tip 

and/or root regions of the gear tooth profile. TPMs are usually employed on the spur 

gear pairs in order to improve their dynamic characteristics. This is also true for the 

PGTs comprised of spur gears.  

 

Aside from the improvement in dynamic characteristics, designers employ profile 

modifications also to avoid a possible corner contact of gear teeth, even at maximum 

design loads. When this is desired, then one can determine the amount of profile 

modification based on the expected deformation of the gear teeth under the 

maximum load. The location for the start of the modification is then a critical 
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parameter which would define the characteristics of the profile modification. Both 

for LCR and HCR gears, TPMs can be classified based on the initial point of 

modification. A detailed explanation of this topic along with the advantages and 

disadvantages of different relief types are given in reference [45]. 

 

For HCR gears, one can classify the conventional linear profile modifications as 

“short-relief” and “long-relief” depending on the starting position of the TPM. For 

“long-relief”, TPM is extended into the double-contact region. This approach results 

in two nearly-smooth LSTE curves, one being at the maximum design load and the 

other is at some intermediate load. However one major set-back for this type of 

TPMs is that at maximum design load, a single tooth pair shares more than half of 

the load, as a result of the modification in double-contact region. For “short-relief”, 

modification starts at the highest point of triple-contact region. Therefore at 

maximum load, a single tooth pair does not carry more than half of the load, which 

makes “short-relief” more favorable in practice when compared with “long-relief”. 

However for this case, it is possible to have only one nearly-smooth LSTE curve, 

which occurs at maximum design load. This characteristic of LSTE results in poor 

dynamic characteristics at lower torque levels. 

 

In order to combine the advantages of the above mentioned two types of TPMs, 

Yildirim et al. proposed a new relief type, which is named as “double-relief” such 

that TPM is applied in 2 steps, with different slopes at double-contact and triple-

contact regions [74]. Thus, the maximum static load carried by a single tooth pair is 

reduced compared with a similar long-relief modification. On the other side, LSTE 

variation is still minimum at 2 load levels, unlike the minimum LSTE variation value 

obtained at a single load level for short-relief modifications. 

 

Figure 7-1 shows the combined tooth profile plot for an example gear pair with 

double-relief TPM. 
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Figure 7-1 Combined tooth profile plot for a gear pair with double-relief TPM 

 

7.3   Mathematical Model and Solution Method 

The employed mathematical model in this study is a nonlinear time invariant model. 

Average mesh stiffness is assumed both for the sun-planet and ring-planet gear pairs. 

The excitation effect of mesh stiffness variation is modeled by using LSTE between 

the respective gear meshes. This modeling approach was first proposed by Ozguven 

and Houser for spur gear pairs in 1988 [61]. Recent studies show that this model 

yields accurate results for also the cases where TPMs are applied [76]. This model 

has been frequently used in the literature for dynamic modeling of PGTs. References 

[8,9] can be given as examples of planetary gear dynamics studies where such a 

model is applied.  

 

The equations of motion with the above listed conditions can be written as follows 

  

11 1

( ) (( ) ( ) ( ))
p p p

si s s si

i

n n n

s s sp si sp

i i

M x t c g tz t k t e tkx
 

    ,  (7.1) 
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where 

 

2 2 2
,     ,     s cr

s r c p i

s r c

I II
M M M n m

r r r
    .   (7.5) 

 

Note that spk and rpk are the average mesh stiffness parameters for the sun-planet and 

ring-planet gear pairs, respectively. ( )sie t  is the LSTE between the sun and the i th 

planet. Similarly, ( )rie t is the LSTE between ring and the i th planet. The definitions 

of the symbols and abbreviations, which are not given here, can be found in 

Nomenclature. Nonlinear forcing due to the backlash between the sun-planet ( ( )sig t

) and ring-planet ( ( )rig t ) pairs are given as follows: 
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Sun-planet mesh displacement function ( ( )siz t ) and ring-planet mesh displacement 

function ( ( )riz t ) can be expressed as  

 

( ) ( ) ( ) ( )si s i cz t x t x t x t   ,   (7.8) 

( ) ( ) ( ) ( )ri r i cz t x t x t x t   .   (7.9) 

 

Using multi-term HBM, nonlinear differential equations of motion given by Eqs. 

