
CONVOLUTIONAL NEURAL NETWORK BASED BRAIN MRI
SEGMENTATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BORA BAYDAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2018

Approval of the thesis:

CONVOLUTIONAL NEURAL NETWORK BASED BRAIN MRI
SEGMENTATION

submitted by BORA BAYDAR in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Uğur Halıcı
Electrical and Electronics Engineering, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Aykut Erdem
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Gökberk Cinbiş
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: BORA BAYDAR

Signature :

iv

ABSTRACT

CONVOLUTIONAL NEURAL NETWORK BASED BRAIN MRI
SEGMENTATION

BAYDAR, BORA
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

June 2018, 97 pages

Visualization of the inner parts of human body is crucial in modern medicine and

magnetic resonance imaging(MRI) is one of the widely used medical imaging meth-

ods. Manual analysis of MRIs, however, wastes the valuable time of experts. De-

velopment of an automatic segmentation method for brain MRIs can save time spent

by the experts and can avoid human error factor. In this thesis, convolutional neural

network (CNN) based methods are applied on brain MRI segmentation problem. The

basic architectures used are FCN-8 and U-NET. Performance of different approaches

has been analyzed by focusing on structural modifications, upsampling methods, ac-

tivation functions, loss functions, pre-processing and post-processing methods. For

the activation functions, ReLU, LReLU, PReLU and tanh are experimented. His-

togram matching, normalization and histogram equalization have been applied for

pre-processing. Conditional random fields and a 3 dimensional connected compo-

nent analysis are separately integrated to the network as post-processors. Results are

compared in terms of dice score, sensitivity and specificity.

The experimental results show that the combination of two separate U-Nets has the

v

best performance. Dilation modules also improve the results when inserted on a shal-

low network. When combined with additional residual connections, they have also

improved the overall results. Inception modules do not provide a remarkable per-

formance improvement. ReLU and PReLU have shown the best performance. No

significant difference have been observed between results obtained from different up-

sampling methods, although bilinear interpolation, despite being non-trainable, has

slightly better results.

Keywords: Convolutional, Neural, Network, MRI, Brain, Medical, Image, Segmen-

tation

vi

ÖZ

EVRİŞİMLİ SİNİR AĞLARI TABANLI BEYİN MRI BÖLÜTLEMESİ

BAYDAR, BORA
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Haziran 2018 , 97 sayfa

İnsan vücudunun iç kısımlarının görselleştirilmesi, modern tıp için önemlidir. Man-

yetik rezonans görüntüleme (MRG) en yaygın kullanılan tıbbi görüntüleme yöntem-

lerinden biridir. Ancak MRG’lerin el ile analizi, uzmanların değerli zamanlarını boşa

harcamaktadır. Beyin MRG’leri için otomatik bir bölütleme yönteminin geliştiril-

mesi, uzmanlar tarafından harcanan zamandan tasarruf sağlayabilir ve insan hatası

faktörünü önleyebilir. Bu tezde, evrişimli sinir ağları (ESA) tabanlı yöntemler be-

yin MRG bölütlemesi problemine uygulanmıştır. Kullanılan temel mimariler FCN-8

ve U-NET’dir. Farklı yaklaşımların performansı, yapısal modifikasyonlar, örnekleme

yöntemleri, aktivasyon fonksiyonları, kayıp fonksiyonları, ön işlem ve işleme son-

rası yöntemlere odaklanarak analiz edilmiştir. Aktivasyon fonksiyonları için ReLU,

LReLU, PReLU ve tanh denenmiştir. Ön işleme için histogram eşleştirme, normal-

leştirme ve histogram eşitleme uygulanmıştır. Koşullu rastgele alanlar ve 3 boyutlu

bağlantılı bileşen analizi, ağa post-işlemciler olarak ayrı ayrı entegre edilmiştir. So-

nuçlar, Dice skoru, duyarlılık ve özgüllük açısından karşılaştırılmıştır.

Deneysel sonuçlar iki U-Net’den oluşan kombinasyonun en iyi performansa sahip ol-

vii

duğunu göstermektedir. Genişleme modülleri, sığ bir ağa yerleştirildiğinde sonuçları

iyileştirmiştir. Ek artık bağlantılar ile birleştirildiğinde, genel sonuçları da iyileştirdiği

gözlenmiştir. Başlangıç modülleri dikkate değer bir performans artışı sağlamamıştır.

ReLU ve PReLU en iyi performansı göstermiştir. Farklı üst-örnekleme yöntemlerin-

den elde edilen sonuçlar arasında anlamlı bir farklılık gözlenmemiştir; ancak, çift

doğrusal aradeğerleme, eğitilebilir olmamasına rağmen, biraz daha iyi sonuçlara sa-

hiptir.

Anahtar Kelimeler: Evrişimli, Sinir, Ağları, MRI, MRG, Beyin, Tıbbi, Görüntü, Bö-

lütleme

viii

Daima yanımda olan geniş aileme...

ix

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my supervisor Prof. Gözde

Bozdağı Akar. I have had experience in various areas in signal/image processing

under her precious guidance. I have learnt so much from her academically, which

finally led me to writing this thesis. I must also mention her great kindness to every

student. Looking past my last undergraduate semester, it was the most fortunate thing

for me to become a member of METU Multimedia Research Group led by her.

Secondly, I would like to thank to Savas Ozkan, who is currently the most experi-

enced member of METU Multimedia Research Group. Without his knowledge and

experience on convolutional neural networks, writing this thesis would be much more

difficult.

I must also note METU Multimedia Research Group’s gratitude to NVIDIA for their

Quadro P5000 GPU donation to our laboratory.

I also would like to mention my appreciations to the other members of METU Mul-

timedia Research Group, Ece Selin Boncu, Volkan Okbay and Alican Hasarpa, for

their support, motivation and friendship.

I would like to thank Basak Usta for being there for me at both good and bad times.

She was very self-giving, motivating, patient and loving.

Finally, I want to thank my parents, Mehmet Fatih Baydar and Gulsun Nese Baydar.

I am very proud to be their son.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Scope of the Thesis . 3

1.2 Outline of the Thesis . 4

2 LITERATURE REVIEW . 5

2.1 Unsupervised Brain Tumor Segmentation 5

2.2 Supervised Brain Tumor Segmentation 6

2.2.1 Convolutional Neural Network Based Brain Tu-
mor Segmentation 6

2.3 Pre-processing and Post-processing 8

3 CONVOLUTIONAL NEURAL NETWORKS 11

xi

3.1 Neural Networks . 11

3.1.1 Basics of Artificial Neural Networks 11

3.1.2 Multilayer Networks 13

3.1.3 Optimization with Backpropagation in Neural Net-
works . 14

3.1.3.1 Gradient Descent 15

3.1.3.2 Backpropagation 18

3.1.3.3 Loss Functions 20

3.1.4 A Brief History of Convolutional Neural Networks 21

3.1.5 Layers of CNNs 22

3.1.5.1 Convolution Layers 23

3.1.5.2 Pooling Layers 25

3.1.5.3 Upscaling Layer 26

3.1.5.4 Fully Connected Layers 29

3.1.5.5 Activation Functions 30

3.1.5.6 Dropout 32

3.1.5.7 Batch Normalization 33

3.1.5.8 GAN:Generative Adversarial Networks 33

4 CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES USED
FOR BRAIN MRI SEGMENTATION 37

4.1 FCN-8s . 37

4.2 U-Net . 37

4.3 Proposed Modifications . 40

4.3.1 Inception Modules 40

xii

4.3.2 Dilated Convolutions 40

4.3.3 Residual Connections 41

4.3.3.1 Pre-activation Residual Block 42

5 PRE-PROCESSING AND POST-PROCESSING METHODS 45

5.1 Pre-Processing Methods . 45

5.1.0.1 Normalization 45

5.1.0.2 Histogram Matching 46

5.1.0.3 Histogram Equalization 46

5.2 Post-Processing Methods 49

5.2.1 Conditional Random Fields 49

5.3 Largest Volume Filtering 51

6 IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS 53

6.1 Implementation Details . 53

6.2 Data Used In The Work . 54

6.3 Experimental Results . 54

6.3.1 Metrics Used for Rating performance 54

6.3.1.1 Dice Coefficient 55

6.3.1.2 Sensitivity and Specificity 55

6.3.2 Results . 55

6.3.2.1 Structure Based Comparison 56

6.3.2.2 Comparison of Different Activation Func-
tions 63

6.3.2.3 Comparison of Different Upsampling
Methods 69

xiii

6.3.2.4 Comparison of Different Loss Functions 75

6.3.2.5 Comparison of Different Post-processing
Methods 81

7 CONCLUSION AND FUTURE WORK 85

REFERENCES . 87

xiv

LIST OF TABLES

TABLES

Table 3.1 Comparison between a high end personal computer GPU, a high

end workstation GPU, a high end personal computer CPU and a high end

workstation CPU . 22

Table 6.1 Validation results obtained using different architectures, different

connections and different filter sizes . 56

Table 6.2 General information on architectures 57

Table 6.3 Validation results obtained using different activation functions . . . 63

Table 6.4 Validation results obtained using different upsampling methods . . . 69

Table 6.5 Validation results obtained using different cost functions 75

Table 6.6 Validation results obtained using different post processing methods.

DCRF-1 and DCRF-2 correspond to conditional random field applied with

different parameter choices. 81

Table 6.7 Validation results of top performing methods as reported in BraTS

2017 leaderboard. 84

xv

LIST OF FIGURES

FIGURES

Figure 3.1 A biological neuron is fired when it is excited sufficiently by other

neurons connected to it. (Image taken from [1]) 12

Figure 3.2 An artificial neuron. If f(a) (activation function) is a threshold

function, then this neuron is called a perceptron. 12

Figure 3.3 A feedforward neural network with one hidden layer. 13

Figure 3.4 A single layer network which is mathematically represented in

Equation 3.3. 14

Figure 3.5 A simple example to visualize the gradient descent applied to t =

x2. The blue ball travels towards the lowest point of the red valley while

its speed changes according to the slope. 15

Figure 3.6 Gradient descent without momentum on left, gradient descent with

momentum on right.(Image taken from [2]) 17

Figure 3.7 Backpropagation of xk for wL,j,i 19

Figure 3.8 AlexNet (Image taken from [3]) 23

Figure 3.9 Convolution is applied on the entire image. 25

Figure 3.10 A neuron representing the filter W applied on pixels around p22. . 25

Figure 3.11 (a) Image pixel values. (b) Result of max pooling for each colored

region. (c) Result of average pooling for each colored region. 26

Figure 3.12 Bilinear interpolation . 27

xvi

Figure 3.13 Deconvolution applied on a 3×3 image (blue squares) padded with

zeros (white squares) to obtain a 5×5 image (green squares) (Image taken

from [4]) . 28

Figure 3.14 Visualization of sub-pixel upsampling. (Image taken from [5]) . . 29

Figure 3.15 Sigmoid function . 30

Figure 3.16 tanh function . 31

Figure 3.17 ReLU function . 31

Figure 3.18 LReLU function as given in Eq. 3.30(where α is 0.2) 32

Figure 3.19 Left: A standard neural network. Right: A network with dropout.

Crossed neurons are ignored for current iteration. (Image taken from [6]) . 32

Figure 3.20 General structure of GAN used for segmentation problem. The

generator is the segmentation network explained in previous chapters.

Discriminator network is given in 3.21 34

Figure 3.21 Discriminator network architecture used in GAN 35

Figure 4.1 FCN-8s architecture used for brain tumor segmentation in this

work . 38

Figure 4.2 U-Net architecture used for brain tumor segmentation 39

Figure 4.3 Multi-scale U-Net (with 3x3 and 5x5 filter sizes) 39

Figure 4.4 Multi-scale U-Net (with 3x3 and 5x5 filter sizes) and a dilation

module . 40

Figure 4.5 An Example of Inception Module 41

Figure 4.6 The blue areas show the receptive field of each layer (a) Normal

convolution (b) Dilated convolution with dilation 2 (c) Dilated convolu-

tion with dilation 4 (Image taken from [7]) 42

xvii

Figure 4.7 (a) Original post-activation residual block (b) Pre-activation block

(Image taken from [8]) . 43

Figure 5.1 An example image and normalization applied on it. 46

Figure 5.2 Histogram equalization applied without a foreground mask. 47

Figure 5.3 Histogram equalization applied with a foreground mask. 48

Figure 5.4 An example result to show need for post-processing. 50

Figure 6.1 Dice scores obtained during training different architectures. 58

Figure 6.2 Sensitivity results obtained during training different architectures. . 59

Figure 6.3 Specificity results obtained during training different architectures. . 60

Figure 6.4 Examples of validation results of HGG patients obtained by top

performing structures. 61

Figure 6.5 Examples of validation results of LGG patients obtained by top

performing structures. 62

Figure 6.6 Dice scores obtained from different activation functions during

training. 64

Figure 6.7 Sensitivity results obtained from different activation functions dur-

ing training. 65

Figure 6.8 Specificity results obtained from different activation functions dur-

ing training. 66

Figure 6.9 Examples of validation results of HGG patients obtained using dif-

ferent upscale methods. 67

Figure 6.10 Examples of validation results of LGG patients obtained using dif-

ferent upscale methods. 68

xviii

Figure 6.11 Dice scores obtained from training with different upsampling meth-

ods. 70

Figure 6.12 Sensitivity results obtained from training with different upsam-

pling methods. 71

Figure 6.13 Specificity results obtained from training with different upsam-

pling methods. 72

Figure 6.14 Examples of validation results of HGG patients obtained using dif-

ferent upsampling methods. 73

Figure 6.15 Examples of validation results of LGG patients obtained using dif-

ferent upsampling methods. 74

Figure 6.16 Dice scores obtained from training with different loss functions. . . 76

Figure 6.17 Sensitivity results obtained from training with different loss func-

tions. 77

Figure 6.18 Specificity results obtained from training with different loss func-

tions. 78

Figure 6.19 Examples of validation results of HGG patients obtained using dif-

ferent loss functions. 79

Figure 6.20 Examples of validation results of LGG patients obtained using dif-

ferent loss functionss. 80

Figure 6.21 Examples of validation results of HGG patients obtained using dif-

ferent upscale methods. 82

Figure 6.22 Examples of validation results of LGG patients obtained using dif-

ferent upscale methods. 83

xix

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

CNN Convolutional Neural Network

FNN Feedforward Neural Network

GPU Graphics Processing Unit

NN Neural Network

RNN Recurrent Neural Network

MRI Magnetic Resonance Image

ROI Region of Interest

FLOPS Floating Point Operations

WT Whole Tumor

TC Tumor Core

ET Enhancing Tumor

ED Peritumoral Edema

NCR/NET Necrotic and Non-Enhancing Tumor

HGG High Grade Glioma

LGG Low Grade Glioma

MAP Maximum A Posteriori

xx

CHAPTER 1

INTRODUCTION

Medical images are mostly used for visualization of the inner parts of human body.

They are crucial to detect and plan the treatment of severe diseases. One of the most

widely used medical imaging methods is magnetic resonance imaging (MRI). In MRI,

the patient is placed in a machine that produces a strong magnetic field in order to

align the protons with it. Then, by sending a radio-frequency pulse, the alignment is

broken. When the radio-frequency pulse ends, the protons realign with the magnetic

field. Depending on the tissue, time required for the realignment and energy released

during this event differs [9]. By recording this information a 3D image(MRI) is con-

structed.

Since the introduction of magnetic resonance imaging in 1970s, its utilization has

been spreading increasingly. According to OECD data [10], there are more than

100 MRI examinations each year per 1000 person in both developed and developing

countries such as United States, France and Turkey. One of the most important ap-

plications of magnetic resonance imaging is brain tumor detection. However, since

there is no fully automatic detection system for brain tumors, MRIs are analyzed by

human experts. This requires time and concentration, which causes human error. In

particular, the increase in the number of MRI examinations raises tiredness and af-

fects the performance of experts. Additionally, the valuable time of them is wasted

by this operation. For instance, there are 700.000 [11] people living with a primary

brain tumor only in the United States. Thus, the development of automatic detection

systems would be quite beneficial for health care system.Thanks to the advances in

technology, MRIs are digitized and image processing techniques can be applied on

them in order to automate segmentation.

