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Supervisor, Physics Department, METU

Examining Committee Members:

Prof. Dr. Ali Ulvi Yılmazer
Physics Engineering Department, Ankara University

Prof. Dr. Seçkin Kürkçüoğlu
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ABSTRACT

EQUIVARIANT REDUCTION OF MATRIX GAUGE THEORIES AND
EMERGENT CHAOTIC DYNAMICS

Toğa, Göksu Can

M.S., Department of Physics

Supervisor : Prof. Dr. Seçkin Kürkçüoğlu

July 2018, 74 pages

In this thesis we focus on a massive deformation of a Yang-Mills matrix gauge the-
ory. We first layout the essential features of this model including fuzzy 4- sphere ex-
tremum of the mass deformed potential as well as its relation with string theoretic ma-
trix models such as the BFSS model. Starting with such a model with U(4N) gauge
symmetry, we determine the SU(4) equivariant fluctuations modes. We trace over
the fuzzy 4-spheres at the matrix levels N = 1

6
(n+ 1)(n+ 2)(n+ 3), (n : 1, 2 . . . 5)

and obtain the corresponding low energy effective actions(LEA).This reduction over
fuzzy 4-sphere breaks the U(4) gauge symmetry down to U(1)× U(1), which is fur-
ther broken to Z2 × Z2 by the Gauss Law constraint on the gauge fields. We solve
numerically the Hamilton’s equations of motions for the corresponding phase space
variables and using the latter obtain the Lyapunov exponents, from which we con-
clude the presence of chaotic dynamics in the LEA. Finally in the Euclidean time,
we also find that the reduced LEA’s have kink solutions with topological charges in
Z2 × Z2

Keywords: Matrix Models, Fuzzy Spaces, Yang Mills Models, Mass deformed matrix
models
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ÖZ

MATRİS AYAR TEORİLERİNİN SİMETRİK İNDİRGENMESİ VE KAOTİK
DİNAMİĞİ

Toğa, Göksu Can

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Seçkin Kürkçüoğlu

Temmuz 2018 , 74 sayfa

Bu tezde, ilk olarak kütle deformasyonu taşıyan Yang Mills matris ayar teorilerine
odaklanıldı. Bu modelin kütle bozunumlu potansiyelinin ekstremumu olan fuzzy 4-
küre konfigürasyonları ile sicim teorisi kaynaklı matris teorileri, örneğin BFSS mo-
deli, ile ilişkisi ana hatlarıyla ortaya konuldu. U(4N) ayar simetrisini taşıyan bir mo-
delden başlıyarak, SU(4) simetrik salınım modlarını elde ettik. N = 1

6
(n + 1)(n +

2)(n + 3), (n = 1, . . . , 5) matris mertebelerindeki fuzzy 4-küreler üzerinde iz iş-
lemi yapılarak, bu mertebelere denk düşen düşük enerjili etkin eylemleri hesapladık.
Faz uzayı değişkenlerinin Hamilton hareket denklemlerini nümerik metotlar ile çö-
züp Lyapunov üstlerini de elde ettik. Bu bilgilerin ışığında ilgili düşük enerjili et-
kin eylemlerin kaotik dinamiği olduğu sonucuna vardık. Son olarak, Öklidyen zaman
iminde düşük enerjili etkin eylemlerin 1 + 0 boyutta bulunan tipik yapıda instanton
çözümleri taşıdığını da gösterdik.

Anahtar Kelimeler: Matris Modelleri, Fuzzy Uzaylar, Yang Mills Modelleri
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CHAPTER 1

INTRODUCTION

Matrix gauge theories occupy an important place in current research in theoretical

physics, due to their various connections with M-theory and String theories. Among

these models, it may be useful to mention Banks-Fischler-Shenker-Suskind (BFSS)[1]

model, since the matrix model studied in this thesis is strongly tied to it as will be ex-

plained in detail in Chapter 2. BFSS model is a supersymmetric quantum mechanics

matrix model, whose bosonic part contains N × N matrices transforming under the

adjoint representation of a local U(N) gauge symmetry. These nine matrices coupled

with a single gauge field, through a covariant derivation and they couple each other

with a fourth order potential term. The model is invariant under a U(N) gauge sym-

metry and also under a global SO(9) symmetry, which is a rigid rotation of the nine

matrices.

The matrix entries depend on time only. We will only focus on the bosoinc part of

this model, therefore we do not discuss its fermionic content. This model arises dis-

crete light-cone quantization of M -theory on flat backgrounds(DLCQ). The massive

deformation of this model is known as the BMN matrix model[2], and it arises as the

DLCQ of M-theory on certain curved backgrounds. BMN model has fuzzy 2 spheres

and their direct sum as vacuum solutions. These matrix models provide a descrip-

tion of the dynamics of N coincident D0-branes, which has the dual description of

a black hole in the large N and strong coupling limit[3]. Recently, BFSS & BMN

matrix models have been subject to various studies exploring their chaotic dynamics

at the large temperature i.e. near classical level, with the motivation of gaining further

insights on the black hole description in the gravity dual [4, 3, 5, 6]
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In this thesis, we focus on a massive deformation of Yang-Mills matrix gauge theory

with 5 matrices. This may be seen as a massive deformation of a subsector of the

BFSS model as we will explain in Chapter 2. In contrast with fuzzy 2-spheres ap-

pearing as classical solutions in the BMN theory this model have classical solutions

which are fuzzy four spheres[7, 8, 9]. Our main objective in the thesis is to examine

certain fluctuations satisfying symmetry constraints about this classical configuration

and utilizing their explicit form to obtain reduced effective actions. Subsequently,

we reveal the chaotic dynamics emerging from these effective actions by calculating

their Lyapunov exponents using numerical solutions to their Hamilton’s equations of

motion.

Next, we provide a detail outline of the thesis and a brief summary of our results. In

Chapter 2, we provide a general discussion of the fuzzy spaces[10, 11, 12], first fo-

cusing on the construction and properties of the simplest of all fuzzy spaces, namely

the fuzzy sphere. After giving a brief description on how this construction gener-

alizes to complex projective spaces CPN and in particular, CP 2, we focus on the

central subject of this thesis which is an extensive review of the construction of the

fuzzy 4-sphere[13, 14, 15, 16]. This chapter also includes a detailed description of

Yang-Mills matrix model with 5-matrices and massive and/or Chern-Simmons(CS)

type deformation terms. In particular, various features of the work of [13] on this

matrix model with CS term is reviewed here. Chapter 3 contains all the original re-

sults obtained in the study in collaboration with Ü. H. Coşkun, S. Kürkçüoğlu & G.

Ünal [17]. Here we determine the equivariant parameterizations of the gauge fields

and the fluctuations of a mass-deformed U(4N) Yang-Mills matrix model about the

four concentric fuzzy 4-sphere configurations. The latter are solutions of the matrix

model only for negative value (µ2 = −8) of the mass squared which may be an in-

dication of instabilities. Nevertheless the low energy effective actions(LEA) that we

obtain by performing traces over the equivariantly symmetric configurations at sev-

eral different matrix levels(sizes) all have potentials which are bounded from below,

which implies that the negativity of µ2 do not lead to instabilities under equivariant

fluctuations. After dimensional reduction U(4) gauge symmetry of the concentric S4
F

configuration is reduced to U(1)× U(1) . Since the gauge fields in the LEAs are not

dynamical, their equations of motion yield not differential but algebraic equations,

2



which are constraint equations. They are known as the Gauss law constraints in the

literature[4]. Solving these equations turns out to be equal to enforcing the two com-

plex fields in the LEAs to have zero charge, that is they are real under the abelian

gauge fields. This breaks U(1) × U(1) further down to Z2 × Z2. This chapter con-

tains our findings providing ample evidence for the emergent Chaotic dynamics of

the LEAs. In particular, we find the Lyapunov spectrum at several different energies,

and give a number of plots demonstrating the time development of the Lyapunov ex-

ponents which all converge to fixed values well before the computation time used in

numerical calculations. (3.1) summarizes our numerical findings for the Lyapunov

exponents. In the last section of this chapter we consider the structure of the LEA’s

in the Euclidean signature, and exhibit that they have kink solutions i.e. instantons in

1 + 0 dimensions[18, 19, 20]. Chapter 4 gives a summary of the results obtained &

conclusion reached in this thesis.
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CHAPTER 2

INTRODUCTION TO FUZZY SPACES

In this chapter we introduce fuzzy spaces and explain our interest in them. In this

thesis we will focus on on Yang-Mills theories with fuzzy four sphere configurations.

In order to understand the Fuzzy S4, first we have to familiarize ourselves with the

fuzzy S2 and CP 3 which are more elementary examples of fuzzy spaces and they

will be of use in the construction of fuzzy S4 and understanding its detailed structure.

Lets start with stating some of our motivations to study fuzzy and non-commutative

geometries (First of all use of non commutative theory emerges in the context of

the String theory from the D brane configurations. In the theory of N coincident

D- branes described by the U(n) Yang-Mills theory. Coordinates of this theory are

represented by U(n) matrices and expectedly they are non-commutative). A more

intuitive motivation for studying fuzzy spaces is that as we dwell into smaller scales,

space time itself behaves quantized which can be understood in the context of non-

commutative geometry. Since we will construct S4
F as a S2 bundle overCP 3 lets first

investigate the construction of S2
F and CP n before introducing the Fuzzy S4. Here

we will follow the articles of Kimura[13],Steinacker[7], notes of Ydri[8] and the book

of Balachandran et. al[10]

2.1 Construction of S2
F and CPN

F

We start our discussion with one of the most basic example of the fuzzy spaces S2
F [21,

10]. Our plan is to review the construction and properties of the Fuzzy S2 and then

Fuzzy CPN in order to familiarize the reader with the ideas of fuzzy spaces and

5



prepare for further developments.

2.1.1 Geometry of S2

We can define S2 as the compact manifold embedded inR3 fulfilling the relation[22]

x2
1 + x2

2 + x2
3 = r2, (x1, x2, x3) ∈ R3. (2.1)

The algebra of smooth bounded functions on S2 denoted as CP∞(S2). Letting

f(x) ∈ CP∞(S2) with the coordiantes xi fulfilling the relation (2.1) we can expand

these functions as follows

f(x) =
3∑

a1,a2,...an=1

fa1...anxa1 . . . xan . (2.2)

Equivalently functions on S2 can be expanded in terms of Spherical Harmonics as

f(θ, φ) =
∑
lm

clmYlm(θ, φ) (2.3)

With functions on S2 in hand, we are in position to define the derivatives on S2. This

is a map from C∞(S2) onto itself which is given by the generators of the rotation

group of S2 and satisfies the Leibniz rule. We can write it as

Lµ = −iεµνρxν∂ρ, (2.4)

where the Greek indices µ, ν, ρ runs from 1 to 3. This relation can also be given in

vector notation as
~L = −ix×∇ (2.5)

Lµ’s fulfill the SU(2) commutation relations as expected.

[Lµ, Lν ] = iεµνρLρ (2.6)

as expected it readily follows from (2.4) that xµLµ = 0 so that ~x ⊥ ~L which lead us

to realize that ~L is perpendicular to the radial direction on S2 which means that it is

the tangential to the S2

Laplacian on S2 is given by

L2 = LµLµ (2.7)

6



From group theory and also from quantum mechanics we know that the eigenvalues

of this operator is l(l + 1) since it corresponds to the Casimir operator of the group

SU(2) from the former and they are essentially the angular momentum operators from

the latter, perspective. Also, note that we can define a scalar product on functions on

S2 via

(f, g) =
1

2πR

∫
d3x δ(x2

µ − r2)f ∗(x)g(x) (2.8)

For both f(x) and g(x) ∈ C∞(S2).

We can also define S2 by making use of the first Hopf fibration. To this end consider

the Projection map P . Let g ∈ SU(2) generated by the usual Pauli matrices τ . We

may write,

gσ3g
−1 = n̂.~τ . (2.9)

gn̂̇~τg−1 = n̂.~τ ,

where n̂0 = (0, 0, 1),n̂, are unit vectors in R3. One can understand this map in the

following way. Action of g rotates the unit vector n̂0 point along the positive x3

direction to a general radially outward vector n̂. Indeed squaring both sides in (2.10)

we get

gτ3g
−1gτ3g

−1 = n̂µn̂ντµτν , (2.10)

gτ 2
3 g
−1 = n̂µn̂ν(δµν + iεµνρτρ),

1 = n̂µn̂νδµν + iεµνρn̂µn̂ντρ,

1 = n̂µn̂µ.

Let us note that if we take g → gh, with h ∈ U(1) ⊂ SU(2) given as h = e
i
2
θσ3 .

Using the (2.10) we find

gσ3g
−1 → ghτ3h

−1g−1 = ge
i
2
θσ3τ3e

i
2
θτ3g−1 = gσ3g

−1, (2.11)

which shows us that (2.10) is left invariant under the transformation g → gh. This

means that all element of gh = ge
i
2
θσ3 of S3 ≡ SU(2) are projected on to the same

point on S2 We can express this equivalence class as

n̂ ∈ S2 ←→ [ge
i
2
θτ3 ] ∈ SU(2)

U(1)
, (2.12)

This amount to the construction of S2 as the adjoint orbit of SU(2) through σ3. In

other words, the equivalence class of parts g ≡ gh on S3 are mapped to a single

7



point of S2. Since (2.10) is equivalent to rotation of n̂ by an orthogonal matrix R ∈
SO(3) ≡ SU(2) as

n̂′ = Rn̂, (2.13)

There is also another way to understand this Hopf Fibration. Starting from the 2

dimensional flat complex spaceC2 spanned by Z = {z1, z2} and removing the origin

we can write coordinates of the complex plane as ξ = z
|z| . Since we may write

ξ = (ξ1, ξ2) = (α1 + iα2, β1 + iβ2), |ξ|2 = α2
1 + α2

2 + β2
1 + β2

2 = 1 (2.14)

Observe that ξ define the manifold S3. Now we can consider the projection map

Π : S3 → S2 which can be given as

xµ(ξ) = ξ∗τµξ (2.15)

Obviously (2.15) is invariant under the U(1) transformations ξ → ξeiθ. We can check

that square of the xµ ∈ S2, since

xµxµ = (ξ†τµξ)
2 = (ξ†α(τµ)αβξβ)(ξ†γ(τµ)γδξδ), (2.16)

= ξ†αξβξ
†
γξδ(τµ)αβ(τµ)γδ,

= ξ†αξβξ
†
γξδ(δαβδγδ − 2εαγεβδ),

= ξ†αξαξ
†
γξγ − 2ξ†αξβξ

†
γεαγεβδ,

= 1− 2ξ†αξβξ
†
γξδ(δαβδαδδγβ),

= 1− 2 + 2,

= 1.

Where we have used the Fierz identity for Pauli matrices in passing from the 2nd to

3rd line of (2.16) in the previous calculation. Which can be given more explicitly as.

(τµ)αβ(τµ)γσ = δαβδγσ − 2εαγεβσ, (2.17)

= δαβδγσ − 2δαβδγσ + 2δασδβγ,

= −δαβδγσ + 2δασδβγ.

Thus we have showed that indeed xµ ∈ S2 with (α, β, γ, σ) = (1, 2). And we have

constructed the descent chain of manifolds asC2 → S3 → S2 where the second arrow

in this chain corresponds to the 1st Hopf Map, which we have previously discussed

from another perspective. SU(2)→ S2.
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2.1.2 Construction of Fuzzy S2

In order to get the fuzzy versions of these spaces we can quantize these manifolds in

the following manner. Consider replacing the complex coordinates zα and z̄α by the

operators aα and a†β [
aα, a

†
β

]
= 1 (2.18)

Where α, β runs from 1 to 2, in other words, we have two pairs of annihilation and

creation operators. We can also define the number operator N as

N = a†iai (2.19)

Where sum over repeated indices is implied. Now we need to parametrize the ξα. As

an intermediate step we may write.