7.1 -7.4 can be converted into a set of nonlinear algebraic equations.  The periodic 

excitation in terms of LSTE for both sun-planet and ring-planet meshes, 

respectively, can be expressed in Fourier series (using a total number of N

harmonics) as 

 

 1 ,2 1, ,2

1
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N
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n
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ri ni n

n

i rire t E n t E tE n 
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Phase relationships are considered in formulating the excitation in terms of LSTE, 

based on a reference mesh, both for sun-planet and ring-planet meshes. The phasing 

equations for LSTE functions can be expressed as follows for sun-planet mesh: 

 

,2 1,2 cos( )si n s n s iE E nZ  ,   (7.12) 

,2 1 1,2 1 sin ( )si n s n s iE E nZ   .   (7.13) 

 

For ring-planet mesh: 

 

,2 1,2 cos( )ri n r n r i srE E nZ n   ,   (7.14) 
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,2 1 1,2 1 sin( )ri n r n r i srE E nZ n    .   (7.15) 

 

Here sZ and rZ  denote the number of teeth for sun and ring gears, respectively. i

is the angular position of the i th planet (i.e. for an equally spaced 4-planet system, 

planets are positioned at 0, π/2, π and 3π/2, respectively). sr is the phase difference 

between sun-planet and ring-planet meshes. 

 

The assumed solution to Eqs. 7.1 – 7.4 can be expressed in Fourier series form as 

follows 
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where , , ,1, 2,..., pa s r c n . The resulting nonlinear algebraic equations can be given 

as shown below. 

 

For sun gear: 

 

1 ,1 ,s, 1

1 1

1 0
p pn n

s

si sp si

i i

sR X G k Ek
 

    ,   (7.17) 

s,2n ,2 ,2 1

2

2 ,2n ,2

11 1

2 0
p p p

s s n si n

n n n

s

n s sp si sp s n

i

i

i i

R X n M X c G kk n Z E
 





         , (7.18) 

2

2 1 ,2n 1

1

,2 1

1

s,2n 1 ,2 1 ,2

1

2

0

p p

p

s s n si n

n n

s

n s sp si

i

n

sp si n

i

i

kR X n Zn M X c G

k E

 







 



 

 

    



. (7.19) 

 

 



144 

 

For ring gear: 
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For carrier: 
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For planets: 
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Therefore the nonlinear algebraic equation vector R  is formed as 
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Solution of the nonlinear algebraic equation set is done by utilizing Newton’s 

method with arc-length continuation. Details of the mentioned solution method can 

be found in [52,77,78]. 

 

7.4   Validation of Solutions Obtained by Multi-Term HBM 

Solutions obtained by multi-term HBM are compared with solutions obtained by 

direct time-integration on an example PGT. For this PGT, sun gear is the input 

member, whereas ring gear is fixed.  

 

Short-relief TPMs are applied at the tip of the working flanks for all gears. 

Modifications start from the lowest point of triple contact at the tip for the respective 

gear teeth.  

 

In this study, LSTE is calculated as a function of gear mesh stiffness, no-load 

transmission error (due to TPMs) and the static mesh force. Mesh stiffness function 

is assumed to be in rectangular form such that the mesh stiffness at a particular point 

is equal to the number of teeth in contact times the respective mesh stiffness of a 

single tooth pair. For details of the calculation of LSTE using this approach, one can 

refer to [45]. 
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6 harmonics are used in the Fourier series representation of LSTE functions between 

sun-planet and ring planet gear meshes, respectively, and also in the representation 

of the displacement vector.  

 

Table 7-1 gives the parameters for the example PGT, on which short-relief TPM is 

applied. 

Table 7-1 Parameters of example PGT 
 

SUN PLANET RING 

Number of planets 4 

Number of teeth 32 24 80 

Contact ratio 2.31 2.28 

Mesh stiffness of single tooth 

pair [N/m] 
2.2e8 2.5e8 

Equivalent inertia, I/rb
2 [kg] 1.2 0.624 12 

Torque applied [Nm] 2400 - - 

Viscous damping coefficients 

[Ns/m] 
1470 1380 

Static mesh force [N] 5000 

Amount of modification in triple 

contact region [μm] 
23 20 

 

