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ABSTRACT

LAGRANGIAN PERTURBATIONS OF LAGRANGIAN NODAL SPHERES
IN THE COMPLEX PLANE

Genlik, Deniz
M.S., Department of Mathematics

Supervisor : Prof. Dr. Sergey Finashin

July 2018, 44 pages

Classification of monotone Lagrangian tori in C2 up to Hamiltonian isotopy and
rescaling is still an open problem and the only classes of such tori that are currently
known are Clifford and Chekanov tori. In this thesis, we analyze how these two
classes of tori can be obtained by Lagrangian perturbations of a Lagrangian nodal
sphere in C2.

Keywords: Chekanov torus, Clifford torus, Whitney immersion, Lagrangian nodal
spheres, Lagrangian perturbations
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ÖZ

KARMAŞIK DÜZLEMDEKİ LAGRANJİYEN BOĞUMSAL KÜRELERİN
LAGRANJİYEN TEDİRGEMELERİ

Genlik, Deniz
Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Sergey Finashin

Temmuz 2018, 44 sayfa

Karmaşık C2 düzlemindeki tekdüze Lagranjiyen simitlerin Hamiltoniyen izotopi ve
yeniden ölçeklendirme altında sınıflandırılması hâlâ açık bir problemdir. Clifford
ve Chekanov simitleri bu sınıflandırılma altında bilinen tek simitlerdir. Bu tezde,
Clifford ve Chekanov simitlerinin karmaşık C2 düzlemindeki bazı Lagranjiyen bo-
ğumsal kürelerin Lagranjiyen tedirgemeleri ile elde edilmesi incelenecektir.

Anahtar Kelimeler: Chekanov simidi, Clifford simidi, Whitney daldırması, Lagran-
jiyen boğumsal küreler, Lagranjiyen tedirgemeler
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CHAPTER 1

INTRODUCTION

1.1 The Subject of the Thesis

It is well-known and trivial fact that a closed orientable Lagrangian submanifold in

Cn must have zero Euler characteristic and in particular orientable closed connected

Lagrangian surfaces in C2 are tori. All Lagrangian tori in C2 are Lagrangian isotopic

but not Hamiltonian isotopic [21]. In addition to Hamiltonian isotopy if we allow

rescaling and consider the only monotone Lagrangian tori in C2, there exist two

known classes of such tori. One class consists of Clifford tori and the other one

consists of Chekanov tori. It is still unknown if there are other classes besides these

two.

Problem. (Chekanov) Is it true that a monotone Lagrangian torus in C2 is either a

Clifford torus or a Chekanov torus?

A key observation motivating our research is existence of two essentially different

local models of Lagrangian perturbations of a Lagrangian nodal singularity. Exis-

tence of such perturbations shows that a Lagrangian nodal sphere in C2 must have

only one self-intersection point. Furthermore, for a Lagrangian nodal sphere in C2,

one of such perturbations gives a Clifford torus and another gives a Chekanov torus

Our aim in this research is to give explicit descriptions of how the Clifford and

Chekanov tori can be obtained by Lagrangian perturbations of certain Lagrangian

nodal spheres in C2.
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1.2 History and Motivation

Exactness is a very effective condition for a Lagrangian submanifold. However, M.

Gromov proved that there is no closed exact Lagrangian submanifold in Cn. For La-

grangian submanifolds, the concept of monotonicity is a generalization of exactness

and it is introduced by Y.-G. Oh in [17]. Monotone Lagrangian submanifolds play

important role in the recent technologies developed in symplectic topoloy, such as,

Floer homology, pearl homology, symplectic quasi-states, Fukaya categories etc. By

using examples of monotone Lagrangian submanifolds one can test and refine these

tools. Monotonicity is preserved by a Hamiltonian isotopy.

A trivial example of a monotone Lagrangian torus in Cn is a monotone split La-

grangian torus which is the product of n circles of same radius, S1
r × ... × S1

r . A

Lagrangian torus is called a Clifford torus if it is Hamiltonian isotopic to a mono-

tone split Lagrangian torus.

A monotone Lagrangian is torus exotic if it is not Hamiltonian isotopic to a Clifford

torus. Y. V. Chekanov constructed the first examples of exotic monotone Lagrangian

tori in Cn [7]. Y. Eliashberg and L. Polterovich provided another interpretation of a

Chekanov torus in C2 [11]. By a generalization of this interpretation of a Chekanov

torus in C2, new examples of monotone Lagrangian tori in Cn, CPn and ×nS2 were

provided by Y. V. Chekanov and F. Schlenk [8]. The number of monotone La-

grangian tori in the work of Chekanov and Schlenk is increasing with the dimension

but it is finite for any dimension. D. Auroux showed that there exist infinitely many

monotone Lagrangian tori in C3, which are pairwise non-Hamiltonian isotopic to

any rescaling of one another [6].

R. Vianna showed that there exist infinitely many exotic monotone Lagrangian tori

which are pairwise non-Hamiltonian isotopic in CP2, S2 × S2 and the del Pezzo

surfaces CP 2#kCP 2 for k = 3, 4, 5, 6, 7, 8 [24,26]. The tori constructed by Vianna

in CP2 yield monotone Lagrangian tori in C2 [16, 25]. However, it is not known

whether these tori give new classes of monotone Lagrangian tori in C2 or not. Hence

the problem of Chekanov explained in section 1.1 still remains open.
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1.3 The Goals of the Thesis

Some Lagrangian nodal spheres arise in the construction of Chekanov torus in C2

given by Eliashberg and Polterovich in [11]. We prove that there exist Lagrangian

perturbations of these Lagrangian nodal spheres which are Clifford and Chekanov

tori following [11].

In the paper [14], F. Lalonde and J. C. Sikorav introduced a method of smoothing

nodal singularities of immersed Lagrangian surfaces. L. Polterovich in [19] and M.

Audin in [5] provided generalizations of this smoothing for any dimension. This

smoothing procedure is generally called Polterovich surgery. We provide a descrip-

tion of the Polterovich surgery which is a mixture of the descriptions in [19] and [18].

The Whitney immersion is a Lagrangian immersion of an n-sphere into Cn and it

gives a Lagrangian nodal sphere in Cn. Chekanov remarked in [7] that the tori ob-

tained by applying Polterovich surgery to the Whitney immersion in C2 are Chekanov

and Clifford tori. One of our main goals is to prove the following theorem.

Theorem A. The two Lagrangian tori obtained by Polterovich surgeries of the

Lagrangian nodal sphere given by the Whitney immersion in C2 are Clifford and

Chekanov tori.

M.-L. Yau considered the following integrable Hamiltonian system on R4 :

G : R4 → R, G(q1, p1, q2, p2) = (p21 + p22)− (q21 + q22) + (q21 + q22)2 (1.1)

H : R4 → R, H(q1, p1, q2, p2) = p2q1 − p1q2 . (1.2)

where its momentum map is given by F : R4 → R2 defined by F = (G,H). Yau

described the fibers of the momentum map F : R4 → R2 in [28] without proof.

Another main goal of this thesis is to find the range of F : R4 → R2, provide a proof

for the classification of its fibers and hence prove the following theorem.

Theorem B. The fiber F−1(0, 0) is a Lagrangian nodal sphere and the Lagrangian

perturbations of F−1(0, 0) given by F−1(ε, 0) are Clifford tori if ε > 0 and Chekanov

tori if −1
4
< ε < 0.

3



1.4 The Structure of the Thesis

In section 2.1, we introduce Maslov index following [3]. In sections 2.2 and 2.3, we

give some background material in symplectic topology. In sections 2.4 and 2.5, we

discuss concepts of exact and monotone Lagrangian submanifolds in a symplectic

manifold. In section 2.6, we introduce Chekanov suspension.

In section 3.1, we provide a description of a Chekanov torus in C2 and prove that

it is monotone by using Chekanov suspension. In section 3.2, we provide another

example of monotone torus which is described by Eliashberg and Polterovich in [11].

We show that this torus is exotic by counting holomorphic discs with Maslov index 2.

In section 3.3, we show that the monotone torus given by Eliashberg and Polterovich

is a Chekanov torus following [12]. In section 3.4, we show that the two kinds of

Lagrangian perturbations of Lagrangian nodal spheres introduced in section 3.2 are

Clifford and Chekanov tori.

In section 4.1, we introduce Whitney immersion and show that its image is a La-

grangian nodal sphere in Cn by using method of generating functions. In section

4.2, we give a description of the Polterovich surgery. In section 4.3, we show

that Polterovich surgery procedure yields two Lagrangian perturbations of the La-

grangian nodal sphere which is the image of the Whitney immersion in C2 are Clif-

ford and Chekanov tori.

In section 5.1, we discuss an integrable Hamiltonian system given by Yau in her

paper [28]. In section 5.2 , we find the range and classify the fibers of the integrable

Hamiltonian system described in the section 5.1.
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CHAPTER 2

PRELIMINARIES

2.1 Lagrangian Grassmannian and Maslov Index

Recall, a symplectic vector space is a pair (V,Ω) where V is an m-dimensional

real vector space and Ω : V × V → R is a non-degenerate skew-symmetric bilin-

ear form which is called a symplectic form. For a symplectic vector space (V,Ω),

the dimension of V has to be even (m = 2n) and there exists an ordered ba-

sis {e1, f1, ..., en, fn} such that Ω(ei, ej) = Ω(fi, fj) = 0, Ω(ei, fj) = δij for all

i, j = 1, ..., n.

The matrix

J0 = diag
( 0 1

−1 0

 , ...,
 0 1

−1 0

) ∈ R2n×2n (2.1)

defines a symplectic form Ω0 on the vector space R2n with respect to the standard

basis {e1, f1, ..., en, fn} of R2n, in other words, we have Ω0(u, v) = uTJ0v for all

u, v ∈ R2n.

A linear isomorphism Φ : (V1,Ω1)→ (V2,Ω2) of symplectic vector spaces is called

a linear symplectomorphism if Φ∗(Ω2) = Ω1 . Any 2n-dimensional symplectic vec-

tor space (V,Ω) is symplectomorphic to (R2n,Ω0). For a symplectic vector space

(V,Ω), the group of symplectomorphisms of (V,Ω) i.e. {Φ : V → V, |Φ∗(Ω) = Ω}
is denoted by Sp(V,Ω). An element of the group Sp(R2n,Ω0) can be identified with

a 2n × 2n real matrix, set of these matrices is called the symplectic group and it is

denoted by Sp(2n). We have

Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = O(2n) ∩GL(n,C) = U(n) . (2.2)

5



A linear Lagrangian subspace of a symplectic vector space (V,Ω) is a linear sub-

space L of (V,Ω) such that Ω|L ≡ 0. Set of all linear Lagrangian subspaces of

(R2n,Ω0) is called Lagrangian Grassmannian and it is denoted it by Λ(n).