ξα ≡ ai
1√
N

ξ†α ≡ a†i
1√
N

N 6= 0 (2.20)

The condition N 6= 0 tells us that we have excluded the vacuum from the Fock

space. But clearly such condition can not be satisfied as successive application of the

annihilation operator aα 1√
N̂

will naturally create it from any Fock state |m〉. This

problem, will not perisist as we move on the quantization of S2.

To get the quantized version of S2 we replace (2.15) with

xµ = ξ†τµξ, (2.21)

= 1√
N̂
a†τµa

1√
N̂
,

= 1

N̂
a†τµa.

Observe that [xµ, N ] = 0, so we can restrict xµ to act on a subspace with eigenvalue

of N equal to n 6= 0. More specifically we may restrict to the (n + 1)-dimensional

Hilbert space spanned by the vectors.

|n1, n2〉 =
(a†1)n1

√
n1!

(a†2)n2

√
n2!
|0, 0〉 , n1 + n2 = n. (2.22)

Thus xµ are (n+1)×(n+1) Hermitian matrices acting on |n1, n2〉. By the irreducible

action of xµ on these states the full matrix algebra of (n+ 1)× (n+ 1) is generated.
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Note that we could relate the xi to the Schwinger construction of SU(2) generators

in the following way. For such Lµ that is generating SU(2) we have.

Lµ =
1

2
a†τµa, (2.23)

with the usual commutation relations

[Lµ, Lν ] = iεµνρLρ. (2.24)

Letting N = n in this subspace we get

Lµ =
n

2
xµ. (2.25)

Observe that the adjoint action of Lµ on a†α[
Lµ, a

†
α

]
=

1

2
(τµ)δγ

[
a†δaγ, a

†
α

]
, (2.26)

=
1

2
(τµ)γδa

†
γδδα,

=
1

2
(τµ)γαa

†
γ,

And likewise we get

[Lµ, aα] =
1

2
(τµ)αµaµ (2.27)

which shows that the operators aα and a†α transform as spin 1
2

under SU(2). Hence

the Hilbert space spanned by the state vectors created a†α span the n-fold symmetric

tensor product representation of SU(2).(
1

2
⊗ 1

2
· · · ⊗ 1

2

)
sym

≡ n

2
. (2.28)

From standard quantum mechanics, we know that Casimir operator for SU(2) is given

by

L2
µ =

n

2
(
n

2
+ 1)1n+1, (2.29)

in the spin n
2

irreducible representation. Now using the fact that xµ = 2
n
Li, as given

in (2.25) We can obtain the commutation relation between the coordinates xµ as

[xµ, xν ] =
2

n
εµνρxρ, (2.30)

and these fulfill

x2
µ =

(
1 +

2

n

)
1n+1. (2.31)
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We can refine the relation (2.31) by adjusting the scaling as xµ = 1√
l(l+1)

Lµ rather

than (2.25), which yields.

[xµ, xν ] =
iεµνρxρ√
l(l + 1)

, (2.32)

which is more commonly encountered in the literature. Relations (2.1) and (2.32)

describe a fuzzy sphere S2
F (l), at the level n = 2`. Any element ,µ, of the matrix

algebra Mat(2l + 1) is an element of this fuzzy sphere and it can be expanded in

terms of generators of S2
F as

M =
∑

Ci1...ikxi1 . . . xik . (2.33)

Now that we have obtained the S2
F and functions on it we are in position to define the

scalar product on S2
F , which is given by the matrix scalar product, i.e. trace

(M1,M2) = TrM †
1M2 =

1

2`+ 1
M †

1M2 (2.34)

Which in the fuzzy setting replaces the integral given in (2.8). Note that from now

on Tr will stand for the normalized trace i.e. Tr1n+1 = 1. We can also define the

left and right acting linear operators on Mat(2` + 1). Consider αl and αR as linear

operators on Mat(2` + 1). Since they are are also (n + 1) × (n + 1) matrices. they

are naturally in the algebra Mat(2`+ 1) too. To be more explicit we have

αLM = αM, αRM = Mα, (2.35)

where αL, αR,M ∈Mat(2`+ 1). It is clear that these two operators commute.[
αL, βR

]
= 0 (2.36)

and

(αβ)L = αLβL (αβ)R = βRαR (2.37)

A set of these right and left acting operators can be the angular momentum operators

LLi and LRi . We can write the action of the respective Casimirs

(LLi )2 |n1, n2〉 = L2
i |n1, n2〉 = `(`+ 1) |n1, n2〉 , (2.38)

(LRi )2 〈n1, n2| = 〈n1, n2|L2
i = `(`+ 1) 〈n1, n2| , (2.39)

As expected both LLµ and LRµ carries the spin− ` IRR of SU(2). With left and right

acting operators in hand we can define the adjoint action

LµM = adLµM = (LLµ − LRµ )M = [Lµ,M ]. (2.40)
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Let’s sum up our progress up to here. We have defined the fuzzy space S2
F , showed

how to write the functions on it and also showed that how the operator acts on these

functions. In order to progress further we need a certain kind of operators that allows

us to define the derivatives on S2
F . And for that purpose we can use the angular

momentum operators we have just defined. Since they obey the Leibniz rule Li’s are

derivatives over the matrix algebraMat(2l+1) and hence on S2
F . In the commutative

limit l→∞, we get

Lµ → −iεµνρxν∂ρ (2.41)

as can be compared with equation (2.6). This consolidates our interpretation of the

operators Lµ as derivative operators. But, what is the spectrum of these operators?

Since we have Lµ = LLµ − LRµ It carries the tensor product representation

n

2
⊗ n

2
= l ⊗ ` = 0⊕ 1⊕ 2 · · · ⊕ 2` (2.42)

Thus L2 can take on the eigenvalues l(l + 1) where l = 0, 1, . . . 2`. We see that the

angular momentum operator is truncated at a maximum value 2`, which is a character-

istic property of the fuzzy spaces. Next natural step is to investigate the eigenvectors

of L2 and L3. Eigenvectors of these operators are given in terms of the polarization

tensors Tlm(n) where l and m runs as follows j : 0 . . . 2` , m = −j . . . j which are

elements of Mat(2l+ 1). These are (2`+ 1)2 linearly independent matrices and they

form a basis for the algebra Mat(2`+ 1) and we have

L2Tlm = l(l + 1)Tlm, (2.43)

L3Tlm = mTlm, (2.44)

with the following inner product

(Tl′m′ , Tlm) = δll′δmm′ . (2.45)

Finally we can show the transformation properties of the Tlm’s under SU(2) as

T ′lm′ = D(g)Tlm′D(g)−1, (2.46)

=
∑
m

D(g)lmm′Tlm.

Observe that this is the same transformation of the Ylm(θ, φ) under finite rotations

Ylm′(θ, φ) =
∑
m

D(g)lmm′Ylm(θ, φ), (2.47)
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where (2.45) is what replaces the orthogonality relation 1
4π

∫
Y ∗lm(θ, φ)Yl′m(θ, φ)dω =

δll′δmm′ of the spherical harmonics. Hence we can deduce that Tlm operators carries

the spin l IRR of SU(2). We can conclude this section with one last remark on the

expansion of functions on the S2
F in terms of polarization tensors, which is given as

M =
∑
ClmTlm, which can be compared with (2.33) and also the expansions given

in (2.8) for the ordinary sphere.

2.1.3 Fuzzy Complex Projective Spaces

In the previous section we have stated that the S2
F can be obtained by the quantization

of the first Hopf Map. A Hopf like map can also be used to obtain the fuzzy versions

of the complex projective spaces CP n’s. So let us briefly explain the structure and

construction of these spaces since they will be an important part of the future discus-

sions. Just as we represent S2 ≡ CP 1 = SU(2)
U(1)

we may represent CP n as the coset

space

CP k ≡ SU(k + 1)/U(k)

' SU(k + 1)/SU(k)× U(1) (2.48)

Now we will focus on the specific case of fuzzy CP 2, but note that following dis-

cussion can be generalized to CP n. Here we will follow the references [23] We start

our construction with denoting the generators of the SU(3) group Ta (a = 1, . . . , 8)

which carries the (n, 0) IRR of SU(3). Dimensions of this IRR of SU(3) is given as

N := dim(n, 0) =
1

2
(n+ 1)(n+ 2) (2.49)

For instance the usual 3-dimensional fundamental IRR is denoted by (1, 0) ≡ (m, 3)

while the anti-fundamental IRR is given by (0, 1) ≡ 3̄ and the adjoint IRR is (1, 1) ≡
8 They satisfy the usual SU(3) relations

[Ta, Tb] = ifabcTc, (2.50)

T 2
a = 1

3
n(n+ 3)1,

dabcTaTb = 2n+3
6
Tc. (2.51)

where dabc is the totally symmetric tensor from

TaTb =
2

n
δab + (dabc + fabc)Tc (2.52)
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We can introduce the Gell-Mann matrices λa of SU(3) in the fundamental represen-

tation (1, 0). Taking the n-fold symmetric tensor product we construct the generators

Ta

Ta = (
λa
2
⊗ 1⊗ . . . 1 + . . . 1⊗ 1⊗ . . . λa

2
)sym (2.53)

Now we will show that indeed these Ta generates the fuzzy CP 2. To do that first we

need to go back to the commutative CP 2. We know that vectors of CP 2 have the

U(1) symmetry, meaning that eiθ |ψ〉 for all θ ∈ [0, 2π] denotes the same point. Since

CP 2 is the space of all rank one projection operators on C3 the vector eiθ |ψ〉 also

corresponds to the same projector P = |ψ〉 〈ψ|. Let Hn and H3 be the Hilbert spaces

of the SU(3) IRR’s (n, 0) and (1, 0). Starting from a vector in R8 which we denote

as ~n we attempt to define the projector.

P3 =
1

3
1+ nata, (2.54)

where ta = λa
2

are the generators of SU(3) in the fundamental representation (1, 0)

that satisfy the following

2tatb =
1

3
δab + (dabc + ifabc)tc, (2.55)

Tr(tatb) =
1

2
δab,

T r(tatbtc) =
1

4
(dabc + ifabc).

And the usual requirement of projection operators that they square to themselves, i.e.

P 2
3 = P3 leads us to ~n being a point on CP 2 satisfying the following conditions

n2
a = 4

3
, (2.56)

dabcnanb = 2
3
nc,

With the coherent states of H3 denoted as |~n, 3〉 we can write the projection operator

P3 = |~n, 3〉 〈3, ~n| . (2.57)

Using P3 we may write down it’s generalization to Pn on HN

PN = |~n,N〉 〈N,~n| = (P3 ⊗ P3 ⊗ P3 . . . P3)sym (2.58)

Computation of trace relations

Tr(taP3) = 〈~n, 3| ta |~n, 3〉 =
1

2
na Tr(TaPn) = 〈~n,N |Ta |~n,N〉 =

n

2
na

(2.59)
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Using these trace identities we can identify fuzzy CP 2 at level N = 1
2
(n+ 1)(n+ 2)

by the coordinate operators.

xa =
2

n
Ta, (2.60)

satisfying the following

[xa, xb] = 2i
n
fabcxc,

x2
a = 4

3
(1 + 3

n
),

dabcxaxb = 2
3
(1 + 3

2n
)xc. (2.61)

from these relations we can see that in the limit N →∞ we retrieve the commutative

CP 2 as xa → na. The algebra of function of fuzzy CP 2 can be identified with the

matrix algebra of N × N matrices which can be denoted by MatN . Similar to the

case of S2
F now the SU(3) group has two distinct actions on these algebra. The left

action of SU(3) is generated by (n, 0) on the other hand right action is generated by

(0, n). Thus we have the following decomposition of MatN under the adjoint SU(3)

action.

(n, 0)⊗ (0, n) = ⊕np=0(p, p) (2.62)

In the same manner as discussed for fuzzy S2, we can expand a general function on

fuzzy CP 2
N in terms of the polarization tensor of SU(3) IRR as

G =
n∑
p=0

G
(p)

I2,I3,Y
T

(p,p)

I2,I3,Y
, (2.63)

Here T (p,p)

I2,I3,Y
are N × N matrices and the set (I2, I3, Y ) are the eigenvalues of the

casimir of SU(2) subgroup respectively its third component and the hypercharge of

the isotropy subgroup in (2.48). Now that we have defined the Hilbert space and

matrix algebra of fuzzy CP 2 what remains is the Laplacian on CP 2
F . To find it we

may define the derivations on CP 2
F . We know from our previous construction of

S2
F that, the adjoint action of the generators of the symmetry group SU(3) on CP 2

F .

Since, we can naturally see that the derivations on CP 2
F are generated by

[Ta, .] (2.64)

and the Laplacian can be given as

4N := [Ta, [Ta, .]], (2.65)

This concludes our introduction to the basic examples fuzzy spaces. We will now

proceed to discuss the construction of fuzzy S4 and its basic properties.
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2.2 Introduction to Fuzzy Four Sphere S4
F

2.2.1 Construction of Fuzzy S4

Now we are in a position to start constructing the fuzzy S4. In this section we will be

following the previous works of [7, 8, 13]

First of all let us start with the ordinary definition of 4-dimensional sphere, S4. To do

so, our first job is to define and embed it in R5. Then we have

S4 ≡
〈
~X = (X1, X2, · · · , X5) ∈ R5

∣∣ ~X · ~X = R2
〉
. (2.66)

It is known that S4 can be described as a coset space of

S4 ≡ SO(5)/SO(4) (2.67)

so either from (2.66) or (2.67) we see that coordinates of S4, given as ~X , transforms

as a vector under the SO(5) rotations.

Now we can start to quantize the S4 in the pursuit of fuzzy S4. A fuzzy four sphere

can be constructed using the following relations

εabcdexaxbxcxd = Cxe, (2.68)

xaxa = ρ2, (2.69)

where xa,(a : 1, . . . , 5) represent the non-commuting coordinates of S4
F , ρ is the

radius and C = (8n + 16). Equations (2.68) and (2.69) requires some explanation.

We need to understand, in what way we can introduce a matrix algebra, to describe

the fuzzy 4-sphere, and connect this to the relations (2.68) and (2.69). To this end let

us introduce the Γ-matrices associated to the SO(5) group.

Γ-matrices are the 4 × 4 matrices satisfying the clifford algebra {Γa,Γb} = 2δab,

(a, b : 1, . . . , 5) An explicit form may be given as

Γa =

 0 −iσa
iσa 0

 , Γ4 =

 0 12

12 0

 , Γ5 =

12 0

0 −12

 , (2.70)

Generators of the SO(5) are defined by Σab = 1
2
[Γa,Γb]. Σab’s generate the 4-

dimensional spinor representation of SO(5), which is given as (0, 1) in terms of the

Dynkin labels. Γa also act on the 4-dimensional spinor space and therefor we may say
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that they carry the IRR (0, 1). Now we consider the n-fold symetric tensor product of

Γa’s given as

X(n)
a = (Γa ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1 · · · ⊗ Γa)Sym (2.71)

Xa carry the (0, n) IRR of SO(5) and they have the dimension

N = dim(0, n) =
1

6
(n+ 1)(n+ 2)(n+ 3). (2.72)

The matrices Xa satisfy the relations

XaXa = n(n+ 4)1N , (2.73)

εabcdeXaXbXcXd = εabcdeXabXcd = (8n+ 16)Xe, (2.74)

In fact, it is not hard to prove (2.73) and we will do so a little later on. A somewhat

more detailed calculation is necesseary to show that (2.74) holds. A detailed calcula-

tion is given in [24], but we will not attempt to reproduce it here. Comparing (2.73)

and (2.74) with (2.68) we see that xa and Xa are related by a constant of dimension

length i.e. xa = αXa and we have C = (8n + 16)α3,ρ2 = n(n + 4)α2 based on the

dimensional analysis.

