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ABSTRACT 

 

DESIGN OF AN INERTIA MEASUREMENT DEVICE FOR STORES 

 

 

Kılıç, Berkay 

M.Sc., Department of Mechanical Engineering 

Supervisor     : Asst. Prof. Dr. Hüsnü Dal 

Co-supervisor: Dr. Aydın Tüzün 

 

June 2018, 99 pages 

 

 

In this thesis, design of a device, which can measure mass properties of missiles or 

their sub-components in a single test setup, is expressed. An object, whose mass 

properties are going to be calculated, is attached to the device and three-dimensional, 

oscillatory motion about a specific point is supplied to that object. During this motion, 

velocity and acceleration values of the object are measured simultaneously with the 

force and torque values at the connection point. Mass properties of the object are 

computed by using measured velocity, acceleration, force and torque values in 

Newton’s equations of motion. 
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ÖZ 

 

FÜZELERİN ATALET DEĞERLERİNİ ÖLÇEBİLECEK  

BİR TEST SİSTEMİ TASARIMI 

 

 

 

Kılıç, Berkay 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi      : Dr. Öğr. Üyesi Hüsnü Dal 

Ortak Tez Yöneticisi: Dr. Aydın Tüzün 

 

Haziran 2018, 99 sayfa 

 

Bu tez çalışmasında, mühimmatların ve alt bileşenlerinin kütle özelliklerini, tek bir 

test kurulumu ile ölçebilen bir düzeneğin tasarımı anlatılmıştır. Kütle özellikleri 

ölçülmek istenen cisim, bu düzeneğe bağlanmakta ve cisme belirli bir nokta etrafında, 

üç boyutlu, salınımsal dönme hareketi verilmektedir. Bu hareket esnasında cismin hız 

ve ivme değerleri, cismin bağlantı noktasındaki kuvvet ve tork değerleri ile eşzamanlı 

olarak ölçülmektedir. Ölçülen hız, ivme, kuvvet ve tork değerleri, Newton’un hareket 

denklemlerinde kullanılarak cismin kütle özellikleri hesaplanmaktadır. 

 

Anahtar Kelimeler: Kütle Özellikleri, Atalet Momentleri, Atalet Çarpımsalları 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. MASS PROPERTIES 

In order to identify, monitor and control the motion of a body, its mass properties 

should be known. The mass properties of a rigid body are set of ten parameters 

consisting of a mass (𝑚), center of gravity (𝑥𝐺 , 𝑦𝐺  and 𝑧𝐺) and the inertia parameters 

(𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 , 𝐼𝑥𝑦 , 𝐼𝑥𝑧 , 𝐼𝑦𝑧).  

Mass is a physical quantity which is the resistance of a body to change its linear 

acceleration when a force is applied to it. Mass of a solid body is defined by integral 

of density at each infinitesimal element of that body over the volume of the body as 

 
𝑚 = ∫𝜌 𝑑𝑉

 

ℬ

. (1.1) 

 

Figure 1. Center of gravity position of the given solid body is defined as  

𝒓𝑮 = 𝒙𝑮 𝑬𝟏 + 𝒚𝑮 𝑬𝟐 + 𝒛𝑮 𝑬𝟑. 
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Center of gravity is a geometric property of a body. It is an imaginary point where the 

distribution of the mass of the body is balanced around as shown in Figure 1. If a force 

is applied to a body along its center of gravity point, it is going to move without 

rotating. In general, both the translational and rotational motion is described about the 

center of gravity point. Therefore, it is also convenient to describe inertia parameters 

about the center of gravity. Center of gravity can be defined relative to a reference 

point with the distances in any kind of a coordinate system.  

Inertia is a tensor which is the resistance of a body to changes in its rotational motion 

when a torque is applied to it. In other words, it is a required torque for a desired 

angular acceleration about a rotational axis. Inertia parameters can be specified by the 

mass distribution of a body and the defined axes for inertia parameters. If a body is 

free to rotate about all three axes, its moment of inertia parameters can be described 

by a symmetric 3×3 matrix 

 

𝑰 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

]. (1.2) 

The diagonal elements of the inertia tensor are the moment of inertia (MOI) 

parameters, and the non-diagonal elements of the inertia tensor are the product of 

inertia (POI) parameters. 

Moment of inertia of a body about an axis is the measure of the distribution of the mass 

about that axis. If the axis is chosen close to the center of gravity, moment of inertia 

value about that axis is going to be smaller relative to an axis away from the center of 

gravity. For instance, 𝐼𝑥𝑥 is said to be the moment of inertia about x axis, and it can 

also be denoted as 𝐼𝑥. 
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Figure 2. Solid body, whose symmetry plane is 𝒙𝒚 plane, is demonstrated. 

Product of inertia of a body is the measure of symmetry relative to a plane. For 

instance, if 𝑥𝑦 plane is the plane of symmetry for a body as shown in Figure 2, product 

of inertias about the axis perpendicular to that plane (𝑧 axis) is going to be zero,  

𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0. 

For a point mass, inertia about an axis is the multiplication of mass and square of 

perpendicular distance to that axis. Inertia of a body can be calculated using the same 

sense with an integration over the body. 

1.2. OBJECTIVE AND MOTIVATION 

In many engineering applications, such as design of a ground or an air vehicle, 

knowing the mass properties of a body plays a crucial role for rigid body dynamics. 

The structural design, motion control algorithms or computer simulations of a vehicle 

is based on the mass properties of it. Therefore, mass properties of the body in 

consideration should be measured properly.  

For missiles also, measurement of mass properties is important in order to control and 

guide it. The mass parameters can be measured by using Computer Aided Design 

(CAD) tools. However, in reality, measurements of CAD tools vary from the real value 



 
 

4 
 

to some degree depending on the complexity of the assembly. Geometric tolerances, 

defects and non-homogeneous density of the components may cause that difference. 

Also, in some assemblies, some components are taken from third parties and integrated 

into the structure. Mass properties of these components are mostly unknown. Because 

of these, designing a system depending only on the mass properties measurement from 

the computer is not possible. Therefore, the most reliable method to get the mass 

properties of a body is to make an experimental measurement.  

In the literature, there are wide range of studies to measure the mass properties 

experimentally. Some of these studies measure the mass properties through a set of 

tests, i.e., with the requirement of reassembling the test specimen more than one time. 

In such studies, making more than one test slows down the measurement procedure 

and increases the need for labor. Also, reassembling the specimen creates additional 

uncertainties to the results. Apart from these, there are some designs measuring the 

mass properties by a single test. These setups are more advantageous in terms of the 

speed and ease of the test configuration. 

In this thesis, a test device is developed to measure mass properties of some systems, 

particularly subsystems of the missiles and missiles up to 20 kg. That test device is 

able to measure the complete mass properties in a single test. At the design stage of 

the test device, favorable and unfavorable aspects of the test setups in the literature are 

utilized and a new design is obtained. 

1.3. SCOPE OF THE THESIS 

This thesis consists of five chapters. General information about the mass properties 

and the purpose of the thesis is given in Chapter 1. In Chapter 2, theoretical background 

is given to measure the mass properties along with the detailed information about the 

studies in the literature. In Chapter 3, working principles and the methodology to 

measurement procedure of the developed test device are explained. In Chapter 4, three 

different tests are performed and their results are compared with the theoretical values. 

Lastly in Chapter 5, conclusion of the study is given and the possible future works are 

suggested.
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CHAPTER 2 

 

 

THEORY AND LITERATURE 

 

 

 

2.1. THEORETICAL BACKGROUND 

In order to calculate the mass properties of a body, its equations of motion should be 

derived primarily. Deriving equations of motion of a body requires understanding of 

kinematics and kinetics of the body. Kinematics is the study of the motion of objects, 

that may be particles or bodies. It is described by positions, velocities and accelerations 

of objects without referring the forces acting on them. Besides that, kinetics is the 

analyses of forces, that causes motion, acting on objects. Kinetics also deals with the 

mass properties of the objects in addition to forces and torques acting on these objects. 

It can be expressible that the rigid bodies comprise of particles. Particles have masses 

but they are treated as a point. Therefore, they can only have a translational motion. 

Their rotational motion is impractical. The inertia parameters are related to rotational 

motion, though particles do not have these mass parameters. They have only mass and 

location of gravity center parameters. In order to describe the motion of a rigid body; 

however, kinematics and kinetics of a particle should be a priori known. Then, 

kinematics and kinetics of a rigid body can be derived and equations of motion of a 

rigid body can be obtained. [1], [2] have been utilized and summarized through 

Chapter 2 in order to obtain equations of motion of a rigid body. 

2.1.1. Kinematics of a Particle 

Kinematics of a particle can be defined by position, velocity and acceleration of that 

particle. These kinematical quantities are described with respect to a coordinate system 

like shown in Figure 3. 



 
 

6 
 

 

Figure 3. Particle P is moving along the shown path ℂ with velocity 𝒗(𝑡). Its 

position is described by the position vector 𝒓(𝑡) at time 𝑡. 

Position is the spatial location of the particle and described in 3-D Cartesian coordinate 

system as follows 

 𝒓(𝑡) = 𝑟𝑥(𝑡) 𝑬1 + 𝑟𝑦(𝑡) 𝑬2 + 𝑟𝑧(𝑡) 𝑬3. (2.1) 

Velocity is the rate of change of the position of the particle and described as 

 𝒗 = �̇� = �̇�𝑥 𝑬1 + �̇�𝑦 𝑬2 + �̇�𝑧  𝑬3. (2.2) 

Acceleration is the rate of change of the velocity of the particle and described as  

 𝒂 = �̇� = �̈� = �̈�𝑥 𝑬1 + �̈�𝑦 𝑬2 + �̈�𝑧 𝑬3. (2.3) 

2.1.2. Kinetics of a Particle 

Since kinetics is related to forces that causes motion, it starts with Newton’s second 

law of motion. It is also known as equations of motion and can be formulated as 
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𝑭 = 𝑚 𝒂 = 𝑚 �̇� = 𝑚 

𝑑𝒗

𝑑𝑡
 , (2.4) 

where 𝑚 is the particle’s mass, 𝑭 is the force acting on the particle, 𝒂 is the acceleration 

of the particle in Figure 4. If this equation of motion is integrated with respect to time, 

impulse and momentum relation can be obtained. Assuming that the particle has a 

velocity of 𝒗1 at time 𝑡1 and 𝒗2 at time 𝑡2, principle of impulse and momentum 

equation is written as 

 

∫ 𝑭 𝑑𝑡

𝑡2

𝑡1

= 𝑚 ∫ 𝑑𝒗

𝒗𝟐

𝒗𝟏

, ∫ 𝑭 𝑑𝑡

𝑡2

𝑡1

= 𝑚 (𝒗2 − 𝒗1) . (2.5) 

Left hand side of equation is the linear impulse, which indicates the effect of a force 

acting on a particle over a specified time interval. The terms on the right side are linear 

momentums of the particle at time 𝑡1 and 𝑡2. Linear momentum of a particle can be 

defined as 

 𝑳 = 𝑚 𝒗. (2.6) 

Therefore, force acting on a particle and linear impulse of that particle can be 

interrelated as  

 ∑𝑭 = �̇�. (2.7) 

This equation states that the time rate of change of linear momentum is equals to the 

total force acting on a particle.  

When a particle has linear momentum, it can be mentioned that the particle has also 

angular momentum about a point. Angular momentum is defined as the moment of the 

particle’s linear momentum about a point. Therefore, angular momentum is also called 

as “moment of momentum”.  
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Figure 4. Representation of linear momentum L of particle P and resulted angular 

momentum Ho at point O. 

Angular momentum is formulated by a cross product of the position vector with linear 

momentum vector  

 𝑯𝑂 = 𝒓 × 𝑳. (2.8) 

Angular momentum definition is used to obtain a new form of the equation of motion. 

Differentiating the angular momentum definition with respect to time leads to create a 

relation between moment and angular momentum 

 
�̇�𝑂 =

𝑑(𝒓 × 𝑳)

𝑑𝑡
=
𝑑(𝒓 ×𝑚 𝒗)

𝑑𝑡
= �̇� × 𝑚 𝒗 + 𝒓 × 𝑚 �̇�. (2.9) 

Since �̇� × 𝑚 𝒗 = �̇� × 𝑚 �̇� = 𝑚(�̇� × �̇�) = 𝟎, the derivative of angular momentum 

definition becomes 

 �̇�𝑂 = 𝒓 ×𝑚 �̇�. (2.10) 
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The second term on the right hand side of the equation (2.10) is the force acting on the 

particle, and since 𝒓 × 𝑭 is the definition of moment, the equation (2.10) is also written 

as follows 

 ∑𝑴= �̇�𝑂. (2.11) 

The equation (2.11) states that the time rate of change of particle’s angular momentum 

about point O equals to the total moment on the particle about the same point O. This 

expression is analogous with the equation (2.7). 

2.1.3. System of Particles 

For the system of particles which is enclosed by dashed line as shown in Figure 5, 

linear impulse and linear momentum relation is obtained by using Newton’s second 

law 

 
∑𝑭𝑖

𝑛

𝑖=1

=∑𝑚𝑖

𝑑𝒗𝑖
𝑑𝑡

𝑛

𝑖=1

 . (2.12) 

 

Figure 5. System of particles whose center of mass is located at G and force acting 

on one particle are demonstrated. 
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Principle of impulse and momentum for the system of particles is derived by 

integrating the equation (2.12) with a similar operation for one particle 

 

∑∫ 𝑭𝑖 𝑑𝑡

𝑡2

𝑡1

𝑛

𝑖=1

=∑𝑚𝑖𝒗𝑖2

𝑛

𝑖=1

 −∑𝑚𝑖𝒗𝑖1

𝑛

𝑖=1

 . (2.13) 

If it is assumed that the summation of the all particles’ masses are  𝑚 = Σ 𝑚𝑖, and 

center of mass of all particles are located at point G, total linear momentum of this 

system of particles is written as 

 
𝑳𝑡𝑜𝑡𝑎𝑙 = 𝑚 𝒗𝐺 = ∑𝑚𝑖𝒗𝑖

𝑛

𝑖=1

. (2.14) 

Similarly, an expression for the total moment acting on this system of particles may 

be derived using the summation of time rate of change of angular momentum for each 

individual particle 

 
∑𝑴𝑂𝑖

𝑛

𝑖=1

=∑�̇�𝑂𝑖

𝑛

𝑖=1

 = ∑𝒓𝑖 ×𝑚𝑖 �̇�𝑖

𝑛

𝑖=1

 = ∑𝒓𝑖 × 𝑭𝑖

𝑛

𝑖=1

 , (2.15) 

which may also be written as  

 ∑𝑴𝑂  = 𝒓𝐺 ×𝑚 �̇�𝐺 . (2.16) 

Rigid bodies may be assumed as they are collection of infinitesimal particles that are 

fixed to each other. Therefore, equations (2.14) and (2.16) may be extended for rigid 

bodies and these finite summations are replaced with continuous equations as  

 
∑𝑭𝑖

𝑛

𝑖=1

= ∫𝑭(𝑡) 𝑑𝑡

 

ℬ

, 

∑𝑴𝑂𝑖

𝑛

𝑖=1

 = ∫𝑴𝑂(𝑡) 𝑑𝑡

 

ℬ

. 

(2.17) 
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Then, equations (2.17) are used to obtain general equations of motion for rigid bodies. 

Through these equations, mass parameters of rigid bodies are going to be calculated. 

2.1.4. Kinematics of a Rigid Body 

Motion of a rigid body may be in three different manners which are translation, 

rotation and combination of translation and rotation.  

In translational motion, the rigid body does not change its orientation in space. 

Position vectors of any point on the rigid body changes with respect to a fixed point, 

but a vector which is drawn from one point to another point on the rigid body remains 

constant. The rigid body has translational velocity and acceleration similar to the 

particle’s motion. 

In rotational motion, the rigid body has an angular motion about a fixed point. All 

points on the rigid body move along circular paths. The position vector of any point 

changes its direction; however, its magnitude stays constant. In the concept of the 

rotational motion, angular position, angular velocity and angular acceleration are 

defined which are not exist in particle’s motion.  

 

Figure 6. Particle P is moving along circular path. Its angular position 𝜽, velocity 𝝎, 

and acceleration 𝜶 about rotation axis is shown. 
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For point P in Figure 6, angular position is defined by an angle between a fixed 

reference and position vector of the point P  

 𝜽 = 𝜃𝑥 𝑬1 + 𝜃𝑦  𝑬2 + 𝜃𝑧  𝑬3. (2.18) 

Angular velocity is the rate of change of the angular position and defined as follows 

 𝝎 = �̇� = 𝜔𝑥 𝑬1 +𝜔𝑦 𝑬2 + 𝜔𝑧 𝑬3. (2.19) 

The direction of angular velocity, 𝝎, is called as the instantaneous axis of rotation.  