Lemma 2.1.1 ([16]). U(n) and thus Sp(2n) act transitively on Λ(n). The stabilizer

of the action of U(n) on Λ(n) is O(n). �

Lemma 2.1.2 ([10]). Sp(2n) acts transitively on pairs of transverse Lagrangian

subspaces of (R2n,Ω0). �

Lemma 2.1.1 shows that Λ(n) is a manifold which is diffeomorphic to U(n)
/

O(n)

whose dimension n(n+ 1)/2.

Theorem 2.1.3 ([3]). The map det2C : U(n) → S1 induces an isomoprhism of

fundamendal groups π1(Λ(n)) and π1(S1) .

Proof. The map det2C : U(n) → S1 induces a map d̄ : U(n)
/

O(n) → S1 since

O(n) ⊂ Ker(det2C). Map d̄ is a fibration with fibers SU(n)
/

SO(n). The exact

sequence induced by the fibration d̄ shows that π1(Λ(n)) ' π1(U(n)
/

O(n)) '
π1(S1) .

If γ : S1 → Λ(n) is a loop of Lagrangian subspaces of (R2n,Ω0), then degree of

the map d̄ ◦ γ : S1 → S1 (where d̄ is defined in the proof of Theorem 2.1.3 ) is

called Maslov index of the loop γ and we denote it by µ(γ). It follows immediately

from the definition that Maslov index induces a homomorphism µ : π1(Λ(n))→ Z .

In some sense, Maslov index measures how much linear Lagrangian spaces rotates

along a loop in Λ(n).

2.2 Symplectic Manifolds and Lagrangian Submanifolds

A symplectic manifold is a pair (M,ω) where M is an 2n−dimensional smooth

manifold and ω is closed non-degenerate (wn 6= 0 pointwisely) 2-form. A diffeo-

morphism φ : (M1, ω1) → (M2, ω2) of symplectic manifolds is called symplecto-

morhism if it preserves the sypmlectic structure, φ∗ω2 = ω1 .

6



Example 2.2.1.

i. R2n is a symplectic manifold with the sypmlectic form ω0 =
n∑
i=1

dqi ∧ dpi
where (q1, p1..., qn, pn) are coordinates of R2n. If we only consider linear

subspaces of R2n then ω0 is same as Ω0 under the identifications dqi = ei and

dpi = fi for i = 1, ..., n.

ii. If we identify coordinates (z1, ..., zn) of Cn with coordinates above of R2n by

zj = qj + ipj then ω0 above can be written as ω0 = i
2

n∑
j=1

dzj ∧ dz̄j .

iii. Cotangent bundle T ∗X of an arbitrary smooth n-dimensional manifold X

has a canonical symplectic structure. Let (U , q1, ..., qn) be a coordinate chart

for X and (T ∗U , q1, p1, ..., qn, pn) be associated coordinate chart for T ∗X ,

then canonical symplectic structure is ωcan =
n∑
i=1

dqi ∧ dpi. We see that

(T ∗Rn, ωcan) is symplectomorhic to (R2n, ω0) .

A diffeomorphism F : X → Y induces a symplectomorphism F# : T ∗X → T ∗Y

which is defined by F#(q, p) = (q̃, p̃) where q̃ = f(q) and p = dF ∗q (p̃) for any

(q, p) ∈ T ∗X , (q̃, p̃) ∈ T ∗Y [9]. Similarly, if F : X → Y is a smooth embedding

and X, Y are smooth manifolds of the same dimension then F# : T ∗X → T ∗Y is a

symplectic embbedding of cotangent bundles.

Any 2n-dimensional symplectic manifold (M,ω) is locally symplectomorphic to

(R2n, ω0). This fact is known as Darboux theorem. A Lagrangian submanifold of

symplectic manifold (M,ω) is an n-dimensional submanifold L such that ω|L ≡ 0.

Example 2.2.2.

i. Zero section of the T ∗X is a Lagrangian submanifold of (T ∗X,ωcan) .

ii. The graph Γdf = {(x, dfx) ∈ T ∗X | x ∈ X} of the differential of a smooth

function f : X → R is a Lagrangian submanifold of (T ∗X,ωcan) .

The function f : X → R in the Example 2.2.2-(ii) is called a generating function

for the Lagrangian Γdf .

Let L be a Lagrangian in a symplectic manifold (M,ω). Then the symplectic area

7



class of L is defined by

ωL : π2(M,L)→ R, [u] 7→
∫
D2

u∗ω

where u : (D2, ∂D2) → (M,L) is a smooth map representing a homotopy class

[u] ∈ π2(M,L).

There are interesting obstructions to the Lagrangian embeddings n-manifolds into

2n-symplectic manifolds in contrast to Whintney embedding theorem. The follow-

ing proposition is just one example, for more examples reader may consult the sec-

tion 9.2 of [15].

Proposition 2.2.3. Among all closed orientable connected surfaces, only torus ad-

mits a Lagrangian embedding into (C2, ω0) .

Proof. Normal bundle and tangent bundle of an orientable Lagrangian are isomor-

phic. Self-intersection number of an orientable Lagrangian L is (−1)
n(n−1)

2 χ(L)

where χ(L) is Euler characteristic of L. An orientable Lagrangian in (Cn, ω0) has

self-intersection number zero. This implies an orientable Lagrangian L in (Cn, ω0)

must have zero Euler characteristic.

2.3 Hamiltonian, Lagrangian and Exact Lagrangian Isotopies

Let (M,ω) be a symplectic manifold and H : M → R be a smooth function.

Consider the equation ιXHω = dH . This equation has a unique vector field solution

XH by nondegeneracy of ω. (Note that if H is time dependent then XH will be

time-dependent as well.) H is called Hamiltonian funciton and XH is called the

Hamiltonian vector field corresponding to H and the isotopy {Φt
H : M → M}t∈R

generated byXH is called the Hamiltonian flow ofXH . Using Cartan magic formula

and Lie derivative of the sypmlectic structure ω with respect to the vector field XH ,

we can prove that a Hamiltonian flow {Φt
H : M →M}t∈R preserves the symplectic

structure, (Φt
H)∗ω = ω.

Two Lagrangians L0 and L1 are said to be Hamiltonian isotopic if there exists a

8



time-dependent Hamiltonian H : M × [0, 1] → R such that L1 = Φ1
H(L0) where

{Φt
H}t∈R is the Hamiltonian flow induced by H .

Example 2.3.1. We know that U(2) is path connected. Hence we can find a smooth

path γ : [0, 1]→ U(2) such that

γ(0) =

1 0

0 1

 and γ(1) =

 1√
2

i√
2

1√
2

−i√
2

 .

Consider the isotopy Υ : C2 × [0, 1]→ C2 given byz1
z2

 7→
γ11(t) γ12(t)

γ21(t) γ22(t)


︸ ︷︷ ︸

=γ(t)

z1
z2

 .

For each t ∈ [0, 1] the diffeomorphism Υt : C2 → C2 is a symplectomorphism

since the matrix γ(t) ∈ U(2) ⊆ Sp(4). By the famous Cartan magic formula and

the definition of Lie derivative we have dιXtω = 0, where Xt is the time-dependent

vector field generated by the isotopy Υ : C2 × [0, 1] → C2. Then the isotopy

Υ : C2 × [0, 1] → C2 is a Hamiltonian isotopy, since every closed form is exact in

C2.

Proposition 2.3.2 ([1, 16]). For any two embedded discs u1, u2 : D2 → C bounding

the same area there exists a Hamiltonian isotopy Φ : C × [0, 1] → C such that

Φ1(u1(D2)) = u2(D2) and Φt(0) = 0 for all t ∈ [0, 1] where Φt = Φ(·, t). Moreover,

if u1(D2) and u2(D2) are symmetric with respect to origin of C then Φt(u1(D2)) is

symmetric with respect to origin of C for all t ∈ [0, 1]. �

A smooth isotopy Φ : L×[0, 1]→M ofL is called a Lagrangian isotopy if each step

of the isotopy is a Lagrangian in M . For a Lagrangian isotopy Φ : L× [0, 1] → M

we can find a family of one-forms {αt}t∈[0,1] on L such that Φ∗ω = αt ∧ dt and

ι ∂
∂t
αt = 0 since Φ∗ω vanishes on Lt for all t ∈ [0, 1]. Furthermore, αt is closed for

all t ∈ [0, 1] since 0 = dΦ∗ω = dαt ∧ dt. A Lagrangian isotopy Φ : L× [0, 1]→M

is an exact Lagrangian isotopy if αt is exact for all t ∈ [0, 1].

9



Proposition 2.3.3 ([18], [20]). Let L be a closed manifold and Φ : L× [0, 1]→ M

be a Lagrangian isotopy. Then the following are equivalent for Φ :

i. It is an exact Lagrangian isotopy.

ii. It can be extended to a Hamiltonian isotopy of M .

iii. It preserves the symplectic area class, in other words, for any smooth map

u : (D2, ∂D2) → (M,L) representing a homotopy class [u] ∈ π2(M,L) we

have ∫
D2

u∗ω =

∫
D2

(Φt(u))∗ω.

�

2.4 Exact Lagrangian Submanifolds

A symplectic manifold (M,ω) is an exact symplectic manifold if the symplectic

form ω is exact. A Lagrangian L in an exact symplectic manifold (M,dα) is an

exact Lagrangian if i∗Lα is exact for the inclusion map iL : L→ M . An immersion

iN : N → (M,ω = dα) is Lagrangian if i∗Nω = 0 and exact Lagrangian if i∗Nα is

exact.

Let L be an exact Lagrangian in (M,ω = dα) and u : (D2, ∂D2) → (M,L) be a

smooth map. Then∫
D2

u∗ω =

∫
D2

u∗dα =

∫
D2

du∗α =

∫
S1
u∗α =

∫
u(S1)

i∗α =

∫
u(S1)

df = 0 . (2.3)

Proposition 2.4.1 ([13]). A closed exact Lagrangian L in (Cn, ω0) must bound a

holomorphic discs with non-zero area. �

The Proposition 2.4.1 and 2.3 implies that there does not exist a closed exact La-

grangian in (Cn, ω0). Since π1(Sn) is trivial for n ≥ 2, any one-form on Sn is exact.