Using the commutator of these Xa we can construct the generators of the SO(5)

algebra

Xab =
1

2
[Xa, Xb]. (2.75)

These Xab satisfy the usual SO(5) algebra. With the commutation relations

[Xab, Xcd] = 2(δbcXad + δadXbc − δacXbd − δbdXac). (2.76)

From (2.75) we see that there is something unusual about the fuzzy S4 construction,

compared to the fuzzy S2 and CP 2. Namely, we see that commutators of Xa are no

longer expressed in terms of linear combinations of Xa (2.24). In other words the

algebra of Xa do not close. This means that algebra of fuzzy S4 is larger than the

matrix algebra generated by Xa, It also contains the matrices generated by Xab too.

Quadratic Casimir of SO(5) given in the (0, n) IRR reads

C2(SO(5)) =
1

2
XabXba = 2n(n+ 4)1N , (2.77)
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Using the (2.68) it is straightforward to get

XabXbc = n(n+ 4)δac +XaXc − 2XcXa, (2.78)

Observe that (2.74) can also be written as.

Xab = − 1

2(n+ 2)
εabcdeXcdXe = − 1

2(n+ 2)
XcXdXe. (2.79)

Using (2.68) we also find that Xa transforms as vectors. under the adjoint action of

SO(5), indeed we have

[Xab, Xc] = 2(δacXb − δbcXa) (2.80)

Alternatively we can en up with the same result by employing a generalized and

adapted form of Schwinger construction suitable for the present problem. Introducing

four pairs of annihilation-creation operators we can write.

Xa = a†α(Γa)αβaβ α, β : 1, 2 (2.81)

where a and a† are the creation and annihilation operators corresponding to the 4

bosonic oscillators. Acting on the Fock space HN = a†i1 . . . a
†
iN
|0〉. Note that HN is

same as the space that Xµ’s act on HN = (C4 ⊗ . . . C4)sym. Which comes from the

symmetric product of C4 where gamma matrices acts on naturally. Using this Xµ we

can obtain the following commutation relations. Introducing Xab = a†Σaba we have

that all the relations given previously for Xa, Xab are satisfied with in this equivalent

formulation. We know that functions on four sphere, S4, can be expanded in terms of

the spherical harmonics

a(x) =
∞∑
l=0

∑
mi

almiYlmi(x), (2.82)

where the latter are defined as

Ylmi(x) =
1

ρl

∑
a

f (lmi)
a1,...,al

xa1 . . . xal . (2.83)

with f (lmi)
a1,...,al being a symmetric traceless tensor(because of the requirement XiXi =

ρ2). andmi denoting the necessary labels in spherical harmonics on S2. We may have

expected a similarity with developments given for S2
F and CPN

F that for the fuzzy S4

ther matrices replacing the functions a(x) are

M =
∞∑
l=0

∑
mi

clmiTlmi (2.84)
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Tlmi being the the spherical polarization tensors replacing Ylmi .

Nevertheless our discussion so far have shown us that, the matrix algebra generated by

Xa’s only do not close(see (2.75)) and therefore we can not simply represent matrices

for S4
F by (2.84). In the next section we discuss this point in more detail.

2.2.2 S2
F fiber over S4

F

We will now provide an argument revealing that there is indeed a fuzzy two sphere

attached to every point on the fuzzy S4. Attachment of these fuzzy 2 spheres on S4
F

may be seen as the presence of an internal spin degree of freedom for S4
F . We may

always choose to diagonalize one of the matrices Xa, say we diagonalize X5.

X5diag = (n, n− 2, . . . ,−n+ 2,−n) (2.85)

with eigenvalue m having the degeneracy ((n + 2)2 − m2)/4. Now out of the 10

generators of SO(5) algebra, we take a set of 6 generators that SO(4) ≡ SU(2) ⊕
SU(2) subalgebra. Let Nµ and Mµ be the generators of SU(2) ⊕ SU(2) algebras.

We may take them as

N1 = − i
4

(X23 −X14), M1 = − i
4

(X23 +X14), (2.86)

N2 = − i
4

(X13 −X24), M2 = − i
4

(X13 −X24),

N3 = − i
4

(X12 −X34), M3 = − i
4

(X12 −X34),

We find that Nµ and Mµ indeed satisfy the SU(2)⊕ SU(2) Lie algebra commutation

relaions.

[Nµ, Nν ] = iεµνρNρ, (2.87)

[Mµ,Mν ] = iεµνρMρ,

[Mµ, Nν ] = 0,

We can reverse this relation in order to get the Xab’s in terms of Nµ’s and Mµ’s We

can calculate the Casimir operator for each of these SU(2) generators as. We find

using (2.68),(2.77),(2.78)

NµNµ =
1

16
(n+X5)(n+ 4 +X5), (2.88)

MµMµ =
1

16
(n−X5)(n+ 4−X5).
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For a given eigenvalue of X5 from (2.85) we see from (2.88) that Nµ and Mµ carry

the (n + X5 + 2)/2 and (n − X5 + 2)/2 dimensional representations of the SU(2)

they generate. The dimension of the SU(2)⊕ SU(2) IRR (J1, J2) is given by (2J1 +

1)(2J2 + 1). Thus, in order to check dimension of the matrices Nµ and Mµ we sum

over the dimensions of possible IRRs, which we find to be∑n
X5=−n

(
n+X5+2

2

) (
n−X5+2

2

)
, (2.89)

= 1
6
(n+ 1)(n+ 2)(n+ 3),

= N

which is equal to the size of our matrices as expected. At the north pole on S4
F , we

have X5 taking its maximal eigenvalues X5 = n This gives from (2.88) that

NµNµ = n(n+2)
4

, (2.90)

MµMµ = 0.

From (2.90) we observe that the Nµ operators Casimir eigenvalue at the north pole

is equal to that of a spin j = n
2

IRR of SU(2), while it is clearly the spin 0, trivial

representation for Mµ’s. a So we can argue that starting from the SO(5) generators

we have obtained a fuzzy S2 attached at the north pole of the fuzzy S4 with the radius

given in (2.73) which only a factor of 1
4

less then the radius of the original fuzzy S4

given in (2.73). Since the fuzzy 4-sphere has SO(5) symmetry we can conclude that

there is a S2 attached to every point of the fuzzy S4. This extra degrees of freedom

coming as a fuzzy S2 can be interpreted as an internal spin degree of freedom. .

In the commutative limit, S4
F is not only S4 but in fact given by a S2 fiber on S4. The

following discussion is based on [11].To see this limit it is suitable to scale the S4
F

defining the following relations.

Ya =
Xa√

n(n+ 4)
, Yab =

Xab√
n(n+ 4)

, (2.91)

(2.92)

εabcdeYaYbYcYd =
8(n+ 2)

(n(n+ 4))3/2
Ye. (2.93)

In the commutative limit we have Ya → xa, Yab → ωab. Furthermore, it can proved

using Schur’s Lemma that (2.68) leads to

1

4
{Ya, Yb}+

∑
b

{Yab, Ycd} =
1

2
δab.. (2.94)
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(2.93) can expressed using (2.68) as

εabcdeYabYcd =
8(n+ 2)√
n(n+ 4)

Ye, (2.95)

the equation (2.95) is not independent from (2.93) but in the large n limit Yab, Ya

decouple and the left hand side of (2.95) becomes a constraint.

εabcdeωabωcd = 0. (2.96)

Now let us introduce a 5 component vector which is an element of R5

Va = (2iωa1, 2iωa2, 2iωa3, 2iωa4, 2iωa5). (2.97)

This vector seems to be 5 dimensional but if one observers that it will always have at

least one zero component it can be stated that it is effectively 4 dimensional. We may

look at the properties of this vector. We have

Va.Vc = −4
5∑
b=1

YabYcb, (2.98)

= δac − xaxc,

where we have used the relation

1

4
xaxc + ωabωbc =

1

4
δac. (2.99)

Va also satisfies

Va.~x = 2iωabxc (2.100)

Taking the square of both sides

= 4ωbaωadxbxd, (2.101)

= 4− (1
4
δbd − 1

4
xbxd)xbxd,

= xdxd − xbxbxdxd,

= 0.

In the last line we used the fact that coordinates squares to 1. Together these two

relations describe a 4 dimensional manifold. We can choose ~x = (0, 0, 0, 0, 1) to
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be the north pole of S4 by use of the rotational symmetry of the sphere. Then our

relations become

Va.Vb = δab, (2.102)

Va.~x = 0,

V5 = 0

where a, b runs from 1 to 4. Va spans an orthonormal basis of four vectors which

are all tangent to S4. Finally using the constraint (2.96) further eliminates one more

degree of freedom, leaving only 3 independent degrees of freedom in ωan which still

fulfills ωabωab = 1, which is nothing but a S2.

2.3 Basic Features of Gauge Theory on Fuzzy S4
F

In this subsection we will focus on the matrix gauge theories related to fuzzy four

sphere. Starting from the BFSS model action[1] and adding suitable deformations

like a mass term and/or Chern-Simmons like terms we can construct actions with

fuzzy S4 extremums. Each term has its benefits and disadvantages[1],[25],[2].Let’s

start this section by briefly reviewing the matrix models to set the stage for further

developments. Starting from the Yang-Mills 5-matrix model in Minkowski signature

and with U(N) gauge symmetry, whose action may be given as

SYM =

∫
dtLYM =

1

g2

∫
dt Tr

(
1

2
(DtAa)2 +

1

4
[Aa, Ab]

2

)
(2.103)

where Aa (a : 1, . . . 5) are N ×N Hermitian matrices transforming under the adjoint

representation of U(N) as

Aa → U †AaU , U ∈ U(N) , (2.104)

DtAa = ∂tAa − i[A0, Aa] are the covariant derivatives, A is a U(N) gauge field

transforming as

A → U †AU − iU †∂tU , (2.105)

and Tr stands for the normalized trace. For future reference we write out the potential

part of LYM separately as

VYM = − 1

4g2
Tr[Aa, Ab]

2 . (2.106)
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Clearly, SYM is invariant under the U(N) gauge transformations given by (2.104)

and (2.105). SYM is also invariant under the global SO(5) rotations of Aa i.e Aa →
A′a = AabAb, R ∈ SO(5) rigid rotations (Note that matrix elements of R are not

time dependent). It can be obtained from the dimensional reduction of the U(4N)

gauge theory in 5 + 1-dimensions to 0 + 1-dimensions, where the SO(5, 1) Lorentz

symmetry of the latter yields to the global SO(5) of the reduced theory. There are

two distinct deformations of SYM preserving its U(N) gauge and the SO(5) global

symmetries. One of these is obtained by adding a fifth rank Chern-Simons term to

SYM (i.e. a Myers like term) which is given as

SCS =
1

g2

∫
dt Tr

λ

5
εabcdeAaAbAcAdAe , (2.107)

while the other is a massive deformation term of the form

Smass = − 1

g2

∫
dt Tr µ2A2

a . (2.108)

Clearly both SCS and Smass are gauge invariant and invariant under rigid SO(5) ro-

tations.

For future purposes it is convenient to write out the potential terms for S1 and S2

explicitly:

V1 = 1
g2
Tr
(
−1

4
[Aa, Ab]

2 + µ2A2
a

)
, (2.109)

V2 = − 1
g2
Tr
(

1
4
[Aa, Ab]

2 + λ
5
εabcdeAaAbAcAdAe

)
. (2.110)

Note that S1 and S2 can be thought as deformations of the bosonic part of the BFSS

[1] matrix quantum mechanics. Whose action has the same form as in (2.103) except

that there are N × N matrices in other words the index a takes values from 1 to 9

in that case. We also know that BFSS model can be obtained from the dimensional

reduction of the YM theory in 9 + 1 dimensions to 0 + 1 dimensions [8] with the

SO(9, 1) symmetry of the YM theory yielding to the global SO(9) symmetry of

the BFSS. By the use of deformation terms Smass and/or SCS this symmetry can be

broken down to SO(5)⊗ SO(4) and naturally splits the Aa to a SO(5) and a SO(4)

vector.

In the rest of this section we will be interested in the pure matrix models, i.e. matrices
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without any time-dependence[13]. We can give our actions as,

S̃1 = − 1
g2
Tr([Aa, Ab][Aa, Ab]− µ2AaAa). (2.111)

S̃2 = − 1
g2
Tr(1

4
[Aa, Ab][Aa, Ab] + λ

5
εabcdAaAbAcAdAe), (2.112)

S̃2 and S̃1 are invariant under the global SO(5) symmetry as well as the U(N) gauge

symmetry, which simply takes the form

Aa → UAaU
†, (2.113)

Aa → Aa + ca1, (2.114)

here. Equation of motion for S̃2 follows from the variation Aa → Aa + δAa which

gives.

[Ab, [Aa, Ab]] + λεabcdeAaAbAcAdAe = 0, (2.115)

One of the two classical solutions for the equation of motion (2.115) is simply given

by the diagonal matrices.

Aa = diag
(
x(N)
a , . . . , x(1)

a

)
, (2.116)

S̃2 evaluated for this solution immediately yields S̃2 = 0 Note that the diagonal matrix

solution is more stable at the classical level than the fuzzy four sphere solution since

corresponding values of the action at classical level. Another solution is provided by

a fuzzy 4-sphere i.e. for Aa = Xa, provided that we take λ = 2
n+2

The action then

takes the value

S̃2 = −4ρ4

5g2

N

n(n+ 4)
(2.117)

Which is negative and therefore less then S̃2 = 0. So it appears that fuzzy 4-sphere

is a more stable solution to (2.115) then diagonal, commuting matrices. Let’s start

with expanding the matrices Aµ around the classical solution. In order to explore the

fluctuations about this classical solution we write

Aa = lρ

(
1

ρ
Xa + aa

)
(2.118)

For convenience we can write the matrices which has dimensions of length

ωab ≡ αXab (2.119)
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Obviously αab satisfy the same relations as Xab. Commutative limit of this construc-

tion can be obtained in the limit l→ 0 with fixed radius. In this limit coordinates and

αab becomes commutative.

We have already seen that on S4 that scalar fields can be expanded in terms of spheri-

cal harmonics. This was given in (2.83 ). Discussions of the previous sections indicate

that, for fuzzy four sphere one has to also take into account that the fuzzy 2 spheres

attached to the fuzzy four sphere at every point. This expansion for the fuzzy 4-sphere

can achieved by expanding the N ×N matrices in terms of the matrix spherical har-

monics(i.e. polarization tensor) yn1n2m̃i(x, ω) as

M(x, ω) =
n∑

n2=0

∑
n1,m̃i

Mn1n2m̃iyn1n2m̃i(x, ω), (2.120)

Here (n1, n2) label the SO(5) IRR’s (in the Dynkin labelling scheme) and with 1 ≥
n1 ≥ n2. Only n1 = 0 in this expansion overlap expansion of functions given in

(2.83) on S4 other terms indicate and characterize the internal spin structure of S4
F

the internal spin is labeled by n1 and is cut off at a maximal value n2 for a given

n2 ≤ n. We have
∑n

n1≥n2
dim(n1, n2) = N2. Corresponding functions may be

written as

M(x, ω) =
∑∑

Mn1n2m̃1yn1n2m̃i(x, ω) (2.121)

The algebra generated by these functions is noncommutative but associative. Here

the noncommutativity is generated by ωab Which also generate the fuzzy two spheres

attached at each point on the fuzzy four sphere. A product which is commutative but

not associative. We know how to act with Xa and Xab on the M given in (2.120).