1

Image segmentation is to partition an image into its coherent parts. These partitions

after the segmentation have similar characteristics such as color, texture etc. Some of

the most widely known image segmentation methods in the literature are clustering

based methods, edge based methods, compression based methods, region based meth-

ods, graph based methods and pixon based methods. Although image segmentation

makes an image easier to analyze, it actually does not convey high-level information.

In order to interpret the content of an image, these segments should be classified.

Semantic image segmentation combines segmentation with per-pixel classification.

In other words, in semantic segmentation, each pixel is assigned a class label and

when those pixels are combined, they correspond to segments in the image. We can

categorize image segmentation as unsupervised and supervised segmentation.

Unsupervised Segmentation In unsupervised segmentation methods, the inputs

are provided but ground truths are not provided by the user for training the algo-

rithm nor (almost) user interaction is needed. So, the algorithm learns by itself or

it does not need any supervised learning. For example, k-means clustering learns to

differentiate between labels of pixels and tries to find the most matching cluster for

each pixel. On the other hand, watershed [12] algorithm treats the image like it was a

geographical map and separates the segments using highest points of this map, while

edge based segmentation methods try to find edges and assumes each edge is a border

between different segments.

Supervised Segmentation Supervised segmentation methods need an input and a

user interaction for the segmentation. User needs to either mark a region or it needs

to provide the correct segmentation output to the algorithm. For example, in graph

cuts [13], user draws lines to different regions that are separated from each other.

Similarly, in trainable methods, user provides the ground truths and a model is trained

so that it learns to do the segmentation by itself. An example of trainable methods is

classification based method, which is the main scope of this work.

Classification Based Supervised Segmentation Image classification is to label an

image or a part of an image with the corresponding classes based on its features. The

2

classical approach for the classification has two main steps. The first one is the feature

extraction. In this step, important information related to the class labels are obtained.

Edges, corners and color information are only a few examples for these features. The

second step is to decide which class those features belong to. This step is carried

out by machine learning algorithms. Features are actually high dimensional vectors

that reside in a feature space and represent the object/content. Machine learning al-

gorithms strives to separate the feature space into meaningful regions(hyperplanes)

that correspond to classes. If the feature vector of an object is in one of these re-

gions, then that object is predicted as the corresponding class. In order to train the

machine learning algorithms, both supervised and unsupervised learning can be used.

K-means clustering is one of the simplest examples of unsupervised algorithms. It

only requires the number of classes from the user; thus, it can also be considered

as semi-supervised. Support Vector Machines [14] on the other hand is an example

supervised learning algorithm which requires labels of the objects during training.

1.1 Scope of the Thesis

The scope of this thesis is to deeply investigate performance of different approaches

for brain tumor segmentation that are based on convolutional neural networks (CNN).

Starting from different architectures, this work compares both training and validation

results obtained from different upscaling methods, activations, cost functions, post-

processing methods and pre-processing methods. For the evaluation, performance

metrics taken into account are dice coefficient, sensitivity and specificity. For train-

ing and validation, BraTS 2017 dataset is used [15, 16]. The performance of these

approaches are also evaluated on another brain MRI dataset.

It is important to note that the scope of the thesis does not cover cascaded network

architectures or patch based methods. Only a single architecture type is used for each

method. More intuitively, whole MRI slices of different modalities are given to a

network that solves a multi-class problem. Methods that crop part of the MRI slices

are not involved in the thesis. Similarly, methods that have stacked binary classifier

networks to segment each class are not involved.

3

1.2 Outline of the Thesis

This thesis is outlined as follows: Chapter 2 explains different approaches to brain

tumor segmentation proposed in the literature. We briefly state their advantages and

disadvantages. Chapter 3 describes several critical concepts about convolutional neu-

ral networks while Chapter 4 explains the network architectures used in this work

and modifications that are presented. Chapter 5 focuses on post-processing methods

and comparison of their results. Implementation details and results are provided in

Chapter 6, which also includes the details of the dataset we used. Finally, Chapter 7

makes a conclusion of the work and presents future work.

4

CHAPTER 2

LITERATURE REVIEW

Obtaining a robust computer aided diagnosis technique for brain tumor segmentation

has been a challenging problem for several years since hand labeling brain MRIs

to segment anomalies is time consuming and inefficient. There are many methods

proposed to solve the problem of brain tumor segmentation. This chapter investigates

different approaches by categorizing them into unsupervised and supervised methods.

Additionally, pre-processing and post-processing methods will be investigated.

2.1 Unsupervised Brain Tumor Segmentation

The main advantage of unsupervised methods is that they do not require a dataset

with ground truth labels. These methods use distinct features such as color, spa-

tial position, symmetry etc. In brain tumor segmentation, unsupervised methods are

generally used for initial segmentation of the whole tumor region or ROI, rather than

detailed segmentation of tumor regions such as tumor core and enhancing tumor. [17]

[18] [19] [20] [21] use color information and fuzzy C-means for clustering the data.

[22] uses SLIC algorithm which utilizes color and spatial information [23]. However,

unsupervised algorithms like fuzzy C-means and SLIC, that use color information

and spatial positions are not very successful because the tumor may have a similar

color to other parts of brain. Moreover, if the tumor regions is not spatially distant

to other parts that share similar pixel intensities, these algorithms have difficulty in

distinguishing the anomalies from normal brain tissues.

Another popular feature of the brain images are that they are almost symmetric when

the axial view is considered. [17] [22] use symmetry information. The symmetry

5

axis does not always overlap with the y-axis of the axial image. It may also not be

a straight line due to deformations in the brain. For example, [24] and [25] try to

find the symmetry axis for further processing. [26] uses symmetry, color and texture

information and adopts a decision forest algorithm.

Atlas based methods are also used in the literature [27] [28] [29]. The data collected

is segmented by the experts. Then it is combined to form a single atlas image. The

input data is registered so that it is aligned with the atlas image. Using this registered

image, the input is segmented. However, it requires lots of data, by the fact that brain

size and shape may vary according to age, race and environmental factors. Even for

such databases they may not give as promising results as supervised methods.

2.2 Supervised Brain Tumor Segmentation

If the ground truth of the dataset is provided, as in BraTS challenge, machine learning

algorithms can be used to distinguish between different classes which are brain and

tumor parts in these cases. [30] and [31] use a Support Vector Machine to classify

the regions according to their intensity and texture features. [32], [22] and [17] use

Random Forest for classification. [33] utilizes Markov Random Field to segment the

image using spatial and structural information. Since the main objective of this thesis

is to compare CNN based methods in various configurations, different approaches on

CNNs are explained in more detail in 2.2.1.

2.2.1 Convolutional Neural Network Based Brain Tumor Segmentation

Total number of methods based on CNNs has increased recently and proven their suc-

cess on brain tumor segmentation. With some minor exceptions, most of the methods

proposed so far are based on CNNs. The methods can differ from each other in terms

of input dimensions and input size, filter size, network depth and connection paths etc.

Although various network architectures have been used for image segmentation such

as FCN-8s [34] and DeepMedic [35], most of the medical image segmentation meth-

ods, including the brain tumor segmentation, have a U-Net[36] architecture. FCN-8s

and U-Net have a downsampling part where the features are found and an upsam-

6

pling part where the localization is done [34][36]. Thus, they produce an output with

the same dimensions as the input. Unlike these, DeepMedic takes a 3D patch of the

input and its output is even smaller than the input patch [35]. So while it simultane-

ously finds features and localizes them on a smaller patch. [37], [38],[39],[40],[41],

[42],[43],[44], [36], [45], [46],[47],[48],[47] utilize a U-Net architecture. On the

other hand, an FCN-8s like architecture is preferred in some works [49] [50] while

some of them adapts DeepMedic on brain tumor segmentation problem [51]. Also,

combinations of different architectures such as FCN-8s, U-Net and DeepMedic are

applied in some of the proposed methods[52].

[53] uses dilated convolutions which was proposed by [7], stating that dilated convo-

lutions (context modules as named in the paper) are developed for dense prediction

problems like semantic segmentation. Increase in the performance of popular net-

works such as VGG [54], with the addition of context modules, is also presented in

the paper. The main benefit of context modules is that they can extract features of dif-

ferent scales using dilated convolutions. Thus, instead of giving images to a network

in different scales as in [35], one may improve the performance by adding context

modules to the network.

Residual connections (or shortcut connections as named in [55], [56]) plays an impor-

tant role in the convolutional neural networks since they help avoiding the vanishing

gradients problem and makes deeper networks possible by adding the input of pre-

vious layer to the response of the next layer [57]. By doing so, it simply introduces

the error in the earlier stages so that while propagating the error from output through

input layer, the error gradient does not vanish. Moreover, there are methods that use

residual connections in brain tumor segmentation problem. For example, [35] in-

dicates promising results, yet the authors improve their previous architecture in [51],

stating that addition of residual connections improves the performance of the network

for all classes.

[43] uses pre-activation residual blocks instead of post-activation residual blocks.

This provides a faster learning rate compared to classical approach in Deep Resid-

ual Networks (ResNet [57]) according to [8].

[58] uses inception modules which initially proposed in GoogLeNet [59]. Its advan-

7

tage is that instead of choosing between 3 × 3 or 5 × 5 filter sizes in convolutions,

the method uses both of them and allows the network to determine their priorities by

itself. However, the network used in [59] is very deep and the training data is very

large compared to data used in this work. This inevitably induces overfitting. Thus,

the performance may not increase as expected in theory.

[60] proposes a cascaded network that iteratively segments the images for each class.

In other words, first it detects the whole tumor for an entire image. Then the region of

interest is restricted around this tumor area and the region is fed into another network

for the segmentation of tumor core as well as enhancing tumor core.

2.3 Pre-processing and Post-processing

It should be noted that the pre-processing and post-processing play an important role

in brain tumor segmentation. For pre-processing, histogram equalization, histogram

matching and normalization are quite popular. [38], [37] use histogram equalization.

[61] uses histogram matching as proposed in [62] while [63] does histogram match-

ing, choosing the target histogram by averaging histograms of all training data. [49]

selects one of the patients to use its histogram as the reference while [64] choses

10 random images to obtain a reference histogram. Although there are not any ob-

vious advantages of these pre-processing methods over one another, while applying

pre-processing to normalize the data, one must consider that the assumption of each

patient’s having a brain tumor is not practical in real life applications. Thus, methods

should be adapted in a way that is generalized for both normal brains and brains with

anomalies.

The most basic yet successful operation for post-processing is connected component

analysis and morphological operations [41] [47] [65]. Conditional Random Fields is

also used as post-processing method to regularize the results [66] [67] [68] [41]. [67]

states that the Dense Conditional Random Field method increases the performance in

all categories. [41] states that the parameter choice is very important and it can easily

fail to improve performance.

Another important method that can be count in the post-processing methods is gen-

8

erative adversarial networks (GAN) [69]. In the image segmentation problem, the

segmentation result is given to the discriminator along with the original input images.

In this case, input images act as a condition on the segmentation results. Thus, GAN

is called conditional adversarial network in this case. [70] proposes a network that

generates an output image based on the label input. A similar approach is utilized for

the image segmentation problem [71]. However, in this case, the image is given as

the input and segmentation labels are generated. [61] and [72] adapt this method for

brain tumor segmentation problem. [72] states an improvement of the performance

in dice scores with the addition of an adversarial network to classical CNN.

9

10

CHAPTER 3

CONVOLUTIONAL NEURAL NETWORKS

In this chapter, convolutional neural networks will be explained in detail. First neu-

ral networks, then some specific methods used in CNNs will be explained. We will

describe how CNNs are used for classification and segmentation problems, in Sec-

tion 3.1.5.4 of this chapter. The details of architectures used for pixel-wise classifica-

tion task are given in Chapter 4.

3.1 Neural Networks

It has been a while since the CPUs have outraced human brain in complex operations

per second such as floating point operations. A single average CPU core can com-

pute more than 5 billion floating point operations (5 GFLOPS). For a human, such

complex operations may even be impossible to compute. On the other hand, human

brain is still considered much powerful than any personal computer. Although human

brain can not compute complex mathematical operations, it can do much more than a

CPU by combining many simple operations and is still considered more successful in

tasks like image classification. In order to achieve such tasks using computers, scien-

tists have tried to imitate the human brain since 1940s and a concept called Artificial

Neural Networks has emerged.

3.1.1 Basics of Artificial Neural Networks

Artificial neurons are imitations of biological neurons. A biological neuron, as shown

in Figure 3.1, generates an electrical signal. If its dendrites are excited by enough

11

number of synapses of other neurons, then it produces an electrical signal transmitted

through its axon and excites dendrites of other neurons through its synapse. Like

biological neurons, artificial neurons are connected to each other and excite each

other through these connections. They (or perceptrons in its simpler form) are capable

of only calculating a very simple function called neuron activation (Eq. 3.1). An

artificial neuron, first produced by [73] and shown in Figure 3.2 which generates a

binary output according to the result of this function is called a perceptron [74].

Figure 3.1: A biological neuron is fired when it is excited sufficiently by other neurons

connected to it. (Image taken from [1])

a =
N∑
j=1

ujwj + θ (3.1)

Figure 3.2: An artificial neuron. If f(a) (activation function) is a threshold function,

then this neuron is called a perceptron.

An artificial neural network is, as the name suggests, a network composed of artificial

neuron units that have connections in between.

Feedforward Networks If the connections between neurons are only in a single

direction, the network is called a feedforward network. In other words, a neuron

can not be connected to itself or to another neuron that is closer to input. Formally,

12

outputs of n− 1th layer are inputs of nth layer while nth layer’s outputs are inputs of

n+ 1th layer. Connections between neurons that are in the same layer or that are in

nonconsecutive layers are not allowed in feedforward neural networks. An example

of feedforward networks is given in Figure 3.3. Moreover, if a feedforward neural

network has more than one hidden layers, it is called a deep neural network.

Figure 3.3: A feedforward neural network with one hidden layer.

3.1.2 Multilayer Networks

Multilayer networks are feedforward networks that has at least one or more hidden

layers. Combining multiple neurons, we can represent a single layer as shown in

Figure 3.4 and its input output relation is given in Equation 3.2. Note each neuron

has its own bias that is not shown on the Figure 3.4. In order to make the calculation

simpler, input-output relation is represented in matrix form as shown in Equation 3.3.

Biases are merged into U andW matrices. When single layers of neurons are stacked,

connecting outputs of one to inputs of another, a multilayer network is obtained as

shown in Figure 3.3.

xi = f(
N∑
j=1

ujwji + θ) (3.2)

X = f(W TU) (3.3)

13

Figure 3.4: A single layer network which is mathematically represented in Equation

3.3.

where

X =

x1

x2
...

xM

 , U =

1

u1

u2
...

uN

, W =

w01 w02 . . . w0M

w11 w12 . . . w1M

w21 w22 . . . w2M

.

wN1 w32 . . . w3M

, θ =

w01

w02

...

w0M

Where X is the output vector, U is the input vector, W is the weight matrix where the

first row is equal to bias vector θ.

3.1.3 Optimization with Backpropagation in Neural Networks

Optimization is a crucial part of the neural networks, where the weights of the neurons

are updated. Assume that the network has input u, output x and let its target output

(or the ground truth) be t. The network should update its weights so that x = t. To do

that, first a cost function such as mean square error needs to be introduced. Assuming

n is the number of samples, mean square error can be shown as Equation 3.4 :

ε =
1

N
×

N∑
j=1

(tj − xj)2 (3.4)

14

Several optimization methods exist to minimize Equation 3.4. For example, Newton’s

method, which actually is used to find the roots to a function, can be adapted by using

the second order derivative. It increases the computational complexity significantly,

compared to methods like gradient descent [75, 76] that use first order derivatives.

This is why gradient descent is preferred for training most neural networks. There-

fore, in this thesis, only gradient descent will be adopted and explained in detail.

3.1.3.1 Gradient Descent

Gradient Descent is an algorithm that uses the gradient of the function to iteratively

find a (local) minimum. At each iteration, gradient of the current point is calculated.

A step is taken proportional to the negative of the gradient. To understand it easier,

the function may be thought as a valley and points in each iteration may be thought as

a ball that is going down through this valley. When the ball is on the right wall of the

valley, it will go towards left with a speed proportional to the slope. It is vice versa

for the left wall. Figure 3.5 visualizes this example.

Figure 3.5: A simple example to visualize the gradient descent applied to t = x2. The

blue ball travels towards the lowest point of the red valley while its speed changes

according to the slope.

