A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
 OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENİZ GENLİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
MATHEMATICS

JULY 2018

Approval of the thesis:

LAGRANGIAN PERTURBATIONS OF LAGRANGIAN NODAL SPHERES IN THE COMPLEX PLANE

submitted by DENİZ GENLİK in partial fulfillment of the requirements for the degree of Master of Science in Mathematics Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics
Prof. Dr. Sergey Finashin
Supervisor, Mathematics Department, METU

Examining Committee Members:

Prof. Dr. Yıldıray Ozan
Mathematics Department, METU
Prof. Dr. Sergey Finashin
Mathematics Department, METU
Assoc. Prof. Dr. Sinem Çelik Onaran
Mathematics Department, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: DENİZ GENLİK

Signature

ABSTRACT

LAGRANGIAN PERTURBATIONS OF LAGRANGIAN NODAL SPHERES IN THE COMPLEX PLANE

Genlik, Deniz
M.S., Department of Mathematics
Supervisor : Prof. Dr. Sergey Finashin

July 2018, 44 pages

Classification of monotone Lagrangian tori in \mathbb{C}^{2} up to Hamiltonian isotopy and rescaling is still an open problem and the only classes of such tori that are currently known are Clifford and Chekanov tori. In this thesis, we analyze how these two classes of tori can be obtained by Lagrangian perturbations of a Lagrangian nodal sphere in \mathbb{C}^{2}.

Keywords: Chekanov torus, Clifford torus, Whitney immersion, Lagrangian nodal spheres, Lagrangian perturbations

ÖZ

KARMAŞIK DÜZLEMDEKİ LAGRANJİYEN BOĞUMSAL KÜRELERİN LAGRANJİYEN TEDİRGEMELERİ

Genlik, Deniz
Yüksek Lisans, Matematik Bölümü
Tez Yöneticisi : Prof. Dr. Sergey Finashin

Temmuz 2018, 44 sayfa

Karmaşık \mathbb{C}^{2} düzlemindeki tekdüze Lagranjiyen simitlerin Hamiltoniyen izotopi ve yeniden ölçeklendirme altında sınıflandırılması hâlâ açık bir problemdir. Clifford ve Chekanov simitleri bu sınıflandırılma altında bilinen tek simitlerdir. Bu tezde, Clifford ve Chekanov simitlerinin karmaşık \mathbb{C}^{2} düzlemindeki bazı Lagranjiyen boğumsal kürelerin Lagranjiyen tedirgemeleri ile elde edilmesi incelenecektir.

Anahtar Kelimeler: Chekanov simidi, Clifford simidi, Whitney daldırması, Lagranjiyen boğumsal küreler, Lagranjiyen tedirgemeler

To my family: Mahmut, Melek, Sevim and Zelal

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Sergey Finashin, for suggesting an interesting research direction and his helps throughout the preparation of this theis.

I thank also to Prof. Dr. Yıldıray Ozan, Prof. Dr. Turgut Önder, Assoc. Prof. Dr. Ali Ulaş Özgür Kişisel for both teaching me geometry-topology through several courses and providing motivation from the beginning of M.Sc. programme.

I thank my friend Mertcan Süküt for the discussions which helped me to clarify my understanding of some points of the subject.

I am lucky to have a family which provides constant love and support, without them I would not have the courage to start a career in mathematics again.

Finally, I want to thank to The Scientific and Technological Research Council of Turkey, TÜBİTAK. This work is financially supported by TÜBİTAK-BİDEB National Graduate Scholarship Programme for M.Sc. (2210-A).

TABLE OF CONTENTS

ABSTRACT v
ÖZ vi
ACKNOWLEDGMENTS. viii
TABLE OF CONTENTS ix
LIST OF FIGURES xi
LIST OF NOTATIONS xii
CHAPTERS
1 INTRODUCTION 1
1.1 The Subject of the Thesis 1
1.2 History and Motivation 2
1.3 The Goals of the Thesis 3
1.4 The Structure of the Thesis 4
2 PRELIMINARIES 5
2.1 Lagrangian Grassmannian and Maslov Index 5
2.2 Symplectic Manifolds and Lagrangian Submanifolds 6
2.3 Hamiltonian, Lagrangian and Exact Lagrangian Isotopies 8
2.4 Exact Lagrangian Submanifolds 10
2.5 Monotone Lagrangian Submanifolds 11
2.6 The Chekanov Suspension 12
3 THE CHEKANOV TORI IN \mathbb{C}^{2} 13
3.1 Description of a Chekanov Torus via Chekanov Suspension 13
3.2 Description of a Chekanov Torus via Conics in \mathbb{C}^{2} 14
3.3 Chekanov Tori in \mathbb{C}^{2} are Exotic 19
3.4 Lagrangian Perturbations of a Lagrangian Nodal Sphere 20
4 THE WHITNEY IMMERSION AND ITS POLTEROVICH SURGERY 23
4.1 The Whitney Immersion of an n-sphere in \mathbb{C}^{n} 23
4.2 The Polterovich Surgery 25
4.3 Polterovich Surgeries of a Lagrangian Nodal Sphere 28
5 THE METHOD OF INTEGRABLE HAMILTONIAN SYSTEMS 33
5.1 An Example of Integrable Hamiltonian Systems 33
5.2 Lagrangian Perturbations through the Hamiltonian System. 35
REFERENCES 43

LIST OF FIGURES

FIGURES

Figure 3.1 Topological model of the fibers of $G: \mathbb{C}^{2} \rightarrow \mathbb{C}$. 14
Figure $3.2 L_{\beta}^{\gamma}$ when β is not zero or γ does not pass through origin. 15
Figure 3.3 The subset L_{0}^{γ} if γ passes through origin. 16

Figure 3.5 The region \mathcal{R} which has area $4 \pi^{2}$. 21

Figure 4.2 Immersed circle W^{1}. 24
Figure 4.3 Functions $h_{\epsilon}(t), g_{\epsilon}(t), \psi_{\epsilon}(t)$ and $f_{\epsilon}(t)$. 26
Figure 4.4 Model of the Polterovich Surgery 28

Figure 5.1 Sketch of range of the function $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$. 36
Figure 5.2 The sets $g^{-1}(a) \cap\{(\tilde{q}, \tilde{p}) \mid \tilde{q} \geq 0\}$ and $f^{-1}(a)$ for different a values. 37
Figure 5.3 The sets $f^{-1}(a) \cap\{(q, p) \mid q, p \geq 0\}$. 39
Figure 5.4 The sets $\left\{\gamma_{1}^{a}(s) \pm i \gamma_{2}^{a}(s) \mid s \in[0,1]\right\}$. 39

LIST OF NOTATIONS

\mathbb{S}^{n}	Unit n-sphere in \mathbb{R}^{n+1}.
\mathbb{S}_{r}^{n}	Round n-sphere in \mathbb{R}^{n+1} with radius r.
\mathbb{S}_{+}^{n}	Upper hemisphere of unit n-sphere in \mathbb{R}^{n+1}.
\mathbb{S}_{-}^{n}	Lower hemisphere of unit n-sphere in \mathbb{R}^{n+1}
$\mathbb{D}_{\leq r}^{n}$	Round closed n-disc in \mathbb{R}^{n} with radius r.
$\mathbb{D}_{<r}^{n}$	Round open n-disc in \mathbb{R}^{n} with radius r.
$\Lambda(n)$	The Lagrangian Grassmannian of $\mathbb{R}^{2 n}$.
$T_{p} M$	The tangent space of the smooth manifold M at point p.
$T M$	The total space of the tangent bundle of the smooth mani-
	fold M.
$T_{p}^{*} M$	The cotangent space of the smooth manifold M at point p.
$T^{*} M$	The total space of the cotangent bundle of the smooth man-
	ifold M.
$\iota_{X} \omega$	Contraction of ω with respect to X.
$F:(M, L) \rightarrow(N, K)$	A smooth map $F: M \rightarrow N$ such that $F(L) \subseteq K$ where
	$L \subseteq M$ and $K \subseteq N$.

CHAPTER 1

INTRODUCTION

1.1 The Subject of the Thesis

It is well-known and trivial fact that a closed orientable Lagrangian submanifold in \mathbb{C}^{n} must have zero Euler characteristic and in particular orientable closed connected Lagrangian surfaces in \mathbb{C}^{2} are tori. All Lagrangian tori in \mathbb{C}^{2} are Lagrangian isotopic but not Hamiltonian isotopic [21]. In addition to Hamiltonian isotopy if we allow rescaling and consider the only monotone Lagrangian tori in \mathbb{C}^{2}, there exist two known classes of such tori. One class consists of Clifford tori and the other one consists of Chekanov tori. It is still unknown if there are other classes besides these two.

Problem. (Chekanov) Is it true that a monotone Lagrangian torus in \mathbb{C}^{2} is either a Clifford torus or a Chekanov torus?

A key observation motivating our research is existence of two essentially different local models of Lagrangian perturbations of a Lagrangian nodal singularity. Existence of such perturbations shows that a Lagrangian nodal sphere in \mathbb{C}^{2} must have only one self-intersection point. Furthermore, for a Lagrangian nodal sphere in \mathbb{C}^{2}, one of such perturbations gives a Clifford torus and another gives a Chekanov torus Our aim in this research is to give explicit descriptions of how the Clifford and Chekanov tori can be obtained by Lagrangian perturbations of certain Lagrangian nodal spheres in \mathbb{C}^{2}.

1.2 History and Motivation

Exactness is a very effective condition for a Lagrangian submanifold. However, M. Gromov proved that there is no closed exact Lagrangian submanifold in \mathbb{C}^{n}. For Lagrangian submanifolds, the concept of monotonicity is a generalization of exactness and it is introduced by Y.-G. Oh in [17]. Monotone Lagrangian submanifolds play important role in the recent technologies developed in symplectic topoloy, such as, Floer homology, pearl homology, symplectic quasi-states, Fukaya categories etc. By using examples of monotone Lagrangian submanifolds one can test and refine these tools. Monotonicity is preserved by a Hamiltonian isotopy.

A trivial example of a monotone Lagrangian torus in \mathbb{C}^{n} is a monotone split Lagrangian torus which is the product of n circles of same radius, $\mathbb{S}_{r}^{1} \times \ldots \times \mathbb{S}_{r}^{1}$. A Lagrangian torus is called a Clifford torus if it is Hamiltonian isotopic to a monotone split Lagrangian torus.

A monotone Lagrangian is torus exotic if it is not Hamiltonian isotopic to a Clifford torus. Y. V. Chekanov constructed the first examples of exotic monotone Lagrangian tori in \mathbb{C}^{n} [7]. Y. Eliashberg and L. Polterovich provided another interpretation of a Chekanov torus in \mathbb{C}^{2} [11]. By a generalization of this interpretation of a Chekanov torus in \mathbb{C}^{2}, new examples of monotone Lagrangian tori in $\mathbb{C}^{n}, \mathbb{C} \mathbb{P}^{n}$ and $\times{ }_{n} \mathbb{S}^{2}$ were provided by Y. V. Chekanov and F. Schlenk [8]. The number of monotone Lagrangian tori in the work of Chekanov and Schlenk is increasing with the dimension but it is finite for any dimension. D. Auroux showed that there exist infinitely many monotone Lagrangian tori in \mathbb{C}^{3}, which are pairwise non-Hamiltonian isotopic to any rescaling of one another [6].
R. Vianna showed that there exist infinitely many exotic monotone Lagrangian tori which are pairwise non-Hamiltonian isotopic in $\mathbb{C P}^{2}, \mathbb{S}^{2} \times \mathbb{S}^{2}$ and the del Pezzo surfaces $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}$ for $k=3,4,5,6,7,8$ [24,26]. The tori constructed by Vianna in $\mathbb{C P}^{2}$ yield monotone Lagrangian tori in \mathbb{C}^{2} [16, 25]. However, it is not known whether these tori give new classes of monotone Lagrangian tori in \mathbb{C}^{2} or not. Hence the problem of Chekanov explained in section 1.1 still remains open.

1.3 The Goals of the Thesis

Some Lagrangian nodal spheres arise in the construction of Chekanov torus in \mathbb{C}^{2} given by Eliashberg and Polterovich in [11]. We prove that there exist Lagrangian perturbations of these Lagrangian nodal spheres which are Clifford and Chekanov tori following [11].

In the paper [14], F. Lalonde and J. C. Sikorav introduced a method of smoothing nodal singularities of immersed Lagrangian surfaces. L. Polterovich in [19] and M. Audin in [5] provided generalizations of this smoothing for any dimension. This smoothing procedure is generally called Polterovich surgery. We provide a description of the Polterovich surgery which is a mixture of the descriptions in [19] and [18].

The Whitney immersion is a Lagrangian immersion of an n-sphere into \mathbb{C}^{n} and it gives a Lagrangian nodal sphere in \mathbb{C}^{n}. Chekanov remarked in [7] that the tori obtained by applying Polterovich surgery to the Whitney immersion in \mathbb{C}^{2} are Chekanov and Clifford tori. One of our main goals is to prove the following theorem.

Theorem A. The two Lagrangian tori obtained by Polterovich surgeries of the Lagrangian nodal sphere given by the Whitney immersion in \mathbb{C}^{2} are Clifford and Chekanov tori.
M.-L. Yau considered the following integrable Hamiltonian system on \mathbb{R}^{4} :

$$
\begin{align*}
& G: \mathbb{R}^{4} \rightarrow \mathbb{R} \quad G\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=\left(p_{1}^{2}+p_{2}^{2}\right)-\left(q_{1}^{2}+q_{2}^{2}\right)+\left(q_{1}^{2}+q_{2}^{2}\right)^{2} \tag{1.1}\\
& H: \mathbb{R}^{4} \rightarrow \mathbb{R} \quad H\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=p_{2} q_{1}-p_{1} q_{2} . \tag{1.2}
\end{align*}
$$

where its momentum map is given by $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by $F=(G, H)$. Yau described the fibers of the momentum map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ in [28] without proof. Another main goal of this thesis is to find the range of $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, provide a proof for the classification of its fibers and hence prove the following theorem.

Theorem B. The fiber $F^{-1}(0,0)$ is a Lagrangian nodal sphere and the Lagrangian perturbations of $F^{-1}(0,0)$ given by $F^{-1}(\epsilon, 0)$ are Clifford tori if $\epsilon>0$ and Chekanov tori if $-\frac{1}{4}<\epsilon<0$.

1.4 The Structure of the Thesis

In section 2.1, we introduce Maslov index following [3]. In sections 2.2 and 2.3, we give some background material in symplectic topology. In sections 2.4 and 2.5, we discuss concepts of exact and monotone Lagrangian submanifolds in a symplectic manifold. In section 2.6, we introduce Chekanov suspension.

In section 3.1, we provide a description of a Chekanov torus in \mathbb{C}^{2} and prove that it is monotone by using Chekanov suspension. In section 3.2, we provide another example of monotone torus which is described by Eliashberg and Polterovich in [11]. We show that this torus is exotic by counting holomorphic discs with Maslov index 2. In section 3.3, we show that the monotone torus given by Eliashberg and Polterovich is a Chekanov torus following [12]. In section 3.4, we show that the two kinds of Lagrangian perturbations of Lagrangian nodal spheres introduced in section 3.2 are Clifford and Chekanov tori.

In section 4.1, we introduce Whitney immersion and show that its image is a Lagrangian nodal sphere in \mathbb{C}^{n} by using method of generating functions. In section 4.2, we give a description of the Polterovich surgery. In section 4.3, we show that Polterovich surgery procedure yields two Lagrangian perturbations of the Lagrangian nodal sphere which is the image of the Whitney immersion in \mathbb{C}^{2} are Clifford and Chekanov tori.

In section 5.1, we discuss an integrable Hamiltonian system given by Yau in her paper [28]. In section 5.2], we find the range and classify the fibers of the integrable Hamiltonian system described in the section 5.1 .

CHAPTER 2

PRELIMINARIES

2.1 Lagrangian Grassmannian and Maslov Index

Recall, a symplectic vector space is a pair (V, Ω) where V is an m-dimensional real vector space and $\Omega: V \times V \rightarrow \mathbb{R}$ is a non-degenerate skew-symmetric bilinear form which is called a symplectic form. For a symplectic vector space (V, Ω), the dimension of V has to be even ($m=2 n$) and there exists an ordered basis $\left\{e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right\}$ such that $\Omega\left(e_{i}, e_{j}\right)=\Omega\left(f_{i}, f_{j}\right)=0, \Omega\left(e_{i}, f_{j}\right)=\delta_{i j}$ for all $i, j=1, \ldots, n$.

The matrix

$$
J_{0}=\operatorname{diag}\left(\left[\begin{array}{cc}
0 & 1 \tag{2.1}\\
-1 & 0
\end{array}\right], \ldots,\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right) \in \mathbb{R}^{2 n \times 2 n}
$$

defines a symplectic form Ω_{0} on the vector space $\mathbb{R}^{2 n}$ with respect to the standard basis $\left\{e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right\}$ of $\mathbb{R}^{2 n}$, in other words, we have $\Omega_{0}(u, v)=u^{T} J_{0} v$ for all $u, v \in \mathbb{R}^{2 n}$.