They act adjointly as

AdXaM = [Xa,M ], AdXabM = [Xab,M ] (2.122)

On the corresponding functions (2.121), and in the commutative limit α→ 0, n→∞
with ρ→ fixed adjoint actions of Xa & Xab the differential forms

Ad(Xa)→ 2i (ωab∂xb − xb∂ωab) , (2.123)

Ad(Xab)→ 2 (xa∂xb − xb∂xa − ωac∂ωcb + ωbc∂ωca) . (2.124)

Where the derivative with respect to ω’s are defined as

∂ωcd
∂ωab

= δacδbd − δadδcb (2.125)
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In the commutative limit the adjoint action of Xa and Xab become the differential

operators [13]

adXa → ∇a := 2i (ωab∂xb − xb∂ωab) , (2.126a)

adGab → ∇ab := 2 (xa∂xb − xb∂a − ωac∂ωcb + ωbc∂ωca) , (2.126b)

We may note for future use that xa∇a = 2i (xaωab∂xb − xbxb∂ωab) = 0, since the first

term in the r.h.s is already noted to vanish and the second term vanishes due to the

antisymmetry of ωab. We can explore these parts even more concretely by inspecting

the transformation of M(x, ω) under SO(5) rotations. SO(5) acts on M(x, ω) by

adjoint action as

AdXabM(x, ω) = eiXabωabM(x, ω)e−iXabωab . (2.127)

Expanding the exponential terms to first order in ωab and using (2.124) we have

M(x, ω) + iωabAd(X)abM(x, ω) (2.128)

= a(x, α) + 2iαab (xa∂xb − xb∂xa − αac∂αcb + αcb∂αac) a(x, α) (2.129)

Note that when we are working with the differential forms of the operators we use

the functions corresponding to matrices. Now we can determine the form of (2.129)

at the north pole of the fuzzy 4-sphere. In this case last two terms in (2.129) can

be expressed using θµ = (ω23, ω31, ω12) , βµ = (ω41, ω42, ω43) amd Nµ represent-

ing the coordinates corresponding to Nµ in (2.86). More precisely writing Nµ =

− i
4
(1

2
εµνρωνρ − ωµ4) and ∂Nµ = 2i(1

2
εµνρ∂ωνρ − ∂ωµ4) We can find that at the North

pole (2.129) takes the form

M(x, ω)+2iωab(xa∂xb−xb∂xa)M(x, ω)−4i(θµ+βµ)εµνρNν∂NρM(x, ω), (2.130)

The greek indices µ, ν runs from 1 to 3 as we have already stated earlier. We can

easily see that the second term of (2.130) corresponds to the usual orbital angular

momentum. While the last term governs the infinitesimal transformation under the

internal spin angular momentum. Fields a(x, α) can also be Taylor Expanded in

terms of coordinates Nµ at the North pole,

M(x, ω) = a(x, 0)+Nµ1∂Nµ1M
∣∣
N=0

+· · ·+ 1

n
Nµ1 . . . Nµn∂

n
Nµ1 ...Nµn

M
∣∣
N=0

(2.131)

The first term in (2.131) can be interpreted as a scalar field with zero spin while the

(m + 1)th term can be carries spin-m i.e. M̃µ1µ2...µm := ∂Nµ1 ...Nµm
∣∣
N=0

is a spin m

field..
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2.3.1 Action S̃2 as a Gauge Theory on S4
F

In the last part of this chapter we follow [13] to discuss how S̃2 in (2.112) can be

given the structure of a gauge theory on S4
F . A gauge covariant field strength tensor

may be introduced as,

Fab :=
1

(αρ)2

(
[Aa, Ab] +

1

2
λεabcde[Ac, Ad]Ae

)
, (2.132)

Using the gauge transformation of Aa, we immediately see that Fab transforms co-

variantly under SU(N) gauge group as Fab → U †FabU . Inserting (2.118) in (2.132)

We find

=
1

ρ
[Xa, ab]−

1

ρ
[Xb, aa]+[aa, ab]+αρλε

abcde

(
1

ρ2
Xcdae +

1

ρ
[Xc, ad]

(
1

ρ
Xed+ ae

))
.

(2.133)

Clearly TrFabFab is a gauge invariant term, which what we intend to introduce in

rewriting S̃2. We observe, from (2.132) that FabFab involves 5th & 4th order terms in

Aa which are not present in S̃2, so these terms must be subtracted from TrFabFab. A

long but a straightforward calculation gives that

S̃2 = −(lρ)4

g2
Tr(

1

4
FabFab −

9λ

40(lρ)2
εabcde[Aa, Ab][Ac, Ad]Ae

− λ2

16(lρ)2
fabcdef [Aa, Ab]Ac[Ad, Ae]Af ),

(2.134)

where fabcdef follows from the contraction of two epsilon tensors εghabcεghdef which

we have explicitly showed in the appendix (B.5). For the infinitesimal gauge trans-

formations

U = eiλ ∼= 1 + iλ+O(λ2). (2.135)

We have A′a → Aa + i[λ,Aa] = A+ δA and therefore inserting (2.118) we get.

δAa = iαρ
[
λ, 1

ρ
Xa + aa

]
, (2.136)

= iα[λ,Xa] + iαρ[λ, aa],

= ρα
(
i
ρ
[Xa, λ] + i[λ, aa]

)
,

Thus we get δaa as

δaa(x, α) =
i

ρ
[Xa, λ(x, α)] + i[λ(x, α), aa(x, α)], (2.137)
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Thus aa are the gauge fields on the fuzzy S4 background geometry while the (2.137)

represents the infinitesimal gauge transformations of aa Finally, let us make a few

comments about the content of the gauge theory action. We will be brief here, as

this is not going to be the direction that we pursue to develop in the next chapter. A

natural laplacian operator on S4
F is given by ad(Xab)

2 = [Xab, [Xab, .]] since it is the

quadratic Casimir operator of the symmetry group of S4
F which is SO(5). On the

other hand we can also choose the operator ad(Xa)
2 = [Xa, [Xa, .]]. This is also an

invariant of SO(5) and can indeed be written as difference of Casimir operators of

SO(6) and SO(5) We see from (2.133) and the first term of (2.134) that the term

involving the double commutators of Xa is given by

SLaplacian =
(lρ)4

2g2
Tr

(
ab

[
Xa

ρ
,

[
Xa

ρ
, ab

]])
, (2.138)

and we therefore infer that the second option for the Laplacian is naturally appears

in the action (2.134). The corresponding spectrum for (adXa)
2 may be calculated

using group theory. On the spherical polarization tensors it takes its diagonal form

and given by

adX2
aYr1r2 = [Xa, [Xa, Yr1r2 ]] = 4(r1(r1 + 3)− r2(r2 + 1))Yr1r2 . (2.139)

On the other hand the spectrum of (ad(Xab))
2 on Yr1r2 is given by

adX2
abYr1r2 = [Xab, [Xab, Yr1r2 ]] = 8(r1(r1 + 3) + r2(r2 + 1))Yr1r2 (2.140)

Up to this point we have worked with the U(1) gauge group. One can easily general-

ize this to a general U(n) gauge group in the following way.

xa → xa ⊗ 1n (2.141)

and the replacement for the fluctuations are

a =
n2∑
a=1

ak ⊗ T k (2.142)

Where T k are denoting the generators of the U(n) algebra.
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CHAPTER 3

EQUIVARIANT FIELDS ON S4
F

3.1 Mass Deformed Yang Mills Matrix Model

3.1.1 Matrix Models & the Fuzzy S4 Configurations

From now on we will focus on the Yang Mills Model with the mass deformation and

with the gauge group U(4N). The action is given as

S1 =
1

g2

∫
dxTr

(
1

2
(DtAa)2 +

1

4
[Aa, Ab][Aa, Ab]− µ2AaAa

)
, (3.1)

where Aa are 4N × 4N matrices. The potential part can be written out separately as

V1 =
1

g2
Tr

(
−1

4
[Xa,Xb]2 + µ2X 2

a

)
(3.2)

V1 is extremized by the matrices fulfilling the equation

[Ab, [Aa, Ab]]− 2µ2Aa = 0 (3.3)

Equation (3.3) is solved by a configuration given by four concentric S4
F as

Aa = Xa ⊗ 14 (3.4)

where Xa are N × N matrices that form S4
F as discussed in the previous chapter.

Dimension of N of these matrices is determined by the level n of the fuzzy 4-spheres

as(a detailed calculation from group theory is given in the appendix (A.1.4).)

N =
1

6
(n+ 1)(n+ 2)(n+ 3), (3.5)

Fuzzy four spheres S4
F and their direct sums (even from different matrix levels) are

solutions of this equation for µ2 = −8. In a recent article Steinacker [7] showed
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that the superficial instability implied by the negativity of µ2 is actually cured by

quantum corrections in pure YM matrix model (i.e. in matrix models with no time

dependence). Let us also note that, we will see that superficial instability implied by

negativity of µ2 does not actually lead to a problem when we consider the equivari-

ant fluctuations of the S1 action about the S4
F backgrounds. The reason for this is

essentially that the potential of the emergent equivariantly reduced action is bounded

from below at any finite matrix level, as we will see and discuss in more detail later

on. We may as well interpret this outcome as being due to the fact that the equiv-

ariant parametrization of the fluctuations introduces fluxes through the S4
F stabilizing

its radius. As we will see later on non-trivial fluxes leaves its imprints as kink type

solutions in the reduced action in Euclidean signature. This vacuum configuration

breaks the U(4N) symmetry of the action to U(N) × U(4) and after setting Aa as

coordinates of S4
F ’s indicated by (3.4), we have only a U(4) gauge symmetry left.

Fluctuations about (3.4) may be written in general as.

Aa = Xa ⊗ 14 + Fa (3.6)

3.1.2 Equivariant Fluctuation & Their Parametrization

Our aim is to find the fluctuations which are left invariant under the SO(5) rotations

of S4
F up to SU(4) gauge transformations. To do so, we introduce the symmetry

generators.

Wab = Xab ⊗ 14 + 1N ⊗ Σab , (3.7)

Where

Σab =
1

2
[Γa,Γb] (3.8)

are the generators of SO(5) in the 4-dimensional fundamental spinor representation

labeled by (0, 1). They can be embedded into the generators of SO(6) as

ΣAB ≡ (Σab,Σa6) ≡ (Σab, iΓa) (3.9)

where A,B takes the values 1 . . . 6. ΣAB generate of the SO(6) ≡ SU(4)
Z2

in the fun-

damental spinor representation labeled by (1, 0, 0). Coming back to (3.7) we clearly

see that Wab satisfies the SO(5) commutation relations. However, it carries reducible

representation of SO(5), since Xab in the first terms carries the (0, n) IRR, while Σab
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carries the (0, 1) IRR of SO(5). The irreducible representation of Wab can be de-

termined from the decomposition of the tensor product of these two representations.

This gives [26]

(0, n)⊗ (0, 1) ≡ (0, n+ 1)⊕ (1, n− 1)⊕ (0, n− 1) (3.10)

This discussion can be easily lifted to SO(6) group by writing WAB ≡ (Wab,Wa6)

with has the decomposition under SO(6) irreducibles as

(n, 0, 0)⊗ (1, 0, 0) ≡ (n+ 1, 0, 0)⊕ (n− 1, 1, 0) (3.11)

Branching of (3.11) under SO(5) IRRs yields precisely (3.10) (We show this explic-

itly in the Appendix(A.1.1). Let us now investigate the adjoint action of Wab, which

is given as

adWab = [Wab, .] = [Xab, .] + [Σab, .] (3.12)

Suppressing the tensor product with the identity matrices for ease in notation in (3.12)

First term generates the infinitesimal SO(5) rotations of the S4
F , while the second

term generates the SO(6) ≡ SU(4)
Z2

gauge transformations in SO(5). The irreducible

representation content of adWab is given by the tensor product of r.h.s. of (3.10) with

itself, That is

[(0, n+ 1)⊕ (1, n− 1)⊕ (0, n− 1)]⊗2 (3.13)

Using the LieArt package of Mathematica we infer that (3.12) has the IRR content

3(0, 0)⊕ 7(1, 0)⊕ Higher dimensional IRRs (3.14)

where the bold terms represents the multiplicities of the respective IRRs. The part

of the direct sum given in (3.14) will be sufficient for our purposes. Using (3.12) we

define and impose the equivariant symmetry constraint on the gauge field A and the

fluctuations Fc around the (3.4) as

adWabA0 = [Wab,A0] = 0 , (3.15a)

adWabFc = [Wab, Fc] = −2(δacFb − δbcFa) , (3.15b)

The first requirement means that the gauge fields A0 are transforming as scalars of

SO(5) under the adjoint action of Wab, which is naturally expected since they do not

carry a SO(5) index. The second requirement implies that the fluctuations Fa around
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the (3.4) transform as a vector of SO(5). So we can deduce from the decomposition

(3.14) given above that the space of rotational invariants that may be constructed from

(0, n) and (0, 1) IRRs of SO(5) is 3-dimensional and the space of vectors that may

be constructed in terms of the intertwiners (0, n)&(0, 1) IRRs and Xa is of dimension

7. In order to explicitly obtain the mentioned intertwiners of IRRs we can introduce

the projection operator.

PI :=
∏
J 6=I

−(Xab + Σab)
2 − 2C2(λJ)

2C2(λI)− 2C2(λJ)
, P 2

I = PI , P †I = PI , I : 1, 2, 3 ,

(3.16)

where the factors of two in front of Casimirs are due to the unrestricted sum over a’s

and b’s. PI are projections to the IRRs of SO(5) in the order given in the r.h.s of

(3.10) and C2(λI) stand for the quadratic Casimirs of SO(5) in the IRRs labeled by

λI ≡ ((0, n+1), (1, n−1), (0, n−1)) Using (3.16) and the fact that idempotents can

be given as QI = 14N − 2PI we may compute the intertwiners (0, n)&(0, 1) IRRs as

the idempotents

Q1 =
(X · Σ− 4)(X · Σ− 4n− 16)− 16(n+ 1)(n+ 2)

16(n+ 1)(n+ 2)
, (3.17a)

Q2 =
(X · Σ + 4n)(X · Σ− 4n− 16) + 2(2n+ 2)(2n+ 6)

−2(2n+ 2)(2n+ 6)
, (3.17b)

Q3 =
(X · Σ− 4)(X · Σ + 4n)− 16(n+ 3)(n+ 2)

16(n+ 3)(n+ 2)
. (3.17c)

By construction it is obvious that we do have Q2
I = 14N and Q†I = QI (As shown in

appendix (B.1) ). Let us also note that QI are not all independent from each other as

we have
∑

I QI = −14N .