When a single neuron is considered, assuming MSE is used as a cost function, the

15

update of weights at iteration i can be represented as in Equation 3.5.

w(i+ 1) = w(i) + ∆w(i) (3.5)

∆w(i) = −µ∇ε(w(i)) (3.6)

where µ is the learning rate and ε() is the cost function with weights w(i). Then,

∇ε(w(i)) is given in Equation 3.10.

∇ε(w(i)) =
∂ε

∂w(i)
(3.7)

xj = wj(i)uj (3.8)

∇ε(w(i)) =
∂(1

n
×
∑n

j=1(tj − wj(i)uj)2)
∂w(i)

(3.9)

∇ε(w(i)) = − 2

n
×

n∑
j=1

(tj − xj)uj (3.10)

There are three approaches to apply gradient descent which are gradient descent by a

single sample, full gradient(batch gradient) descent and mini batch gradient descent.

Gradient Descent by a Single Sample In this approach, the update function in

Equation 3.6 is applied after each sample is fed into the network. After new weights

are calculated, another sample is fed into network and error is calculated to update the

weights again. The downside of stochastic gradient is it can be easily trapped in local

minimum. Moreover, unstable results can be obtained since weights are updated by

the response of a single sample rather than overall sample responses.

Full Gradient Descent In full gradient descent method, the network is fed with all

training samples. After calculation of error for each sample, the network is updated

once. Although it helps the model to escape the local minimums and the convergence

is more stable compared to gradient descent by a single sample, the training time is

generally very long since the weights are updated only once after all of the training

16

dataset is applied to the network. Additionally, feeding the whole dataset may not be

possible due to memory constraints.

Mini Batch Gradient Descent In mini batch gradient descent method, the network

is fed with a group of samples from the training dataset. The number of samples in

the mini batch is predefined. This method tries to take advantage of both gradient

descent by a single sample and full gradient descent by simply fusing them. The

training time takes longer than gradient descent by a single sample but it can escape

local minimums. Therefore, it is the most widely used method among the three. The

batch size is chosen according to the hardware capacity, dataset size and experimental

results.

When the gradient descent approaches to the minimum, it may start to oscillate in

some dimensions as shown in Figure 3.6 since gradient direction of these dimensions

may change after each iteration due to the noise exhibited from samples [77].

Momentum By adding a momentum parameter, oscillations stated above may be

reduced. Improving the classical gradient descent Equation 3.6, the update with mo-

mentum becomes Equation 3.11 [78],[79].

∆w(i) = δ∆w(i− 1)− µ∇ε(w(i)) (3.11)

where δ is the momentum parameter.

Figure 3.6: Gradient descent without momentum on left, gradient descent with mo-

mentum on right.(Image taken from [2])

17

Adam Optimizer Adam [80] is an improvement to stochastic gradient descent. By

combining advantages of AdaGrad [81] (successful at problems with sparse gradi-

ents) and RMSProp [82] (successful at noise problems) algorithms, Adam optimizer

is claimed to achieve better results. In machine learning, decreasing the learning rate

as the iterations increase, is a common approach. Adam handles this by itself. It

also assigns a different learning rate for each trained parameter. Additionally, Adam

utilizes a moving average of the first and second momentums for updates. Another

important feature of Adam is that prior to parameter update, it introduces a bias cor-

rection. This avoids large step sizes, and thus, divergence [80].

3.1.3.2 Backpropagation

In a neural network, there can be several neurons that have many weights. Thus, the

optimization becomes more complex due to high number of unknowns. By using the

chain rule, error is propagated from output through input [83], [78]. This process is

called backpropagation.

Using backpropagation, an equation is found for each weight so that there are same

number of equations and unknowns. This is done by propagating error through in-

put. Then, the derivative of those propagated errors are calculated according to the

weights correspondingly. The backpropagation on a multilayer network is performed

by applying the chain rule to find the change in output xk with respect to weight of

jth input of ith neuron in Lth layer wL,j,i. Figure 3.7 shows the structure so that the

chain rule will be applied starting from the output layer. Using Equation 3.3, we can

represent a single output xk in terms of the weights in the last layer and outputs of the

previous layer as shown in Equation 3.12.

xk = f(W T
(L+1),kxL) (3.12)

Where f() is an activation function. We can also represent the output of a neuron in

the hidden layer as in Equation 3.13.

xL,i = f(W T
L,iu) (3.13)

18

Figure 3.7: Backpropagation of xk for wL,j,i

In order to apply gradient descent to wL,j,i, ∂ε/∂wL,j,i is needed. ε is the MSE as

given in Equation 3.4. By applying chain rule (Equation 3.16), it can be found.

∂ε

∂wL,j,i
=

∂ε

∂xk

∂xk
∂wL,i,j

(3.14)

∂xk
∂wL,j,i

=
∂xk
∂xL,i

∂xL,i
∂wL,i,j

(3.15)

∂ε

∂wL,j,i
=

∂ε

∂xk

∂xk
∂xL,i

∂xL,i
∂wL,i,j

(3.16)

Which, using Equations 3.12 and 3.13, becomes Equation 3.17

∂ε

∂wL,j,i
= − 2

M
× (tk − xk)f ′(W T

(L+1),kxL)w(L+1),i,kf
′(W T

L,iu)uj (3.17)

However, when propagated backward, wL,j,i is affected by all of the weightsw(L+1),j,k

where k ranges from 1 to M. Thus, by addition of these partial derivatives, we obtain

Equation 3.18

∂ε

∂wL,j,i
= − 2

M
×

M∑
k=1

(tk − xk)f ′(W T
(L+1),kxL)(w(L+1),i,k)f

′(W T
L,iu)(uj) (3.18)

Solution of Equation 3.18 is simple if the calculation of derivative of the activation

function f() is easy. This is why functions like rectified linear function is preferred as

19

activation functions in neural networks. These will be explained in detail in Section

3.1.5.5.

3.1.3.3 Loss Functions

As seen from the Eq. 3.6 to Eq. 3.18, the error function used for the optimization

affects the performance importantly. Selection of a loss function depends on the task.

For example, the mean square error (Eq. 3.4) or mean absolute error can be used for

regressive problems, which aim to reach a continuous variable. Similarly, for clas-

sification problems, where the target value is discrete(1 if belongs to that class, 0

otherwise), error functions such as likelihood and cross entropy loss are used. More

specifically, a differentiable version of dice score can be adopted for image segmen-

tation problem. Because of the scope of this thesis, loss functions that can be used for

the segmentation problem is given in detail.

Cross Entropy Loss For image classification and image segmentation, most widely

used cost function utilizes cross entropy function (Eq. 3.19) which, similar to mean

square error, measures the distribution characteristics of two representations.

D(S, L) = −
C∑
i

Li logSi (3.19)

where C is the number of classes, S is the prediction (output of the softmax) and L

is the ground truth label. For a segmentation case, the cross entropy is calculated for

each pixel and reduced to a scalar. In order to turn this into a cost function, one must

consider both class members where Li = 1 and non-class members Li = 0. Thus, the

equation becomes 3.20.

Dloss(S, L) = −
C∑
i

Li logSi −
C∑
i

(1− Li) log (1− Si) (3.20)

For the image segmentation problem, reduction can be done by operations such as

summation or averaging of each pixel.

20

Weighted Cross Entropy In order to solve the class imbalance problem, one can

use Eq. 3.21 where Wi corresponds to the weight that belongs to ith class. Wi values

can be chosen inversely proportional to number of samples in ith class.

Dloss(S, L) = −
C∑
i

WiLi logSi −
C∑
i

(1− Li) log (1− Si) (3.21)

Dice Loss Another loss function used for image segmentation is the Dice Loss

Function (Eq. 3.22). It is similar to dice coefficient which is explained in Sec-

tion 6.3.1. The only difference is that instead of using sparse results, softmax results

are used to calculate the dice coefficient so that it becomes differentiable. Note that

two of the top performing methods proposed in BraTS 2017 challenge use dice loss

[52, 43].

DiceLoss = − 2

|C|

C∑
i

∑
k S

k
i L

k
i∑

k S
k
i +

∑
k L

k
i

(3.22)

Where C is the number of classes and k is every pixel in the image.

Another loss adapted in this work is adversarial loss which comes from adversarial

networks. The details of the adversarial loss is given in Section 3.1.5.8.

3.1.4 A Brief History of Convolutional Neural Networks

Artificial neural networks are inspired by biological neural networks. Likewise, con-

volutional neural networks are inspired by the visual system of animals. In the paper

[84], Fukushima explains a multilayered artificial neural network architecture he de-

signed, called Neocognitron. In the proposed design, there are two types of cells,

namely S-cells and C-cells, which are similar to "simple cells" and "complex cells"

both of which were cell types proposed by Hubel and Wiesel in [85] to explain a cat’s

visual system. In Neocognitron architecture, first, basic features are locally found by

S-cells. Then those local features are combined by C-cells and more complex features

are obtained. By doing so, his architecture achieved recognizing different patterns in-

dependent of their spatial shift. This architecture can be an important inspiration for

convolutional neural networks.

Although CNNs have been used in the literature for a while [83], they were not used

widely until the success of [3] because of two main reasons. The first reason was

21

Table 3.1: Comparison between a high end personal computer GPU, a high end work-

station GPU, a high end personal computer CPU and a high end workstation CPU

GTX 1060 Quadro

P6000

Intel i7 7700k Intel Xeon

E5-2699 v4

Number of

Cores

1280 3840 8 22

Clock Speed 1507 MHz 1607 MHz 4.2 GHz 2.2 GHz

Maximum

FLOPS

4375

GFLOPS

12000

GFLOPS

150 GFLOPS 634 GFLOPS

the lack of data to train the network. Second was that their training time was so

long due to the lack of process parallelization. With the increase in the number of

photographs uploaded on the Internet everyday, researchers have overcome the first

problem. The second problem was solved by the advances in the GPU technology.

Human brain has an average number of 8.6 ∗ 1010 neuron cells and its power comes

from being massively parallel. Being such parallelizable, the architecture of GPUs

is more convenient to human brain than that of CPUs. There are many simple cores

in a GPU. In order to compare common products of both at the time of writing, an

Intel i7 7700k has a clockspeed of 4.2 GHz while an NVIDIA GTX 1060 has a clock

speed of 1500Mhz. On the other hand, GTX 1060 has 1280 cores while i7 has 4

cores. As similar to human brain, higher number of weaker cores are more suitable

for neural networks. A simple comparison between GPUs and CPUs can be observed

in Table 3.1.

3.1.5 Layers of CNNs

CNNs share some general characteristics of neural networks, such as optimization

methods, loss functions etc. This section focuses on non general characteristics of

CNNs. AlexNet [3], a state of the art image classification network, is given(Figure 3.8)

in order to show convolution layers, pooling layers and fully connected layers. Since

22

it is a classification network, it does not have upsampling layers. Also the fully con-

nected(dense) layers at the end become 1x1 convolutional layers in the segmentation

case. More details are given in Section 3.1.5.4.

Figure 3.8: AlexNet (Image taken from [3])

Each box corresponds to features obtained by convolutions. Dashed lines show con-

volution layers. Max pooling and stride is written below if applied. At the end there

are 3 fully connected(dense) layers shown by solid lines.

3.1.5.1 Convolution Layers

In convolutional neural networks, the most important layer type, which also gives

the architecture its name, is convolution layers. The convolution layer actually cor-

responds to a special type of feedforward network layer, where each pixel pij cor-

responds to an input uj and each value wij of the convolution filter corresponds to

a weight wj . Assuming a filter size of 3 × 3 and an input size of d×n, there are

(d − 2) × (n − 2) neurons with (d − 2) × (n − 2) number of outputs. Unlike a

traditional network, which would have (d− 2)× (n− 2) number of different weight

matrices, there is only one weight matrix that is shared among all neurons in a con-

volution layer. This is the most important characteristic of a convolutional neural

network. What makes shared weights possible is that the features do not change ac-

cording to spatial positions.

The transfer function Equation 3.1 corresponds to a convolution in a CNN. A simple

2D convolution with 3 × 3 weight matrix is formulated in Equation 3.24 (Note that

23

this equation does not take the symmetric of the filter unlike the general 2D discrete

convolution formula in Equation 3.23). Basically, one may refer to a convolution

filter as an artificial neuron given in Figure 3.10. This operation is applied on whole

image by sliding the filter as shown in Figure 3.9.

Cij =
1∑

k=−1

1∑
l=−1

A(i−k)(j−l)B(k)(l) (3.23)

where 1 < i < D and 1 < j < N and dimensions of matrix A is D ×N

P =

p11 p12 p13 . . . p1n

p21 p22 p23 . . . p2n

. .

pd1 pd2 pd3 . . . pdn

 W =

w11 w12 w13

w21 w22 w23

w31 w32 w33

R =

r22 r23 r24 . . . r2(n−1)

r32 r33 r34 . . . r3(n−1)

. .

r(d−1)2 r(d−1)3 r(d−1)4 . . . r(d−1)(n−1)

rij =

1∑
k=−1

1∑
l=−1

p(i+k)(j+l)w(2+k)(2+l) (3.24)

where 1 < i < d and 1 < j < n

Note that the Equation 3.24 represents a convolution of a 1 channel only. If there are

multiple channels, then the filter W becomes a 3D matrix with the same number of

channels.

In other words, convolution layers consist of filters that will be applied on each chan-

nel of the input. Since applying a filter on an image is basically a convolution, these

layers are named convolution layers. By applying filters, features of an image that

correspond to each filter is found. Similar to the architecture proposed in [84], as the

layers go deeper, the features become more complex. For example, assume that in the

first layer, vertical and horizontal edges of an image are found. In the second layer,

the outputs of the first layer, which correspond to vertical and horizontal edges of the

24

Figure 3.9: Convolution is applied on the entire image.

The red rectangle in P represents 3 × 3 pixels on the upper left corner. The result is

the red rectangle in R and it is actually r22 in Figure 3.10 .

Figure 3.10: A neuron representing the filter W applied on pixels around p22.

image, are used to find the corners in the image. Of course in real applications the

features get much more complex in the deeper layers of a network.

3.1.5.2 Pooling Layers

Pooling layers are usually used to reduce the dimensions of the output of a convo-

lution layer. These layers are needed because number of features obtained from a

convolution layer can be undesirably high. For example, assuming zero padding on

the edges so that the convolution result has the same size with the image, an RGB

25

image of size H ×W × C would have H ×W × (number of filters in the layer)

features. Training on such high number of features would result on problems like

overfitting. Therefore, dimension reduction is needed. There are many methods that

can be used to reduce the dimensions, such as average pooling and max pooling. The

most preferred one is max pooling because it extracts the feature that is dominant in

that local region where the pooling is applied. This is particularly critical since this

module allows to propagate the error with the highest responses so that it decreases

the chance of vanishing gradient problem which might be frequently observed for the

averaging operations. Figure 3.11 shows max pooling and average pooling applied

on 2× 2 windows with stride 2.

Figure 3.11: (a) Image pixel values. (b) Result of max pooling for each colored

region. (c) Result of average pooling for each colored region.

3.1.5.3 Upscaling Layer

Not always downsampling is needed in neural networks. Upsampling is also needed

in neural networks for tasks like pixel-wise classification, or semantic image segmen-

tation. After reducing the spatial dimensions as in classical classification task, a CNN

built for pixelwise classification needs to construct an output with the same spatial di-

mensions of input. Thus, upsampling layers are used to increase the dimension of the

deep features. There are many methods used as an upsampling layer in CNNs. Bilin-

ear interpolation, deconvolution and subpixel upsampling are some of the important

ones.

Bilinear Interpolation Bilinear interpolation is the simplest method to upscale a

2D image. It is an extension of linear interpolation. In linear interpolation, the effect

of a known point, on the value of the target point is inversely proportional to the

26

distance between them. The equation of the linear interpolation is given in Eqn. 3.25.