This shows that Sn does not admit a Lagrangian embedding into the symplectic

manifold (Cn, ω0) for n ≥ 2 .
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In the paper [27], H. Whitney described a general method to construct immer-

sions of n-manifolds into 2n-Euclidean space with transeversal, double and isolated

self-intersection points. An immersion which has such self-intersection points is

a generic immersion [19]. A Lagrangian nodal sphere in C2 is an immersed La-

grangian sphere which has only double transversal self-intersection points. [23].

2.5 Monotone Lagrangian Submanifolds

Let L be a Lagrangian in a symplectic manifold (M,ω) and u : (D2, ∂D2)→ (M,L)

be a map representing a homotopy class [u] ∈ π2(M,L). Then there exists a unique

trivialization (up to homotopy) of the bundle u∗TM ' D2 × Cn as a symplectic

vector bundle [17]. Then Maslov class µL([u]) of the disc [u] ∈ π2(M,L) is defined

as Maslov index of ∂D2 after this trivialization. It follows from the definition that

Maslov class induces a homomorphism µL : π2(M,L) → Z . Maslov class remain

invariant under a Lagrangian isotopy of L [11].

A Lagrangian L in a symplectic manifold (M,ω) is called a monotone Lagrangian

if there exist a real number κL > 0 such that for any homotopy class [u] ∈ π2(M,L)

we have ωL([u]) = κLµL([u]).

Monotonicity of Lagrangian submanifolds is preserved under Hamiltonian isotopies

since both Maslov class and symplectic area are preserved under Hamiltonian iso-

topies.

Example 2.5.1. Let T = S1
r1
× ... × S1

rn be a Lagrangian split torus in (Cn, ω0).

Lagrangian torus T is monotone if and only if we have r1 = ... = rn. Because the

basic generators of the π2(Cn, T ) ' Zn has Maslov class 2 and symplectic area πr2k
for all k = 1, ..., n. As a result, the split monotone Lagrangian torus S1

r × ... × S1
r

has monotonicity constant πr2

2
.

A Clifford torus in (Cn, ω0) is a torus Hamiltonian isotopic to a split Lagrangian

torus S1
r × ...× S1

r for some r > 0 and it will be denoted by TnCl.

Proposition 2.5.2 ([13]). If {Φt : C2 → C2}t∈[0,1] is a Hamiltonian isotopy, then
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for each point on the torus Φt(T2
Cl) there exist at least two holomorphic discs whose

boundaries are homologous to the cycles Φt(e1) and Φt(e2) where e1 and e2 are

standard generators of the H1(T2
Cl;Z). �

2.6 The Chekanov Suspension

Consider the map

ϑn : Rn × S1 → Rn+1 , (t1, ..., tn, θ) 7→ (et1 cos θ, et1 sin θ, t2, ..., tn) .

The map ϑn is a smooth embedding of Rn × S1 into Rn+1 and image of ϑn is dif-

feomorphic to (R2 \ {0}) × Rn−1. The map ϑn induces a symplectic embedding

Θn : T ∗(Rn × S1) → T ∗Rn+1 of the cotangent bundles where Θn = (ϑn)#. Since

T ∗(Rn × S1) and T ∗Rn+1 are symplectomorphic to R2n × T ∗S1 and R2n+2 respec-

tively, we can think of Θn as a symplectic embedding of R2n × T ∗S1 into R2n+2.

Let L be an arbitrary Lagrangian submanifold of R2n. Consider the Lagrangian

submanifold Sa = {(θ, τ) ∈ T ∗S1 ' S1 × R | τ = a} of T ∗S1. The submanifold

L× Sa is a Lagrangian in R2n × T ∗S1 since product of Lagrangian submanifolds is

Lagrangian in product of symplectic manifolds. Symplectic embedding Θn gives a

Lagrangian Θn(L× Sa) in R2n+2. The Lagrangian Θn(L× Sa) is called Chekanov

suspension of L at the level a and it will be denoted as Ca(L).

For any circle Sa, the image Θn(Sa) will bound a disc with symplectic area 2πa

and Maslov index of the circle Θn(Sa) will be zero since Sa does not bound a disc.

So these show that if L is monotone Lagrangian in R2n then C0(L) is a monotone

Lagrangian in R2n+2.
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CHAPTER 3

THE CHEKANOV TORI IN C2

3.1 Description of a Chekanov Torus via Chekanov Suspension

Proposition 3.1.1 ([7]). The following subset

T2
Ch = {((et + ise−t) cos θ, (et + ise−t) sin θ) ∈ C2 | s2 + t2 = 2r2, θ ∈ [0, 2π]}

of C2 is a monotone Lagrangian torus.

Proof. Let L be a circle of radius
√

2r > 0 in R2 centered at the origin. Mono-

tonicity constant of L is κL = πr2. Then Chekanov suspension C0(L) is a monotone

Lagrangian in R4 ' C2, which is diffeomorphic to torus and its monotonicity con-

stant is πr2 as well. To find C0(L) explicitly :

Consider the smooth embedding

ϑ1 : R× S1 → R2, (t, θ) 7→ (et cos θ, et sin θ) .

For the map ϑ1, the dual of the differential dϑ1
∗
(t,θ) : T ∗(t,θ)(R × S1) → T ∗ϑ1(t,θ)R

2 at

the point (t, θ) is given by the matrix

A(t,θ) =

 et cos θ et sin θ

−et sin θ et cos θ


for the bases {dt, dθ} and {dq1, dq2}. Then the symplectic embedding

Θ1 : T ∗R× T ∗S1 → T ∗R2 ' R4 , (t, s, θ, τ) 7→ (q1, p1, q2, p2)

is given by (q1, q2) = ϑ1(t, θ) and [p1 p2]
T = A−1(t,θ)[s τ ]T i.e. we have explicitly

Θ1(t, s, θ, τ) = (et cos θ, se−t cos θ − τe−t sin θ, et sin θ, se−t sin θ + τe−t cos θ) .
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The Chekanov suspension C0(L) of L at level τ = 0 is the following subset of R4 :

C0(L) = {(et cos θ, et sin θ, se−t cos θ, se−t sin θ) ∈ R4 | s2+t2 = 2r2, θ ∈ [0, 2π]} .

If we identify C2 with R4 via the identification explained in example 2.2.1 , then we

have

C0(L) = {((et + ise−t) cos θ, (et + ise−t) sin θ) ∈ C2 | s2 + t2 = 2r2, θ ∈ [0, 2π]}.

A Chekanov torus in C2 is a monotone Lagrangian torus that is Hamiltonian isotopic

to a rescaling of the torus T2
Ch in Proposition 3.1.1 .

3.2 Description of a Chekanov Torus via Conics in C2

Consider the map G : C2 → C given by G(z1, z2) = z1z2 and the Hamiltonian

function H : C2 → R given by H(z1, z2) = 1
2
(|z2|2 − |z1|2). The fiber G−1(z0) is

topologically a cylinder if z0 6= 0 and a cone if z0 = 0.

C2

C

(z1, z2)

z1z2

G

Figure 3.1: Topological model of the fibers of G : C2 → C.

Let u : D2 → C be an embedded disc with the area Au > 0 and the boundary

γ : S1 → C . As a remark, instead of γ(eis) we write γ(s) for short. Now consider

the following subset of C2:

Lγβ = {(z1, z2) ∈ C2 |H(z1, z2) = β, β ∈ R} ∩G−1(γ(S1)) (3.1)
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C

C2Lγ
β

C

C2Lγ
β

γ
γ

Figure 3.2: Lγβ when β is not zero or γ does not pass through origin.

Proposition 3.2.1 ([11]). Lγβ is a Lagrangian torus if β is not zero or γ(S1) does not

pass through origin.

Sketch of proof. Let z1 = r1e
iθ1 , z2 = r2e

iθ2 and γ = rγe
iθγ be polar coordinates

representations of z1, z2 and γ respectively. If z1, z2 ∈ Lγβ , then we have the equalites

γ = rγe
iθγ = z1z2 = r1r2e

i(θ1+θ2) and 2β = |z2|2 − |z1|2 = r22 − r21. Then we have

r2γ = r21r
2
2 = 2βr21 + r41. As a result, we have

r1 =

√
−β +

√
β2 + r2γ, r2 =

√
β +

√
β2 + r2γ and eiθ2 = e−iθ1eiθγ .

If we let g(rγ) =
√
−β +

√
β2 + r2γ and h(rγ) =

√
β +

√
β2 + r2γ , then the subset

Lγβ of C2 is given by

Lγβ = {(±g(rγ(s))e
iθ,±h(rγ(s))e

iθγ(s)e−iθ) | γ(s) = rγ(s)e
iθγ(s) , s,∈ [0, 2π], θ ∈ [0, π]}.

If β 6= 0 or γ does not pass through origin, thenLγβ is a torus. On Lγβ we have

dz1 =± eiθγ(s)/2eiθ
((
∂sg(rγ(s)) +

i

2
(∂sθγ(s))

)
ds+ ig(rγ(s))dθ

)
(3.2)

dz2 =± eiθγ(s)/2e−iθ
((
∂sh(rγ(s)) +

i

2
(∂sθγ(s))

)
ds− ih(rγ(s))dθ

)
(3.3)

then

ω0 =
i

2

(
dz1∧dz̄1+dz2∧dz̄2

)
=
((
∂sh(rγ(s))

)
h(rγ(s))−

(
∂sg(rγ(s))

)
g(rγ(s))

)
ds∧dθ.
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This shows that ω0|Lγβ ≡ 0 since we have

∂sh(rγ(s))
)
h(rγ(s)) =

rγ(s)∂srγ(s)√
β2 + r2γ(s)

= ∂sg(rγ(s))
)
g(rγ(s)) .

Proposition 3.2.2 ([11]). The subset Lγ0 of C2 is a Lagrangian nodal sphere if γ(S1)

passes through origin.

Sketch of proof. The set

Lγβ = {(±g(rγ(s))e
iθ,±h(rγ(s))e

iθγ(s)e−iθ) | γ(s) = rγ(s)e
iθγ(s) , s ∈ [0, 2π], θ ∈ [0, π]}.

in the proof of Proposition 3.2.1 becomes

Lγ0 = {(±√rγ(s)eiθ,±
√
rγ(s)e

iθγ(s)e−iθ) | γ(s) = rγ(s)e
iθγ(s) , s ∈ [0, 2π], θ ∈ [0, π]}.

Since γ passes through origin, √rγ(s0) = 0 for some s0 ∈ [0, 2π]. Hence the set Lγ0
is an immersed Lagrangian sphere. Transversality of intersection follows from 3.2

and 3.3.

C2

Cγ

Lγ
0

Figure 3.3: The subset Lγ0 if γ passes through origin.