Observe that (X.Σ) appears in formulae (3.17a). A straightforward, but long calcula-

tion, whose details are given in the Appendix (B.15), gives

(X · Σ)2 = 12 ΓaΓbGab + 8n(n+ 2)XaΓa + 8n(n+ 4)14N . (3.18)

Adjoint representation of SO(6) ≈ SU(4) branches under SO(5) as 15 → 5 ⊕ 10,

or in Dynkin notation[26]:

(1, 0, 1) ≡ (1, 0)⊕ (0, 2) . (3.19)

Thus, further insight on how SO(6) ≈ SU(4) generators sits in these intertwiners is

gained by observing that QI contain, 10 of these generators as Σab, and the remaining
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5 as Γa as seen from (3.18), transforming in 2(0, 1) and (1, 0) of SO(5), respectively.

Alluding to our remarks in the previous subsection after (3.5) we may say that the

equivariant parametrization of the fluctuations introduces topological fluxes through

the concentric S4
F ’s, preventing the latter to shrink to zero radius and thereby stabilizes

the configuration. Using

ΩAB ≡ (ωab, xa) := lim
n→∞

XAB

n
, (3.20)

we find the commutative limit of (3.18) takes the form

lim
n→∞

(X · Σ)2

n2
= 8(xaΓa + 14) . (3.21)

Consequently, we find for qI := lim
n→∞

QI :

q1 =
1

2

(
xaΓa −

∑
a<b

ωabΣab − 14

)
, (3.22a)

q2 = −xaΓa , (3.22b)

q3 =
1

2

(
xaΓa +

∑
a<b

ωabΣab − 14

)
. (3.22c)

Without going into any technicalities, regarding the S2 effective fiber coordinates ωab

over S4, our previous remark supported by the observation that the commutative limit

of this topological flux may be seen to be characterized via the second Chern number

on S4

c2(S4) =
1

8π2

∫
S4

p2 (d p2) (d p2) = 1 , (3.23)

for the rank 4 projectors p2 = 1
2
(1− q2) [22].

Using these Q’s we can solve the constraints given in (3.15a) and (3.15b) as follows.

To satisfy (3.15a), we may choose to parameterize the gauge field A0 as

A0 =
1

2
α1Q1 +

1

2
α214N +

1

2
α3Q3 , (3.24)

where αi = αi(t) (i : 1, 2, 3) are functions of time only, and Q2 is eliminated in favor

of 14N using
∑

I QI = −14N . From this form of the gauge field it can be easily

observed that the SU(4) gauge symmetry is broken down to U(1) × U(1) × U(1).

However, later on we will see that the term proportional to identity matrix in (3.24)

does not survive the dimensional reduction and the gauge symmetry of the reduced

action is essentially U(1)× U(1).
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Now let us investigate the fluctuations Fa that satisfy the requirement (3.15b) To

parametrize such vector we will again use the idempotents QI and the matrices Xa

we have calculated previously. We have found the most useful parametrization for

future purposes is

Fa = i
φ1

2
[Xa, Q1] + i

χ1

2
[Xa, Q3] +

φ2 + 1

2
Q1[Xa, Q1] +

χ2 + 1

2
Q3[Xa, Q3]

+ φ3

({
X̂a, Q1

}
−Q3[X̂a, Q3]

)
+ χ3

({
X̂a, Q3

}
−Q1[X̂a, Q1]

)
+ φ4

(
X̂a + Γ̂a +Q3[X̂a, Q3]

)
.

(3.25)

where curly brackets stand for anti-commutators and we have introduced φµ = φµ(t)

and χν = χν(t) (µ, ν) : (1, 2, 3, 4) as real functions of time only and the notation

X̂a =
Xa ⊗ 14

n
≡ Xa

n
, Γ̂a =

1N ⊗ Γa
n

≡ Γa
n
. (3.26)

The 1
n

factors appearing in the last three terms of Fa via, X̂a and Γ̂a are naturally

expected to obtain a finite Fa in the commutative limit n → ∞. Similar analysis, on

previous work on equivariant parameterizations of fluctuations over S2
F and S2

F × S2
F

[27, 12] also carries the same features. Indeed, as n→∞, we find

Fa → fa := i
φ1

2
∇aq1 + i

χ1

2
∇aq3 +

φ2 + 1

2
q1∇aq1 +

χ2 + 1

2
q3∇aq3

+ φ32xaq1 + χ32xaq3 + φ4xa . (3.27)

Where qI are given in (3.22a). Demanding the fluctuations fa to be tangential to S4

means that we have to take xafa = 0. Since xa∇a = 0, as noted after (2.125), the

latter condition is satisfied if and only if φ3(t), χ3(t) and φ4(t) all vanish in this limit.
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3.2 Dimensional Reduction of the Action S1

3.2.1 Structure of the Kinetic Term

Inserting the parametrizations (3.24) and (3.25) into the covariant derivative DtAa =

∂tAa − i[A0, Aa] we have

DtXa =i
∂tφ1

2
[Xa, Q1] + i

∂tχ1

2
[Xa, Q3]

+
∂tφ2

2
Q1[Xa, Q1] +

∂tχ2

2
Q3[Xa, Q3]

+ ∂tφ3({Xa, Q1} −Q3[Xa, Q3]) + ∂tχ3({Xa, Q3} −Q1[Xa, Q1])

+ ∂tφ4(Xa + γa +Q3[Xa, Q3]) + i
α1φ2

4
[Q1, [Xa, Q1]]

+ i
α1χ1

4
[Q1, [Xa, Q3]] +

α1(φ2 + 1)

4
[Q1, Q1[Xa, Q1]]

+
α1(χ2 + 1)

4
[Q1, Q3[Xa, Q3]] +

α1φ3

2
[Q1, {Xa, Q1} −Q3[Xa, Q3]]

+
α1χ3

2
[Q1, {Xa, Q3} −Q1[Xa, Q1]] +

α1φ4

2
[Q1, Xa + γa +Q3[Xa, Q3]]

+ i
α2φ1

2
[Q3, [Xa, Q1]] + i

α2χ2

4
[Q3, [Xa, Q3]] +

α2(φ1 + 1)

4
[Q3, Q1[Xa, Q1]]

+
α2(χ2 + 1)

4
[Q3, Q3[Xa, Q3]] +

α2φ3

2
[Q3, {Xa, Q1} −Q3[Xa, Q3]]

+
α2χ3

2
[Q3, {Xa, Q3} −Q1[Xa, Q1]] +

α2φ4

2
[Q3, Xa + Γa +Q3[Xa, Q3]]+

+
α1

2
[Q1, Xa] +

α2

2
[Q3, Xa].

(3.28)

Using the identities we provided in appendix (B.31) and some more commutation

relations we can simplify the (3.28) to

DtXa =
i

2
(∂tφ1 − iα1φ2)[Xa, Q1] +

i

2
(∂tχ1 − iα2χ2)[Xa, Q3]

+
1

2
(∂tφ2 + iα1φ1)Q1[Xa, Q1] +

1

2
(∂tχ2 + iα1χ2)Q3[Xa, Q3]

+ ∂tφ3({Xa, Q1} −Q3[Xa, Q3]) + ∂tχ3({Xa, Q3} −Q1[Xa, Q1])

+ ∂tφ4(Xa + Γa +Q3[Xa, Q3]).

(3.29)
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Now we can introduce covariant derivative for the fields φi and χi where i runs from

1 to 2 as

Dtφi = ∂tφi + iεjiα1φj, (3.30)

Dtχ1 = ∂tχi + iεjiα2χj.

Inserting these two into (3.29) we get

DtXa =
i

2
(Dtφ1 − iQ1Dtφ2)[Xa, Q1] +

i

2
(Dtχ1 − iQ3Dtχ2)[Xa, Q3]

+ ∂tφ3({Xa, Q1} −Q3[Xa, Q3]) + ∂tχ3({Xa, Q3} −Q1[Xa, Q1])

+ ∂tφ4(Xa + γa +Q3[Xa, Q3]).

(3.31)

We are in position to calculate trace in the kinetic term of S1. Using both analytic

techniques & Mathematica we found the following results for the kinetic term. After

performing the traces over the matrices.:

1

2
Tr(D0Xa)

2 =
n(n+ 4)

(n+ 1)2
|D0φ|2 +

n(n+ 4)

(n+ 3)2
|D0χ|2

+
2(n+ 4)(n5 + 8n4 + 18n3 + 8n2 − 11n)

n2(n+ 1)2(n+ 3)2
(∂0φ3)2

− 12n(n+ 4)

n2(n+ 1)(n+ 3)
(∂0φ3∂0χ3)

+
n(n+ 4)(−n3 − 3n2 + 17n+ 35)

n2(n+ 1)(n+ 3)2
(∂0φ3∂tφ4)

− n(n+ 4)(n+ 5)

n2(n+ 3)
(∂0φ4∂0χ3)

+
(n4 + 10n3 + 30n2 + 34n+ 45)

2n2(n+ 3)2
(∂0φ4)2

+
2n(n+ 4)(n4 + 8n3 + 18n2 + 8n− 11)

n2(n+ 3)2(n+ 1)2
(∂0χ3)2

(3.32)

As it stands (3.32) does not seem manifestly to be positively definite but with a quick

Mathematica check we can confirm that this is indeed, as it should be by construction.

In fact, we can make a linear field redefinition in the sector spanned by φ3, φ4, χ3

such that the kinetic term (3.32) becomes diagonalized. The generic form of the

diagonalized kinetic term at a given value of n may be calculated, but it appears to be

a rather cluttered formula, with not practical value. So we don’t give it here. In the

ensuing section, we will work with actions with such redefined fields for the span of
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values n = 2, 3, 4, 5. In the large n limit the trace (3.32) becomes the following

lim
n→∞

1

2
Tr(D0Xa)

2 = |D0φ|2 + |D0χ|2 + 2(∂tφ3)2

− ∂tφ3∂0φ4 − ∂0φ4∂0χ3 +
1

2
(∂0φ4)2 + 2(∂0χ3)2 .

(3.33)

3.2.2 Structure of the mass term

Now that we have calculated kinetic term we can continue with the calculation of the

mass term which is

Tr(AaAa) = Tr(XaXa +XaFa + FaXa + FaFa) (3.34)

where Xa are the vacuum solutions that describe S4
F . As in the previous case per-

forming analytic calculations and exploiting Mathematica we find the trace of the

mass term as.

− µ2Tr(AaAa) = −µ2Tr(XaXa + 2XaFa + FaFa)

= −µ2

(
2n(n+ 4)

(n+ 1)2
|φ|2 +

2n(n+ 4)

(n+ 3)2
|χ|2 +

4(n+ 4)(n4 + 8n3 + 18n2 + 8n− 11))

n(n+ 1)2(n+ 3)2
(φ2

3 + χ2
3)

+
n4 + 10n3 + 30n2 + 34n+ 45

n2(n+ 3)2
φ2

4 +
2(n+ 4)(−n3 − 3n2 − 17n+ 35)

n(n+ 1)(n+ 3)2
φ3φ4

− 24(n+ 4)

n(n+ 1)(n+ 3)
φ3χ3 −

2(n+ 4)(n+ 5)

n(n+ 3)
χ3φ4 +

(n+ 4)(−n3 − 4n2 + 7n+ 22)

(n+ 3)2(n+ 1)
φ3

+
(n+ 4)(−n3 − 8n2 − 9n+ 6)

(n+ 1)2(n+ 3)
χ3 +

(n+ 4)(n2 + 6n+ 5)

(n+ 3)2
φ4 + C(n)

)
.

(3.35)

where C(n) is an irrelevant constant term. Later, when we consider dynamics of

reduced actions we will adjust the overall constant factors in the action so that the

minimum of the potentials take the value zero.

Let us make a few remarks on (3.35) it contains terms that are linear in the fields

φ3, φ4 and χ3. These terms cause no harm for any finite values of n which is what

we will be interested in the following sections. However, to obtain a finite limit for

the n → ∞ case. it is required to assume that φ3, φ4 and χ3 vanish faster than 1
n

.

Then(3.35) converges to−2µ2(|φ|2 + |χ|2) in this limit. Let us also note that we have

µ2 = −8 since we are inspecting this term around the S4
F extremum satisfying (3.3)

37



3.2.3 Structure of the quartic term in S1

Now we are in position to discuss the quartic interaction term in S1 which is

1

4
Tr[Aa, Ab][Aa, Ab], (3.36)

whit Aa = Xa + Fa and Fa given in (3.25). From (3.25) and (3.4) it is readily

observed that analytic calculations of these terms appears to be a formidable task so

instead we calculate (3.36) for values n = 1, 2, 3, 4, 5 using Mathematica. Since these

values already corresponds to large span of matrix sizes 4N = 16, 40, 80, 140, 224

respectively they will give us sufficient information to explore the dynamics of the

low energy reduced action.

3.3 Dynamics of the Reduced Action

3.3.1 Gauge symmetry and the Gauss Law Constraint

From (3.32) we see that the gauge fields α2(t) decouples completely after dimensional

reduction. Therefore the reduced actions obtained from S1 are invariant under the

remaining U(1)× U(1) gauge group. The gauge transformations are given as

φ′ = e−iΛ1(t)φ , α′1(t) = α1(t) + ∂tΛ1(t) , (3.37)

χ′ = e−iΛ3(t)χ , α′3(t) = α3(t) + ∂tΛ3(t)

The φ3,φ4 and χ3 are real and thus uncharged under this U(1)×U(1) symmetry. Since

time derivatives of the fields α1(t) and α2(t) does not appear in our action they have

no dynamics on their own. Thus their equations of motion will be algebraic in other

words they will be constraints that need to be fulfilled by the complex fields φ and χ

These are called the the Gauss Law constraints and from the equation of motions of

α1(t) & α2(t) that can br calculated using (3.32) we find

1

2i

1

|φ|2
(φ(∂tφ)∗ − (∂tφ)φ∗) = α1(t) , (3.38)

1

2i

1

|χ|2
(χ(∂tχ)∗ − (∂tχ)χ∗) = α3(t) .

We can choose to work in the gauge α1(t) = 0 = α3(t). This means that even if

these gauge fields are not zero we can make them vanish by the U(1) × U(1) gauge
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transformation given as

αi(t)→ α′i(t) = αi(t) + ∂0Fi(t), (3.39)

where Fi are gauge functions and we can choose them such that α′i(t) = 0. Thus

we assume that such a gauge transformation is already made and we set αi(t) = 0.

This gauge choice can also be realized as the reality conditions φ∗ = φ and χ∗ =

χ. Further investigating the gauge choice we observe that the Gauss law constraints

(3.40) does not break the U(1) × U(1) gauge symmetry completely, but a residual

Z2 × Z2 remains. To be more explicit, we can write φ ≡ (φ1, φ2) = |φ|(cos θ, sin θ)

and χ ≡ (χ1, χ2) = |χ|(cosσ, sinσ), to express the constraints (3.38) in the form

∂tθ =
1

|φ|2
εijφi∂tφj = ∂tΛ1 = 0 , ∂tσ =

1

|χ|2
εijχi∂tχj = ∂tΛ3 = 0 . (3.40)

Therefore, the remaining Z2 × Z2 symmetry is encoded in the gauge functions as

Λ1(t) = Λ0
1 +πk1 and Λ3(t) = Λ0

3 +πk3, where Λ0
1 and Λ0

3 are constants and k1, k3 ∈
Z2. This indicates that, for either of the gauge functions, Λ1 or Λ3, we have more

generally ∫ ∞
−∞

dt ∂tΛ = Λ(∞)− Λ(−∞) = πk (3.41)

Due to (3.40), we have θ(t) = θ0 + πk1 and σ(t) = σ0 + πk3, and (3.41) holds

for both θ(t) and σ(t), as well. Having noted these points, we set φ2(t) and χ2(t)

to zero (i.e., we have both θ0 and σ0 set to zero). Then, the Z2 × Z2 symmetry is

implemented by (φ1 , χ1) → (±φ1 ,±χ1) & (φ1 , χ1) → (±φ1 ,∓χ1). In section

(3.5) we will consider the structure of the LEAs in the Euclidean time τ . Due to the

Z2×Z2 symmetry, we will be able to explore possible kink type solutions of the LEAs

by choosing the appropriate boundary conditions on φ1(τ) and χ1(τ) as τ → ±∞.