A linear isomorphism $\Phi:\left(V_{1}, \Omega_{1}\right) \rightarrow\left(V_{2}, \Omega_{2}\right)$ of symplectic vector spaces is called a linear symplectomorphism if $\Phi^{*}\left(\Omega_{2}\right)=\Omega_{1}$. Any $2 n$-dimensional symplectic vector space (V, Ω) is symplectomorphic to $\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$. For a symplectic vector space (V, Ω), the group of symplectomorphisms of (V, Ω) i.e. $\left\{\Phi: V \rightarrow V, \mid \Phi^{*}(\Omega)=\Omega\right\}$ is denoted by $\operatorname{Sp}(V, \Omega)$. An element of the group $\operatorname{Sp}\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$ can be identified with a $2 n \times 2 n$ real matrix, set of these matrices is called the symplectic group and it is denoted by $\operatorname{Sp}(2 n)$. We have

$$
\begin{equation*}
\mathrm{Sp}(2 n) \cap \mathrm{O}(2 n)=\mathrm{Sp}(2 n) \cap \mathrm{GL}(n, \mathbb{C})=\mathrm{O}(2 n) \cap \mathrm{GL}(n, \mathbb{C})=\mathrm{U}(n) \tag{2.2}
\end{equation*}
$$

A linear Lagrangian subspace of a symplectic vector space (V, Ω) is a linear subspace L of (V, Ω) such that $\left.\Omega\right|_{L} \equiv 0$. Set of all linear Lagrangian subspaces of $\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$ is called Lagrangian Grassmannian and it is denoted it by $\Lambda(n)$.

Lemma 2.1.1 ([|6]). $\mathrm{U}(n)$ and thus $\mathrm{Sp}(2 n)$ act transitively on $\Lambda(n)$. The stabilizer of the action of $\mathrm{U}(n)$ on $\Lambda(n)$ is $\mathrm{O}(n)$.

Lemma 2.1.2 ([10]). $\mathrm{Sp}(2 n)$ acts transitively on pairs of transverse Lagrangian subspaces of $\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$.

Lemma 2.1.1 shows that $\Lambda(n)$ is a manifold which is diffeomorphic to $\mathrm{U}(n) / \mathrm{O}(n)$ whose dimension $n(n+1) / 2$.

Theorem 2.1.3 ([3]). The map $\operatorname{det}_{\mathbb{C}}^{2}: \mathrm{U}(n) \rightarrow \mathbb{S}^{1}$ induces an isomoprhism of fundamendal groups $\pi_{1}(\Lambda(n))$ and $\pi_{1}\left(\mathbb{S}^{1}\right)$.

Proof. The map $\operatorname{det}_{\mathbb{C}}^{2}: \mathrm{U}(n) \rightarrow \mathbb{S}^{1}$ induces a map $\bar{d}: \mathrm{U}(n) / \mathrm{O}(n) \rightarrow \mathbb{S}^{1}$ since $\mathrm{O}(n) \subset \operatorname{Ker}\left(\operatorname{det}_{\mathbb{C}}^{2}\right)$. Map \bar{d} is a fibration with fibers $\operatorname{SU}(n) / \mathrm{SO}(n)$. The exact sequence induced by the fibration \bar{d} shows that $\pi_{1}(\Lambda(n)) \simeq \pi_{1}(\mathrm{U}(n) / \mathrm{O}(n)) \simeq$ $\pi_{1}\left(\mathbb{S}^{1}\right)$.

If $\gamma: \mathbb{S}^{1} \rightarrow \Lambda(n)$ is a loop of Lagrangian subspaces of $\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$, then degree of the map $\bar{d} \circ \gamma: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ (where \bar{d} is defined in the proof of Theorem 2.1.3) is called Maslov index of the loop γ and we denote it by $\mu(\gamma)$. It follows immediately from the definition that Maslov index induces a homomorphism $\mu: \pi_{1}(\Lambda(n)) \rightarrow \mathbb{Z}$. In some sense, Maslov index measures how much linear Lagrangian spaces rotates along a loop in $\Lambda(n)$.

2.2 Symplectic Manifolds and Lagrangian Submanifolds

A symplectic manifold is a pair (M, ω) where M is an $2 n$-dimensional smooth manifold and ω is closed non-degenerate ($w^{n} \neq 0$ pointwisely) 2-form. A diffeomorphism $\phi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ of symplectic manifolds is called symplectomorhism if it preserves the sypmlectic structure, $\phi^{*} \omega_{2}=\omega_{1}$.

Example 2.2.1.

i. $\mathbb{R}^{2 n}$ is a symplectic manifold with the sypmlectic form $\omega_{0}=\sum_{i=1}^{n} d q_{i} \wedge d p_{i}$ where $\left(q_{1}, p_{1} \ldots, q_{n}, p_{n}\right)$ are coordinates of $\mathbb{R}^{2 n}$. If we only consider linear subspaces of $\mathbb{R}^{2 n}$ then ω_{0} is same as Ω_{0} under the identifications $d q_{i}=e_{i}$ and $d p_{i}=f_{i}$ for $i=1, \ldots, n$.
ii. If we identify coordinates $\left(z_{1}, \ldots, z_{n}\right)$ of \mathbb{C}^{n} with coordinates above of $\mathbb{R}^{2 n}$ by $z_{j}=q_{j}+i p_{j}$ then ω_{0} above can be written as $\omega_{0}=\frac{i}{2} \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}$.
iii. Cotangent bundle $T^{*} X$ of an arbitrary smooth n-dimensional manifold X has a canonical symplectic structure. Let $\left(\mathcal{U}, q_{1}, \ldots, q_{n}\right)$ be a coordinate chart for X and $\left(T^{*} \mathcal{U}, q_{1}, p_{1}, \ldots, q_{n}, p_{n}\right)$ be associated coordinate chart for $T^{*} X$, then canonical symplectic structure is $\omega_{\text {can }}=\sum_{i=1}^{n} d q_{i} \wedge d p_{i}$. We see that $\left(T^{*} \mathbb{R}^{n}, \omega_{\text {can }}\right)$ is symplectomorhic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

A diffeomorphism $F: X \rightarrow Y$ induces a symplectomorphism $F_{\#}: T^{*} X \rightarrow T^{*} Y$ which is defined by $F_{\#}(q, p)=(\tilde{q}, \tilde{p})$ where $\tilde{q}=f(q)$ and $p=d F_{q}^{*}(\tilde{p})$ for any $(q, p) \in T^{*} X,(\tilde{q}, \tilde{p}) \in T^{*} Y$ [9]. Similarly, if $F: X \rightarrow Y$ is a smooth embedding and X, Y are smooth manifolds of the same dimension then $F_{\#}: T^{*} X \rightarrow T^{*} Y$ is a symplectic embbedding of cotangent bundles.

Any $2 n$-dimensional symplectic manifold (M, ω) is locally symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. This fact is known as Darboux theorem. A Lagrangian submanifold of symplectic manifold (M, ω) is an n-dimensional submanifold L such that $\left.\omega\right|_{L} \equiv 0$.

Example 2.2.2.

i. Zero section of the $T^{*} X$ is a Lagrangian submanifold of $\left(T^{*} X, \omega_{c a n}\right)$.
ii. The graph $\Gamma_{d f}=\left\{\left(x, d f_{x}\right) \in T^{*} X \mid x \in X\right\}$ of the differential of a smooth function $f: X \rightarrow \mathbb{R}$ is a Lagrangian submanifold of $\left(T^{*} X, \omega_{c a n}\right)$.

The function $f: X \rightarrow \mathbb{R}$ in the Example 2.2.2-(ii) is called a generating function for the Lagrangian $\Gamma_{d f}$.

Let L be a Lagrangian in a symplectic manifold (M, ω). Then the symplectic area
class of L is defined by

$$
\omega_{L}: \pi_{2}(M, L) \rightarrow \mathbb{R},[u] \mapsto \int_{\mathbb{D}^{2}} u^{*} \omega
$$

where $u:\left(\mathbb{D}^{2}, \partial \mathbb{D}^{2}\right) \rightarrow(M, L)$ is a smooth map representing a homotopy class $[u] \in \pi_{2}(M, L)$.

There are interesting obstructions to the Lagrangian embeddings n-manifolds into $2 n$-symplectic manifolds in contrast to Whintney embedding theorem. The following proposition is just one example, for more examples reader may consult the section 9.2 of [15].

Proposition 2.2.3. Among all closed orientable connected surfaces, only torus admits a Lagrangian embedding into $\left(\mathbb{C}^{2}, \omega_{0}\right)$.

Proof. Normal bundle and tangent bundle of an orientable Lagrangian are isomorphic. Self-intersection number of an orientable Lagrangian L is $(-1)^{\frac{n(n-1)}{2}} \chi(L)$ where $\chi(L)$ is Euler characteristic of L. An orientable Lagrangian in $\left(\mathbb{C}^{n}, \omega_{0}\right)$ has self-intersection number zero. This implies an orientable Lagrangian L in $\left(\mathbb{C}^{n}, \omega_{0}\right)$ must have zero Euler characteristic.

2.3 Hamiltonian, Lagrangian and Exact Lagrangian Isotopies

Let (M, ω) be a symplectic manifold and $H: M \rightarrow \mathbb{R}$ be a smooth function. Consider the equation $\iota_{X_{H}} \omega=d H$. This equation has a unique vector field solution X_{H} by nondegeneracy of ω. (Note that if H is time dependent then X_{H} will be time-dependent as well.) H is called Hamiltonian funciton and X_{H} is called the Hamiltonian vector field corresponding to H and the isotopy $\left\{\Phi_{H}^{t}: M \rightarrow M\right\}_{t \in \mathbb{R}}$ generated by X_{H} is called the Hamiltonian flow of X_{H}. Using Cartan magic formula and Lie derivative of the sypmlectic structure ω with respect to the vector field X_{H}, we can prove that a Hamiltonian flow $\left\{\Phi_{H}^{t}: M \rightarrow M\right\}_{t \in \mathbb{R}}$ preserves the symplectic structure, $\left(\Phi_{H}^{t}\right)^{*} \omega=\omega$.

Two Lagrangians L_{0} and L_{1} are said to be Hamiltonian isotopic if there exists a
time-dependent Hamiltonian $H: M \times[0,1] \rightarrow \mathbb{R}$ such that $L_{1}=\Phi_{H}^{1}\left(L_{0}\right)$ where $\left\{\Phi_{H}^{t}\right\}_{t \in \mathbb{R}}$ is the Hamiltonian flow induced by H.

Example 2.3.1. We know that $\mathrm{U}(2)$ is path connected. Hence we can find a smooth path $\gamma:[0,1] \rightarrow \mathrm{U}(2)$ such that

$$
\gamma(0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } \gamma(1)=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}}
\end{array}\right] \text {. }
$$

Consider the isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ given by

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \mapsto \underbrace{\left[\begin{array}{ll}
\gamma_{11}(t) & \gamma_{12}(t) \\
\gamma_{21}(t) & \gamma_{22}(t)
\end{array}\right]}_{=\gamma(t)}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] .
$$

For each $t \in[0,1]$ the diffeomorphism $\Upsilon^{t}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a symplectomorphism since the matrix $\gamma(t) \in \mathrm{U}(2) \subseteq \mathrm{Sp}(4)$. By the famous Cartan magic formula and the definition of Lie derivative we have $d \iota_{X_{t}} \omega=0$, where X_{t} is the time-dependent vector field generated by the isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$. Then the isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ is a Hamiltonian isotopy, since every closed form is exact in \mathbb{C}^{2}.

Proposition 2.3.2 ([1, 16]). For any two embedded discs $u_{1}, u_{2}: \mathbb{D}^{2} \rightarrow \mathbb{C}$ bounding the same area there exists a Hamiltonian isotopy $\Phi: \mathbb{C} \times[0,1] \rightarrow \mathbb{C}$ such that $\Phi^{1}\left(u_{1}\left(\mathbb{D}^{2}\right)\right)=u_{2}\left(\mathbb{D}^{2}\right)$ and $\Phi^{t}(0)=0$ for all $t \in[0,1]$ where $\Phi^{t}=\Phi(\cdot, t)$. Moreover, if $u_{1}\left(\mathbb{D}^{2}\right)$ and $u_{2}\left(\mathbb{D}^{2}\right)$ are symmetric with respect to origin of \mathbb{C} then $\Phi^{t}\left(u_{1}\left(\mathbb{D}^{2}\right)\right)$ is symmetric with respect to origin of \mathbb{C} for all $t \in[0,1]$.

A smooth isotopy $\Phi: L \times[0,1] \rightarrow M$ of L is called a Lagrangian isotopy if each step of the isotopy is a Lagrangian in M. For a Lagrangian isotopy $\Phi: L \times[0,1] \rightarrow M$ we can find a family of one-forms $\left\{\alpha_{t}\right\}_{t \in[0,1]}$ on L such that $\Phi^{*} \omega=\alpha_{t} \wedge d t$ and $\iota_{\frac{\partial}{\partial t}} \alpha_{t}=0$ since $\Phi^{*} \omega$ vanishes on L_{t} for all $t \in[0,1]$. Furthermore, α_{t} is closed for all $t \in[0,1]$ since $0=d \Phi^{*} \omega=d \alpha_{t} \wedge d t$. A Lagrangian isotopy $\Phi: L \times[0,1] \rightarrow M$ is an exact Lagrangian isotopy if α_{t} is exact for all $t \in[0,1]$.

Proposition 2.3.3 ([18], [20]). Let L be a closed manifold and $\Phi: L \times[0,1] \rightarrow M$ be a Lagrangian isotopy. Then the following are equivalent for Φ :
i. It is an exact Lagrangian isotopy.
ii. It can be extended to a Hamiltonian isotopy of M.
iii. It preserves the symplectic area class, in other words, for any smooth map $u:\left(\mathbb{D}^{2}, \partial \mathbb{D}^{2}\right) \rightarrow(M, L)$ representing a homotopy class $[u] \in \pi_{2}(M, L)$ we have

$$
\int_{\mathbb{D}^{2}} u^{*} \omega=\int_{\mathbb{D}^{2}}\left(\Phi^{t}(u)\right)^{*} \omega .
$$

2.4 Exact Lagrangian Submanifolds

A symplectic manifold (M, ω) is an exact symplectic manifold if the symplectic form ω is exact. A Lagrangian L in an exact symplectic manifold $(M, d \alpha)$ is an exact Lagrangian if $i_{L}^{*} \alpha$ is exact for the inclusion map $i_{L}: L \rightarrow M$. An immersion $i_{N}: N \rightarrow(M, \omega=d \alpha)$ is Lagrangian if $i_{N}^{*} \omega=0$ and exact Lagrangian if $i_{N}^{*} \alpha$ is exact.

Let L be an exact Lagrangian in $(M, \omega=d \alpha)$ and $u:\left(\mathbb{D}^{2}, \partial \mathbb{D}^{2}\right) \rightarrow(M, L)$ be a smooth map. Then

$$
\begin{equation*}
\int_{\mathbb{D}^{2}} u^{*} \omega=\int_{\mathbb{D}^{2}} u^{*} d \alpha=\int_{\mathbb{D}^{2}} d u^{*} \alpha=\int_{\mathbb{S}^{1}} u^{*} \alpha=\int_{u\left(\mathbb{S}^{1}\right)} i^{*} \alpha=\int_{u\left(\mathbb{S}^{1}\right)} d f=0 . \tag{2.3}
\end{equation*}
$$

Proposition 2.4.1 ([13]). A closed exact Lagrangian L in $\left(\mathbb{C}^{n}, \omega_{0}\right)$ must bound a holomorphic discs with non-zero area.

The Proposition 2.4.1 and 2.3 implies that there does not exist a closed exact Lagrangian in $\left(\mathbb{C}^{n}, \omega_{0}\right)$. Since $\pi_{1}\left(\mathbb{S}^{n}\right)$ is trivial for $n \geq 2$, any one-form on \mathbb{S}^{n} is exact. This shows that \mathbb{S}^{n} does not admit a Lagrangian embedding into the symplectic manifold $\left(\mathbb{C}^{n}, \omega_{0}\right)$ for $n \geq 2$.

In the paper [27], H. Whitney described a general method to construct immersions of n-manifolds into $2 n$-Euclidean space with transeversal, double and isolated self-intersection points. An immersion which has such self-intersection points is a generic immersion [19]. A Lagrangian nodal sphere in \mathbb{C}^{2} is an immersed Lagrangian sphere which has only double transversal self-intersection points. [23].

2.5 Monotone Lagrangian Submanifolds

Let L be a Lagrangian in a symplectic manifold (M, ω) and $u:\left(\mathbb{D}^{2}, \partial \mathbb{D}^{2}\right) \rightarrow(M, L)$ be a map representing a homotopy class $[u] \in \pi_{2}(M, L)$. Then there exists a unique trivialization (up to homotopy) of the bundle $u^{*} T M \simeq \mathbb{D}^{2} \times \mathbb{C}^{n}$ as a symplectic vector bundle [17]. Then Maslov class $\mu_{L}([u])$ of the disc $[u] \in \pi_{2}(M, L)$ is defined as Maslov index of $\partial \mathbb{D}^{2}$ after this trivialization. It follows from the definition that Maslov class induces a homomorphism $\mu_{L}: \pi_{2}(M, L) \rightarrow \mathbb{Z}$. Maslov class remain invariant under a Lagrangian isotopy of L [11].

