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Chemical Engineering Dept., METU

Asst. Prof. Dr. Durmuş Sinan Körpe
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ABSTRACT

INVESTIGATION OF INVISCID SHEAR LAYER BY LINEAR STABILITY
THEORIES

TOPBAŞ, Ahmet Emre

M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Serkan Özgen

July 2018, 70 pages

In this thesis, spatial and temporal instabilities of the inviscid shear layer flows are

investigated using the linear stability theory. Utilizing the small and wavy distur-

bances, Rayleigh equation was derived from the Helmholtz vorticity equation. For

the hyperbolic-tangent velocity profile, the Rayleigh equation was solved by using

space and time amplification approaches by an in-house Fortran code involving RK4

and simplex method algorithm. Eigenvalues of various disturbance frequencies were

calculated both for spatial and temporal amplification theories. Results of two the-

ories were compared and the most strongly amplified disturbance frequencies were

calculated. Eigenfunctions of spatial theory were plotted for various disturbance fre-

quencies. For the most strongly amplified disturbance frequency, eigenfunctions were

calculated for both theories and compared. In spatial amplification case, derivatives

of the eigenfunctions and the vorticity amplitudes were also calculated for different

disturbance frequencies. By using the vorticity amplitudes, constant vorticity distri-

butions of spatial amplification were plotted at different times in order to demonstrate

the mechanism of instability. At the most strongly amplified disturbance frequency
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of spatial theory, the motion of particles at different locations in the shear layer were

investigated. To investigate the motions of the particles and the characteristics of

the instability clearly, the pathlines and the streaklines of the disturbed shear layer

were calculated and the streakline patterns were drawn. The pathlines and streaklines

were also compared in terms of their ability to reflect the instability mechanism. The

streaklines of the shear layer at different disturbance frequencies were compared. Re-

sults calculated by the help of the Fortran code were compared with experimental and

numerical data in the literature and seen that they are in agreement. The Fortran code

was also tested with the different velocity profiles to check its capability. The reasons

why the code could not solve the parabolic velocity profiles were discussed.

Keywords: Shear layer, Linear Stability Theory, Boundary layer, Flow Instability,

Temporal Amplification, Spatial Amplification
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ÖZ

VİSKOZ OLMAYAN KESME TABAKASININ DOĞRUSAL KARARLILIK
TEORİLERİ İLE İNCELENMESİ

TOPBAŞ, Ahmet Emre

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Serkan Özgen

Temmuz 2018 , 70 sayfa

Bu tezde, doğrusal kararlılık teorisi vasıtasıyla viskoz olmayan kesme tabakası akışı-

nın uzaysal ve zamansal kararsızlıkları incelenmiştir. Dalga şeklindeki küçük bozun-

tular kullanılarak Helmholtz girdap denkleminden Rayleigh denklemi elde edilmiştir.

Hiperbolik tanjant hız profili için Rayleigh denklemi dördüncü dereceden Runge-

Kutta ve simpleks method algoritmasını kullanılarak geliştirilen kod vasıtasıyla uzay-

sal ve zamansal genleşme yaklaşımları ile çözülmüştür. Çeşitli bozuntu frekanslarının

özdeğerleri uzaysal ve zamansal genleşme için hesaplanmıştır. İki teorinin sonuç-

ları karşılaştırılarak, en güçlü şekilde genleşen bozuntu frekansları değerlendirilmiş-

tir. Uzaysal teorinin özfonksiyonları çeşitli bozuntu frekansları için çizdirilmiştir. En

güçlü şekilde genleşen bozuntu frekansı için, her iki teorinin özfonksiyonları hesap-

lanmış ve karşılaştırılmıştır. Uzaysal genleşme durumunda, özfonksiyonların türev-

leri ve girdap genlikleri de farklı bozuntu frekansları için hesaplanmıştır. Kararsızlık

mekanizmasını görselleştirebilmek için, uzaysal genleşmenin farklı zamanlardaki sa-

bit girdap dağılımları girdap genlikleri kullanılarak çizdirilmiştir. Uzaysal teorinin
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en güçlü şekilde genleşen bozuntu frekansında, kesme tabakasında değişik konum-

larda bulunan parçacıkların hareketleri incelenmiştir. Parçacıkların hareketlerini ve

kararsızlığın karakteristiğini açıkça inceleyebilmek için, bozuntuya maruz bırakılmış

kesme tabakasının yol çizgileri ve akış çizgileri çizdirilmiştir. Yol çizgileri ve akış

