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ABSTRACT

NONLINEAR DYNAMICS OF SPIRAL BEVEL GEAR PAIR

Onal, Birkan
M.S., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Ender Cigeroglu
Co-Supervisor: Assoc. Prof. Dr. Zihni Burgay Saribay
June 2018, 96 pages

Nonlinear dynamics of a generic spiral bevel gear pair used in high speed, high
power gearboxes is studied in this thesis. Different tooth ease-off topographies are
generated based on real machine settings. Tooth micro geometries are established in
order to obtain profile crowning, lengthwise crowning and flank twist topographies.
Details of macro and micro geometry and corresponding real machine settings are
given in this study. Path of contact, contact stress, directional rotation radius, load
share, unloaded and loaded static translational transmission error, and mesh stiffness
are presented for drive and coast sides of gear tooth. Loaded analyses are conducted
at 100Nm, 200Nm and 400Nm torque loads. These ease-off topographies are
compared for many advantages on the stability of path of contact, lowest contact
stress, lowest unloaded and loaded transmission errors, and highest mesh stiffness.
The accumulated results are used in nonlinear dynamic analysis of a spiral bevel
gear pair. Dynamic model includes gear backlash in the form of clearance-type
displacement function, time variation of mesh parameters, which are gear mesh
stiffness, directional rotation radius and mesh damping. The mesh parameters are

also asymmetric due to difference between drive and coast sides of gear tooth. The



system is reduced to a single-degree-of-freedom definite model by using the relative
gear mesh displacement as the generalized coordinate. The equation of motion is
solved for periodic steady-state response by using Harmonic Balance Method. A set
of parametric studies are performed to determine the effects of different tooth flank

modifications on dynamic response of a helicopter transmission drive system.
Keywords: Static transmission error, real machine settings, time-varying mesh

stiffness, flank twist, profile crowning, lengthwise crowning, nonlinear gear

dynamics, gear backlash nonlinearity, multi-term Harmonic Balance Method,
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0z

SPIRAL BiR KONIiK DiSLi CIFTININ DOGRUSAL OLMAYAN
DINAMIGI

Onal, Birkan
M.S., Makina Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Ender Cigeroglu

Ortak Tez Yoneticisi: Dog. Dr. Zihni Burgay Saribay
Haziran 2018, 96 sayfa

Bu tezde, yiiksek hizli ve giiglii disli kutularinda kullanilan genel bir spiral konik
disli ciftinin dogrusal olmayan dinamigi calisilmistir. Ger¢ek makina ayarlarina
dayanan farkli dis topografyalari olusturulmustur. Profil yoniinde bombeyi, dis
boyunca bombeyi ve yanak kivrimini elde edebilmek icin dis mikro geometrileri
olusturulmustur. Bu ¢alismada, makro ve mikro geometri ve onlarla ilgili gergek
makina ayarlar1 verilmistir. Dislerin ¢alisan ve ¢alismayan taraflar1 i¢in basi izleri,
bas1 gerilmesi, yonlii donme yarigapi, yiikk paylasimi, yiiksiiz ve yiiklii statik
otelenen aktarim hatas1 ve kavrama sikiligr sunulmustur. Yiik analizleri 100 Nm,
200 Nm ve 400 Nm tork yiiklerinde yapilmistir. Dis topografyalari kararli bast izleri,
en diisiik bas1 gerilmeleri, en diisiik yliksiiz ve ytiklii aktarim hatalar1 ve en yiiksek
kavrama sikilig1 gibi bir¢ok avantaj i¢in karsilastirilmistir. Toplanan sonuglar bir
spiral konik disli ciftinin dogrusal olmayan dinamik analizinde kullanilmigstir.
Dinamik model aralik tipi deplasman fonksiyonu formunda dis boslugu, disli
kavrama sikiligi, yonli donme yarigapt ve kavrama sonimii gibi kavrama

parametrelerin zamanla degisimini icermektedir. Bu kavrama parametreleri disin

vii



calisan ve ¢alismayan taraflar1 arasindaki fark yiiziinden ayn1 zamanda asimetriktir.
Sistem, bagil disli kavrama deplasmanini genellestirilmis koordinat gibi kullanarak
tek derece serbest belirli modele indirgenmistir. Hareket denklemi, Harmonik
Denge Yontemi kullanarak periyodik kararli durum tepkisi i¢in ¢oziilmiistiir. Farkli
dis yanak modifikasyonlarinin helikopter gii¢ aktarim sisteminin dinamik tepkisi

iizerindeki etkilerini belirlemek i¢in parametrik ¢alismalar gergeklestirilmistir.

Anahtar Kelimeler: Statik aktarim hatasi, ger¢ek makina ayarlari, zamanla degisen
kavrama sikilig1, yanak kivrimi, profil yoniinde bombe, disli boyunca bombe,
dogrusal olmayan digli dinamigi, dogrusal olmayan disli boslugu, ¢ok harmonikli

Harmonik Denge Y 6ntemi,
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In aerospace applications, bevel gears transmit motion and power from one shaft to
another intersecting shaft. Straight, spiral bevel and hypoid gears are the three main
types and the spiral bevel gears are the ones widely used in helicopter transmission
drive system. Straight bevel gears are the simplest and oldest type and their teeth are
straight and tapered. The relationship between spiral and straight bevel gears is
analogous to that between helical and spur gears. Therefore, Fig. 1.1 illustrates a
spiral bevel gear would be obtained by adding infinite numbers of short-face
sections of straight bevel gear and each of these sections displaced angularly relative

to another.

-

Fig. 1.1 Straight to spiral bevel gear pair [1]

The teeth of bevel gears are located on a surface of cone and lengthwise shaped is
curved and oblique to this cone, see Fig. 1.2. Well-designed spiral bevel gears have

considerable reasons why they are superseding other bevel gear types in many areas.



Fig. 1.2 Spiral bevel gear pair [1]

There are some design considerations of spiral bevel gears used in helicopter
transmission drive system in terms of reduction ratio and speed, load carrying
capacity, noise and vibration level and some special operating conditions. The ratio
of bevel gear pairs is generally between 1 and 8. Spiral bevel gears without grinding
works with peripheral speeds up to 8000 ft/min. If peripheral speeds in excess of
8000 ft/min, ground teeth of gears (precision finished gear) are used up to 25000
ft/min. Load carrying capacity of spiral bevel gears is relatively larger than that of
other bevel gear types, because; tooth loads are more evenly distributed thanks to
that two or more teeth are in contact during operation. In order to have less noise
and vibration, this high contact ratio and ground teeth of gears make teeth mesh
smoother and quieter. Any special or adverse operating condition such as high
ambient temperature, presence of corrosive elements and inadequate lubrication and
cooling are to be compensated.

Therefore, all failure modes are to be known in details to have a well-design of a
spiral bevel gears for a helicopter gearbox. For the strength analysis of a gear-pair,
the following failure modes as shown in Fig. 1.3 are taken into account;

. tooth breakage (due to bending),

. Surface pitting (due to contact),



Wear (due to insufficient lubrication),

Scuffing (due to high temperature of the lubricant).

Fig. 1.3 Failure modes[1]

For these failure modes,

Bending stress at the root fillet area of the tooth is calculated.
Contact stress at the tooth surface, where the conjugate action takes
place at any instant of time, is calculated.

The elastohydrodynamic lubrication (EHL) film thickness is
estimated and compared to the surface roughness.

Critical temperature in a pair of bevel gear is analyzed.

A gear and pinion roll through mesh, strain values in the fillets of the gear and pinion

teeth vary in magnitude from compressive to tensile strains. The determination of

the maximum values of strain is also complicated by the fact that the location of

maximum strain varies both along the face-width direction of the tooth and in the

profile direction perpendicular to the root of the tooth. These strain values gives the

fillet stress distribution, which represent the maximum value of principal stress

occurring in the fillet area and are most useful for obtaining a general understanding

of where the peak stresses occur in the gear and pinion fillet areas as shown in Fig.

1.4. It is possible to use this location information to redevelop the gear design to

achieve lower bending stresses.



SIMULATED GEAR ROOT FILLET STRAIN SIMULATED PINION ROOT FILLET STRAIN
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Fig. 1.4 Maximum fillet stress range

A commercial tool with finite element analysis in conjunction with bevel gear
contact development in Fig. 1.5 gives the actual calculated contact stress of gear

surface and also analyzes the pitting failure.

GEAR CONTACT STRESS
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Fig. 1.5 Bevel gear contact stress

Location of high contact pressure determines the failure type. Along the pitch line
of the gear, high contact pressure indicates the possibility of pitting while along the
tip of the gear resulting in high wear in the flank area of the mating pinion.

Scoring is considered to be a rapid wearing away of the tooth surfaces due to heat

generated by pressure and sliding of the tooth surfaces. Scuffing is a welding and



subsequent tearing apart of the tooth surfaces due to a breakdown of the oil film. As
shown in Fig. 1.6, gear pair contact zone temperature increases due to combination
of sliding friction and surface pressure then breakdown the oil film, which resulting
in micro welding of asperities. Therefore, hot scuffing occurs typically within

minutes in the direction of sliding velocity.

| SCORING TEMPERATURE RISE [F]

Fig. 1.6 Scoring temperature rise

The main goal in the design of these drive systems is to achieve accurate predictions
of contact and bending stresses in order to have longer service lives with lighter
gears and to minimize flash temperature. However, these predictions change under
dynamic loadings which result in much higher stresses. In addition to that, noise and
vibration are not still easy to predict. Therefore, in practice spiral bevel gear pairs
go through a series of tests to finalize the system design. As a result, gear dynamics
play a key role in finalizing design of spiral bevel gear pairs, because of the complex
nature of the spiral bevel gear tooth, its sensitivity to manufacturing and assembly

errors that contribute to nonlinear dynamic nature of the gear trains.

1.2 Literature Survey

For the strength analysis of a gear-pair, failure modes such as tooth breakage,
surface pitting and scoring are taken into account. The methods established in the
gear standards such as AGMA [2] are good starting points for the design process.



However, even if the spiral bevel gears are manufactured according to the required
quality assembly and operational conditions affect the meshing performance of the
spiral bevel gears. Hence, spiral bevel gears are manufactured with tooth micro

modifications for best performance and strength.