Figure 7-2 shows the comparison of the sun gear displacement (rms) obtained by 

using HBM and direct time integration. Time-integration solution is obtained by 

using ODE45 routine in Matlab. Results of the comparison study showed that HBM 

with 6 harmonics captures the steady state response of the PGT system under 

consideration accurately. Multiple solutions are obtained with HBM at several 

resonant frequencies which cannot be determined by direct time integration. 
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Figure 7-2 Comparison of sun gear displacement (rms) obtained by using TI and 

HBM 

 

7.5   Comparison of Dynamic Response for HCR PGTs with Linear Relief and 

Double-Relief TPMs 

The advantages of double-relief TPMs in terms of dynamic response over the 

conventional linear relief are investigated in this section. Comparisons will be made 

with a “short-relief” design, where the TPM is applied from the start of the triple-

contact region at the tip of mating gears. The total amounts of modifications for both 

TPM types are adjusted such that they are just enough to avoid corner contact at the 

maximum load. TPM application scheme for the short-relief TPM is already 

provided in Section 7.4. For double-relief TPM, constant slope modification starts 

from the lowest point of double contact at the tip for the respective gear teeth, and 

at the lowest point of triple contact the slope of the modification changes. Figure 7-3 

gives the LSTE data for both TPM schemes. The maximum static mesh force (design 

load) is given as 10kN. The curves are provided from “no-load” to design load in 

10% intervals. 
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It is obvious from Figure 7-3 that, for double-relief TPM, LSTE variation is nearly 

non-existent at two load levels, one being at the design load (100%) and the other is 

around 30% of the design load,. However, for this type of TPM, since extend of the 

modification also includes double-contact region; one can end up with actual contact 

ratios less than 2.0 for lightly loaded cases. This also results in increased LSTE 

variation for the mentioned load levels. 

 

 

Figure 7-3 LSTE for double-relief (top) and linear TPMs (bottom). The load is 

increased from no-load (curves at the bottom of the plots) to maximum design load 

in 10% intervals. 

 

The investigation is made in two steps. Firstly, the dynamic response in the interval 

of 50 to 100% of the design load is analyzed for both types of TPMs, in 10% 

increments. Figure 7-4 shows the dynamic response for both TPM types at each load 

level in this interval, in terms of rms of sun displacement. 
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Figure 7-4 Sun gear displacement (rms) for a) 50%, b) 60%, c) 70%, d) 80%, e) 

90% and f) 100% design load 

 

Figure 7-5 shows rms of planet displacement for both TPM types at each load level 

in the interval of 50 to 100% of the design load. 

 

Figure 7-4 and Figure 7-5 show that, considering the load levels away from the 

design load at which the respective TPMs are designed for, double-relief TPM 

shows better performance in terms of vibration. On the other hand, near the design 

load, the vibration levels are comparable. 
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Figure 7-5 Planet gear displacement (rms) for a) 50%, b) 60%, c) 70%, d) 80%, e) 

90% and f) 100% design load 

 

Figure 7-6 shows the maximum dynamic sun-planet mesh force and ring-planet 

mesh force for different loads between 50-100% of the design load, in the whole 

speed range under consideration. 
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The results for the dynamic mesh forces are in line with those for the displacement 

results. It is worth considering here that, when one gets away from the design load 

to lower load levels, the dynamic forces can increase with a high rate. Since the 

combination of static and dynamic mesh forces are important for gear fatigue, such 

an increase in dynamic mesh forces can make an intermediate load level the most 

critical loading in terms of fatigue, other than the (static) design load. 

 

For the short-relief TPM case, the total (dynamic + static) mesh load values are very 

close to each other in the range 50-80% of the design load. The maximum of total 

mesh load values (e.g. for ring-planet meshes which is around 17kN) is also 

observed in this range.  The maximum value of the total mesh load for double-relief 

TPM case is comparable to that of the short-relief TPM case. However, for short-

relief, the total mesh load makes a peak at 70% of the design load and decreases 

steadily away from the peak location. Therefore the highest levels of the total mesh 

load are not observed in a wide load range. When combined with the operational 

spectrum, which gives information about the load levels and time spent at these 

loads during the lifetime of the component, such information may show important 

advantages of double-relief modification, compared to short-relief type of TPMs. 