Angular acceleration is the rate of change of the angular velocity and defined as 

follows 

 𝜶 = �̇� = �̈� = 𝛼𝑥 𝑬1 + 𝛼𝑦 𝑬2 + 𝛼𝑧 𝑬3. (2.20) 

Translational velocity and acceleration of point P may be defined if the angular 

velocity, 𝝎, and angular acceleration, 𝜶, are known at specific time as follows 

 
𝒗 =

𝑑𝒓

𝑑𝑡
= 𝝎 × 𝒓, 

(2.21) 
 

𝒂 =
𝑑𝒗

𝑑𝑡
=
𝑑𝝎

𝑑𝑡
× 𝒓 + 𝝎 ×

𝑑𝒓

𝑑𝑡
= 𝜶 × 𝒓 +𝝎 × (𝝎 × 𝒓). 
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Figure 7. Position of point P with respect to translating and rotating coordinate 

system located at point Q. Translational and rotational motion of this local frame is 

defined relative to fixed reference coordinate system at point O. 

The combination of translational and rotational motion is defined as general motion. 

If a rigid body has both translational and rotational motions and if its translational 

velocity 𝒗, translational acceleration 𝒂, angular velocity 𝝎 and angular acceleration 𝜶 

are known; velocity and acceleration of point P in Figure 7 may be defined as follows 

 𝒗𝑃 = 𝒗𝑄 +𝝎× 𝒓𝑃/𝑄 , 
(2.22) 

 𝒂𝑃 = 𝒂𝑄 + 𝜶 × 𝒓𝑃/𝑄 +𝝎× (𝝎 × 𝒓𝑃/𝑄). 

In order to define the motion of a rigid body in the most general way, the equations 

(2.22) should be written by using a translating and rotating coordinate system (local 

frame, (𝑥𝑦𝑧)) with respect to a fixed reference coordinate system (global 

frame, (𝑋𝑌𝑍)). In Figure 8, global frame is fixed and located at point O, while the 

local frame, which is attached to the rigid body at point Q, has both translational and 

rotational motion. It translates with velocity 𝒗𝑄 and acceleration 𝒂𝑄 with respect to 



 
 

14 
 

global frame. At the same time, it rotates with angular velocity, 𝞨, and angular 

acceleration, �̇�, with respect to global frame. Point P is an arbitrary point on the rigid 

body. 

 

Figure 8. Local frame is located on a body which is in general motion. Kinematic of 

point P on the body is going to be analyzed. 

The position vector of point P in global frame is defined as  

 𝒓𝑃 = 𝒓𝑄 + 𝒓𝑃/𝑄 , (2.23) 

where 𝒓𝑃/𝑄 is the relative position vector of P with respect to Q. 

The velocity vector of point P in global frame may be found by taking derivative of 

equation (2.23) 

 �̇�𝑃 = �̇�𝑄 + �̇�𝑃/𝑄       →        𝒗𝑃 = 𝒗𝑄 + �̇�𝑃/𝑄 . (2.24) 

To calculate the derivative of 𝒓𝑃/𝑄, it should be expressed in terms of its components 

in local frame as 
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 𝒓𝑃/𝑄 = 𝑥𝑃 𝒆1 + 𝑦𝑃 𝒆2 + 𝑧𝑃 𝒆3. (2.25) 

Taking derivative of equation (2.25) with respect to global frame gives 

 �̇�𝑃/𝑄 = �̇�𝑃 𝒆1 + �̇�𝑃 𝒆2 + �̇�𝑃 𝒆3 + 𝑥𝑃 �̇�1 + 𝑦𝑃 �̇�2 + 𝑧𝑃 �̇�3. (2.26) 

Time derivative of unit vectors of local frame with respect to global frame is calculated 

by using the angular velocity of local frame, 𝞨, as given in [1]  

 �̇�1 = 𝞨 × 𝒆1,    �̇�2 = 𝞨 × 𝒆2,    �̇�3 = 𝞨× 𝒆3. (2.27) 

The first three terms of equation (2.26) is simply the derivative of 𝒓𝑃/𝑄 with respect to 

local frame. Therefore, �̇�𝑃/𝑄 vector is defined as follows  

 �̇�𝑃/𝑄 = (�̇�𝑃/𝑄)𝒙𝒚𝒛 +𝞨 × 𝒓𝑃/𝑄 , 

𝒗𝑃/𝑄 = (𝒗𝑃/𝑄)𝑥𝑦𝑧 +𝞨 × 𝒓𝑃/𝑄 . 
(2.28) 

Using equation (2.28), velocity vector of point P with respect to global frame is written 

as  

 𝒗𝑃 = 𝒗𝑄 + 𝒗𝑃/𝑄 +𝞨 × 𝒓𝑃/𝑄 . (2.29) 

where 𝒗𝑃/𝑄 is the velocity of point P with respect to local frame. 

Similarly, acceleration vector of point P with respect to global frame may be found by 

taking derivative of 𝒗𝑃 

 𝒂𝑃 = �̇�𝑃 = �̇�𝑄 + �̇�𝑃/𝑄 + �̇� × 𝒓𝑃/𝑄 +𝞨 × �̇�𝑃/𝑄 , (2.30) 

and when necessary operations are made, the following equation can be obtained 

 𝒂𝑃 = 𝒂𝑄 + (𝒂𝑃/𝑄)𝑥𝑦𝑧 + �̇� × 𝒓𝑃/𝑄 +𝞨 × (𝞨 × 𝒓𝑃/𝑄)

+ 𝟐 𝞨 × (𝒗𝑃/𝑄)𝑥𝑦𝑧 , 
(2.31) 

where 𝒂𝑃/𝑄 is the acceleration vector of point P with respect to local frame. 
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For the body shown in Figure 8, position vector of point P in the local frame, 𝒓𝑃/𝑄, is 

constant since the body is assumed as a rigid. Therefore, velocity and acceleration 

vectors of point P in the local frame, 𝒗𝑃/𝑄 and 𝒂𝑃/𝑄, disappear from the equations 

(2.29) and (2.31). Using that simplification, kinematic equations for a rigid body with 

respect to global frame is written as follows 

 𝒓𝑃 = 𝒓𝑄 + 𝒓𝑃/𝑄 , 

𝒗𝑃 = 𝒗𝑄 +𝞨 × 𝒓𝑃/𝑄 , 

𝒂𝑃 = 𝒂𝑄 + �̇� × 𝒓𝑃/𝑄 +𝞨 × (𝞨 × 𝒓𝑃/𝑄). 

(2.32) 

   

2.1.5. Kinetics of a Rigid Body 

In the equation (2.14), linear momentum is defined as the total mass of all particles 

times the velocity of center of gravity. This is also valid for a rigid body.  

 𝑳 = 𝑚 𝒗. (2.33) 

 

Figure 9. Kinetics of a rigid body is examined by using its particles’ linear and 

angular momentums. 
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For a particle in the rigid body shown in  Figure 9, angular momentum equation about 

point Q is written as follows 

 𝐻𝑄𝑖 = 𝒓𝐼/𝑄 ×𝑚𝑖 𝒗𝑖. (2.34) 

If 𝒗𝑖 = 𝒗𝑄 +𝝎× 𝒓𝑄 is placed into equation (2.34),  

 
𝑯𝑄𝑖

= 𝒓𝐼/𝑄 ×𝑚𝑖 (𝒗𝑄 +𝝎× 𝒓𝑄)

= 𝒓𝐼/𝑄 ×𝑚𝑖 𝒗𝑄 + 𝒓𝐼/𝑄 ×𝒎𝑖(𝝎 × 𝒓𝐼/𝑄). 
(2.35) 

If the equation (2.35) is integrated over the body, angular momentum of the body about 

the point Q is obtained as 

 
𝑯𝑄 = (∫𝒓𝐼/𝑄 𝑑𝑚) × 𝒗𝑄 +∫𝒓𝐼/𝑄 × (𝝎 × 𝒓𝐼/𝑄) 𝑑𝑚. (2.36) 

Expanding equation (2.36) in its Cartesian components will help to get the relation 

between the angular momentum and the inertia parameters 

𝐻𝑄𝑥 𝒆1 +𝐻𝑄𝑦 𝒆2 + 𝐻𝑄𝑧 𝒆3

= ∫(𝑥 𝒆1 + 𝑦 𝒆2 + 𝑧 𝒆3) × (𝑣𝑄𝑥 𝒆1 + 𝑣𝑄𝑦𝒆2 + 𝑣𝑄𝑧 𝒆3) 𝑑𝑚

+∫{(𝑥 𝒆1 + 𝑦 𝒆2 + 𝑧 𝒆3) × (𝜔𝑥 𝒆1 + 𝜔𝑦 𝒆2 + 𝜔𝑧 𝒆3)

× (𝑥 𝒆1 + 𝑦 𝒆2 + 𝑧 𝒆3) }𝑑𝑚. 

(2.37) 

Taking the integral over the body and making the cross product operations yield 

𝐻𝑄𝑥 𝒆1 + 𝐻𝑄𝑦 𝒆2 + 𝐻𝑄𝑧 𝒆3

= 𝑚 [(𝑦 𝑣𝑄𝑧 − 𝑧 𝑣𝑄𝑦) 𝒆1 + (𝑧 𝑣𝑄𝑥 − 𝑥 𝑣𝑄𝑧) 𝒆2 + (𝑥 𝑣 − 𝑦 𝑣𝑄𝑥) 𝒆3]

+ [   𝜔𝑥∫(𝑦
2 + 𝑧2) 𝑑𝑚 − 𝜔𝑦∫𝑥𝑦 𝑑𝑚 − 𝜔𝑧∫𝑥𝑧 𝑑𝑚] 𝒆1

+ [−𝜔𝑥∫𝑥𝑦 𝑑𝑚 + 𝜔𝑦∫(𝑥
2 + 𝑧2) 𝑑𝑚 − 𝜔𝑧∫𝑦𝑧 𝑑𝑚] 𝒆2

+ [−𝜔𝑥∫𝑥𝑧 𝑑𝑚 − 𝜔𝑦∫𝑦𝑧 𝑑𝑚 + 𝜔𝑧∫(𝑥
2 + 𝑦2) 𝑑𝑚]𝒆3. 
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(2.38) 

2.1.6. Moments and Products of Inertia 

 

Figure 10. Differential element of mass dm relative to reference coordinate frame is 

shown. 

For the differential element shown in Figure 10, moments of inertia about an axis can 

be defined as mass of the element multiplied by the shortest distance between the 

element and the corresponding axis. Therefore, if the moment of inertia of the 

differential element is integrated over the body, the following moment of inertia 

expressions can be obtained 

 
𝐼𝑥𝑥 = ∫(𝑦2 + 𝑧2) 𝑑𝑚, 

𝐼𝑦𝑦 = ∫(𝑥2 + 𝑧2) 𝑑𝑚, 

𝐼𝑧𝑧 = ∫(𝑥2 + 𝑦2) 𝑑𝑚. 

(2.39) 

Likewise, product of inertia of the differential element relative to two orthogonal 

planes can be defined as mass multiplied by the shortest distance between the element 
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and the corresponding planes. Therefore, if the product of inertia of the differential 

element is integrated over the body, the following product of inertia expressions can 

be obtained 

 
𝐼𝑥𝑦 = 𝐼𝑦𝑧 = ∫𝑥𝑦 𝑑𝑚, 

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = ∫𝑥𝑧 𝑑𝑚, 

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = ∫𝑦𝑧 𝑑𝑚. 

(2.40) 

Moments and products of inertia definitions form the inertia tensor in the following 

form 

 

𝑰 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

]. (2.41) 

These moments and products of inertia definitions can be observed in the angular 

momentum expression in equation (2.38). Replacing these parameters into equation 

(2.38) gives the components of the angular momentum as follows 

 𝐻𝑄𝑥  =  𝑚 (𝑦 𝑣𝑄𝑧 − 𝑧 𝑣𝑄𝑦) + 𝐼𝑥𝑥 𝜔𝑥  −  𝐼𝑥𝑦 𝜔𝑦  − 𝐼𝑥𝑧 𝜔𝑧, 

𝐻𝑄𝑦  =  𝑚 (𝑧 𝑣𝑄𝑥 − 𝑥 𝑣𝑄𝑧)  − 𝐼𝑥𝑦 𝜔𝑥  +  𝐼𝑦𝑦 𝜔𝑦  −  𝐼𝑦𝑧 𝜔𝑧, 

𝐻𝑄𝑧  = 𝑚 (𝑥 𝑣𝑄𝑦 − 𝑦 𝑣𝑄𝑥)  − 𝐼𝑥𝑧  𝜔𝑥  − 𝐼𝑦𝑧 𝜔𝑦  +  𝐼𝑧𝑧 𝜔𝑧 . 

(2.42) 

 

2.1.7. Equations of Motion 

Since a rigid body may be assumed to be comprised of a number of particles, 

translational equation of motion of a rigid body is similar to the equation for system 

of particles, and formulated in global frame as 

 ∑𝑭 = 𝑚 𝒂𝐺 . (2.43) 
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Figure 11. Rigid body in general motion relative to global frame is represented. 

Local frame is attached to the body at point Q. 

Translational equation of motion may be expanded when the body has also a rotational 

motion. If the body is rotating with the angular velocity 𝝎, and angular acceleration 

�̇�, translational acceleration in equation (2.43) may be expressed as  

 𝒂𝐺 = 𝒂𝑄 + �̇� × 𝒓𝑄/𝐺 +𝝎× (𝝎 × 𝒓𝑄/𝐺). (2.44) 

Therefore, translational equation of motion is rewritten as follows 

 ∑𝑭𝑄 = 𝑚 [𝒂𝑄 + �̇� × 𝒓𝑄/𝐺 +𝝎× (𝝎× 𝒓𝑄/𝐺)], (2.45) 

where 𝑭𝑄 = [𝐹𝑄𝑥 𝐹𝑄𝑦 𝐹𝑄𝑧]
𝑇
, 𝒂𝑄 = [𝑎𝑄𝑥 𝑎𝑄𝑦 𝑎𝑄𝑧]𝑇,  𝝎 = [𝜔𝑥 𝜔𝑦 𝜔𝑧]𝑇, 

�̇� = [�̇�𝑥 �̇�𝑦 �̇�𝑧]𝑇.  

That translational equation of motion can also be written by separating into 

components as 

∑𝐹𝑄𝑥 = 𝑚 [𝑎𝑄𝑥 + 𝑥(−𝜔𝑦
2 − 𝜔𝑧

2) + 𝑦(−�̇�𝑧 + 𝜔𝑥𝜔𝑦) + 𝑧(�̇�𝑦 + 𝜔𝑥𝜔𝑧)], 

∑𝐹𝑄𝑦 = 𝑚[𝑎𝑄𝑦 + 𝑥(�̇�𝑧 + 𝜔𝑥𝜔𝑦) + 𝑦(−𝜔𝑥
2 − 𝜔𝑧

2) + 𝑧(−�̇�𝑥 + 𝜔𝑦𝜔𝑧)], 

∑𝐹𝑄𝑧 = 𝑚[𝑎𝑄𝑧 + 𝑥(−�̇�𝑦 + 𝜔𝑥𝜔𝑧) + 𝑦(�̇�𝑥 + 𝜔𝑦𝜔𝑧) + 𝑧(−𝜔𝑥
2 − 𝜔𝑦

2)]. 

(2.46) 
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Similarly, for rotational equation of motion for a system of particles as in Figure 11 

may be extended for a rigid body in global frame as 

 ∑𝑴𝑄 = �̇�𝑄 . (2.47) 

If the local frame, which is fixed to the body at point Q, has an angular velocity 𝝎, 

equation (2.47) may be written as follows 

 ∑𝑴𝑄 = (�̇�𝑄)𝑥𝑦𝑧 +𝝎×𝑯𝑄 (2.48) 

where 𝑴𝑄 = [𝑀𝑄𝑥 𝑀𝑄𝑦 𝑀𝑄𝑧]
𝑇
, 𝝎 = [𝜔𝑥 𝜔𝑦 𝜔𝑧]𝑇, 𝑯𝑄 = [𝐻𝑄𝑥 𝐻𝑄𝑦 𝐻𝑄𝑧]

𝑇
,  

�̇�𝑄 = [�̇�𝑄𝑥 �̇�𝑄𝑦 �̇�𝑄𝑧]
𝑇
. 