The methods of spiral bevel gear tooth micro geometry development start with the
proper identification of the gear macro geometry according to the system design
requirements. Hence, gear blank data based on standards, gear cutter specifications,
gear machine tool settings, pinion machine tool settings and desired objective
transmission function are used as inputs to the gear modeling. The outputs are the
tooth and root forms of the crown, gear and pinion tooth contact path and pattern for
unloaded and loaded cases, transmission error in to produce the desired tooth form.
The process is typically iterative until the desired contact and transmission error are
established without sacrificing the design performance, strength, durability and cost
requirements. The tooth contact patterns and transmission errors are calculated using
the differential geometry and Hertzian contact theory in [3] and [4], while using
FEA in [5], [6] and [7].

In [8], authors presents so called ultimate motion graph method to reduce the noise,
improve the sensitivity of gears against deflection under load and no-load conditions
while increasing the strength levels of face milled spiral bevel gears by using
universal motion concept (UMC) free form bevel gear grinding machines.
Advantages and manufacturability of the tooth crowning from very practical
perspective are presented. The UMC method is applied to sample automotive bevel
gear that are manufactured with different ease-off topographies. The success of the
manufacturing is proven by measurements and with the support of acoustic tests on
contact tester and actual operation of the selected spiral bevel gears. One of the
earlier examples of the simulation of the hypoid and spiral bevel gear cutting with
the mathematical tools that models the universal motion generator is shown in [9].

Modified generating roll ratio, helical motion, and cutter tilt are included in this



mathematical model. The relevant coordinate transformation matrices are
established and explained clearly with figures. As a follow-up work in [10], a
methodology to model the mating tooth surfaces with UMC characteristics is
presented to calculate machine settings for the modified radial motion which leads

the generation of the contact path and fourth-order motion curve.

Furthermore, authors present an accurate modeling method for generation of the
face-milled and face-hobbed spiral bevel gears with free form gear machining with
universal motion concept in [11], [12] and [13]. A corrective machine setting
technique is developed to modify the theoretical machine tool settings to
compensate for the surface errors in a simulation of machining environment.
Additionally, in [14] and [15], authors are dealing with the elimination of this
iterative design process to find the optimal solution by specifying an ease-off
topography that defines an optimum contact pattern from which the machine tool
settings are calculated to satisfy the design requirement. Here, unconstraint
nonlinear optimization problem is formulated and solved. Similarly, in [16] and [17]
methods to optimize the ease-off topography are presented for hypoid gears that
reduces the trial and errors in the design of tooth contact and loaded transmission
error. One of the conclusions of this work is that the level of accuracy needed to
practically realize the optimum ease-off topography is high; hence, the grinding
method is needed to produce required micro geometry. The example parametric
effects on kinematical errors are presented for different machine settings data. The
theoretical development of the tooth micro geometry is also included the flank form
errors and their effect on the universal motion concept coefficients in practical
applications as shown in [18] and [19] where the higher order coefficients are
considered. Further improvements are demonstrated in [20] and [21]. The influence
of tooth modifications contact characteristics in face-hobbed spiral bevel gears is
investigated in [22] while observing machine tool setting and head-cutter profile
variations. This is extended in [23] to investigate the elastohydrodynamic

lubrication characteristics of the spiral bevel gears with different tooth micro



geometries and to evaluate the effects of different machine settings used to produce

the pinion.

The most of the literature summarized above mainly concentrates on the accurate
modeling of the tooth form based on the manufacturability and the ease-off
characteristics of the bevel gears that produces the optimal contact area and
transmission error. Also, in addition to the optimum contact pattern to avoid edge
contact for the meshing teeth, the dynamic mesh loading, and system dynamic
behavior and response are crucial elements of the bevel gear drive trains. One of the
most critical elements of the gear dynamics is the mesh stiffness. However, gear
mesh stiffness relevant to dynamic analysis is not commonly found in the literature.
The beam theory is used in [4] for the estimation of the tooth stiffness. In [24], finite
strip method is presented as a method to calculate the tooth stiffness. The effect of
torque change in a specified bevel gear tooth with correct machine settings are
presented in [25]. Here, the mesh stiffness is obtained by FEA based bending and
surface integral based contact model. Here, a quasi-static loaded tooth contact
analysis at one pitch cycle in discrete steps of angular mesh point positions is
performed to calculate stiffness, transmission error, and load distributions as shown
in Fig. 1.7.

fp—
Load
Load

1 Tooth in Contact 2 Tooth in Contact 3 Tooth in Contact

Fig. 1.7 Load distribution scheme [4].



Fig. 1.8 Definition of motion error

The difference between the actual position of the output gear and the position it
would occupy if the gear drive is perfectly conjugate. As shown in Fig. 1.8, 6, is
both theoretical and actual angular position for input pinion. However, 6, is
theoretical angular position for output gear; while, 6, + 86, is actual angular

position for output gear.
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Fig. 1.9 Gear pairs with and without transmission error



Fig. 1.9 -a) shows perfect conjugate action; so, there is no transmission error. Input
pinion and output gear rotate with ratio 3 continuously. On the other hand, ratio 3

fluctuates for gear pair due to transmission error as shown in Fig. 1.9 b).

In gear dynamics, there are relatively few publications studying the dynamics of
spiral bevel gear pairs compared with the parallel axis gear pairs Dynamics of a
hypoid gear pair model is proposed by considering the effects of time-varying mesh
parameters and backlash nonlinearity in [26]. Effects of tooth mesh stiffness
asymmetric nonlinearity for drive and coast sides are investigated in [27]. Dynamics
of right angle gear pair including both backlash and asymmetric mesh stiffness
nonlinearities with time varying and asymmetric mesh parameters is formulated in
[28]. A MDOF nonlinear dynamic model of a spiral bevel gear pair mounted on
flexible shafts and bearings is considered in [29]. Then, the authors extend this study
to include time variation of mesh stiffness and employ receptance method in order
to decrease computational time in [30]. These are the content of current literature in
dynamic studies of spiral bevel gear pair. In these previous works, many
assumptions and simplifications are done to reduce the complex temporal and spatial
varying mesh characteristic, the coupling effect between nonlinear gear mesh and

some effects that need further considerations.

1.3 Motivation, Objective and Scope

In the light of the summarized literature, it is certain that the machine settings and
cutter specifications substantially determine the conditions of meshing and contact
of the spiral bevel gears. There are mathematical models for the tooth surface
generation according to the bevel gear type and the machining methods. Once the
surface generation is completed, the process continues as unloaded and loaded tooth
contact analysis, load distribution, transmission error and optimization of the

machine settings for a good contact pattern and minimum transmission error. While

10



the presented literatures are very effective in developing tools on quasi-static
analysis of contact pattern and stress a necessity of understanding for the
modifications that affect the dynamic characteristics exist. One of the most
significant parameters in spiral bevel gear dynamics is the modeling the mesh
stiffness. However, mesh model coupled with the macro and micro geometry along
with mesh stiffness and static transmission error calculation according to the actual
tooth geometry is not common in literature. Especially, the effect of the ease-off
topography on the mesh stiffness, that is adaptable to dynamic analyses, is not
documented in the current literature. Hence, gear mesh of a spiral bevel gear pair
with different micro geometries based on real machine settings is evaluated in this
study to prepare a foundation to dynamic analysis of the spiral bevel gears. Different
micro geometries are given in order to obtain three main tooth flank modifications

(profile crowning, lengthwise crowning and flank twist) of spiral bevel gear teeth.

Fig. 1.10 Calyx FEA gear pair model [32]

Therefore, the main objective of this study is to perform nonlinear dynamic analysis
of a spiral bevel gear pair used in the helicopter gearboxes with different tooth flank
modifications such as profile crowning, lead crowning and flank twist.

In this thesis, the following tasks are needed.
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Actual tooth geometry with these flank modifications and its corresponding
real machine settings produced by Gleason CAGE4WIN™ goftware will be
synthesized for load distribution results of a three-dimensional loaded tooth
contact analysis with a combined surface integration according to the
guidance in [31].

According to the actual tooth geometry, a mesh model to represent the
dynamic coupling between engaging gear pair will be extracted from Calyx
software [32] as shown in Fig. 1.10.

Viscous damping assumption is used to model energy dissipation due to all
sorts of damping.

The spiral bevel gear pair with backlash nonlinearity as well as asymmetric
and time-varying mesh coupling model will be proposed. Multi-term HBM
coupled with discrete Fourier transform (DFT) and numerical continuation
will be applied to solve nonlinear algebraic equations for dynamic
displacements in torsional mode.

Perform detailed comparative study for certain effects of tooth flank
modifications on dynamic response under light, medium and high loads and
to identify sensitivity of dynamic response with static transmission error and
mesh stiffness of actual tooth having different flank modifications.

1.4 Organization

In this study, introduction including literature survey, motivation, objective and

scope are presented as a Chapter 1. In Chapter 2, a selected pair of spiral bevel gears

with numbers of teeth 23 and 47 is designed in terms of macro and micro geometry.

The details of the macro geometry are given. The micro geometry with real machine

settings are produced by Gleason CAGE software. In the next step, parameters such

as mesh stiffness and static transmission error to model gear mesh coupling are

12



obtained by Calyx software. Mesh stiffness is load dependent and variation of tooth
mesh stiffness for drive and coast sides are considered. In Chapter 3, a dynamic
model including backlash nonlinearity and nonlinear time-varying mesh parameters
is formulated for spiral bevel gear pairs with tooth flank modifications. The system
is reduced to a single-degree-of-freedom definite model by using the relative gear
mesh displacement as the generalized coordinate. The equation of motion is solved
for periodic steady-state response by using Harmonic Balance Method (HBM) with
discrete Fourier transform. Floquet theory is applied to determine the stability of the
steady-state solution. Nonlinear dynamic responses of spiral bevel gear pairs with
different motion error and stiffness are discussed and this gives designers a chance
in order to understand how much these flank modifications affect dynamic response
of gear pair before finalizing their design. Finally Chapter 4 gives the general

summary and conclusions of this study.
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CHAPTER 2

ACTUAL TOOTH DATA AND GEAR MESH MODEL

2.1 Actual Tooth Data

2.1.1 Manufacturing Method

Designing a spiral bevel gear pair for helicopter transmission drive systems requires
a tooth geometry produced by special settings and cutting processes which are based
on two motions, generation and single indexing. Concept of bevel gear generation
is that mating gear and pinion are considered to be generated by complementary
virtual generating gears that are conjugate to each other simultaneously. The
rotational motion of the virtual generating gear is implemented by cradle mechanism
of a bevel gear generator, which is schematically shown in Fig. 2.1. In other words,
tooth shape is generated by a relative roll between the cutting tool and workpiece. If
there is no relative motion, gear teeth profile is the inverse of the cutter profile. That
is, cradle angle is not changing, so; gear is not generated. In all cases, pinion member
of pairs is generated in order to give micro modifications on pinion tooth surface.
Therefore, making a bevel gear pair generated depends on whether gear member of
pairs is generated or non-generated. The shape of the cutting tool does not determine
the final shape of the “Generated” tooth surface. Ratio of the generated roll

determines the final shape of tooth [18].
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Fig. 2.1 Schematic of generation of a spiral bevel gear