A Lagrangian L in a symplectic manifold (M, ω) is called a monotone Lagrangian if there exist a real number $\kappa_{L}>0$ such that for any homotopy class $[u] \in \pi_{2}(M, L)$ we have $\omega_{L}([u])=\kappa_{L} \mu_{L}([u])$.

Monotonicity of Lagrangian submanifolds is preserved under Hamiltonian isotopies since both Maslov class and symplectic area are preserved under Hamiltonian isotopies.

Example 2.5.1. Let $T=\mathbb{S}_{r_{1}}^{1} \times \ldots \times \mathbb{S}_{r_{n}}^{1}$ be a Lagrangian split torus in $\left(\mathbb{C}^{n}, \omega_{0}\right)$. Lagrangian torus T is monotone if and only if we have $r_{1}=\ldots=r_{n}$. Because the basic generators of the $\pi_{2}\left(\mathbb{C}^{n}, T\right) \simeq \mathbb{Z}^{n}$ has Maslov class 2 and symplectic area πr_{k}^{2} for all $k=1, \ldots, n$. As a result, the split monotone Lagrangian torus $\mathbb{S}_{r}^{1} \times \ldots \times \mathbb{S}_{r}^{1}$ has monotonicity constant $\frac{\pi r^{2}}{2}$.

A Clifford torus in $\left(\mathbb{C}^{n}, \omega_{0}\right)$ is a torus Hamiltonian isotopic to a split Lagrangian torus $\mathbb{S}_{r}^{1} \times \ldots \times \mathbb{S}_{r}^{1}$ for some $r>0$ and it will be denoted by $\mathbb{T}_{C l}^{n}$.

Proposition 2.5.2 ([|3]|). If $\left\{\Phi^{t}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}\right\}_{t \in[0,1]}$ is a Hamiltonian isotopy, then
for each point on the torus $\Phi^{t}\left(\mathbb{T}_{C l}^{2}\right)$ there exist at least two holomorphic discs whose boundaries are homologous to the cycles $\Phi^{t}\left(e_{1}\right)$ and $\Phi^{t}\left(e_{2}\right)$ where e_{1} and e_{2} are standard generators of the $H_{1}\left(\mathbb{T}_{C l}^{2} ; \mathbb{Z}\right)$.

2.6 The Chekanov Suspension

Consider the map

$$
\vartheta_{n}: \mathbb{R}^{n} \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{n+1}, \quad\left(t_{1}, \ldots, t_{n}, \theta\right) \mapsto\left(e^{t_{1}} \cos \theta, e^{t_{1}} \sin \theta, t_{2}, \ldots, t_{n}\right)
$$

The map ϑ_{n} is a smooth embedding of $\mathbb{R}^{n} \times \mathbb{S}^{1}$ into \mathbb{R}^{n+1} and image of ϑ_{n} is diffeomorphic to $\left(\mathbb{R}^{2} \backslash\{0\}\right) \times \mathbb{R}^{n-1}$. The map ϑ_{n} induces a symplectic embedding $\Theta_{n}: T^{*}\left(\mathbb{R}^{n} \times \mathbb{S}^{1}\right) \rightarrow T^{*} \mathbb{R}^{n+1}$ of the cotangent bundles where $\Theta_{n}=\left(\vartheta_{n}\right)_{\#}$. Since $T^{*}\left(\mathbb{R}^{n} \times \mathbb{S}^{1}\right)$ and $T^{*} \mathbb{R}^{n+1}$ are symplectomorphic to $\mathbb{R}^{2 n} \times T^{*} \mathbb{S}^{1}$ and $\mathbb{R}^{2 n+2}$ respectively, we can think of Θ_{n} as a symplectic embedding of $\mathbb{R}^{2 n} \times T^{*} \mathbb{S}^{1}$ into $\mathbb{R}^{2 n+2}$.

Let L be an arbitrary Lagrangian submanifold of $\mathbb{R}^{2 n}$. Consider the Lagrangian submanifold $S_{a}=\left\{(\theta, \tau) \in T^{*} \mathbb{S}^{1} \simeq \mathbb{S}^{1} \times \mathbb{R} \mid \tau=a\right\}$ of $T^{*} \mathbb{S}^{1}$. The submanifold $L \times S_{a}$ is a Lagrangian in $\mathbb{R}^{2 n} \times T^{*} \mathbb{S}^{1}$ since product of Lagrangian submanifolds is Lagrangian in product of symplectic manifolds. Symplectic embedding Θ_{n} gives a Lagrangian $\Theta_{n}\left(L \times S_{a}\right)$ in $\mathbb{R}^{2 n+2}$. The Lagrangian $\Theta_{n}\left(L \times S_{a}\right)$ is called Chekanov suspension of L at the level a and it will be denoted as $\mathcal{C}_{a}(L)$.

For any circle S_{a}, the image $\Theta_{n}\left(S_{a}\right)$ will bound a disc with symplectic area $2 \pi a$ and Maslov index of the circle $\Theta_{n}\left(S_{a}\right)$ will be zero since S_{a} does not bound a disc. So these show that if L is monotone Lagrangian in $\mathbb{R}^{2 n}$ then $\mathcal{C}_{0}(L)$ is a monotone Lagrangian in $\mathbb{R}^{2 n+2}$.

CHAPTER 3

THE CHEKANOV TORI IN \mathbb{C}^{2}

3.1 Description of a Chekanov Torus via Chekanov Suspension

Proposition 3.1.1 ([7]). The following subset

$$
\mathbb{T}_{C h}^{2}=\left\{\left(\left(e^{t}+i s e^{-t}\right) \cos \theta,\left(e^{t}+i s e^{-t}\right) \sin \theta\right) \in \mathbb{C}^{2} \mid s^{2}+t^{2}=2 r^{2}, \theta \in[0,2 \pi]\right\}
$$

of \mathbb{C}^{2} is a monotone Lagrangian torus.

Proof. Let L be a circle of radius $\sqrt{2} r>0$ in \mathbb{R}^{2} centered at the origin. Monotonicity constant of L is $\kappa_{L}=\pi r^{2}$. Then Chekanov suspension $\mathcal{C}_{0}(L)$ is a monotone Lagrangian in $\mathbb{R}^{4} \simeq \mathbb{C}^{2}$, which is diffeomorphic to torus and its monotonicity constant is πr^{2} as well. To find $\mathcal{C}_{0}(L)$ explicitly :

Consider the smooth embedding

$$
\vartheta_{1}: \mathbb{R} \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}, \quad(t, \theta) \mapsto\left(e^{t} \cos \theta, e^{t} \sin \theta\right)
$$

For the map ϑ_{1}, the dual of the differential $d \vartheta_{1(t, \theta)}^{*}: T_{(t, \theta)}^{*}\left(\mathbb{R} \times \mathbb{S}^{1}\right) \rightarrow T_{\vartheta_{1}(t, \theta)}^{*} \mathbb{R}^{2}$ at the point (t, θ) is given by the matrix

$$
A_{(t, \theta)}=\left[\begin{array}{cc}
e^{t} \cos \theta & e^{t} \sin \theta \\
-e^{t} \sin \theta & e^{t} \cos \theta
\end{array}\right]
$$

for the bases $\{d t, d \theta\}$ and $\left\{d q_{1}, d q_{2}\right\}$. Then the symplectic embedding

$$
\Theta_{1}: T^{*} \mathbb{R} \times T^{*} \mathbb{S}^{1} \rightarrow T^{*} \mathbb{R}^{2} \simeq \mathbb{R}^{4}, \quad(t, s, \theta, \tau) \mapsto\left(q_{1}, p_{1}, q_{2}, p_{2}\right)
$$

is given by $\left(q_{1}, q_{2}\right)=\vartheta_{1}(t, \theta)$ and $\left[p_{1} p_{2}\right]^{T}=A_{(t, \theta)}^{-1}[s \tau]^{T}$ i.e. we have explicitly $\Theta_{1}(t, s, \theta, \tau)=\left(e^{t} \cos \theta, s e^{-t} \cos \theta-\tau e^{-t} \sin \theta, e^{t} \sin \theta, s e^{-t} \sin \theta+\tau e^{-t} \cos \theta\right)$.

The Chekanov suspension $\mathcal{C}_{0}(L)$ of L at level $\tau=0$ is the following subset of \mathbb{R}^{4} :
$\mathcal{C}_{0}(L)=\left\{\left(e^{t} \cos \theta, e^{t} \sin \theta, s e^{-t} \cos \theta, s e^{-t} \sin \theta\right) \in \mathbb{R}^{4} \mid s^{2}+t^{2}=2 r^{2}, \theta \in[0,2 \pi]\right\}$.
If we identify \mathbb{C}^{2} with \mathbb{R}^{4} via the identification explained in example 2.2.1, then we have
$\mathcal{C}_{0}(L)=\left\{\left(\left(e^{t}+i s e^{-t}\right) \cos \theta,\left(e^{t}+i s e^{-t}\right) \sin \theta\right) \in \mathbb{C}^{2} \mid s^{2}+t^{2}=2 r^{2}, \theta \in[0,2 \pi]\right\}$.

A Chekanov torus in \mathbb{C}^{2} is a monotone Lagrangian torus that is Hamiltonian isotopic to a rescaling of the torus $\mathbb{T}_{C h}^{2}$ in Proposition 3.1.1.

3.2 Description of a Chekanov Torus via Conics in \mathbb{C}^{2}

Consider the map $G: \mathbb{C}^{2} \rightarrow \mathbb{C}$ given by $G\left(z_{1}, z_{2}\right)=z_{1} z_{2}$ and the Hamiltonian function $H: \mathbb{C}^{2} \rightarrow \mathbb{R}$ given by $H\left(z_{1}, z_{2}\right)=\frac{1}{2}\left(\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}\right)$. The fiber $G^{-1}\left(z_{0}\right)$ is topologically a cylinder if $z_{0} \neq 0$ and a cone if $z_{0}=0$.

Figure 3.1: Topological model of the fibers of $G: \mathbb{C}^{2} \rightarrow \mathbb{C}$.
Let $u: \mathbb{D}^{2} \rightarrow \mathbb{C}$ be an embedded disc with the area $A_{u}>0$ and the boundary $\gamma: \mathbb{S}^{1} \rightarrow \mathbb{C}$. As a remark, instead of $\gamma\left(e^{i s}\right)$ we write $\gamma(s)$ for short. Now consider the following subset of \mathbb{C}^{2} :

$$
\begin{equation*}
L_{\beta}^{\gamma}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid H\left(z_{1}, z_{2}\right)=\beta, \beta \in \mathbb{R}\right\} \cap G^{-1}\left(\gamma\left(\mathbb{S}^{1}\right)\right) \tag{3.1}
\end{equation*}
$$

Figure 3.2: L_{β}^{γ} when β is not zero or γ does not pass through origin.
Proposition 3.2.1 ([|1]). L_{β}^{γ} is a Lagrangian torus if β is not zero or $\gamma\left(\mathbb{S}^{1}\right)$ does not pass through origin.

Sketch of proof. Let $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$ and $\gamma=r_{\gamma} e^{i \theta_{\gamma}}$ be polar coordinates representations of z_{1}, z_{2} and γ respectively. If $z_{1}, z_{2} \in L_{\beta}^{\gamma}$, then we have the equalites $\gamma=r_{\gamma} e^{i \theta_{\gamma}}=z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$ and $2 \beta=\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}=r_{2}^{2}-r_{1}^{2}$. Then we have $r_{\gamma}^{2}=r_{1}^{2} r_{2}^{2}=2 \beta r_{1}^{2}+r_{1}^{4}$. As a result, we have

$$
r_{1}=\sqrt{-\beta+\sqrt{\beta^{2}+r_{\gamma}^{2}}}, \quad r_{2}=\sqrt{\beta+\sqrt{\beta^{2}+r_{\gamma}^{2}}} \quad \text { and } \quad e^{i \theta_{2}}=e^{-i \theta_{1}} e^{i \theta_{\gamma}}
$$

If we let $g\left(r_{\gamma}\right)=\sqrt{-\beta+\sqrt{\beta^{2}+r_{\gamma}^{2}}}$ and $h\left(r_{\gamma}\right)=\sqrt{\beta+\sqrt{\beta^{2}+r_{\gamma}^{2}}}$, then the subset L_{β}^{γ} of \mathbb{C}^{2} is given by

$$
L_{\beta}^{\gamma}=\left\{\left(\pm g\left(r_{\gamma(s)}\right) e^{i \theta}, \pm h\left(r_{\gamma(s)}\right) e^{i \theta_{\gamma(s)}} e^{-i \theta}\right) \mid \gamma(s)=r_{\gamma(s)} e^{i \theta_{\gamma(s)}}, s, \in[0,2 \pi], \theta \in[0, \pi]\right\} .
$$

If $\beta \neq 0$ or γ does not pass through origin, then L_{β}^{γ} is a torus. On L_{β}^{γ} we have

$$
\begin{align*}
d z_{1} & = \pm e^{i \theta_{\gamma(s)} / 2} e^{i \theta}\left(\left(\partial_{s} g\left(r_{\gamma(s)}\right)+\frac{i}{2}\left(\partial_{s} \theta_{\gamma(s)}\right)\right) d s+i g\left(r_{\gamma(s)}\right) d \theta\right) \tag{3.2}\\
d z_{2} & = \pm e^{i \theta_{\gamma(s)} / 2} e^{-i \theta}\left(\left(\partial_{s} h\left(r_{\gamma(s)}\right)+\frac{i}{2}\left(\partial_{s} \theta_{\gamma(s)}\right)\right) d s-i h\left(r_{\gamma(s)}\right) d \theta\right) \tag{3.3}
\end{align*}
$$

then
$\omega_{0}=\frac{i}{2}\left(d z_{1} \wedge d \bar{z}_{1}+d z_{2} \wedge d \bar{z}_{2}\right)=\left(\left(\partial_{s} h\left(r_{\gamma(s)}\right)\right) h\left(r_{\gamma(s)}\right)-\left(\partial_{s} g\left(r_{\gamma(s)}\right)\right) g\left(r_{\gamma(s)}\right)\right) d s \wedge d \theta$.

This shows that $\left.\omega_{0}\right|_{L_{\beta}^{\gamma}} \equiv 0$ since we have

$$
\left.\left.\partial_{s} h\left(r_{\gamma(s)}\right)\right) h\left(r_{\gamma(s)}\right)=\frac{r_{\gamma(s)} \partial_{s} r_{\gamma(s)}}{\sqrt{\beta^{2}+r_{\gamma(s)}^{2}}}=\partial_{s} g\left(r_{\gamma(s)}\right)\right) g\left(r_{\gamma(s)}\right)
$$

Proposition 3.2.2 ([[1]). The subset L_{0}^{γ} of \mathbb{C}^{2} is a Lagrangian nodal sphere if $\gamma\left(\mathbb{S}^{1}\right)$ passes through origin.

Sketch of proof. The set
$L_{\beta}^{\gamma}=\left\{\left(\pm g\left(r_{\gamma(s)}\right) e^{i \theta}, \pm h\left(r_{\gamma(s)}\right) e^{i \theta_{\gamma(s)}} e^{-i \theta}\right) \mid \gamma(s)=r_{\gamma(s)} e^{i \theta_{\gamma(s)}}, s \in[0,2 \pi], \theta \in[0, \pi]\right\}$.
in the proof of Proposition 3.2.1 becomes
$L_{0}^{\gamma}=\left\{\left(\pm \sqrt{r_{\gamma(s)}} e^{i \theta}, \pm \sqrt{r_{\gamma(s)}} e^{i \theta_{\gamma(s)}} e^{-i \theta}\right) \mid \gamma(s)=r_{\gamma(s)} e^{i \theta_{\gamma(s)}}, s \in[0,2 \pi], \theta \in[0, \pi]\right\}$.
Since γ passes through origin, $\sqrt{r_{\gamma\left(s_{0}\right)}}=0$ for some $s_{0} \in[0,2 \pi]$. Hence the set L_{0}^{γ} is an immersed Lagrangian sphere. Transversality of intersection follows from 3.2 and 3.3.

Figure 3.3: The subset L_{0}^{γ} if γ passes through origin.
Proposition 3.2.3 ([|1]). The Lagrangian torus L_{0}^{γ} is an exotic monotone torus in \mathbb{C}^{2} if the disc $u: \mathbb{D}^{2} \rightarrow \mathbb{C}$ does not meet the set $\Delta=\{a+i b \in \mathbb{C} \mid a \leq 0, b=0\}$ through the origin of \mathbb{C}.