If equation (2.41) are replaced into equation (2.48) and derivative operations are made, 

the Cartesian components of the rotational equation of motion is expressed as 

∑𝑀𝑄𝑥 = 𝑚 (𝑦 𝑎𝑄𝑧 − 𝑧 𝑎𝑄𝑦) + 𝐼𝑥𝑥 �̇�𝑥 − (𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝜔𝑦𝜔𝑧

− 𝐼𝑥𝑦 (�̇�𝑦 − 𝜔𝑥𝜔𝑧) − 𝐼𝑥𝑧 (�̇�𝑧 + 𝜔𝑥𝜔𝑦) − 𝐼𝑦𝑧 (𝜔𝑦
2 − 𝜔𝑧

2), 

∑𝑀𝑄𝑦 = 𝑚 (𝑧 𝑎𝑄𝑥 − 𝑥 𝑎𝑄𝑧) + 𝐼𝑦𝑦 �̇�𝑦 − (𝐼𝑧𝑧 − 𝐼𝑥𝑥) 𝜔𝑥𝜔𝑧

− 𝐼𝑥𝑦 (�̇�𝑥 + 𝜔𝑦𝜔𝑧) − 𝐼𝑥𝑧 (𝜔𝑧
2 −𝜔𝑥

2) − 𝐼𝑦𝑧 (�̇�𝑧 − 𝜔𝑥𝜔𝑦), 

∑𝑀𝑄𝑧 = 𝑚 (𝑥 𝑎𝑄𝑦 − 𝑦 𝑎𝑄𝑥) + 𝐼𝑧𝑧 �̇�𝑧 − (𝐼𝑥𝑥 − 𝐼𝑦𝑦) 𝜔𝑥𝜔𝑦

− 𝐼𝑥𝑦 (𝜔𝑥
2 − 𝜔𝑦

2) − 𝐼𝑥𝑧 (�̇�𝑥 −𝜔𝑦𝜔𝑧) − 𝐼𝑦𝑧 (�̇�𝑦 + 𝜔𝑥𝜔𝑧). 

(2.49) 

The equations of motion expressed in equations (2.46) and (2.49) do not include 

gravitational effects. For more general expressions, gravitational acceleration 

components in local frame can be added to the translational accelerations in order to 

include gravitational effects on the body. After this summation is made and �̇�’s are 

replaced by 𝛼’s, equations (2.46) and (2.49) may be written in matrix formulation to 

be shown easily as follows 



 
 

22 
 

{

∑𝐹𝑄𝑥
∑𝐹𝑄𝑦
∑𝐹𝑄𝑧

} = 𝑚({

𝑎𝑄𝑥 + 𝑔𝑥
𝑎𝑄𝑦 + 𝑔𝑦
𝑎𝑄𝑧 + 𝑔𝑧

} + [

−𝜔𝑦
2 −𝜔𝑧

2 −𝛼𝑧 + 𝜔𝑥𝜔𝑦 𝛼𝑦 +𝜔𝑥𝜔𝑧

𝛼𝑧 +𝜔𝑥𝜔𝑦 −𝜔𝑥
2 −𝜔𝑧

2 −𝛼𝑥 +𝜔𝑦𝜔𝑧

−𝛼𝑦 +𝜔𝑥𝜔𝑧 𝛼𝑥 + 𝜔𝑦𝜔𝑧 −𝜔𝑥
2 −𝜔𝑦

2

] {
𝑥
𝑦
𝑧
}), 

{

∑𝑀𝑄𝑥
∑𝑀𝑄𝑦
∑𝑀𝑄𝑧

} = 𝑚 [

0 𝑎𝑄𝑧 + 𝑔𝑧 −𝑎𝑄𝑦 − 𝑔𝑦
−𝑎𝑄𝑧 − 𝑔𝑧 0 𝑎𝑄𝑥 + 𝑔𝑥
𝑎𝑄𝑦 + 𝑔𝑦 −𝑎𝑄𝑥 − 𝑔𝑥 0

] {
𝑥
𝑦
𝑧
} + [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] {

𝛼𝑥
𝛼𝑦
𝛼𝑧
}

+ [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] {

𝜔𝑥
𝜔𝑦
𝜔𝑧
}, 

(2.50) 

where 𝑔𝑥, 𝑔𝑦, 𝑔𝑧 are the components of the gravitational acceleration in local frame.  

Equations (2.50) are the base equations in order to get mass properties of the body. 

The bodies whose inertia parameters are to be found throughout the thesis are assumed 

as a rigid body. Their mass, location of mass center and inertia parameters are going 

to be calculated using these equations. 

𝑚 gives the mass of the body. 𝑥, 𝑦 and 𝑧 give the center of mass location with respect 

to reference point Q. 𝐼𝑥𝑥 , 𝐼𝑦𝑦, 𝐼𝑧𝑧 , 𝐼𝑥𝑦, 𝐼𝑥𝑧 , 𝐼𝑦𝑧 represent the inertia parameters of the 

body. The inertia parameters are about the reference point Q, since the force, moment, 

velocity and acceleration vectors are expressed at the point Q.  

Generally, it is more convenient to express inertia parameters about the center of mass. 

Therefore, using parallel axis theorem, obtained inertia parameters can be translated 

to center of mass location.  
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2.1.8. Parallel Axis Theorem 

Parallel axis theorem states that if inertia parameters about the centroidal axes are 

known, moment of inertia parameters about any parallel axes can be obtained.  

 

Figure 12. Inertia parameters with respect to center of gravity G and arbitrary point 

P can be correlated by using parallel distances between their axes. 

For the body in Figure 12, the relation between inertia parameters about local axes 

located at center of mass, G, and another parallel axes located at point P can be 

expressed using parallel axis theorem as follows 

 

[𝑰𝑃] = [𝑰𝐺] + 𝑚 [

𝑦𝑝
2 + 𝑧𝑝

2 −𝑥𝑝𝑦𝑝 −𝑥𝑝𝑧𝑝

−𝑥𝑝𝑦𝑝 𝑥𝑝
2 + 𝑧𝑝

2 −𝑦𝑝𝑧𝑝

−𝑥𝑝𝑧𝑝 −𝑦𝑝𝑧𝑝 𝑥𝑝
2 + 𝑦𝑝

2

]. (2.51) 

where [𝑰𝐺] is inertia tensor about centroidal axes and [𝑰𝑃] is inertia tensor about 

parallel axes located at point P.  
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2.1.9. Moment of Inertia About an Arbitrary Axis 

If the inertia parameters about the reference frame of the body shown in Figure 13 is 

known, inertia parameters about an arbitrary axis, a, passing through point O can be 

derived.  

 

Figure 13. Representation of an arbitrary axis passing through origin of the reference 

frame. 

The direction of the arbitrary axis, a, is defined by the unit vector 𝒖𝑎 as in 2.48 

 𝒖𝑎 = cos𝛼  𝑬1 + cos 𝛽 𝑬2 + cos 𝛾 𝑬3. (2.52) 

where cos 𝛼, cos 𝛽 and cos 𝛾 are the direction cosines. The moment of inertia about 

the arbitrary axis, a, can be obtained in terms of inertia parameters about reference 

frame as  

 𝐼𝑎 = 𝐼𝑥𝑥 cos
2 𝛼 + 𝐼𝑦𝑦 cos

2 𝛽 + 𝐼𝑧𝑧 cos
2 𝛾

− 2 𝐼𝑥𝑦 cos 𝛼 cos 𝛽 − 2 𝐼𝑦𝑧 cos 𝛽 cos 𝛾

− 2 𝐼𝑥𝑧 cos 𝛼 cos 𝛾. 

(2.53) 
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2.1.10. Principal Moments of Inertia [3], [4] 

Inertia tensor given in equation (2.41) is in the following form 

 𝑰 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

]. (2.54) 

The inertia tensor depends on the location and orientation of the reference coordinate 

system. Therefore, there is a reference coordinate system which is located at center of 

gravity of the body and makes the inertia tensor diagonal as follows 

 𝑰∗ = [

𝐼𝑥
∗ 0 0
0 𝐼𝑦

∗ 0

0 0 𝐼𝑧
∗

]. (2.55) 

where 𝐼𝑥
∗, 𝐼𝑦

∗ , 𝐼𝑧
∗are the principal moments of inertia of the body for the principal axes 

of inertia (𝑥∗𝑦∗𝑧∗). Using the principal moments of inertia simplifies the rotational 

equations of motion in (2.49) and regarding calculations. 

The principal axes and the corresponding moments of inertia can be calculated by 

solving the following eigenvalue problem 

 ([𝑰] − 𝜆[𝑰0])[𝒖
∗] = 0. (2.56) 

where [𝑰0] is an identity matrix, 𝜆 is the eigenvalues of the inertia matrix [𝑰], and  

[𝒖∗] = [{𝒖1
∗} {𝒖2

∗} {𝒖3
∗}] is the eigenvectors of the inertia matrix [𝑰]. 

In order to find the principal moments of inertia, the following equation should be 

solved 

 𝑑𝑒𝑡([𝑰] − 𝜆[𝑰0]) = 0. (2.57) 

Solution of equation (2.57) gives the principal moments of inertia, 𝜆 = 𝐼𝑥
∗, 𝐼𝑦

∗ , 𝐼𝑧
∗ and 

the solution of equation (2.56) gives the unit direction vectors ({𝒖1
∗}, {𝒖2

∗}, {𝒖3
∗}) for 

each principal axes. However, one of the three equations in equation (2.56) is linearly 

dependent to others. Thus, one component of a direction vector should be chosen 
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arbitrarily and the other components are found in terms of it. If it is considered that the 

direction vector is a unit vector, the following additional equation can be written 

 {𝒖𝑖
∗}𝑻 ∗ {𝒖𝑖

∗} = 𝟏. (2.58) 

Using that additional equation leads to find eigenvectors (direction vectors) uniquely. 

the obtained eigenvectors form an orthogonal set. Proof of this property can be 

examined in [4]. 

 

2.2. LITERATURE OVERVIEW 

In the literature, there are numerous resources investigating the measurement of mass 

properties. The methods in the literature can be mainly divided into two categories: 

static methods and dynamic methods. In static methods, the specimen whose mass 

parameters are to be measured is in a stationary position while the measurements are 

being done. These static methods cannot provide all the mass parameters, they can 

only measure the mass and center of gravity locations. In dynamic methods, the test 

specimen has a motion in space. Besides the mass and center of gravity locations, 

inertia parameters are also measured in dynamic methods using equations of motion. 

Measuring the mass is an ordinary procedure by using a weighing machine or a load 

sensor. The main task is to obtain center of gravity locations and inertia parameters. 

The most basic way to get center of gravity locations is hanging method in which the 

test specimen is hanged with a wire [5]–[8]. When the specimen comes into stationary 

position, the axis of the wire crosses through center of gravity. Repeating the same 

procedure at least one more time enables to get center of gravity locations 

geometrically.  

Balancing method is also used to get center of gravity positions [6], [9], [10]. The test 

specimen is placed on a lever and the lever is balanced with a known force acting on 

the specified location. Since the position of rotation center and the position at where 

the force acts is known, the location where the specimen’s gravitational force acts can 
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be calculated using moment balance equations. Replacing the specimen on the lever 

with at least three different orientations gives center of gravity locations geometrically. 

Another static method to obtain center of gravity locations is the force measurement 

method. In this method, the test specimen is placed on at least three force sensors [11], 

[12]. The summation of the readings from the force sensors gives the mass of the 

specimen. Center of gravity can be calculated by taking the moment of the forces on 

the sensors and the gravitational force of the specimen about any point. This gives two 

center of gravity positions. Changing the orientation of the specimen and writing 

moment equations about any point again are required to obtain the remaining center of 

gravity location. 

In dynamic methods, rotational equations of motion are used. Generally, these 

equations are simplified to one dimensional case to ease the measurement procedure. 

However, this simplification results in the need for more than one test configuration. 

In the cases where no simplification is done and three dimensional general motion is 

applied, one test configuration is enough to obtain all mass parameters. 

The simplest dynamic method is the pendulum method. The mass and the center of 

gravity locations should be known in advance in this method. There should be an 

oscillatory rotational motion about one axis and a restoring force. Equations of 

oscillatory rotational motion about one axis is used to calculate moment of inertia 

about the rotation axis. Pendulum method can be separated into groups with the type 

of the restoring force. The restoring force may be gravitational force or a spring force. 

In gravitational pendulum methods [5], [8], [13]–[15], gravitational force is used as a 

restoring force. The test specimen is hanged to create a swinging motion, and the 

period of the oscillations are measured. Then, the geometric dimensions and the 

measured period of oscillations are related to natural frequency appearing in the 

equation of motion. Then, the moment of inertia value is calculated. Parallel multifilar 

pendulum method is another method that uses gravitational force as a restoring force 

[8], [16]–[24]. In this method, the test specimen is placed on a plate which is hanged 

with two or more cables. Center of gravity location should be located in the vertical 
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axis of the geometric center of the cables. Small angular displacement about that axis 

is supplied and the specimen makes an oscillatory motion. Again, by measuring the 

period of oscillations, moment of inertia about rotation axis is reached. Spring force is 

another option for the restoring force of the pendulum method. The spring can be a 

linear spring [10], [25]–[29], or a torsional spring [30], [31]. The specimen is attached 

in a configuration such that when an initial displacement is given, it makes a rotational 

oscillatory motion. Similar to the gravitational pendulum method, equations of 

oscillatory motion are composed and period of oscillations are measured. Then by 

relating the natural frequency of the system with the spring constant, moment of inertia 

about rotation axis can be calculated. In all the alternatives of the pendulum method, 

only one moment of inertia parameter can be calculated for a single measurement. 

Therefore, at least six different configurations and measurements are required to obtain 

all inertia parameters. 

Run-down method directly uses the rotational equations of motion in one axis to obtain 

moment of inertia value about that axis [5]. The test specimen is forced to rotate about 

one axis with a variable rotational velocity. Acceleration and moment about the 

rotation axis is measured and replaced into rotational equations of motion. By doing 

this, moment of inertia about rotation axis can be calculated. In order to obtain the rest 

of the inertia parameters, the test should be repeated with five more orientation of the 

specimen. 

In the literature, there exists some methods to eliminate the need of the changing the 

configuration of the test setup. Main idea in these multifaceted methods is to provide 

three dimensional rotational motion to the test specimen in a single configuration. 

Non-parallel multifilar pendulum may be used to create three dimensional rotational 

motion [32], [33]. The test specimen is connected to a frame which is hanged with 

three or four non-parallel cables. By means of that configuration, three dimensional 

swinging motion occurs inherently if an initial displacement is given to the specimen. 

Measuring the motion and the forces acting on the specimen and replacing them into 

the rotational equations of motion give a chance to derive all the mass properties of 

the specimen in a single configuration.  
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Three dimensional rotational motion can also be generated with the help of actuators. 

In the methods that uses dynamic actuators, forces acting on the specimen and the 

motion of the specimen are recorded [34]–[40]. These recordings are replaced into 

rotational equations of motion, and complex mathematical procedure is applied in 

order to obtain all ten inertia parameters simultaneously similar to the non-parallel 

multifilar pendulum method.  

The methods described thus far uses all the measurements in the time domain. Mass 

properties can also be measured by using the kinematic and kinetic values in frequency 

domain. The modal methods mentioned in [41], [42], [51]–[60], [43], [61]–[63], [44]–

[50] are the most popular method to obtain mass properties in the frequency domain. 

In these methods, the specimen is placed on a softly supported fixture as it can move 

in quasifree-free condition. The force is applied to the specimen and accelerations of 

different points on the specimen are measured. Using these acceleration 

measurements, mode shapes of the body is estimated. Then, orthogonality relation 

between mass matrix and the mode shapes are used to derive all the mass parameters 

simultaneously. 

Another method to obtain mass properties in frequency domain is the inertia restrained 

method [41], [42], [46], [50], [52], [57], [61], [64], [65]. As in the modal method, the 

specimen is placed on a softly supported fixture. The specimen is excited at different 

locations with different frequencies by known forces and accelerations at different 

locations on the specimen are measured. The measurement of the mass properties is 

accomplished in two steps. In the first step, mass and the center of gravity locations 

are measured. In the second step, inertia parameters are calculated.  

The methods requiring at least one configuration change to obtain mass parameters are 

explained in Simple Methods section (2.2.1). The methods that can measure all the 

mass parameters in a single configurations are expressed in details in Multifaceted 

Methods section (2.2.2).  



 
 

30 
 

2.2.1. Simple Methods  

2.2.1.1. Static Methods 

In static methods, the specimen whose mass parameters are to be measured is in a 

stationary position. Therefore, velocity and acceleration terms disappear from the 

equations (2.50), and they get into the following form 

 

{

Σ𝐹𝑥
Σ𝐹𝑦
Σ𝐹𝑧

} = 𝑚 {

𝑔𝑥
𝑔𝑦
𝑔𝑧
}, 

(2.59) 

 

{

Σ𝑀𝑥

Σ𝑀𝑦

Σ𝑀𝑧

} = 𝑚 [

0 𝑔𝑧 −𝑔𝑦
−𝑔𝑧 0 +𝑔𝑥
𝑔𝑦 −𝑔𝑥 0

] {
𝑥
𝑦
𝑧
}. 

As seen in equation (2.59)b, inertia parameters also disappear. That is why static 

methods are only able to measure mass and center of mass locations. They cannot 

measure inertia parameters of the test specimen. 