çizgileri de kararsızlık mekanizmasını yansıtma kabiliyetleri açısından karşılaştırıl-

mıştır. Kesme tabakasının değişik bozuntu frekanslarındaki akış çizgileri karşılaştı-

rılmıştır. Fortran kodu ile elde edilen sonuçlar literatürde bulunan deneysel ve sayısal

veriler ile karşılaştırılmış ve sonuçların uyumlu olduğu olduğu görülmüştür. Fortran

kodu kapasitesini anlayabilmek için değişik hız profilleri ile test edilmiştir. Kodun

parabolik hız profillerini neden çözemediği tartışılmıştır.

Anahtar Kelimeler: Kesme Tabakası, Doğrusal Kararlılık Teorisi, Sınır Tabakası, Akış

Kararsızlığı, Zamansal Genleşme, Uzaysal Genleşme
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CHAPTER 1

INTRODUCTION

Boundary layer concept was first presented by Ludwing Prandtl at the Third Interna-

tional Congress of Mathematicians in 1904 [1]. In his paper "On the motion of a fluid

with very small vicosity" -published in the proceedings of Congress- Prandtl defined

the most important aspect about the fluid flow with small viscosity as the characteris-

tics of the fluid at the wall of the solid boundary. He pointed that the viscosity was the

reason for the no-slip condition at the wall, and the effect of the viscosity experienced

in a thin region near the surface. He usually used the term "transition layer" instead

of "boundary layer" for this region in his paper, but "boundary layer" term became

more popular after. Effect of the viscosity was ignorable outside the boundary layer

in the Prandtl’s concept meaning that the fluid had inviscid characteristics.

In fluid mechanics, boundary layer is thin layer of flow over a solid surface in which

the fluid velocity changes from an upstream value to zero velocity at the surface.

Therefore, viscous shear stresses are effective due to the velocity gradient. The flow

within the boundary layer may be laminar or turbulent. Generally, the flow in bound-

ary layers are laminar at the upstream portion and turbulent in the downstream.

There is also a different type of boundary layer, which are independent of solid bound-

aries, occurring at jets or wakes. These are called free boundary layers or shear layers

which is the main point of focus of this thesis. Shear layers or the flows involv-

ing them appears in various industry applications; for example, widely-used multi-

element airfoils of passenger aircraft, still under development scramjet engines, etc.

The flow structure of the shear flows directly affects the performance of the system

that contains them. Depending on the application, laminar, turbulent or transient shear
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flows may be preferred. Therefore, the shear flow phenomena have been continously

analyzed by different researchers in terms of its instability characteristics.

1.1 Laminar and Turbulent Boundary Layers

If the fluid particles in the flow move in smooth layers, then it is called as laminar

flow. In a turbulent flow the fluid particles moves in random directions due to the

velocity fluctuations along the directions [2]. In Figure 1.1, laminar, turbulent and

transition from laminar to turbulent flow in a boundary layer over a plate can be seen

[3].

Figure 1.1: Stages of Laminar-Turbulent Transition in a Boundary-Layer

In this figure numbers are showing;

1. Stable, laminar flow following the leading edge,

2. Unstable, laminar flow with 2-D Tollmien-Schlichting waves,

3. Development of unstable, laminar, 3-D waves and vortex formation,

4. Burst of turbulence in places of very high local vorticity,

5. Formation of turbulent spots in places where the turbulent velocity fluctuations

are large,

6. Coalescence of turbulent spots into a fully developed turbulent boundary layer.
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the steps given above are not must-have criteria for the laminar to the turbulent tran-

sition. There are also some mechanisms that can make transition sequence shorter

by allowing skip of one or more of transition steps (numbered from 2 to 5). These

mechanisms are called as by-pass mechanisms, and they can be preset due to either

natural reasons or artificial tools.

The natural by-pass mechanisms are;

− Görtler vortices,

− Surface roughness,

− Freestream turbulence and noise,

which are briefly described below.