Single indexing, face milling is intermittently provided by rotating the workpiece
after finishing a tooth space or one slot at a time. On the other hand, in continuous
indexing, face hobbing, the work has continuous rotation and the cutter rotates in a
timed relationship with successive cutter blade groups engaging successive tooth
slots as the gear is being cut. Fig. 2.2 shows that face milling is more suitable process
for grinding of tooth as finishing operation because of the fact that mathematical
function of generating gear flank is circular not epicycloid as in the case of face

hobbing process.
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Generating gear

Extended epicycloid Circular arc

Fig. 2.2 a) Face hobbing process (Continuous indexing) vs. b) Face milling
process (Single indexing) [12]

Therefore, generation process and face milling are used for applications like
helicopter gearboxes where greatest control of tooth contact pattern and surface
finish are demanded. Besides to generation process and face milling, pinion’s
concave and convex side are cut separately for ultimate control of machine settings.
By using face milling and generation process, a spiral bevel gear pair is designed in
terms of macro geometry as shown in Fig. 2.3 the details of which are given in

following equations.
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Fig. 2.3 Nomenclature of a spiral bevel gear [1]
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2.1.2 Macro Geometry

The selected gear pair macro geometries are designed and corresponding equations

are calculated according to the rules and guidelines presented in [2] and [31]. The

specific use of the selected example pair is for high speed, high loaded aerospace

applications where the gear strength, mesh efficiency, roller bearing endurance are

required to be highest while the overall system vibration is minimum. For the

generation of macro-geometry of a spiral bevel gear, the parameters tabulated at

Table 2.1 are the main design inputs [2]:

Numbers of teeth, n;,

Outer pitch diameter of any member, d; or d,,
Shaft angle, X,

Face width, F,

Mean spiral angle, ¥, ,

Normal pressure angle, ¢",

Cutter radius, R,,

where (j = 1, 2) index gear and pinion.

These preliminary design inputs are taken into considerations to define the rest of

the geometry definitions of the spiral bevel gear pairs.

Number of teeth and gear size: To establish the required reduction ratio there

can be infinitely many number of teeth combinations; however, it is
recommended to select to obtain a gear pair where there is no common factor
in the gear and mating pinion. This is called hunting tooth principle. After
specifying gear size, module and number of teeth can be optimized for other

requirements according to below Eg. (2.1).

_di_d

m; = ,
ng n

(2.1)

where m; is outer transverse module.
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Shaft and pitch angles: The angle between two axes of the two members is

called as the shaft angle. According to gearboxes types where used in
helicopter transmission drive system, the shaft angle changes between 40

and 100. The pitch angles I" for the pinion and gear can be calculated as

[ sin(2)
? (nl/nz) +cos(Z)|’ (2.2)
ry=2x-ry, (2.3)

Facewidth and cone distances: In general, face width for all gears should not

exceed 30 percent of the outer cone distance or 10/Pd whichever is less.
According to [31], in addition to general state mentioned above, face width
can be taken as 0.155 of the gear (wheel) pitch diameter. These are
recommendations for general applications. In helicopter gearboxes,
facewidth is relatively chosen small around 20-25 percent of outer cone
distance; because, some percent of increments can be added towards to toe
section without changing anything if drive system needs more torque than
expected. With the known values of the face width F and outer pitch

diameter d of any member, the mean cone distance A,, can be found as

d, F d, F

A = —
m T 2sin(ry) 2 2sin(ly) 2 (2.4)

The cone distance at any location along the centerline is restricted by the

inner and outer cone distances.
F F
A-=Am—E<Ax<Am+—=AO (2.5)

' 2
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Mean spiral angle: In these gearboxes, spiral angle can be changed between
25 and 36 degree for different design spectrums. Gears with 25° degree spiral
angle are more suitable for gearboxes requiring low thrust loads and high
efficiency, while gears with 35 ° degree are used for high speeds applications
and smoothness is needed. However, as a rule of thumb, spiral angle is given
to satisfy the face contact ratio larger than 2.0 for aerospace applications.
Given the mean spiral angle ys,,, and cutter radius R, the spiral angle at any

cone distance i, can be calculated as

[24nRcsin(y,) — A,° + A,
2A,R,

P, = sin” (2.6)

Pressure angle: The most commonly used pressure angle for bevel gears is
20 degrees. Aerospace spiral bevel gears generally use higher pressure
angles (20°-25°) to reduce bending stress. The pressure angle depends on the
inside and outside blade angle of cutter and has effects on gear design in
many ways. In general, lower pressure angle increase the bending stress but

reduce the contact stress. Lower pressure angles;

. increase the risk of undercut,

. reduce the axial and separating forces,

. increase the toplands and slot width, so allow the use of larger
fillet radii,

. increase the transverse contact ratio.

The last two items increases bending strength, but bending strength should
not fall down more due to the fact that thickness at the root of the tooth is

decreased.
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Since the normal pressure angle is constant along the spiral at each cone

distance, the transverse pressure angle ¢% are calculated as follows

tan(¢™)
cos()

(;bfc = tan™! [ (2.7

Addendum and dedendum: Addendum is the radial distance between the

pitch circle and the tip circle, while dedendum is the radial distance between
the pitch circle and the root circle. Addendum and dedendum portions of
gear and pinion are not equal in helicopter gearboxes. Addendum of pinion
is designed and manufactured to be larger than that of gear to obtain many
advantages, such as increasing fatigue life and reducing scoring temperature.

In this study, whole h, and working depth h;, addendum a, ; and dedendum

b, at the outer section is calculated as

h, = 1.888m, (2.8)

hy = 1.7my, (2.9

(o2 = 0.460m, + 0.390mt(Z—:)2 (2.10)
boz = he — a2, (2.11)

Qo1 = hy — A2, (2.12)

bo1 = he = aop, (2.13)
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At any cone distance, the pitch radius in the transverse plane is the back cone
distance corresponding to that cone distance. Therefore, the radii of the
transverse pitch and base circles for both pinion and gear (j = 1,2) can be

calculated as
Thej = Ax tan(T;) (2.14)
er,j = T;x,j COS(d);) (215)

Then, the root and tip radii are found as follows

Trej = Tpxj — Dx,j (2.16)

t — .t t
Texj = Tpxj T Gy, (2.17)

where a, ; and b}, ; are the addendum and dedendum for the two members

at each transverse section. They can be calculated as

ay; = ap,; + (A, — Ay) tan(6j*) (2.18)

b, = bl + (4, — A,) tan(§)) (2.19)

Circular thickness factor: Circular thickness factor K, is used for determining

the outer transverse circular thickness of pinion and gear tf,,]- and changes
for different design options such as equal stress, equal life and desired
option. In addition, normal circular thickness depends on backlash and
method of cutting. The backlash is obtained by pinion thickness; because, in
this report gear is cut with spread blade (1 rough cut & 1 finish cut) and

pinion is cut with fixed setting (1 rough cut & 2 finish cut) as for typical
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aerospace applications. Therefore, fixed setting enables the pinion concave

and convex are to be cut separately and with desired backlash.

4 tan(¢™)
té,z = E — (aO,l —_ ao‘z) m — Kmt (220)
tg,l = p - t(t;,z (221)

The normal circular tooth thickness along the pitch line at any cone distance

tyx, 1S calculated for both members as

Bhej = o 0S(¥,) (2.22)

where t, ; is the normal circular tooth thickness along the pitch line at any

cone distance.

Cutter Radius: Cutter radius, R, affects many geometric parameters of spiral
bevel gears. Cutter radius has also effects on strength of gears. A small cutter
radius increases contact ratio by generating large spiral angle differences at
the both ends of tooth, which minimizes contact pattern movements under
different load conditions. Therefore, gear pair is working with more stable
contact pattern and then it increases surface fatigue durability. However, a
small cutter radius results in unbalanced tooth thicknesses at different
sections such as inner, mean and outer, so; bending strength decreases at
section having small tooth thickness. Finally, cutter radius is to be selected
according to Eg. (2.23) in order to balance the gear pair for these

considerations.
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R. = 1.1A,, cos(¥) (2.23)
By considering all details explained above in terms of macro geometry, a spiral
bevel gear pair is designed to be used in this study. The main details of this gear pair

are tabulated in Table 2.1.

Table 2.1 Parameters of the example system

Gear Parameters

Pinion Gear
Number of teeth 23 47
Module (mm) 3.0 3.0
Pitch diameter 69.000 141.000
Outer cone distance 78.489 78.489
Normal pressure angle (°) 20 20
Shaft angle (°) 90 90
Pitch angle (°) 26.08 63.92
Mean spiral angle (°) 27 27
Hand of spiral Left Right
Face width (mm) 25 25
Cutter radius (mm) 47.625 47.625
Outer addendum 3.388 1.579
Outer whole depth 5.531 5.531
Face angle 28.76 65.18
Root angle 24.82 61.24
Mean transverse circular 1625 3154

thickness

Mesh Parameters

Damping coefficient ({)

Backlash (mm)
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2.1.3 Micro Geometry

Generally, a helicopter has a vast variety of load spectrums due to different flight

conditions and gearboxes of it are to be designed to work properly during these

operations. In order to do that, spiral bevel gears used in these gearboxes needs flank

modifications on their tooth surface to have a stable contact under different

deflections. Macro geometry given in Table 2.1 is used to generate the micro

geometries and corresponding machine settings in Gleason Cage software for this

study.