2.2.1.1.1. Hanging Method [5]–[8] 

In the suspension method, mass and the center of gravity positions of the test specimen 

can be determined. The test specimen is hung with a wire from the ceiling or the test 

frame, etc. and then it comes into equilibrium as seen in the Figure 14. 

 
Figure 14. Configuration for hanging method. Wire direction points out the center of 

gravity location. [66] 
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Mass of the specimen may be found by the use of a force sensor at the wire or by a 

simple weighing machine. When the specimen is hung and come into the equilibrium 

position, the wire direction crosses through the center of gravity location of the 

specimen. In order to get all the center of gravity positions, the hanging process must 

be repeated at least two times. In the first measurement, center of gravity positions in 

one plane, which is the parallel to the ground, can be determined. To get the third 

center of gravity position, i.e. the center of gravity height, the test specimen should be 

hung one more time by changing the connection point of the wire. Then, the 

intersection of these two wire directions indicates the center of gravity position.  

Despite the hanging method is a very simple method, it does not point out the center 

of gravity locations numerically. It only provides geometric information. Therefore, it 

can be said that the accuracy of this method is low. Requirement for replacement of 

the specimen is another unfavorable side of this method. 

2.2.1.1.2. Balancing Method [6], [9], [10] 

Balancing method determines the center of gravity locations. The mass of the test 

specimen should be found in advance. In this method, test specimen is located on an 

edge pretending as a revolute joint. The specimen is held at another position as in 

Figure 15. Then using moment balance equations about the edge, center of gravity 

position along horizontal axis may easily be calculated.  
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Figure 15. The specimen can rotate about point R. The distance, b, is calculated 

using moment balance about point R. [10] 

A lever may also be used for balancing method. For this case, the specimen is placed 

at the one side of the lever, and a counterweight with a known mass is used to balance 

the lever as in the Figure 16. Similarly, location of the center of gravity position along 

vertical axis may be calculated with moment balance equations.  

 

Figure 16. Moment balance about point A is used to find the distance between center 

of gravity position along vertical axis and point A, L2. [66] 
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Calculation of the center of gravity positions along the other axes requires two more 

measurements. The test specimen should be rotated and the same procedures should 

be performed to describe all the center of gravity positions. 

Balancing method is a simple and successful method with better accuracy for center 

of gravity locations relative to hanging method. However, necessity of three setup 

process is the inappropriate site of this method. 

2.2.1.1.3. Force Measurement Method [11], [12] 

In this method, the distribution of forces arise from gravity of the body are utilized. 

First, the body should be placed on a plate which is supported at least three different 

points as in the Figure 17. The forces in vertical direction at these support points are 

measured. The mass of the body is found from the summation of the readings. For the 

gravity locations, moment equilibrium equations are used. The gravity locations on the 

plane parallel to the ground is calculated firstly. Then the orientation of the body is 

changed, and the new moment equations are constituted and solved. By this way, the 

remaining gravity position may be obtained.  

The third gravity locations may be found with a different method. If the plate is tilted 

with a known angle while the body is still attached to it, the moment equations may be 

rewritten using geometrical relations. Since the first two gravity locations are fixed by 

the previous moment equilibrium, the last gravity location is obtained. 
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Figure 17. Test specimen is placed on the plate shown and arising forces are 

measured. [12] 

Force measurement method is also a simple and accurate method; however, at least 

two configuration necessity is handicap for this method. 

2.2.1.2. Dynamic Methods 

In dynamic methods, the test specimen has a motion in space. Besides the mass and 

center of mass locations, inertia parameters are also measured in dynamic methods 

using equations (2.50). 

2.2.1.2.1. Pendulum Method [5], [8], [20]–[29], [10], [30], [31], [13]–[19] 

In the pendulum method, there is an oscillatory motion created by an initial 

displacement and a restoring force. Restoring force may be gravitational force or a 

spring force. 

One alternative of a pendulum method is a gravitational pendulum. The body whose 

mass properties are to be measured is hanged with a revolute joint as shown in Figure 

18. As in the hanging method, mass and center of mass locations are found. To find 

inertia parameters, a small angular displacement, 𝜃, is given to the body. Then, the 

body makes a swinging motion while the gravity acts as a restoring force.  
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Figure 18. Initial displacement, 𝜽, is given to the specimen and gravitational force 

tries to bring the specimen to the equilibrium. 

For the system in the figure, equation (2.50)b simplifies to equation (2.59)b if it is 

written about rotation center, and no rotational motion exists about y and z axes  

 Σ𝑀𝑥 = 𝐼𝑥𝑥 �̇�𝑥. (2.60) 

The total moment expression in equation (2.59)b is due to the gravity only, and may 

be formulated as 𝑀 = −𝑚𝑔 𝐿 sin 𝜃. Since small angular displacement is assumed, the 

simplification, sin 𝜃 ≅ 𝜃, can be made in the moment equation. Then, ignoring the 

subscripts, the equation is rewritten as follows 

 𝐼�̈� + 𝑚𝑔𝐿 𝜃 = 0. (2.61) 

Equation (2.61) may be written in the form of �̈� +
𝑚𝑔𝐿

𝐼
 𝜃 = 0, which is the general 

form of equation of an oscillatory motion. The term 
𝑚𝑔𝐿

𝐼
 is equal to the square of 
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natural frequency of the system, 𝜔𝑛
2, and it can also be expressed as 𝜔𝑛 = 2𝜋𝑓 =

2𝜋

𝑇
  

where f is the oscillation frequency and T is the oscillation period. If the oscillation 

period of the body is measured after the given initial angular displacement, inertia 

about the rotation axis may be found as follows 

 𝐼 =
𝑚𝑔𝐿𝑇2

(2𝜋)2
. (2.62) 

An alternative way of pendulum method is a parallel multifilar pendulum. In this 

method, the body is suspended by two or more cables which are parallel to each other. 

Three cables configuration is shown in the Figure 19. 

 

Figure 19. Test specimen is placed on the plate shown and initial angular 

displacement is given. [31] 

When small initial angular displacement is also given to this system and the body starts 

to oscillate about the vertical axis. Here, the gravity has the restoring effect. If the 

small angular displacements are assumed, the moment about the rotation axis is 

obtained as 𝑀 = −
𝑚𝑔𝑟2

𝐿
𝜃. Then, the equation of motion may be written as follows 

 𝐼�̈� +
𝑚𝑔𝑟2

𝐿
𝜃 = 0. (2.63) 
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where r is the distance between center of plate and connection point of the cable to the 

plate, 𝐿 is the length of cables. Again, equation (2.63) is in the form of equation of 

motion of an oscillator. Approving that 𝜔𝑛
2 =

𝑚𝑔𝑟2

𝐼𝐿
, and measuring the period of 

oscillations, inertia about the rotation axis is obtained as follows. 

 𝐼 =
𝑚𝑔𝑟2𝑇

(2𝜋)2𝐿
. (2.64) 

In the multifilar pendulum method, mass center of the body should be placed on the 

rotation axis which is the center of the cables. Therefore, as in the torsional pendulum 

method, mass center position should be known previously.  

Another alternative of the pendulum method is linear spring pendulum method. In this 

method, the specimen is placed on a knife edge and a linear spring is attached to it as 

shown in Figure 20. When an initial displacement is given to the specimen, rotational 

oscillatory motion about knife edge is obtained.  

 

Figure 20. Tension springs acts as a restoring force and creates an oscillatory 

rotational motion about knife edge. [26] 

Instead of linear spring, a rod with low torsional stiffness or a torsional spring can also 

be used. Therefore, torsional stiffness of a rod or a spring is used as a restoring force. 
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In this method, the body is attached to the rod and it can only rotate about the vertical 

axis as shown in Figure 21.  

 

Figure 21. The test specimen is attached to the ceiling with a rod. Torsional stiffness 

of the rod is found by the formula 𝑘 = 𝐺𝐽/𝐿. [31] 

For both case where linear or torsional spring is used, when an initial angular 

displacement is given to the body, it makes an oscillatory rotational motion. Similar to 

the equation (2.61), equation of motion for this system is written as 

 𝐼�̈� + 𝑘𝜃 = 0. (2.65) 

where, k is the spring constant. Equation (2.65) is also in the form of an equation of 

motion of oscillator. This time, natural frequency of the oscillator is written as 𝜔𝑛
2 =

𝑘 𝑙⁄ . Again, if the period of oscillations is measured, the inertia about the rotation axis 

may be found by the following equation 

 𝐼 =
𝑘 𝑇2

(2𝜋)2
. (2.66) 

Using linear spring or torsional spring pendulum method, mass and the center of mass 

locations cannot be obtained. Therefore, these parameters should be known 

beforehand.  Then, inertia about center of gravity can be found by using parallel axis 

theorem. 
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In all alternatives of the pendulum method, inertia parameters are calculated about the 

rotation axis. Inertia parameters about center of gravity may be derived using parallel 

axis theorem as in equation (2.51).  

In pendulum methods, only one inertia parameter can be found in a single 

configuration. In order to get the other inertia parameters, orientation of the body 

should be changed and the same process should be repeated five more times. By doing 

this, six moment of inertia parameters about six different axes is obtained. Then, using 

equation (2.52), all inertia parameters of the body can be calculated by constructing 

six different equations. 

Using small angular displacements increases the accuracy of pendulum method. In 

addition to that, accuracy of this method depends on the measuring the period of 

oscillations correctly. 

2.2.1.2.2. Run-Down Method [5] 

In the run-down method, the body, whose inertia parameters are to be measured, is 

forced to rotate about one axis with a non-zero angular acceleration.  

The moment occurred between the body and actuator is measured during the rotational 

motion. Since there is a rotational motion about only one axis, equation of motion in 

equation (2.50)b again simplifies to the following form 

 Σ𝑀𝑥 = 𝐼𝑥𝑥 �̇�𝑥.  (2.67) 

Ignoring the subscripts, inertia about the rotation axis can be calculated as the ratio of 

the torque to the rotational acceleration as follows 

 𝐼 = 𝑀 �̇�⁄ .  (2.68) 

The rotational axis does not have to cross the mass center. If the inertia about axis 

passing through mass center is desired, parallel axis theorem should be applied. Also 

in run-down method, mass and mass center should be known previously. In this 

method, inertia about only one axis is found. Therefore, orientation of the body should 
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be changed and same procedure should be applied six times. The accuracy of this 

method depends on the correct measurement of the torque and a proper acceleration 

input. If the losses at the actuator and connections are kept low, run-down method 

gives satisfactory results. 

2.2.2. Multifaceted Methods 

2.2.2.1. Time Domain Methods 

2.2.2.1.1. Non-Parallel Multifilar Pendulum Method [32], [33] 

In non-parallel multifilar pendulum method, the body is placed on a fixture which is 

hanged by at least three non-parallel cables as shown in Figure 22.  

 

Figure 22. The test specimen is hanged with four non-parallel cables. [33] 

Since the cables are not parallel, the body is able to make general three-dimensional 

motion. If an initial displacement or initial velocity is given to the body, it starts to 

make a general motion freely. Translational and rotational velocities and accelerations 

of the body are measured by accelerometers or encoders. Also, the forces occurring on 

the cables are measured by using load cells. These measurement results are obtained 
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continuously during the motion, therefore there are values for velocities, accelerations, 

forces and moments about the measurement point at every time instant.  

If these measurements are used in equation (2.50)a, the mass and center of mass 

locations can be obtained. If they are replaced into equation (2.50)b, all mass 

parameters, including mass, center of mass locations and inertias, can be found 

instantaneously.  

This method is a simple method to measure mass parameters, because it does not need 

actuators. Therefore, this method may be easily used for large bodies without 

increasing the cost too much. Moreover, this method is able to measure all mass 

parameters in a single configuration with a high accuracy.  

2.2.2.1.2. Dynamic Actuator Method [34]–[40] 

In the dynamic actuator method, the body is fixed to the test frame. This frame is 

placed on a mechanism, which can rotate the frame about three orthogonal axes, as 

shown in Figure 23. By this way, the body is able to rotate an arbitrary axis whose 

rotation center is known. 

 

Figure 23. The actuator configuration rotates the specimen about point P, and forces 

and accelerations are measured. [35] 
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The forces and moments acting on the frame are measured. Therefore, moments about 

any point can be calculated. Angular velocities and accelerations can be measured 

from the motion of the frame by using accelerometers. Similar to the non-parallel 

multifilar pendulum method, these kinematic measurement results and moment values 

can be replaced into the equation (2.50)b. Then, all the mass parameters can be obtained 

simultaneously.  

In this method, static measurements may be applied to get mass and center of mass 

locations without changing the test configuration. In order to do this, the forces on the 

actuators are measured at two different orientations of the test frame. Since the 

measurements are made statically, angular velocities and accelerations vanish from the 

rotational equations of motion. Therefore, using the load measurements, mass and 

center of mass locations can be obtained as in the force measurement method.  

Although the logic behind this method is similar to the non-parallel multifilar 

pendulum method, it is more complicated and costly system due to the need of actuator 

mechanism. However, since the rotation point is known, solution procedure of the 

rotational equations of motion is easier. This method can provide all mass parameters 

in a single configuration. The accuracy of this method is strongly affected by the losses 

occurring on the actuator mechanism. Therefore, if the losses on the actuators are kept 

minimum, this method gives accurate results.  

2.2.2.2. Frequency Domain Methods 

In time domain methods, kinetic and kinematic values are measured with respect to 

time. In frequency domain methods, these kinetic and kinematic values are used with 

respect to frequency. The transformation between time domain and frequency domain 

can be applied using Fourier Transform as follows [67] 

 

𝐹(𝜔) = ∫ 𝑓(𝑡) 𝑒−𝑖𝜔𝑡 𝑑𝑡
+∞

−∞

, 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔) 𝑒𝑖𝜔𝑡 𝑑𝜔
+∞

−∞

. 
(2.69) 
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2.2.2.2.1. Modal Method [41], [42], [51]–[60], [43], [61]–[63], [44]–[50] 

In modal method, the body is placed on a softly supported fixture so that it can vibrate 

spatially, when a force is applied to the body as in Figure 24.  

 

Figure 24. The specimen is placed on springs and makes a general motion with the 

excited force. [52] 

There are some measurement points, whose accelerations are to be measured, on the 

body. These translational acceleration measurements at different points allows to 

observe the motion of the body. Natural frequencies, damping ratios and mode shapes 

of the system are estimated. The estimated mode shape matrix is converted to the mass-

normalized mode shape matrix. Then, orthogonality relation between the mass matrix 

and mode shapes enables to get mass parameters of the body  

 
[Φ]𝑇 [𝑀] [Φ] = [𝐼], 

[𝑀] = [Φ]−𝑇 [Φ]−1.    
(2.70) 

where [Φ] is the mass-normalized mode shape matrix, [𝑀] is the rigid body mass 

matrix and [𝐼] is the identity matrix. Mass matrix [𝑀] contains all mass parameters 

and can be expanded as follows 
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 𝑀 =

[
 
 
 
 
 
 
𝑚     0    0
0    𝑚    0
0    0    𝑚

0 𝑚𝑧 𝑚𝑦
−𝑚𝑧 0 𝑚𝑥
−𝑚𝑦 −𝑚𝑥 0

0 𝑚𝑧 𝑚𝑦
−𝑚𝑧 0 𝑚𝑥
−𝑚𝑦 −𝑚𝑥 0

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧 ]

 
 
 
 
 
 

.    (2.71) 

where x, y, z are the locations of the center of mass in x, y, z axes. Therefore, solution 

of equation (2.70) gives mass properties of the body. 

In this method, mass parameters are obtained by a single test setup. The body should 

be excited at different locations and different directions to excite all six rigid body. 

However, this may be difficult in practice.  

2.2.2.2.2. Inertia Restrained Method [41], [42], [46], [50], [52], [57], [61], 

[64], [65] 

In the inertia restrained method, the body is suspended with springs or soft cords in 

order to simulate free-free boundary condition. Equations of motion for that system is 

constructed with respect to a given reference point. The body is excited at different 

locations with different frequencies and its dynamic response is analyzed in a low 

frequency region by a constant term called as inertia restraint. That method is suitable 

for the cases in which the rigid body modes and flexible modes are well separated.  

Measuring the complete mass parameters is overcome in two steps. In the first step, 

mass and center of mass locations are calculated using translation equation of motion 

equation (2.50)a with zero velocities as follows 

 Σ𝑭 = 𝑚 [𝒂𝑄 + �̇� × 𝒓𝑄/𝐺].    (2.72) 

Center of gravity locations are the unknowns to be solved. Once these unknowns are 

solved, the second step starts to find inertia parameters. Since the mass and center of 

mass locations are known from first step and velocities are zero, rotational equations 

of motion about the mass center get into a simple form as 
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Σ𝑀𝑥 = 𝐼𝑥𝑥 �̇�𝑥 − 𝐼𝑥𝑦 �̇�𝑦 − 𝐼𝑥𝑧 �̇�𝑧, 

Σ𝑀𝑦 = 𝐼𝑦𝑦 �̇�𝑦 − 𝐼𝑥𝑦 �̇�𝑥 − 𝐼𝑦𝑧 �̇�𝑧 , 

Σ𝑀𝑧 = 𝐼𝑧𝑧 �̇�𝑧 − 𝐼𝑥𝑧�̇�𝑥 − 𝐼𝑦𝑧 �̇�𝑦.    