Görtler vortices: Görtler vortices are secondary flows which occur along concave

surfaces. The Görtler vortices and mechanism for their formation is illustrated in

Figure 1.2. As seen from Figure 1.2, centrifugal force due to concave surface acts

Figure 1.2: Formation of Görtler Vortices

in the direction of smaller velocity. In consequence, the particles located relatively

above have higher velocities and lower radius of rotation. Thus, they are subjected

to greater centrifugal forces compared to the particles below them. Heavier fluid

flowing over a lighter fluid (like a water-oil flow) can be an analogy for the situation.

Then particles under the effect of greater centrifugal forces penetrate into the particles
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subject to smaller centrifugal forces. Peak and valley structures of Görtler vortices

occur even before 2-D Tollmien-Schlichting waves (Step 2 in Figure 1.1) and 3-D

vortex formation takes precedence immediately.

Surface roughness: Since surface roughness is a source for disturbances in the flow,

it has direct impact on the laminar turbulent transition. If an isolated roughness el-

ement on the surface is considered, there is a critical roughness height, kcrit, which

changes according to shape of the roughness element, the external velocity distribu-

tion, location of the roughness element on the body and the flow velocity. Below

this kcrit value, the roughness element has no effect on the laminar turbulent transi-

tion. In other words, the transition location on a smooth surface can only change, if

the surface roughness element height is greater than kcrit value. There is also a sec-

ond critical roughness element value, k∗crit, when the height of the roughness element

increases beyond of it, the transition takes places just downstream of the roughness

element.

Freestream turbulence and noise: Intensity of freestream turbulence is proportional

to the disturbance velocities in the flow and inversely proportional to the freestream

velocity. The transition Reynolds number is an indicator of the effect of the turbulence

intensity. As the freestream turbulence intensity decreases, the Reynolds number at

which the transition occurs increases. However, there is a threshold value for the

decrease of the intensity. Below this threshold value, it is not possible to delay the

transition further.

In addition to natural by-pass mechanisms described above, there are artificial by-pass

mechanisms which are used as tools for intentional fluid control. For artificial by-pass

mechanisms, vibrating ribbon and pneumatic turbulator can be given as examples.

1.2 LinearStability Theory

Linear stability theory can be described as superimposition of the small disturbances

onto the undisturbed boundary layer state and then checking whether the disturbances
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amplify or not in brief [3]. The flow is termed stable if the disturbances do not grow.

Otherwise, the flow is unstable. A more stable basic state created by flow control

may delay the transition from laminar to turbulent flow. Just mentioned in the previ-

ous section, with the use of artificial by pass-mechanisms the transition can be made

faster also. Linear stability analysis is performed locally by linearizing the complete

unsteady Navier-Stokes equations about the basic state (the undisturbed boundary

layer state) of the boundary layer. It is assumed that the flow in the basic state is

locally parallel to the boundary (i.e. wall). The parallel-flow assumption is a good

approximation to the linearized Navier-Stokes equations since the nonparallel effects

are negligible. By superposing small disturbances q′ onto the basic stateQ, the stabil-

ity equations giving the total flow quantities q are obtained. The basic state involves

the chordwise, normal-to-the-wall and spanwise velocities, as well as pressure and

temperature.

q(x, y, z, t) = Q(y) + q′(x, y, z, t) (1.1)

The flow quantities q and Q separately satisfy the Navier-Stokes equations; however,

the disturbance quantities q′ do not. The equations of q in terms of only the distur-

bance quantities q′ are obtained by dropping the basic state terms. In addition, the

disturbance equations are linearized by neglecting the small terms (i.e. products of

q′). Disturbance equations become linear and the coefficients depend on y distance

only. Therefore, in order to reduce the disturbance equations to ordinary differen-

tial equations, exponential solutions in terms of the independent variables (x, z, t) are

employed. The solution can be generalized as given below;

q′ = q0(y)exp(iΘ) + c.c. (1.2)

In this equation, Θ(x, z, t) is the phase function and the term c.c. denotes the complex

conjugate. The system of these equations is simply an eigenvalue problem for q0(y).