It actually finds a point on a line, given one of its coordinates and the equation of the

line.

y3 = y1 +
(x3 − x1) ∗ (y2 − y1)

(x2 − x1)
(3.25)

Bilinear interpolation extends this equation to 3D space, considering the 2D coordi-

nates and the pixel values. It can be seen in Figure 3.12

Figure 3.12: Bilinear interpolation

Deconvolution In signal processing, deconvolution is the inverse function of con-

volution operation. Let f() be the convolution function, I be the input and Y be the

output. The inverse function f−1() is the deconvolution which gives the output I if its

input is Y . However, the deconvolution term is not used for the actual deconvolution

operation in the neural networks. It actually corresponds to convolution operation

which is used for upsampling. It is sometimes called as transposed convolution or

backward convolution too. [34] states that upsampling with a factor f corresponds to

convolution applied with a fractional stride 1
f

. Bilinear interpolation is also a decon-

volution, but with constant weights. The advantage of using a deconvolution layer

for upsampling is that it has the learning capability, unlike methods like bilinear inter-

polation. The deconvolution operation (as used in neural networks) applied to obtain

an upscaled output can be illustrated as shown in Figure 3.13.

[86] proposes a network in which the deconvolution layers are preceded by unpool-

27

Figure 3.13: Deconvolution applied on a 3 × 3 image (blue squares) padded with

zeros (white squares) to obtain a 5× 5 image (green squares) (Image taken from [4])

ing layers. Therefore, instead of padding zeros around each pixel, the convolution

operation is applied on unpooled images. These unpooled images are obtained by

memorizing the pooling positions that corresponds to the same level or same size.

Sub-pixel Upsampling Sub-pixel convolutional layers are proposed in [5] for super-

resolution. The architecture consists of convolution layers to extract features and a

sub-pixel convolutional layer to obtain an image with bigger size. The architecture

can be seen in Figure 3.14 taken from [5]. The sub-pixel convolution layer actually

takes the features (or channels) and pads them in a specified order to obtain an up-

scaled image. For example, assume there are 4 channels, pixels of which are named

p1(x,y), p2(x,y), p3(x,y), p4(x,y) respectively. w corresponds to width and h corresponds

to height of these feature channels. Then the result of sub-pixel operation becomes R

as shown below.

R =

p1(1,1) p2(1,1) . . . p1(w,1) p2(w,1)

p3(1,1) p4(1,1) . . . p3(w,1) p4(w,1)

. .

p1(1,h) p2(1,h) . . . p1(w,h) p2(w,h)

p3(1,h) p4(1,h) . . . p3(w,h) p4(w,h)

28

Figure 3.14: Visualization of sub-pixel upsampling. (Image taken from [5])

3.1.5.4 Fully Connected Layers

Fully connected layers use the feature information to reach a final class label. Nodes

of fully connected layers are connected to each output of the preceding layer and their

outputs are connected to each node of the following layer. In the last layer, there are

n number of nodes, where n equals to the number of classes 3.8. The nodes in the

last layer of the fully connected layers generally have a special activation function that

will generate a probabilistic result for each label. This activation function is generally

a softmax function, or a sigmoid function in binary classification case.

Dense Layers in Fully Convolutional Networks If the aim of the network is to

perform segmentation, it is a fully convolutional network. The dense layer at be-

comes a 1 × 1 convolution layer with a different activation function. In the classical

classification problem, the output layer is a vector with a single dimension equal to

the number of classes. In the pixelwise classification problem, on the other hand,

the output is a 3D matrix. Its width and height is equal to those of input image

while its depth is equal to the number of classes. So, one might say that there is

an output vector for each pixel in the image, resulting in an output of dimension

Width×Height×NumberOfClasses. Particularly, one can represent a fully con-

nected layer in a classifier by 1 × 1 convolutions applied to single pixel images. In

this case, the output’s dimensions are 1×1×NumberOfClasses.

29

3.1.5.5 Activation Functions

After the input of an artificial neuron is multiplied by the weights and summed to a

scalar, the result is fed into an activation function f() (Figure 3.2). In this section,

different activation functions will be given and their advantages and disadvantages

will be discussed.

Softmax Softmax function (Equation 3.26) is usually used in the output layer of

multilayer neural networks that are built to do classification task. It actually calcu-

lates the probability of each class. Since we are speaking of probabilities, the sum of

all softmax results in an output layer equals to 1. Instead of making a strict choice

between classes, softmax estimates which class the input more likely belongs to. As-

suming there are M classes, softmax can be represented as:

softmax(xk) =
exk∑M
i=1 e

xi
(3.26)

Sigmoid Sigmoid function is also limited between 0 and 1.Its main disadvantage is

that its gradients start to vanish for values that are too large or too small. In other

words, the training gets slower as the values move away from 0 and saturates [3].

Figure 3.15: Sigmoid function

sigmoid(x) =
1

1 + e−x
(3.27)

Tanh tanh function (Eqn. 3.28, Figure 3.16) is actually very similar to sigmoid

function but instead of being limited between 0 and 1, it is limited between −1 and 1.

30

Figure 3.16: tanh function

tanh(x) = 2sigmoid(x)− 1 =
1− e−x

1 + e−x
(3.28)

Rectified Linear Until publishing of [3], it was believed that differentiable, non

linear, symmetric functions were better to use in neural networks. However, [3] has

shown that rectified linear units(ReLU) makes training a neural network computa-

tionally more efficient and faster. Due to its being differentiable everywhere except 0,

it is easy to calculate the gradient descent (Eqn. 3.29) for ReLUs. At 0, on the other

hand, its derivative is accepted and defined by the user as either 0 or 1. Additionally,

since the function does not saturate, the gradients do not vanish for very large values.

Therefore, the training is faster.

Figure 3.17: ReLU function

ReLU = max(0, x) (3.29)

Leaky Rectified Linear Rectified linear units somewhat ignores the negative input

values. Any negative valued input results in a 0 output and the gradient is 0. In order

31

to keep the constant gradient and to avoid the dying problem, leaky rectified linear

units (LReLU) are used. In LReLUs, the function becomes Eq. 3.30

Figure 3.18: LReLU function as given in Eq. 3.30(where α is 0.2)

LeakyReLU = max(αx, x) (3.30)

where α is a positive constant smaller than 1. Note that if α is trainable value, the

function is called parametric rectified linear unit (PReLU).

3.1.5.6 Dropout

Dropout is training a neural network by ignoring some of the neurons at certain itera-

tions Figure 3.19. This helps prevent the overfitting [6]. The effect of ignored neurons

on other neurons is reduced. Thus, non ignored neurons learn better.

Figure 3.19: Left: A standard neural network. Right: A network with dropout.

Crossed neurons are ignored for current iteration. (Image taken from [6])

32

3.1.5.7 Batch Normalization

Since the datasets used in deep learning are huge, the input of network varies signifi-

cantly. Batch normalization is, as the name suggests, normalizing the data in the mini

batch and making the normalization part of the network, instead of normalizing the

whole dataset as a pre-processing method. Thus, in tasks like image classification,

it increases learning speed [87]. Additionally, [87] states that the need for dropout

layers may be excluded since batch normalization acts as a regularizer.

3.1.5.8 GAN:Generative Adversarial Networks

Generative adversarial networks were proposed in [69] for generating images, that

are similar to the ones in the dataset, from random inputs. It consists of two CNNs,

namely, generator and discriminator. The generator is trained to produce a result that

is alike one of the samples in the provided dataset. It can also be said that it tries

to convince the discriminator so that it confuses the fake data to be the real data.

The discriminator, on the other hand, tries to distinguish between real samples and

artificially generated results. This game between discriminator and generator can be

represented as in Eqn. 3.31 In the segmentation problem, instead of a random matrix,

generator takes an image as the input and produces a segmentation result while the

discriminator takes both the ground truth label and generator’s result. Discriminator

then distinguishes the segmentation result from the ground truth. Each of the net-

works are trained one after the other at each step, keeping the parameters of the other

network constant.

min
G

max
D

L(G,D) = Ex∼pGT (x)[log(D(x))]+Ez∼pinput(z)[log(1−D(G(z)))] (3.31)

where z is the MRIs (inputs) and x is the ground truths. So, while G tries to minimize

the second term to fool D, D tries to maximize both terms to discriminate between

real and fake data.

The loss function of the generator is updated by the addition of αEz∼pinput(z)[log(1−
D(G(z)))] where α is small enough so that the actual loss of the generator keeps its

significance. This addition of adversarial loss to the segmentation loss(cross entropy

or dice loss) acts as a regularization.

33

The general network structure is given in Figure 3.20. The generator part is already

explained in the previous chapters, while discriminator can be seen in Figure 3.21.

Note that the discriminator needs to produce 1 if the ground truth is fed into the

network. Otherwise, it needs to produce a 0. Hence, discriminator is actually a binary

classifier. It has two fully connected layers at the end. Output of the last layer is fed

to a sigmoid function to generate a result between 1 and 0.

Figure 3.20: General structure of GAN used for segmentation problem. The generator

is the segmentation network explained in previous chapters. Discriminator network

is given in 3.21

34

Figure 3.21: Discriminator network architecture used in GAN

35

36

CHAPTER 4

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES USED FOR

BRAIN MRI SEGMENTATION

In this chapter, different network architectures, namely, FCN-8s and U-Net will be

explained. Additionally, some modifications that improve the performance of these

networks are given. The performances of them will be given in Chapter 6. Note that

another popular segmentation architecture, DeepMedic [35], is not used due to its

patch based approach.

4.1 FCN-8s

FCN-8s is a Fully Convolutional Neural Network proposed in [34] for semantic seg-

mentation. Except the last layers, it is not different than a classical classification

CNN. The aim of the last layer is to combine features of different scales to localize

the complex features. While the original paper has 3 different networks -FCN-32s,

FCN-16s and FCN-8s- FCN-8s (Figure 4.1) is proven to have the best performance

among them. Hence, it is compared with U-Net architecture in this thesis. It would

not be wrong to say that U-Net is an extended, deeper version of FCN-8s.

4.2 U-Net

U-Net is a Fully Convolutional Neural Network proposed in [36], of which main aim

is medical image segmentation. It has n number of convolution layers followed by

pooling layers and n number of deconvolution layers to reconstruct a segmentation

output that has the same dimensions with the input. It gradually downsamples the

37

Figure 4.1: FCN-8s architecture used for brain tumor segmentation in this work

input and finds its deep features. Then it upsamples those features by deconvolution

and concatenates these upsampling results channel-wise with the features that has the

same dimensions. An example architecture to U-Net can be seen in Figure 4.2.

The deeper features have a global meaning but they lack the local information needed

for pixel level classification. Re-introducing the outputs of shallow layers by con-

catenation provides the local information. Additionally, they are similar to skip con-

nections with an only difference that is skip connections are connected as additions

instead of concatenations. Lets consider Figure 4.2. We can say that the features in

the bottom of the U-shape are complex and represent global information. By intro-

ducing the simpler features obtained in the encoder to the decoder, complex features

are combined with local information. In other words, the encoder is first used to find

complex global features, then the information in decoder is combined with these fea-

tures for localization. At the top of the decoder, 120 features are obtained with the

same spatial dimensions of the input, i.e. each pixel has 120 features of its own.

38

Note that the number of layers in a U-Net architecture may vary according to the

input dimension and complexity of the task. [55]

Figure 4.2: U-Net architecture used for brain tumor segmentation

Figure 4.3: Multi-scale U-Net (with 3x3 and 5x5 filter sizes)

There are many modifications that can affect the performance of the network. These

include new connections and connection paths, filter size, input dimension, training

methods etc. Section 4.3 explains some of these modifications in detail. This section,

on the other hand, focuses on how these modifications are applied on U-Net for brain

tumor segmentation problem and how these modifications affect the performance.

39

Figure 4.4: Multi-scale U-Net (with 3x3 and 5x5 filter sizes) and a dilation module

4.3 Proposed Modifications

Although the CNN based semantic segmentation methods has been proven to perform

better than classical approaches, they still need some melioration. In this section,

improvement methods that can be applied to CNN based segmentation problem are

explained.

4.3.1 Inception Modules

Inception modules can be thought as an improvement to the convolution layers by

making an architectural modification. In a classical convolutional layer, the filter size

is chosen by the user while building the network. However, in inception modules,

there are multiple filter sizes as shown in Figure 4.5. Thus, instead of choosing the

filter size of the corresponding layer, the user lets the network decide the priorities of

the filter sizes [59].

4.3.2 Dilated Convolutions

By inserting zeros between the elements of a filter, dilated convolutions are obtained.

For example, if 2 zeros are inserted, then the dilation is 2. Red dots in Figure 4.6

shows the dilated convolution filters with dilations 1, 2, 3 respectively. The blue

squares on the other hand shows the receptive field of each filter, applied on the output

40

Figure 4.5: An Example of Inception Module

of the previous convolution. The main advantage of the method is that when dilation

is increased in each layer, the receptive field increases exponentially without reso-

lution or coverage loss [7]. This approach has been used by [88] in the brain MRI

segmentation problem. This work utilizes a dilation module with less features (8) for

each layer than the one used in [88] (32). (Figure 4.4).

Although it seems like a simple application, it requires some fine tunings such as

initialization of the network parameters. In [7], it is suggested that the network should

be initialized either using a form of identity initialization or by using the parameters

of the original network without dilated convolutions.

4.3.3 Residual Connections

Residual connections (Figure 4.7 (a)) are shortcuts that link the responses of previous

layers to subsequent layers. Their main aim is to avoid the vanishing gradient problem

by providing a shortcut connection for the error during backpropagation. Proposed in

[57], residual connections make deeper networks possible by also preventing overfit-

ting to some extent. Moreover, they make the optimization and training easier.

41

Figure 4.6: The blue areas show the receptive field of each layer (a) Normal convo-

lution (b) Dilated convolution with dilation 2 (c) Dilated convolution with dilation 4

(Image taken from [7])

4.3.3.1 Pre-activation Residual Block

Pre-activation residual block is a modified version of the original residual connections

proposed in [57]. The only difference is that instead of connecting the input prior to

batch normalization to the output of the second next filter, it connects the input of the

filter to the output of the second next batch normalization [8]. The difference can be

seen in Figure 4.7.

42

Figure 4.7: (a) Original post-activation residual block (b) Pre-activation block (Image

taken from [8])

43

44

CHAPTER 5

PRE-PROCESSING AND POST-PROCESSING METHODS

In order to provide generalization for datasets with different data ranges and different

characteristics, pre-processing is applied.

5.1 Pre-Processing Methods

Pre-processing is a crucial step not only for image/signal processing but all kinds of

data. Given a dataset, pre-processing standardizes and makes it more meaningful for

an algorithm. There are many pre-processing methods in the literature; however, only

few of them, namely, normalization, histogram matching and histogram equalization

can be applied on brain MRIs.

5.1.0.1 Normalization

Normalization is a widely used pre-processing step which aims to scale the data be-

tween a given maximum and a minimum. It can be both linear (Eqn. 5.1) and non-

linear (Eqn. 5.2). An example of linear normalization is given in Figure 5.1.

xnormalized = (desiredMax− desiredMin)
(x−min(x))

max(x)−min(x)
+ desiredMin

(5.1)

xnormalized =
desiredMax− desiredMin

1 + exp(−x−β
α

)
+ desiredMin (5.2)

45

(a) Original Image (b) Normalized Image

Figure 5.1: An example image and normalization applied on it.

5.1.0.2 Histogram Matching

In order to standardize the images, their histograms may be matched to the histogram

of a target image. In brain tumor segmentation problem, this approach may be prob-

lematic since not all patients have a brain tumor. Thus, even if the brain image does

not have a tumor region, the pixel intensities that are supposed to be specific to the

tumor region may arise after the histogram matching is applied.

5.1.0.3 Histogram Equalization

The aim of this method is to have a more uniform histogram so that the contrast of

the image increases. However, this also affects the data. For example, background

data becomes less distinguishable. In brain tumor segmentation problem, it should

be applied with a foreground mask in order to prevent such artifacts. Figures 5.2

and 5.3 shows examples of histogram equalization without and with a foreground

mask respectively. A common method to produce an equalized histogram is to use

a mapping function that obtains the most possible linear ramp shaped cumulative

distribution function.

46

(a)

(b)

(c)
Pixel intensity

P
ix

el
 in

te
ns

ity

Original pixel intensity

Ta
rg

et
 p

ix
el

 in
te

ns
ity

Number of Pixels
N

um
be

r o
f P

ix
el

s

(d)

(e)

Figure 5.2: Histogram equalization applied without a foreground mask.

(a) is the resulting histogram (b) is the mapping function to map pixel intensities in

the original image (c) histogram of the original image (d) original image (e) histogram

equalization applied image. Note that in order to obtain an equalized histogram that

has an almost linear cumulative distribution function, all of the zero pixels are mapped

to 140. Thus, the resulting image (e) loses a lot of information.