(2.73) 

Using these equations, inertia parameters about the mass center are calculated. 

The solution of this method is easy because it gives mass properties with solving linear 

equations. The inertia restrained method gives the complete mass properties with a 

single test setup in two steps. The selection of excitation points and acceleration 

measurement points strongly affect the accuracy of the results. In [67], there is a 

statistical analysis to minimize the error of inertia restrained method by changing the 

selection of acceleration measurement points and excitation points/directions. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

 

3.1. DESIGN 

3.1.1. Design Selection 

The purpose of the design is the measurement of complete mass parameters in a single 

test. In order to achieve this, a design is selected by utilizing the concepts in the 

literature given in Chapter 2. Main concepts are based on the use of equations of 

motion. The equations of motion contain kinematic quantities (positions, velocities, 

accelerations) and kinetic quantities (forces, moments). Therefore, these quantities 

should be different from zero to use in equations of motion and in all the concepts, 

these quantities are desired to be measured.  

The selected design is shown in Figure 25 and Figure 26. In that design, the test model 

is able to make an oscillatory rotational motion about point O. This rotational motion 

creates translational and rotational velocities and accelerations on the center of gravity 

of the specimen. Velocities and accelerations are measured from the rotational motion 

about coordinate axes. In addition, forces and torques created due to the oscillatory 

motion are measured at point Q.  

Simplicity of that design is the main advantage of the test device. It does not require 

complicated actuators to move the system. An initial displacement is enough to create 

a rotational motion. Also, since the forces and torques are measured at point Q, these 

measurements do not include the effects of the parts above the load cell, which are the 

nested frames, extension link, torsional spring, encoders and cables. Also, the frictional 

losses in these parts are eliminated. Furthermore, that design can be used for heavy 

masses by only changing the dimensions and the capacity of the load cell.  
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Figure 25. The configuration of test device is given. Main parts of the system are 

numbered. 
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Figure 26. Computer model of configuration of the developed design is shown. 

 

3.1.2. Components 

The testing device mainly consists of the numbered items in Figure 25. These items 

are: 

(1) Mounting platform 

(2) Nested frames 

(3) Torsional Spring 

(4) Extension Link 

(5) Connection Interfaces 

(6) Encoders 
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(7) Load Sensor 

(8) Test Specimen 

(9) Data Acquisition Systems (not shown in Figure 25) 

Mounting Platform 

Mounting platform is the main frame which carries all the parts of the test device. 

90x90 mm and 45x90 mm aluminum shapes are used to construct the mounting 

platform. Its general look is shown in Figure 27. Maximum dimensions of a body to 

be mounted can be 500×500×500 mm.  

 

Figure 27. Mounting platform with the connected parts is shown. 
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Nested Frames 

Nested frames are connected to each other with pins whose axes intersect at point O 

as shown in Figure 28. Using the shown pin configuration, frame 1 is able to rotate 

about x axis with respect to frame 2, and frame 2 is able to rotate about y axis with 

respect to frame 3. 

 

Figure 28. Nested frames and the reference coordinate axes are shown. 

There is an angular contact ball bearing inside the frame 1 as shown in figure. This 

bearing links the frame 1 and extension link and it only allows the rotation about z axis 

between frame 1 and extension link. Section view is shown in Figure 29. 

 

Figure 29. Bearing and rotational spring between the frame 1 and the extension link 

is shown. 
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Extension Link 

Extension link shown in Figure 30 is the part which carries the rotational motion to the 

body to be tested. It is designed in two pieces in order to ease placing it to frame 1. At 

the upper side of extension link, there is a part fixes one end of torsional spring to the 

extension link. At lower side, there is the connection interface to the load sensor. 

The length of the extension link decides the span of the testing field and period of 

oscillatory rotational motions about x and y axes. 

 

Figure 30. Extension link and connected parts are shown. 

Torsional Spring 

Torsional spring is placed between frame 1 and extension link as shown in Figure 31. 

It induces an oscillatory rotational motion between frame 1 and extension link along z 

axis.  
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The rate of the spring specifies the period of oscillatory motion about z axis.  

 

Figure 31. Torsional spring between frame 1 and extension link 

Rotary Encoders 

Three rotary encoders shown in Figure 32 are used in the test setup. They are recording 

the rotational motion between nested frames and extension link. Therefore, angular 

velocities and accelerations of the test specimen about point O can be obtained. 

 

Figure 32. Encoder and connection to the frame is shown. 
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Encoders are incremental type. That means their first recordings start with zero value 

each time the power is supplied to them. Therefore, before powering up the encoders, 

they should be brought into the reference position. 

Specifications of the encoders are given in Appendix A. 

Load Sensor 

Since the forces and moments should be known to use in equations of motion in all 

directions, six axis load sensor shown in Figure 33 is used in the test setup. The load 

sensor is able to measure three force values along x, y, z axes and three moment values 

about x, y, z axes at point Q.  

 

Figure 33. 6-axis load sensor and its connection interfaces 

Load sensor is used with an amplifier. Specifications of the load sensor and amplifier 

are given in Appendix B. 

Data Acquisition System 

Encoders and load sensor do not give physical outputs directly. Therefore, data 

acquisition systems are used to convert outputs of the encoders and load sensor into 
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physical quantities like position vs time or load vs time graphics via computers. Two 

different data acquisition systems are used in the device and shown in the Figure 34. 

 

Figure 34. Data acquisition systems for load sensor and encoders 

 

3.2. THEORY  

The main requirement of the test device is to obtain all the mass parameters in a single 

configuration; i.e., without having to reassemble the test setup. For this purpose, three-

dimensional rotational motion is governed.  

As in concepts in the literature, the main consideration of the design is to provide a 

rotational motion in three-dimension to specimen to be tested, and measure its 

kinematic and kinetic quantities. In order to fulfil these requirements, the setup in the 

Figure 26 is designed.  
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The test specimen and the load sensor are rigidly attached to the extension link so that 

they move all together. The test specimen is able to rotate about point O under favor 

of attachment configurations of extension link and nested frames.  

Assuming the coordinate frame located at point O which is shown in Figure 26 is 

attached to the extension link and moves with it, it can be inferred that the extension 

link can rotate about only z axis relative to frame 1. Pin connection between frame 1 

and frame 2 allows rotational motion about y axis relative to each other. Similarly, 

frame 2 can rotate about x axis with respect to frame 3 with the pin connections shown. 

Superimposing these three rotational motions enables the rotation of the test specimen 

about point O.  

If an initial motion is supplied to the test specimen, it starts to rotate about point O. 

The rotations about x and y axes are oscillatory motions due to the restoring effect of 

weight of the test specimen. Therefore, non-zero moment values about these axes can 

be obtained. However, rotation about z axis slows down with a low acceleration value 

without an oscillation, and low acceleration value means low moment measurement 

about z axis. Low moment measurements are more sensitive to measurement errors. 

Hence, the rotational spring is attached between extension link and frame 1 as shown 

in figure. By doing this, if sufficient initial rotation about z axis is also given to the test 

specimen, it starts to oscillate also about the z axis and higher moment values can be 

measured.  

Force and moment values occurred due to motion of the body is measured by the six-

axis load sensor located at point Q. Therefore, force and moment vectors affecting the 

body (𝑭𝑄 and 𝑴𝑄) are known at point Q.  

Since forces and moments are known at point Q, equations (2.50) can also be written 

at point Q as follows 
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{

Σ𝐹𝑥
Σ𝐹𝑦
Σ𝐹𝑧

} = 𝑚({

𝑎𝑄𝑥 + 𝑔𝑥
𝑎𝑄𝑦 + 𝑔𝑦
𝑎𝑄𝑧 + 𝑔𝑧

} + [

−𝜔𝑦
2 − 𝜔𝑧

2 −𝛼𝑧 + 𝜔𝑥𝜔𝑦 𝛼𝑦 + 𝜔𝑥𝜔𝑧

𝛼𝑧 + 𝜔𝑥𝜔𝑦 −𝜔𝑥
2 − 𝜔𝑧

2 −𝛼𝑥 + 𝜔𝑦𝜔𝑧

−𝛼𝑦 + 𝜔𝑥𝜔𝑧 𝛼𝑥 + 𝜔𝑦𝜔𝑧 −𝜔𝑥
2 − 𝜔𝑦

2

] {
𝑥
𝑦
𝑧
}), 

{

Σ𝑀𝑥

Σ𝑀𝑦

Σ𝑀𝑧

} = 𝑚 [

0 𝑎𝑄𝑧 + 𝑔𝑧 −𝑎𝑄𝑦 − 𝑔𝑦
−𝑎𝑄𝑧 − 𝑔𝑧 0 𝑎𝑄𝑥 + 𝑔𝑥
𝑎𝑄𝑦 + 𝑔𝑦 −𝑎𝑄𝑥 − 𝑔𝑥 0

] {
𝑥
𝑦
𝑧
} + [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] {

𝛼𝑥
𝛼𝑦
𝛼𝑧
}

+ [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] {

𝜔𝑥
𝜔𝑦
𝜔𝑧
}. 

(3.1) 

 

Figure 35. Sequential rotation and intermediate coordinate systems are demonstrated 

Rotational velocity and acceleration values seen in equations (3.1) are derived using 

the outputs of the encoders. Taking derivatives of these angular displacements does 

not give the rotational velocity of the body directly. Because the measured angular 

displacements are the rotations of the intermediate coordinate systems between the 

fixed and body coordinate systems. Using Figure 35, that statement can be explained 

more precisely as  

 𝜃1 is the relative displacement about x axis between the fixed coordinate 

system attached to the nested frame 1 (𝑋𝑌𝑍) and the first intermediate 

coordinate system attached to the nested frame 2 (𝑥′𝑦′𝑧′), 
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 𝜃2 is the relative displacement about y axis between the first intermediate 

coordinate system attached to the nested frame 2 (𝑥′𝑦′𝑧′) and the second 

intermediate coordinate system attached to the nested frame 3 (𝑥′′𝑦′′𝑧′′), 

 𝜃3 is the relative displacement about z axis between the fixed coordinate 

system attached to the nested frame 3 (𝑥′′𝑦′′𝑧′′) and local coordinate system 

attached to extension link and therefore to the test specimen (𝑥𝑦𝑧). 

These angular displacements are called as ‘Euler’s Angles’ which are demonstrated in 

Figure 35. For the configuration of frames used in the test setup, rotation about x axis 

(𝜃1) is applied first, because the motion of the test setup starts with the rotation about 

x axis between the fixed coordinate system the first intermediate coordinate system. 

Then, rotations about y and z axes (𝜃2 and 𝜃3) are applied respectively with the similar 

sense. These sequenced rotations can be named as ‘1-2-3 Euler Rotation Sequence’. 

Further information about Euler’s angles and rotation sequences are in Appendix C. 

Since the measured Euler’s angles in the test setup are obtained with respect to 

different coordinate systems, in order to find the angular velocity of the body, 

derivatives of the measured rotations should be transformed to the body-fixed 

coordinate system. Then, taking the derivative of angular velocity gives the angular 

acceleration. Equations to calculate angular velocity and acceleration are given in 3.2. 

Detailed procedure to obtain these equations are also given in Appendix C 

 

𝝎 = {

𝜔𝑥
𝜔𝑦
𝜔𝑧
} = [

    cos 𝜃1 cos 𝜃3 sin 𝜃3 0
−cos 𝜃1 sin 𝜃3 cos 𝜃3 0

sin 𝜃1 0 1
] {

�̇�1
�̇�2
�̇�3

}, 

𝜶 = �̇�. 

(3.2) 

Translational velocities and accelerations at point Q are obtained by the method given 

in Chapter 2.1.4 with the following equations  

 𝒗𝑄 = 𝝎× 𝒓𝑄 , 
(3.3) 

 𝒂𝑄 = 𝜶 × 𝒓𝑄 +𝝎× (𝝎 × 𝒓𝑄). 
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These force, moment, velocity and acceleration measurements are done continuously 

during the motion of the specimen. Therefore, for every time instant, there are force, 

moment, velocity and acceleration values for point Q. 

3.2.1. Mass Measurement 

It can be assumed that there are two different coordinate systems located at point O. 

One of them is the fixed reference coordinate system (global frame, �̃��̃��̃�) and the other 

one is the rotating coordinate system (local frame, 𝑥𝑦𝑧) which is moving with the test 

specimen.  

Firstly, the axes of reference and local coordinate systems should be coincident at the 

starting of the test. That is the reference position for the encoders, and the position 

measurements start relative to that non-rotated position. 

Then the test setup should be released and come into the static equilibrium position. 

In the static equilibrium position, the test specimen is going to be in an inclined 

position if the center of gravity does not coincide with the vertical axis passing through 

point O.  

In that static equilibrium position, equation (3.1)a can be simplified as follows 

 {

Σ𝐹𝑄𝑥
Σ𝐹𝑄𝑦
Σ𝐹𝑄𝑧

} = 𝑚 {

𝑔𝑥
𝑔𝑦
𝑔𝑧
}. (3.4) 

where  {𝒈} = [𝑔𝑥 𝑔𝑦 𝑔𝑧]𝑇 is the gravitational acceleration components in local 

frame and Σ𝑭 = [Σ𝐹𝑄𝑥 Σ𝐹𝑄𝑦 Σ𝐹𝑄𝑧]𝑇 is the force measurements of load sensor.  

The {𝒈} vector is obtained by a transformation matrix between reference and local 

coordinate system as follows 

 {𝒈} = [𝑻]{�̃�}. (3.5) 
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where [𝑻] is the transformation matrix, {�̃�} is the gravitational accelerations in global 

frame. Gravitational accelerations in global frame, {�̃�}, can directly be written as 

 {�̃�} = {

�̃�𝑥
�̃�𝑦
�̃�𝑧

} = {
0
0
g0

}. (3.6) 

where g0 is the standard gravity and equals to 9.80665 m/s2 [68]. 

Transformation matrix can be derived by using Euler rotations in 𝑥𝑦𝑧 sequence. Then 

the transformation matrix, [𝑻], in equation (3.5) can be rewritten as  

[𝑻] = [

cos𝜃2 cos𝜃3 cos 𝜃1 sin 𝜃3 + sin 𝜃1 sin 𝜃2 cos𝜃3 sin 𝜃1 sin 𝜃3 − cos𝜃1 sin 𝜃2 cos𝜃3
−cos 𝜃2 sin 𝜃3 cos 𝜃1 cos𝜃3 − sin𝜃1 sin 𝜃2 sin 𝜃3 sin 𝜃1 cos 𝜃3 + cos𝜃1 sin 𝜃2 sin 𝜃3

sin 𝜃2 −sin 𝜃1 cos 𝜃2 cos𝜃1 cos𝜃2

]. 

(3.7) 

where 𝜃1, 𝜃2 and 𝜃3 are Euler angles which are the angular positions about x, y and z 

axes relatively. These angular positions are the recordings of the encoders at the static 

equilibrium position.  

Coordinate transformation for force and moment measurements are not required since 

the load sensor is moving with the local coordinate frame, its measurements can 

directly be used in equations of motion. 

If the components of gravitational acceleration in local frame and the force 

measurements of load sensor are replaced into equation (3.4), total mass of the test 

specimen can be calculated. Then, mass of the test specimen, 𝑚, is calculated as 

follows 
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𝑚 =
𝐹𝑥
𝑔𝑥
, 

𝑚 =
𝐹𝑦

𝑔𝑦
, 

𝑚 =
𝐹𝑧
𝑔𝑧
. 

(3.8) 

Theoretically, for each equality in equation (3.8) should give the same result; however, 

due to the inaccuracies in the test configuration and measurement errors, the results 

differ a little. Therefore, average of these measurements is taken as a result as  

 𝑚 =

𝐹𝑥
𝑔𝑥
+
𝐹𝑦
𝑔𝑦
+
𝐹𝑧
𝑔𝑧

3
. (3.9) 

3.2.2. Center of Gravity Measurement 

After the mass of the test specimen is calculated in static position, center of gravity of 

the test specimen can also be measured in the same position. For the center of gravity 

position, rotational equation of motion equation (3.1)b is used. In the static equilibrium 

position, equation (3.1)b gets in the following form 

 {

Σ𝑀𝑄𝑥

Σ𝑀𝑄𝑦

Σ𝑀𝑄𝑧

} = 𝑚 [

0 𝑔𝑧 −𝑔𝑦
−𝑔𝑧 0 𝑔𝑥
𝑔𝑦 −𝑔𝑥 0

] {
𝑥
𝑦
𝑧
}. (3.10) 

where Σ𝑴 = [Σ𝑀𝑄𝑥 Σ𝑀𝑄𝑦 Σ𝑀𝑄𝑧]𝑇 is the moment measurements of the load sensor 

and [𝑥 𝑦 𝑧]𝑇 = 𝒓𝐺 is the center of gravity position of the test specimen relative to 

the local coordinate system. 