 

In a second case study, the load levels between 20-50% of the design load are 

investigated. Figure 7-7 shows rms sun displacement for both TPM types at each 

load level in this interval. It is observed from the figure that except very lightly 

loaded cases (e.g. 20% design load), double-relief modification performs better than 

short-relief modification in terms of sun gear vibration. A similar characteristic is 

also valid for the planet gear vibration, although the related plots are not shown here. 

 

For lightly loaded cases, contact ratio between mating gears is lower than 2.0 when 

double-relief modification is applied. For the PGT under consideration, this 

transition occurs at 32% percent of the maximum design load. The lower contact 
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ratio for the double-relief modification also shows itself in slightly lower natural 

frequencies than those of short-relief case. However, around this load level, since 

the LSTE variation is very little, dynamic performance of double-relief modification 

is still much better than that of the short-relief modification. However with 

decreasing load, LSTE variation grows and this leads to poorer dynamic 

characteristics for double-relief TPM in the example PGT. 

 

 

Figure 7-7 Sun gear displacement (rms) for a) 20%, b) 30%, c) 40%, d) 50% 

design load 

   

Figure 7-8 shows the maximum dynamic sun-planet and ring-planet mesh forces in 

the range of 20-50% of the design load, in the whole speed range under 

consideration. 
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Figure 7-8 Maximum dynamic force for double-relief and short-relief cases in the 

interval of 20-50% of the design load 
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7.6   Summary and Conclusion 

In this study, dynamic analyses are performed for an example PGT with HCR spur 

gears, with two different TPM schemes, i.e. conventional linear relief and double-

relief where TPM is applied in 2 steps with different slopes in triple contact region 

and double-relief region. 

 

The advantages of double-relief TPMs have been discussed in early studies [74], in 

terms of static considerations, such as their ability to provide smooth LSTE curves 

at intermediate loads as well as limiting the maximum static mesh force faced by a 

single tooth pair. Regarding the dynamic effects of this TPM scheme, it was shown 

that in a comparison with its conventional linear counterpart, a double-relief TPM 

scheme resulted in less vibration and noise for a multi-mesh HCR spur gear system 

that is used in a helicopter [75]. Therefore the motivation for the current study is to 

show and characterize these improvements on an example PGT with HCR spur 

gears, using a mathematical model. 

 

Ozguven’s LSTE approach is used for this purpose, which is shown to be also 

working effectively for profile-modified gears [12,76]. In this approach, dynamic 

excitation to gears is modeled in terms of LSTE. Thus, although average mesh 

stiffnesses for the respective gear meshes are assumed, dynamic excitation due to 

tooth stiffness variation is included through loaded static transmission error (LSTE), 

which also includes gear errors and tooth profile modifications. This method greatly 

simplifies the complicated problem of modeling the mesh stiffness with profile 

modifications, as it combines the gear errors and elastic deflection of the gear teeth 

under one term, i.e. LSTE. 

 

As the steady state solutions of the dynamic model are of interest, the model is 

solved using HBM with arc length continuation. This method is computationally 
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much more efficient than the numerical integration method in time domain. The 

validity of the solution method is shown on an example simulation by comparing 

solutions with HBM with those of time integration. 

 

The dynamic characteristics of double-relief modifications are investigated on an 

example PGT with HCR spur gears. Comparisons are made with those obtained for 

the same PGT with conventional short-relief modification. 

 

Both modifications are designed such that they are able to just avoid the corner 

contact at the maximum design load and one ends up with a minimum LSTE 

variation at the design load. Double-relief performed much better than short-relief 

especially at the intermediate loads, both in terms of vibration levels and dynamic 

mesh forces.  

 

For the speed range under consideration, the maximum force (static mesh force + 

dynamic mesh force) on the respective sun-planet and ring-planet gear pairs are 

almost the same for the PGT with short-relief, for an extended range of loading. 

When fatigue evaluations are made based on a given operational spectrum, this will 

most probably mean that the PGT with short-relief spends more time on the critical 

service load levels than the PGT with double-relief. Therefore fatigue life of the 

example PGT is expected to be longer for the double-relief TPM case. 

 

At load levels near to design load, both modification schemes perform equally well. 

For lightly loaded cases (between 0-20% design load for this case), short-relief is 

more successful than their double-relief counterpart from dynamics point of view. 