Presence of topologically non-trivial boundary conditions on the latter can then be

attributed to the property (3.41) of the restricted gauge functions, which holds the

same in the Euclidean signature.

3.4 Structure of the Reduced Actions

Diagonalizing the kinetic term and setting φ2 and χ2 to the zero as discussed in the

previous section. LEA’s take a relatively simple form. For n = 2, 3, 4, 5 we have that
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the Lagrangian is a functional of the five fields φ1, χ1, φ3, χ3, φ4 and their generalized

velocities φ̇1, χ̇1, φ̇3, χ̇3, φ̇4. For instance, at n = 2, we have

L(n=2) =
1

2

(
0.96χ̇2

1 + 2.7φ̇2
1 + 12.94φ̇2

3 + 6.32φ̇2
4 + 0.88χ̇2

3

)
− 1.09χ4

1 − 0.252χ4
3

− 2.03χ3
3 + 6.99χ2

1 − 0.26χ2
1χ

2
3 − 4.80χ2

3 + 2.69χ2
1χ3

+ 0.11χ3 − 4.8χ2
1φ

2
1 − 0.10χ2

3φ
2
1 + 3.77χ3φ3φ

2
1 − 0.77χ3φ4φ

2
1

− 2.79χ3φ
2
1 − 1.46χ3

3φ3 + 0.44χ3
3φ4 − 1.62χ2

1φ
2
3 − 2.71χ2

1φ
2
4

+ 5.02χ2
1φ3 − 5.11χ2

1φ3φ4 + 3.81χ2
1φ4 − 3.36χ2

3φ
2
3

− 0.33χ2
3φ

2
4 − 8.51χ2

3φ3 + 1.92χ2
3φ3φ4 + 2.75χ2

3φ4 − 0.64χ3φ
3
3

− 0.67χ3φ
3
4 − 19.2χ3φ

2
3 − 1.45χ3φ3φ

2
4 + 1.80χ3φ

2
4

− 1.36χ2
1χ3φ3 − 2.51χ2

1χ3φ4 − 13.05χ3φ3 + 2.16χ3φ
2
3φ4

+ 10.25χ3φ3φ4 + 1.07χ3φ4 − 3.70φ4
1 − 32.51φ2

3φ
2
1

+ 0.90φ2
4φ

2
1 + 41.66φ3φ

2
1 + 19.59φ3φ4φ

2
1 − 20.62φ4φ

2
1

+ 12.20φ2
1 − 14.33φ4

3 − 5.46φ4
4 + 41.31φ3

3 − 5.89φ3φ
3
4

+ 28.77φ3
4 − 28.88φ2

3 − 3.423φ2
3φ

2
4 + 22.60φ3φ

2
4 − 43.37φ2

4

− 46.70φ3 + 4.18φ3
3φ4 + 3.42φ2

3φ4 − 15.50φ3φ4 + 16.80φ4 − 29.6 .

(3.42)

The equivariantly reduced Lagrangians at the levels n = 3, 4, 5 are given in the ap-

pendix. Let us summarize the steps do taken, notations and conventions in obtaining

the LEA’s L(n) i) performed the linear transformation among the fields φ3 → φ′3,

φ4 → φ′4, χ3 → χ′3 which diagonalizes the kinetic term , and dropped the ′’s in the

final form, ii) have set µ2 = −8 , iii) have imposed the Gauss law constraints as dis-

cussed in the previous section by setting φ2 = 0 and χ2 = 0, iv) adjusted the constant

in the final form of each L(n), so that the potentials V(n), take the value zero at their

minima and v) introduced an over-dot ˙(...) to denote the time derivatives and vi) have

set the coupling constant g to one, as it has no effect on the classical physics save for

determining a global normalization in the energy unit.

A very important property of the reduced Lagrangian L(n) is that their potentials

are all bounded from below. Due to this reason we can conclude that at any level

n the equivariant fluctuations around the S4
F vacuum solutions does not cause any

instability. Reduced action for n = 1 appears as a special case since n = 1 case
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contains only the combinations of the real fields φ3, φ4, χ3 with a new parametrization

Φ = φ3 + φ4 − χ3 we can redefine the result for n = 1 as

L(n=1) =
5

16
χ̇2

1 +
5

4
φ̇2

1 +
15

4
Φ̇2 − 5

8
χ4

1 + 5χ2
1 − 30Φ4 − 60φ3 − 45Φ2φ2

1

+ 15Φ2 − 45Φφ2
1 + 45Φ− 15

4
χ2

1φ
2
1 −

5

2
φ4

1 +
35

4
φ2

1 −
215

8
.

(3.43)

This can be expressed in a more elegant form as

L(n=1) =
1

8
χ̇2

1 +
1

2
φ̇2

1 +
3

2
Φ̇2 − 1

4

(
φ2

1 + χ2
1 − 4

)
2−3

4

(
φ2

1 + 4Φ(1 + Φ)− 3
)

2

− φ2
1χ

2
1 − 3(1 + 2Φ)2φ2

1 .

(3.44)

3.4.1 Lyapunov Spectrum for LEAs and Chaotic Dynamics

Reduced actions have Chaotic Dynamics. To reveal this we calculate the Lyapunov

spectrum. One of the basic tools to probe the presence of chaos in a dynamical sys-

tem is to compute the Lyapunov exponents, which measures the exponential growth

in perturbations. If, say, x(t) is a phase space coordinate, in a chaotic system the

perturbation in x(t), denoted by δx(t), deviates exponentially from its initial value at

t = 0; |δx(t)| = |δx(0)|eλLt, λL being the corresponding Lyapunov exponent cor-

responding to the phase space variable x(t). We outline a well-known procedure for

calculating the Lyapunov spectrum in Appendix(D)

The phase space corresponding the LEA are 10-dimensional, except for the n = 1

case, and spanned by

(φ3, pφ3 , φ4, pφ4 , χ3, pχ3 , φ1, pφ1 , χ1, pχ1) , (3.45)

where pi are the corresponding conjugate momenta and the Hamiltonians, H(n), are

obtained from L(n) in the usual manner using H = piq̇i − L. We have obtained the

Lyapunov spectrum for n = 1, 2, 3, 4, 5 at various energies (as determined by the

initial conditions) using numerical solutions for the Hamilton’s equations of motion.

For n = 1, dimension of the phase space phase space reduces to 6 as easily observed

fromL(1) in (3.44). The table below summarizes our numerical findings for the largest

Lyapunov exponent, λmax, and the sum of the positive Lyapunov exponents,
∑

λ>0 λ,

for n = 1, 2, 3, 4, 5 at several different values of the energy E. We have shaded
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the n = 1 column in this table to indicate the noted differences between this case

and the rest. Using the algorithm discussed in the appendix(D). We have created a

MatLab code to obtain the Lyapunov spectrum where we input the initial conditions

that satisfy a certain energy to obtain the Lyapunov spectrum.

Table 3.1: LLE and KS Values

Energy n = 1 n = 2 n = 3 n = 4 n = 5

E = 20
0.33 0.39 0.35 0.07 0.09 λmax
0.51 0.79 0.41 0.18 0.20

∑
λ>0 λ

E = 30
0.58 0.84 0.84 0.56 0.32 λmax
0.85 1.67 1.78 1.09 0.69

∑
λ>0 λ

E = 100
0.96 1.94 1.87 1.52 1.37 λmax
1.34 4.60 4.15 2.94 2.91

∑
λ>0 λ

E = 250
1.12 2.27 2.16 1.99 1.78 λmax
1.65 5.65 5.48 4.76 3.93

∑
λ>0 λ

In the table (3.1) we give values for
∑

λ>0 λ for different values of energyE. The rea-

son for this is that these values are equal to the Kolmogorov-Sinai (KS) Entropy[28,

29] which is also known as the metric entropy. First of all KS Entropy can be thought

of as a single number say κ that depends only on the chaotic dynamical system con-

sidered which measures the time rate of creation of information as the chaos evolves.

Secondly it is not really an physical entropy rather it provides a connection with the

physical entropy S(t). Naively this connection can be given as∣∣∣∣dSdt
∣∣∣∣ ≤ κ (3.46)

A more detailed explanation of the relationship between KS Entropy and Physical

Entropy can be found in Latora et.al. [29]. Uses of KS Entropy includes it’s relations

with Entanglement Entropy [30] and Bekenstein-Hawking Entropy [31] in various

contexts. Although we only state the values of KS Entropy and not explore those

directions that has been discussed above they remain interesting endeavors for future

studies.

Now we will present the time evolution of the Lyapunov exponents λi, (i, 1, . . . 10)

for n = 1, 2, 3, 4, 5 at the energies E = 20, 30, 100, 250. We observe that for all of

these cases the Lyapunov exponents rapidly converges to constant values. We also

look at how the Lyapunov spectrum changes for given initial condition as n and as
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the energy increases. The plots Fig.(3.21-3.24) are given for the initial condition

(1.25, 1.2, 1.35, 1.2, 1.06, 1.2, 1.5, 1.4, 1.9, 1.3) . (3.47)

Plots (3.25-3.26) shows the evolution of λmax for n = 2, 3, 4, 5. We observe a de-

crease in the values of λmax as n increases further but it still is significantly larger

than zero. If one keeps on increasing n while keeping the energy fixed it is expected

that λmax to get smaller. This result is not surprising since, to keep the energy fixed

we would need to choose the initial conditions closer and closer to zero. Which even-

tually becomes not useful to probe the chaotic dynamics of our system.

From the figures (3.25)-(3.30) we see that the rate of decrease in λmax at different

energies as n takes on the values n = 3, 4, 5 appears to be almost the same. Hence we

may argue that λmax will remain significantly larger than zero for increasing values

of n, provided that the system has sufficiently large energy. In the figure (3.31) we

give the values that LLE converges for energies E = 20, 30, 100, 250. Here we need

to keep in mind that phase space dimensions for n = 1 and other cases are different

so their detached values from the characteristic behavior does not raise any problem.

Figure 3.1: n = 1, E = 20 Figure 3.2: n = 1, E = 30
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Figure 3.3: n = 1,E = 100 Figure 3.4: n = 1, E = 250

Figure 3.5: n = 2 E = 20 Figure 3.6: n = 2 E = 30

Figure 3.7: n = 2 E = 100 Figure 3.8: n = 2 E = 250
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Figure 3.9: n = 3 E = 20 Figure 3.10: n = 3 E = 30

Figure 3.11: n = 3 E = 100 Figure 3.12: n = 3 E = 250

Figure 3.13: n = 4 E = 20 Figure 3.14: n = 4 E = 30
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Figure 3.15: n = 4 E = 100 Figure 3.16: n = 4 E = 250

Figure 3.17: n = 5 E = 20 Figure 3.18: n = 5 E = 30

Figure 3.19: n = 5 E = 100 Figure 3.20: n = 5 E = 250
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Figure 3.21: n = 2 E = 151 Figure 3.22: n = 3 E = 185

Figure 3.23: n = 4 E = 194 Figure 3.24: n = 5 E = 194

Figure 3.25: LLE Values for E = 100 Figure 3.26: LLE Values for E = 250
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Figure 3.27: KSE Values for E = 100 Figure 3.28: KSE Values for E = 250

Figure 3.29: LLE Values for Fixed Initial
Condition

Figure 3.30: KS Entropy for fixed Initial
Condition

Figure 3.31: LLE Values vs n
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3.5 Kink Solutions of LEA’s

In this section we will consider the matrix model in the Euclidean signature. The

Lagrangian for n = 1 can be given as

L(n=1) =
1

8
χ′21 +

1

2
φ′21 +

3

2
Φ′2 +

1

4

(
φ2

1 + χ2
1 − 4

)
2+

3

4

(
φ2

1 + 4Φ(1 + Φ)− 3
)

2

+ φ2
1χ

2
1 + 3(1 + 2Φ)2φ2

1 .

(3.48)

where ′ stands for derivatives with respect to the Euclidean time τ . We can easily

see from (3.48) that there are three different pairs of vacua, which are given by the

configurations

φ1 = ±2 , χ1 = 0 , Φ = −1

2
,

φ1 = 0 , χ1 = ±2 , Φ =
1

2
or − 3

2
, (3.49)

Since either φ1 or χ1 vanish in these vacua, we infer that, the kink solutions could

be of the type with topological indices (±1, 0) or (0,±1) ∈ Z2 ⊕ Z2. These are the

familiar kink solutions. Indeed, we find that the equations of motion are of the form

φ′′1 −
(
4φ3

1 + 3χ2
1φ1 + φ1(7 + 6Φ)(6Φ− 1)

)
= 0 , (3.50a)

χ′′1 − 4
(
χ3

1 + 3φ2
1χ1 − 4χ1

)
= 0 , (3.50b)

Φ′′ −
(
2(1 + 2Φ)

(
3φ2

1 + 4Φ(1 + Φ)− 3
))

= 0 . (3.50c)

which have the following solutions

φ1(τ) = 2 tanh
(

2
√

2 τ
)
, χ1(τ) = 0 , Φ(τ) = −1

2
, (3.51)

with φ1(±∞) = ±2 ,

φ1(τ) = 0 , χ1(τ) = 2 tanh
(

2
√

2 τ
)
, Φ(τ) =

1

2
or − 3

2
, (3.52)

with χ1(±∞) = ±2 .

It is instructive to see how the equations of motions (3.50) yield solutions given in

(3.51),(3.52). Substituting χ1 = 0 and Φ = −1
2

we see that (3.50b) & (3.50c) are

trivially satisfied and from (3.50a) we are left with

φ′′1 − (4φ3
1 − 16φ1) = 0, (3.53)
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which can be simplified to the first order equation

φ′
2

1 = 2(φ2
1 − 4)2. (3.54)

Where the constant of integration is fixed from the form of the potential in (3.48),

with χ1 = 0 and Φ = −1
2
. Choosing the positive square root for the kink solution we

have

φ′1 =
√

2(φ2
1 − 4), (3.55)

which integrates as ∫
dφ1√

2(φ2
1 − 4)

=

∫
dτ, (3.56)

1

2
√

2
arctanh(

φ1

2
) = τ (3.57)

or we can represent it as

φ1(τ) = 2 tanh
(

2
√

2τ
)

(3.58)

As we wanted to show. For further visualization we add a graphic of this kink solution

Figure 3.32: τ vs 2 tanh
(
2
√

2τ
)
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3.5.1 Kinks at levels n ≥ 2

For n = 2, 3, 4, 5, the number of degenerate vacua increases. This may be expected

due to the larger number degrees of freedom in the LEAs. A similar structure in

vacuum configurations to that of n = 1 is observed, and allow for the kink solutions.