Solution of the equation (3.10) gives the center of gravity position 𝒓𝐺. 

Calculated center of gravity position of the test specimen, 𝒓𝐺, is relative to the 

measurement point Q. Center of gravity of the specimen can also be written with 

respect to the local coordinate frame whose origin is at point O as follows 
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 𝒓𝐺/𝑂 = 𝒓𝑄 + 𝒓𝐺 . (3.11) 

where 𝒓𝑄 is the position vector of point Q in the local frame located at point O. 

It is also possible to obtain center of gravity positions in a dynamical test. After the 

mass is measured and the encoders are still in recording, an initial rotational 

displacement about all three axes of the local frame are given to the test specimen. The 

specimen starts to make an oscillatory motion about these axes. While the test 

specimen is making and oscillatory motion, load sensor and encoders are recording 

loads and positions continuously. Therefore, at point Q, there are force and moment 

measurements from the load sensor, and position, velocity and acceleration 

measurements from the encoders for every time instant. 

Using equation (3.1)1, three equations can be written with the measurements for a 

single time instant. By constituting three equations for every time instant, the following 

over-constrained system is obtained  

{
 
 
 
 

 
 
 
 
Σ𝐹𝑄𝑥1
Σ𝐹𝑄𝑦1
Σ𝐹𝑄𝑧1
:
:

Σ𝐹𝑄𝑥𝑛
Σ𝐹𝑄𝑦𝑛
Σ𝐹𝑄𝑧𝑛}

 
 
 
 

 
 
 
 

3𝑛×1

−𝑚

{
 
 
 
 

 
 
 
 
𝑎𝑄𝑥1 + 𝑔𝑥1
𝑎𝑄𝑦1

+ 𝑔𝑦1
𝑎𝑄𝑧1 + 𝑔𝑧1

:
:

𝑎𝑄𝑥𝑛 + 𝑔𝑥𝑛
𝑎𝑄𝑦𝑛 + 𝑔𝑦𝑛
𝑎𝑄𝑧𝑛 + 𝑔𝑧𝑛}

 
 
 
 

 
 
 
 

3𝑛×1

=

[
 
 
 
 
 
 
 
 
 

−𝜔𝑦
2
1
− 𝜔𝑧

2
1 −𝛼𝑧1 +𝜔𝑥1𝜔𝑦1 𝛼𝑦1 +𝜔𝑥1𝜔𝑧1

𝛼𝑧1 +𝜔𝑥1𝜔𝑦1 −𝜔𝑥
2
1
−𝜔𝑧

2
1 −𝛼𝑥1 +𝜔𝑦1𝜔𝑧1

−𝛼𝑦1 +𝜔𝑥1𝜔𝑧1 𝛼𝑥1 +𝜔𝑦1𝜔𝑧1 −𝜔𝑥
2
1
−𝜔𝑦

2
1

:
:

−𝜔𝑦
2
𝑛
−𝜔𝑧

2
𝑛 −𝛼𝑧𝑛 +𝜔𝑥𝑛𝜔𝑦𝑛 𝛼𝑦𝑛 +𝜔𝑥𝑛𝜔𝑧𝑛

𝛼𝑧𝑛 +𝜔𝑥𝑛𝜔𝑦𝑛 −𝜔𝑥
2
𝑛
−𝜔𝑧

2
𝑛 −𝛼𝑥𝑛 +𝜔𝑦𝑛𝜔𝑧𝑛

−𝛼𝑦𝑛 +𝜔𝑥𝑛𝜔𝑧𝑛 𝛼𝑥𝑛 +𝜔𝑦𝑛𝜔𝑧𝑛 −𝜔𝑥
2
𝑛
−𝜔𝑦

2
𝑛 ]
 
 
 
 
 
 
 
 
 

3𝑛×3

{
𝑥
𝑦
𝑧
}. 

(3.12) 
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For a more compact view, equation (3.12) can be rewritten as follows 

 {𝑨1}3𝑛×1 = [𝑨2]3𝑛×3 {𝒓𝐺}, (3.13) 

where     {𝑨1}3𝑛×1 =

{
 
 
 
 

 
 
 
 
Σ𝐹𝑄𝑥1
Σ𝐹𝑄𝑦1
Σ𝐹𝑄𝑧1
:
:

Σ𝐹𝑄𝑥𝑛
Σ𝐹𝑄𝑦𝑛
Σ𝐹𝑄𝑧𝑛}

 
 
 
 

 
 
 
 

3𝑛×1

−𝑚

{
 
 
 
 

 
 
 
 
𝑎𝑄𝑥1 + 𝑔𝑥1
𝑎𝑄𝑦1 + 𝑔𝑦1
𝑎𝑄𝑧1 + 𝑔𝑧1

:
:

𝑎𝑄𝑥𝑛 + 𝑔𝑥𝑛
𝑎𝑄𝑦𝑛 + 𝑔𝑦𝑛
𝑎𝑄𝑧𝑛 + 𝑔𝑧𝑛}

 
 
 
 

 
 
 
 

3𝑛×1

, 

[𝑨2]3𝑛×3 =

[
 
 
 
 
 
 
 
 
 

−𝜔𝑦
2
1
− 𝜔𝑧

2
1

−𝛼𝑧1 + 𝜔𝑥1𝜔𝑦1 𝛼𝑦1 + 𝜔𝑥1𝜔𝑧1

𝛼𝑧1 + 𝜔𝑥1𝜔𝑦1 −𝜔𝑥
2
1
− 𝜔𝑧

2
1

−𝛼𝑥1 + 𝜔𝑦1𝜔𝑧1

−𝛼𝑦1 + 𝜔𝑥1𝜔𝑧1 𝛼𝑥1 + 𝜔𝑦1𝜔𝑧1 −𝜔𝑥
2
1
− 𝜔𝑦

2
1

:
:

−𝜔𝑦
2
𝑛
− 𝜔𝑧

2
𝑛

−𝛼𝑧𝑛 + 𝜔𝑥𝑛𝜔𝑦𝑛 𝛼𝑦𝑛 + 𝜔𝑥𝑛𝜔𝑧𝑛

𝛼𝑧𝑛 + 𝜔𝑥𝑛𝜔𝑦𝑛 −𝜔𝑥
2
𝑛
− 𝜔𝑧

2
𝑛

−𝛼𝑥𝑛 + 𝜔𝑦𝑛𝜔𝑧𝑛

−𝛼𝑦𝑛 +𝜔𝑥𝑛𝜔𝑧𝑛 𝛼𝑥𝑛 + 𝜔𝑦𝑛𝜔𝑧𝑛 −𝜔𝑥
2
𝑛
− 𝜔𝑦

2
𝑛 ]
 
 
 
 
 
 
 
 
 

3𝑛×3

. 

The over-constrained system can be solved by the least-square method with the 

following equation [69], [70] 

 𝒓𝐺 = ([𝑨2]
𝑇 [𝑨2])

−1 [𝑨2]
𝑇 {𝑨1}. (3.14) 

 

3.2.3. Inertia Measurement 

Inertia parameters of the test specimen are determined in a dynamical test. They can 

be calculated either after the center of gravity position is determined or concurrently 

with center of gravity position. 
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Inertia parameters are calculated using both translational and rotational equations of 

motion. Equation (3.1)1 and (3.1)2 can be combined by creating unknowns vector 

including center of gravity locations and inertia parameters as follows 

 {
Σ𝑭𝑄 −𝑚{𝒂𝑄 + 𝒈}

Σ𝑴𝑄
} = [

𝑚[𝑨3] [𝟎]

𝑚[𝑨4] [𝑨5]
] {
𝒓𝐺
𝑰𝑄
} , (3.15) 

where 𝒓𝐺 = [𝑥 𝑦 𝑧]𝑇  and 𝑰𝑄 = [𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧 𝐼𝑥𝑦 𝐼𝑥𝑧 𝐼𝑦𝑧]𝑇 is the inertia 

parameters of the test specimen. 

[𝑨3] = [

−𝜔𝑦
2 − 𝜔𝑧

2 −𝛼𝑧 + 𝜔𝑥𝜔𝑦 𝛼𝑦 + 𝜔𝑥𝜔𝑧

𝛼𝑧 + 𝜔𝑥𝜔𝑦 −𝜔𝑥
2 − 𝜔𝑧

2 −𝛼𝑥 + 𝜔𝑦𝜔𝑧

−𝛼𝑦 + 𝜔𝑥𝜔𝑧 𝛼𝑥 + 𝜔𝑦𝜔𝑧 −𝜔𝑥
2 − 𝜔𝑦

2

], 

[𝑨4] = [

0 𝑎𝑄𝑧 + 𝑔𝑧 −𝑎𝑄𝑦 − 𝑔𝑦
−𝑎𝑄𝑧 − 𝑔𝑧 0 𝑎𝑄𝑥 + 𝑔𝑥
𝑎𝑄𝑦 + 𝑔𝑦 −𝑎𝑄𝑥 − 𝑔𝑥 0

], 

[𝑨5] = [

𝛼𝑥 −𝜔𝑦𝜔𝑧 𝜔𝑦𝜔𝑧
𝜔𝑥𝜔𝑧 𝛼𝑦 −𝜔𝑥𝜔𝑧
−𝜔𝑥𝜔𝑦 𝜔𝑥𝜔𝑦 𝛼𝑧

𝛼𝑦 − 𝜔𝑥𝜔𝑧 𝛼𝑧 + 𝜔𝑥𝜔𝑦 𝜔𝑦
2 − 𝜔𝑧

2

𝛼𝑥 +𝜔𝑦𝜔𝑧 𝜔𝑧
2 − 𝜔𝑥

2 𝛼𝑧 − 𝜔𝑥𝜔𝑦

𝜔𝑥
2 − 𝜔𝑦

2 𝛼𝑥 − 𝜔𝑦𝜔𝑧 𝛼𝑦 + 𝜔𝑥𝜔𝑧

]. 

Equation 3.15 can be shown in a more compact form as follows 

 {𝑨6} = [𝑨7]{𝑿}, (3.16) 

where {𝑿} = [𝑥 𝑦 𝑧 𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧 𝐼𝑥𝑦 𝐼𝑥𝑧 𝐼𝑦𝑧]𝑇, 

{𝑨6} = {
Σ𝑭𝑄 −𝑚{𝒂𝑄 + 𝒈}

Σ𝑴𝑄
}, 

[𝑨7] = [
𝑚[𝑨3] [𝟎]

𝑚[𝑨4] [𝑨5]
]. 

Equation (3.16) can also be constructed for every time instant for different force, 

moment, velocity and acceleration measurement values and the following over-

constrained system can be obtained 
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 {

𝑨61
:
𝑨6𝑛

}

6𝑛×1

= [

𝑨71
:
𝑨7𝑛

]

6𝑛×9

{𝑿}9×1. (3.17) 

That over-constrained system can also be shown in more compact form as 

 {𝑨8}6𝑛×1 = [𝑨9]6𝑛×9 {𝑿}9×1, (3.18) 

where {𝑨8}6𝑛×1 = {

𝑨61
:
𝑨6𝑛

}

6𝑛×1

,  [𝑨9]6𝑛×9 = [

𝑨71
:
𝑨7𝑛

]

6𝑛×9

. 

Then, the unknown matrix {𝑿}, which contains center of gravity positions and inertia 

parameters, can be solved by a least square method as follows 

 {𝑿} = ([𝑨9]
𝑇 [𝑨9])

−1 [𝑨9]
𝑇 {𝑨8}, (3.19) 

First three terms of the unknown matrix {𝑿} gives 𝒓𝑄 vector, and the last six terms 

gives 𝑰𝑄 vector.  

Inertia parameters calculated in 𝑰𝑄 vector are about the local coordinate system at point 

Q. The inertia parameters about the center of gravity locations can be obtained using 

parallel axis theorem as in equation (2.51)  

 [𝑰𝐺] = [𝑰𝑄] − 𝑚 [

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧

−𝑥𝑦 𝑥2 + 𝑧2 −𝑦𝑧

−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2
]. (3.20) 

where 𝑥, 𝑦, 𝑧 are the elements of the center of gravity position vector of the test 

specimen relative to point Q,  𝒓𝐺 = [𝑥 𝑦 𝑧]𝑇. 

Alternatively, if mass and center of gravity positions are found previously, rotational 

equations of motion can be used to obtain inertia parameters of the test specimen about 

the center of gravity location directly. In order to do this, rotational equations of motion 
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should be written at center of gravity point, G. If the forces and moments at point Q 

are translated to point G, the following is obtained 

 
𝑭𝐺 = 𝑭𝑄 , 

𝑴𝐺 = 𝑴𝑄 + 𝒓𝐺 × 𝑭𝑄 .  
(3.21) 

Then, rotational equation of motion can be rewritten in the following form 

{𝑴𝐺} = [

𝛼𝑥 −𝜔𝑦𝜔𝑧 𝜔𝑦𝜔𝑧
𝜔𝑥𝜔𝑧 𝛼𝑦 −𝜔𝑥𝜔𝑧
−𝜔𝑥𝜔𝑦 𝜔𝑥𝜔𝑦 𝛼𝑧

𝛼𝑦 −𝜔𝑥𝜔𝑧 𝛼𝑧 +𝜔𝑥𝜔𝑦 𝜔𝑦
2 −𝜔𝑧

2

𝛼𝑥 +𝜔𝑦𝜔𝑧 𝜔𝑧
2 −𝜔𝑥

2 𝛼𝑧 −𝜔𝑥𝜔𝑦

𝜔𝑥
2 −𝜔𝑦

2 𝛼𝑥 −𝜔𝑦𝜔𝑧 𝛼𝑦 +𝜔𝑥𝜔𝑧

] {𝑰𝐺} , 

 {𝑴𝐺} = [𝑨5] {𝑰𝐺}. (3.22) 

where 𝑰𝐺 is inertia parameters of test specimen about point G.  

In this instance, if equation {𝑴𝐺} = [𝑨5] {𝑰𝐺} is written for every time instant, over-

constrained system can be written as follows 

 {

𝑴𝐺1
:

𝑴𝐺𝑛

}

3𝑛×1

= [

𝑨51
:
𝑨5𝑛

]

3𝑛×6

{𝑰𝐺}6×1, (3.23) 

or in a more compact form as 

 {𝑨10}3𝑛×1 = [𝑨11]3𝑛×6 {𝑰𝐺}6×1, (3.24) 

where {𝑨10}3𝑛×1 = {

𝑴𝐺1
:

𝑴𝐺𝑛

}

3𝑛×1

,  [𝑨11]3𝑛×6 = [

𝑨51
:
𝑨5𝑛

]

3𝑛×6

 . 

Then, the inertia parameters about center of gravity position, 𝑰𝐺, can be directly found 

by solving the following equation, 

 𝑰𝐺 = ([𝑨11]
𝑇 [𝑨11])

−1 [𝑨11]
𝑇 {𝑨10}. (3.25) 
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CHAPTER 4 

 

 

SAMPLE SIMULATION, TESTS AND RESULTS 

 

 

 

In that part of the thesis, the method of measuring the mass properties explained in 

Chapter 3 is applied for different cases. Firstly, a computer simulation model is 

constructed by using MSC Adams software and the measurement methods are applied. 

Then, mass properties of some dummy masses are calculated using the real test setup. 

The results of the computer simulation and the real tests are compared to the real values 

of the mass properties of the test specimens.  

4.1. CASE I – COMPUTER SIMULATION 

The same test configuration developed in the Chapter 3 is modeled by using MSC 

Adams software. An arbitrary shape solid model is used for calculation of the mass 

properties.  

Rotational motion in three-dimension is given to the specimen which is demonstrated 

in the Figure 36.  
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Figure 36. The arbitrary shape solid model is demonstrated. 

Test specimen can make a rotational motion about point O. The specimen is brought 

to the initial position by using an Euler’s rotation angles −42°, −17°, 120° about 

𝑥, 𝑦, 𝑧 axes, respectively.  

When the simulation starts, the specimen makes an oscillatory rotational motion about 

point O. During the motion, Euler’s angles (𝜃1, 𝜃2, 𝜃3), force and moment values at 

point Q (Σ𝐹𝑄𝑥, Σ𝐹𝑄𝑦, Σ𝐹𝑄𝑧, Σ𝑀𝑄𝑥, Σ𝑀𝑄𝑦, Σ𝑀𝑄𝑧) are measured.  