47

(a) (b)

(c)
Pixel intensity

P
ix

el
 in

te
ns

ity

Original pixel intensity

Ta
rg

et
 p

ix
el

 in
te

ns
ity

Number of Pixels

N
um

be
r o

f P
ix

el
s

(d)

(e)

Figure 5.3: Histogram equalization applied with a foreground mask.

(a) is the resulting histogram (b) is the mapping function to map pixel intensities in the

original image (c) histogram of the original image (d) original image (e) histogram

equalization applied image. In order not to lose any information as in Figure 5.2,

values less than 6 are ignored and the histogram obtained is distributed more equally

except for the background values that have intensities less than the masking threshold.

48

5.2 Post-Processing Methods

In order to improve the performance, we have adapted some post processing methods.

Since our problem is a multi-class problem, application of deterministic approaches

like opening(erosion and dilation sequentially) is not practical. Thus, we have pre-

ferred two probabilistic methods. The first one is conditional random fields that can

filter the output according to input pixel values and spatial locations.

Additionally, we have noticed that our algorithm may fail to distinguish between other

anomalies and tumor tissues (Figure 5.4) due to similar characteristics. Thus, by as-

suming that the whole tumor (combination of tumor and tumor related tissues) is a

single structure and only one tumor can exist in a brain, we have applied a maxi-

mum 3D connected region selection to filter out smaller structures. It has shown a

significant improvement in the performance.

5.2.1 Conditional Random Fields

Conditional random fields [89] are actually a type of Markov random fields. Thus,

prior to details of CRF used in this work, MRF is explained below.

Markov Random Fields In Markov random fields (MRF)[90], the label (or the

class) of a pixel is found, trying to maximize the probability P (Y |X) where Y is the

label output of whole image and X is the input image. In more mathematical repre-

sentation, argmaxy(P (Y |X)) is found for each pixel x. In order for the probabilistic

model to be a MRF, it needs to satisfy the following conditions for each pixel x in the

image X and each label y in the label output Y :

1. It is always possible for a pixel to belong to any of the classes. P (y = l) > 0

for all lεL where L is the available labels.

2. The probability of belonging to a class depends only on the labels of the neigh-

bor pixels. P (yr|Ya−r) = P (yr|YNr) where yr is a label, Ya−r is all labels in Y

except yr and YNr is the neighbor pixels of yr.

49

(a) An example result (b) Ground truth (c) Flair

(d) T1 weighted (e) Contrast enhanced T1 (f) T2 weighted

Figure 5.4: An example result to show need for post-processing.

(a) shows the weaknesses of the method when compared with the ground truth (b).

Note that edges need improvement. Also, the anomaly that is shown by the red arrow

on the flair modality (c) is labeled as edema in (a) while on the ground truth(b) it is

labeled as background.

3. The probabilities does not change according to the spatial position of pixel.

P (yr|YNr) is same everywhere in the image.

Additionally, the probability has a Gibbs distribution:

P (y) =
1

Z
exp(−U(y)) (5.3)

where Z =
∑

i exp(−U(y)).

In CRF, the calculation of clique potentials of labels vary. The CRF model used in

this work is proposed in [91]. It makes use of the soft output of the network -the

50

probabilities of pixel labels obtained from softmax layer- and the raw pixel values of

the input image to find a probability map. Then by finding the MAP, it reaches to final

output labels. The Gibbs energy used in the proposed approach is

E(y) =
∑
i

Ψu(yi) +
∑
i<j

Ψp(yi, yj) (5.4)

where Ψu(yi) is the unary potential computed by the CNN classifier and Ψp(yi, yj) is

the pairwise potential as given in Eqn. 5.5 below.

Ψp(yi, yj) = µ(yi, yj)

(
w(1) exp

(
−|pi − pj|

2

2θ2α
− |Ii − Ij|

2

2θ2β

)
+ w(2) exp

(
−|pi − pj|

2

2θ2γ

))
(5.5)

The first term in the parenthesis compares the pixel values and pixel positions in order

to provide that pixels closer to each other have the same class. The second term, on

the other hand, is used to avoid small areas that are distant to other positive labeled

areas -tumor regions in our case-.

Note that the code is taken from [91].

5.3 Largest Volume Filtering

During our experiments, we have observed that some networks fail in distinguishing

between other anomalies and tumor related tissues. Thus, in order to filter out regions

that are not connected to tumor, we have applied a 3D connected component analysis.

Assuming that the tumor takes the most foreground space, only the larges 3D fore-

ground volume is said to be the tumor. The main disadvantage is it can only be used

to filter background and foreground. In other words, it does not provide any improve-

ment on labeling the foreground data into its sub-classes. On the other hand, for brain

tumor segmentation problem, it improved our whole tumor dice scores significantly.

51

52

CHAPTER 6

IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS

This chapter will explain experimental results obtained from different networks and

modifications explained in Chapter 4. The implementation details are also given.

6.1 Implementation Details

Framework In computer programming, a framework is a structure similar to a li-

brary, where the widely used functions for a specific task is pre-defined. The main

difference between a library and a framework is that frameworks define the general

flow of the code while libraries do not.

There are many deep learning frameworks like Caffe, theano, PyTorch and tensor-

flow to name a few. In this work, we have preferred tensorflow, which is based on

python programming language, mostly because tensorboard -a visualization tool that

automatically generates graphs of scalars from event files-. Moreover, it is rapidly im-

proved since it is open source and supported by Google. I supports GPU processing

and has a good documentation as well.

The methods are built using Python and Tensorflow 1.6 with GPU support (CUDA

9.0). Depending on the network size, the training is carried out on a laptop with an

Nvidia GTX1060 (6GB) GPU or on a desktop computer with an Nvidia P5000 (16

GB). During training, only brain slices that has a tumor region greater than a threshold

are chosen. By doing so, the class imbalance problem between tumor and non-tumor

regions has been avoided.

53

6.2 Data Used In The Work

BraTS2017 Dataset BraTS dataset [15] [16] was used for both training and evalu-

ation. It consists of 209 high grade glioma patients and 75 low grade glioma patients.

Each patient has 4 different modalities of MRIs, namely, T1, T2, T2Flair and T1c (T1

with contrast agent). Each of these modalities are 3D matrices of size 240×240×155.

Regions such as skull and eye are stripped, leaving only the brain tissue. Thus, no

pre-processing is needed for extracting the brain tissue.

Labels in BraTS2017 There are 4 classes in the BraTS 2017 dataset. One of them

is background, while others are GD-enhancing tumor (ET), peritumoral edema (ED)

and necrotic and non-enhancing tumor (NCR/NET). In the validation results, white,

gray and dark gray regions correspond to ET, ED and NCR/NET respectively. In

the comparison part, instead of using these classes, combinations of these are used.

Whole tumor (WT) consists of ET, ED and NCR/NET while tumor core (TC) is the

combination of ET and NCR/NET.

Peritumoral edema (ED) region corresponds to the accumulation of excess fluid around

the tumor. It generally grows rapidly as a reaction to malignant tumor. As edema be-

comes larger, it creates pressure on the other parts of brain and can damage these

parts. Necrotic/non-enhancing tumor (NCR/NET) region corresponds to dead tissue.

It is one of the significant signs that the lesion is malignant. For example, if there is

necrotic tissue, then the expert can say that the tumor is malignant. Otherwise, fur-

ther tests are needed to decide whether it is benign or malignant. Enhancing tumor is

the tumor tissue that is still alive. It continues spreading to other parts of brain and

contains malignant cells.

6.3 Experimental Results

6.3.1 Metrics Used for Rating performance

Metrics used for rating the network performance are explained in this section.

54

6.3.1.1 Dice Coefficient

Dice Coefficient (Sørensen-Dice Score) is a similarity metric. First, the positive el-

ements in the result that are equal to the ground truth are found. Then this result is

divided by the total number of positives in both.

DICE =
2|A ∩B|
|A|+ |B|

=
2(TruePositives)

(Positives) + (GroundTruthPositives)
(6.1)

6.3.1.2 Sensitivity and Specificity

Sensitivity is a metric to measure the ratio of True Positives (TP) to Total Ground

Truth Positives (TP + FN) (Eqn. 6.2) while Specificity is a metric to measure the

ratio of True Negatives (TN) to Total Ground Truth Negatives (TN+FP) (Eqn. 6.3).

In other words, as the sensitivity increases, the possibility of a negative labeled pixel’s

being a true negative increases, while as the specificity increases, the possibility of a

positive labeled pixel’s being a true positive increases.

Sensitivity =
TP

TP + FN
(6.2)

Specificity =
TN

TN + FP
(6.3)

6.3.2 Results

The training results are provided for different metrics and all 5 classes, namely,

necrotic and non-enhancing tumor(NCR/NET), edema(ED), whole tumor (ET, ED

and NCR/NET), enhanced tumor and tumor core (ET and NCR/NET). The results

are provided in terms of iteration steps. Each step is trained with a batch of size 8 and

there are 12500 iteration steps in total.

55

6.3.2.1 Structure Based Comparison

Table 6.1: Validation results obtained using different architectures, different connec-

tions and different filter sizes

High Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Single 3x3 U-Net 0.434 0.740 0.774 0.865 0.808 0.352 0.672 0.862 0.820 0.824 0.999 0.999 0.999 0.999 0.999
U-Net With Inception Modules 0.430 0.728 0.772 0.852 0.731 0.399 0.766 0.695 0.855 0.667 0.999 0.997 0.999 0.998 0.999
Single 3x3 U-Net and Dilation Module 0.481 0.753 0.807 0.866 0.782 0.450 0.762 0.805 0.865 0.764 0.999 0.998 0.999 0.998 0.999
Single 3x3 U-Net and Dilation Module with
Residual 0.494 0.748 0.812 0.863 0.777 0.575 0.730 0.759 0.852 0.778 0.999 0.998 0.999 0.998 0.999
Multi-scale U-Net 0.572 0.766 0.824 0.878 0.829 0.565 0.752 0.840 0.870 0.837 0.999 0.998 0.999 0.998 0.999
Multi-scale U-Net with Dilation Module 0.666 0.764 0.825 0.869 0.867 0.727 0.714 0.798 0.834 0.872 0.999 0.999 0.999 0.999 0.999
Multi-scale U-Net and Dilation Module With
Residual Connection 0.510 0.749 0.827 0.874 0.801 0.505 0.709 0.809 0.837 0.790 0.999 0.998 0.999 0.999 0.999
FCN-8s 0.480 0.701 0.749 0.850 0.783 0.527 0.655 0.735 0.821 0.804 0.999 0.998 0.999 0.998 0.999
FCN-8s with Inception Module 0.269 0.534 0.163 0.816 0.505 0.382 0.498 0.110 0.753 0.459 0.998 0.997 0.999 0.999 0.998
FCN-8s with Dilation Module 0.496 0.736 0.781 0.864 0.795 0.499 0.743 0.779 0.871 0.792 0.999 0.998 0.999 0.998 0.999
Multi-scale FCN-8s with Dilation Module 0.576 0.750 0.785 0.861 0.825 0.547 0.716 0.767 0.828 0.799 0.999 0.998 0.999 0.999 0.999
FCN-8s with Dilation and Inception Module 0.354 0.701 0.785 0.837 0.733 0.326 0.716 0.795 0.842 0.718 0.999 0.997 0.999 0.998 0.999
FCN-8s with Dilation and Residual 0.479 0.678 0.797 0.856 0.780 0.535 0.572 0.844 0.794 0.845 0.999 0.999 0.999 0.999 0.998
Multi-scale U-Net and Dilation Module With
Residual Connection* 0.638 0.770 0.839 0.875 0.860 0.675 0.735 0.840 0.855 0.876 0.999 0.998 0.999 0.999 0.999

Low Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Single 3x3 U-Net 0.581 0.666 0.536 0.844 0.624 0.460 0.631 0.583 0.759 0.524 0.999 0.997 0.999 0.999 0.999
U-Net With Inception Modules 0.481 0.682 0.536 0.862 0.520 0.366 0.789 0.441 0.852 0.401 0.999 0.994 0.999 0.998 0.999
Single 3x3 U-Net and Dilation Module 0.588 0.686 0.527 0.862 0.603 0.487 0.715 0.497 0.824 0.509 0.999 0.996 0.999 0.998 0.998
Single 3x3 U-Net and Dilation Module with
Residual 0.641 0.690 0.633 0.882 0.661 0.620 0.684 0.498 0.854 0.622 0.998 0.997 0.999 0.998 0.998
Multi-scale U-Net 0.656 0.694 0.541 0.866 0.665 0.632 0.655 0.536 0.827 0.639 0.998 0.997 0.999 0.998 0.998
Multi-scale U-Net with Dilation Module 0.642 0.696 0.521 0.850 0.647 0.573 0.672 0.386 0.786 0.564 0.999 0.997 0.999 0.999 0.998
Multi-scale U-Net and Dilation Module With
Residual Connection 0.672 0.698 0.602 0.876 0.682 0.641 0.658 0.523 0.826 0.644 0.998 0.997 0.999 0.999 0.998
FCN-8s 0.646 0.684 0.486 0.870 0.664 0.592 0.672 0.386 0.823 0.595 0.998 0.997 0.999 0.999 0.998
FCN-8s with Inception Module 0.459 0.616 0.040 0.818 0.536 0.390 0.590 0.041 0.752 0.466 0.998 0.997 0.999 0.998 0.998
FCN-8s with Dilation Module 0.532 0.689 0.532 0.876 0.574 0.422 0.777 0.468 0.866 0.464 0.999 0.995 0.999 0.998 0.999
Multi-scale FCN-8s with Dilation Module 0.562 0.696 0.467 0.839 0.566 0.417 0.730 0.327 0.767 0.417 0.999 0.996 0.999 0.999 0.999
FCN-8s with Dilation and Inception Module 0.404 0.647 0.415 0.795 0.478 0.293 0.722 0.487 0.779 0.396 0.999 0.995 0.999 0.996 0.998
FCN-8s with Dilation and Residual 0.654 0.591 0.430 0.841 0.648 0.619 0.497 0.539 0.761 0.643 0.998 0.998 0.999 0.999 0.997
Multi-scale U-Net and Dilation Module With
Residual Connection* 0.607 0.709 0.446 0.835 0.598 0.470 0.742 0.306 0.770 0.455 0.999 0.996 0.999 0.999 0.999

Average of HGG and LGG Results
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Single 3x3 U-Net 0.508 0.703 0.655 0.855 0.716 0.406 0.652 0.723 0.790 0.674 0.999 0.998 0.999 0.999 0.999
U-Net With Inception Modules 0.455 0.705 0.654 0.857 0.626 0.382 0.778 0.568 0.854 0.534 0.999 0.996 0.999 0.998 0.999
Single 3x3 U-Net and Dilation Module 0.534 0.720 0.667 0.864 0.693 0.468 0.738 0.651 0.845 0.637 0.999 0.997 0.999 0.998 0.999
Single 3x3 U-Net and Dilation Module with
Residual 0.568 0.719 0.723 0.873 0.719 0.597 0.707 0.629 0.853 0.700 0.998 0.997 0.999 0.998 0.999
Multi-scale U-Net 0.614 0.730 0.683 0.872 0.747 0.598 0.703 0.688 0.849 0.738 0.999 0.998 0.999 0.998 0.999
Multi-scale U-Net with Dilation Module 0.654 0.730 0.673 0.860 0.757 0.650 0.693 0.592 0.810 0.718 0.999 0.998 0.999 0.999 0.999
Multi-scale U-Net and Dilation Module With
Residual Connection 0.591 0.723 0.715 0.875 0.742 0.573 0.683 0.666 0.832 0.717 0.999 0.998 0.999 0.999 0.999
FCN-8s 0.563 0.693 0.618 0.860 0.724 0.559 0.663 0.561 0.822 0.700 0.999 0.997 0.999 0.999 0.999
FCN-8s with Inception Module 0.364 0.575 0.102 0.817 0.521 0.386 0.544 0.076 0.753 0.463 0.998 0.997 0.999 0.999 0.998
FCN-8s with Dilation Module 0.514 0.713 0.657 0.870 0.685 0.460 0.760 0.624 0.869 0.628 0.999 0.996 0.999 0.998 0.999
Multi-scale FCN-8s with Dilation Module 0.569 0.723 0.634 0.867 0.730 0.482 0.723 0.583 0.847 0.694 0.999 0.997 0.999 0.999 0.999
FCN-8s with Dilation and Inception Module 0.379 0.674 0.600 0.828 0.652 0.309 0.719 0.627 0.804 0.598 0.999 0.996 0.999 0.998 0.999
FCN-8s with Dilation and Residual 0.567 0.635 0.608 0.839 0.691 0.577 0.535 0.667 0.802 0.681 0.999 0.999 0.999 0.999 0.998
Multi-scale U-Net and Dilation Module With
Residual Connection* 0.622 0.739 0.622 0.846 0.689 0.572 0.738 0.575 0.782 0.650 0.999 0.997 0.999 0.999 0.999

*Instead of using 1x1 convolutions, multi-scale network results are directly averaged.