Cradle Angle

Eccentric Angle

Swivel Angle =

——
Cutter Spindle

Rotation Angle

o

Cutter Length
Adjustment

Arbor and Chuck

Overhead Drive To Work Spindle

Work Offset Dial

Index Gear Box

Work Offset

achine Center To back

Sliding Base Dial

Machine Center

Work Base
Root Angle

Fig. 2.5 Machine Settings [1]
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Corresponding machine settings of spiral bevel gear for these ease-offs are motion
elements of parameters shown in Fig. 2.5. Each elements affects surface generation
model of tooth surface. These elements are used in terms of higher order
polynomials to give tooth flank modifications in details for spiral bevel gears used
in helicopter gearboxes. Gear micro geometries with real machine settings for
concave and convex flanks of actual tooth are designed to obtain different tooth
flank modifications. Pinion concave-gear convex side is taken as drive side of gear
pair. Therefore, tooth flank modifications are especially done on this drive side.
Although, direction of rotation does not change, operational conditions may produce
torque changes time to time, which causes a contact and loading on the coast side.
Hence, to avoid gear strength problems, some tooth flank modifications are also

given on coast side.

Concave side
Drive

Root

— . — o —

Outer End
of Tooth

Inner End
of Tooth

~ Flank

Coast
Convex side

Fig. 2.6 Tooth nomenclature of a spiral bevel gear [1]
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As shown in Fig. 2.7, Ease-Off is used to be a representative way of showing the
sum of tooth flank modifications of drive and coast side in a gear pair. The Ease-
Offs show misalignments of gear mesh due to crowning applied on tooth surfaces
of gear pairs. The curved upper surfaces are identical to the flat bottom surfaces if

there is no crowning and no misalignments.

Ease-0ff Ease-0ff

Tooth Contact

AW

Motion Graph Motion Graph Motion Graph
£S5 F N e i W
A, — /\ [\ A X
Profile Crowning Lengthwise Crowning Flank Twist

Fig. 2.7 Tooth flank form modifications [33]

Flank form modifications are deviations from conjugate action which can be
expressed as one of gear pair contacts with other gear pair tooth flank and rolls
perfectly without motion error. That is, the change angle from one contact line to
another contact line is exactly same discrete angles created by their ratio during
rotation of gear pairs. Conjugate tooth action is not possible in the gearboxes due to
manufacturing tolerances and load-dependent deflections of shafts, housings and
bearings. Therefore, gear tooth flank requires three main crowning types which are
a circular relief in profile, lead and diagonal directions. Gleason CAGE software is

used to obtain Ease-Offs for gear pairs with three different flank modifications.
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Ease-off shown relative to gear member (Finish Cut)
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Ease-0ff zeroed at first contact point with conjugate surface.

Fig. 2.8 Profile Crowning Ease-Off.

Profile crowning, a circular relief in profile direction, is obtained by designing
curvature on cutter blade or grinding disk to give profile in or profile out on tooth
surface. Ease-Off of actual tooth with profile crowning is generated and used in this
study is shown in Fig. 2.8 and corresponding machine setting for profile crowning

is given in Table 2.2.
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E ase-off shown relative to gear member (Finish Cut)
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Ease-0ff zeroed at first contact point with conjugate surface.

Fig. 2.9 Lengthwise Crowning Ease-Off.

Length or lengthwise crowning, a circular relief in lead or along facewidth direction
is based on cutter radius modifications, which provides a clearance at toe and end of
tooth sections. Fig. 2.9 shows ease-off of actual tooth with length crowning and

corresponding machine setting tabulated at Table 2.2.
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E ase-off shown relative to gear member (Finish Cut)
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Fig. 2.10 Flank Twist Ease-Off.

Flank twist, a circular relief in diagonal direction, is consequences of cutter head tilt
around machine root angle or high order modulation of ratio roll setting. As shown
below in Fig. 2.10, there is bearing contact along one diagonal while there is stock

on other diagonal.

The E, P, G and alpha values are selected as constant and set to zero in these ease-
offs to avoid any further complexities. The E, P, G and alpha are constants
representing the deflection of gear and pinion relative to the gear crossing point as
torque is applied to the gear. Fig. 2.11 illustrates how E, P,G and Alpha are defined

relative to the gear and pinion.

33



Fig. 2.11 Deflections E,P,G and alpha

The path of contact behaviors of unloaded bench test simulation, 100Nm, 200Nm
and 400Nm for all three crowning types are presented in Fig. 2.12 on the gear convex
side. The separation factor is 0.00635mm and all the meshed gear pairs are assumed
without any deflections and misalignments in this study. Furthermore, for gear pairs
used with these tooth modifications, loaded contact patterns and contact stresses are
depicted in Fig. 2.13 for 400Nm load torque. Loaded contact patterns show the
behaviors of tooth flank modifications. The bench test simulation in Fig. 2.12 is
unloaded contact pattern check. Here, the angle of inclination of the path of contact
is in the opposite direction to the leaning of the lines of contact. Hence, the nature
of the bias for all three modifications is in the bias-in format.

Contact pattern on the profile crowned teeth at unloaded case is distributed at the
pitch cone line region as shown in Fig. 2.12-a. The path of contact is close to
horizontal nature with a shallow “S” shape. At some of the instances, the transition
of the contact path is not stable. As the load torque increases, the contact area
enlarges to the whole face-width. The gear pair contact area and path with
lengthwise crowning are at the middle as expected in Fig. 2.12-b. The contact path
is stable and close to vertical direction. The contact area is the smallest of all three

modifications. Even if not edge contact is observed at 400Nm, there is a risk of
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a)
b)
o

Fig. 2.12 Path of contact on gear convex; a) profile crowning, b) lengthwise
crowning and c) flank twist
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possible edge contact at the higher loads in this design. The unloaded contact pattern
of flank twist design is diagonal on tooth surface with the lowest point being closer
to the toe. As the load increases the contact area enlarges to the whole face-width
and the contact area moves to the heel region more than the toe side. The highest
contact area is observed in this modification. The contact path is more stable than
the other two versions. The edge contact is avoided and the contact area is more
evenly distributed. In Fig. 2.13, under 400 Nm torque load, the contact stresses on
tooth surfaces for all three ease-off types are depicted. Gear pair having with flank
twist has lower contact stress due to the high surface contact area and contact ratio.
Although, the edge contact is avoided in all three gear tooth topographies, the design
with lengthwise crowning has the highest risk for an edge contact if the load is

increased or misalignments realized.

iwn

Contact stress (MPa) Contact stress (MPa) Contact stress (MPa)
—  1993.9 — 1789.5 —  1494.0
- 112.4 —  1590.6 —  1328.0
— 1550.8 - 1391.8 —  1162.0
—  1329.3 —  1193.0 - 996.0
— 1107.7 - 994.1 — 830.0
—  886.2 - 71353 —  664.0
—  664.6 - 960 —  49.0
R ;- e IR
Max. pitch line Max. pitch line Max. pitch line
contact stress = 1851.4-MPa contact stress = 1770.7-MPa contact stress = 1475.0-MPa
a) Profile Crowning b) Lengthwise Crowning ¢) Flank Twist Crowning

Fig. 2.13 Contact stress at 400Nm torque on gear convex; a) profile crowning, b)
lengthwise crowning and c) flank twist
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2.2 Mesh Stiffness Model and Case Studies

2.2.1 Mesh Model Development

The parameters used to model the mesh coupling between the gears are mesh
stiffness, mesh damping, acting point and direction of line of action. Mesh spring,
which extends along line-of-action between the mesh points of pinion and gear, is

shown in Fig. 2.14.

Fig. 2.14 Mesh Model.

These mesh parameters vary considerably for a spiral bevel gear pair as the gear pair
rolls and are obtained by applying a three-dimensional quasi-static loaded tooth
contact analysis (LTCA) that generates a detailed load and pattern distributions. This
LTCA is conducted on a commercial package, Calyx, which combines finite
element formulation away from the contact area and surface integral method near
the contact area. Load distribution and angular transmission error are calculated
from the rigid body rolling motions of the gear pair at each specified time step over

a mesh cycle [34].
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Fig. 2.15 Normal force and radius vectors representation.

Calyx divides the tooth contact surface into a total of N contact cells and calculates
the surface normal vector, n;, the position vector, r;, and the normal force vector

with a magnitude of f, on each cell.

N
F = z Nixfi (2.24)
i=1
N
F, = z Ny fi (2.25)
i=1
N
F, = z Nz fi (2.26)
i=1
Frot = \/sz +F° + E? (2.27)
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Using these forces, line of action ny, (n,, ny, n,) can be calculated as

= Fx n, = Fy n, = FZ
Ftot Y Ftot ’ Ftot

My (2.28)

In order to calculate effective mesh point, 7, (x, Yy z,), total moment is needed on

the contact area and derived according to following equations.

N
M= Z £i(r x ) (2.29)
i=1
N N
2= ) tuf, / f (230)
i=1 i=1
X, = w (2.31)
(Fxxr - Mz)
Vr = — & (2.32)

Using load distribution on the tooth surface, effective mesh point and line of action
vector is obtained. Then, directional rotational radius is calculated according to Eq.
(2.33).

A= N (i X Tim) (2.33)
where n;,, and r,,, are the line of action directional cosine vector and position vector

of the effective mesh point, respectively. j; is unit vector of pinion or gear rotating

axis.
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By Solving Eq.(2.33) directional rotation radius is obtained for gear rotation axis,

where angular transmission error is defined.

Ay = TyXe = MY, (2.34)
Furthermore, translational transmission error and mesh stiffness are calculated by

using the known values of mesh force, directional rotation radius and loaded and

unloaded angular transmission error, e;, and e,.

e = eh, e=egl, (2.35)

km = (2.36)

e —e

where e; and e are loaded and unloaded translational transmission errors and k,,, is

effective mesh stiffness.