4.1.1. Mass Measurement 

The mass measurement method explained in Chapter 3.2.1 is applied. At the time when 

the simulation starts, the force values at the load cell in local coordinate frame is 

measured as follows 

{

𝐹𝑄𝑥,0
𝐹𝑄𝑦,0
𝐹𝑄𝑧,0

} = {
104.9
−21.75
−109.3

}  𝑁. 
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Then, the transformation matrix at the initial position is formed by using the equation 

(3.7) as follows 

[𝑻] = [
−0.4870 0.5669 0.5669
−0.8258 −0.5465 0.1390
−0.2843 0.6164 0.7343

]. 

Gravitational acceleration components in the local frame is obtained by equation (3.5) 

{𝒈𝟎} = {

𝑔𝑥,0
𝑔𝑦,0
𝑔𝑧,0

} = {
6.7230
−1.3825
−7.0043

}  𝑚/𝑠2. 

Mass of the test specimen is calculated by using equations (3.8) and (3.9). The result 

of the mass measurement is the following 

𝑚 = 15.6 𝑘𝑔. 

The mass measurement in computer simulation gives the exact result. The accuracy of 

the mass measurement is very high in the simulation model, because the force 

measurements are perfectly done and initial position is ensured with the exact values. 

Also, there is no mathematical operation other than the simple multiplication for 

calculating the mass of the test specimen. 

4.1.2. Center of Gravity Measurement 

The center of gravity measurement method explained in Chapter 3.2.2 is applied. 

Center of gravity position with respect to point Q can be measured in a dynamic test 

using equations (3.12) through (3.14). In order to get the equation system in equation 

(3.12), the simulation is run for 5 seconds and data are recorded with 200 Hz sampling 

rate. Therefore, equation system is constructed with 3000 equations. Solution of the 

equation system gives the center of gravity position of the test specimen with respect 

to point Q. Then, using equation (3.11), center of gravity position can be calculated 

with respect to point O. Results for these case are given in Table 1. In table, reference 

values of center of gravity are directly taken from simulation software. 
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Table 1. Center of gravity position measurements 

 Reference value Measured value % Error 

𝒙 (𝒎𝒎) 12,2555 12,4836 1,86 

𝒚 (𝒎𝒎) -62,8294 -62,8760 0,07 

𝒛 (𝒎𝒎) 116,5809 116,5712 0,01 

 

4.1.3. Inertia Measurement 

Mass properties including center of gravity positions, moment and product of inertias 

are calculated using the method in Chapter 3.2.3. Equations (3.16) through (3.20) are 

utilized to obtain the inertia values about point Q. Then, inertia values are calculated 

about the center of gravity position using equation (3.20). Similar to the center of 

gravity measurement in Chapter 4.1.2, the simulation is run for 5 seconds with 200 Hz 

sampling rate. Therefore, equation system in equation (3.15) are constructed with 6000 

equations and solved by least square solution method. 

For the reference values of inertia parameters, definitions of the moments and products 

of inertia in equations (2.39) and (2.40) are used. For that purpose, the simulation 

model is divided into three segments as shown in Figure 37. 



 
 

71 
 

 

Figure 37. Arbitrary shape simulation model is divided into three segments for 

calculation of inertia values. 

For calculation of inertia parameters of the arbitrary shape model in Figure 36, inertia 

values of three segments in Figure 37 are separately calculated and they are totalized. 

For the demonstration of  the application of equations (2.39) and (2.40), moment of 

inertia about x axis for the segments in Figure 37 can be calculated as follows 

𝐼𝑥 = ∫(𝑦
2 + 𝑧2) 𝑑𝑚 = ∫(𝑦2 + 𝑧2) 𝑑𝑚1

 

𝑚1

+ ∫(𝑦2 + 𝑧2) 𝑑𝑚2

 

𝑚2

+ ∫(𝑦2 + 𝑧2) 𝑑𝑚3

 

𝑚3

, 

𝐼𝑥 = ∫ ∫ ∫ (𝑦2 + 𝑧2) 𝜌 𝑑𝑥1 𝑑𝑦1 𝑑𝑧1

87

−63

73

−103

30

0

+ ∫ ∫ ∫ (𝑦2 + 𝑧2) 𝜌 𝑑𝑥2 𝑑𝑦2 𝑑𝑧2

37

−63

−103

−128

230

0

+ ∫ ∫ ∫ (𝑦2 + 𝑧2) 𝜌 𝑑𝑥1 𝑑𝑦1 𝑑𝑧1

137

−63

−23

−128

260

230

, 

 

𝐼𝑥 = 486950 𝑘𝑔 ∙ 𝑚𝑚
2 = 0.48695 𝑘𝑔 ∙ 𝑚2. 

Similar procedure can be applied to calculate the rest of the inertia parameters. The 

inertia parameters could also be read Adams software, directly. Calculated inertia 
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parameters by using the definition are exactly the same as the values directly read from 

the Adams software. These inertia values are used as a reference to compare the values 

measured by the developed design.  

In Table 2, reference and measured values of center of gravity position with respect to 

point Q and inertia values about center of gravity are given.  

Table 2. Complete mass properties measurements at point Q  

 Reference value Measured value % Error 

𝒙 (𝒎𝒎) 12,2555 12,2843 0,23 

𝒚 (𝒎𝒎) -62,8294 -62,8317 0,00 

𝒛 (𝒎𝒎) 116,5809 116,5615 0,02 

𝑰𝒙 (𝒌𝒈 ∙ 𝒎
𝟐) 0,48695 0,48696 0,00 

𝑰𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0,41775 0,41779 0,01 

𝑰𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0,14919 0,14972 0,35 

𝑰𝒙𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) -0,00764 -0,00791 3,46 

𝑰𝒙𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0,03831 0,03915 2,20 

𝑰𝒚𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) -0,15159 -0,15089 0,46 

 

Inertia measurements given in Table 2 are about point Q. Inertia measurement about 

center of gravity are calculated using parallel axis theorem and shown in Table 3. 

Table 3. Inertia measurements about center of gravity 

 Reference value Measured value % Error 

𝑰𝒙 (𝒌𝒈 ∙ 𝒎
𝟐) 0,21329 0,21324 0,02 

𝑰𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0,20334 0,20333 0,01 

𝑰𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0,08525 0,08560 0,41 

𝑰𝒙𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0,00437 0,00434 0,72 

𝑰𝒙𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0,01602 0,01645 2,68 

𝑰𝒚𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) -0,03730 -0,03652 2,09 
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If the results are examined, the accuracies are said to be high. Generally, the percentage 

differences are lower than 0.5%. These differences are mostly caused by 

differentiation operation while calculating angular velocities and accelerations. If the 

angular velocity and acceleration values are directly taken from the computer software, 

instead of calculating them, all mass properties are calculated with differences less 

than 10-4 %, which are caused by the least square solution method.  

4.2. CASE II – DUMMY MASS - A 

The same test configuration developed in the Chapter 3 is assembled and a dummy 

mass shown in Figure 38 is attached as a test specimen. Dummy mass is an aluminum 

block with known dimensions and density. Reference mass properties are directly 

taken from the CAD model to compare the measured values. Since the shape of the 

dummy mass is simple, mass properties taken from CAD model are going to be 

accurate enough.  

 

Figure 38. Shown aluminum block is used to measure mass properties. 
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Measuring the mass is accurate and an easy process by an ordinary weighing machine. 

Therefore, the mass of the test specimen (7.4 kg) is measured in advance and directly 

replaced into equations of motion.  Then, the rest of the mass properties are measured 

with the test device.  

As in the computer simulation case, an initial displacement is given to the test 

specimen. Once the rotation about point O starts, the rotation angles, force and moment 

values are measured with encoders and load sensor during the motion.  

4.2.1. Center of Gravity Measurement 

The center of gravity measurement method explained in Chapter 3.2.2 is applied. 

Center of gravity position with respect to point Q can be measured in a dynamic test 

using equations (3.12) through (3.14). In order to get the equation system in equation 

(3.12), Euler angles and loads are measured for 60 seconds. Solution of that equation 

system gives the center of gravity position of the test specimen with respect to point 

Q. Results for that cases are given in Table 4. 

Table 4. Center of gravity position measurements for dummy mass A 

 
Reference 

value 

Measured 

value 
% Error 

Standard 

Deviation 

𝒙 (𝒎𝒎) 0 1.24 - 0.74 

𝒚 (𝒎𝒎) 0 0.85 - 1.13 

𝒛 (𝒎𝒎) 71 71.44 0.62 0.94 

 

The results given in Table 4 are calculated using 8000 Hz data sampling rate. 5 different 

tests are performed with that frequency and the average of the measurements and 

standard deviations are given in the table. Moreover, different data sampling rates are 

used; however, results between these are not significant. For comparison, center of 

gravity measurements for different data sampling rates are given in Table 5. 
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Table 5. Center of gravity position measurements for different sampling rates for 

dummy mass A 

 
Reference 

Value 

Measured values 

100 Hz 500 Hz 1000 Hz 4000 Hz 8000 Hz 

𝒙 (𝒎𝒎) 0 1.12 1.27 2.59 0.80 1.24 

𝒚 (𝒎𝒎) 0 0.33 0.66 -1.13 0.13 0.85 

𝒛 (𝒎𝒎) 71 71.36 70.35 70.63 70.35 71.44 

 

4.2.2. Inertia Measurement 

Mass properties including center of gravity positions, moment and product of inertias 

are calculated using the method in Chapter 3.2.3. Equations (3.15) through (3.19) are 

utilized to obtain the inertia values about point Q. Then, inertia values are also 

calculated about the center of gravity position using equation (3.20). Similar to the 

center of gravity measurement in Chapter 4.2.1, the test is run for 60 seconds and 

equation system in equation (3.15) are constructed. 

In Table 6, real and measured values of the mass properties about point Q are given.  

Table 6. Complete mass properties measurements about point Q for dummy mass A 

 
Reference 

value 

Measured 

value 
% Error 

Standard 

Deviation 

𝒙 (𝒎𝒎) 0 0.78 - 0.44 

𝒚 (𝒎𝒎) 0 0.97 - 0.99 

𝒛 (𝒎𝒎) 71 71.38 0.54 0.96 

𝑰𝒙 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0606 0.0603 0.50 0.003 

𝑰𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0539 0.0540 0.27 0.001 

𝑰𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0331 0.0328 1.03 0.001 

𝑰𝒙𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0057 0.0056 0.67 0.001 

𝑰𝒙𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0 0.0037 - 0.001 

𝑰𝒚𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0 0.0009 - 0.002 
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As in the center of gravity measurement, the results given in Table 6 are calculated using 

8000 Hz data sampling rate. Five different tests are performed with that frequency and 

the average of the measurements and standard deviations are given in the table. For 

different data sampling rates, measurements for mass properties are given in Table 7. 

Table 7. Measurement of mass properties for different data sampling rates for 

dummy mass A 

 
Reference 

Value 

Measured values 

100 Hz 500 Hz 1000 Hz 4000 Hz 8000 Hz 

𝒙 (𝒎𝒎) 0 0,62 1.02 2.06 0.48 0.78 

𝒚 (𝒎𝒎) 0 0,65 0.80 -0.73 0.31 0.97 

𝒛 (𝒎𝒎) 71 71,32 70.34 70.68 70.33 71.38 

𝑰𝒙 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0606 0,0618 0.0613 0.0617 0.0602 0.0603 

𝑰𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0539 0,0554 0.0551 0.0534 0.0530 0.0540 

𝑰𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0331 0,0327 0.0326 0.0304 0.0322 0.0328 

𝑰𝒙𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0057 0,0054 0.0058 0.0047 0.0053 0.0056 

𝑰𝒙𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0 0,0037 0.0040 0.0067 0.0035 0.0037 

𝑰𝒚𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0 0,0002 0.0007 -0.0024 -0.0007 0.0009 

 

Inertia measurements given in Table 6 and Table 7 are about point Q. Inertia 

measurement about center of gravity are calculated using parallel axis theorem and 

shown in Table 8. The results in Table 8 are also for 8000 Hz data sampling rate.  
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Table 8. Inertia measurements about center of gravity for dummy mass A 

 
Reference 

value 

Measured 

value 
% Error 

Standard 

Deviation 

𝑰𝒙,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0253 0.0231 8.91 0.002 

𝑰𝒚,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0186 0.0168 9.69 0.001 

𝑰𝒛,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0324 0.0327 0.96 0.001 

𝑰𝒙𝒚,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0057 0.0056 0.73 0.001 

𝑰𝒙𝒛,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0 0.0033 - 0.001 

𝑰𝒚𝒛,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0 0.0004 - 0.002 

 

If the results are examined, the following implications can be made. 

 Results for the center of gravity measurements are pretty accurate. The errors in 

center of gravity measurements are in a range of ±1 mm 

 About point Q, moment of inertia measurements are accurate within ±1% limit.  

 Errors are increased when inertia measurements are made about center of gravity. 

About center of gravity, moment of inertia measurements are accurate within ±10%.  

 Also, errors in measurement for product of inertias are in the range of ±0.003 kg∙m2 

for both about point Q and center of gravity position.  

 

4.3. CASE III – DUMMY MASS – B 

In this case, a dummy mass consisting of two aluminum block with known dimensions 

and densities is examined. They are connected to each other at specified points. Their 

reference mass properties are directly taken from the CAD model to compare the 

measured values also in this case. Configuration of the test setup is shown in Figure 

39. 
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Figure 39. Mass properties of the shown dummy mass consists of two aluminum 

block are measured. 

The mass of the dummy mass (10.5 kg) is measured in advance and replaced into 

equations. The other mass properties are measured with the test device. Similar 

procedure as in the Case II is applied to measure mass properties. 

4.3.1. Center of Gravity Measurement 

In order to measure center of gravity position, similar procedure in Chapter 4.2.1 is 

applied. In Table 9, real and measured values of center of gravity position with respect 

to point Q are given.  

Table 9. Center of gravity position measurements for dummy mass B 

 
Reference 

value 

Measured 

value 
% Error 

Standard 

Deviation 

𝒙 (𝒎𝒎) 18.26 19.07 4.46 1.24 

𝒚 (𝒎𝒎) -29.46 -30.30 2.84 2.20 

𝒛 (𝒎𝒎) 91.39 91.38 0.01 1.62 
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The results given in Table 9 are calculated using 8000 Hz data sampling rate. 5 different 

tests are performed with that frequency and the average of the measurements and 

standard deviations are given in the table. Similar to Case II, different data sampling 

rates are also used. For comparison, center of gravity measurements for different data 

sampling rates are given in Table 10. 

Table 10. Center of gravity position measurements for different sampling rates for 

dummy mass B 

 
Reference 

Value 

Measured values 

100 Hz 500 Hz 1000 Hz 4000 Hz 8000 Hz 

𝒙 (𝒎𝒎) 18.26 20.22 20.18 18.88 18.77 19.07 

𝒚 (𝒎𝒎) -29.46 -29.76 -30.63 -30.29 -28.87 -30.30 

𝒛 (𝒎𝒎) 91.39 91.51 91.41 91.01 90.73 91.38 

 

4.3.2. Inertia Measurement 

In order to make inertia measurement, similar procedure in Chapter 4.2.2 is applied. 

In Table 11, real and measured values of the mass properties about point Q are given.   

Table 11. Complete mass properties measurements about point Q for dummy mass B 

 
Reference 

value 

Measured 

value 
% Error 

Standard 

Deviation 

𝒙 (𝒎𝒎) 18.26 17.92 1.84 0.668 

𝒚 (𝒎𝒎) -29.46 -29.30 0.53 1.774 

𝒛 (𝒎𝒎) 90.39 91.11 0.79 1.617 

𝑰𝒙 (𝒌𝒈 ∙ 𝒎
𝟐) 0.1585 0.1580 0.30 0.003 

𝑰𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0.1341 0.1360 1.47 0.002 

𝑰𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0740 0.0772 4.29 0.003 

𝑰𝒙𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) -0.0113 -0.0108 4.34 0.001 

𝑰𝒙𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0244 0.0280 14.77 0.002 

𝑰𝒚𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) -0.0394 -0.0430 9.21 0.004 
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As in the center of gravity measurement, the results given in Table 11 are calculated 

using 8000 Hz data sampling rate. Five different tests are performed with that 

frequency and the average of the measurements and standard deviations are given in 

the table. For different data sampling rates, measurements for mass properties are 

given in Table 12. 