Proposition 3.2.3 ([11]). The Lagrangian torus Lγ0 is an exotic monotone torus in

C2 if the disc u : D2 → C does not meet the set ∆ = {a + ib ∈ C | a ≤ 0, b = 0}
through the origin of C.
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Proof. If β = 0 then H(z1, z2) = 0 i.e. |z1| = |z2|. So we have z1 = z2e
i2θ for

some θ ∈ [0, π] . Then for a point (z1, z2) ∈ Lγ0 we have γ(s) = G(z1, z2) = z22e
i2θ

for some s ∈ [0, 2π] . Then (z1, z2) = ±(
√
γ(s)eiθ,

√
γ(s)e−iθ) ; as a result, the

Lagrangian torus Lγ0 is given by the subset

Lγ0 = {(
√
γ(s)eiθ,

√
γ(s)e−iθ) ∈ C2 | s, θ ∈ [0, 2π]} .

The two generators of π2(C2, Lγ0) ' Z2 have the following representative discs

u1 : D2 → C2, w 7→ (
√
u(w),

√
u(w))

u2 : D2 → C2, ρeiθ 7→ (ρeiθ, ρe−iθ) .

First disc u1 lies on the diagonal of the C2 and it’s boundary σ1 : S1 → C2 is given

by s 7→ (
√
γ(s),

√
γ(s)) . Maslov class of u1 is 2 since it is an embedded disc lying

on a plane. It follows immediately from the definition of u1 that by changing Au

we can adjust the symplectic area of u1 as we want. Let’s choose Au so that u1 has

symplectic area 2πr2. (Note that, in this case each of the projections of the disc u1

to the first and second coordinates of C2 has symplectic area πr2 .)

For the disc u2, its boundary σ2 : S1 → C2 induces the loop σ̃2 : S1 → U(2)
/

O(2)

given by θ 7→ diag(eiθ, e−iθ). We have det2C(diag(eiθ, e−iθ)) = 1 . So Maslov class

of u2 is 0 . Symplectic area of u1 is 0 since we have

σ∗2(z1dz̄1 + z2dz̄2) = eiθde−iθ + e−iθdeiθ = eiθ(−ie−iθ)dθ + e−iθ(ieiθ)dθ = 0 .

This proves that Lγ0 is a monotone Lagrangian with monotonicity constant πr2 .

The torus Lγ0 is the boundary of the solid torus foliated by the holomorphic discs

gθ : D2 → C2, w 7→ (
√
u(w)eiθ,

√
u(w)e−iθ), θ ∈ [0, 2π) .

If we let (
√
u(w1)e

iθ1 ,
√
u(w1)e

−iθ1) = (
√
u(w2)e

iθ2 ,
√
u(w2)e

−iθ2) then we have√
u(w1) =

√
u(w2)e

iθ2−θ1 and
√
u(w1) =

√
u(w2)e

iθ1−θ2 . This implies either we

have θ1 − θ2 = 0 or θ1 − θ2 = π since u does not pass through origin. So we

have either
√
u(w1) =

√
u(w2) or

√
u(w1) = −

√
u(w2). The latter is not possible

because u is embedded and square root operation confines the image of the disc
√
u

to only half of the C. So we have θ1 = θ2 and u(w1) = u(w2) (hence w1 = w2 since

u is embedded). This proves the holomorphic discs gθ : D2 → C2 are disjoint.
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Now we will prove that a holomorphic disc g : D2 → C2 in C2 with the boundary

lying on Lγ0 and symplectic area 2πr2 must be one of the discs gθ : D2 → C2 of the

holomoprhic foliation above. Consider the map F = G◦ g ◦u−1 : u(D2)→ C. This

map is holomorhic since each of the maps in the composition of F is holomorphic.

Observe that for any point γ(s) on the boundary of u(D2) we have a point eit on the

boundary of D2 and this point is mapped to a point (
√
γ(st)e

iθt ,
√
γ(st)e

−iθt) on

Lγ0 . So we have F = G ◦ g ◦ u−1(γ(s)) = G(
√
γ(st)e

iθt ,
√
γ(st)e

−iθt) = γ(st) i.e.

F maps the boundary of u(D2) to itself. Since
∫
∂D2

g∗λ0 = 2πr2, it can be shown that

F |∂u(D2)=γ has a degree greater than equal to 1. For the time being assume its degree

is 1. Then F is a bi-holomorphic mapping of u(D2) to itself. By a conformal change

of variable we can have F (w) = w or equivalently G ◦ g(w) = u(w) for w ∈ D2. If

g(w) = (g1(w), g2(w)) then we have

G ◦ g(w) = g1(w)g2(w) = u(w) .

Since u(w) is non-zero we can define a function

Φ(w) =
g1(w)

g2(w)
for w ∈ D2

which is a non-zero holomorphic function. Then by maximum modulus principle Φ

is a constant. Now observe that, when w ∈ ∂D2 we have |g1(w)| = |g1(w)| since

g(w) lies on Lγ0 . This implies Φ is equal to a constant eiθ0 for some eiθ0 ∈ [0, 2π).

This says that g1(w) = g1(w)eiθ0/2 which is equivalent to g(w) = (
√
u(w)eiθ,

√
u(w)e−iθ)

where θ = θ0/2 mod π . This shows that g = gθ for some θ ∈ [0, 2π). If the degree

of F |∂u(D2)=γ is greater than 1, with a similar approach we will find that g : D2 → C2

will be multiple cover of one of the embedded discs gθ : D2 → C2. However, since

the area of the image of g : D2 → C2 and gθ : D2 → C2 are 2πr2, g : D2 → C2 is

not a multiple cover.

Theorem 2.5.2 of Gromov tells us that if T2
Cl and Lγ0 were Hamiltonian isotopic

then there should be two holomorphic discs corresponding the two generators of

π2(C2,T2
Cl). However, we proved that there is only one holomorphic disc of area

2πr2 passing through each point of Lγ0 . As a result, Lγ0 is exotic.

Remark 3.2.4. Proposition 3.2.3 remains true when we replace ∆ by origin of C,
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because u : D2 → C will miss a branch cut of C in this case and by a conformal

change of variable this branch cut can be mapped to ∆ .

By the Proposition 3.2.3, we obtained an infinite family of exotic monotone La-

grangian tori. Any two members of this family are Hamiltonian isotopic to each

other up to rescaling. We will denote a member of this family by T2
EP . Equivalently,

we can define T2
EP as

T2
EP = {(σ(s)eiθ, σ(s)e−iθ) ∈ C2 | s, θ ∈ [0, 2π]} (3.4)

where σ : S1 → C is an embedded circle bounding area πr2 and whose image lies

in the right half-plane {z ∈ C |Re(z) > 0}.

3.3 Chekanov Tori in C2 are Exotic

Proposition 3.3.1 ([11, 12]). The exotic torus T2
EP is a Chekanov torus in C2.

Proof. Without loss of generality let the r = 1 in the definition of T2
Ch. Then T2

Ch =

{((et + ise−t) cos θ, (et + ise−t) sin θ) ∈ C2 | s2 + t2 = 2, θ ∈ [0, 2π]} . If we let

(t, s) = (
√

2 sinϑ,
√

2 cosϑ) then we get et + ise−t = e
√
2 cosϑ + i

√
2 sinϑe−

√
2 cosϑ

which gives the embedded circle σ : S1√
2
→ C, σ(ϑ) = e

√
2 cosϑ+i

√
2 sinϑe−

√
2 cosϑ.

Consider f : R2 → C given by (x, y) 7→ ex + iye−x. The map f is a symplectomor-

phism since

dz∧dz̄ = (exdx+ ie−xdy− iye−xdy)∧ (exdx− ie−xdy+ iye−xdx) = −2idx∧dy.

Then embedded circle σ : S1√
2
→ C bounds a disc of area 2π. Consider the Hamil-

tonian isotopy Υ : C2 × [0, 1]→ C2 given in Example 2.3.1. We have

Υ1(T2
Ch) = { 1√

2
(σ(ϑ)eiθ, σ(ϑ)e−iθ) ∈ C2 | ϑ, θ ∈ [0, 2π]}

which is T2
EP , see 3.4. This proves that T2

EP is Hamiltonian isotopic to T2
Ch, in

other words, T2
EP is a Chekanov torus in C2.
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Figure 3.4: Trace of σ : S1√
2
→ C

3.4 Lagrangian Perturbations of a Lagrangian Nodal Sphere

Proposition 3.4.1 ([11]). The subset Lγ0 of C2 is a Clifford torus if interior of the

disc bounded by γ(S1) contains the origin.

Proof. If β = 0 then H(z1, z2) = 0 i.e. |z1| = |z2|. So we have z1 = z2e
i2θ for

some θ ∈ [0, π] . Then for a point (z1, z2) ∈ Lγ0 we have γ(s) = G(z1, z2) = z22e
i2θ

for some s ∈ [0, 2π] . Then (z1, z2) = ±(
√
γ(s)eiθ,

√
γ(s)e−iθ) ; as a result, the

Lagrangian torus Lγ0 is given by the union of the subsets

{±(
√
γ(s)eiθ,

√
γ(s)e−iθ) ∈ C2 | s ∈ [0, 2π], θ ∈ [0, π]} .

The union of curves
√
γ ∪ −√γ is a embedded circle, interior of the disc bounded

by this embedded circle contains origin.

Let σ : S1 → C be an embedded circle whose image is
√
γ ∪ −√γ. Then by

Proposition 2.3.2, there exists a Hamiltonian isotopy {Φt : C → C}t∈[0,1] which

takes σ(S1) to a round circle of radius r0 centered at the origin of C and Φt(0) = 0

for all t ∈ [0, 1]. Consider the map

Ψ : Lγ0 × [0, 1]→ C2, (σ(s)eiθ, σ(s)e−iθ, t) 7→ (Φt(σ(s))eiθ,Φt(σ(s))e−iθ) .

(3.5)
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R

θ′

ϕ′

ϕ′ + θ′ = 4π

ϕ′ + θ′ = 0

ϕ′ − θ′ = 2π

ϕ′ − θ′ = 0

Figure 3.5: The regionR which has area 4π2.