2.2.2 Application of the Mesh Stiffness Model

In this chapter, the profile, lengthwise and flank twist crowning modification effects
are investigated on drive and coast sides of the teeth at different load levels. The
geometric properties established in Table 2.1 and Table 2.2 are first used to calculate
the directional rotation radii of the gear and the pinion for 100Nm, 200Nm and
400Nm load torque values. The load share is presented at 400Nm for all three ease-
off topographies. The static transmission error (STE) is calculated and the results
are presented for drive and coast sides. Next, the loaded transmission error (LTE) is
developed for different load levels. Finally, mesh stiffness is obtained for different

load torque levels. Directional rotation radius is one of the main parameters to be
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calculated. It is closely related to the path of contact and surface normal vectors as
formulated above. From Fig. 2.16 to Fig. 2.19 show directional rotation radii of gear
and pinion pair for the three ease-of topographies under 100Nm, 200Nm and 400Nm
load torque levels. Furthermore, the directional rotation radii are plotted for drive
and coast sides, as well. The line thicknesses increase from lighter to heavier as the
torque load value increased in the plots. The range of the pinion roll angle shown in
all the plots is only for one pitch. These features are kept in the next figures through
the rest of this paper unless otherwise stated. Fig. 2.16 and Fig. 2.17 show directional

rotation radii of gear under different loads for drive and coast sides, respectively.
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Fig. 2.16 Directional rotation radius of the gear member for: a) profile crowning
drive side; b) lengthwise crowning drive side; c¢) flank twist drive side
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Fig. 2.17 Directional rotation radius of the gear member for: a) profile crowning
coast side; b) lengthwise crowning coast side; ¢) flank twist coast side

Fig. 2.18 and Fig. 2.19 show directional rotation radii of pinion under different loads
for drive and coast sides, respectively. Here, the roll angle magnitude of drive side
is treated as rotation in clockwise direction while the coast side is counter-clockwise
direction. Thus, the pinion roll angle on gear drive side starts from the reverse of the
coast side. In these figures directional rotation radii are shown for profile crowning

a), lengthwise crowning b) and flank twist c).
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Fig. 2.18 Directional rotation radius of the pinion member for: a) profile crowning
drive side; b) lengthwise crowning drive side; c) flank twist drive side

In all ease-off types, the trends of the pinion and gear in the directional rotation
radius are very close to each other, because of the designed ease-off topographies
are very similar to each other. Variation on the radii for both drive and coast side of
gear teeth decreases as the loads increase on the gear pair. However, the magnitudes
of the changes are relatively small when compared to the tooth proportions. The
overall trend of the directional rotation radius for gear and pinion shows close
similarities. The highest directional rotation radius magnitude and the change are
observed in profile modification. The lengthwise crowning provides a smaller
variation in the directional rotation radius since the path of contact is pocketed in
the midst of the tooth. The smallest directional rotation radius is present with flank

twist.
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Fig. 2.19 Directional rotation radius of the pinion member for: a) profile crowning
coast side ; b) lengthwise crowning coast side; c) flank twist coast

In a rigid and static case, the normal load at the mean pitch point is calculated as
8253.5N at 400Nm load torque based on the standard gear tooth force formula [2].
The load share between consecutive teeth at 400Nm load torque are presented in
Fig. 2.20-a), b) and c) for the profile crowning, lengthwise crowning and flank twist,
respectively. The simulation is conducted with Calyx. Here, the range of the pinion
roll angle is for 3 mesh cycle to capture the all the teeth in contact. The teeth share
the total mesh loads as shown in Fig. 2.20-a) for profile crowning such that when
the simulation starts at 0.734° the load on tooth # 1 is around 6800N levels while
load on tooth #2 is about 1200N levels. At the mesh cycle progress the load on

tootn#1 reduces and tooth #2 increases. The load is shared equally at 6.5°. Tooth #1
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load share becomes significantly small around 13.2°; hence, the tooth#1 is still in
contact, kinematically, with very light load until 13.9° at when tooth # 3 enters the
mesh. Further, the cycle continues in the similar manner. The mesh cycle for each
tooth starts from the toe as presented in Fig. 2.12. The general behavior of
lengthwise crowning and flank twist are similar to profile crowning. The major
differences are the start of the contact of tooth #3 and the duration of tooth mesh
contact. The total load variation through the mesh cycle is presented in Fig. 2.21.
Here, profile crowning and flank twist show uniform variation in the 3 mesh cycles
while the lengthwise crowning is relatively unstable. The reason for this condition
is that, the lengthwise crowned gear has the most potential to present an edge contact
start and the end of the mesh cycle as observed in Fig. 2.13. Therefore, during the
quasi-static finite element calculations the lengthwise crowned gear presents an
increase in the starting load at each tooth engagement. The standard rigid gear mesh
load calculation at mean pitch point and the total load transferred with quasi-static
finite element calculations have obvious differences. Because, finite element
calculation includes the effects of the deflections on the gear teeth, moment arm
changes due to the moving in the actual contacting point (directional rotation
radius), the effect of the actual contact point pressure angle, spiral angle on the
normal vector. The mesh forces are obtained by a torque balancing; hence, the total

mesh force fluctuations are realized as shown in Fig. 2.21.
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Translational unloaded static transmission errors (STE) for drive and coast sides are
shown in Fig. 2.22 for profile crowning, lengthwise crowning and flank twist. The
STE plots purpose is to define the nature of the motion transmitted. The pinion is
assumed to be the driving member at constant speed and the gear is the driven. In
Fig. 2.22-a, STE of profile crowned pair changes its values from positive to
negative. This means that at positive STE the pinion roll angle instants the gear
rotation is leading the theoretical position while at negative regions the gear is
lagging the theoretical position. The STE for the lengthwise crowning is presented
in Fig. 2.22-b for drive and coast sides. Both drive and coast sides show a similar
trend and the magnitudes at positive values. Hence, the gear rotation is leading the
theoretical position for the lengthwise crowning. The STE of the flank twist
modified design is shown in Fig. 2.22-c for drive and coast sides. The motion starts
and ends at the positive STE values while in the midst of the meshing the STE is at
negative values. Hence the gear leads at the start and end of the meshing while lags
in the midst of the meshing.
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Fig. 2.22 Translational static transmission error for: a) profile crowning; b)
lengthwise crowning; c) flank twist

Translational loaded transmission errors (LTE) of gear pair with profile crowning
are shown in Fig. 2.23 for drive and coast sides at different torque load levels. As
the torque increases magnitude of LTE grows. Here, the LTE values are all negative
and differs from the nature of the STE. The variation of LTE at 200Nm torque load
is relatively smaller than 100Nm and 400Nm. This indicates that around 200Nm
there is a load torque that gives the most optimum LTE during the operation. This
statement is true for the rest of the modifications. The LTE is depicted in Fig. 2.24

for drive and coast sides at different load levels.
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The magnitude of the LTE is positive in all load cases and the LTE value reduces as
the load increases. The LTE of flank twist is shown in Fig. 2.25 for drive and coast
sides at different loads. The LTE values are all negative at all the selected load

levels. The magnitude of the LTE increases as the load grows.
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Fig. 2.25 Loaded translational static transmission errors for flank twist crowning

Finally, for profile crowning, the mesh stiffness variations of gear are illustrated in
Fig. 2.26. The gear mesh stiffness increases as the function of the growth in the
applied load. The drive and coast sides of the tooth shows an identical behavior

because of the very similar ease-off topographies given in the drive and coast sides.
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Fig. 2.26 Mesh stiffness variation under gear torque values for profile crowning

The mesh stiffness of the lengthwise crowning design is illustrated in Fig. 2.27 for
drive and coast sides at different load torque values. Similar to the previous case,

the mesh stiffness increases as the load torque grows.
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The mesh stiffness of the flank twist crowning design for drive and coast sides are
presented in Fig. 2.28 for different load torque levels. The mesh stiffness increases

as the load grows in the flank twist case as well.
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Fig. 2.28 Mesh stiffness variation under gear torque values for flank twist
crowning

2.3 Discussion

It is clear from Fig. 2.12 and Fig. 2.13, edge contact is avoided under loaded
conditions. However, it is not the only sufficient condition to make a judgement on
the performance of the mesh and selected crowning type. Hence, as presented in the
previous sections, the profile, lengthwise, flank twist crowning modifications all
produce different effects on the directional rotation radius, STE, LTE and the mesh

stiffness.
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The directional rotation radius in all three modifications at 100Nm and 400Nm are
shown in Fig. 2.29 for the drive side to have a better relative comparison between
the different designs. The figure on the left and right presents 100Nm and 400Nm,
respectively. At the lightly loaded conditions the contact path is distributed over a
larger range towards the mean pitch diameter of the gears. As the load increase the
path of contact narrows to the mean pitch diameter region. The effect of the load on
the contact path is more on the profile crowned gear. At 100Nm torque profile
modified gear shows the largest contact path distribution whereas at 400Nm the
distribution and the value of the directional rotation radius reduces below lengthwise
crowned gear. Flank twist shows the smallest directional rotation radius in all load
levels. Hence, flank twist design has a more stable contact path nature compared to

the other two modifications.
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Fig. 2.29 Directional rotation radius variation under 100Nm and 400Nm gear
torque values on drive side

STE change behavior of profile crowning is different than lengthwise and flank twist
modifications, while lengthwise crowing gives considerably high transmission error
in positive magnitudes. STE is in negative region approximately 19% of the one
pitch mesh cycle in profile crowning and 50% in flank twist crowning design. The
LTE for profile crowning and flank twist is always negative while lengthwise
crowning stays at the positive values. The comparison of the LTE at 400Nm value

for all three modifications are presented in Fig. 2.30 for the drive side. It is evident
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that the profile and flank twist modifications are quite similar in magnitude even if
the trend is slightly different. The general contact nature is close to each other as it
can be reviewed in Fig. 2.8, Fig. 2.10 and Fig. 2.13. The contact area at the loaded
operation of the lengthwise crowning is distributed in the center of the tooth as
clearly evident from Fig. 2.9 and Fig. 2.30. Thus, the lengthwise modification in this
particular design case presents the least desired properties when compared to profile
and flank twist modifications from contact characteristics perspective.
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Fig. 2.30 LTE variation under 400Nm gear torque values for all modifications on
drive side

The mesh stiffness is a load dependent feature as shown in the relevant figures where
the increase in the load produces higher mesh stiffness. Even if the magnitude of
lengthwise crowning is negative, due to the nature of Eq. (2.36), the stiffness is
always positive, which means that the teeth are in compression as expected.
Because, the contact area enlarges on tooth surface and produces a higher tooth
contact ratio of the gear pair, which enables the mesh stiffening as the load increases.
The comparison for 400Nm torque load for all three modification types are

presented in Fig. 2.31 for the drive side. Lengthwise and flank twist crowning
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designs show a very similar trend and magnitude while profile crowning shows
relatively lower stiffness value. The effect on the shape of the mesh stiffness
variation is dominated by the shape of STE. As a final remark, in combination with
LTE, mesh stiffness and contact stress, the flank twist crowning is the most desirable
case. Because of lower contact stress, stable contact path, low static and loaded
transmission errors and high stiffness combination gives a promising design for

dynamic evaluation.
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Fig. 2.31 Mesh stiffness variation under 400Nm gear torque values for all
modifications

The gear mesh parameters are used in dynamic model are tabulated at Table 2.3,
Table 2.4, Table 2.5 and Table 2.6. In dynamic model, transmission error of gear
pair drive side is used and both drive and coast sides of gear pair are used for other

mesh parameters.
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Table 2.3 Transmission error of the example system