Proof. If $\beta=0$ then $H\left(z_{1}, z_{2}\right)=0$ i.e. $\left|z_{1}\right|=\left|z_{2}\right|$. So we have $z_{1}=z_{2} e^{i 2 \theta}$ for some $\theta \in[0, \pi]$. Then for a point $\left(z_{1}, z_{2}\right) \in L_{0}^{\gamma}$ we have $\gamma(s)=G\left(z_{1}, z_{2}\right)=z_{2}^{2} e^{i 2 \theta}$ for some $s \in[0,2 \pi]$. Then $\left(z_{1}, z_{2}\right)= \pm\left(\sqrt{\gamma(s)} e^{i \theta}, \sqrt{\gamma(s)} e^{-i \theta}\right)$; as a result, the Lagrangian torus L_{0}^{γ} is given by the subset

$$
L_{0}^{\gamma}=\left\{\left(\sqrt{\gamma(s)} e^{i \theta}, \sqrt{\gamma(s)} e^{-i \theta}\right) \in \mathbb{C}^{2} \mid s, \theta \in[0,2 \pi]\right\} .
$$

The two generators of $\pi_{2}\left(\mathbb{C}^{2}, L_{0}^{\gamma}\right) \simeq \mathbb{Z}^{2}$ have the following representative discs

$$
\begin{array}{ll}
u_{1}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}, & w \mapsto(\sqrt{u(w)}, \sqrt{u(w)}) \\
u_{2}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}, & \rho e^{i \theta} \mapsto\left(\rho e^{i \theta}, \rho e^{-i \theta}\right) .
\end{array}
$$

First disc u_{1} lies on the diagonal of the \mathbb{C}^{2} and it's boundary $\sigma_{1}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ is given by $s \mapsto(\sqrt{\gamma(s)}, \sqrt{\gamma(s)})$. Maslov class of u_{1} is 2 since it is an embedded disc lying on a plane. It follows immediately from the definition of u_{1} that by changing A_{u} we can adjust the symplectic area of u_{1} as we want. Let's choose A_{u} so that u_{1} has symplectic area $2 \pi r^{2}$. (Note that, in this case each of the projections of the disc u_{1} to the first and second coordinates of \mathbb{C}^{2} has symplectic area πr^{2}.)

For the disc u_{2}, its boundary $\sigma_{2}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ induces the loop $\widetilde{\sigma}_{2}: \mathbb{S}^{1} \rightarrow \mathrm{U}(2) / \mathrm{O}(2)$ given by $\theta \mapsto \operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$. We have $\operatorname{det}_{\mathbb{C}}^{2}\left(\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)\right)=1$. So Maslov class of u_{2} is 0 . Symplectic area of u_{1} is 0 since we have

$$
\sigma_{2}^{*}\left(z_{1} d \bar{z}_{1}+z_{2} d \bar{z}_{2}\right)=e^{i \theta} d e^{-i \theta}+e^{-i \theta} d e^{i \theta}=e^{i \theta}\left(-i e^{-i \theta}\right) d \theta+e^{-i \theta}\left(i e^{i \theta}\right) d \theta=0 .
$$

This proves that L_{0}^{γ} is a monotone Lagrangian with monotonicity constant πr^{2}.
The torus L_{0}^{γ} is the boundary of the solid torus foliated by the holomorphic discs

$$
g^{\theta}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}, \quad w \mapsto\left(\sqrt{u(w)} e^{i \theta}, \sqrt{u(w)} e^{-i \theta}\right), \quad \theta \in[0,2 \pi) .
$$

If we let $\left(\sqrt{u\left(w_{1}\right)} e^{i \theta_{1}}, \sqrt{u\left(w_{1}\right)} e^{-i \theta_{1}}\right)=\left(\sqrt{u\left(w_{2}\right)} e^{i \theta_{2}}, \sqrt{u\left(w_{2}\right)} e^{-i \theta_{2}}\right)$ then we have $\sqrt{u\left(w_{1}\right)}=\sqrt{u\left(w_{2}\right)} e^{i \theta_{2}-\theta_{1}}$ and $\sqrt{u\left(w_{1}\right)}=\sqrt{u\left(w_{2}\right)} e^{i \theta_{1}-\theta_{2}}$. This implies either we have $\theta_{1}-\theta_{2}=0$ or $\theta_{1}-\theta_{2}=\pi$ since u does not pass through origin. So we have either $\sqrt{u\left(w_{1}\right)}=\sqrt{u\left(w_{2}\right)}$ or $\sqrt{u\left(w_{1}\right)}=-\sqrt{u\left(w_{2}\right)}$. The latter is not possible because u is embedded and square root operation confines the image of the disc \sqrt{u} to only half of the \mathbb{C}. So we have $\theta_{1}=\theta_{2}$ and $u\left(w_{1}\right)=u\left(w_{2}\right)$ (hence $w_{1}=w_{2}$ since u is embedded). This proves the holomorphic discs $g^{\theta}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ are disjoint.

Now we will prove that a holomorphic disc $g: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ in \mathbb{C}^{2} with the boundary lying on L_{0}^{γ} and symplectic area $2 \pi r^{2}$ must be one of the discs $g^{\theta}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ of the holomoprhic foliation above. Consider the map $F=G \circ g \circ u^{-1}: u\left(\mathbb{D}^{2}\right) \rightarrow \mathbb{C}$. This map is holomorhic since each of the maps in the composition of F is holomorphic. Observe that for any point $\gamma(s)$ on the boundary of $u\left(\mathbb{D}^{2}\right)$ we have a point $e^{i t}$ on the boundary of \mathbb{D}^{2} and this point is mapped to a point $\left(\sqrt{\gamma\left(s_{t}\right)} e^{i \theta_{t}}, \sqrt{\gamma\left(s_{t}\right)} e^{-i \theta_{t}}\right)$ on L_{0}^{γ}. So we have $F=G \circ g \circ u^{-1}(\gamma(s))=G\left(\sqrt{\gamma\left(s_{t}\right)} e^{i \theta_{t}}, \sqrt{\gamma\left(s_{t}\right)} e^{-i \theta_{t}}\right)=\gamma\left(s_{t}\right)$ i.e. F maps the boundary of $u\left(\mathbb{D}^{2}\right)$ to itself. Since $\int_{\partial \mathbb{D}^{2}} g^{*} \lambda_{0}=2 \pi r^{2}$, it can be shown that $\left.F\right|_{\partial u\left(\mathbb{D}^{2}\right)=\gamma}$ has a degree greater than equal to 1 . For the time being assume its degree is 1 . Then F is a bi-holomorphic mapping of $u\left(\mathbb{D}^{2}\right)$ to itself. By a conformal change of variable we can have $F(w)=w$ or equivalently $G \circ g(w)=u(w)$ for $w \in \mathbb{D}^{2}$. If $g(w)=\left(g_{1}(w), g_{2}(w)\right)$ then we have

$$
G \circ g(w)=g_{1}(w) g_{2}(w)=u(w) .
$$

Since $u(w)$ is non-zero we can define a function

$$
\Phi(w)=\frac{g_{1}(w)}{g_{2}(w)} \quad \text { for } \quad w \in \mathbb{D}^{2}
$$

which is a non-zero holomorphic function. Then by maximum modulus principle Φ is a constant. Now observe that, when $w \in \partial \mathbb{D}^{2}$ we have $\left|g_{1}(w)\right|=\left|g_{1}(w)\right|$ since $g(w)$ lies on L_{0}^{γ}. This implies Φ is equal to a constant $e^{i \theta_{0}}$ for some $e^{i \theta_{0}} \in[0,2 \pi)$. This says that $g_{1}(w)=g_{1}(w) e^{i \theta_{0} / 2}$ which is equivalent to $g(w)=\left(\sqrt{u(w)} e^{i \theta}, \sqrt{u(w)} e^{-i \theta}\right)$ where $\theta=\theta_{0} / 2 \bmod \pi$. This shows that $g=g^{\theta}$ for some $\theta \in[0,2 \pi)$. If the degree of $\left.F\right|_{\partial u\left(\mathbb{D}^{2}\right)=\gamma}$ is greater than 1 , with a similar approach we will find that $g: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ will be multiple cover of one of the embedded discs $g^{\theta}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$. However, since the area of the image of $g: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ and $g^{\theta}: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ are $2 \pi r^{2}, g: \mathbb{D}^{2} \rightarrow \mathbb{C}^{2}$ is not a multiple cover.

Theorem 2.5.2 of Gromov tells us that if $\mathbb{T}_{C l}^{2}$ and L_{0}^{γ} were Hamiltonian isotopic then there should be two holomorphic discs corresponding the two generators of $\pi_{2}\left(\mathbb{C}^{2}, \mathbb{T}_{C l}^{2}\right)$. However, we proved that there is only one holomorphic disc of area $2 \pi r^{2}$ passing through each point of L_{0}^{γ}. As a result, L_{0}^{γ} is exotic.

Remark 3.2.4. Proposition 3.2 .3 remains true when we replace Δ by origin of \mathbb{C},
because $u: \mathbb{D}^{2} \rightarrow \mathbb{C}$ will miss a branch cut of \mathbb{C} in this case and by a conformal change of variable this branch cut can be mapped to Δ.

By the Proposition 3.2.3, we obtained an infinite family of exotic monotone Lagrangian tori. Any two members of this family are Hamiltonian isotopic to each other up to rescaling. We will denote a member of this family by $\mathbb{T}_{E P}^{2}$. Equivalently, we can define $\mathbb{T}_{E P}^{2}$ as

$$
\begin{equation*}
\mathbb{T}_{E P}^{2}=\left\{\left(\sigma(s) e^{i \theta}, \sigma(s) e^{-i \theta}\right) \in \mathbb{C}^{2} \mid s, \theta \in[0,2 \pi]\right\} \tag{3.4}
\end{equation*}
$$

where $\sigma: \mathbb{S}^{1} \rightarrow \mathbb{C}$ is an embedded circle bounding area πr^{2} and whose image lies in the right half-plane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$.

3.3 Chekanov Tori in \mathbb{C}^{2} are Exotic

Proposition 3.3.1 ($[11,12])$. The exotic torus $\mathbb{T}_{E P}^{2}$ is a Chekanov torus in \mathbb{C}^{2}.

Proof. Without loss of generality let the $r=1$ in the definition of $\mathbb{T}_{C h}^{2}$. Then $\mathbb{T}_{C h}^{2}=$ $\left\{\left(\left(e^{t}+i s e^{-t}\right) \cos \theta,\left(e^{t}+i s e^{-t}\right) \sin \theta\right) \in \mathbb{C}^{2} \mid s^{2}+t^{2}=2, \theta \in[0,2 \pi]\right\}$. If we let $(t, s)=(\sqrt{2} \sin \vartheta, \sqrt{2} \cos \vartheta)$ then we get $e^{t}+i s e^{-t}=e^{\sqrt{2} \cos \vartheta}+i \sqrt{2} \sin \vartheta e^{-\sqrt{2} \cos \vartheta}$ which gives the embedded circle $\sigma: \mathbb{S}_{\sqrt{2}}^{1} \rightarrow \mathbb{C}, \sigma(\vartheta)=e^{\sqrt{2} \cos \vartheta}+i \sqrt{2} \sin \vartheta e^{-\sqrt{2} \cos \vartheta}$.

Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ given by $(x, y) \mapsto e^{x}+i y e^{-x}$. The map f is a symplectomorphism since
$d z \wedge d \bar{z}=\left(e^{x} d x+i e^{-x} d y-i y e^{-x} d y\right) \wedge\left(e^{x} d x-i e^{-x} d y+i y e^{-x} d x\right)=-2 i d x \wedge d y$.

Then embedded circle $\sigma: \mathbb{S}_{\sqrt{2}}^{1} \rightarrow \mathbb{C}$ bounds a disc of area 2π. Consider the Hamiltonian isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ given in Example 2.3.1. We have

$$
\Upsilon^{1}\left(\mathbb{T}_{C h}^{2}\right)=\left\{\left.\frac{1}{\sqrt{2}}\left(\sigma(\vartheta) e^{i \theta}, \sigma(\vartheta) e^{-i \theta}\right) \in \mathbb{C}^{2} \right\rvert\, \vartheta, \theta \in[0,2 \pi]\right\}
$$

which is $\mathbb{T}_{E P}^{2}$, see 3.4 This proves that $\mathbb{T}_{E P}^{2}$ is Hamiltonian isotopic to $\mathbb{T}_{C h}^{2}$, in other words, $\mathbb{T}_{E P}^{2}$ is a Chekanov torus in \mathbb{C}^{2}.

Figure 3.4: Trace of $\sigma: \mathbb{S}_{\sqrt{2}}^{1} \rightarrow \mathbb{C}$

3.4 Lagrangian Perturbations of a Lagrangian Nodal Sphere

Proposition 3.4.1 ([|1]). The subset L_{0}^{γ} of \mathbb{C}^{2} is a Clifford torus if interior of the disc bounded by $\gamma\left(\mathbb{S}^{1}\right)$ contains the origin.

Proof. If $\beta=0$ then $H\left(z_{1}, z_{2}\right)=0$ i.e. $\left|z_{1}\right|=\left|z_{2}\right|$. So we have $z_{1}=z_{2} e^{i 2 \theta}$ for some $\theta \in[0, \pi]$. Then for a point $\left(z_{1}, z_{2}\right) \in L_{0}^{\gamma}$ we have $\gamma(s)=G\left(z_{1}, z_{2}\right)=z_{2}^{2} e^{i 2 \theta}$ for some $s \in[0,2 \pi]$. Then $\left(z_{1}, z_{2}\right)= \pm\left(\sqrt{\gamma(s)} e^{i \theta}, \sqrt{\gamma(s)} e^{-i \theta}\right)$; as a result, the Lagrangian torus L_{0}^{γ} is given by the union of the subsets

$$
\left\{ \pm\left(\sqrt{\gamma(s)} e^{i \theta}, \sqrt{\gamma(s)} e^{-i \theta}\right) \in \mathbb{C}^{2} \mid s \in[0,2 \pi], \theta \in[0, \pi]\right\}
$$

The union of curves $\sqrt{\gamma} \cup-\sqrt{\gamma}$ is a embedded circle, interior of the disc bounded by this embedded circle contains origin.

Let $\sigma: \mathbb{S}^{1} \rightarrow \mathbb{C}$ be an embedded circle whose image is $\sqrt{\gamma} \cup-\sqrt{\gamma}$. Then by Proposition 2.3.2, there exists a Hamiltonian isotopy $\left\{\Phi^{t}: \mathbb{C} \rightarrow \mathbb{C}\right\}_{t \in[0,1]}$ which takes $\sigma\left(\mathbb{S}^{1}\right)$ to a round circle of radius r_{0} centered at the origin of \mathbb{C} and $\Phi^{t}(0)=0$ for all $t \in[0,1]$. Consider the map

$$
\begin{equation*}
\Psi: L_{0}^{\gamma} \times[0,1] \rightarrow \mathbb{C}^{2}, \quad\left(\sigma(s) e^{i \theta}, \sigma(s) e^{-i \theta}, t\right) \mapsto\left(\Phi^{t}(\sigma(s)) e^{i \theta}, \Phi^{t}(\sigma(s)) e^{-i \theta}\right) \tag{3.5}
\end{equation*}
$$

Figure 3.5: The region \mathcal{R} which has area $4 \pi^{2}$.
The subset $\Psi^{t}\left(L_{0}^{\gamma}\right)$ of \mathbb{C}^{2} is a torus since $\Phi^{t}\left(\sigma\left(\mathbb{S}^{1}\right)\right)$ does not pass through the origin of \mathbb{C} for all $t \in[0,1]$. Then the map $\Psi: L_{0}^{\gamma} \times[0,1] \rightarrow \mathbb{C}^{2}$ is a Lagrangian isotopy since $\Psi^{t}\left(L_{0}^{\gamma}\right)$ is a Lagrangian for all $t \in[0,1]$. The following two embedded circles

$$
\begin{array}{ll}
\beta_{1}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}, & e^{i s} \mapsto\left(\Phi^{t}(\sigma(s)), \Phi^{t}(\sigma(s))\right) \\
\beta_{2}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}, & e^{i \theta} \mapsto\left(\Phi^{t}(\sigma(0)) e^{i \theta}, \Phi^{t}(\sigma(0)) e^{-i \theta}\right)
\end{array}
$$

lie on the $\Psi^{t}\left(L_{0}^{\gamma}\right)$ and bound two embedded discs which correspond to the generators of $\pi_{2}\left(\mathbb{C}^{2}, \Psi^{t}\left(L_{0}^{\gamma}\right)\right)$ for all $t \in[0,1]$. The discs bounded by $\beta_{1}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ has the same area for all $t \in[0,1]$ since $\left\{\Phi^{t}: \mathbb{C} \rightarrow \mathbb{C}\right\}_{t \in[0,1]}$ is a Hamiltonian isotopy. The discs bounded by $\beta_{2}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ has zero area since the one-form $z_{1} d \bar{z}_{1}+z_{2} d \bar{z}_{2}$ vanishes on $\beta_{2}^{t}\left(\mathbb{S}^{1}\right)$. Hence by Proposition 2.3.3, the Lagrangian isotopy $\Psi: L_{0}^{\gamma} \times[0,1] \rightarrow \mathbb{C}^{2}$ is an exact Lagrangian isotopy and it can be extended to a Hamiltonian isotopy of \mathbb{C}^{2}. In other words, L_{0}^{γ} is Hamiltonian isotopic to

$$
\begin{aligned}
\tilde{L} & =\left\{\left(r_{0} e^{i \varphi} e^{i \theta}, r_{0} e^{i \varphi} e^{-i \theta}\right) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\} \\
& =\left\{\left(r_{0} e^{i(\varphi+\theta)}, r_{0} e^{i(\varphi-\theta)}\right) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\} .
\end{aligned}
$$

If we let $\varphi^{\prime}=\varphi+\theta$ and $\theta^{\prime}=\varphi-\theta$ then we have

$$
\tilde{L}=\left\{\left(r_{0} e^{i \varphi^{\prime}}, r_{0} e^{i \theta^{\prime}}\right) \mid\left(\varphi^{\prime}, \theta^{\prime}\right) \in \mathcal{R} \subset \mathbb{R}^{2}\right\}
$$

where $\mathcal{R} \subset \mathbb{R}^{2}$ given in the Figure 3.5 . As a result we have

$$
\tilde{L}=\left\{\left(r_{0} e^{i \varphi^{\prime}}, r_{0} e^{i \theta^{\prime}}\right) \mid \varphi, \theta \in[0,2 \pi]\right\}
$$

which is a Clifford torus.
Theorem 3.4.2 ([11]). There exist Lagrangian perturbations of Lagrangian nodal spheres L_{0}^{γ} in Propostion 3.2 .2 which are Clifford and Chekanov tori in $\left(\mathbb{C}^{2}, \omega_{0}\right)$.