The subset Ψt(Lγ0) of C2 is a torus since Φt(σ(S1)) does not pass through the origin

of C for all t ∈ [0, 1]. Then the map Ψ : Lγ0 × [0, 1] → C2 is a Lagrangian isotopy

since Ψt(Lγ0) is a Lagrangian for all t ∈ [0, 1]. The following two embedded circles

βt1 : S1 → C2, eis 7→ (Φt(σ(s)),Φt(σ(s)))

βt2 : S1 → C2, eiθ 7→ (Φt(σ(0))eiθ,Φt(σ(0))e−iθ)

lie on the Ψt(Lγ0) and bound two embedded discs which correspond to the generators

of π2(C2,Ψt(Lγ0)) for all t ∈ [0, 1]. The discs bounded by βt1 : S1 → C2 has the same

area for all t ∈ [0, 1] since {Φt : C → C}t∈[0,1] is a Hamiltonian isotopy. The discs

bounded by βt2 : S1 → C2 has zero area since the one-form z1dz̄1 + z2dz̄2 vanishes

on βt2(S1). Hence by Proposition 2.3.3, the Lagrangian isotopy Ψ : Lγ0× [0, 1]→ C2

is an exact Lagrangian isotopy and it can be extended to a Hamiltonian isotopy of

C2. In other words, Lγ0 is Hamiltonian isotopic to

L̃ ={(r0eiϕeiθ, r0eiϕe−iθ) |ϕ ∈ [0, 2π], θ ∈ [0, π]}

={(r0ei(ϕ+θ), r0ei(ϕ−θ)) | ϕ ∈ [0, 2π], θ ∈ [0, π]}.

If we let ϕ′ = ϕ+ θ and θ′ = ϕ− θ then we have

L̃ ={(r0eiϕ
′
, r0e

iθ′) | (ϕ′, θ′) ∈ R ⊂ R2}
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whereR ⊂ R2 given in the Figure 3.5. As a result we have

L̃ ={(r0eiϕ
′
, r0e

iθ′) | ϕ, θ ∈ [0, 2π]}

which is a Clifford torus.

Theorem 3.4.2 ([11]). There exist Lagrangian perturbations of Lagrangian nodal

spheres Lγ0 in Propostion 3.2.2 which are Clifford and Chekanov tori in (C2, ω0).

Proof. For a Lagrangian nodal sphere Lγ0 , the curve γ passes through origin. The

curve γ can be deformed around origin in a small neighborhood to an embedded

circle γδ in two ways. In one case, γδ does not pass through origin anymore and the

disc bounded by γδ contains the origin. In the other case, γδ does not pass through

origin anymore and the disc bounded by γδ does not contain the origin. Hence, proof

follows by Proposition 3.2.3 and Proposition 3.4.1.

Theorem 3.4.3 ([11]). A Clifford torus and a Chekanov torus is Lagrangian iso-

topic.

Proof. Let Lγ0 be a Clifford torus and Lγ̃0 be a Chekanov torus where γ, γ̃ : S1 → C

two embedded circles. Let {γt : S1 → C}t∈[0,1] be a smooth isotopy of embedded

circles so that γ0 = γ and γ1 = γ̃. Then the family {Lγtt }t∈[0,1] induces a Lagrangian

isotopy between the Clifford torus Lγ0 and the Chekanov torus Lγ̃0 .
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CHAPTER 4

THE WHITNEY IMMERSION AND ITS POLTEROVICH SURGERY

4.1 The Whitney Immersion of an n-sphere in Cn

Consider the functions g± : [−1, 1]→ R given by g±(x) = ±1
3
(1− x2) 3

2 . Differen-

tials of these functions are dg± = g′±(x)dx = ∓x(1 − x2) 1
2dx. We will denote the

graphs of differentials dg+, dg− by W 1
+, W 1

− respectively.

g+

g−

dg+ dg−

Figure 4.1: Graphs of g± and the differentials dg±.

If we consider W 1
+ and W 1

− as a subset of C, then we have

W 1
± =

{
x+ i g′±(x) ∈ C

∣∣x ∈ [−1, 1]} =
{
x∓ ix(1− x2)

1
2 ∈ C

∣∣x ∈ [−1, 1]}

=
{
x+ ixy ∈ C

∣∣(x, y) ∈ S1
±
}
.

The immersed circleW 1 = W 1
+∪W 1

− is given by the set
{
x+ixy ∈ C

∣∣(x, y) ∈ S1
}

.

It is the image of the immersionW1 : S1 → C given by (x, y) 7→ x+ ixy.
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In coordinates (x, y) = (sinϕ, cosϕ) we have

W1(sinϕ, cosϕ) = sinϕ+
i

2
sin 2ϕ where ϕ ∈ [0, 2π] . (4.1)

W 1

Figure 4.2: Immersed circle W 1

Higher dimensional analog ofW1 isWn : Sn → Cn which is given by

Wn(x1, ..., xn, xn+1) = (x1 + ix1xn+1, ..., xn + ixnxn+1). (4.2)

The immersion Wn : Sn1 → Cn is called Whitney immersion and its image will be

denoted by W n.

Proposition 4.1.1. The immersed submanifold W n is a Lagrangian nodal sphere in

(Cn, ω0).

Proof. Using functions g± define the following functions

f± : Dn
≤1 → R , (x1, ..., xn) 7→ g±(‖(x1, ..., xn)‖)

where their differentials are given by

df± = ∓
n∑
i=1

xi(1− ‖(x1, ..., xn)‖2)
1
2dxi .

By method of generating functions the graphsW n
± of differentials df± are Lagrangians

in contangent bundles T ∗Dn
≤1 ' Dn

≤1 × Rn ⊆ R2n ' Cn. If denote (x1, ..., xn) as

x̄n for short then we have

W n
± =

{
(x1 ± ix1xn+1, ..., xn ± ixnxn+1) ∈ Cn | x̄n ∈ Dn

≤1, xn+1 = (1− ‖x̄n‖2)
1
2

}
=
{

(x1 ± ix1xn+1, ..., xn ± ixnxn+1) ∈ Cn | x̄n+1 ∈ Sn± ⊆ Rn+1
}
.
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Then union of the Lagrangians W n
± is

W n
+ ∪W n

− =
{

(x1 + ix1xn+1, ..., xn + ixnxn+1) ∈ Cn
∣∣ x̄n+1 ∈ Sn1 ⊆ Rn+1

}
= W n.

So W n is Lagrangian since it is smooth gluing of two Lagrangians. There is a self-

intersection point at the origin 0 ∈ Cn and we have W−1n (0) = {(0, ..., 0,±1)}.
Having only one-self intersection point follows from a straightforward computation.

The tangent spaces at the self-intersection point which is at the origin 0 ∈ Cn are

given by:

V1 = SpanR

{
1− i

...

0

 , . . . ,


0
...

1− i


}

V2 = SpanR

{
1 + i

...

0

 , . . . ,


0
...

1 + i


}

which proves the transversality at the self-intersection point.

4.2 The Polterovich Surgery

Let V1 and V2 be Lagrangian linear subspaces of (Cn, ω0) which intersect transver-

sally at the origin. A Lagrangian handle joining V1 and V2 is the image of a a

Lagrangian embedding H : Sn−1 × R→ Cn satisfying the properties:

i. There exist two n-discs D1, D2 such that each contains origin of Cn and lies

in V1, V2 respectively.

ii. H(Sn−1 × [c,+∞)) = V1 \D1 and H(Sn−1 × (−∞,−c]) = V2 \D2 for

some c > 0.

A Lagrangian handle Γ joining V1 and V2 is positive (or sgn(Γ) = 1) if the inclusion

maps V1 \D1 ↪→ Γ and V2 \D2 ↪→ Γ) induce the same orientation and negative (or

sgn(Γ) = −1) otherwise.

Proposition 4.2.1 ([19]). Let V1 and V2 be Lagrangian linear subspaces of (Cn, ω0)
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which intersect transversally at the origin. There exist two Lagrangian handles Γ

and Γ̃ joining V1 and V2 such that sgn(Γ) = (−1)nsgn(Γ̃) .

Proof. Let hε : R+ → R+ be a smooth function such that hε(t) = 1 if t ≤ ε/2,

hε(t) = 0 if t ≥ ε and h′ε(t) < 0 if ε/2 < t < ε.

ε
2

ε

hε(t)

t
ε

gε(t)

t

ψε(t)

ε

ε
t

fε(x)

ε
x

δ

Figure 4.3: Functions hε(t), gε(t), ψε(t) and fε(t).

Define gε : R+ → R+ by gε(t) =
h(t)

t
. Observe that gε(t) is strictly decreasing

when t < ε (g′ε(t) =< 0 if t < ε ) and gε(t) = 0 if t ≥ ε.

Define ψε(t) = h(t)(g|(0,ε])−1(t) and using this function define fε(x) =
∫ x
0
ψε(t)dt

for x > 0 .

Then consider the following generating function

F n
ε : Rn \ 0→ R, (x1, ..., xn) 7→ fε(‖(x1, ..., xn)‖) (4.3)

Graph of its differential ΓdFnε is a Lagrangian in Cn and it is smoothly tangent to

iRn along iRn ∩ S2n−1
ε . As a result, ΓdFnε ∪ (iRn \ D2n

<ε) is a Lagrangian. The

Lagrangian ΓdFnε ∪ (iRn \ D2n
<ε) is diffeomorphic to Rn \ 0 ' Sn−1 × R since ΓdFnε

is diffeomorphic to Rn \ 0 ' Sn−1 × R. These show that ΓdFnε ∪ (iRn \ D2n
<ε) is a

Lagrangian handle joining Rn and iRn. This Lagrangian handle will be denoted by

Γn. If we use the generating function−F n
ε instead of F n

ε , then we will obtain another
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Lagrangian handle joining Rn and iRn. The Lagrangian handle obtained by −F n
ε

will be denoted by Γ̃n. A quick observation shows that sgn(Γn) = (−1)nsgn(Γ̃n).

By Lemma 2.1.2 we know that Sp(2n) acts transitively on pair of transverse linear

Lagrangian subspaces of Cn. Hence there exists a linear symplectomorphism Ψ

of Cn which maps (V1, V2) to (Rn, iRn). Images of Lagrangian handles Γn and

Γ̃n under this symplectomorphism give desired Lagrangian handles joining V1 and

V2.

Let N be an immersed Lagrangian submanifold of a 2n dimensional symplectic

manifold (M,ω) where all self-intersection points of N are transversal, double and

isolated. Let p be a self-intersection point of N , TpM be tangent space of M at

p and V1, V2 be two tangent spaces of N at the point p. By a version of Darboux

theorem one can find a neighbourhood U ofM around p and a symplectic embedding

I : U → Cn satisfying:

i. N ∩ U = D1 ∪ D2 where D1 and D2 are two n-discs such that TpD1 = V1,

TpD2 = V2 and D1 ∩D2 = {p} ,

ii. I(D1) ⊂ V1, I(D2) ⊂ V2 and I(p) = 0 .