The eigenfunctions are modes of the system. For incompressible streamwise insta-

bilities, the most unstable mode is termed as the first mode. Moreover, there is only

one unstable mode for this type of flow. When other types of flows are considered

just like the compressible flows, there can be more unstable modes than one. The

classification of disturbances are made according to their amplification characteris-

tics. Two kinds of the amplification exist for the disturbances; spatial amplification
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and temporal amplification. In the spatial amplification, disturbance frequency is real,

and the wavenumbers assumed to be complex. The real parts of the wavenumbers are

physical wavenumbers. The imaginary parts of the wavenumbers show the amplifica-

tion rates of the disturbances. On the contrary, the wavenumbers of the disturbances

are assumed to be real and the frequency is complex for the temporal amplification

approach. There is also both temporal and spatial amplification case. In this situation,

all of the parameters of the amplification approach are assumed to be complex [4].

1.3 Aspects of Stability Theory

In the previous section, a general methodology of the stability theory was explained.

In this section, general elements of the stability theory is introduced below [3];

− The stability theory is concerned with individual sine waves propagating in the

boundary-layer, parallel to the wall (i.e. parallel mean flow U = U(y) and

V = 0).

− Amplitudes of the waves vary through the boundary-layer and are small enough

so that linear theory may be used.

− Frequency of a wave is denoted by ω.

− λ indicates the wavelength, and the corresponding wave number can be calcu-

lated as α = 2π/λ.

− α is the wavenumber of the disturbances in the chordwise, while β is the

wavenumber of the disturbances in the spanwise direction.

− 2-D waves are the lines of constant phase normal to the freestream direction.

Streamwise instabilities of a swept wing can be predicted by streamwise travel-

ing waves that appear in 2-D boundary layers in the midchord region of swept

wings. 2-D waves can be observed as secondary instabilities of a flow with

stationary streamwise vortex structures, also [4].
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− Oblique waves are the instability waves with the wavenumbers defined by vec-

tors.

− Phase velocity is termed by c which is lower than the freestream velocity U∞

− In the boundary-layer, there is a point where the mean flow velocity is equal

to phase velocity. This region is called as the critical layer. Disturbance wave

amplitude usually gets its maximum near the critical layer.

− Numerical results calculated from stability theory are usually presented in a

Re − α space for viscous flow. There is a critical Reynolds number below

which no amplification is possible.

− If a wave is introduced into a steady boundary-layer with a specific frequency,

as the wave propagates downstream the frequency of the wave will be protected

while the wave number will change.

With the elements the stability theory contains, the theory can be used to calculate;

− Amplification and damping rates of the disturbances,

− Frequency, wavenumber and Reynolds number of the instability waves,

− Amplitude history of a constant frequency wave as it travels through the unsta-

ble region,

− Given some initial disturbance spectrum, it is possible to identify the frequency

whose amplitude has increased the most at each Reynolds number. Among the

spectrum, most probably there is a specific disturbance, that triggers the whole

transition process after reaching a critical amplitude.

1.4 Inviscid Instability

In the absence of viscosity meaning that Reynolds number is infinite, the governing

disturbance equation for the instability waves is the Rayleigh equation [4]. While
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analyzing the inviscid case for the boundary layer instabilities the effect of the vicosity

is restricted to establish the basic-state velocity profile, the impact on the disturbances

is neglected.

Another important point for the inviscid instabilities is Rayleigh’s inflection theorem.

It states that if a boundary layer flow is unstable, then the velocity profile in the bound-

ary layer has an inflection point. It can be re-stated mathematically as if U(y)′′ does

not change sign inside the boundary layer, then amplification rates αi > 0 or ci < 0

depending on the which type of amplification (i.e.spatial or temporal) is employed.

In Figure 1.3, (a) indicates a velocity profile without an inflection point, while the ve-

locity profiles given in (b) and (c) show the ones that have inflection points, therefore

are unstable according to Rayleigh’s inflection point theorem.

Figure 1.3: Velocity profiles with/without inflection points

1.5 Literature Survey

Rayleigh [5] showed for inviscid fluids, velocity profiles having inflection points are

unstable when they are exposed to wavy disturbances. Since the shear layer flow

at large Reynolds numbers is almost parallel and instability mechanism of the shear

layer is inviscid, the inviscid linearized stability theory of unidirectional flow can be

applied for shear layers for high Reynolds numbers.