Profile Crowning Flank Twist Lengthwise Crowning

pm Term Unloaded Unloaded Unloaded

el Mean 2.279 -0.326 99.99

e2 | cos(9) 1.933 3.396 3.83

e3 | sin(0) -2.005 0.315 -0.44

ed | cos(26) 0.156 -0.727 -0.76

e5 | sin(260) 0.46 0.265 0.48

e6 | cos(36) -0.244 0.496 0.57

e7 | sin(39) 0.92 -0.154 -0.14

e8 | cos(406) 0.593 -0.297 -0.34

e9 | sin(48) 0.056 -0.023 -0.07

Table 2.4 Mesh stiffness of the example system
Profile Crowning Flank Twist Lengthwise Crowning

N/m Term 100 200 400 100 200 400 100 200 400
(x10°) Nm Nm Nm Nm Nm Nm Nm Nm Nm
kdl Mean 176 217 280 188 234 300 184 228 292
kd2 | cos(6) -7.6 -15.0 -245 | -205 -320 494 | -23.1 -340 -4938
kd3 | sin(6) 19.7 32.9 394 | -10.2 -1.6 -5.0 -8.0 -1.6 9.1
kd4 | cos(26) | -7.8 -4.7 -3.1 15.3 21.3 10.4 17.4 21.2 13.2
kd5 | sin(26) | -108 -85 -45 | 64 20 -47 | -48 16  -45
kd6 | cos(30) | 3.3 5.2 82 | -164 -104 -75 | -179 -98 -87
kd7 | sin(30) | -21.3 -11.1 -7.9 51 -0.3 2.2 14 -0.9 1.9
kd8 | cos(46) | -12.9 -2.9 -5.0 9.0 6.2 6.4 10.5 6.6 7.0
kd9 | sin(40) -1.3 2.8 1.8 -0.9 1.8 -1.6 1.5 04 -0.7
ke2 | cos(6) -7.6 -150 -245 | -201 -32.0 -494 | -226 -340 -498
ke3 | sin(9) | -195 -328 -394 | 11.0 1.6 5.0 8.7 1.6 9.1
kcd | cos(20) | -7.8 -4.7 -3.0 15.0 21.3 10.4 17.2 21.2 13.2
kes | sin(260) | 10.8 8.5 4.5 6.6 2.0 4.7 5.0 -1.6 4.5
kcé | cos(36) 34 5.2 8.1 -16.6  -104 -7.5 -17.9 -9.8 -8.7
ke7 | sin(30) | 21.3 11.2 8.0 -5.3 0.3 -2.2 -1.6 0.9 -1.9
ke8 | cos(48) | -129  -3.0 -5.0 9.1 6.2 6.4 10.7 6.6 7.0
ke9 | sin(46) | 1.3 27 -18 | 10 -18 16 | -1.4 -04 07
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Table 2.5 Pinion Radius of the example system

Profile Crowning Flank Twist Lengthwise Crowning

100 200 400 100 200 400 100 200 400

mm Term Nm Nm Nm Nm Nm Nm Nm Nm Nm

Al Mean 245 245 244 | 243 243 243 | 246 246 24.6

a2 | cos(®) | -03  -0.1 0 0 0 0 0.1 0 0
a3 | sin(@) | 03 02 -01 | -02 01 -01 | -02 -01 -01
A4 | cos(26) | 0.1 0 0 0 0 0 0 0 0
A5 | sin(26) | 0 0.1 0 0 0 0 0 0 0
A6 | cos(36) | 0 0 0 0 0 0 0 0 0
A7 | sin(36) | 0 0 0 0 0 0 0 0 0
A8 | cos(48) | 0 0 0 0 0 0 0 0 0
A9 | sin(40) | 0 0 0 0 0 0 0 0 0
a2 | cos(@) | -03  -0.1 0 0 0 0 0.1 0 0

A3 | sin(@) | 03 02 01 | 02 01 01 | 02 01 01

Acd | cos(26) | 0.1 0 0 0 0 0 0 0 0
AeS | sin(2) | 0 01 0 0 0 0 | -01 0 0
A6 | cos(36) | 0 0 0 0 0 0 0 0 0
a7 | sin(30) | 0 0 0 0 0 0 0 0 0
Ac8 | cos(46) | 0 0 0 0 0 0 0 0 0
a9 | sin(48) | 0 0 0 0 0 0 0 0 0
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Table 2.6 Gear Radius of the example system

Profile Crowning Flank Twist Lengthwise Crowning
e I I I
Al Mean 50.1 50.1 50 49.7 49.6 49.7 50.2 50.2 50.2
M2 | cos(8) | -0.6 -0.3 0 0.1 0 -0.1 0.1 0.1 0
A3 | sin(6) -0.6 -0.5 -0.3 -0.5 -0.3 -0.2 -0.5 -0.3 -0.2
M4 | cos(20) | 0.2 -0.1 0.1 0.1 0 0 0 0 0
Ad5 | sin(26) | 0 0.1 0 0.1 0 0 0.1 0 0
Ad6 | cos(36) 0 0 0 0 0 0 0 0 0
A7 | sin(36) | -0.1 -0.1 0 0 0 0 0 0 0
Ad8 | cos(46) | 0.1 0 0 0 0 0 0 0 0
M9 | sin(48) 0 0 0 0 0 0 0 0 0
A2 | cos(B) -0.6 -0.3 0 0.1 0 -0.1 0.1 0.1 0
A3 | sin(@) | -0.6 -0.5 -0.3 05 -03 -0.2 05 -03 -0.2
Acd | cos(20) 0.2 -0.1 -0.1 0.1 0 0 0 0 0
Acs | sin(20) | 0 0.1 0 0.1 0 0 0.1 0 0
A6 | cos(36) 0 0 0 0 0 0 0 0 0
Ac7 | sin(30) | 01 -01 0 0 0 0 0 0 0
Ac8 | cos(46) | 0.1 0 0 0 0 0 0 0 0
A9 | sin(40) | 0 0 0 0 0 0 0 0 0
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CHAPTER 3

DYNAMIC MODEL

3.1 Dynamic Model Formulation

A dynamic model simulating the vibration behavior of an actual spiral bevel gear
pair is needed to make a final decision on a design of helicopter transmission drive
system. In this study, a spiral bevel gear pair with a nonlinear time-varying dynamic
model including backlash and asymmetric mesh effects is used by assuming rigidity
for other components such as shaft, webs, bearings etc. 2-D torsional vibration
model has also torsional rigidity for pinion shaft and gear web except for their

utilization of the equivalent inertias on gear and pinion.

Fig. 3.1 Spiral bevel gear pair dynamic model
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The model shown in Fig. 3.1 has asymmetric time-varying mesh stiffness and mesh
damping, backlash and static transmission error along line of action. Rotation of
pinion or gear relative to each other on tooth surface makes these parameters

variable.

The equation of motion for the 2-DOF torsional vibration model can be written as
[27, 28]

L6, + 1,(8)c(8)(8 — &) + 1,(O)k(B)f (6 —e) =T, (3.1)

1,0, — 2,(8)c(8)(6 — &) — 2,(O)k(8)f (6 — &) = =T, (3.2)

where I, and I, are the mass moments of inertia of pinion and gear, respectively.
T,, and T, are the torque applied on pinion and gear. § is the dynamic transmission
error. In Eq. (3.1) and (3.2), stiffness k(&) , damping c(&) , directional rotation

radius of pinion and gear, 1,,(6) & 4,(6) are asymmetric and time-varying.

N EY.
p(8) = {Apc, 5<0 (3.3)
Agar 620

A9(8) = {Agc, 5<0 34)
L
Apa = Apa, + Z(A”d(ﬂ) cos(lwt) + Al’d(21+1) sin(lwt)) (3.5)
=1
M
Ape = e, + Z (pe gy COSIMOD) + e, sin(mat)) — (36)
m=1

U
Aga = Aga, + Z(A«gd(Zu) cos(uwt) + Aga,,,, 1, Sin(uwt)) (3.7)
u=1
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|4
Age = Age, + Z()LQC(ZU) cos(vat) + Age,, o SINOD)  (38)

v=1

Asymmetric and time-varying mesh stiffness, mesh damping and dynamic

transmission error, 9, are defined as

8 = 1,(8)8, — 44(6)8, (3.9)
_ (ka, 6=0
k(5) = {kc, i (3.10)
_ Ca, 6=0
c(8) = {CC, i (3.11)
A
kq =kq, + Z(kd(Za) cos(awt) + kd(2a+1) sin(awt)) (3.12)
a=1
B
ke = ke, + Z(kc(zw cos(bwt) + ke yp s, Sin(bw)) (3.13)
b=1
D
Cqg =Cqq + Z(cd(Zd) cos(dwt) + Cd(zq+41) sin(dwt)) (3.14)
d=1
E
Cc=Ccy + Z(CC(Ze) cos(ewt) + Ce(ze41) sin(ewt)) (3.15)
e=1

Nonlinear displacement function,f (6§ — e), in Eq. (3.1) and (3.2) can be written as

§—e—b, d—e=b
f((g_e):{o, —-b<d—e<b (3.16)
d—e+b, 6—e<—b

Here, b denotes the half of the gear backlash, which is 40 micron in this study.
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The static transmission error, e, which can be defined as displacement of a driven
gear with respect to its theoretical uniform displacement as a pair of contacting gear
teeth. It can be considered as periodic and can be represented as a Fourier series
given in Eq. (3.17).