At n = 3, for instance, we have eight pairs of degenerate vacua, which are given as

{φ1 → 0., φ3 → 2.56, φ4 → 3.42, χ1 → ±2., χ3 → −11.5} ,

{φ1 → 0., φ3 → −0.28, φ4 → 0.55, χ1 → ±2., χ3 → 1.46} ,

{φ1 → 0., φ3 → 2.55, φ4 → −0.60, χ1 → ±2., χ3 → −5.26} ,

{φ1 → 0., φ3 → −0.27, φ4 → 4.60, χ1 → ±− 2., χ3 → −4.79} ,

{φ1 → ±2., φ3 → 2.30, φ4 → 4.13, χ1 → 0., χ3 → −3.01} ,

{φ1 → ±2., φ3 → −0.02, φ4 → −0.16, χ1 → 0., χ3 → −7.04} ,

{φ1 → ±2., φ3 → 0.28, φ4 → −0.55, χ1 → 0., χ3 → −1.46} ,

{φ1 → ±2., φ3 → 2.00, φ4 → 4.51, χ1 → 0., χ3 → ±8.59} ,

(3.59)

The equations of motion for L(n=3) are coupled non-linear differential equations,

which are not easily solved. We may look at the linearized system of equations

around one of the minima. For notational simplicity, let us write (φ1, χ1, φ3, φ4, χ3) ≡
(S1, S2, S3, S4, S5) := S and also write S = S0 + s, where S0 is one of the vacuum

configurations and s are the fluctuations. The linearized system of equations is given

by

s′′i =
∂2V(3)

∂si∂sj

∣∣∣∣∣
S0

sj , (3.60)

and for, say, S0 ≡ {φ1 → ±2., φ3 → 2.00, φ4 → 4.51, χ1 → 0., χ3 → ±8.59}, these

take the form

2.6s′′1 − 125.3s1 − 30.1s3 + 51.9s4 + 5.41s5 = 0 ,

0.52s′′2 − 38.91s2, = 0 ,

9.8s′′3 − 30.1s1 − 216.3s3 + 29.7s4 + 3.7s5, = 0 , (3.61)

6.9s′′4 + 51.9s1 + 29.7s3 − 110.8s4 − 6.4s5, = 0

0.92s′′5 + 5.4s1 + 3.7s3 − 6.4s4 − 5.8s5 = 0 .

The leading order profiles of the solutions of these equations which are regular as
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τ →∞ are given below, while the complete solutions are given in the Appendix.

s1(τ) ≈ (−0.98c1 − 0.18c2 + 4.98c3 + 1.11c4) e−2.38τ , s2(τ) = c5e
−8.65068τ ,

s3(τ) ≈ (−0.65c1 − 0.12c2 + 3.28c3 + 0.73c4) e−2.38τ ,

s4(τ) ≈ (7.75c1 + 1.49c2 − 39.25c3 − 8.73c4) e−2.38τ ,

s5(τ) ≈ (−73.40c1 − 13.99c2 + 404.89c3 + 89.86c4) e−2.38τ , (3.62)

where ci (i : 1 · · · 5) are arbitrary constants. These results give the profile of the kink

solution as for large τ .
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CHAPTER 4

CONCLUSIONS

In this thesis, We have started with an introduction of fuzzy spaces starting from the

basic examples of S2
F and CP 2 and continue to a richer space S4

F we have demon-

strated how to obtain the S4
F through several ways. Then we have showed how to

introduce functions living on S4
F and how to interpret the action S̃2 as a gauge theory

on S4
F . In Chapter 2 and 3 we have investigated two different gauge theories, One with

a fifth order Chern-Simmons like and one with a mass deformation. We have seen that

choosing a fifth order deformation forces us on a fixed S4
F while with mass deforma-

tion one can choose any stack of S4
F for the purposes of our equivariant parametriza-

tion we choose stack of 4 fuzzy 4 spheres. However we need to take a negative mass

term in order to satisfy the vacuum solutions for the mass deformed action. Which at

first seems as a source of instability that is cured by the equivariant dimensional re-

duction. We introduced the SU(4) equivariant gauge fields on the S4
F and expand the

S4
F extremum solutions around the vacuum with fluctuations that are elements of this

SU(4) equivariant fields. We have analytically calculated the two terms in our action

which are the mass term and the Dynamical term. But calculating the remaining part

of the potential term turns out to be a formidable problem so instead we get the re-

sult for n = 1, 2, 3, 4, 5 numerically using Mathematica. Using the numerical results

we have obtained the Lagrangians for the n = 1, 2, 3, 4, 5 and we observed that they

facilitate chaotic behavior. In order to verify our observation we have calculated the

Lyapunov spectrum for various Energies such as E = 20, 30, 100, 200 and for a fixed

initial condition (1.25, 1.2, 1.35, 1.2, 1.06, 1.2, 1.5, 1.4, 1.9, 1.3) we observed that the

Largest Lyapunov Exponents(LLE) converges rapidly to constant values which are

significantly larger than zero. Such values of LLE indicates highly chaotic behavior
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as we expected. We also plotted the n vs LLE and n vs KSE plots to investigate the

characteristics of this chaotic behavior. Finally we investigated our actions in the Eu-

clidean time τ and observed that they facilitates kink type solutions with topological

charges Z2 × Z2.
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APPENDIX A

USEFUL RESULTS FROM GROUP THEORY

A.1 Brief Review of Group Theoretical Identities

A.1.1 Branching Rules

For this part of appendix we will briefly review some result from group theory from

our previous work.[32]. We know that irreducible representations of SO(2k) and

SO(2k−1)can be given in terms of the highest weight labels [λ] ≡ (λ1 , λ2 , · · · , λk−1 , λk)

and [µ] ≡ (µ1 , µ2 , · · · , µk−1) respectively. Branching of the IRR [λ] of SO(2k) un-

der SO(2k − 1) IRRs follows from the rule [26]

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µk−1 ≥ |λk| , (A.1)

A.1.2 Quadratic Casimir operators of SO(2k) and SO(2k − 1) Lie algebras

Eigenvalues for the quadratic Casimir operators of SO(2k) and SO(2k − 1) in the

IRRs [λ] ≡ (λ1, λ2 · · · λk), [µ] ≡ (µ1, µ2 · · · µk−1), respectively are given as [26]:

C
SO(2k)
2 [λ] =

k∑
i=1

λi(λi + 2k − 2i) (A.2)

C
SO(2k−1)
2 [µ] =

k−1∑
i=1

µi(µi + 2k − 1− 2i) . (A.3)
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Eigenvalues of quadratic Casimir operators of some specific IRRs are given as

C
SO(4)
2

(
n+

I

2
, s

)
=
I2

4
+ In+ I + n2 + 2n+ s2 (A.4)

C
SO(3)
2

(
I

2

)
=
I2

4
+
I

2
(A.5)

C
SO(6)
2

(
n+

I

2
,
I

2
, s

)
=
I2

2
+ In+ 3I + n2 + 4n+ s2 (A.6)

C
SO(5)
2

(
I

2
,
I

2

)
=
I2

2
+ 2I (A.7)

A.1.3 Relationship between Dynkin and Highest weight labels

Throughout this thesis we have used highest weight labels (HW) and Dykin labels to

label the irreducible representations of Lie algebras. To be more precise other than

in section (2.3) we have used Dykin labeling. Although the difference between them

is just algebraic. We give the relationship between Dykin labels and highest weight

labels to be more clear as follows For a SO(5) IRR , the labels are given as

(p, q)Dynkin ≡ (λ1, λ2)HW

and the relation between these labels are given by

λ1 =
p+ q

2
λ2 =

q

2

To illustrate, (I/2, I/2)HW corresponds to (0, I)Dynkin.

For a SO(6) IRR , the labels are given as

(p, q, r)Dynkin ≡ (λ1, λ2, λ3)HW

and the relation between these labels are given by

λ1 = q +
p+ r

2
λ2 =

p+ r

2
λ3 =

p− r
2

For a SO(4) IRR the labels are

(p, q)Dynkin ≡ (λ1, λ2)HW

and the relation between these labels are given by

λ1 =
p+ q

2
λ2 =

p− q
2

To illustrate, (n+ I/2, s)HW corresponds to (1
2
(n+ I/2 + s), 1

2
(n+ I/2− s))Dynkin.
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A.1.4 Dimensional Relations

Using these labellings we can obtain the dimensional relations we have used in the

following way. As stated in previous sections dimension of Xµ can be obtained from

the dimension relations of the SO(5) algebra since they are constructed from the

symmetric tensor product of the Γ matrices they also respect the SO(5) relations

dim(N,M) =
1

6
(N + 1)(M + 1)(N +M + 2)(2N +M + 3), (A.8)

Setting N = 0 and M = n we get the dimensional relation (2.72)
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APPENDIX B

CALCULATIONS ON EQUIVARAINT REDUCTION

B.1 Details on the Dimensional Reduction

Let us show that the square of these operators are indeed 1. To do that we need to find

(G · Σ)2

GijGklΣijΣkl = γiγjγkγlGijGkl (B.1)

Starting from relation εijklmγiγjγkγl = 24γm and multiplying both sides with εabcdm

One can obtain

εabcdmεijklmγiγjγkγlGabGcd = 24εabcdmγmGabGcd (B.2)

Left hand side can be calculated by expanding the product of epsilons as a determinant

εabcdmεijklm =

∣∣∣∣∣∣∣∣∣∣∣

δai δaj δak δal

δbi δbj δbk δbl

δci δcj δck δcl

δdi δdj δdk δdl

∣∣∣∣∣∣∣∣∣∣∣
(B.3)

When calculated gives the result

εabcdmεijklm = δai
(
δbj(δckδdl − δdkδcl)− δbk(δcjδdl − δclδdj) + δbl(δcjδdk − δckδdj)

)
(B.4)

−δaj
(
δbi(δckδdl − δclδdk)− δbk(δciδdl − δclδdi) + δbl(δciδdk − δdiδck)

)
+δak

(
δbi(δcjδdl − δclδdj)− δbj(δciδdl − δdiδcl) + δbl(δciδdj − δcjδdi)

)
−δal

(
δbi(δcjδdk − δckδdj)− δbj(δciδdk − δckδdi) + δbk(δciδdj − δdiδcj)

)
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Which is the most general form of the operator we have previously defined as fabcdef

in (2.134). Multiplying (B.4) with γiγjγkγlGabGcd we get

4γaγbγcγdGabGcd + 4γcγdγaγbGabGcd + 4γaγcγdγbGabGcd (B.5)

+4γaγdγbγcGabGcd + 4γcγaγbγdGabGcd + 4γdγaγcγbGabGcd

Using anti commutation relation of gamma matrices we can arrange these terms as

4(6γaγbγcγdGabGcd + 12GabGab + 24γaγcGabGcb) (B.6)

so

εabcdmγmGabGcd = γaγbγcγdGabGcd − 2GabGab − 4γaγcGabGcb (B.7)

we know that γaγbγcγdGabGcd is equal to (G · Σ)2 so

γaγbγcγdGabGcd = εabcdmγmGabGcd + 2GabGab − 4γaγcGabGcb (B.8)

Lets focus on the first term usingGab = 1
2
[Xa, Xb] we can expand the term εabcdmγmGabGcd

as

εabcdmγmGabGcd =
1

4
εabcdmγm (XaXbXcXd −XaXbXdXc −XbXaXcXd +XbXaXdXc)

(B.9)

Which is equal to

εabcdmγmXaXbXdXc (B.10)

We know that εabcdmXaXbXcXd = 8(n + 2)Xm, and using this relation we find the

first term as

εabcdmγmGabGcd = 8(n+ 2)Xmγm (B.11)

Now that we have found the first term we can move on to the second term which is

the Casimir of (0, n) IRR of SO(5) which can be written as

GabGab = −4n(n+ 4) (B.12)

Lastly the third term can be calculated in the following way

γaγcGabGcb =
1

2
γaγcGabGcb +

1

2
γaγcGabGcb (B.13)

=
1

2
γaγcGabGcb +GabGab −

1

2
γaγcGcbGab

=
1

2
γaγc[Gab, Gcb] +GabGab
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Using the commutation relation of SO(5) generators we found the last term as

12γaγcGac − 4GabGab (B.14)

Combining all the terms together we get

(G · Σ)2 = 8n(n+ 2)Xaγa + 12γaγcGac + 8n(n+ 4)14N (B.15)

Lets investigate (G·Σ)2

n2 as n goes to∞

lim
n→∞

(
8(n+ 2)Xmγm + 8n(n+ 4) + 12ΣacGac

n2
) = 8(xmγm + 14) (B.16)

Where xm represents the coordinates of R5. Now that we have found the limit of
(G·Σ)2

n2 we can calculate the limit of Q’s Lets start with Q2

lim
n→∞

Q2 =
(G · Σ)2

−8n2
+

16n2

8n2
− 1 (B.17)

= −xmγm − 1 + 2 + 1 = −xmγm = q2

Taking the square

q2
2 = xmxnγmγn (B.18)

=
1

2
xmxnγmγn +

1

2
xmxnγmγn

=
1

2
xmxn{γm, γn}

=
1

2
xmxn2δmn

= 1

Now focusing on Q1

lim
n→∞

= q1 =
(G · Σ)2

16n2
− 4nGΣ

16n2
− 1 =

xmγm
2
− 1

4
αcdΣcd − 1 (B.19)

Taking the square

q2
1 =

xmxnγmγn
4

+
αcdΣcdαcdΣcd

16
− xaγaαcdΣcd

8
−αcdΣcdxaγa

8
− xmγm

2
+
αcdΣcd

4
+

1

4
(B.20)

Where αab represents coordinates of R15. We know that GabGcdΣabΣcd is equal to

= 8(n+ 2)Xmγm + 8n(n+ 4) + 12ΣacGac (B.21)
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So divide both sides with n2 and find

αabαcdΣabΣcd = 8xmγm + 8 (B.22)

Putting this in (B.20) and organizing terms a little bit more leads us to

q2
1 = 1− xaγaαcdΣcd

8
− αcdΣcdxaγa

8
+
αcdΣcd

4
(B.23)

For q2
1 be equal to 1 we need last three terms of (B.23) to be equal to 0 which leads us

to the equality

xaαcdγaΣcd + αcdxaΣcdγa = 2αcdΣcd (B.24)

Lets show that RHS is indeed equal to LHS. We can put LHS in the following form

xaαcd{γa,Σcd} =
1

2
xaαcd{γa, [γc, γd]} (B.25)

Using the relation εabcdeγbγcγd = 3[γa, γe] and multiplying both sides of this equation

with γm gives us

εabcdeγmγbγcγd = 3γm[γa, γe] (B.26)

Using this equation we can conclude that

{γm, {γa, γc}} = 2εabcdeγcγd (B.27)

Combining this with αab = −1/2εabcdeαcdxe (B.25) becomes

−xgαcdxe(εabcde)(εabgfh)γfγh (B.28)

= xgαfhxgγfγh − xgαhfγfγh

= αfh[γf , γh] = 2αfhΣfh

As we wanted. Now we can focus on Q3. Observe that it has the same structure as

Q1.

lim
n→∞

(G · Σ)2

16n2
+

4nGΣ

16n2
− 1 =

xmγm
2

+
1

4
αcdΣcd −

1

2
(B.29)

q2
3 = 1 +

xaγaαcdΣcd

8
+
αcdΣcdxaγa

8
+
αcdΣcd

4
(B.30)

So same condition holds and we have q2
3 equal to 1.

Some useful identities among Q1, Q3 and Xa that greatly simplify the analytic calcu-
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lations are listed below[33].