Attach a Lagrangian handle Γ joining V1 and V2 such that closure of (Γ \ (V1 ∪ V2))
lies in I(U) and glue N \ U with I−1(Γ). This procedure is called a Polterovich

surgery ofN at the self-intersection point p. The submanifold obtained after Polterovich

surgery is an immersed Lagrangian submanifold of M if N has more than one self-

intersection point, otherwise resulting submanifold is an embedded Lagrangian sub-

manifold of M . If N is oriented immersed submanifold of M then the Lagrangian

surgery is called positive (negative) if the Lagrangian handle Γ is positive (negative)

with respect to the orientations of V1 and V2 induced from the orientation of N .

The Polterovich surgery procedure is the same when we replace immersed La-

grangian submanifold N of (M,ω) with a pair of transverse Lagrangian submani-

folds L1 and L2 of (M,ω). In this case the Polterovich surgery is called Lagrangian

connect sum of L1 and L2.
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U

p Rn

iRn

iRn

Rn

I(U)

I(U)

V1

V2

V2
V1

Ψ

Ψ−1
I−1

I

U

Figure 4.4: Model of the Polterovich Surgery

4.3 Polterovich Surgeries of a Lagrangian Nodal Sphere

Theorem 4.3.1 ([7,28]). The two Lagrangian tori obtained by Polterovich surgeries

of the Lagrangian nodal sphere W 2 given by the Whitney immersion in C2 are Clif-

ford and Chekanov tori.

Proof. Recall,W2 : S2 → C2 is given by (x1, x2, x3) 7→ (x1 + ix1x3, x2 + ix2x3).

If we use spherical coordiantes (x1, x2, x3) = (sinϕ cos θ, sinϕ sin θ, cosϕ) where

ϕ ∈ [0, π], θ ∈ [0, 2π] then we have

W2(x1, x2, x3) = ((sinϕ+
i

2
sin 2ϕ) cos θ, (sinϕ+

i

2
sin 2ϕ) sin θ) .

If we let σ(ϕ) = sinϕ+ i
2

sin 2ϕ then the Lagrangian nodal sphere W 2 is given by

W 2 ={(σ(ϕ) cos θ, σ(ϕ) sin θ) | ϕ ∈ [0, π], θ ∈ [0, 2π]} (4.4)

={(σ(ϕ) cos θ, σ(ϕ) sin θ) | ϕ ∈ [0, 2π], θ ∈ [0, π]} . (4.5)
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From 4.1, we see that the image of the map σ(ϕ) = sinϕ+ i
2

sin 2ϕ is the immersed

circle W 1 when ϕ ∈ [0, 2π] and the right half of the immersed circle W 1 when

ϕ ∈ [0, π].

The tangent spaces of W 2 when ϕ = 0 and ϕ = π are given by

V1 = SpanR

{1− i
0

 ,
 0

1− i

} and V2 = SpanR

{1 + i

0

 ,
 0

1 + i

}

respectively. There exists a neighborhood U of 0 ∈ C2 and a symplectic embedding

I : U → C2 such that I maps U ∩W 2 = D1 ∪ D2 to V1 ∪ V2 where D1, D2 are

2-discs. The matrix

A = diag(e
πi
4 , e

πi
4 ) ∈ Sp(4)

gives a symplectomorphism which maps V1 to R2 and V2 to iR2. We perform

Polterovich surgeries by attaching the Lagrangian handles Γ2, Γ̃2 joining R2 and

iR2 which are described in the proof of Proposition 4.2.1.

The Lagrangian handles Γ2, Γ̃2 are described by the generating functions ±F 2
ε . The

differentials of ±F 2
ε are explicitly calculated as follows :

d(±F 2
ε ) = ±dfε(‖(x1, x2)‖) = ±ψε(‖(x1, x2)‖)

(‖(x1, x2)‖)
(x1dx1 + x2dx2)

If we let x̄ = (x1, x2) then we have

Γ2 ∩ D4
≤ε ={(x1 + i

ψε(‖x̄‖)
(‖x̄‖)

x1, x2 + i
ψε(‖x̄‖)
(‖x̄‖)

x2) | x̄ ∈ R2 ∩ D2
≤ε} (4.6)

Γ̃2 ∩ D4
≤ε ={(x1 − i

ψε(‖x̄‖)
(‖x̄‖)

x1, x2 − i
ψε(‖x̄‖)
(‖x̄‖)

x2) | x̄ ∈ R2 ∩ D2
≤ε} . (4.7)

In polar coordinates x1 = r cos θ, x2 = r sin θ, the sets 4.6 and 4.7 become

Γ2 ∩ D4
≤ε ={((r + iψε(r)) cos θ, (r + iψε(r)) sin θ) | r ∈ [0, ε], θ ∈ [0, 2π]} (4.8)

Γ̃2 ∩ D4
≤ε ={((r − iψε(r)) cos θ, (r − iψε(r)) sin θ) | r ∈ [0, ε], θ ∈ [0, 2π]}. (4.9)

Comparing the formula 4.4 with the formulas 4.8 and 4.9 shows that two Lagrangian

surgeries of W 2 obtained by Lagrangian handles Γ2 and Γ̃2 only affect the part σ(ϕ)

of the equations 5.1 and 5.2, in other words, two Lagrangian surgeries of W 2 are

obtained from two Lagrangian surgeries of W 1 followed by a rotation.
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The surgery obtained by Γ1 onW 1 results in two disjoint embedded circles. Parametrize

the piece lies in the right half plane by the embedded circle σ1 : S1 → C, then

σ1 ∪ −σ1 gives the union of these two embedded circles. Then the surgery of W 2

obtained is

W 2
1 ={(((σ1 ∪ −σ1)(ϕ)) cos θ, ((σ1 ∪ −σ1)(ϕ)) sin θ) | ϕ ∈ [0, 2π], θ ∈ [0, π]}

={(σ1(ϕ) cos θ, σ1(ϕ) sin θ) | ϕ ∈ [0, 2π], θ ∈ [0, 2π]}

Consider the Hamiltonian isotopy Υ : C2 × [0, 1]→ C2 given in Example 2.3.1.

We have

Υ1(W1
2) = { 1√

2
(σ1(ϕ)eiθ, σ1(ϕ)e−iθ) | ϕ ∈ [0, 2π], θ ∈ [0, 2π]}

which is a Chekanov Torus.

The surgery obtained by Γ̃1 on W 1 results in an embedded circle whose interior

contains the origin and let σ2 : S1 → C be a parametrization for this embedded

circle. Then the surgery of W 2 obtained is

W 2
2 ={(σ2(ϕ) cos θ, σ2(ϕ) sin θ) | ϕ ∈ [0, 2π], θ ∈ [0, π]}

Then there exists a Hamiltonian isotopy {Φt : C→ C}t∈[0,1] which takes the image

of σ2(S1) to the round circle given by σ̃2(ϕ) = rσ2e
iϕ where 2πr2σ2 is the area of the

embedded disc by σ2(S1), ϕ ∈ [0, 2π] and Φt(0) = 0 for all t ∈ [0, 1]. Consider the

map Ψ : W 2
2 × [0, 1]→ C2 given by

(σ2(ϕ) cos θ, σ2(ϕ) sin θ, t) 7→ (Φt(σ(ϕ)) cos θ,Φt(σ(ϕ)) sin θ).

The subset Ψt(W 2
2 ) of C2 is a torus since Φt(σ2(S1)) does not pass through the origin

of C for all t ∈ [0, 1]. Then the map Ψ : W 2
2 × [0, 1] → C2 is a Lagrangian isotopy

since Ψt(W 2
2 ) is a Lagrangian for all t ∈ [0, 1]. The following two embedded circles

βt1 : S1 → C2, eiϕ 7→ (Φt(σ(ϕ)),Φt(σ(ϕ)))

βt2 : S1 → C2, eiθ 7→ (Φt(σ(0)) cos θ,Φt(σ(0)) sin θ)

lie on the Ψt(W 2
2 ) and bound two embedded discs which correspond to the gener-

ators of π2(C2,Ψt(W 2
2 )) for all t ∈ [0, 1]. The discs bounded by βt1 : S1 → C2
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has the same area for all t ∈ [0, 1] since {Φt : C → C}t∈[0,1] is a Hamiltonian

isotopy. The discs bounded by βt2 : S1 → C2 has zero area since the one-form

z1dz̄1 + z2dz̄2 vanishes on βt2(S1). Hence by Proposition 2.3.3, the Lagrangian iso-

topy Ψ : W 2
2 × [0, 1]→ C2 is an exact Lagrangian isotopy and it can be extended to

a Hamiltonian isotopy of C2. In other words, W 2
2 is Hamiltonian isotopic to

W̃ 2 ={(rσ2eiϕ cos θ, rσ2e
iϕ sin θ) | ϕ ∈ [0, 2π], θ ∈ [0, π]} .

By the Hamiltonian isotopy Υ : C2 × [0, 1]→ C2 we have

Υ1(W̃ 2) = { rσ2√
2

(ei(ϕ+θ), ei(ϕ−θ)) | ϕ ∈ [0, 2π], θ ∈ [0, π]}.

If we let ϕ′ = ϕ+ θ and θ′ = ϕ− θ then

Υ1(W̃ 2) ={ rσ2√
2

(eiϕ
′
, eiθ

′
) | (ϕ′, θ′) ∈ R ⊂ R2}

whereR as in Figure 3.5. As a result we have

Υ1(W̃ 2) ={ rσ2√
2

(eiϕ
′
, eiθ

′
) | ϕ′ ∈ [0, 2π], θ′ ∈ [0, 2π]}

which is a Clifford torus.

Remark 4.3.2. A Lagrangian nodal sphere in C2 can have only one self-intersection

point. Otherwise, we could embed an orientable connected Lagrangian surface

more of genus more than one.

Remark 4.3.3. The surgeries of A Lagrangian nodal sphere in C2 are always pos-

itive. Otherwise, by performing negative Polterovich surgery one could obtain La-

grangian embedding of a Klein bottle into C2 whose impossibility is proved in [22].
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CHAPTER 5

THE METHOD OF INTEGRABLE HAMILTONIAN SYSTEMS

5.1 An Example of Integrable Hamiltonian Systems

An integrable Hamiltonian system is a pair which consists of a 2n-dimensional sym-

plectic manifold (M,ω) and a set of real valued smooth functions {f1, ..., fn} on M

with properties:

i. The set differentials {df1, ..., dfn} are almost everywhere (except a set of zero

measure) linearly independent on M ,

ii. The set of Hamiltonian vector fields {Xfj | ιXfjω = fj, j = 1, ..., n} satisfies

the equality ω(Xfj , Xfk) for all j, k = 1, ..., n.