Proof. For a Lagrangian nodal sphere L_{0}^{γ}, the curve γ passes through origin. The curve γ can be deformed around origin in a small neighborhood to an embedded circle γ_{δ} in two ways. In one case, γ_{δ} does not pass through origin anymore and the disc bounded by γ_{δ} contains the origin. In the other case, γ_{δ} does not pass through origin anymore and the disc bounded by γ_{δ} does not contain the origin. Hence, proof follows by Proposition 3.2.3 and Proposition 3.4.1.

Theorem 3.4.3 ([11]). A Clifford torus and a Chekanov torus is Lagrangian isotopic.

Proof. Let L_{0}^{γ} be a Clifford torus and $L_{0}^{\tilde{\gamma}}$ be a Chekanov torus where $\gamma, \tilde{\gamma}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ two embedded circles. Let $\left\{\gamma_{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}\right\}_{t \in[0,1]}$ be a smooth isotopy of embedded circles so that $\gamma_{0}=\gamma$ and $\gamma_{1}=\tilde{\gamma}$. Then the family $\left\{L_{t}^{\gamma_{t}}\right\}_{t \in[0,1]}$ induces a Lagrangian isotopy between the Clifford torus L_{0}^{γ} and the Chekanov torus $L_{0}^{\tilde{\gamma}}$.

CHAPTER 4

THE WHITNEY IMMERSION AND ITS POLTEROVICH SURGERY

4.1 The Whitney Immersion of an n-sphere in \mathbb{C}^{n}

Consider the functions $g_{ \pm}:[-1,1] \rightarrow \mathbb{R}$ given by $g_{ \pm}(x)= \pm \frac{1}{3}\left(1-x^{2}\right)^{\frac{3}{2}}$. Differentials of these functions are $d g_{ \pm}=g_{ \pm}^{\prime}(x) d x=\mp x\left(1-x^{2}\right)^{\frac{1}{2}} d x$. We will denote the graphs of differentials $d g_{+}, d g_{-}$by W_{+}^{1}, W_{-}^{1} respectively.

Figure 4.1: Graphs of $g_{ \pm}$and the differentials $d g_{ \pm}$.

If we consider W_{+}^{1} and W_{-}^{1} as a subset of \mathbb{C}, then we have

$$
\begin{aligned}
W_{ \pm}^{1} & =\left\{x+i g_{ \pm}^{\prime}(x) \in \mathbb{C} \mid x \in[-1,1]\right\}=\left\{\left.x \mp i x\left(1-x^{2}\right)^{\frac{1}{2}} \in \mathbb{C} \right\rvert\, x \in[-1,1]\right\} \\
& =\left\{x+i x y \in \mathbb{C} \mid(x, y) \in \mathbb{S}_{ \pm}^{1}\right\} .
\end{aligned}
$$

The immersed circle $W^{1}=W_{+}^{1} \cup W_{-}^{1}$ is given by the set $\left\{x+i x y \in \mathbb{C} \mid(x, y) \in \mathbb{S}^{1}\right\}$. It is the image of the immersion $\mathcal{W}_{1}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ given by $(x, y) \mapsto x+i x y$.

In coordinates $(x, y)=(\sin \varphi, \cos \varphi)$ we have

$$
\begin{equation*}
\mathcal{W}_{1}(\sin \varphi, \cos \varphi)=\sin \varphi+\frac{i}{2} \sin 2 \varphi \quad \text { where } \quad \varphi \in[0,2 \pi] \tag{4.1}
\end{equation*}
$$

Figure 4.2: Immersed circle W^{1}

Higher dimensional analog of \mathcal{W}_{1} is $\mathcal{W}_{n}: \mathbb{S}^{n} \rightarrow \mathbb{C}^{n}$ which is given by

$$
\begin{equation*}
\mathcal{W}_{n}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\left(x_{1}+i x_{1} x_{n+1}, \ldots, x_{n}+i x_{n} x_{n+1}\right) \tag{4.2}
\end{equation*}
$$

The immersion $\mathcal{W}_{n}: \mathbb{S}_{1}^{n} \rightarrow \mathbb{C}^{n}$ is called Whitney immersion and its image will be denoted by W^{n}.

Proposition 4.1.1. The immersed submanifold W^{n} is a Lagrangian nodal sphere in $\left(\mathbb{C}^{n}, \omega_{0}\right)$.

Proof. Using functions $g_{ \pm}$define the following functions

$$
f_{ \pm}: \mathbb{D}_{\leq 1}^{n} \rightarrow \mathbb{R}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto g_{ \pm}\left(\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|\right)
$$

where their differentials are given by

$$
d f_{ \pm}=\mp \sum_{i=1}^{n} x_{i}\left(1-\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|^{2}\right)^{\frac{1}{2}} d x_{i}
$$

By method of generating functions the graphs $W_{ \pm}^{n}$ of differentials $d f_{ \pm}$are Lagrangians in contangent bundles $T^{*} \mathbb{D}_{\leq 1}^{n} \simeq \mathbb{D}_{\leq 1}^{n} \times \mathbb{R}^{n} \subseteq \mathbb{R}^{2 n} \simeq \mathbb{C}^{n}$. If denote $\left(x_{1}, \ldots, x_{n}\right)$ as \bar{x}_{n} for short then we have

$$
\begin{aligned}
W_{ \pm}^{n} & =\left\{\left(x_{1} \pm i x_{1} x_{n+1}, \ldots, x_{n} \pm i x_{n} x_{n+1}\right) \in \mathbb{C}^{n} \mid \bar{x}_{n} \in \mathbb{D}_{\leq 1}^{n}, x_{n+1}=\left(1-\left\|\bar{x}_{n}\right\|^{2}\right)^{\frac{1}{2}}\right\} \\
& =\left\{\left(x_{1} \pm i x_{1} x_{n+1}, \ldots, x_{n} \pm i x_{n} x_{n+1}\right) \in \mathbb{C}^{n} \mid \bar{x}_{n+1} \in \mathbb{S}_{ \pm}^{n} \subseteq \mathbb{R}^{n+1}\right\}
\end{aligned}
$$

Then union of the Lagrangians $W_{ \pm}^{n}$ is
$W_{+}^{n} \cup W_{-}^{n}=\left\{\left(x_{1}+i x_{1} x_{n+1}, \ldots, x_{n}+i x_{n} x_{n+1}\right) \in \mathbb{C}^{n} \mid \bar{x}_{n+1} \in \mathbb{S}_{1}^{n} \subseteq \mathbb{R}^{n+1}\right\}=W^{n}$.
So W^{n} is Lagrangian since it is smooth gluing of two Lagrangians. There is a selfintersection point at the origin $0 \in \mathbb{C}^{n}$ and we have $\mathcal{W}_{n}^{-1}(0)=\{(0, \ldots, 0, \pm 1)\}$. Having only one-self intersection point follows from a straightforward computation.

The tangent spaces at the self-intersection point which is at the origin $0 \in \mathbb{C}^{n}$ are given by:

$$
\begin{aligned}
& V_{1}=\operatorname{Span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
1-i \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
\vdots \\
1-i
\end{array}\right]\right\} \\
& V_{2}=\operatorname{Span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
1+i \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
\vdots \\
1+i
\end{array}\right]\right\}
\end{aligned}
$$

which proves the transversality at the self-intersection point.

4.2 The Polterovich Surgery

Let V_{1} and V_{2} be Lagrangian linear subspaces of $\left(\mathbb{C}^{n}, \omega_{0}\right)$ which intersect transversally at the origin. A Lagrangian handle joining V_{1} and V_{2} is the image of a a Lagrangian embedding $H: \mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}^{n}$ satisfying the properties:
i. There exist two n-discs D_{1}, D_{2} such that each contains origin of \mathbb{C}^{n} and lies in V_{1}, V_{2} respectively.
ii. $H\left(\mathbb{S}^{n-1} \times[c,+\infty)\right)=V_{1} \backslash D_{1}$ and $H\left(\mathbb{S}^{n-1} \times(-\infty,-c]\right)=V_{2} \backslash D_{2}$ for some $c>0$.

A Lagrangian handle Γ joining V_{1} and V_{2} is positive (or $\operatorname{sgn}(\Gamma)=1$) if the inclusion maps $V_{1} \backslash D_{1} \hookrightarrow \Gamma$ and $V_{2} \backslash D_{2} \hookrightarrow \Gamma$) induce the same orientation and negative (or $\operatorname{sgn}(\Gamma)=-1)$ otherwise.

Proposition 4.2.1 ([|9]). Let V_{1} and V_{2} be Lagrangian linear subspaces of $\left(\mathbb{C}^{n}, \omega_{0}\right)$
which intersect transversally at the origin. There exist two Lagrangian handles Γ and $\tilde{\Gamma}$ joining V_{1} and V_{2} such that $\operatorname{sgn}(\Gamma)=(-1)^{n} \operatorname{sgn}(\tilde{\Gamma})$.

Proof. Let $h_{\epsilon}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a smooth function such that $h_{\epsilon}(t)=1$ if $t \leq \epsilon / 2$, $h_{\epsilon}(t)=0$ if $t \geq \epsilon$ and $h_{\epsilon}^{\prime}(t)<0$ if $\epsilon / 2<t<\epsilon$.

Figure 4.3: Functions $h_{\epsilon}(t), g_{\epsilon}(t), \psi_{\epsilon}(t)$ and $f_{\epsilon}(t)$.
Define $g_{\epsilon}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by $g_{\epsilon}(t)=\frac{h(t)}{t}$. Observe that $g_{\epsilon}(t)$ is strictly decreasing when $t<\epsilon\left(g_{\epsilon}^{\prime}(t)=<0\right.$ if $\left.t<\epsilon\right)$ and $g_{\epsilon}(t)=0$ if $t \geq \epsilon$.

Define $\psi_{\epsilon}(t)=h(t)\left(\left.g\right|_{(0, \epsilon]}\right)^{-1}(t)$ and using this function define $f_{\epsilon}(x)=\int_{0}^{x} \psi_{\epsilon}(t) d t$ for $x>0$.

Then consider the following generating function

$$
\begin{equation*}
F_{\epsilon}^{n}: \mathbb{R}^{n} \backslash 0 \rightarrow \mathbb{R}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto f_{\epsilon}\left(\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|\right) \tag{4.3}
\end{equation*}
$$

Graph of its differential $\Gamma_{d F_{c}^{n}}$ is a Lagrangian in \mathbb{C}^{n} and it is smoothly tangent to $i \mathbb{R}^{n}$ along $i \mathbb{R}^{n} \cap \mathbb{S}_{\epsilon}^{2 n-1}$. As a result, $\Gamma_{d F_{\epsilon}^{n}} \cup\left(i \mathbb{R}^{n} \backslash \mathbb{D}_{<\epsilon}^{2 n}\right)$ is a Lagrangian. The Lagrangian $\Gamma_{d F_{\epsilon}^{n}} \cup\left(i \mathbb{R}^{n} \backslash \mathbb{D}_{<\epsilon}^{2 n}\right)$ is diffeomorphic to $\mathbb{R}^{n} \backslash 0 \simeq \mathbb{S}^{n-1} \times \mathbb{R}$ since $\Gamma_{d F_{\epsilon}^{n}}$ is diffeomorphic to $\mathbb{R}^{n} \backslash 0 \simeq \mathbb{S}^{n-1} \times \mathbb{R}$. These show that $\Gamma_{d F_{\epsilon}^{n}} \cup\left(i \mathbb{R}^{n} \backslash \mathbb{D}_{<\epsilon}^{2 n}\right)$ is a Lagrangian handle joining \mathbb{R}^{n} and $i \mathbb{R}^{n}$. This Lagrangian handle will be denoted by Γ_{n}. If we use the generating function $-F_{\epsilon}^{n}$ instead of F_{ϵ}^{n}, then we will obtain another

Lagrangian handle joining \mathbb{R}^{n} and $i \mathbb{R}^{n}$. The Lagrangian handle obtained by $-F_{\epsilon}^{n}$ will be denoted by $\tilde{\Gamma}_{n}$. A quick observation shows that $\operatorname{sgn}\left(\Gamma_{n}\right)=(-1)^{n} \operatorname{sgn}\left(\tilde{\Gamma}_{n}\right)$.

By Lemma 2.1.2 we know that $\operatorname{Sp}(2 n)$ acts transitively on pair of transverse linear Lagrangian subspaces of \mathbb{C}^{n}. Hence there exists a linear symplectomorphism Ψ of \mathbb{C}^{n} which maps $\left(V_{1}, V_{2}\right)$ to $\left(\mathbb{R}^{n}, i \mathbb{R}^{n}\right)$. Images of Lagrangian handles Γ_{n} and $\tilde{\Gamma_{n}}$ under this symplectomorphism give desired Lagrangian handles joining V_{1} and V_{2}.

Let N be an immersed Lagrangian submanifold of a $2 n$ dimensional symplectic manifold (M, ω) where all self-intersection points of N are transversal, double and isolated. Let p be a self-intersection point of $N, T_{p} M$ be tangent space of M at p and V_{1}, V_{2} be two tangent spaces of N at the point p. By a version of Darboux theorem one can find a neighbourhood \mathcal{U} of M around p and a symplectic embedding $I: \mathcal{U} \rightarrow \mathbb{C}^{n}$ satisfying:
i. $N \cap \mathcal{U}=D_{1} \cup D_{2}$ where D_{1} and D_{2} are two n-discs such that $T_{p} D_{1}=V_{1}$, $T_{p} D_{2}=V_{2}$ and $D_{1} \cap D_{2}=\{p\}$,
ii. $I\left(D_{1}\right) \subset V_{1}, I\left(D_{2}\right) \subset V_{2}$ and $I(p)=0$.

Attach a Lagrangian handle Γ joining V_{1} and V_{2} such that closure of $\left(\Gamma \backslash\left(V_{1} \cup V_{2}\right)\right)$ lies in $I(\mathcal{U})$ and glue $N \backslash \mathcal{U}$ with $I^{-1}(\Gamma)$. This procedure is called a Polterovich surgery of N at the self-intersection point p. The submanifold obtained after Polterovich surgery is an immersed Lagrangian submanifold of M if N has more than one selfintersection point, otherwise resulting submanifold is an embedded Lagrangian submanifold of M. If N is oriented immersed submanifold of M then the Lagrangian surgery is called positive (negative) if the Lagrangian handle Γ is positive (negative) with respect to the orientations of V_{1} and V_{2} induced from the orientation of N.

The Polterovich surgery procedure is the same when we replace immersed Lagrangian submanifold N of (M, ω) with a pair of transverse Lagrangian submanifolds L_{1} and L_{2} of (M, ω). In this case the Polterovich surgery is called Lagrangian connect sum of L_{1} and L_{2}.

Figure 4.4: Model of the Polterovich Surgery

4.3 Polterovich Surgeries of a Lagrangian Nodal Sphere

Theorem 4.3.1 ([7, 28]). The two Lagrangian tori obtained by Polterovich surgeries of the Lagrangian nodal sphere W^{2} given by the Whitney immersion in \mathbb{C}^{2} are Clifford and Chekanov tori.