For large Reynolds numbers, it was shown by Lessen [6], Esch [7] and Betchov &
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Szewczyk [8] that the inviscid theory could calculate the asymptotical neutral curve

and the amplification of disturbances gets smaller values compared to inviscid flow

for finite Reynolds numbers. These were also proven by Tatsumi & Kakutani [9] for

a plane jet.

Sato [10] verified by experiments that at high Reynolds numbers, viscosity has little

effect on the shear layers of a two-dimensional jet. For axisymmetric jets, experi-

ments conducted by Schade-Michalke [11] and Michalke-Wille [12] showed similar

results with Sato [10].

Sato [13] used artificial disturbances to investigate shear layers by experiments. To

compare the results with the inviscid linearized stability theory which depends on

the solution of the Orr-Sommerfeld equation, Sato [14] used the disturbance phase

velocity. By the help of the phase velocity, he could manage the temporal to spatial

transformation of the disturbance growth rates. Moreover, Sato [14] experienced a

phase reversal of the flow away from the critical layer.

Similar velocity fluctuations were also discovered by Wehrmann & Wille [15]. This

distribution of velocity fluctuation was explained with the existence of ring vortices

in the jet boundary layer.

To explain the formation of vortices in free boundary layers by the linearized stability

theory, many attempts were made. Michalke [16] used the hyperbolic-tangent veloc-

ity profile which was very close to the jet-boundary layer velocity profiles to explain

the phenomena. However, since he used temporal amplification approach, the results

did not agree well with the experimental ones conducted by Freymuth [17]. To get

a better description of shear layer instability, Michalke [18] later used spatial theory

and found that the growth of disturbances in a free boundary layer can be calculated

more accurately by the spatial theory.

Yang & Zhou [19] stated the initial development of the shear layer can be predicted

from linear stability theory. Results obtained by Michalke [18] are beneficial to val-

idate the numerical solvers of the inviscid linearized stability as Liu, Wang & Piao

[20] did.
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Özgen & Uzol [21] investigated the instability characteristics of an electrified liquid

jet discharging from a nozzle into a stagnant gas by using the linear stability the-

ory. They used parabolic velocity profiles and made an inviscid analysis by using the

cylindrical momentum equations.

1.6 Contribution of This Thesis

In this thesis, to develope a Fortran Code to analyze the spatial and temporal instabil-

ities for inviscid shear layers is aimed. To achieve this the linear stability theory used.

Rayleigh and Ricatti equations were derived from the Helmholtz vorticity equation

by using the small and wavy disturbances. In-house Fortran Code involving Runge-

Kutta-Gill and simplex method algorithms were used to investigate the hyperbolic

tangent velocity profile with two different amplification approaches.

By using the Fortran code developed, eigenvalues of various disturbance frequencies

were calculated for both spatial and temporal amplification. Validation of the code

was achieved by comparison of the eigenvalues obtained by the code with the results

given in the literature.

A comparison between the results obtained by the code with the spatial and temporal

theories is also performed. The results of two approaches were checked on whether

they could achieve similar results with the experimental ones. The investigation of

the eigenfunctions and their derivatives also helped to make a distinction between

two theories.

Results of the code are visualized with the post-processing tools developed. Basically,

these post processing tools were used to calculate the vorticity amplitudes and the

constant vorticity distributions, the pathlines and the streaklines of the inviscid shear

flow. The post-processing tools were also verified by the literature results. After the

validation of the post-processing tools, the results were examined to understand the

instability mechanism. In addition, which method was more suitable to visualize the

flow was determined.
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The code was run with different velocity profiles were analyzed. The reason why

the code was not capable of analyzing the inviscid parabolic velocity profiles are

discussed.

1.7 Organization of the Thesis

The organization of this thesis is as follows. Boundary layers, laminar and turbulent

flows are briefly introduced in Chapter 1. Basics of linear stability theory and its

mathematical framework are also given in this section. Specific points of inviscid

stability theory, and related literature to it are set in Chapter 1.

Chapter 2 involves the detailed mathematical background for the Fortran code de-

veloped to investigate the inviscid shear layers. Derivations of Rayleigh and Ricatti

equations for specific velocity profiles are made, and Runge-Kutta-Gill method and

Simplex Method employed in the Fortran code are explained in Chapter 2. Chapter 2

also includes the methodology of the necessary post-processing tools of the developed

Fortran code to visualize the results of it.