Proposition 5.1.1 ([2,4]). Let (M,ω, {f1, ..., fn}) be an integrable Hamiltonian sys-

tem and F : M → Rn be the smooth function given by F = (f1, ..., fn). If c ∈ Rn is

a regular value of F : M → Rn then the fiber F−1(c) is a Lagrangian diffeomorphic

to Tk × Rn−k and hence compact connected regular fibers are diffeomorphic to Tn.

Consider the following functions :

G : R4 → R, G(q1, p1, q2, p2) = (p21 + p22)− (q21 + q22) + (q21 + q22)2 , (5.1)

H : R4 → R, H(q1, p1, q2, p2) = p2q1 − p1q2 . (5.2)

Proposition 5.1.2 ([28]). The triple (R4, ω0, {G,H}) is an integrable system.

Proof. The differentials of functions G,H : R4 → R are given by

dG =2q1(2q
2
1 + 2q22 − 1)dq1 + 2q2(2q

2
1 + 2q22 − 1)dq2 + 2p1dp1 + 2p2dp2

dH =p2dq1 − p1dq2 − q2dp1 + q1dp2 .
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The differentials dG and dH are linearly dependent if and only if one of the differ-

entials dG and dH is 0 or dH = α
2
dG for some non zero real number α.

The differential dG = 0 if and only if (q1, p1, q2, p2) = (0, 0, 0, 0) or 2q21 + 2q22 = 1,

(p1, p2) = (0, 0). The differential dH = 0 if and only if (q1, p1, q2, p2) = (0, 0, 0, 0).

Now let dH = α
2
dG for some non zero real number α. Then we get the equations

p2 = αq1(2q
2
1 + 2q22 − 1), p1 = −αq2(2q21 + 2q22 − 1), q2 = −αp1, q1 = αp2 .

These equations have the following solutions:

i. p1 6= 0, p2 = ±
√
−2a4p21+α2+1
√
2α2 , q1 = αp2, q2 = −αp1

ii. p1 = 0, p2 = ±
√
α2+1√
2α2 , q1 = αp2, q2 = 0

iii. (q1, p1, q2, p2) = (0, 0, 0, 0) .

Each of these cases yields either an immersed or an embedded submanifolds of R4

which has dimension≤ 3. Hence, the set of points where dG and dH are linearly

dependent is measure zero in R4.

Let

XH = AH∂q1 +BH∂q2 + CH∂p1 +DH∂p2

XG = AG∂q1 +BG∂q2 + CG∂p1 +DG∂p2

be the vector fields such that ιXGω0 = dG and ιXHω0 = dH . Then

ιXHω0 =(dq1 ∧ dp1 + dq2 ∧ dp2)(XH , ·)

=dq1(XH)dp1 − dp1(XH)dq1 + dq2(XH)dp2 − dp2(XH)dq2

=AHdp1 − CHdq1 +BHdp2 −DHdq2

and similarly we have,

ιXGω0 =AGdp1 − CGdq1 +BGdp2 −DGdq2 .

So

XH =− q2∂q1 + q1∂q2 − p2∂p1 + p1∂p2

XG =2p1∂q1 + 2p2∂q2 − 2q1(2q
2
1 + 2q22 − 1)∂p1 − 2q2(2q

2
1 + 2q22 − 1)∂p2 .
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As a result we have

ω0(XH , XG) =dH(XG) = −dG(XH)

=p22p1 − p12p2 + q22q1(2q
2
1 + 2q22 − 1)− q12q2(2q21 + 2q22 − 1) = 0

5.2 Lagrangian Perturbations through the Hamiltonian System

Let F : R4 → R2 be the function defined by F = (G,H) where G,H : R2 → R are

the functions given by the formulas 5.1 and 5.2. Define the following subset of R2 :

BF = {(a,± 1

3
√

3
(1 + 6a+

√
1 + 3a)(1 +

√
1 + 3a)) ∈ R2 | a ≥ −1

4
} . (5.3)

Theorem 5.2.1. Range of the function F : R4 → R2 is the region in R2 bounded

by BF and containing origin. The set of critical values of F : R4 → R2 is the set

BF ∪ {(0, 0)}.

Proof. If we use polar coordinates

p1 = rp cos θp p2 = rp sin θp rp ≥ 0, θp ∈ [0, 2π] (5.4)

q1 = rq cos θq q2 = rq sin θq rq ≥ 0, θp ∈ [0, 2π] (5.5)

then we have G = r2p − r2q + r4q and H = rprq sin(θp − θq) . We see that H satisfies

the inequality −|rprq| ≤ H ≤ |rprq| and it takes every value in this interval and it

achieves the boundary values when we have sin(θp − θq) = ±1 . If we let G = a,

then we have r2p = r2q − r4q + a and as a result H2 = (r2q − r4q + a)r2q sin2(θp− θq) . If

we maximize the function h : R+ → R given by h(rq) = (r2q −r4q +a)r2q we see that

it gets its maximum value 1
27

(1 + 6a+
√

1 + 3a)(1 +
√

1 + 3a) at rq =

√
1+
√
1+3a√
3

.

When G = a and rq =

√
1+
√
1+3a√
3

, we have rp = 1
3

√
1 + 6a+

√
1 + 3a. Hence

H has its maximum Ma = 1
3
√
3
(1 + 6a +

√
1 + 3a)(1 +

√
1 + 3a) and minimum

−Ma = − 1
3
√
3
(1 + 6a+

√
1 + 3a)(1 +

√
1 + 3a) when G = a. This proves the first

assertion of the theorem.
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BF

G

H

Figure 5.1: Sketch of range of the function F : R4 → R2.

Critical points of F are the points where the differential dF has rank< 2. In the

proof of Proposition 5.1.2 , we found the points where the differentials dG and dH

are linearly dependent. These are exactly the critical points of F . When inserted in

F we see that set of critical values of F is

{
(3 + 2α2 − α4

4α4
,
α2 + 1

2α3

)
∈ R2 |α ∈ R \ {0}} ∪ {(0, 0), (−1

4
, 0)} .

If we let a = 3+2α2−α4

4α4 then we get Ma = α2+1
2α3 when α > 0 and Ma = −α2+1

2α3 when

α < 0. If we let a = −1
4

then M− 1
4

= 0. Hence the set of critical values of F is the

set BF ∪ {(0, 0)} which proves the second assertion of the theorem.

Proposition 5.2.2 ([28]). If (a, b) ∈ R2 lies in the image of F then the fibers

F−1(a, b) is

i. A circle if (a, b) ∈ BF ,

ii. A Chekanov torus if −1
4
< a < 0 and b = 0,

iii. The immersed Lagrangian sphere W 2 if (a, b) = (0, 0),

iv. A Clifford Torus if a > 0 and b = 0,

v. A non-monotone Lagrangian torus if otherwise.

Proposition 5.2.2 has two immediate important corollaries:

Theorem 5.2.3 ([28]). There exist Lagrangian perturbations of the Lagrangian nodal

sphere W 2 = F−1(0, 0), which are Clifford and Chekanov tori.
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Proof. If we perturb the Lagrangian nodal sphere W 2 = F−1(0, 0) as F−1(ε, 0),

then we get a Clifford torus when ε > 0 and a Chekanov torus when ε < 0 for

sufficiently small ε.

Theorem 5.2.4 ([28]). Chekanov and Clifford tori are Lagrangian isotopic.

Proof. Let F−1(a1, 0) be a Clifford torus and F−1(a2, 0) be a Chekanov torus. Let

β : [0, 1] → R2 any path in the range of F connecting a1 to a2 and not passing

through the origin. Then {F−1(β(t))}t∈[0,1] induces a Lagrangian isotopy connect-

ing the tori F−1(a1, 0) and F−1(a2, 0).

Lemma 5.2.5. Let f : R2 → R be a function given by f(q, p) = p2 − q2 + q4. The

level set f−1(a) of the function f : R2 → R is :

i. Union of the two points (± 1√
2
, 0) if a = −1

4
,

ii. Union of two embedded circles if −1
4
< a < 0,

iii. Immersed circle W 1 if a = 0,

iv. An embedded circle containing origin if a > 0 .

Proof. Let g : R2 → R be a function given by g(q̃, p̃) = p̃2 − q̃ + q̃2. Then we have

g(q̃, p̃) = p̃2−(q̃− 1
2
)2− 1

4
and f(q, p) = g(q2, p). Then a point (q0, p0) is in the level

set f−1(a) if and only if the point (q20, p0) is in the set g−1(a)∩{(q̃, p̃) | q̃ ≥ 0} ⊆ R2.

p̃

q̃

p

q

(a) (b)

Figure 5.2: The sets g−1(a) ∩ {(q̃, p̃) | q̃ ≥ 0} and f−1(a) for different a values.

The values of the function g : R2 → R are greater than equal to−1
4
. If a ∈ [−1

4
,∞),

then the set g−1(a) ∩ {(q̃, p̃) | q̃ ≥ 0} ⊆ R2 is
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i. The point (1
2
, 0) if a = −1

4
,

ii. The round circle centered at (1
2
, 0) of radius

√
a+ 1

4
if −1

4
< a < 0,

iii. The round circle centered at (1
2
, 0) passing from (0, 0) if a = 0,

iv. The segment of the round circle centered at (1
2
, 0) of radius

√
a+ 1

4
if a > 0 .

This proves the lemma except that the immersed circle in Lemma 5.2(iii) is W 1. If

we let a = 0 and q = sinϕ, ϕ ∈ [0, 2π], then we have 0 = p2 − q2 + q4 = p2 −
sin2 ϕ + sin4 ϕ = p2 − 1

4
sin2 2ϕ which is equivalent to p = ±1

2
sin 2ϕ, ϕ ∈ [0, 2π].

Each case gives a parametrization of W 1 in R2, see 4.1 .

Remark 5.2.6. We have G(q1, p1, q2, p2) = f(
√
q21 + q22,

√
p21 + p22) or in polar co-

ordinates 5.4 and 5.5 we haveG(q1, p1, q2, p2) = f(rq, rp) for the functionG : R4 →
R given by 5.1.

Proof of Proposition 5.2.2. In polar coordinates 5.4 and 5.5, we have G = r2p−r2q +

r4q , H = rprq sin(θp − θq). By the Remark 5.2.6 the fiber F−1(a, b) is given by

{(rq cos θq, rp cos θp, rq sin θq, rp sin θp) | f(rq, rp) = a, rprq sin(θp − θq) = b}
(5.6)

i. Let (a, b) ∈ BF . Then b = ±Ma where Ma is given in the proof of Theorem

5.2.1.