56

Table 6.2: General information on architectures

Name Brief Information on Architecture Approximate Number of
Trainable Parameters

Single 3x3 U-Net U-Net that has 2 convolution layers(with filter size 3x3) at each
level 525,000

U-Net With Inception Modules U-Net architecture with inception modules instead of convolution
layers 3,800,000

Single 3x3 U-Net and Dilation Module U-Net that has 2 convolution layers(with filter size 3x3) at each
level combined with a dilation module 530,000

Single 3x3 U-Net and Dilation Module with
Residual

U-Net that has 3 convolution layers at each level, connected with
residual connections, combined with a dilation module 2,880,000

Multi-scale U-Net Combination of 2 separate U-Nets that have 3x3 filter size and 5x5
filter size 1,900,000

Multi-scale U-Net with Dilation Module Combination of 2 separate U-Nets that have 3x3 filter size and 5x5
filter size and a dilation module 1,905,000

Multi-scale U-Net and Dilation Module With
Residual Connection

Combination of 2 separate U-Nets, each network has 3 convolution
layers at each level, connected with residual connections,
combined with a dilation module

800,000

FCN-8s Original FCN-8s architecture with filter size 3x3 890,000

FCN-8s with Inception Module Original FCN-8s architecture with convolution layers replaced with
inception modules 6,400,000

FCN-8s with Dilation Module Original FCN-8s architecture combined with a dilation module 895,000

Multi-scale FCN-8s with Dilation Module Combination of 2 FCN-8s that have 3x3 filter size and 5x5 filter
size and a dilation module 3,205,000

FCN-8s with Dilation and Inception Module Original FCN-8s architecture with convolution layers replaced with
inception modules, combined with a dilation module 6,405,000

FCN-8s with Dilation and Residual FCN-8s architecture with residual connections and a dilation
module 895,000

The results obtained during training of different architectures are given in Figures 6.1,

6.2, 6.3. For each network, a brief explanation and approximate number of trainable

parameters are provided in Table 6.2. When Dice scores are considered, best results

are obtained by the combination of two U-Nets that include a dilation module (Figure

6.1). We can also say that FCN-8s have good validation results despite its direct

upsampling approach (Table 6.1).

It can be seen in Figure 6.2 that U-Net itself lacks the sensitivity. Also, the most

sensitive method seems to be double U-Nets with a dilation module. Additionally, it

produces confident results (Figure 6.3).

Residual connections do not seem to improve results on the training results(Figure 6.1),

although they improve the validation results slightly (Table 6.1). There are two pos-

sible reasons of this. The first one is that the network is not that much deep. The

second one is that the U-Net architecture already has some skip connections. Thus,

it does not suffer from vanishing gradients problem. By the addition of extra residual

connections, the propagation is improved without making a significant performance

improvement.

57

Number of iterations Number of iterations

(a) Enhanced Tumor Dice Score (b) Whole Tumor Dice Score

Number of iterations Number of iterations

(c) Tumor Core Dice Score (d) Necrotic/Non-enhancing Tumor Dice

Score

Number of iterations

Double U-Nets (combination of 3x3 and 5x5
kernel sizes)

FCN-8s

Double U-Nets with dilation module and
residual connections

Double U-Nets with dilation module

U-Net with inception modules

U-Net

(e) Edema Dice Score

Figure 6.1: Dice scores obtained during training different architectures.

Inception modules did not improve the FCN-8s results most probably because the

network was too wide. When applied on our single U-Net architecture, they have

slightly improved the results. Therefore, instead of taking advantage of different filter

58

Number of iterations Number of iterations

(a) Enhanced Tumor Sensitivity Result (b) Whole Tumor Sensitivity Result

Number of iterations Number of iterations

(c) Tumor Core Sensitivity Result (d) Necrotic/Non-enhancing Tumor Sensi-

tivity Result

Number of iterations

Double U-Nets (combination of 3x3 and 5x5
kernel sizes)

FCN-8s

Double U-Nets with dilation module and
residual connections

Double U-Nets with dilation module

U-Net with inception modules

U-Net

(e) Edema Sensitivity Result

Figure 6.2: Sensitivity results obtained during training different architectures.

sizes in smaller modules, we have built a multi-scale U-Net(Table 6.2).

We see the effect of dilation module and residual connections in Figures 6.4 and

6.5. FCN-8s itself (6.4(c) ,6.5(c)), fails to produce a result with local details. Its

59

Number of iterations Number of iterations

(a) Enhanced Tumor Specificity Result (b) Whole Tumor Specificity Result

Number of iterations Number of iterations

(c) Tumor Core Specificity Result (d) Necrotic/Non-enhancing Tumor Speci-

ficity Result

Number of iterations

Double U-Nets (combination of 3x3 and 5x5
kernel sizes)

FCN-8s

Double U-Nets with dilation module and
residual connections

Double U-Nets with dilation module

U-Net with inception modules

U-Net

(e) Edema Specificity Result

Figure 6.3: Specificity results obtained during training different architectures.

results have round edges. However, dilation module provides the local information

and residual connections help to avoid overfitting(6.4(d) ,6.4(d)). We can also see

how combining two different networks can improve the results (Figure 6.4(a) and

60

(a) Double U-Nets with di-

lation module and residual

connections

(b) Single U-Net with di-

lation module and residual

connections

(c) FCN-8s

(d) FCN-8s with dilation

module and residual con-

nections

(e) Flair MRI (f) Contrast enhanced MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.4: Examples of validation results of HGG patients obtained by top perform-

ing structures.

(b)).

The improvement in local details with combination of two U-Nets, compared to a

single one is also shown in Figures 6.4,6.4 (a) and (b) respectively.

61

(a) Double U-Nets with

dilation module and

residual connections

(b) Single U-Net with di-

lation module and resid-

ual connections

(c) FCN-8s

(d) FCN-8s with dilation

module and residual con-

nections

(e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.5: Examples of validation results of LGG patients obtained by top perform-

ing structures.

Note that multi-scale U-Net with a dilation module and residual blocks is selected

as the reference architecture. It will be used for the rest of the comparisons in

the following sections.

62

6.3.2.2 Comparison of Different Activation Functions

Table 6.3: Validation results obtained using different activation functions

High Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

ReLU 0.510 0.749 0.827 0.874 0.801 0.505 0.709 0.809 0.837 0.790 0.999 0.998 0.999 0.999 0.999
LReLU 0.473 0.700 0.754 0.825 0.737 0.508 0.791 0.731 0.894 0.739 0.999 0.996 0.999 0.996 0.999
tanh 0.394 0.672 0.713 0.783 0.672 0.655 0.718 0.813 0.902 0.863 0.998 0.996 0.998 0.995 0.997
PReLU 0.525 0.738 0.840 0.876 0.844 0.666 0.775 0.802 0.832 0.848 0.999 0.997 0.999 0.999 0.999

Low Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

ReLU 0.672 0.698 0.602 0.876 0.682 0.641 0.658 0.523 0.826 0.644 0.998 0.997 0.999 0.999 0.998
LReLU 0.627 0.678 0.519 0.814 0.631 0.509 0.774 0.475 0.823 0.525 0.999 0.994 0.999 0.996 0.999
tanh 0.612 0.625 0.325 0.796 0.595 0.578 0.659 0.513 0.832 0.619 0.998 0.995 0.998 0.995 0.996
PReLU 0.652 0.676 0.641 0.864 0.694 0.600 0.706 0.545 0.799 0.658 0.998 0.996 0.999 0.999 0.998

Average of HGG and LGG Results
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

ReLU 0.591 0.723 0.715 0.875 0.742 0.573 0.683 0.666 0.832 0.717 0.999 0.998 0.999 0.999 0.999
LReLU 0.550 0.689 0.637 0.820 0.684 0.508 0.783 0.603 0.859 0.632 0.999 0.995 0.999 0.996 0.999
tanh 0.503 0.649 0.519 0.790 0.634 0.617 0.689 0.663 0.867 0.741 0.998 0.996 0.998 0.995 0.997
PReLU 0.588 0.707 0.741 0.870 0.769 0.633 0.740 0.674 0.816 0.753 0.999 0.996 0.999 0.999 0.999

We have compared ReLU, LReLU, PReLU and tanh. According to Figure 6.6 which

show dice scores obtained during training with different activation functions, PReLU

is the top performing one. The validation results given in Table 6.3 on the other hand,

shows that for the whole tumor, ReLU performs better. In some cases, ReLU can

perform better because of its sparse results. Since tanh is a saturating function it

causes vanishing gradients. Thus, its performance is the worst as expected. LReLU,

having a constant leakage coefficient, lacks both the sparsity and trainability. Thus,

its leakage coefficient needs fine-tuning for the specific problem. Finally, tanh shows

the worst performance as expected due to its saturating characteristic which causes

vanishing gradient problem.

63

Number of iterations Number of iterations

(a) Enhanced Tumor Dice Score (b) Whole Tumor Dice Score

Number of iterations Number of iterations

(c) Tumor Core Dice Score (d) Necrotic/Non-enhancing Tumor Dice

Score

Number of iterations

tanh

ReLU

LReLU

PReLU

(e) Edema Dice Score

Figure 6.6: Dice scores obtained from different activation functions during training.

During training, as expected, tanh has the worst performance. Although LReLU

seems to have a better performance than ReLU for the training 6.6, for the valida-

tion, ReLU performs better than LReLU. To be more specific, validation results of

64

Number of iterations Number of iterations

(a) Enhanced Tumor Sensitivity Result (b) Whole Tumor Sensitivity Result

Number of iterations Number of iterations

(c) Tumor Core Sensitivity Result (d) Necrotic/Non-enhancing Tumor Sensi-

tivity Result

Number of iterations

tanh

ReLU

LReLU

PReLU

(e) Edema Sensitivity Result

Figure 6.7: Sensitivity results obtained from different activation functions during

training.

ReLU and PReLU are similar Table 6.3. When Figures 6.9 and 6.10 are considered,

one can see that LReLU and tanh fails by labeling some background pixels as fore-

65

Number of iterations Number of iterations

(a) Enhanced Tumor Specificity Result (b) Whole Tumor Specificity Result

Number of iterations Number of iterations

(c) Tumor Core Specificity Result (d) Necrotic/Non-enhancing Tumor Speci-

ficity Result

Number of iterations

tanh

ReLU

LReLU

PReLU

(e) Edema Specificity Result

Figure 6.8: Specificity results obtained from different activation functions during

training.

ground. Although there is not any significant difference between ReLU and PReLU

for the HGG results(Figure 6.9), PReLU more correctly labels the sub-classes when

66

LGG results are considered (Figure 6.10).

(a) tanh (b) ReLU (c) LReLU

(d) PReLU (e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.9: Examples of validation results of HGG patients obtained using different

upscale methods.

67

(a) tanh (b) ReLU (c) LReLU

(d) PReLU (e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.10: Examples of validation results of LGG patients obtained using different

upscale methods.

68

Table 6.4: Validation results obtained using different upsampling methods

ED
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Bilinear Interpolation 0.510 0.749 0.827 0.874 0.801 0.505 0.709 0.809 0.837 0.790 0.999 0.998 0.999 0.999 0.999
Deconvolution 0.518 0.717 0.820 0.860 0.798 0.513 0.655 0.775 0.800 0.772 0.999 0.999 0.999 0.999 0.999
Subpixel 0.489 0.720 0.813 0.869 0.769 0.664 0.638 0.861 0.853 0.888 0.998 0.999 0.999 0.998 0.998
Trainable Bilinear
Interpolation 0.642 0.753 0.836 0.870 0.865 0.627 0.670 0.867 0.814 0.878 0.999 0.999 0.999 0.999 0.999

Low Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Bilinear Interpolation 0.672 0.698 0.602 0.876 0.682 0.641 0.658 0.523 0.826 0.644 0.998 0.997 0.999 0.999 0.998
Deconvolution 0.663 0.676 0.505 0.828 0.657 0.583 0.608 0.374 0.729 0.564 0.999 0.998 0.999 0.999 0.999
Subpixel 0.622 0.555 0.548 0.867 0.638 0.760 0.442 0.643 0.847 0.776 0.995 0.998 0.999 0.998 0.995
Trainable Bilinear
Interpolation 0.556 0.663 0.605 0.834 0.565 0.448 0.644 0.538 0.780 0.456 0.999 0.997 0.999 0.998 0.999

Average of HGG and LGG Results
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ET WT TC

Bilinear Interpolation 0.591 0.723 0.715 0.875 0.742 0.573 0.683 0.666 0.832 0.717 0.999 0.998 0.999 0.999 0.999
Deconvolution 0.591 0.697 0.663 0.844 0.728 0.548 0.632 0.575 0.765 0.668 0.999 0.998 0.999 0.999 0.999
Subpixel 0.555 0.637 0.681 0.868 0.704 0.712 0.540 0.752 0.850 0.832 0.997 0.999 0.999 0.998 0.997
Trainable Bilinear
Interpolation 0.599 0.708 0.721 0.852 0.715 0.538 0.657 0.702 0.797 0.667 0.999 0.998 0.999 0.999 0.999

6.3.2.3 Comparison of Different Upsampling Methods

Although bilinear interpolation is not trainable and performs worse than other meth-

ods when training dataset is considered, it achieves best validation results when whole

tumor dice score is considered Table 6.4. The table also shows that trainable bilinear

interpolation also performs well in the validation experiments. It achieves to improve

the result of sub-classes but not the whole tumor. A classical deconvolution approach

failed to improve results, while sub-pixel convolution method achieved to take the

second place when whole tumor is considered.

During training, bilinear interpolation has shown slightly worse performance while

trainable bilinear interpolation has shown slightly better performance 6.11.

Deconvolution, unlike the training results (Figure 6.12 significantly decreases sensi-

tivity as can be seen in Figures 6.14(b) and 6.15(b), although it is the only method

that correctly labeled non-tumor tissue as background.

Trainable bilinear interpolation has shown to lose sensitivity. Figure 6.14 (c) shows

69

Number of iterations Number of iterations

(a) Enhanced Tumor Dice Score (b) Whole Tumor Dice Score

Number of iterations Number of iterations

(c) Tumor Core Dice Score (d) Necrotic/Non-enhancing Tumor Dice

Score

Number of iterations

Bilinear Interpolation

Trainable Bilinear Interpolation

Subpixel Upscaling

Deconvolution Upsampling

(e) Edema Dice Score

Figure 6.11: Dice scores obtained from training with different upsampling methods.

that the right tail of tumor tissue could not be found by trainable bilinear interpolation.

Subpixel upscaling has the best specificity results for the training 6.13. However, it is

not the case for the validation results 6.4.

70

Number of iterations Number of iterations

(a) Enhanced Tumor Sensitivity Result (b) Whole Tumor Sensitivity Result

Number of iterations Number of iterations

(c) Tumor Core Sensitivity Result (d) Necrotic/Non-enhancing Tumor Sensi-

tivity Result

Number of iterations

Bilinear Interpolation

Trainable Bilinear Interpolation

Subpixel Upscaling

Deconvolution Upsampling

(e) Edema Sensitivity Result

Figure 6.12: Sensitivity results obtained from training with different upsampling

methods.

When LGG results are considered (Figure 6.15), deconvolution has the worst results

while bilinear interpolation is obviously the top performing method.

71

Number of iterations Number of iterations

(a) Enhanced Tumor Specificity Result (b) Whole Tumor Specificity Result

Number of iterations Number of iterations

(c) Tumor Core Specificity Result (d) Necrotic/Non-enhancing Tumor Speci-

ficity Result

Number of iterations

Bilinear Interpolation

Trainable Bilinear Interpolation

Subpixel Upscaling

Deconvolution Upsampling

(e) Edema Specificity Result

Figure 6.13: Specificity results obtained from training with different upsampling

methods.