Proof. Recall, $\mathcal{W}_{2}: \mathbb{S}^{2} \rightarrow \mathbb{C}^{2}$ is given by $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}+i x_{1} x_{3}, x_{2}+i x_{2} x_{3}\right)$. If we use spherical coordiantes $\left(x_{1}, x_{2}, x_{3}\right)=(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$ where $\varphi \in[0, \pi], \theta \in[0,2 \pi]$ then we have

$$
\mathcal{W}_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(\sin \varphi+\frac{i}{2} \sin 2 \varphi\right) \cos \theta,\left(\sin \varphi+\frac{i}{2} \sin 2 \varphi\right) \sin \theta\right) .
$$

If we let $\sigma(\varphi)=\sin \varphi+\frac{i}{2} \sin 2 \varphi$ then the Lagrangian nodal sphere W^{2} is given by

$$
\begin{align*}
W^{2} & =\{(\sigma(\varphi) \cos \theta, \sigma(\varphi) \sin \theta) \mid \varphi \in[0, \pi], \theta \in[0,2 \pi]\} \tag{4.4}\\
& =\{(\sigma(\varphi) \cos \theta, \sigma(\varphi) \sin \theta) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\} . \tag{4.5}
\end{align*}
$$

From 4.1, we see that the image of the map $\sigma(\varphi)=\sin \varphi+\frac{i}{2} \sin 2 \varphi$ is the immersed circle W^{1} when $\varphi \in[0,2 \pi]$ and the right half of the immersed circle W^{1} when $\varphi \in[0, \pi]$.

The tangent spaces of W^{2} when $\varphi=0$ and $\varphi=\pi$ are given by

$$
V_{1}=\operatorname{Span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
1-i \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1-i
\end{array}\right]\right\} \quad \text { and } \quad V_{2}=\operatorname{Span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
1+i \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1+i
\end{array}\right]\right\}
$$

respectively. There exists a neighborhood \mathcal{U} of $0 \in \mathbb{C}^{2}$ and a symplectic embedding $I: \mathcal{U} \rightarrow \mathbb{C}^{2}$ such that I maps $\mathcal{U} \cap W^{2}=D_{1} \cup \mathbb{D}_{2}$ to $V_{1} \cup V_{2}$ where D_{1}, D_{2} are 2 -discs. The matrix

$$
A=\operatorname{diag}\left(e^{\frac{\pi i}{4}}, e^{\frac{\pi i}{4}}\right) \in \operatorname{Sp}(4)
$$

gives a symplectomorphism which maps V_{1} to \mathbb{R}^{2} and V_{2} to $i \mathbb{R}^{2}$. We perform Polterovich surgeries by attaching the Lagrangian handles $\Gamma_{2}, \tilde{\Gamma}_{2}$ joining \mathbb{R}^{2} and $i \mathbb{R}^{2}$ which are described in the proof of Proposition 4.2.1.

The Lagrangian handles $\Gamma_{2}, \tilde{\Gamma}_{2}$ are described by the generating functions $\pm F_{\epsilon}^{2}$. The differentials of $\pm F_{\epsilon}^{2}$ are explicitly calculated as follows:

$$
d\left(\pm F_{\epsilon}^{2}\right)= \pm d f_{\epsilon}\left(\left\|\left(x_{1}, x_{2}\right)\right\|\right)= \pm \frac{\psi_{\epsilon}\left(\left\|\left(x_{1}, x_{2}\right)\right\|\right)}{\left(\left\|\left(x_{1}, x_{2}\right)\right\|\right)}\left(x_{1} d x_{1}+x_{2} d x_{2}\right)
$$

If we let $\bar{x}=\left(x_{1}, x_{2}\right)$ then we have

$$
\begin{align*}
& \Gamma_{2} \cap \mathbb{D}_{\leq \epsilon}^{4}=\left\{\left.\left(x_{1}+i \frac{\psi_{\epsilon}(\|\bar{x}\|)}{(\|\bar{x}\|)} x_{1}, x_{2}+i \frac{\psi_{\epsilon}(\|\bar{x}\|)}{(\|\bar{x}\|)} x_{2}\right) \right\rvert\, \bar{x} \in \mathbb{R}^{2} \cap \mathbb{D}_{\leq \epsilon}^{2}\right\} \tag{4.6}\\
& \tilde{\Gamma}_{2} \cap \mathbb{D}_{\leq \epsilon}^{4}=\left\{\left.\left(x_{1}-i \frac{\psi_{\epsilon}(\|\bar{x}\|)}{(\|\bar{x}\|)} x_{1}, x_{2}-i \frac{\psi_{\epsilon}(\|\bar{x}\|)}{(\|\bar{x}\|)} x_{2}\right) \right\rvert\, \bar{x} \in \mathbb{R}^{2} \cap \mathbb{D}_{\leq \epsilon}^{2}\right\} . \tag{4.7}
\end{align*}
$$

In polar coordinates $x_{1}=r \cos \theta, x_{2}=r \sin \theta$, the sets 4.6 and 4.7 become

$$
\begin{align*}
& \Gamma_{2} \cap \mathbb{D}_{\leq \epsilon}^{4}=\left\{\left(\left(r+i \psi_{\epsilon}(r)\right) \cos \theta,\left(r+i \psi_{\epsilon}(r)\right) \sin \theta\right) \mid r \in[0, \epsilon], \theta \in[0,2 \pi]\right\} \tag{4.8}\\
& \tilde{\Gamma}_{2} \cap \mathbb{D}_{\leq \epsilon}^{4}=\left\{\left(\left(r-i \psi_{\epsilon}(r)\right) \cos \theta,\left(r-i \psi_{\epsilon}(r)\right) \sin \theta\right) \mid r \in[0, \epsilon], \theta \in[0,2 \pi]\right\} . \tag{4.9}
\end{align*}
$$

Comparing the formula 4.4 with the formulas 4.8 and 4.9 shows that two Lagrangian surgeries of W^{2} obtained by Lagrangian handles Γ_{2} and $\tilde{\Gamma}_{2}$ only affect the part $\sigma(\varphi)$ of the equations 5.1 and 5.2, in other words, two Lagrangian surgeries of W^{2} are obtained from two Lagrangian surgeries of W^{1} followed by a rotation.

The surgery obtained by Γ_{1} on W^{1} results in two disjoint embedded circles. Parametrize the piece lies in the right half plane by the embedded circle $\sigma_{1}: \mathbb{S}^{1} \rightarrow \mathbb{C}$, then $\sigma_{1} \cup-\sigma_{1}$ gives the union of these two embedded circles. Then the surgery of W^{2} obtained is

$$
\begin{aligned}
W_{1}^{2} & =\left\{\left(\left(\left(\sigma_{1} \cup-\sigma_{1}\right)(\varphi)\right) \cos \theta,\left(\left(\sigma_{1} \cup-\sigma_{1}\right)(\varphi)\right) \sin \theta\right) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\} \\
& =\left\{\left(\sigma_{1}(\varphi) \cos \theta, \sigma_{1}(\varphi) \sin \theta\right) \mid \varphi \in[0,2 \pi], \theta \in[0,2 \pi]\right\}
\end{aligned}
$$

Consider the Hamiltonian isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ given in Example 2.3.1
We have

$$
\Upsilon^{1}\left(W_{1}^{2}\right)=\left\{\left.\frac{1}{\sqrt{2}}\left(\sigma_{1}(\varphi) e^{i \theta}, \sigma_{1}(\varphi) e^{-i \theta}\right) \right\rvert\, \varphi \in[0,2 \pi], \theta \in[0,2 \pi]\right\}
$$

which is a Chekanov Torus.
The surgery obtained by $\tilde{\Gamma}_{1}$ on W^{1} results in an embedded circle whose interior contains the origin and let $\sigma_{2}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ be a parametrization for this embedded circle. Then the surgery of W^{2} obtained is

$$
W_{2}^{2}=\left\{\left(\sigma_{2}(\varphi) \cos \theta, \sigma_{2}(\varphi) \sin \theta\right) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\}
$$

Then there exists a Hamiltonian isotopy $\left\{\Phi^{t}: \mathbb{C} \rightarrow \mathbb{C}\right\}_{t \in[0,1]}$ which takes the image of $\sigma_{2}\left(\mathbb{S}^{1}\right)$ to the round circle given by $\tilde{\sigma}_{2}(\varphi)=r_{\sigma_{2}} e^{i \varphi}$ where $2 \pi r_{\sigma_{2}}^{2}$ is the area of the embedded disc by $\sigma_{2}\left(\mathbb{S}^{1}\right), \varphi \in[0,2 \pi]$ and $\Phi^{t}(0)=0$ for all $t \in[0,1]$. Consider the $\operatorname{map} \Psi: W_{2}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ given by

$$
\left(\sigma_{2}(\varphi) \cos \theta, \sigma_{2}(\varphi) \sin \theta, t\right) \mapsto\left(\Phi^{t}(\sigma(\varphi)) \cos \theta, \Phi^{t}(\sigma(\varphi)) \sin \theta\right) .
$$

The subset $\Psi^{t}\left(W_{2}^{2}\right)$ of \mathbb{C}^{2} is a torus since $\Phi^{t}\left(\sigma_{2}\left(\mathbb{S}^{1}\right)\right)$ does not pass through the origin of \mathbb{C} for all $t \in[0,1]$. Then the map $\Psi: W_{2}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ is a Lagrangian isotopy since $\Psi^{t}\left(W_{2}^{2}\right)$ is a Lagrangian for all $t \in[0,1]$. The following two embedded circles

$$
\begin{array}{ll}
\beta_{1}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}, & e^{i \varphi} \mapsto\left(\Phi^{t}(\sigma(\varphi)), \Phi^{t}(\sigma(\varphi))\right) \\
\beta_{2}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}, & e^{i \theta} \mapsto\left(\Phi^{t}(\sigma(0)) \cos \theta, \Phi^{t}(\sigma(0)) \sin \theta\right)
\end{array}
$$

lie on the $\Psi^{t}\left(W_{2}^{2}\right)$ and bound two embedded discs which correspond to the generators of $\pi_{2}\left(\mathbb{C}^{2}, \Psi^{t}\left(W_{2}^{2}\right)\right)$ for all $t \in[0,1]$. The discs bounded by $\beta_{1}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$
has the same area for all $t \in[0,1]$ since $\left\{\Phi^{t}: \mathbb{C} \rightarrow \mathbb{C}\right\}_{t \in[0,1]}$ is a Hamiltonian isotopy. The discs bounded by $\beta_{2}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ has zero area since the one-form $z_{1} d \bar{z}_{1}+z_{2} d \bar{z}_{2}$ vanishes on $\beta_{2}^{t}\left(\mathbb{S}^{1}\right)$. Hence by Proposition 2.3.3, the Lagrangian isotopy $\Psi: W_{2}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ is an exact Lagrangian isotopy and it can be extended to a Hamiltonian isotopy of \mathbb{C}^{2}. In other words, W_{2}^{2} is Hamiltonian isotopic to

$$
\tilde{W}^{2}=\left\{\left(r_{\sigma_{2}} e^{i \varphi} \cos \theta, r_{\sigma_{2}} e^{i \varphi} \sin \theta\right) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\}
$$

By the Hamiltonian isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ we have

$$
\Upsilon^{1}\left(\tilde{W}^{2}\right)=\left\{\left.\frac{r_{\sigma_{2}}}{\sqrt{2}}\left(e^{i(\varphi+\theta)}, e^{i(\varphi-\theta)}\right) \right\rvert\, \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\} .
$$

If we let $\varphi^{\prime}=\varphi+\theta$ and $\theta^{\prime}=\varphi-\theta$ then

$$
\Upsilon^{1}\left(\tilde{W}^{2}\right)=\left\{\left.\frac{r_{\sigma_{2}}}{\sqrt{2}}\left(e^{i \varphi^{\prime}}, e^{i \theta^{\prime}}\right) \right\rvert\,\left(\varphi^{\prime}, \theta^{\prime}\right) \in \mathcal{R} \subset \mathbb{R}^{2}\right\}
$$

where \mathcal{R} as in Figure 3.5. As a result we have

$$
\Upsilon^{1}\left(\tilde{W}^{2}\right)=\left\{\left.\frac{r_{\sigma_{2}}}{\sqrt{2}}\left(e^{i \varphi^{\prime}}, e^{i \theta^{\prime}}\right) \right\rvert\, \varphi^{\prime} \in[0,2 \pi], \theta^{\prime} \in[0,2 \pi]\right\}
$$

which is a Clifford torus.
Remark 4.3.2. A Lagrangian nodal sphere in \mathbb{C}^{2} can have only one self-intersection point. Otherwise, we could embed an orientable connected Lagrangian surface more of genus more than one.

Remark 4.3.3. The surgeries of A Lagrangian nodal sphere in \mathbb{C}^{2} are always positive. Otherwise, by performing negative Polterovich surgery one could obtain Lagrangian embedding of a Klein bottle into \mathbb{C}^{2} whose impossibility is proved in [22].

CHAPTER 5

THE METHOD OF INTEGRABLE HAMILTONIAN SYSTEMS

5.1 An Example of Integrable Hamiltonian Systems

An integrable Hamiltonian system is a pair which consists of a $2 n$-dimensional symplectic manifold (M, ω) and a set of real valued smooth functions $\left\{f_{1}, \ldots, f_{n}\right\}$ on M with properties:
i. The set differentials $\left\{d f_{1}, \ldots, d f_{n}\right\}$ are almost everywhere (except a set of zero measure) linearly independent on M,
ii. The set of Hamiltonian vector fields $\left\{X_{f_{j}} \mid \iota_{X_{j}} \omega=f_{j}, j=1, \ldots, n\right\}$ satisfies the equality $\omega\left(X_{f_{j}}, X_{f_{k}}\right)$ for all $j, k=1, \ldots, n$.

Proposition 5.1.1 ([2,4]). Let $\left(M, \omega,\left\{f_{1}, \ldots, f_{n}\right\}\right)$ be an integrable Hamiltonian system and $F: M \rightarrow \mathbb{R}^{n}$ be the smooth function given by $F=\left(f_{1}, \ldots, f_{n}\right)$. If $c \in \mathbb{R}^{n}$ is a regular value of $F: M \rightarrow \mathbb{R}^{n}$ then the fiber $F^{-1}(c)$ is a Lagrangian diffeomorphic to $\mathbb{T}^{k} \times \mathbb{R}^{n-k}$ and hence compact connected regular fibers are diffeomorphic to \mathbb{T}^{n}.

Consider the following functions :

$$
\begin{align*}
& G: \mathbb{R}^{4} \rightarrow \mathbb{R} \quad G\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=\left(p_{1}^{2}+p_{2}^{2}\right)-\left(q_{1}^{2}+q_{2}^{2}\right)+\left(q_{1}^{2}+q_{2}^{2}\right)^{2}, \tag{5.1}\\
& H: \mathbb{R}^{4} \rightarrow \mathbb{R} \quad H\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=p_{2} q_{1}-p_{1} q_{2} . \tag{5.2}
\end{align*}
$$

Proposition 5.1.2 ([28]). The triple $\left(\mathbb{R}^{4}, \omega_{0},\{G, H\}\right)$ is an integrable system.

Proof. The differentials of functions $G, H: \mathbb{R}^{4} \rightarrow \mathbb{R}$ are given by

$$
\begin{aligned}
& d G=2 q_{1}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right) d q_{1}+2 q_{2}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right) d q_{2}+2 p_{1} d p_{1}+2 p_{2} d p_{2} \\
& d H=p_{2} d q_{1}-p_{1} d q_{2}-q_{2} d p_{1}+q_{1} d p_{2} .
\end{aligned}
$$

The differentials $d G$ and $d H$ are linearly dependent if and only if one of the differentials $d G$ and $d H$ is 0 or $d H=\frac{\alpha}{2} d G$ for some non zero real number α.

The differential $d G=0$ if and only if $\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=(0,0,0,0)$ or $2 q_{1}^{2}+2 q_{2}^{2}=1$, $\left(p_{1}, p_{2}\right)=(0,0)$. The differential $d H=0$ if and only if $\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=(0,0,0,0)$. Now let $d H=\frac{\alpha}{2} d G$ for some non zero real number α. Then we get the equations

$$
p_{2}=\alpha q_{1}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right), p_{1}=-\alpha q_{2}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right), q_{2}=-\alpha p_{1}, q_{1}=\alpha p_{2} .
$$

These equations have the following solutions:
i. $p_{1} \neq 0, p_{2}= \pm \frac{\sqrt{-2 a^{4} p_{2}^{2}+\alpha^{2}+1}}{\sqrt{2} \alpha^{2}}, q_{1}=\alpha p_{2}, q_{2}=-\alpha p_{1}$
ii. $p_{1}=0, p_{2}= \pm \frac{\sqrt{\alpha^{2}+1}}{\sqrt{2} \alpha^{2}}, q_{1}=\alpha p_{2}, q_{2}=0$
iii. $\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=(0,0,0,0)$.

Each of these cases yields either an immersed or an embedded submanifolds of \mathbb{R}^{4} which has dimension ≤ 3. Hence, the set of points where $d G$ and $d H$ are linearly dependent is measure zero in \mathbb{R}^{4}.