In the case (a, b) = (−1
4
, 0) we have rp = 0, rq = 1√

2
and the fiber is

F−1(−1
4
, 0) = { 1√

2
(cos θq, 0, sin θq, 0) ∈ R4 | θq ∈ [0, 2π]} is a circle.

In the case (a, b) 6= (−1
4
, 0) , we have

(rq, rp) = (

√
1 +
√

1 + 3a√
3

,
1

3

√
1 + 6a+

√
1 + 3a) , θp = θq +

π

2
if b = Ma,

(rq, rp) = (

√
1 +
√

1 + 3a√
3

,
1

3

√
1 + 6a+

√
1 + 3a) , θp = θq +

π

2
if b = −Ma

for the fibers F−1(a, b) by proof of Theorem 5.2.1. As a result the fiber

F−1(a, b) is again a circle.

For the fibers F−1(a, 0) in (ii-iv), we have (rq, rp) ∈ f−1(a)∩{(q, p) | q, p ≥ 0} and

θp is equal to θq or θq + π.
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p

q

p

q

p

q

Figure 5.3: The sets f−1(a) ∩ {(q, p) | q, p ≥ 0}.

By Lemma 5.2, the values (rq, rp) can take have graphs like in the Figure 5.3 where

a = 0 case is one-fourth of the immersed circle W 1. If we parametrize these curves

by γa : [0, 1]→ C where γa = (γa1 , γ
a
2 ), then the fibers F−1(a, 0) is the union of the

following subsets of R4

{(γa1 (s) cos θq,±γa2 (s) cos θq, γ1(s)
a sin θq,±γa2 (s) sin θq) | s ∈ [0, 1], θq ∈ [0, 2π]}.

In C2, these sets are given by

{((γa1 (s)± iγa2 (s)) cos θq, (γ
a
1 (s)± iγa2 (s)) sin θq) | s ∈ [0, 1], θq ∈ [0, 2π]}.

Im

Re

Im Im

Re Re

Figure 5.4: The sets {γa1 (s)± iγa2 (s) | s ∈ [0, 1]}.

ii. If −1
4
< a < 0 and b = 0 then union of the sets {γa1 (s) ± iγa2 (s) | s ∈ [0, 1]}

is an embedded circle which lies in the right half plane as in the Figure 5.4.

If we parametrize this embedded circle by a map σa : S1 → C, then the fiber

F−1(a, 0) is given by

{(σa(ϕ) cos θq, σ
a(ϕ) sin θq) |ϕ, θq ∈ [0, 2π]}

Consider the Hamiltonian isotopy Υ : C2 × [0, 1] → C2 given by Example
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2.3.1. We have

Υ1(F−1(a, 0)) = { 1√
2

(σa(ϕ)eiθ, σa(ϕ)e−iθ) | ϕ ∈ [0, 2π], θ ∈ [0, 2π]}

which is a Chekanov Torus.

iii. If (a, b) = (0, 0) then union of the sets {γa1 (s) ± iγa2 (s) | s ∈ [0, 1]} is right

half of the immersed circle W 1 as in the Figure 5.4. If we parametrize it by

σ : [0, 1] → C where σ(0) = σ(1) = 0 ∈ C, then the fiber F−1(0, 0) is given

by

F−1(0, 0) ={(σ(s) cos θq, σ(s) sin θq) | s ∈ [0, 1], θq ∈ [0, 2π]} (5.7)

={(σ̃(s) cos θq, σ̃(s) sin θq) | s ∈ [0, 1], θq ∈ [0, π]} (5.8)

where σ̃ : S1 → C is the concatenation of the maps σ,−σ : [0, 1]→ C. Then

σ̃ : S1 → C traces the immersed circle W 1. Hence it can be parametrized by

a map σ0 : S1 → C where σ0(ϕ) = sinϕ+ i
2

sin 2ϕ. Then F−1(0, 0) is given

by

{((sinϕ+
i

2
sin 2ϕ) cos θ, (sinϕ+

i

2
sin 2ϕ) sin θ) |ϕ ∈ [0, 2π], θ ∈ [0, π]}

which is Lagrangian nodal sphere W 2.

iv. If a > 0 and b = 0 then by similar arguments as in part (ii) of the proof, we

see that the fiber F−1(a, 0) is given by

{(σa(s) cos θq, σ
a(s) sin θq) | s ∈ [0, 1], θq ∈ [0, 2π]} (5.9)

where σa : [0, 1] → C is a parametrization of the right half of the embedded

circle f−1(a) given in the Figure 5.4. The set given by equation 5.9 is equal to

{(σ̃a(ϕ) cos θq, σ̃
a(ϕ) sin θq) |ϕ ∈ [0, 2π], θq ∈ [0, π]} (5.10)

where σ̃a : S1 → C is a parametrization of the circle σa ∪ −σa. There exists

a Hamiltonian isotopy {Φt : C → C}t∈[0,1] which takes the image of σ̃a(S1)

to the round circle given by σ̃a2(ϕ) = rae
iϕ where ϕ ∈ [0, 2π] and Φt(0) = 0

for all t ∈ [0, 1]. Consider the map Ψ : F−1(a, 0) × [0, 1] → C2 given by

(σ̃aϕ) cos θ, σ̃a(ϕ) sin θ, t) 7→ (Φt(σ̃aϕ)) cos θ,Φt(σ̃a(ϕ)) sin θ)

The subset Ψt(F−1(a, 0)) of C2 is a torus since Φt(σ̃a(S1)) does not pass

through the origin of C for all t ∈ [0, 1]. The map Ψ : F−1(a, 0)× [0, 1]→ C2
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is a Lagrangian isotopy since Ψt(F−1(a, 0)) is a Lagrangian for all t ∈ [0, 1].

The following two embedded circles

βt1 : S1 → C2, eiϕ 7→ (Φt(σ̃a(ϕ)),Φt(σ̃a(ϕ)))

βt2 : S1 → C2, eiθ 7→ (Φt(σ̃a(0)) cos θ,Φt(σ̃a(0)) sin θ)

lie on the Ψt(F−1(a, 0)) and bound two embedded discs which correspond to

the generators of π2(C2,Ψt(F−1(a, 0))) for all t ∈ [0, 1]. The discs bounded

by βt1 : S1 → C2 has the same area for all t ∈ [0, 1] since {Φt : C →
C}t∈[0,1] is a Hamiltonian isotopy. The discs bounded by βt2 : S1 → C2 has

zero area since the one-form z1dz̄1 + z2dz̄2 vanishes on βt2(S1). Hence by

Proposition 2.3.3, the Lagrangian isotopy Ψ : F−1(a, 0) × [0, 1] → C2 is an

exact Lagrangian isotopy and it can be extended to a Hamiltonian isotopy of

C2. In other words, W 2
2 is Hamiltonian isotopic to

T2
a ={(raeiϕ cos θ, rae

iϕ sin θ) | ϕ ∈ [0, 2π], θ ∈ [0, π]} .

By the Hamiltonian isotopy Υ : C2 × [0, 1]→ C2 given in the Example 2.3.1

we have

Υ1(T2
a) = { ra√

2
(ei(ϕ+θ), ei(ϕ−θ)) | ϕ ∈ [0, 2π], θ ∈ [0, π]}.

If we let ϕ′ = ϕ+ θ and θ′ = ϕ− θ then

Υ1(T2
a) ={ ra√

2
(eiϕ

′
, eiθ

′
) | (ϕ′, θ′) ∈ R ⊂ R2}

whereR as in Figure 3.5. As a result we have

Υ1(T2
a) ={ ra√

2
(eiϕ

′
, eiθ

′
) | ϕ′ ∈ [0, 2π], θ′ ∈ [0, 2π]}

which is a Clifford torus.

v. Let (a, b) in the interior of the image of F and (a, b) 6= (0, 0). Without loss

of generality assume b > 0. We have rprq sin(θp − θq) = b. This implies

that rprq ≥ b. By Lemma 5.2, the values (rq, rp) can take lie on graphs like

in the Figure 5.3 and satisfies rprq ≥ b. If we parametrize these curves by

γa : [0, 1] → C where γa = (γa1 , γ
a
2 ), then the points (q1, p1, q2, p2) on the
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fiber F−1(a, b) is given by

q1 =γa1 (s) cos θq (5.11)

p1 =γa2 (s) cos(θq + θ0(s)) or − γa2 (s) cos(θq − θ0(s)) (5.12)

q2 =γa1 (s) sin θq (5.13)

p2 =γa2 (s) sin(θq + θ0(s)) or − γa2 (s) sin(θq − θ0(s)) (5.14)

where s ∈ [0, 1], θq ∈ [0, 2π] and θ0(s) = arcsin( b
γa1 (s)γ

a
2 (s)

). If we identify C2

with R4 then we have

z1 =γa1 (s) cos θq ± iγa2 (s) cos(θq ± θ0(s)) (5.15)

z2 =γa1 (s) sin θq ± iγa2 (s) sin(θq ± θ0(s)) (5.16)

where s ∈ [0, 1], θq ∈ [0, 2π] and θ0(s) = arcsin( b
γa1 (s)γ

a
2 (s)

). This shows

that the fiber F−1(a, b) is compact, since every function in the expressions

5.15 and 5.16 is smooth and the domain is compact. When s = 0, we have

θ0(0) = π
2

since γa1 (0)γa2 (0) = b. So the expressions 5.15 and 5.16 become

z1 = γa1 (0) and z2 = iγa2 (0). This shows that the fiber F−1(a, b) is connected

since it is union of two connected spaces with non-empty intersection. Then

by the Proposition 5.2.2 F−1(a, b) is a Lagrangian torus.

Consider the loop β : [0, 2π]→ C2 on F−1(a, b) which is given by

z1 = γa1 (0) cos θq − iγa2 (0) sin θq and z2 = γa1 (0) sin θq + iγa2 (0) cos θq

where θq ∈ [0, 2π]. The one-form i
2
(z1dz̄1 + z2dz̄2) is equal to the one-form

−γa1 (0)γa2 (0)dθq = −bdθq on the loop β : [0, 2π]→ C2. This show that a disc

bounded by β has area 2πb. For each value of θq we have a unitary matrix Aθq
associated to tangent plane of F−1(a, b) and given by

Aθq = diag(− sin θq − i cos θq, cos θq − i sin θq) . (5.17)

det2CAθq = 1. Hence the map from S1 to S1 defined by Aθq is constant and its

degree is zero. As a result, Maslov class of a disc bounded by β : [0, 2π]→ C2

is zero. This proves that F−1(a, b) is non-monotone.
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