72

(a) Bilinear Interpolation (b) Deconvolution (c) Trainable Bilinear

Interpolation

(d) Subpixel Upscaling (e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.14: Examples of validation results of HGG patients obtained using different

upsampling methods.

73

(a) Bilinear Interpolation (b) Deconvolution (c) Trainable Bilinear

Interpolation

(d) Subpixel Upscaling (e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.15: Examples of validation results of LGG patients obtained using different

upsampling methods.

74

Table 6.5: Validation results obtained using different cost functions

High Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Cross Entropy 0.509 0.748 0.827 0.874 0.801 0.514 0.706 0.809 0.837 0.790 0.999 0.998 0.999 0.999 0.999
Weighted Cross Entropy 0.217 0.461 0.674 0.532 0.474 0.693 0.816 0.913 0.979 0.933 0.993 0.985 0.997 0.977 0.991
Cross Entropy +
Adversarial Loss (GAN) 0.591 0.728 0.819 0.854 0.819 0.635 0.726 0.787 0.796 0.819 0.999 0.998 0.999 0.999 0.999
Dice Loss 0.623 0.772 0.824 0.874 0.859 0.629 0.754 0.898 0.879 0.914 0.999 0.998 0.999 0.998 0.999

Low Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Cross Entropy 0.672 0.700 0.602 0.876 0.682 0.642 0.659 0.523 0.826 0.644 0.998 0.998 0.999 0.999 0.998
Weighted Cross Entropy 0.413 0.426 0.462 0.613 0.460 0.629 0.655 0.744 0.946 0.715 0.990 0.984 0.998 0.978 0.988
Cross Entropy +
Adversarial Loss (GAN) 0.645 0.687 0.600 0.852 0.675 0.554 0.689 0.490 0.773 0.602 0.999 0.997 0.999 0.999 0.998
Dice Loss 0.617 0.695 0.632 0.872 0.658 0.547 0.714 0.638 0.851 0.595 0.998 0.996 0.999 0.998 0.998

Average of HGG and LGG Results
Dice Coefficient Sensitivity Specificity
NT ED ET WT TC NT ED ET WT TC NT ED ET WT TC

Cross Entropy 0.591 0.724 0.715 0.875 0.742 0.578 0.683 0.666 0.832 0.717 0.999 0.998 0.999 0.999 0.999
Weighted Cross Entropy 0.315 0.443 0.568 0.573 0.467 0.661 0.735 0.829 0.963 0.824 0.991 0.985 0.998 0.978 0.990
Cross Entropy +
Adversarial Loss (GAN) 0.618 0.708 0.710 0.853 0.747 0.595 0.708 0.639 0.785 0.711 0.999 0.998 0.999 0.999 0.999
Dice Loss 0.620 0.734 0.728 0.873 0.759 0.588 0.734 0.768 0.865 0.755 0.999 0.997 0.999 0.998 0.999

6.3.2.4 Comparison of Different Loss Functions

In theory, we would expect a weighted loss would perform better due to the class

imbalance problem. Unfortunately, it is not the case in real. [52] also states this

by saying that the weighted loss affects the way network is trained and biases are

arranged according to the weighted loss. Thus, as shown in Table 6.5 it results in an

over-sensitive but non-specific result for classes with higher weights.

The results show that cross entropy performs better than dice loss in terms of dice

score 6.16. Similar to training results (Figures 6.16,6.17,6.18), it can be seen on Fig-

ures 6.19 6.20(a),(b) that dice loss increases the sensitivity compared to cross entropy.

However, it lacks specificity (Figure 6.18). The over sensitivity of the weighted cross

entropy can be observed in Figures 6.19(c) and 6.20(c).

GAN did not improve the result as expected since it is added as a regularization. In

some cases, although it can find the whole tumor region, it fails to correctly classify

sub-classes significantly for the LGG patients (Figure 6.22(d)).

75

Number of iterations Number of iterations

(a) Enhanced Tumor Dice Score (b) Whole Tumor Dice Score

Number of iterations Number of iterations

(c) Tumor Core Dice Score (d) Necrotic/Non-enhancing Tumor Dice

Score

Number of iterations

Weighted Cross
Entropy Loss

Cross Entropy Loss

Dice Loss

Cross Entropy Loss +
Adversarial Loss

(e) Edema Dice Score

Figure 6.16: Dice scores obtained from training with different loss functions.

76

Number of iterations Number of iterations

(a) Enhanced Tumor Sensitivity Result (b) Whole Tumor Sensitivity Result

Number of iterations Number of iterations

(c) Tumor Core Sensitivity Result (d) Necrotic/Non-enhancing Tumor Sensi-

tivity Result

Number of iterations

Weighted Cross
Entropy Loss

Cross Entropy Loss

Dice Loss

Cross Entropy Loss +
Adversarial Loss

(e) Edema Sensitivity Result

Figure 6.17: Sensitivity results obtained from training with different loss functions.

77

Number of iterations Number of iterations

(a) Enhanced Tumor Specificity Result (b) Whole Tumor Specificity Result

Number of iterations Number of iterations

(c) Tumor Core Specificity Result (d) Necrotic/Non-enhancing Tumor Speci-

ficity Result

Number of iterations

Weighted Cross
Entropy Loss

Cross Entropy Loss

Dice Loss

Cross Entropy Loss +
Adversarial Loss

(e) Edema Specificity Result

Figure 6.18: Specificity results obtained from training with different loss functions.

78

(a) Cross Entropy Loss (b) Dice Loss (c) Weighted Cross En-

tropy Loss

(d) Cross Entropy and

Adversarial Loss

(e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.19: Examples of validation results of HGG patients obtained using different

loss functions.

79

(a) Cross Entropy Loss (b) Dice Loss (c) Weighted Cross En-

tropy Loss

(d) Cross Entropy and

Adversarial Loss

(e) Flair MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) T1 weighted MRI (i) T2 weighted MRI

Figure 6.20: Examples of validation results of LGG patients obtained using different

loss functionss.

80

Table 6.6: Validation results obtained using different post processing methods.

DCRF-1 and DCRF-2 correspond to conditional random field applied with different

parameter choices.

High Grade Gliomas
Dice Coefficient Sensitivity Specificity
NT/NCR ED ET WT TC NT/NCR ED ET WT TC NT/NCR ED ET WT TC

Original 0.510 0.749 0.827 0.874 0.801 0.505 0.709 0.809 0.837 0.790 0.999 0.998 0.999 0.999 0.999
DCRF-1 0.465 0.653 0.760 0.817 0.744 0.465 0.580 0.736 0.734 0.743 0.999 0.999 0.999 0.999 0.999
DCRF-2 0.498 0.712 0.800 0.849 0.764 0.498 0.664 0.799 0.796 0.782 0.999 0.999 0.999 0.999 0.999
Largest Foreground
Volume Selection 0.512 0.756 0.816 0.891 0.790 0.517 0.724 0.808 0.826 0.778 0.999 0.999 0.999 0.999 0.999

Low Grade Gliomas
Dice Coefficient Sensitivity Specificity

NT/NCR ED ET WT TC NT/NCR ED ET WT TC NT/NCR ED ET WT TC
Original 0.672 0.698 0.602 0.876 0.682 0.641 0.658 0.523 0.826 0.644 0.998 0.997 0.999 0.999 0.998
DCRF-1 0.570 0.607 0.457 0.838 0.613 0.577 0.543 0.486 0.753 0.606 0.999 0.999 0.999 0.999 0.999
DCRF-2 0.590 0.620 0.444 0.862 0.626 0.590 0.620 0.561 0.802 0.623 0.999 0.999 0.999 0.999 0.998
Largest Foreground
Volume Selection 0.530 0.641 0.392 0.890 0.623 0.579 0.655 0.507 0.813 0.618 0.998 0.998 0.999 0.999 0.998

Average of HGG and LGG Results
Dice Coefficient Sensitivity Specificity
NT/NCR ED ET WT TC NT/NCR ED ET WT TC NT/NCR ED ET WT TC

Original 0.591 0.723 0.715 0.875 0.742 0.573 0.683 0.666 0.832 0.717 0.999 0.998 0.999 0.999 0.999
DCRF-1 0.518 0.630 0.608 0.827 0.678 0.521 0.561 0.611 0.744 0.674 0.999 0.999 0.999 0.999 0.999
DCRF-2 0.544 0.666 0.622 0.855 0.695 0.544 0.642 0.680 0.799 0.703 0.999 0.999 0.999 0.999 0.999
Largest Foreground
Volume Selection 0.521 0.699 0.604 0.891 0.707 0.548 0.689 0.658 0.820 0.698 0.999 0.998 0.999 0.999 0.999

6.3.2.5 Comparison of Different Post-processing Methods

Our post-processing methods include conditional random fields and generative (con-

ditional) adversarial networks. We have adapted a CRF which aims to find a maxi-

mum a posteriori, from the soft output of the segmentation network, which maximizes

the probability of neighbor pixels’ belonging to the same class. However, this ap-

proach is not very practical in a multi-class problem since there might exist only few

pixels surrounded by other classes. Moreover, the parameters in the energy function

needs to be set very carefully for the specific problem. Thus, we have not observed

any improvements using CRF as a post-processor 6.6. With two different parameter

sets, DCRF has decreased the sensitivity of whole tumor significantly on LGG results

6.22(a),(b).

Finally, as can be seen in Figures 6.21(e) and 6.22(e), largest foreground volume

filtering helps avoiding some false negatives.

81

(a) DCRF with parame-

ter set 1

(b) DCRF with parame-

ter set 2

(c) Largest foreground

volume filtering

(d) Without post-

processing

(e) T1 weighted MRI (f) Contrast enhanced

MRI

(g) Ground truth (h) Flair MRI (i) T2 weighted MRI

Figure 6.21: Examples of validation results of HGG patients obtained using different

upscale methods.

82

(a) DCRF with parame-

ter set 1

(b) DCRF with parame-

ter set 2

(c) Largest foreground

volume filtering

(d) Without post-

processing

(e) T1 weighted MRI (f) Contrast enhanced

MRI

(g) Ground truth (e) Flair MRI (i) T2 weighted MRI

Figure 6.22: Examples of validation results of LGG patients obtained using different

upscale methods.

83

The results of the top performing methods in BraTS 2017 validation phase are given

in Table 6.7 ([52], [43], [60]).

Table 6.7: Validation results of top performing methods as reported in BraTS 2017

leaderboard.

Dice Coefficient Sensitivity Specificity
ET WT TC ET WT TC ET WT TC

biomedia1 [52] 0.738 0.901 0.797 0.783 0.895 0.762 0.998 0.995 0.998
MIC_DKFZ [43] 0.776 0.903 0.819 0.803 0.902 0.786 0.998 0.996 0.999
UCL-TIG [60] 0.786 0.905 0.838 0.771 0.915 0.822 0.999 0.995 0.998
Multi-scale U-Net
with PReLU 0.741 0.870 0.769 0.674 0.816 0.753 0.999 0.999 0.999

It can be seen from Table 6.7 that our method can not reach the performance of top

performing methods. Although it produces more specific results, it lacks sensitivity.

It is important to note that all of the three methods have a 3D network architecture.

Moreover, [52] uses multiple networks (six separately trained networks) and com-

bines their result. Similarly, [60] has 3 cascaded networks that extracts whole tumor,

tumor core and enhanced tumor regions respectively. By using findings in this thesis,

the performance of such complex architectures can be improved further.

84

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work, we have investigated the performance of different CNN based methods

applied to brain MRI segmentation problem.

First, different FCN architectures, namely, FCN-8s and U-Net, were experimented.

Combination of two separate U-Nets that have 3×3 and 5×5 filter sizes respectively

was chosen as the based method due to its performance. On the selected base archi-

tecture, structural modifications which are inception modules, dilation modules and

additional residual connections have been inserted. The most significant performance

improvement was achieved by adding dilation modules. Residual connections have

also improved the result while inception modules have shown to disturb the perfor-

mance.

Among activation functions, PReLU and ReLU had the best results without a sig-

nificant difference in between. As expected, tanh has the worst performance while

LReLU needs to be tuned for its leakage coefficient.

Bilinear interpolation, despite being non-trainable, has shown the best performance

overall. Among others, sub-pixel was the second best. Trainable bilinear interpolation

has shown better results on HGG data undoubtedly because there are more training

samples than LGG data.

For the loss functions, cross entropy loss and dice loss yield similar results. On the

contrary, weighted cross entropy loss, which would be expected to solve the imbal-

anced class problem, has produced over-sensitive and unconfident results. Although

GAN would be expected to act as a regularizer, it did not improve the results either.

85

For the post-processing, DCRF did not perform well because its hyperparameters

need fine-tuning. In spite of its simplicity, filtering the largest 3D connected fore-

ground volume has increased the results of whole tumor, while it adversely affected

sub-classes.

To conclude, considering that the state-of-the-art methods use a 3D network, it is

remarkable to achieve similar results by a 2D network. Our best performing method,

without post-processing, achieves a dice score of 0.875, 0.742, 0.715 for WT, TC and

ET respectively while the best results reported in the BraTS 2017 are 0.901 , 0.825,

0.764([52, 60]). When the post-processing is included, we reach a dice score of 0.891

for whole tumor.

In future, we plan to expand our algorithms to 3D domain since we could not achieved

the state-of-the-art performance with a 2D network. However, this will limit the usage

of the network because the depth of the MRI data can change. We will also expand the

CRF post-processing by adding temporal information. Additionally, in some cases,

state-of-the-art methods trained a separate network and proposed a cascaded system

[60]. Another approach that can improve the results is to pre-train the network on

large datasets such as ImageNet [92]. We plan to pre-train the downsampling part of

the U-Net or FCN-8s, by adding a fully connected layer at the end. Then we can use

the parameters of this pre-trained network, excluding the first layer (due to the change

in the number of channels) and fully connected layer at the end.

86

REFERENCES

[1] M. Tayyab, “Conduction of nerve impulse.”

[2] G. J. B. Orr, “Momentum and learning rate adaptation.”

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’12,

(USA), pp. 1097–1105, Curran Associates Inc., 2012.

[4] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

ArXiv e-prints, mar 2016.

[5] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and

Z. Wang, “Real-time single image and video super-resolution using an efficient

sub-pixel convolutional neural network,” CoRR, vol. abs/1609.05158, 2016.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach.

Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[7] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

CoRR, vol. abs/1511.07122, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-

works,” CoRR, vol. abs/1603.05027, 2016.

[9] N. I. of Biomedical Imaging and Bioengineering, “Magnetic resonance imaging

(mri).”

[10] OECD, “Magnetic resonance imaging (mri) exams (indicator),” 2018. doi:

10.1787/1d89353f-en.

[11] ABTA, “Brain tumor statistics,” Jan. 2018.

87

[12] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, “Hybrid im-

age segmentation using watersheds and fast region merging,” IEEE Transactions

on Image Processing, vol. 7, pp. 1684–1699, Dec 1998.

[13] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient n-d image segmenta-

tion,” Int. J. Comput. Vision, vol. 70, pp. 109–131, Nov. 2006.

[14] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computa-

tional Learning Theory, COLT ’92, (New York, NY, USA), pp. 144–152, ACM,

1992.

[15] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,

Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. R. Gerstner, M.-A. We-

ber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L. Collins, N. Cordier,

J. J. Corso, A. Criminisi, T. Das, H. Delingette, C. Demiralp, C. R. Durst,

M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland,

X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John, E. Konukoglu,

D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R.

Raviv, S. M. S. Reza, M. T. Ryan, D. Sarikaya, L. H. Schwartz, H.-C. Shin,

J. Shotton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Székely, T. J. Taylor,

O. M. Thomas, N. J. Tustison, G. B. Ünal, F. Vasseur, M. Wintermark, D. H. Ye,

L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. V. Leemput, “The

multimodal brain tumor image segmentation benchmark (brats).,” IEEE Trans.

Med. Imaging, vol. 34, no. 10, pp. 1993–2024, 2015.

[16] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, J. Freymann,

K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri

collections with expert segmentation labels and radiomic features,” Scientific

data, vol. 4, 9 2017.

[17] B. Song, C.-R. Chou, X. Chen, A. Huang, and M.-C. Liu, “Anatomy-guided

brain tumor segmentation and classification,” in Brainlesion: Glioma, Multiple

Sclerosis, Stroke and Traumatic Brain Injuries (A. Crimi, B. Menze, O. Maier,

M. Reyes, S. Winzeck, and H. Handels, eds.), (Cham), pp. 162–170, Springer

International Publishing, 2016.