Let

$$
\begin{gathered}
X_{H}=A_{H} \partial_{q_{1}}+B_{H} \partial_{q_{2}}+C_{H} \partial_{p_{1}}+D_{H} \partial_{p_{2}} \\
X_{G}=A_{G} \partial_{q_{1}}+B_{G} \partial_{q_{2}}+C_{G} \partial_{p_{1}}+D_{G} \partial_{p_{2}}
\end{gathered}
$$

be the vector fields such that $\iota_{X_{G}} \omega_{0}=d G$ and $\iota_{X_{H}} \omega_{0}=d H$. Then

$$
\begin{aligned}
\iota_{X_{H}} \omega_{0} & =\left(d q_{1} \wedge d p_{1}+d q_{2} \wedge d p_{2}\right)\left(X_{H}, \cdot\right) \\
& =d q_{1}\left(X_{H}\right) d p_{1}-d p_{1}\left(X_{H}\right) d q_{1}+d q_{2}\left(X_{H}\right) d p_{2}-d p_{2}\left(X_{H}\right) d q_{2} \\
& =A_{H} d p_{1}-C_{H} d q_{1}+B_{H} d p_{2}-D_{H} d q_{2}
\end{aligned}
$$

and similarly we have,

$$
\iota_{X_{G}} \omega_{0}=A_{G} d p_{1}-C_{G} d q_{1}+B_{G} d p_{2}-D_{G} d q_{2} .
$$

So

$$
\begin{aligned}
& X_{H}=-q_{2} \partial_{q_{1}}+q_{1} \partial_{q_{2}}-p_{2} \partial_{p_{1}}+p_{1} \partial_{p_{2}} \\
& X_{G}=2 p_{1} \partial_{q_{1}}+2 p_{2} \partial_{q_{2}}-2 q_{1}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right) \partial_{p_{1}}-2 q_{2}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right) \partial_{p_{2}} .
\end{aligned}
$$

As a result we have

$$
\begin{aligned}
\omega_{0}\left(X_{H}, X_{G}\right) & =d H\left(X_{G}\right)=-d G\left(X_{H}\right) \\
& =p_{2} 2 p_{1}-p_{1} 2 p_{2}+q_{2} 2 q_{1}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right)-q_{1} 2 q_{2}\left(2 q_{1}^{2}+2 q_{2}^{2}-1\right)=0
\end{aligned}
$$

5.2 Lagrangian Perturbations through the Hamiltonian System

Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the function defined by $F=(G, H)$ where $G, H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the functions given by the formulas 5.1 and 5.2 . Define the following subset of \mathbb{R}^{2} :

$$
\begin{equation*}
\mathcal{B}_{F}=\left\{\left.\left(a, \pm \frac{1}{3 \sqrt{3}}(1+6 a+\sqrt{1+3 a})(1+\sqrt{1+3 a})\right) \in \mathbb{R}^{2} \right\rvert\, a \geq-\frac{1}{4}\right\} \tag{5.3}
\end{equation*}
$$

Theorem 5.2.1. Range of the function $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is the region in \mathbb{R}^{2} bounded by \mathcal{B}_{F} and containing origin. The set of critical values of $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is the set $\mathcal{B}_{F} \cup\{(0,0)\}$.

Proof. If we use polar coordinates

$$
\begin{array}{lll}
p_{1}=r_{p} \cos \theta_{p} & p_{2}=r_{p} \sin \theta_{p} & r_{p} \geq 0, \theta_{p} \in[0,2 \pi] \\
q_{1}=r_{q} \cos \theta_{q} & q_{2}=r_{q} \sin \theta_{q} & r_{q} \geq 0, \theta_{p} \in[0,2 \pi] \tag{5.5}
\end{array}
$$

then we have $G=r_{p}^{2}-r_{q}^{2}+r_{q}^{4}$ and $H=r_{p} r_{q} \sin \left(\theta_{p}-\theta_{q}\right)$. We see that H satisfies the inequality $-\left|r_{p} r_{q}\right| \leq H \leq\left|r_{p} r_{q}\right|$ and it takes every value in this interval and it achieves the boundary values when we have $\sin \left(\theta_{p}-\theta_{q}\right)= \pm 1$. If we let $G=a$, then we have $r_{p}^{2}=r_{q}^{2}-r_{q}^{4}+a$ and as a result $H^{2}=\left(r_{q}^{2}-r_{q}^{4}+a\right) r_{q}^{2} \sin ^{2}\left(\theta_{p}-\theta_{q}\right)$. If we maximize the function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ given by $h\left(r_{q}\right)=\left(r_{q}^{2}-r_{q}^{4}+a\right) r_{q}^{2}$ we see that it gets its maximum value $\frac{1}{27}(1+6 a+\sqrt{1+3 a})(1+\sqrt{1+3 a})$ at $r_{q}=\frac{\sqrt{1+\sqrt{1+3 a}}}{\sqrt{3}}$. When $G=a$ and $r_{q}=\frac{\sqrt{1+\sqrt{1+3 a}}}{\sqrt{3}}$, we have $r_{p}=\frac{1}{3} \sqrt{1+6 a+\sqrt{1+3 a}}$. Hence H has its maximum $M_{a}=\frac{1}{3 \sqrt{3}}(1+6 a+\sqrt{1+3 a})(1+\sqrt{1+3 a})$ and minimum $-M_{a}=-\frac{1}{3 \sqrt{3}}(1+6 a+\sqrt{1+3 a})(1+\sqrt{1+3 a})$ when $G=a$. This proves the first assertion of the theorem.

Figure 5.1: Sketch of range of the function $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$.

Critical points of F are the points where the differential $d F$ has rank <2. In the proof of Proposition5.1.2, we found the points where the differentials $d G$ and $d H$ are linearly dependent. These are exactly the critical points of F. When inserted in F we see that set of critical values of F is

$$
\left\{\left.\left(\frac{3+2 \alpha^{2}-\alpha^{4}}{4 \alpha^{4}}, \frac{\alpha^{2}+1}{2 \alpha^{3}}\right) \in \mathbb{R}^{2} \right\rvert\, \alpha \in \mathbb{R} \backslash\{0\}\right\} \cup\left\{(0,0),\left(-\frac{1}{4}, 0\right)\right\} .
$$

If we let $a=\frac{3+2 \alpha^{2}-\alpha^{4}}{4 \alpha^{4}}$ then we get $M_{a}=\frac{\alpha^{2}+1}{2 \alpha^{3}}$ when $\alpha>0$ and $M_{a}=-\frac{\alpha^{2}+1}{2 \alpha^{3}}$ when $\alpha<0$. If we let $a=-\frac{1}{4}$ then $M_{-\frac{1}{4}}=0$. Hence the set of critical values of F is the set $\mathcal{B}_{F} \cup\{(0,0)\}$ which proves the second assertion of the theorem.

Proposition 5.2.2 ([|28]). If $(a, b) \in \mathbb{R}^{2}$ lies in the image of F then the fibers $F^{-1}(a, b)$ is
i. A circle if $(a, b) \in \mathcal{B}_{F}$,
ii. A Chekanov torus if $-\frac{1}{4}<a<0$ and $b=0$,
iii. The immersed Lagrangian sphere W^{2} if $(a, b)=(0,0)$,
iv. A Clifford Torus if $a>0$ and $b=0$,
v. A non-monotone Lagrangian torus if otherwise.

Proposition5.2.2 has two immediate important corollaries:
Theorem 5.2.3 ([28]). There exist Lagrangian perturbations of the Lagrangian nodal sphere $W^{2}=F^{-1}(0,0)$, which are Clifford and Chekanov tori.

Proof. If we perturb the Lagrangian nodal sphere $W^{2}=F^{-1}(0,0)$ as $F^{-1}(\epsilon, 0)$, then we get a Clifford torus when $\epsilon>0$ and a Chekanov torus when $\epsilon<0$ for sufficiently small ϵ.

Theorem 5.2.4 ([|28]). Chekanov and Clifford tori are Lagrangian isotopic.

Proof. Let $F^{-1}\left(a_{1}, 0\right)$ be a Clifford torus and $F^{-1}\left(a_{2}, 0\right)$ be a Chekanov torus. Let $\beta:[0,1] \rightarrow \mathbb{R}^{2}$ any path in the range of F connecting a_{1} to a_{2} and not passing through the origin. Then $\left\{F^{-1}(\beta(t))\right\}_{t \in[0,1]}$ induces a Lagrangian isotopy connecting the tori $F^{-1}\left(a_{1}, 0\right)$ and $F^{-1}\left(a_{2}, 0\right)$.

Lemma 5.2.5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function given by $f(q, p)=p^{2}-q^{2}+q^{4}$. The level set $f^{-1}(a)$ of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is :
i. Union of the two points $\left(\pm \frac{1}{\sqrt{2}}, 0\right)$ if $a=-\frac{1}{4}$,
ii. Union of two embedded circles if $-\frac{1}{4}<a<0$,
iii. Immersed circle W^{1} if $a=0$,
iv. An embedded circle containing origin if $a>0$.

Proof. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function given by $g(\tilde{q}, \tilde{p})=\tilde{p}^{2}-\tilde{q}+\tilde{q}^{2}$. Then we have $g(\tilde{q}, \tilde{p})=\tilde{p}^{2}-\left(\tilde{q}-\frac{1}{2}\right)^{2}-\frac{1}{4}$ and $f(q, p)=g\left(q^{2}, p\right)$. Then a point $\left(q_{0}, p_{0}\right)$ is in the level set $f^{-1}(a)$ if and only if the point $\left(q_{0}^{2}, p_{0}\right)$ is in the set $g^{-1}(a) \cap\{(\tilde{q}, \tilde{p}) \mid \tilde{q} \geq 0\} \subseteq \mathbb{R}^{2}$.

Figure 5.2: The sets $g^{-1}(a) \cap\{(\tilde{q}, \tilde{p}) \mid \tilde{q} \geq 0\}$ and $f^{-1}(a)$ for different a values.

The values of the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are greater than equal to $-\frac{1}{4}$. If $a \in\left[-\frac{1}{4}, \infty\right)$, then the set $g^{-1}(a) \cap\{(\tilde{q}, \tilde{p}) \mid \tilde{q} \geq 0\} \subseteq \mathbb{R}^{2}$ is
i. The point $\left(\frac{1}{2}, 0\right)$ if $a=-\frac{1}{4}$,
ii. The round circle centered at $\left(\frac{1}{2}, 0\right)$ of radius $\sqrt{a+\frac{1}{4}}$ if $-\frac{1}{4}<a<0$,
iii. The round circle centered at $\left(\frac{1}{2}, 0\right)$ passing from $(0,0)$ if $a=0$,
iv. The segment of the round circle centered at $\left(\frac{1}{2}, 0\right)$ of radius $\sqrt{a+\frac{1}{4}}$ if $a>0$.

This proves the lemma except that the immersed circle in Lemma 5.2 (iii) is W^{1}. If we let $a=0$ and $q=\sin \varphi, \varphi \in[0,2 \pi]$, then we have $0=p^{2}-q^{2}+q^{4}=p^{2}-$ $\sin ^{2} \varphi+\sin ^{4} \varphi=p^{2}-\frac{1}{4} \sin ^{2} 2 \varphi$ which is equivalent to $p= \pm \frac{1}{2} \sin 2 \varphi, \varphi \in[0,2 \pi]$. Each case gives a parametrization of W^{1} in \mathbb{R}^{2}, see 4.1.

Remark 5.2.6. We have $G\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=f\left(\sqrt{q_{1}^{2}+q_{2}^{2}}, \sqrt{p_{1}^{2}+p_{2}^{2}}\right)$ or in polar coordinates 5.4 and 5.5 we have $G\left(q_{1}, p_{1}, q_{2}, p_{2}\right)=f\left(r_{q}, r_{p}\right)$ for the function $G: \mathbb{R}^{4} \rightarrow$ \mathbb{R} given by 5.1 .

Proof of Proposition 5.2.2. In polar coordinates 5.4 and 5.5, we have $G=r_{p}^{2}-r_{q}^{2}+$ $r_{q}^{4}, H=r_{p} r_{q} \sin \left(\theta_{p}-\theta_{q}\right)$. By the Remark 5.2.6 the fiber $F^{-1}(a, b)$ is given by

$$
\begin{equation*}
\left\{\left(r_{q} \cos \theta_{q}, r_{p} \cos \theta_{p}, r_{q} \sin \theta_{q}, r_{p} \sin \theta_{p}\right) \mid f\left(r_{q}, r_{p}\right)=a, r_{p} r_{q} \sin \left(\theta_{p}-\theta_{q}\right)=b\right\} \tag{5.6}
\end{equation*}
$$

i. Let $(a, b) \in \mathcal{B}_{F}$. Then $b= \pm M_{a}$ where M_{a} is given in the proof of Theorem 5.2.1.

In the case $(a, b)=\left(-\frac{1}{4}, 0\right)$ we have $r_{p}=0, r_{q}=\frac{1}{\sqrt{2}}$ and the fiber is $F^{-1}\left(-\frac{1}{4}, 0\right)=\left\{\left.\frac{1}{\sqrt{2}}\left(\cos \theta_{q}, 0, \sin \theta_{q}, 0\right) \in \mathbb{R}^{4} \right\rvert\, \theta_{q} \in[0,2 \pi]\right\}$ is a circle.
In the case $(a, b) \neq\left(-\frac{1}{4}, 0\right)$, we have

$$
\begin{aligned}
& \left(r_{q}, r_{p}\right)=\left(\frac{\sqrt{1+\sqrt{1+3 a}}}{\sqrt{3}}, \frac{1}{3} \sqrt{1+6 a+\sqrt{1+3 a}}\right), \theta_{p}=\theta_{q}+\frac{\pi}{2} \text { if } b=M_{a} \\
& \left(r_{q}, r_{p}\right)=\left(\frac{\sqrt{1+\sqrt{1+3 a}}}{\sqrt{3}}, \frac{1}{3} \sqrt{1+6 a+\sqrt{1+3 a}}\right), \theta_{p}=\theta_{q}+\frac{\pi}{2} \text { if } b=-M_{a}
\end{aligned}
$$

for the fibers $F^{-1}(a, b)$ by proof of Theorem 5.2.1. As a result the fiber $F^{-1}(a, b)$ is again a circle.

For the fibers $F^{-1}(a, 0)$ in (ii-iv), we have $\left(r_{q}, r_{p}\right) \in f^{-1}(a) \cap\{(q, p) \mid q, p \geq 0\}$ and θ_{p} is equal to θ_{q} or $\theta_{q}+\pi$.

Figure 5.3: The sets $f^{-1}(a) \cap\{(q, p) \mid q, p \geq 0\}$.

By Lemma 5.2, the values $\left(r_{q}, r_{p}\right)$ can take have graphs like in the Figure 5.3 where $a=0$ case is one-fourth of the immersed circle W^{1}. If we parametrize these curves by $\gamma^{a}:[0,1] \rightarrow \mathbb{C}$ where $\gamma^{a}=\left(\gamma_{1}^{a}, \gamma_{2}^{a}\right)$, then the fibers $F^{-1}(a, 0)$ is the union of the following subsets of \mathbb{R}^{4}
$\left\{\left(\gamma_{1}^{a}(s) \cos \theta_{q}, \pm \gamma_{2}^{a}(s) \cos \theta_{q}, \gamma_{1}(s)^{a} \sin \theta_{q}, \pm \gamma_{2}^{a}(s) \sin \theta_{q}\right) \mid s \in[0,1], \theta_{q} \in[0,2 \pi]\right\}$. In \mathbb{C}^{2}, these sets are given by

$$
\left\{\left(\left(\gamma_{1}^{a}(s) \pm i \gamma_{2}^{a}(s)\right) \cos \theta_{q},\left(\gamma_{1}^{a}(s) \pm i \gamma_{2}^{a}(s)\right) \sin \theta_{q}\right) \mid s \in[0,1], \theta_{q} \in[0,2 \pi]\right\}
$$

Figure 5.4: The sets $\left\{\gamma_{1}^{a}(s) \pm i \gamma_{2}^{a}(s) \mid s \in[0,1]\right\}$.
ii. If $-\frac{1}{4}<a<0$ and $b=0$ then union of the sets $\left\{\gamma_{1}^{a}(s) \pm i \gamma_{2}^{a}(s) \mid s \in[0,1]\right\}$ is an embedded circle which lies in the right half plane as in the Figure 5.4 If we parametrize this embedded circle by a map $\sigma^{a}: \mathbb{S}^{1} \rightarrow \mathbb{C}$, then the fiber $F^{-1}(a, 0)$ is given by

$$
\left\{\left(\sigma^{a}(\varphi) \cos \theta_{q}, \sigma^{a}(\varphi) \sin \theta_{q}\right) \mid \varphi, \theta_{q} \in[0,2 \pi]\right\}
$$