Validation of the developed Fortran code is done in Chapter 3 by using a hyperbolic

velocity profile that have both experimental and analytical results in the literature.

Results of the Fortran code and the literature results are compared in the same section.

In Chapter 4, the Fortran code is used to analyze the different velocity profiles and

the differences in the results of the Fortran code and the analysis in the literature is

discussed.

Finally, in Chapter 5 thesis is finalized with concluding remarks and recommenda-

tions for future studies.
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CHAPTER 2

METHODOLOGY

2.1 Derivation of the Rayleigh Equation

To understand the mechanism of instabilities more deeply, Rayleigh’s linearized equa-

tion is derived based on the small and wavy disturbances. Rayleigh used the Helmholtz’

s vorticity equation, instead of Navier-Stokes equations to model the inviscid shear

layers. Helmholtz’s vorticity equation defines the change in the vorticity in two-

dimensional flow as;
dΩ

dt
=
∂Ω

∂t
+ u

∂Ω

∂x
+ v

∂Ω

∂y
= 0 (2.1)

In this equation Ω denotes the vorticity vector, and u(x,y,t) and v(x,y,t) are the x- and

y- components of the velocity vector c, respectively. Vorticity can be defined as curl

of the velocity vector. Then, the velocity vector and its relation with the vorticity can

be stated as below;

c = (u, v, 0) (2.2)

curl c = (0, 0,Ω) (2.3)

Taking the curl of the given velocity vector, the vorticity becomes:

Ω =
∂v

∂x
− ∂u

∂y
(2.4)

Assuming a unidirectional steady mean flow, which has a velocity profile given as

U(y), the vorticity distribution of this mean flow is denoted by Ω0, where the differ-
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entiation is taken with respect to y:

Ω0 = −U ′ (2.5)

By superimposing a small disturbance upon this basic flow equations (2.6) to (2.8)

are obtained. In these equations ε denotes the magnitude of the disturbance.

u(x, y, t) = U(y) + εu1(x, y, t) (2.6)

v(x, y, t) = εv1(x, y, t) (2.7)

Ω = Ω0 + εΩ1(x, y, t) (2.8)

Substituting these three equations above into the Helmholtz vorticity equation, the

following equation is obtained.

∂(Ω0 + εΩ1)

∂t
+ (U + εu1)

∂(Ω0 + εΩ1)

∂x
+ εv1

∂(Ω0 + εΩ1)

∂y
= 0 (2.9)

It is known from equation (2.5) that ∂Ω0\∂t term is equal to zero and ∂Ω0\∂y =

−U ′′. Moreover, ∂Ω0\∂x = 0 due to unidirectional steady flow parallel to the wall

assumption. Then equation [2.9] becomes:

∂εΩ1

∂t
+ (U + εu1)

∂εΩ1

∂x
+ εv1(−U ′′ + ∂εΩ1

∂y
) = 0 (2.10)

To make further simplification, the small terms (i.e. products of the disturbance terms)

can be neglected.

U >>| εu1 |; | U ′′ |>>|
∂εΩ1

∂y
| (2.11)

∂εΩ1

∂t
+ εU

∂Ω1

∂x
+ ε2u1

∂Ω1

∂x
− εv1U

′′ + ε2v1
∂Ω1

∂y
= 0 (2.12)

By eliminating the magnitude of the disturbance ε after neglecting the small terms in

accordance with equation (2.11), we obtain equation (2.11). Equation (2.13) is the

linearized disturbance equation and its solution does not depend on ε anymore.