Table 12. Measurement of mass properties for different data sampling rates for 

dummy mass B 

 
Reference 

Value 

Measured values 

100 Hz 500 Hz 1000 Hz 4000 Hz 8000 Hz 

𝒙 (𝒎𝒎) 18.26 19.07 18.20 17.69 17.88 17.92 

𝒚 (𝒎𝒎) -29.46 -29.02 -29.16 -29.05 -28.29 -29.30 

𝒛 (𝒎𝒎) 90.39 91.42 91.14 90.83 90.54 91.11 

𝑰𝒙 (𝒌𝒈 ∙ 𝒎
𝟐) 0.1585 0.1648 0.1620 0.1594 0.1576 0.1580 

𝑰𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) 0.1341 0.1436 0.1392 0.1386 0.1356 0.1360 

𝑰𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0740 0.0798 0.0835 0.0779 0.0774 0.0772 

𝑰𝒙𝒚 (𝒌𝒈 ∙ 𝒎
𝟐) -0.0113 -0.0104 -0.0102 -0.0111 -0.0099 -0.0108 

𝑰𝒙𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0244 0.0361 0.0286 0.0301 0.0294 0.0280 

𝑰𝒚𝒛 (𝒌𝒈 ∙ 𝒎
𝟐) -0.0394 -0.0467 -0.0445 -0.0442 -0.0404 -0.0430 

 

Inertia measurements given in Table 11 and Table 12 are about point Q. Inertia 

measurement about center of gravity are calculated using parallel axis theorem and 

shown in Table 13. The results in Table 13 are also for 8000 Hz data sampling rate. 
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Table 13. Inertia measurements about center of gravity for dummy mass B 

 
Reference 

value 

Measured 

value 
% Error 

Standard 

Deviation 

𝑰𝒙,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0676 0.0627 7.32 0.006 

𝑰𝒚,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0486 0.0463 4.66 0.004 

𝑰𝒛,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0620 0.0649 4.74 0.003 

𝑰𝒙𝒚,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) -0.0059 -0.0053 9.26 0.001 

𝑰𝒙𝒛,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) 0.0078 0.0111 41.08 0.002 

𝑰𝒚𝒛,𝑮 (𝒌𝒈 ∙ 𝒎
𝟐) -0.0127 -0.0153 20.67 0.003 

If the results are examined, the following implications can be made. 

 Results for the center of gravity measurements are more accurate than the results of 

inertia measurements.  

 Accuracy of the center of gravity measurements are better when complete mass 

properties are calculated simultaneously (4.2.2), rather than measuring only the 

center of gravity positions (4.2.1). The errors are lower than 4% when only the 

center of gravity are measured while the errors are lower than 2% when complete 

mass properties are measured. 

 About point Q, moment of inertia measurements are accurate within 5% whereas 

product of inertia measurements are accurate within 15%. 

 Errors are increased when the inertia values are measured about center of gravity 

position. About center of gravity, moment of inertia measurements are accurate 

within 10% whereas product of inertia measurements are accurate within 40%. 
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4.5. RESULTS AND DISCUSSION 

Computer simulation case is the ideal case, in which there is no errors in angle, force 

or load measurements. Therefore, the theory of the design is checked with a computer 

simulation first. In that case, accuracy of the measurements is quite high. Error 

percentages are higher in product of inertia measurements than the other 

measurements. The reason is that the product of inertia values are smaller compared 

to other mass properties.  

Also, two different real tests are performed. In Case II, mass properties of the dummy 

mass A are measured. In that case, center of gravity location is on the z axis, which 

makes the loading symmetric. However, in Case III, the loading is asymmetric since 

the center of gravity position is not along z axis. Due to the symmetry, the motion of 

the mass is smoother in Case II. Therefore, errors in the measurements are lower in 

that case. These errors mostly caused by the geometric imperfectness. Also, the 

measurement sensibility of the sensors is another error source. The accuracy of the 

developed design for symmetric (Case II) and asymmetric (Case III) loading are shown 

in Table 14 and Table 15.  

Table 14. Accuracies of the device about point Q 

Mass property 

Accuracy in 

Symmetric 

Loading 

Accuracy in 

Asymmetric 

Loading 

Center of gravity positions (𝑥, 𝑦, 𝑧) 1 % 2 % 

Moment of inertia (𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧) 1 % 5 % 

Product of inertia (𝐼𝑥𝑦, 𝐼𝑥𝑧 , 𝐼𝑦𝑧) 1 % 15 % 
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Table 15. Accuracies of the device about center of gravity 

Mass property 

Accuracy in 

Symmetric 

Loading 

Accuracy in 

Asymmetric 

Loading 

Center of gravity positions (𝑥, 𝑦, 𝑧) 1 % 2 % 

Moment of inertia (𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧) 10 % 10 % 

Product of inertia (𝐼𝑥𝑦, 𝐼𝑥𝑧 , 𝐼𝑦𝑧) 1 % 40 % 

In Table 14 and Table 15, for symmetric loadings, center of gravity position at x and 

y axes are zero. Also, product of inertia values, 𝐼𝑥𝑧 , 𝐼𝑦𝑧, are zero. Therefore, these 

values are ignored in percentage accuracy calculation in Table 14 and Table 15. 

While translating inertia values from point Q to center of gravity point, center of 

gravity measurements are used by taking their squares in parallel axis theorem in 

equation (2.51). These center of gravity measurements also include errors. Therefore, 

accuracies for inertia measurements get worse when calculated about center of gravity 

position instead of point Q as seen in Table 14 and Table 15. 

Generally, geometric tolerances of parts of the device are loose and there are 

unignorable clearances in the assembly. Therefore, some discontinuities occur during 

the motion of the test specimen. That makes the measurements of the rotation angles 

different from the actual values.  

Also, it is assumed that all the coordinate axes perfectly coincide at a specific point; 

however, there are some offsets in the axes due to the loose tolerances in the assembly. 

Therefore, reference point, point O or point Q, can be different from the ideal position. 

Since the inertia values are proportional to the square of the displacements, these 

offsets highly effect the accuracy of the inertia measurements. 

The reference values of the measured object are taken from CAD software, since the 

measured object are simple; however, these values cannot be measured exactly with 
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a software due to the nonhomogeneity of the objects. Therefore, reference values, 

which are used to compare the measured values, also includes some errors.  

The encoders are incremental type encoders and they should be brought into the 

reference position each time they start. Thus, in the starting of each test, the virtual 

coordinate system attached to the test specimen is aligned with the fixed reference 

coordinate system to make the angle measurements starting from zero. For that 

purpose, a water gauge is used to level the specimen in x and y axes. The alignment 

in z axis is ensured by visually only. Therefore, in each test, there is ±0.5° error in 

angle measurements. 

There is one differentiation operation in the velocity calculations and two 

differentiation operations in the acceleration calculations. These differentiation 

operations are made using discrete angular position measurements. If a small error 

occurs in the angle measurement of the encoder, there may be some jumps in the 

derivative of these measurements. That causes the mismeasurement of the velocities 

and accelerations of the test specimen. 

During the tests, data are collected with two different data acquisition systems, one 

for encoders and one for load sensor. The data acquisition device for the load sensor 

has eight channels and six of them are used for force and torque measurements. Since, 

three more channels are required for the angle measurements, a separate data 

acquisition device is used for encoders. Therefore, these data acquisition systems 

cannot be started at the same time exactly. Some time differences, which are about 

0.1 second, occurs between load and angle measurements.  

Also, there are some errors in the measurements of the encoders and load sensor due 

to their sensitivities. That creates errors in the calculation of mass properties. 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

Measuring the mass properties is an important task to design a moving system. This 

thesis includes the design of a device that can measure mass properties of an object 

with a mass up to 20 kg. The main objective of the design is to measure all the mass 

properties in a single test configuration. Some concepts in the literature, used for that 

purpose, are explained in the thesis. In the developed design, favorable aspects of these 

concepts are utilized to make the design simple and accurate.  

The developed device directly uses the Newton’s equation of motion to determine 

mass properties of the test specimen. Making oscillatory rotational motion of the test 

specimen without using actuators is the main simplicity of the design. Eliminating the 

need of an actuator makes the design cost-effective, also.  

Three different cases are studied to check over the convenience of the design. One of 

these cases is a computer simulation using MSC Adams software. In that simulation, 

all the inputs, which are used to calculate mass properties, can be exactly measured 

using the software. Using these measurements in the calculation procedure gives the 

mass properties accurate in a range of ±0.5%, which shows the feasibility of the 

developed design for measuring the mass properties of an object in a single test 

configuration. 

In the other cases, two different dummy masses are used to measure mass properties. 

The errors are changing with the symmetry of loading. When the loading is symmetric, 

the measurements are more accurate.   
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In future study, there are going to be some improvements for the developed test device 

and a new device are going to be produced. In the manufactured device, geometric 

tolerances are loose and it causes offsets and large clearances in the assembly. Since 

these offsets and clearances are not included in calculations, the accuracy of the results 

are effected. Therefore, in the next manufacturing process, the tolerances are going to 

be kept tight and the errors due to geometric tolerances are going to be lowered.  

Further, the velocities and accelerations, which are used in measurement process of 

the current design, are obtained by differentiating the angular position measurements.  

One differentiation operation is made to get velocities and two differentiation process 

to get accelerations are made. Inherently, differentiation operation is not sensitive 

when limited discrete data points are used. For this reason, in the following design, 

accelerometers are going to be used to measure velocities and accelerations. 

Acceleration values are going to be directly taken from the accelerometers and 

velocities are going to be calculated by integrating the accelerometer measurements. 

In addition, in the developed design, data are collected separately for encoders and 

load sensor due to the capability of the data acquisition systems. Between these two 

data acquisition systems, there are ~0.1 s difference. In the next design, a data 

acquisition system with more channels, at least nine channels, are going to be used to 

eliminate synchronization shift in the current design. 

The developed design can measure masses up to 20 kg due to the capacity of the load 

sensor. With the mentioned improvements, a new device is going to be produced for 

masses lower than 20 kg. Then, increasing the size and the load sensor capacity, one 

more device is going to be produced for masses up to 1000 kg. 
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APPENDIX A 

 

 

SPECIFICATIONS OF ROTARY ENCODERS 

 

 

 

Specifications of the rotary encoders used in measurement process are given. 

Resolution (steps/turn) : 2048 pulse/revolution 

Voltage Supply : 4.75 VDC to 30 VDC 

Consumption w/o Load : ≤ 60 mA (24 VDC) 

Output Frequency : > 200 kHz 

Output Signal : 90° shifted A and B, Z+ inverted 

Shaft Loading : ≤ 60 N axial, ≤ 80 N radial 

Operating Speed : ≤ 10000 rpm 

Starting Torque : ≤ 0.020 Nm 

Weight : 150 g 

Part Number : FNC 40H 8630V-2048-R2 

 

Figure A-1. Outlook of the rotary encoder 
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Figure A-2. Dimensions of the rotary encoder
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APPENDIX B 

 

 

SPECIFICATIONS OF LOAD SENSOR AND AMPLIFIER 

 

 

 

Technical specifications of six-axis load sensor and amplifier are given. 

Nominal Force, 𝑭𝑥  : 200 N 

Nominal Force, 𝑭𝑦  : 200 N 

Nominal Force, 𝑭𝑧 : 500 N 

Nominal Torque, 𝑴𝑥  : 5 Nm 

Nominal Torque, 𝑴𝑦 : 5 Nm 

Nominal Torque, 𝑴𝑧 : 10 Nm 

Rated Output : 0.4 mV/V 

Zero Signal : < 2 mV/V 

Excitation Voltage of Load Sensor : 5 V 

Rel. Linearity Deviation : 0.1 % 

Rel. Zero Signal Hysteresis : 0.1 % 

Rel. Repeatability Error : 0.5 % 

Part Number of Load Sensor : K6D40-200N/5Nm/CG 

   

Input Voltage of Amplifier : ± 10 V 

Number of Analogue Inputs : 8 

Input Sensitivities : 7 mV/V, 3.5 mV/V, 2 mV/V 

Analog output of Amplifier : ± 10 V 

Number of Analogue Outputs : 8 

Supply Voltage of Amplifier : 12-28 V 

Part Number of Amplifier : GSV-8DS SubD44HD 
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Figure B-1. Outlook of the load sensor 

 

Figure B-2. Dimensions of the load sensor 

 

 

Figure B-3. Front and back sides of the amplifier



 
 

97 
 

APPENDIX C 

 

 

EULER’S ANGLES, EULER’S ROTATION SEQUENCE AND ANGULAR 

VELOCITY ABOUT BODY FIXED COORDINATE SYSTEM 

 

 

 

Chapter 3.1 of [71] is utilized here to explain the Euler’s angles, Euler’s rotation 

sequence and the procedure to obtain angular velocities using Euler’s angle. 

A rigid body can be repositioned in any orientation by composing three rotations about 

coordinate axes. Euler angles are defined by three of these rotations. These rotations 

can be done in any sequence. For instance, 123 rotation sequence incidates that the 

rotations are applied about 𝑥, 𝑦 and 𝑧 axis, respectively. 

In the rotation sequence, one axis can be repeated, e.g., 313, 121, 232, 323, 131, 212 

sequences. The angles for these rotations are called Proper Euler angles. If there is no 

repeated axis in the sequence, e.g., 123, 231, 312, 132, 321, 213 sequences, their 

rotation angles are called Bryan or Cardan angles.  

For each rotation, a transformation matrix is formed using direction cosines. The 

rotation sequence applied to the test configuration is 123 sequence in which the first 

rotation is 𝜃1 about 𝑥 axis, the second rotation is 𝜃2 about 𝑦 axis and the third rotation 

is 𝜃3 about 𝑧 axis. Transformation matrices for these rotations are formed as follows 
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𝑻𝑥 = [
1 0 0
0 cos 𝜃1 sin 𝜃1
0 − sin 𝜃1 cos 𝜃1

] , 

𝑻𝑦 = [
cos 𝜃2 0 − sin 𝜃2
0 1 0

sin 𝜃2 0 cos 𝜃2

] , 

𝑻𝑧 = [
cos 𝜃3 sin 𝜃3 0
− sin 𝜃3 cos 𝜃3 0

0 0 1

]. 

(C.1) 

Transformation matrix which converts the first coordinate system to the final 

coordinate system are constituted as follows 

 𝑻 = 𝑻𝑧 𝑻𝑦 𝑻𝑥, 

 𝑻 = [
cos 𝜃3 sin 𝜃3 0
− sin 𝜃3 cos 𝜃3 0

0 0 1

] [
cos 𝜃2 0 − sin 𝜃2
0 1 0

sin 𝜃2 0 cos 𝜃2

] [
1 0 0
0 cos 𝜃1 sin 𝜃1
0 − sin 𝜃1 cos 𝜃1

], 

 𝑻 = [

cos𝜃2 cos 𝜃3 cos 𝜃1 sin 𝜃3 + sin 𝜃1 sin 𝜃2 cos𝜃3 sin 𝜃1 sin 𝜃3 − cos𝜃1 sin 𝜃2 cos𝜃3
−cos𝜃2 sin 𝜃3 cos 𝜃1 cos𝜃3 − sin 𝜃1 sin 𝜃2 sin 𝜃3 sin 𝜃1 cos𝜃3 + cos𝜃1 sin 𝜃2 sin 𝜃3

sin 𝜃2 −sin𝜃1 cos𝜃2 cos 𝜃1 cos𝜃2

] 

 
(C.2) 

Derivative of the Euler’s angles does not directly the angular velocities of a body, they 

should be converted into the body frame. 123 rotation sequence is demonstrated in the 

Figure 45.  

 

Figure C-1. Euler angles in 123 rotation sequence 
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According to the figure, the first rotation (𝜃1) is measured in the reference coordinate 

system (𝑋𝑌𝑍). Therefore, it should be transformed into the body-fixed coordinate 

system (𝑥𝑦𝑧) by applying transformation matrices about 𝑥 axis first, then about 𝑦 axis 

and lastly about 𝑧 axis with the following transformation matrix 

 𝑻123 = 𝑻𝑧 𝑻𝑦 𝑻𝑥. (C.3) 

Similarly, the second rotation (𝜃2) is measured in the first intermediate coordinate 

system (𝑥′𝑦′𝑧′). It should be transformed into the body-fixed coordinate system with 

the following transformation matrix 

 𝑻23 = 𝑻𝑧 𝑻𝑦. (C.4) 

Lastly, the third rotation (𝜃3) is measured in the second intermediate coordinate system 

(𝑥′′𝑦′′𝑧′′). It should be transformed into the body-fixed coordinate system with the 

following transformation matrix 

 𝑻3 = 𝑻𝑧. (C.5) 

Afterwards, in order to find the angular acceleration of the body in the body-fixed 

coordinate system, transformations given in equations (C.1) should be applied to the 

derivative of the rotation measurements in the following way 

 
𝝎 = 𝑻123  {

�̇�1
0
0

} + 𝑻23  {
0

�̇�2
0

} + 𝑻3  {

0
0

�̇�3
}. (C.6) 

If transformation matrices are replaced into equation (C.6) and required operations are 

made,  the following relation for the angular velocities about body-fixed coordinate 

system is obtained for 123 rotation sequence 

 

𝝎 = {

𝜔𝑥
𝜔𝑦
𝜔𝑧
} = [

    cos 𝜃1 cos 𝜃3 sin 𝜃3 0
−cos 𝜃1 sin 𝜃3 cos 𝜃3 0

sin 𝜃1 0 1
] {

�̇�1
�̇�2
�̇�3

}. (C.7) 

Then, angular accelerations can be directly calculated by taking the derivatives of the 

angular velocities as follows 

 𝜶 = �̇�. (C.8) 

 