G
e = Z(e(Zg) cos(gwt) + ezg+1) Sin(gwt)) (3.17)
g=1

This 2-DOF semi-definite system, where the generalized coordinates are 6, and 6,
is reduced to a single-degree-of-freedom (SDOF) definite system with the
generalized coordinate, x. Let x = § — e, Eq. (3.1) and (3.2) is combined into the

following single equation of motion:

me(8)% + c(8)i + k(8)f(x) = me(8) (l” (I‘W” +2 (,S)Tg - é) (3.18)
14 g
, o>

mo@®) = {52 8 (3.19)
Mea = 1/(B3a/1p + 224/1) (3.20)
Mee = 1/ (Be/Ip + A5c/14) (3.21)

x—Db, x=b
flx) = {O, —b<x<b (3.22)

x+ b, x<-b

For simplifications, 4;,,, and A,,,, are taken as zero, which is a reasonable assumption
since the mesh point and line of action are typically continuous with little change in
time as explained in 2.2.2 Application of the Mesh Stiffness Model. 2.2.2
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By considering Eq. (3.20) for bias term and w, = /kdl/med1 and with the

following transformations, the dimensionless equation of motion can be derived:

X =x/b (3.23)
t=wyt (3.24)
w0 =w/w, (3.25)

A
ky = ka/ka, =1+ E(Ed(Za) cos(at) + Ed(2a+1) sin(a@t)) (3.26)

a=1

B

e = ke/key = 1+ ) (ke (yy) cOSBTD) + Kegyy ) sinG@D)  (3.27)
b=1
D

Ca = CalCay =1+ ) (Cagyqy COSWMETD) + Ea(y,,, Sn(ATD)  (3.28)
a=1

E
Cc=cc/ccy =1+ Z(EC(Ze) cos(ewt) + Ce(2e41) sin(e@t)) (3.29)

e=1

G
é=e/b= Z(é(zg) cos(gat) + €441y sin(gat)) (3.30)
g=1

H
Toa = ApafApa, = 1+ Z(Z,,d oy COSCTD) + Ly, sin(h@D) (331
h=1

]
/TPC = /lpc//lpcl =1+ E(ZPC(ZJ') cos(jawt) + ch(2j+1) sin(j@t)) (3.32)
=1

,sin(k@t)  (3.33)

d(2k+1

K
/igd = Agd//lgdl = 1 + Z(igd(zk) COS(k(T)'f) + Zg
k=1
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Rge = Rge/2ge, = 1+ ) Clge gy coSUTD + Iy, sin(1aD)
Then, the simplified dimensionless equation of motion can be written as

'+ 20c(®)g(®)x' + %k(fc) f@) = Tydy(®) + Ty, (%) — &”

where the parameters in the above equation are given by

_ /15)(11%1
21,0y,
Al
Afnulg
o pa,Ty
P bw?l,
T, =oT,
-~ _ (Cas x=1
c(¥) = {rdaéc, ¥<1
CC1
T' —_— ———
da Cd1
kg, F>1
k(@) = { @
Tkal <1
kc1
T = —
k kd1
xX—1, x=>1
f(i)z{o, —-1<x<1
x+1, < -1
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(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)



A2+ gl? >0
~ pd gd» =
X) = ~ ~
9 {rpz)lf,c + o1/ A%, ¥ <0 (3.45)
- Loa, x>0
1(x) =178
() {rp/’tm, %<0 (3.46)
- s x>0
1@ =19
9 {rgagc, <0 (3.47)
= 2 3.48
P Ao, (3.48)
e 3.49
g ’19‘11 (3.49)

3.2 Harmonic Balance Method

By using multi-term Harmonic Balance Method coupled with discrete Fourier
Transform, which has been successfully applied in [29, 35], nonlinear equations of
motion for x is solved. Since the static transmission error, mesh stiffness and mesh
damping are periodic in time, the steady state solution, X, must also be periodic [29].
This implies that the nonlinear displacement function, f (%), can also be described
periodically.

Thus, the steady state solution is assumed to be of the form

M
() =%, + Z (& 2m) cos(m@t) + X (zm+1) Sin(mat)) (3.50)

m=1

Similarly, damping force, nonlinear restoring force and external excitation forces

can be represented as Fourier series with multi harmonics as follows:
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M
Eo(D) = Foy + ) (B COSOMBE) + Ex gy SIN(ED)  (351)

m=1

M
Fy(t) = Fy, + Z (Fk(Zm) cos(m@t) + Fiecam+1) sin(mat)) (3.52)

m=1

sin(mwt))  (3.53)

(2m+1)

M
E,(®) = F + Z (FP(Zm) cos(mat) + F,
m=1

M
F,(t) = F + Z (F9(2m) cos(mat) + F,

m=1

sin(m@t))  (3.54)

(2m+1)

where the Fourier coefficients of each series can be calculated by making the use of
discrete Fourier Transform (DFT). The values of these forces at the discrete time
t, = nhare as follows (n € [0,N — 1] and h = 21t/ (N®)

(&) = 20c(%(£)g(2(E))% (E) (3.55)
i = 25 ) (xce) 259
B = szv(’z(fn)) (3.57)
Fy () = Ty Ay (%(80) (3.58)

where total number of the discrete points, N must be larger than twice times of
highest harmonic number R, in order not to have aliasing errors. The Fourier
coefficients of these forces, F, (u = ¢, k, p, g for damping force, nonlinear restoring
force, and external excitation forces on the pinion and gear, respectively) are

determined by employing the inverse DFT equations:
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1 N-1
Fu1 = Nz E, (%) (3.59)
n=0

N-1
2 N
Fugry = ) FalE) cos(@mrn/N) (3.60)
n=0
2 N-1
Fugrony =5 ., FulE) sin@mrn/N) (3.61)
n=0

By substituting equations Eq.(3.17) and Eq.(3.50) - Eq.(3.58) into Eq.(3.14) and
equating the coefficients of like harmonic terms, a set of 2R + 1 nonlinear algebraic

equations can be obtained, which can be written in vector form as

S(F., Fy, By, Fy, @) = 0 (3.62)

where the elements of S are given as (r € [1,R])

S1=FytFy B —F (3.63)
— ~\2
Sary = (@) Xar) + Fery + Fearn = B ~ Fon .60
— (r@d)?é 2 '
— ~\2 >
Sar+n) = ~('@) arsn) + Fegriny T Frariny ~ Forin
~Fooriny ~ TP e0ren 369

Eq. (3.63) is related to the bias term while Eq. (3.64) and (3.65) are the equation

including the sine and cosine terms of the r'" harmonic.
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3.3 Solution of Nonlinear Algebraic Equations

In steady-state vibration analysis of a system with nonlinear elements, nonlinear
differential equations of motion are converted into a set of nonlinear algebraic
equations as explained in the previous section. Hence, nonlinear algebraic equations

are solved in order to obtain the vibratory characteristics of the nonlinear system.

The set of nonlinear algebraic equations given by Egs. (3.63)-(3.65) is solved by
Newton’s Method, which is given by Eq. (3.66), for the unknown displacement

VeCtOI’ f = [52'1 52'2 o f2R+1]T.

Z(m) = gm=1) _ [j=1](m=1)g(m~1) (3.66)

Here #™ is the mth iterative solution based on (m-1)" solution and j=1 is the
inverse of the Jacobian matrix. The iteration procedure described by Eq. (3.66) is
repeated until the vector norm of S(™ is below a predefined error limit for that
excitation frequency. Moreover, arc-length continuation method is used in the
solution and a new parameter, arc-length, is chosen as the continuation parameter
instead of the frequency in order to follow the path even at the turning points. Details
of Newton’s with arc-length continuation are found in [36], [37] and [38].

The stability of the steady state solution X(Z) can be determined by examining the
stability of the perturbed solution %(%) + A%(f) using Floquet theory. The

variational equation for the perturbation A% (%) is

g&(®)
1+0

AZ(B)" + 24c(X(D)g(xX(D)AZ(D) + k(X(D)p(DAX(D)
=0

where ¢ () is a discontinuous separation function

(3.67)
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NGRS
¢ = {0, 1Z(H)] < 1 (3.68)

The Eq. (3.67) can be written in state-space form z(f)' = G(t)z(t) where
z(t) = [A%(©) A%(©)']" is the state vector and G(t) = G(f + T) is the periodic
state matrix given by [39]

0 1

6O =|_95D) ) io®  —20c@®)IE®) (3.69)

140

Then, the monodromy matrix, M = z(T) is defined as the state transition matrix at
the end of one analysis period, which is obtained by solving the homogenous matrix
equation z(t)" = G (t)z(%) given initial condition z(0) = I, , and the stability of the
perturbed solution and consequently the stability of the corresponding solution (%)
are determined by examining the eigenvalues of this matrix. Here I, is 2x2 identity
matrix [39]. M is again computed with a method that is based on an assumed
stepwise variation of the state transition matrix. The state matrix G(%) is
approximated as a series of step functions G,, at N discrete time intervals T = nh as
follows [39]

nh
1
G, = A j G(r)dr n € [1,N] (3.70)
(n-1Dh

If large number of time steps N is used, G () can be considered constant between
two consecutive time steps and the integration is not needed. Between these two
time instants, the following relation, where the exponential term is the state

transition matrix, can be written [40]
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Zn+1 = ehGnZn (3.71)

Then, the monodromy matrix is computed as the product of the individual transition
matrices [19]:

N-1

Zy = 1_[ e"nzy = Mz, (3.72)
n=0
N-1
M= |eln (3.73)
n=0

Here, Pade approximation is used in MATLAB via “expm” command for matrix
exponentiation. Then, the complex eigenvalues 1, and A, of M, which are called
Floquet multipliers, are calculated and if the modulus of either A, or 4, is greater

than unity, the solution g(t) is unstable.

3.4 Results and Discussion

The equation of motion given in Eq. (3.35) is solved by both harmonic balance
method (HBM) and numerical integration (NI). Using HBM solution, RMS values
of dynamic displacements, u,.,s, which is normalized with respect to backlash of
gear pair, are obtained. u,,,s is the root-mean-square (RMS) amplitude of the

alternating component of ¥(Z) and given in Eq. (3.74)

(3.74)

(3.75)

where A, is the amplitude of the r' harmonic obtained by HBM.
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For NI solution, MATLAB “ode45” solver, which is based on an explicit 4™-5™
order Runge-Kutta method, is used. In this method, the number of cycles for the
solution to reach steady-state depends on damping, initial conditions etc. Therefore,
ensuring the solution to reach steady-state, a constant number of cycles specified
according to the initial runs is used for whole frequency range. As seen from Fig.
3.2, numerical integration solution is matched with stable HBM solution up to @ =
0.45, and has a jump at this frequency. The reason behind that single-sided tooth
impact region starts at @ = 0.56. In other words, tooth separation begins to happen
and response continues to emerge. Meanwhile, HBM solution shows that the
response curve bends left towards lower frequency up to close to jump frequency
for NI solution due to the softening-type nonlinear behavior of the backlash. At this
region, then response curve changes its direction continues to increase with
frequency up to @ = 0.75 and maximum value of itself. In this case, the backlash
nonlinearity behaves as a hardening spring because of the additional impact with the

preceding tooth, which is called as double-sided tooth impact.
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Fig. 3.2 Comparison of u,,,,; components of HBM (o stable, o unstable) and NI (+)
solutions
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Here, NI solution is again coincident with stable HBM solution. NI solution is
different than solution of HBM at frequencies between @ = 0.75 and @ = 1.8. In
these regions, multiple solutions coexist depending on the initial conditions; so this
region are unstable. Moreover, by incorporating the sub-harmonic motions into the
solution, HBM solution matching with the NI solution in that region. Fig. 3.3 shows
the RMS of the dynamic response including the period-2 (2T) and period-3 (3T)
motions. For period-# (BT) motion, the response %(t) is represented in Fourier

series as follows:

M
() =%, + z (% (2m) cos (%Gf) + X(2m+1) Sin (% (Bf)) (3.76)
m=1
where £ is the subharmonic index. For period-2 (2T) motion, f = 2 and the
response consists of the harmonics with the frequencies @/2, 2&/2, 3&/2,
4@ /2 ---. The period of the response in this case is 2 X (2 /@). Therefore, the
motion described by such a response is referred as period-2 (2T) motion. On the
other hand, for period-3 (3T) motion (8 = 3), the response consists of the
harmonics with the frequencies @/3, 2w/3, 3@/3, 4@/3 -+-, and the period of the
response is 3 X (2mr/@). Therefore, the motion described by such a response is
referred as period-3 (3T) motion. In general, the period of the response consisting

of the subharmonics with the index of g is § X (2m/®).