∂Ω

∂t
+ U

∂Ω1

∂x
− v1U

′′ = 0 (2.13)
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A stream function ψ1(x, y, t) can be defined satisfying the continuity equation for the

disturbance velocities as follows;

u1 =
∂ψ1

∂y
(2.14)

v1 = −∂ψ1

∂x
(2.15)

If only wavy disturbances are considered, disturbances in terms of stream and vortic-

ity functions become;

ψ1(x, y, t) = R{φ(y)ei(αx−βt)} (2.16)

Ω1(x, y, t) = R{ω(y)ei(αx−βt)} (2.17)

Where α denotes wave number and β shows the frequency of the disturbance. By

using equations (2.14) and (2.15) wavy disturbance expressions given above can be

inserted into the linearized disturbance equation (2.13). Moreover, if we put these

wavy disturbance equations into equation (2.1), the following equations are obtained.

u1 =
∂ψ1

∂y
=
∂(φeiαx−iβt)

∂y
= φ′eiαx−iβt (2.18)

v1 = −∂ψ1

∂x
= −∂(φeiαx−iβt)

∂x
= −ieiαx−iβtαφ (2.19)

∂Ω1

∂t
=
∂(ωeiαx−iβt)

∂t
= −ieiαx−iβtβω (2.20)

∂Ω1

∂x
= −∂(ωeiαx−iβt)

∂x
= ieiαx−iβtαω (2.21)

The linearized disturbance equation, equation (2.13) becomes:

−ieiαx−iβtβω + Uieiαx−iβtαω + ieiαx−iβtαφU ′′ = 0 (2.22)

By eliminating the term ieiαx−iβt, we get;

−βω + Uαω + αφU ′′ = [αU − β]ω + αU ′′φ = 0 (2.23)
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The vorticity equation (equation (2.4)) in terms of the velocity components becomes:

∂v

∂x
= −iieiαx−iβtα2φ = eiαx−iβtα2φ (2.24)

−∂u
∂y

= −φ′′eiαx−iβt (2.25)

ωei(αx−βt) = eiαx−iβtα2φ− φ′′eiαx−iβt (2.26)

Eliminating the eiαx−iβt term from the both side of the equality and by re-arrengement

of the terms, equation given below is obtained.

ω = −[φ′′ − α2φ] (2.27)

Equation (2.27) can be used to eliminate ω term in equation (2.23).

−[αU − β][φ′′ − α2φ] + αU ′′φ = 0 (2.28)

Dividing each term by α and multiplying with -1, Rayleigh equation given below is

obtained.

(U − β/α)[φ′′ − α2φ]− U ′′φ = 0 (2.29)

For unbounded velocity profiles, the disturbances must vanish at infinity. Therefore,

our boundary conditions are defined given by equation (2.30):

φ(+∞) = φ(−∞) = 0 (2.30)

Since the velocity profile is unbounded;

lim
y→±∞

U ′′ = 0 (2.31)

while y → ±∞, Rayleigh equation should be equal to zero also; therefore, equation

(2.29) becomes as below considering that U ′′ is equal to zero:

(U − β/α)[φ′′ − α2φ] = 0 (2.32)
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In order to satisfy the equality, [φ′′ − α2φ] term should be zero. Then:

φ′′ − α2φ = 0 (2.33)

The characteristic equation of the homogeneous equation given by equation (2.33) is

given by equation (2.34).

r2 − α2r = 0 (2.34)

The nontrivial roots of this equation are r1 = +α and r2 = −α. The general solution

of equation (2.34) and the derivatives of it can be written as below;

φ = c1e
αy + c2e

−αy (2.35)

φ′ = c1αe
αy − c2αe

−αy (2.36)

φ′′ = c1α
2eαy + c2α

2e−αy (2.37)

As y → −∞, term c1e
αy equals to zero, so c2 should be equal to zero in order to

satisfy the boundary condition given in equation (2.30):

φ = c2e
−αy = 0 (2.38)

c2 = 0 (2.39)

Then, φ and its first derivative can be written as below:

φ = c1e
αy (2.40)

φ′ = c1αe
αy = αφ (2.41)

Similary, at y =∞, term c2e
−αy equals to zero, so c1 should be equal to zero in order

to satisfy the boundary condition given in equation (2.30):

φ = c1e
αy = 0 (2.42)
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c1 = 0 (2.43)

Then, φ and its first derivative can be written as below:

φ = c2e
−αy (2.44)

φ′ = −c1αe
−αy = −αφ (2.45)

Therefore, the boundary conditions of the first derivative of φ at y → ±∞ can be

stated as;

φ′(+∞) = −αφ(−∞) (2.46)

φ′(−∞) = αφ(−∞) (2.47)

To solve the Rayleigh equation numerically, the order of the equation should be re-

duced using the definition φ = exp[
∫

Φdy].