This outcome is considered to be a result of the following:  In short-relief TPM, gear 

tooth profile is modified only on the triple contact region, therefore the contact ratio 

is greater than 2 for all load levels, unlike the case in double-relief modification. The 

dynamic mesh forces for double-relief TPM are higher than their short-relief 
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counterparts at lower load levels. However, the difference is not very significant 

when fatigue is considered. 
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CHAPTER 8  

SUMMARY and FUTURE WORK 

8.1   Summary 

An extensive parametric study of PGT dynamics is performed in this dissertation. 

The effects of various design parameters on the dynamic behavior of PGTs are 

studied, emphasis is being on the ways of improving the dynamic response of PGTs. 

 

The purely torsional mathematical model used throughout the dissertation study is 

introduced first. Information about the Harmonic Balance Method, which is used for 

solution of the mathematical model, is provided. The modal characteristics of PGTs 

are important both for understanding the dynamic response of PGTs and evaluating 

the effects of parameters. Therefore, general information about the modal properties 

of PGTs is also included in the dissertation. 

 

Next, the concept of mesh phasing, which is also a key concept in PGT dynamics is 

discussed in detail with the focus being at the relationship between the mesh phasing 

and the natural modes of PGTs. Then the effects of the fundamental parameters, 

namely the amount of backlash between gear meshes, damping levels and the gear 

contact ratios, on PGT dynamic response are investigated. Feasible design 

guidelines for reducing the dynamic response of PGTs are provided out of the 

outcomes of the mentioned studies. 

 

PGTs with thin ring gears are often used in rotorcraft main rotor drive systems not 

only because of the advantages in terms of weight but also due to their positive 

effects on the load sharing of PGTs. In this study the effects of elasticity parameters 
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on the torsional dynamics of PGTs are investigated. Uniformly curved beam theory 

is used for calculating the stiffness contribution of elastic rims. 

 

TPMs are very effective means of reducing the vibration and the associated 

adversities such as noise and increased dynamic loading in spur gears. However 

TPM designs are usually performed with the target being the minimization of the 

loaded static transmission error. First it is shown for spur gears that a direct objective 

function of minimizing the dynamic transmission error can lead to ideal TPM 

designs. It is also demonstrated that the differences in response of rigid and 

compliant systems can be critical in determining the optimum TPM using such an 

approach. Next, the direct effect of TPMs on reducing the dynamic loads and 

increasing the tooth bending fatigue lives of spur gears are investigated. 

 

After a detailed work on the effects of TPMs in spur gears, the effects and 

characteristics of TPMs on PGT dynamics are extensively studied. To begin with, 

the proposed analytical model for the evaluation of TPMs is verified by comparisons 

with a dedicated computational tool that is specialized in geared systems. After a 

successful validation of the analytical model, the effects of linear and parabolic 

TPMs on PGT dynamics are investigated under different operational conditions. 

Important outcomes are reached in terms of both the effectivity of TPMs and 

sensitivity of TPM parameters. A strong dependence of ideal TPM design on the 

mode shapes is observed. Differences between the LSTE-optimized TPMs and 

dynamically optimized TPMs are shown. 

 

Finally effects of double-relief TPMs on the dynamic characteristics of the HCR 

PGTs are investigated. Potential advantages of double-relief TPMs in terms of 

fatigue are shown with comparisons between double-relief TPMs and conventional 

linear TPMs. 
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8.2   Future work 

The study also reveals some points which can be studied extensively beyond the 

scope of the current work.  

 

 Comparison of the results of the time-integration method with the analytical 

method showed that subharmonics can also be observed for nonlinear PGT 

dynamics, at higher speeds. HBM solution therefore can be extended to 

include the subharmonics. 

 

 In this study, a purely torsional model is used since it is sufficient to address 

the effects of many parameters; however the model can be extended to a 2D 

model in order to investigate the effects of bearing stiffness on PGT 

dynamics. 

 

 While rim elasticity effects on PGT dynamics are studied, only the torsional 

stiffness of compliant ring gears is taken into account. It would be interesting 

also to investigate the effects of the bending modes of the elastic rings on 

PGT dynamics. 

 

 A brute-force optimization scheme is used throughout the dissertation work, 

which is adequately efficient to derive fundamental characteristics of TPMs 

on gear dynamics. In a further study where the emphasis is on finding the 

optimum solution of TPMs, employing an efficient optimization algorithm 

is going to be more convenient. 
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