88

[18] H. Hooda, O. P. Verma, and T. Singhal, “Brain tumor segmentation: A perfor-

mance analysis using k-means, fuzzy c-means and region growing algorithm,”

in 2014 IEEE International Conference on Advanced Communications, Control

and Computing Technologies, pp. 1621–1626, May 2014.

[19] L. Szilágyi, L. Lefkovits, and B. Benyó, “Automatic brain tumor segmenta-

tion in multispectral mri volumes using a fuzzy c-means cascade algorithm,” in

2015 12th International Conference on Fuzzy Systems and Knowledge Discov-

ery (FSKD), pp. 285–291, Aug 2015.

[20] M. Anitha, T. Selvy, and V. Palanisamy, “Automated detection of white mat-

ter lesions in brain images using spatio-fuzzy and spatio possibilistic clustering

models,” Computer Science and Engineering: An International Jo urnal, vol. 2,

2012.

[21] N. Menon and R. Ramakrishnan, “Brain tumor segmentation in mri images us-

ing unsupervised artificial bee colony algorithm and fcm clustering,” in 2015

International Conference on Communications and Signal Processing (ICCSP),

pp. 0006–0009, April 2015.

[22] E. A. Rios Piedra, B. M. Ellingson, R. K. Taira, S. El-Saden, A. A. T. Bui,

and W. Hsu, “Brain tumor segmentation by variability characterization of tu-

mor boundaries,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Trau-

matic Brain Injuries (A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck,

and H. Handels, eds.), (Cham), pp. 206–216, Springer International Publishing,

2016.

[23] R. Achanta, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpixels.”

[24] N. S. G. and V. Khairnar, “Brain tumor detection based on symmetry informa-

tion,” CoRR, vol. abs/1401.6127, 2014.

[25] N. S. G., D. Shah, V. Khairnar, and S. Kadu, “Brain tumor detection based on

bilateral symmetry information,” CoRR, vol. abs/1412.3009, 2014.

[26] A. Bianchi, J. Miller, E. Tan, and A. Montillo, “Brain tumor segmentation with

symmetric texture and symmetric intensity-based decision forests,” vol. 2013,

pp. 748–51, 04 2013.

89

[27] P. Aljabar, R. Heckemann, A. Hammers, J. Hajnal, and D. Rueckert, “Multi-atlas

based segmentation of brain images: Atlas selection and its effect on accuracy,”

NeuroImage, vol. 46, no. 3, pp. 726 – 738, 2009.

[28] S. Bauer, C. Seiler, T. Bardyn, P. Buechler, and M. Reyes, “Atlas-based segmen-

tation of brain tumor images using a markov random field-based tumor growth

model and non-rigid registration,” in 2010 Annual International Conference of

the IEEE Engineering in Medicine and Biology, pp. 4080–4083, Aug 2010.

[29] M. T. M. Park, J. Pipitone, L. H. Baer, J. L. Winterburn, Y. Shah, S. Chavez,

M. M. Schira, N. J. Lobaugh, J. P. Lerch, A. N. Voineskos, and M. M.

Chakravarty, “Derivation of high-resolution mri atlases of the human cerebel-

lum at 3t and segmentation using multiple automatically generated templates,”

NeuroImage, vol. 95, pp. 217 – 231, 2014.

[30] R. Ayachi and N. Ben Amor, “Brain tumor segmentation using support vector

machines,” in Symbolic and Quantitative Approaches to Reasoning with Uncer-

tainty (C. Sossai and G. Chemello, eds.), (Berlin, Heidelberg), pp. 736–747,

Springer Berlin Heidelberg, 2009.

[31] S. Bauer, L.-P. Nolte, and M. Reyes, “Fully automatic segmentation of brain tu-

mor images using support vector machine classification in combination with hi-

erarchical conditional random field regularization,” in Medical Image Comput-

ing and Computer-Assisted Intervention – MICCAI 2011 (G. Fichtinger, A. Mar-

tel, and T. Peters, eds.), (Berlin, Heidelberg), pp. 354–361, Springer Berlin Hei-

delberg, 2011.

[32] L. Lefkovits, S. Lefkovits, and L. Szilágyi, “Brain tumor segmentation with op-

timized random forest,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and

Traumatic Brain Injuries (A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck,

and H. Handels, eds.), (Cham), pp. 88–99, Springer International Publishing,

2016.

[33] Y. Li, F. Jia, and J. Qin, “Brain tumor segmentation from multimodal magnetic

resonance images via sparse representation,” Artificial Intelligence in Medicine,

vol. 73, pp. 1 – 13, 2016.

90

[34] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, pp. 640–651,

Apr. 2017.

[35] K. Kamnitsas, C. Ledig, V. F. J. Newcombe, J. P. Simpson, A. D. Kane,

D. K. Menon, D. Rueckert, and B. Glocker, “Efficient multi-scale 3d CNN

with fully connected CRF for accurate brain lesion segmentation,” CoRR,

vol. abs/1603.05959, 2016.

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

[37] P. Amorim and V. Chagas, “3d u-nets for brain tumor segmentation in miccai

2017 brats challenge,” in MICCAI BraTS 2017 Proceedings, 2017.

[38] A. Beers, K. Chang, J. M. Brown, E. Sartor, C. P. Mammen, E. R. Gerstner, B. R.

Rosen, and J. Kalpathy-Cramer, “Sequential 3d u-nets for biologically-informed

brain tumor segmentation,” CoRR, vol. abs/1709.02967, 2017.

[39] S. cao, B. Qian, C. Yin, X. Li, and S. Chang, “3d u-net for multimodal brain

tumor segmentation,” in Multimodal Brain Tumor Segmentation Benchmark,

Brain-lesion Workshop, MICCAI 2017, 09/2017 2017.

[40] L. S. Castillo, L. A. Daza, L. C. Rivera, and P. Arbeláez, “Volumetric multi-

modality neural network for brain tumor segmentation,” 2017.

[41] X. feng and C. Meyer, “Patch based 3d u-net for brain tumor segmentation,”

in Multimodal Brain Tumor Segmentation Benchmark, Brain-lesion Workshop,

MICCAI 2017, 09/2017 2017.

[42] M. Catà, A. Casamitjana, I. Sánchez, M. Combalia, and V. Vilaplana, “Masked

v-net: an approach to brain tumor segmentation,” in Multimodal Brain Tu-

mor Segmentation Benchmark, Brain-lesion Workshop, MICCAI 2017, 09/2017

2017.

[43] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein,

“Brain tumor segmentation and radiomics survival prediction: Contribution to

the brats 2017 challenge,” in Multimodal Brain Tumor Segmentation Bench-

mark, Brain-lesion Workshop, MICCAI 2017, 09/2017 2017.

91

[44] C. Wang and O. Smedby, “Automatic brain tumor segmentation using 2.5 d u-

nets,” in Multimodal Brain Tumor Segmentation Benchmark, Brain-lesion Work-

shop, MICCAI 2017, 09/2017 2017.

[45] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d

u-net: Learning dense volumetric segmentation from sparse annotation,” CoRR,

vol. abs/1606.06650, 2016.

[46] F. Milletari, N. Navab, and S. Ahmadi, “V-net: Fully convolutional

neural networks for volumetric medical image segmentation,” CoRR,

vol. abs/1606.04797, 2016.

[47] V. Alex, M. Safwan, and G. Krishnamurthi, “Brain tumor segmentation from

multi modal mr images using fully convolutional neural network,” in Multi-

modal Brain Tumor Segmentation Benchmark, Brain-lesion Workshop, MICCAI

2017, 09/2017 2017.

[48] Y. Hu and Y. Xia, “Automatic brain tumor segmentation using a 3d deep de-

tection classification model,” in Multimodal Brain Tumor Segmentation Bench-

mark, Brain-lesion Workshop, MICCAI 2017, 09/2017 2017.

[49] M. Soltaninejad, L. Zhang, T. LAmbrou, G. Yang, N. Allinson, and X. Ye,

“Mri brain tumor segmentation using random forests and fully convolutional

networks,” in MICCAI BraTS 2017 Proceedings, 2017.

[50] P. D. Chang, “Fully convolutional neural networks with hyperlocal features for

brain tumor segmentation,” in MICCAI BraTS 2016 Proceedings, 2016.

[51] K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A. Nori, A. Criminisi, D. Rueck-

ert, and B. Glocker, “Deepmedic for brain tumor segmentation,” in MICCAI

Brain Lesion Workshop, October 2016.

[52] K. Kamnitsas, W. Bai, E. Ferrante, S. G. McDonagh, M. Sinclair, N. Pawlowski,

M. Rajchl, M. C. H. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of

multiple models and architectures for robust brain tumour segmentation,” CoRR,

vol. abs/1711.01468, 2017.

92

[53] X. Li, X. Zhang, and Z. Luo, “Brain tumor segmentation via 3d fully dilated

convolutional networks,” in Multimodal Brain Tumor Segmentation Benchmark,

Brain-lesion Workshop, MICCAI 2017, 09/2017 2017.

[54] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[55] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[56] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University

Press, 1996.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” CoRR, vol. abs/1512.03385, 2015.

[58] G. Kim, “Brain tumor segmentation using deep u-net,” in MICCAI BraTS 2017

Proceedings, 2017.

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Computer

Vision and Pattern Recognition (CVPR), 2015.

[60] G. Wang, W. Li, S. Ourselin, and T. Vercauteren, “Automatic brain tumor seg-

mentation using cascaded anisotropic convolutional neural networks,” CoRR,

vol. abs/1709.00382, 2017.

[61] M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, and

C. Meinel, “Conditional adversarial network for semantic segmentation of brain

tumor,” CoRR, vol. abs/1708.05227, 2017.

[62] L. G. Nyul, J. K. Udupa, and X. Zhang, “New variants of a method of mri scale

standardization,” IEEE Transactions on Medical Imaging, vol. 19, pp. 143–150,

Feb 2000.

[63] K. Pawar, Z. Chen, N. J. Shah, and G. Egan, “Residual encoder and convo-

lutional decoder neural network for glioma segmentation,” in MICCAI BraTS

2017 Proceedings, 2017.

93

[64] H. Nharath, S. Colleman, D. Sima, and S. V. Huffel, “Tumor segmentation from

multi-parametric mri using random forest with superpixel and tensor based fea-

ture extraction,” in MICCAI BraTS 2017 Proceedings, 2017.

[65] A. Ellwaa, A. Hussein, E. AlNaggar, M. Zidan, M. Zaki, M. A. Ismail, and N. M.

Ghanem, “Brain tumor segmantation using random forest trained on iteratively

selected patients,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Trau-

matic Brain Injuries (A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck,

and H. Handels, eds.), (Cham), pp. 129–137, Springer International Publishing,

2016.

[66] R. Meier, S. Bauer, J. Slotboom, R. Wiest, and M. Reyes, “Appearance- and

context-sensitive features for brain tumor segmentation,” in MICCAI BraTS

2014 Proceedings, 2014.

[67] M. Shaikh, G. Anand, G. Acharya, A. Amrutkar, V. Alex, and G. Krishnamurthi,

“Brain tumor segmentation using dense fully convolutional neural network,” in

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

(A. Crimi, S. Bakas, H. Kuijf, B. Menze, and M. Reyes, eds.), (Cham), pp. 309–

319, Springer International Publishing, 2018.

[68] F. Zhou, T. Li, H. Li, and H. Zhu, “Tpcnn: Two-phase patch-based convolutional

neural network for automatic brain tumor segmentation and survival prediction,”

in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

(A. Crimi, S. Bakas, H. Kuijf, B. Menze, and M. Reyes, eds.), (Cham), pp. 274–

286, Springer International Publishing, 2018.

[69] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neu-

ral Information Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 2672–2680, Curran Asso-

ciates, Inc., 2014.

[70] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with

conditional adversarial networks,” CoRR, vol. abs/1611.07004, 2016.

94

[71] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using

adversarial networks,” CoRR, vol. abs/1611.08408, 2016.

[72] Z. Li, Y. Wang, and J. Yu, “Brain tumor segmentation using an adversarial net-

work,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain

Injuries (A. Crimi, S. Bakas, H. Kuijf, B. Menze, and M. Reyes, eds.), (Cham),

pp. 123–132, Springer International Publishing, 2018.

[73] W. McCulloch and W. Pitts, “A logical calculus of ideas immanent in nervous

activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133, 1943.

[74] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–

408, 1958.

[75] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math.

Statist., vol. 22, pp. 400–407, 09 1951.

[76] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regres-

sion function,” Ann. Math. Statist., vol. 23, pp. 462–466, 09 1952.

[77] R. S. Sutton, “Two problems with backpropagation and other steepest-descent

learning procedures for networks,” in Proceedings of the Eighth Annual Confer-

ence of the Cognitive Science Society, Hillsdale, NJ: Erlbaum, 1986.

[78] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, eds., Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, Vol.

1: Foundations. Cambridge, MA, USA: MIT Press, 1986.

[79] N. Qian, “On the momentum term in gradient descent learning algorithms.,”

Neural Networks, vol. 12, no. 1, pp. 145–151, 1999.

[80] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2014.

[81] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” Tech. Rep. UCB/EECS-2010-24, EECS

Department, University of California, Berkeley, Mar 2010.

95

[82] T. Tieleman and G. Hinton, “Coursera: Neural networks for machine learning,”

vol. 4.

[83] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[84] K. Fukushima, “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position,” Biological

Cybernetics, vol. 36, pp. 193–202, 1980.

[85] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction, and functional

architecture in the cat’s visual cortex,” Journal of Physiology, vol. 160, pp. 106–

154, 1962.

[86] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic

segmentation,” in Proceedings of the 2015 IEEE International Conference on

Computer Vision (ICCV), ICCV ’15, (Washington, DC, USA), pp. 1520–1528,

IEEE Computer Society, 2015.

[87] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[88] P. Moeskops, M. Veta, M. W. Lafarge, K. A. J. Eppenhof, and J. P. W. Pluim,

“Adversarial training and dilated convolutions for brain MRI segmentation,”

CoRR, vol. abs/1707.03195, 2017.

[89] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:

Probabilistic models for segmenting and labeling sequence data,” in Proceed-

ings of the Eighteenth International Conference on Machine Learning, ICML

’01, (San Francisco, CA, USA), pp. 282–289, Morgan Kaufmann Publishers

Inc., 2001.

[90] Y. A. Rozanov, Markov Random Fields, pp. 55–102. New York, NY: Springer

New York, 1982.

[91] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with

gaussian edge potentials,” CoRR, vol. abs/1210.5644, 2012.

96

[92] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,” International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

97

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Scope of the Thesis
	Outline of the Thesis

	Literature Review
	Unsupervised Brain Tumor Segmentation
	Supervised Brain Tumor Segmentation
	Convolutional Neural Network Based Brain Tumor Segmentation

	Pre-processing and Post-processing

	Convolutional Neural Networks
	Neural Networks
	Basics of Artificial Neural Networks
	Multilayer Networks
	Optimization with Backpropagation in Neural Networks
	Gradient Descent
	Backpropagation
	Loss Functions

	A Brief History of Convolutional Neural Networks
	Layers of CNNs
	Convolution Layers
	Pooling Layers
	Upscaling Layer
	Fully Connected Layers
	Activation Functions
	Dropout
	Batch Normalization
	GAN:Generative Adversarial Networks

	Convolutional Neural Network Architectures Used for Brain MRI Segmentation
	FCN-8s
	U-Net
	Proposed Modifications
	Inception Modules
	Dilated Convolutions
	Residual Connections
	Pre-activation Residual Block

	Pre-Processing and Post-Processing Methods
	Pre-Processing Methods
	Normalization
	Histogram Matching
	Histogram Equalization

	Post-Processing Methods
	Conditional Random Fields

	Largest Volume Filtering

	Implementation Details and Experimental Results
	Implementation Details
	Data Used In The Work
	Experimental Results
	Metrics Used for Rating performance
	Dice Coefficient
	Sensitivity and Specificity

	Results
	Structure Based Comparison
	Comparison of Different Activation Functions
	Comparison of Different Upsampling Methods
	Comparison of Different Loss Functions
	Comparison of Different Post-processing Methods

	Conclusion and Future Work
	REFERENCES