Consequently, the NI solution may converge to primary and sub-harmonic motions
in the multi-valued regions depending on the initial conditions. HBM solution
captures NI solution for @ = 1.8 and higher frequencies when solution is stable as
shown also in Fig. 3.2 and Fig. 3.3. By considering this comparison, sub-harmonic
motions and stability analysis are not used for the rest of this study when comparing

responses of spiral bevel gears with different tooth flank modifications.
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Firstly, for spiral bevel gear with flank twist modifications, Fig. 3.4 shows that
U,msvalues of dynamic displacements vs. normalized frequency with respect to
natural frequency under different load conditions. In addition to primary resonance
peaks, 2nd, 3rd and 4th super-harmonic resonance peaks are also seen in Fig. 3.4.
The peak behavior of super-harmonic responses are different than that of resonance
response during different torque values, which results from harmonic amplitudes of
mesh parameters shown in Fig. 3.5, Fig. 3.6, Fig. 3.7 and Fig. 3.8.
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Fig. 3.4 RMS values of dynamic torsional displacements for FT

First mesh harmonics are more dominant than other mesh harmonics for static
transmission error and directional rotational radii. However, as shown in Fig. 3.5,
first mesh harmonic of mesh stiffness has slightly larger than other mesh harmonics
at light load and it starts to dominate much more than others when gear pair are

under higher loads.
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Secondly, for spiral bevel gear with profile modification, normalized responses
under different load conditions is shown in Fig. 3.9. In this case, the peak behavior
of super-harmonic responses are same with that of resonance response during

different torque values.
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Fig. 3.9 RMS values of dynamic torsional displacements for PF

Fig. 3.10 and Fig. 3.11 show that third mesh harmonic of mesh stiffness and static
transmission error affects more than second harmonic of these mesh parameters. In
addition to that, third mesh harmonic of mesh stiffness dominates slightly more than
first mesh harmonic. The other mesh harmonics of mesh stiffness are also
considerably comparable with first and third mesh harmonics especially for light
load. Mesh harmonic amplitudes of directional rotation radii for pinion and gear
with profile crowning as seen from Fig. 3.12 and Fig. 3.13 are almost twice times

than that of the other gear pairs.
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Finally, Fig. 3.14 illustrates normalized responses of spiral bevel gear with
lengthwise crowning which is close to gear with flank twist in terms of peak
behavior of responses and normalized mesh harmonics shown in Fig. 3.15, Fig. 3.16,
Fig. 3.17 and Fig. 3.18. Also, peak behavior of response changes for resonance and
other super harmonics and effects of first mesh harmonic on mesh parameters are

more than that of other harmonic in this type crowning.
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Fig. 3.14 RMS values of dynamic torsional displacements for LW
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Gear pairs with different tooth flank modifications gives a chance to have a better
understanding of dynamic displacements with static transmission error and load
dependent mesh stiffness. Firstly, different tooth flank modifications results in
different translational static transmission error shown in Fig. 3.19. Amplitudes of
static transmission error of gear pairs with profile crowning and flank twist are much

smaller than that of gear pair with lengthwise crowning.
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Fig. 3.19 Static transmission errors of gear pairs

Fig. 3.20 shows mesh stiffness variation of gear pairs obtained for lengthwise,
profile and flank twist modifications under gear torque of 100 Nm. On the contrary
of static transmission error, mesh stiffness variation of gear pair with flank twist is
close to that of gear pair with lengthwise crowning and different than that of gear

pair with profile crowning.
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Fig. 3.20 Mesh stiffness variations for gear pairs under light load.

In Fig. 3.21 which shows dynamic displacements of gear pairs with these mesh
stiffness variations, the dynamic response of the gear pair with profile crowning
differs from those of other gear pairs considerably. Upon further investigation, it is
observed that responses of gear pairs with flank twist and lengthwise crowning are
slightly different from each other even though static transmission error of these gear
pairs are totally different. However, mesh stiffness variations of them are almost

same.
Therefore, these two outcomes support that mesh stiffness variation in lightly loaded

gear pairs has more effects on dynamic displacements rather than static transmission

error.
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Fig. 3.21 Dynamic Displacements of Gear Pairs with light load.
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Fig. 3.22 Dynamic Displacements of Gear Pairs with medium load
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Effects of mesh stiffness and static transmission error on dynamic displacements
change gradually when torque on gear pair increases. Static transmission error starts
to be more effective than mesh stiffness variation when gear pairs go through from
lightly loaded case to highly loaded case. Responses of gear pair with lengthwise
crowning having a large static transmission error increases, while responses of gear
pair with profile crowning having large mesh stiffness variation decreases under
moderate load as shown in Fig. 3.22. However, mesh stiffness variation is still
dominant compared to static transmission error on the response around the primary
resonance, 3 and 4™ super-harmonic resonances. When the torque is increased
further, gear pair starts to work in heavily loaded condition. For example; for the
gear pair given in this study, working condition under torque equal to or larger than

400 Nm can be acceptable as heavily loaded.
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Fig. 3.23 Dynamic Displacements of Gear Pairs with high load
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On account of this, dynamic responses for heavily loaded case of gear pairs with
tooth flank modifications are shown in Fig. 3.23, in which the peak amplitudes of
resonance response are changing between gear pairs with lengthwise and profile
crowning when compared to response amplitude under light and moderate load
cases. This time, response of gear pair with lengthwise crowning is larger than other
gear pairs due to that it has large static transmission error which starts to play a key

role on resonance responses of gear pairs.

87



88



CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

The fundamental characteristics of the typical profile crowning, lengthwise
crowning and flank twist ease-off topographies are generated in this study for a
selected spiral bevel pinion gear pair. The macro and micro geometries are
established according to design requirements for generic purposes high load, high
speed applications. Macro geometry generation with single indexing and geometry
details such as number of teeth, face-width, spiral angle and cutter radius are
presented for a given design requirement. Micro geometries are generated in order
to obtain gear pairs with profile crowning, lengthwise crowning and flank twist.
Corresponding real machine settings of actual tooth for these flank modifications
are obtained and basic parameters of machine setting and cutting tool which causing
these flank modifications are tabulated. Gear mesh investigations include contact
pattern and stress, directional rotation radii, load share, static and loaded
transmission errors, and mesh stiffness for drive and coast sides of the tooth. A three-
dimensional quasi-static loaded tooth contact analysis is applied to find load
distribution and transmission error at each specified time step over a mesh cycle.
Then, these mesh parameters used in gear mesh model are calculated. The contact
stress at 400Nm is the lowest at the flank twist design. The contact path and
directional rotation radius variation of lengthwise crowning and flank twist designs
are more stable than the profile modification. The static transmission error and
loaded transmission results for profile modification and flank twist are comparable

with each other while the lengthwise crowning static transmission error is the
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highest. The mesh stiffness magnitude and variation of lengthwise crowning and
flank twist modifications are comparable with each other while profile crowning
shows a different trend with relatively smaller magnitude. In overall, based on
contact path and stress, static and loaded transmission error, mesh stiffness

characteristics, flank twist modification is a better selection over the other types.

This thesis is a bridge between kinematics and dynamics of spiral bevel gear pairs.
Therefore, nonlinear dynamics of a spiral bevel gear pair with different tooth flank
modifications are studied in this paper. Macro geometry of spiral bevel gear pair is
generated with face milling and generation motion to prevent failure types such as
scoring, tooth breakage and pitting which are seen mostly in helicopter gearboxes.
Tooth flanks of gear pairs are modified with real machine settings, which gives
actual tooth data with profile crowning, lengthwise crowning and flank twist. In
order to get best performance of gearboxes, dynamic characteristic of these gear
pairs are taken into consideration by formulating a dynamic model which is
composed of a spiral bevel gear pair with a nonlinear time-varying mesh parameters
such as stiffness, damping, static transmission along line of action and backlash
nonlinearity. These parameters that are used in gear mesh model are obtained by
applying a three-dimensional quasi-static loaded tooth contact analysis (LTCA). In
order to obtain dynamic displacements in torsional mode, multi-term HBM coupled
with discrete Fourier transform (DFT) are applied to solve nonlinear algebraic

equations.

As a result of this study, gear pairs with profile crowning, lengthwise crowning and
flank twist are analyzed to see effects of modifications on dynamic responses. It is
observed that response of gear pairs with profile crowning and lengthwise crowning
are more sensitive than flank twist to loading condition. The reasons are that profile
crowning and lengthwise crowning causes larger mesh stiffness variation and static
transmission error, respectively. Therefore, flank twist can be the best candidate of

tooth flank modification in a spiral bevel gear pair used in helicopter gearboxes.
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4.2 Future Work

As a future work, transmission drive systems including bevel gears with these flank
modifications can be investigated in terms of dynamic behavior in order to find
suitable flank modification. Furthermore, parametric studies can be done for
optimizing dynamic response of bevel gear pair used in high speed applications such
as engine, and helicopter transmission gearboxes. This optimized design can be
verified by experimental tests. In terms of mesh model used in this study, friction
based on elastohydrodynamic lubrication (EHL) formulation can be combined in
order to study the influence of friction on system dynamics. Moreover, mesh
damping model can be improved further and the effect of mesh damping on system
dynamics can be investigated.
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