[Q1, [Xa, Q3]] = 0 , [Q3, [Xa, Q1]] = 0

[Q1, Q3[Xa, Q3]] = 0 , [Q3, Q1[Xa, Q1]] = 0

[Q3, Q1[Xa, Q1]] = 0 , [Q1, {Xa, Q2}] = 0

[Q1, {Xa, Q1} −Q3[Xa, Q3]] = 0 , [Q3, {Xa, Q1} −Q3[Xa, Q3]] = 0

[Q1, {Xa, Q3} −Q1[Xa, Q1]] = 0 , [Q3, {Xa, Q3} −Q1[Xa, Q1]] = 0

(B.31)
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APPENDIX C

EXPLICIT FORMULA FOR LOW ENERGY REDUCED

ACTIONS AND THEIR MINIMUMS

C.1 Explicit Formula for LEA

Here we list the equivariantly reduced Lagrangians for n = 4, 5, 3:

L(n=4) =
1

2

(
1.3χ̇2

1 + 2.6φ̇2
1 + 8.38φ̇2

3 + 6.77φ̇2
4 + 0.88χ̇2

3

)
− 1.66χ4

1

− 1.66χ4
1 − 0.015χ4

3 − 0.39χ3
3 + 8.81χ2

1 − 0.287χ2
1χ

2
3 − 2.75χ2

3

+ 3.47χ2
1χ3 + 0.252χ3 − 5.48χ2

1φ
2
1 − 0.182χ2

3φ
2
1 + 3.55χ3φ3φ

2
1

− 1.32χ3φ4φ
2
1 − 3.72χ3φ

2
1 − 0.164χ3

3φ3 + 0.044χ3
3φ4 − 7.09χ2

1φ
2
3

− 0.796χ2
1φ

2
4 + 14.2χ2

1φ3 − 5.37χ2
1φ3φ4 + 3.18χ2

1φ4 − 0.852χ2
3φ

2
3

− 0.0543χ2
3φ

2
4 − 2.59χ2

3φ3 + 0.40χ2
3φ3φ4 + 0.785χ2

3φ4 + 0.010χ3φ
3
3

− 0.020χ3φ
3
4 − 14.3χ3φ

2
3 − 0.33χ3φ3φ

2
4 − 0.18χ3φ

2
4 − 2.92χ2

1χ3φ3

− 1.22χ2
1χ3φ4 − 10.38χ3φ3 + 0.402χ3φ

2
3φ4 + 7.01χ3φ3φ4 + 1.59χ3φ4

− 3.94φ4
1 − 16.04φ2

3φ
2
1 − 2.03φ2

4φ
2
1 + 13.4φ2

1 + 28.6φ3φ
2
1 + 14.2φ3φ4φ

2
1

− 17.7φ4φ
2
1 − 5.49φ4

3 − 0.21φ4
4 + 24.2φ3

3 − 0.73φ3φ
3
4 + 3.47φ3

4

− 66.4φ2
3 − 1.99φ2

3φ
2
4 + 9.79φ3φ

2
4 − 16.53φ2

4 − 42.75φ3

+ 2.24φ3
3φ4 + 5.81φ2

3φ4 − 11.5φ3φ4 + 14.5φ4 − 31.0 .

(C.1)
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L(n=5) =
1

2

(
1.5χ̇2

1 + 2.5φ̇2
1 + 7.549φ̇2

3 + 6.537φ̇2
4 + 0.83χ̇2

3

)
− 1.85χ4

1

− 1.85χ4
1 − 0.006χ4

3 − 0.22χ3
3 + 9.31χ2

1 − 0.26χ2
1χ

2
3 − 2.20χ2

3 + 3.45χ2
1χ3

+ 0.245χ3 − 5.625χ2
1φ

2
1 − 0.181χ2

3φ
2
1 + 2.8χ3φ3φ

2
1 − 0.967χ3φ4φ

2
1 − 3.69χ3φ

2
1

− 0.07χ3
3φ3 + 0.015χ3

3φ4 − 10.4χ2
1φ

2
3 − 0.190χ2

1φ
2
4 + 18.01χ2

1φ3

− 3.23χ2
1φ3φ4 + 1.60χ2

1φ4 − 0.45χ2
3φ

2
3 − 0.018χ2

3φ
2
4

− 1.45χ2
3φ3 + 0.169χ2

3φ3φ4 + 0.372χ2
3φ4 + 0.104χ3φ

3
3 + 0.0003χ3φ

3
4

− 10.40χ3φ
2
3 − 0.1003χ3φ3φ

2
4 − 0.205χ3φ

2
4 − 3.37χ2

1χ3φ3 − 0.577χ2
1χ3φ4

− 8.29χ3φ3 + 0.071χ3φ
2
3φ4 + 4.34χ3φ3φ4 + 1.16χ3φ4 − 3.88φ4

1

− 9.66φ2
3φ

2
1 − 1.197φ2

4φ
2
1 + 13.4φ2

1 + 20.9φ3φ
2
1 + 8.14φ3φ4φ

2
1

− 11.95φ4φ
2
1 − 3.66φ4

3 − 0.019φ4
4 + 22.15φ3

3 − 0.12φ3φ
3
4 + 0.61φ3

4 − 77.93φ2
3

− 0.897φ2
3φ

2
4 + 3.98φ3φ

2
4 − 6.40φ2

4 − 38.93φ3 + 0.883φ3
3φ4 + 5.42φ2

3φ4

− 7.43φ3φ4 + 10.35φ4 − 31 .

(C.2)

L(n=3) =
1

2

(
0.52χ̇2

1 + 0.92χ̇2
3 + 6.903φ̇3

4 + 2.6φ̇2
1 + 9.8φ̇2

3

)
− 1.43χ4

1

− 0.053χ4
3 − 0.814χ3

3 + 8.10χ2
1 − 0.305χ2

1χ
2
3 − 3.63χ2

3 + 3.339χ2
1χ3

+ 0.226χ3 − 5.25χ2
1φ

2
1 − 0.165χ2

3φ
2
1 + 4.04χ3φ3φ

2
1 − 1.34χ3φ4φ

2
1

− 3.56χ3φ
2
1 − 0.447χ3

3φ3 + 0.128χ3
3φ4 − 4.09χ2

1φ
2
3 − 1.79χ2

1φ
2
4

+ 9.83χ2
1φ3 − 6.24χ2

1φ3φ4 + 4.20χ2
1φ4 − 1.66χ2

3φ
2
3

− 0.133χ2
3φ

2
4 − 4.70χ2

3φ3 + 0.86χ2
3φ3φ4 + 1.49χ2

3φ4

− 0.23χ3φ
3
3 − 0.142χ3φ

3
4 − 17.80χ3φ

2
3 − 0.75χ3φ3φ

2
4

+ 0.34χ3φ
2
4 − 2.30χ2

1χ3φ3 − 1.96χ2
1χ3φ4 − 12.48χ3φ3

+ 1.08χ3φ
2
3φ4 + 9.19χ3φ3φ4 + 1.64χ3φ4 − 3.94φ4

1 − 23.22φ2
3φ

2
1

− 1.65φ2
4φ

2
1 + +13.14φ2

1 + 35.3φ3φ
2
1 + 18.84φ3φ4φ

2
1 − 21.27φ4φ

2
1

− 8.46φ4
3 − 1.19φ4

4 + 29.74φ3
3 − 2.33φ3φ

3
4 + 11.24φ3

4 − 51.36φ2
3

− 2.91φ2
3φ

2
4 + 16.41φ3φ

2
4 − 29.82φ2

4 − 45.17φ3 + 3.54φ3
3φ4

+ 4.90φ2
3φ4 − 14.55φ3φ4 + 17.07φ4 − 30.61 .

(C.3)
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C.2 Minimum Values of the Potential

For n = 3

{φ1 → 0., φ3 → 2.55953, φ4 → 3.41521, χ1 → ±2., χ3 → −11.5045} ,

{φ1 → 0., φ3 → −0.277688, φ4 → 0.548444, χ1 → ±2., χ3 → 1.45505} ,

{φ1 → 0., φ3 → 2.55117, φ4 → −0.596206, χ1 → ±2., χ3 → −5.25775} ,

{φ1 → 0., φ3 → −0.269331, φ4 → 4.55986, χ1 → ±− 2., χ3 → −4.79172} ,

{φ1 → ±2., φ3 → 2.30365, φ4 → 4.12784, χ1 → 0., χ3 → −3.00725} ,

{φ1 → ±2., φ3 → −0.0218119, φ4 → −0.164188, χ1 → 0., χ3 → −7.04222} ,

{φ1 → ±2., φ3 → 0.277688, φ4 → −0.548444, χ1 → 0., χ3 → −1.45505} ,

{φ1 → ±2., φ3 → 2.00415, φ4 → 4.5121, χ1 → 0., χ3 → ±8.59443} ,

(C.4)

For n = 4

{φ1 → 0, φ3 → 2.4648, φ4 → 2.89574, χ1 → ±1., χ3 → −12.403} ,

{φ1 → 0, φ3 → 2.27251, φ4 → −0.169024, χ1 → ±1., χ3 → −7.91332} ,

{φ1 → 0, φ3 → 0.87219, φ4 → 4.6719, χ1 → ±1., χ3 → −7.43008} ,

{φ1 → 0, φ3 → 0.679905, φ4 → 1.60714, χ1 → ±1., χ3 → −2.94038} ,

{φ1 → ±1., φ3 → 0.892447, φ4 → 0.644303, χ1 → 0, χ3 → −4.73132} ,

{φ1 → ±1., φ3 → 2.25226, φ4 → 3.85858, χ1 → 0, χ3 → −10.6121} ,

{φ1 → ±1., φ3 → 2.42106, φ4 → 3.8452, χ1 → 0, χ3 → −6.37635} ,

{φ1 → ±1., φ3 → 0.723642, φ4 → 0.65768, χ1 → 0, χ3 → −8.96706} ,

(C.5)
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For n = 5

{φ1 → 0, φ3 → 3.03956, φ4 → 2.63677, χ1 → ±1., χ3 → −16.9732} ,

{φ1 → 0, φ3 → 0.921837, φ4 → 2.07711, χ1 → ±1., χ3 → −4.2708} ,

{φ1 → 0, φ3 → 2.59883, φ4 → −2.66941, χ1 → ±1., χ3 → −11.0127} ,

{φ1 → 0, φ3 → 1.36257, φ4 → 7.38328, χ1 → ±1., χ3 → −10.2313} ,

{φ1 → ±1., φ3 → 1.05886, φ4 → 0.279828, χ1 → 0, χ3 → −6.35122} ,

{φ1 → ±1., φ3 → 2.90254, φ4 → 4.43405, χ1 → 0, χ3 → −14.8928} ,

{φ1 → ±1., φ3 → 3.10959, φ4 → 4.79955, χ1 → 0, χ3 → −9.04226} ,

{φ1 → ±1., φ3 → 0.851816, φ4 → −0.0856701, χ1 → 0, χ3 → −12.2018} ,

(C.6)

C.3 Asymptotic Profiles of the Kink Solution for L(n=3)

Solutions of (3.62), which are regular as τ →∞ are given below

s1(τ) = (3.1c1 + 0.49c2 − 6.52c3 − 1.52c4) e−3.45τ+(0.07c1 − 0.005c2 + 0.25c3 + 0.16c4) e−4.56τ

+(−1.17c1 − 0.3c2 + 1.29c3 + 0.26c4) e−7.36τ+(−0.98c1 − 0.18c2 + 4.98c3 + 1.11c4) e−2.38τ ,

(C.7)

s3(τ) = (0.92c1 + 0.15c2 − 1.95c3 − 0.46c4) e−3.44τ+(−0.139c1 + 0.01c2 − 0.48c3 − 0.30c4) e−4.56τ

+(−0.14c1 − 0.035c2 + 0.15c3 + 0.03c4) e−7.36τ+(−0.65c1 − 0.12c2 + 3.28c3 + 0.73c4) e−2.38τ

s4(τ) = (7.74c1 + 1.45c2 − 39.25c3 − 8.73c4) e−2.38τ+(5.79c1 + 0.93c2 − 12.24c3 − 2.86c4) e−3.45τ

+(0.25c1 + 0.065c2 − 0.28c3 − 0.055c4) e−7.36τ+(0.016c1 − 0.001c2 + 0.055c3 + 0.035c4) e−4.56τ

s5(τ) = (3.09c1 + 0.49c2 − 6.26c3 − 1.47c4) e−3.45τ+(0.20c1 + 0.051c2 − 0.24c3 − 0.048c4) e−7.36τ

+(0.025c1 + 0.00025c2 + 0.03c3 + 0.03c4) e−4.56τ+(−73.40c1 − 13.99c2 + 404.89c3 + 89.86c4) e−2.38τ
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APPENDIX D

BASICS OF CALCULATION OF LYAPUNOV EXPONENTS

Looking at the results we obtained one can easily see that they can have chaotic be-

havior. To investigate if it really is the case we will compute the Lyapunov exponents

corresponding to our Lagrangians for various energies. Let us start this section with

a brief review of how to compute the Lyapunov exponents [4, 3, 5]. Suppose we have

a Hamiltonian H with a solution x(t) which demonstrates chaotic behavior. If we

consider a nearby point x(t) + δ(t). We expect this deviation to grow exponentially

in the regime of chaotic behavior.

|δ(t)| = |δ(0)|eλt (D.1)

Where λ is a positive constant called a Lyapunov exponent. This exponential growth

we see in (D.1) is the realization of heavy sensitivity on initial conditions in chaotic

system. So we can use these constant to decide if a system is chaotic or not. To com-

pute the Lyapunov constant for a general system we will do the following. Consider a

system of First order differential equations which represents the Hamilton’s equation

of motion of a Hamiltonian system.

ẋ = F (x) (D.2)

where x isN dimensional vector. Taking a variation around ẋwe obtain the following

δẋi =
∂F i

∂xj
δxj (D.3)

Hence we see that we can express a deviation vector δx(t) can be expressed as

δx(t) = U(t)δx(0) (D.4)
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Where U(t) is the time translation operator. And by the use of linearity property of

the time translation operator we can obtain a general deviation vector in the form.

δx(t+ t′) = U(t)U(t′)δ(0) (D.5)

And the Lyapunov exponent for this deviation vector is defined as

λ ≡ lim
T→∞

1

T
log
|δx(T )|
|δx(0)|

(D.6)

And using the linearity property

λ ≡ lim
n→∞

log
|U∆t.....U∆tδx(0)|

|δx(0)|
(D.7)

Now we are in position to generalize this procedure for n Lyapunov exponents.Firstly

we need to construct an orthonormal set of basis that spans the vector which is tan-

gent to the trajectory. Let this set of basis be labeled as {k1
0, k

2
0, . . . , k

n
0 }. Then by

applying the time translation operator U∆t we evolve each basis vector by ∆t. Result-

ing in a new set of basis vectors {w1
1, w

2
1, . . . , w

n
1}. Note that after the transformation

new basis vector are no longer orthonormal. To take care of this we follow the usual

Gram-Schmidt orthogonalization process. Doing so we obtain a new set of orthogo-

nal vectors {k̃1
1, k̃

2
1, . . . , k̃

n
1 }.Now we will compute the expansion rate of each vector

which will be used in the definition of Lyapunov exponent can be given as

ak1 ≡

∣∣∣k̃k1 ∣∣∣
pk0

=
∣∣∣k̃k1 ∣∣∣ (D.8)

Finally we normalize the orthogonal set of vectors {k̃1
1, k̃

2
1, . . . , k̃

n
1 } which completes

a single cycle. Then this process should be repeated for N times and the spectrum

Lyapunov exponents can be obtained as

λk ≡ lim
N→∞

1

n∆t

N∑
i=1

log
(
aki
)

(D.9)

By construction v1
i ’s direction is the one with the highest sensitivity to initial condi-

tions so it’s corresponding expansion rate has the largest value in this region.
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