Consider the Hamiltonian isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ given by Example
2.3.1. We have

$$
\Upsilon^{1}\left(F^{-1}(a, 0)\right)=\left\{\left.\frac{1}{\sqrt{2}}\left(\sigma^{a}(\varphi) e^{i \theta}, \sigma^{a}(\varphi) e^{-i \theta}\right) \right\rvert\, \varphi \in[0,2 \pi], \theta \in[0,2 \pi]\right\}
$$

which is a Chekanov Torus.
iii. If $(a, b)=(0,0)$ then union of the sets $\left\{\gamma_{1}^{a}(s) \pm i \gamma_{2}^{a}(s) \mid s \in[0,1]\right\}$ is right half of the immersed circle W^{1} as in the Figure 5.4. If we parametrize it by $\sigma:[0,1] \rightarrow \mathbb{C}$ where $\sigma(0)=\sigma(1)=0 \in \mathbb{C}$, then the fiber $F^{-1}(0,0)$ is given by

$$
\begin{align*}
F^{-1}(0,0) & =\left\{\left(\sigma(s) \cos \theta_{q}, \sigma(s) \sin \theta_{q}\right) \mid s \in[0,1], \theta_{q} \in[0,2 \pi]\right\} \tag{5.7}\\
& =\left\{\left(\tilde{\sigma}(s) \cos \theta_{q}, \tilde{\sigma}(s) \sin \theta_{q}\right) \mid s \in[0,1], \theta_{q} \in[0, \pi]\right\} \tag{5.8}
\end{align*}
$$

where $\tilde{\sigma}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ is the concatenation of the maps $\sigma,-\sigma:[0,1] \rightarrow \mathbb{C}$. Then $\tilde{\sigma}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ traces the immersed circle W^{1}. Hence it can be parametrized by a map $\sigma^{0}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ where $\sigma^{0}(\varphi)=\sin \varphi+\frac{i}{2} \sin 2 \varphi$. Then $F^{-1}(0,0)$ is given by

$$
\left\{\left.\left(\left(\sin \varphi+\frac{i}{2} \sin 2 \varphi\right) \cos \theta,\left(\sin \varphi+\frac{i}{2} \sin 2 \varphi\right) \sin \theta\right) \right\rvert\, \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\}
$$

which is Lagrangian nodal sphere W^{2}.
iv. If $a>0$ and $b=0$ then by similar arguments as in part (ii) of the proof, we see that the fiber $F^{-1}(a, 0)$ is given by

$$
\begin{equation*}
\left\{\left(\sigma^{a}(s) \cos \theta_{q}, \sigma^{a}(s) \sin \theta_{q}\right) \mid s \in[0,1], \theta_{q} \in[0,2 \pi]\right\} \tag{5.9}
\end{equation*}
$$

where $\sigma^{a}:[0,1] \rightarrow \mathbb{C}$ is a parametrization of the right half of the embedded circle $f^{-1}(a)$ given in the Figure 5.4. The set given by equation 5.9 is equal to

$$
\begin{equation*}
\left\{\left(\tilde{\sigma}^{a}(\varphi) \cos \theta_{q}, \tilde{\sigma}^{a}(\varphi) \sin \theta_{q}\right) \mid \varphi \in[0,2 \pi], \theta_{q} \in[0, \pi]\right\} \tag{5.10}
\end{equation*}
$$

where $\tilde{\sigma}^{a}: \mathbb{S}^{1} \rightarrow \mathbb{C}$ is a parametrization of the circle $\sigma^{a} \cup-\sigma^{a}$. There exists a Hamiltonian isotopy $\left\{\Phi^{t}: \mathbb{C} \rightarrow \mathbb{C}\right\}_{t \in[0,1]}$ which takes the image of $\tilde{\sigma}^{a}\left(\mathbb{S}^{1}\right)$ to the round circle given by $\tilde{\sigma}_{2}^{a}(\varphi)=r_{a} e^{i \varphi}$ where $\varphi \in[0,2 \pi]$ and $\Phi^{t}(0)=0$ for all $t \in[0,1]$. Consider the map $\Psi: F^{-1}(a, 0) \times[0,1] \rightarrow \mathbb{C}^{2}$ given by $\left.\left.\left(\tilde{\sigma}^{a} \varphi\right) \cos \theta, \tilde{\sigma}^{a}(\varphi) \sin \theta, t\right) \mapsto\left(\Phi^{t}\left(\tilde{\sigma}^{a} \varphi\right)\right) \cos \theta, \Phi^{t}\left(\tilde{\sigma}^{a}(\varphi)\right) \sin \theta\right)$
The subset $\Psi^{t}\left(F^{-1}(a, 0)\right)$ of \mathbb{C}^{2} is a torus since $\Phi^{t}\left(\tilde{\sigma}^{a}\left(\mathbb{S}^{1}\right)\right)$ does not pass through the origin of \mathbb{C} for all $t \in[0,1]$. The map $\Psi: F^{-1}(a, 0) \times[0,1] \rightarrow \mathbb{C}^{2}$
is a Lagrangian isotopy since $\Psi^{t}\left(F^{-1}(a, 0)\right)$ is a Lagrangian for all $t \in[0,1]$. The following two embedded circles

$$
\begin{array}{ll}
\beta_{1}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}, & e^{i \varphi} \mapsto\left(\Phi^{t}\left(\tilde{\sigma}^{a}(\varphi)\right), \Phi^{t}\left(\tilde{\sigma}^{a}(\varphi)\right)\right) \\
\beta_{2}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}, & e^{i \theta} \mapsto\left(\Phi^{t}\left(\tilde{\sigma}^{a}(0)\right) \cos \theta, \Phi^{t}\left(\tilde{\sigma}^{a}(0)\right) \sin \theta\right)
\end{array}
$$

lie on the $\Psi^{t}\left(F^{-1}(a, 0)\right)$ and bound two embedded discs which correspond to the generators of $\pi_{2}\left(\mathbb{C}^{2}, \Psi^{t}\left(F^{-1}(a, 0)\right)\right)$ for all $t \in[0,1]$. The discs bounded by $\beta_{1}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ has the same area for all $t \in[0,1]$ since $\left\{\Phi^{t}: \mathbb{C} \rightarrow\right.$ $\mathbb{C}\}_{t \in[0,1]}$ is a Hamiltonian isotopy. The discs bounded by $\beta_{2}^{t}: \mathbb{S}^{1} \rightarrow \mathbb{C}^{2}$ has zero area since the one-form $z_{1} d \bar{z}_{1}+z_{2} d \bar{z}_{2}$ vanishes on $\beta_{2}^{t}\left(\mathbb{S}^{1}\right)$. Hence by Proposition 2.3.3, the Lagrangian isotopy $\Psi: F^{-1}(a, 0) \times[0,1] \rightarrow \mathbb{C}^{2}$ is an exact Lagrangian isotopy and it can be extended to a Hamiltonian isotopy of \mathbb{C}^{2}. In other words, W_{2}^{2} is Hamiltonian isotopic to

$$
\mathbb{T}_{a}^{2}=\left\{\left(r_{a} e^{i \varphi} \cos \theta, r_{a} e^{i \varphi} \sin \theta\right) \mid \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\}
$$

By the Hamiltonian isotopy $\Upsilon: \mathbb{C}^{2} \times[0,1] \rightarrow \mathbb{C}^{2}$ given in the Example 2.3.1 we have

$$
\Upsilon^{1}\left(\mathbb{T}_{a}^{2}\right)=\left\{\left.\frac{r_{a}}{\sqrt{2}}\left(e^{i(\varphi+\theta)}, e^{i(\varphi-\theta)}\right) \right\rvert\, \varphi \in[0,2 \pi], \theta \in[0, \pi]\right\} .
$$

If we let $\varphi^{\prime}=\varphi+\theta$ and $\theta^{\prime}=\varphi-\theta$ then

$$
\Upsilon^{1}\left(\mathbb{T}_{a}^{2}\right)=\left\{\left.\frac{r_{a}}{\sqrt{2}}\left(e^{i \varphi^{\prime}}, e^{i \theta^{\prime}}\right) \right\rvert\,\left(\varphi^{\prime}, \theta^{\prime}\right) \in \mathcal{R} \subset \mathbb{R}^{2}\right\}
$$

where \mathcal{R} as in Figure 3.5. As a result we have

$$
\Upsilon^{1}\left(\mathbb{T}_{a}^{2}\right)=\left\{\left.\frac{r_{a}}{\sqrt{2}}\left(e^{i \varphi^{\prime}}, e^{i \theta^{\prime}}\right) \right\rvert\, \varphi^{\prime} \in[0,2 \pi], \theta^{\prime} \in[0,2 \pi]\right\}
$$

which is a Clifford torus.
v. Let (a, b) in the interior of the image of F and $(a, b) \neq(0,0)$. Without loss of generality assume $b>0$. We have $r_{p} r_{q} \sin \left(\theta_{p}-\theta_{q}\right)=b$. This implies that $r_{p} r_{q} \geq b$. By Lemma 5.2, the values $\left(r_{q}, r_{p}\right)$ can take lie on graphs like in the Figure 5.3 and satisfies $r_{p} r_{q} \geq b$. If we parametrize these curves by $\gamma^{a}:[0,1] \rightarrow \mathbb{C}$ where $\gamma^{a}=\left(\gamma_{1}^{a}, \gamma_{2}^{a}\right)$, then the points $\left(q_{1}, p_{1}, q_{2}, p_{2}\right)$ on the
fiber $F^{-1}(a, b)$ is given by

$$
\begin{align*}
& q_{1}=\gamma_{1}^{a}(s) \cos \theta_{q} \tag{5.11}\\
& p_{1}=\gamma_{2}^{a}(s) \cos \left(\theta_{q}+\theta_{0}(s)\right) \text { or }-\gamma_{2}^{a}(s) \cos \left(\theta_{q}-\theta_{0}(s)\right) \tag{5.12}\\
& q_{2}=\gamma_{1}^{a}(s) \sin \theta_{q} \tag{5.13}\\
& p_{2}=\gamma_{2}^{a}(s) \sin \left(\theta_{q}+\theta_{0}(s)\right) \text { or }-\gamma_{2}^{a}(s) \sin \left(\theta_{q}-\theta_{0}(s)\right) \tag{5.14}
\end{align*}
$$

where $s \in[0,1], \theta_{q} \in[0,2 \pi]$ and $\theta_{0}(s)=\arcsin \left(\frac{b}{\gamma_{1}^{a}(s) \gamma_{2}^{a}(s)}\right)$. If we identify \mathbb{C}^{2} with \mathbb{R}^{4} then we have

$$
\begin{align*}
& z_{1}=\gamma_{1}^{a}(s) \cos \theta_{q} \pm i \gamma_{2}^{a}(s) \cos \left(\theta_{q} \pm \theta_{0}(s)\right) \tag{5.15}\\
& z_{2}=\gamma_{1}^{a}(s) \sin \theta_{q} \pm i \gamma_{2}^{a}(s) \sin \left(\theta_{q} \pm \theta_{0}(s)\right) \tag{5.16}
\end{align*}
$$

where $s \in[0,1], \theta_{q} \in[0,2 \pi]$ and $\theta_{0}(s)=\arcsin \left(\frac{b}{\gamma_{1}^{a}(s) \gamma_{2}^{a}(s)}\right)$. This shows that the fiber $F^{-1}(a, b)$ is compact, since every function in the expressions 5.15 and 5.16 is smooth and the domain is compact. When $s=0$, we have $\theta_{0}(0)=\frac{\pi}{2}$ since $\gamma_{1}^{a}(0) \gamma_{2}^{a}(0)=b$. So the expressions 5.15 and 5.16 become $z_{1}=\gamma_{1}^{a}(0)$ and $z_{2}=i \gamma_{2}^{a}(0)$. This shows that the fiber $F^{-1}(a, b)$ is connected since it is union of two connected spaces with non-empty intersection. Then by the Proposition 5.2.2 $F^{-1}(a, b)$ is a Lagrangian torus.
Consider the loop $\beta:[0,2 \pi] \rightarrow \mathbb{C}^{2}$ on $F^{-1}(a, b)$ which is given by

$$
z_{1}=\gamma_{1}^{a}(0) \cos \theta_{q}-i \gamma_{2}^{a}(0) \sin \theta_{q} \text { and } z_{2}=\gamma_{1}^{a}(0) \sin \theta_{q}+i \gamma_{2}^{a}(0) \cos \theta_{q}
$$

where $\theta_{q} \in[0,2 \pi]$. The one-form $\frac{i}{2}\left(z_{1} d \bar{z}_{1}+z_{2} d \bar{z}_{2}\right)$ is equal to the one-form $-\gamma_{1}^{a}(0) \gamma_{2}^{a}(0) d \theta_{q}=-b d \theta_{q}$ on the loop $\beta:[0,2 \pi] \rightarrow \mathbb{C}^{2}$. This show that a disc bounded by β has area $2 \pi b$. For each value of θ_{q} we have a unitary matrix $A_{\theta_{q}}$ associated to tangent plane of $F^{-1}(a, b)$ and given by

$$
\begin{equation*}
A_{\theta_{q}}=\operatorname{diag}\left(-\sin \theta_{q}-i \cos \theta_{q}, \cos \theta_{q}-i \sin \theta_{q}\right) \tag{5.17}
\end{equation*}
$$

$\operatorname{det}_{\mathbb{C}}^{2} A_{\theta_{q}}=1$. Hence the map from \mathbb{S}^{1} to \mathbb{S}^{1} defined by $A_{\theta_{q}}$ is constant and its degree is zero. As a result, Maslov class of a disc bounded by $\beta:[0,2 \pi] \rightarrow \mathbb{C}^{2}$ is zero. This proves that $F^{-1}(a, b)$ is non-monotone.

REFERENCES

[1] M. Akveld and D. Salamon. Loops of Lagrangian submanifolds and pseudoholomorphic discs. Geometric and Functional Analysis, 11(4):609-650, 2001.
[2] V. I. Arnold. On a theorem of Liouville concerning integrable problems of dynamics. Siberian Mathematics Journal, 4(2), 1963.
[3] V. I. Arnold. Characteristic class entering in quantization conditions. Funct. Anal. App. 1, pages 1-13, 1967.
[4] V. I. Arnold. Mathematical methods of classical mechanics. Graduate Texts in Mathematics 60. Springer-Verlag, 1978.
[5] M. Audin. Quelques remarques sur les surfaces lagrangiennes de givental. Journal of Geometry and Physics, 7(4):583-598, 1990.
[6] D. Auroux. Infinitely many monotone Lagrangian tori in \mathbb{R}^{6}. Inventiones mathematicae, 201(3):909-924, 2015.
[7] Y. V. Chekanov. Lagrangian tori in a symplectic vector space and global symplectomorhisms. Mathematische Zeitschrift, 223(1):547-559, 1996.
[8] Y. V. Chekanov and F. Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 17:104-121, 2010.
[9] A. C. da Silva. Lectures on Symplectic Geometry. 2008.
[10] M. de Gosson. Symplectic Geometry and Quantum Mechanics, volume 166 of Operator Theory Advances and Applications. Birkhäuser Verlag, 2006.
[11] Y. Eliashberg and L. Polterovich. The problem of Lagrangian knots in fourmanifolds. volume 2, pages 313-327, 1996.
[12] A. Gadbled. On exotic monotone Lagrangian tori in $\mathbb{C P}^{2}$ and $\mathbb{S}^{2} \times \mathbb{S}^{2}$. Journal of Symplectic Geometry, 11(3):343-361, 2013.
[13] M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. Inventiones mathematicae, 82(2):307-347, 1985.
[14] F. Lalonde and J.-C. Sikorav. Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents. Commentarii Mathematici Helvetici, 66(1):1833, 1991.
[15] D. McDuff and D. Salamon. J-holomorphic curves and symplectic topology, volume 52. American Mathematical Soc., 2012.
[16] D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford University Press, 2017.
[17] Y.-G. Oh. Floer cohomology of Lagrangian intersections and pseudoholomorphic disks I. Communications on Pure and Applied Mathematics, 46(7):949-993, 1993.
[18] Y.-G. Oh. Symplectic topology and Floer homology, volume 1. Cambridge University Press, 2015.
[19] L. Polterovich. The surgery of Lagrange submanifolds. Geometric and Functional Analysis, 1(2):198-210, 1991.
[20] L. Polterovich. The geometry of the group of symplectic diffeomorphism. Birkhäuser, 2012.
[21] G. Dimitrioglou Rizell, E. Goodman, and A. Ivrii. Lagrangian isotopy of tori in $\mathbb{S}^{2} \times \mathbb{S}^{2}$ and $\mathbb{C P}^{2}$. Geometric and Functional Analysis, 26(5):1297-1358, 2016.
[22] V. V. Shevchishin. Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups. Izvestiya: Mathematics, 73(4):797, 2009.
[23] U. Varolgunes. On the euqatorial Dehn twist of a lagrangian nodal sphere. In Proceedings of 23rd Gokova Geometry-Topology Conference, 2016.
[24] R. Vianna. Infinitely many exotic monotone Lagrangian tori in $\mathbb{C P}^{2}$. arXiv preprint arXiv:1409.2850, 2014.
[25] R. Vianna. On exotic Lagrangian tori in $\mathbb{C P}^{2}$. Geom. Topol, 18(4):2419-2476, 2014.
[26] R. Vianna. Infinitely many monotone Lagrangian tori in del pezzo surfaces. Selecta Mathematica, 23(3):1955-1996, 2017.
[27] H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Annals of Mathematics, 35(2), 1944.
[28] M.-L. Yau. Surgery and invariants of Lagrangian surfaces. arXiv preprint arXiv:1306.5304, 2013.