φ = e
∫

Φdy (2.48)

φ′ = Φe
∫

Φdy (2.49)

φ′′ = Φ2e
∫

Φdy + Φ′e
∫

Φdy (2.50)

By putting three equations given above to Rayleigh equation, we obtain:

(U − β/α)[Φ2e
∫

Φdy + Φ′e
∫

Φdy − α2e
∫

Φdy]− U ′′e
∫

Φdy = 0 (2.51)

Eliminating the common term e
∫

Φdy from the equation above;

(U − β/α)[Φ2 + Φ′ − α2]− U ′′ = 0 (2.52)
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By re-arranging the terms of equation (2.52), Ricatti equation is obtained given by

equation (2.52) and equation (2.53) after re-arranging:

Φ′ =
U ′′

U − β/α
+ α2 − Φ2 (2.53)

Φ′ = α2 − Φ2 + U ′′/(U − β/α) (2.54)

The boundary conditions of Rayleigh Equation should be adapted to Ricatti Equation.

At y → +∞;

Φe
∫

Φdy = −αe
∫

Φdy (2.55)

At y → −∞;

Φe
∫

Φdy = αe
∫

Φdy (2.56)

By eliminating the common term e
∫

Φdy from the equations above, the boundary con-

ditions of Ricatti equations given below is obtained.

Φ(+∞) = −α Φ(−∞) = +α (2.57)

The mean velocity profile investigated by Michalke [16], [18] with temporal and spa-

tial approaches is shown below by Figure 2.1. In order to validate the developed

Fortran code, this velocity profile was chosen.

The velocity profile given in Figure 2.1 is a hyperbolic-tangent velocity profile which

is mathematically expressed by equation (2.58).

U(y) = 0.5[1 + tanh(y)] (2.58)

In the study of Michalke [18], the wave number is denoted by α. Instead of using

β as wavenumber in spanwise direction, β indicates cyclic frequency in the paper

of Michalke [18]. To be compatible with Michalke, in this thesis β is used as the

frequency also. The wave number α and the frequency β are generally complex,

where imaginary parts represent the spatial and temporal growth rates, respectively.

α = αr + iαi β = βr + iβi (2.59)
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Figure 2.1: Hyperbolic Tangent Velocity Profile

For time amplification case;

αi = 0 (2.60)

For space amplification case;

βi = 0 (2.61)

Both case have same solution when αi = βi = 0. In this study, first spatial approach is

conducted to obtain the eigenvalues of the Ricatti equation. For spatial amplification

case, we have to solve an eigenvalue problem in order to determine;

α = α(β) = αr + iαi (2.62)

Then by using the phase velocity c, the eigenvalues of the temporal amplification case

were obtained. In order calculate the complex eigenvalues by using Ricatti equation

(equation (2.54)) with its boundary conditions (equation (2.57)), a new independent

variable must be defined as;

z = tanh(y) (2.63)

Then hyperbolic-tangent velocity profile and its first and second derivatives can be

re-stated as given below;

U(z) = 0.5[1 + z] (2.64)
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U ′(y) = 0.5sech2(y) (2.65)

U ′′(y) = −tanh(y)sech2(y) (2.66)

In trigonometrics, sech2(y) equals to 1 − tanh2(y). Therefore, equation (2.66) can

be re-written as;

U ′′(y) = −tanh(y)[1− tanh2(y)] (2.67)

With the new variable z = tanh(y);

U ′′(z) = −z[1− z2] (2.68)

To convert Ricatti equation to new variable z, following steps are followed.

dz

dy
=

1

cosh2(y)
= sech2(y) = 1− z2 (2.69)

dy

dz
=

1

1− z2
(2.70)

dΦ

dy
= α2 − Φ2 +

U ′′

U − β/α
(2.71)

dΦ

dz
=
dΦ

dy

dy

dz
=

α2

1− z2
− Φ2

1− z2
+

U ′′

(U − β/α)(1− z2)
(2.72)

In equation (2.72), the velocity profile and its second derivative can be stated in terms

of z, also. Equation (2.72) becomes, then as given below.

dΦ

dz
=
α2 − Φ2

1− z2
+

−z[1− z2]

(0.5[1 + z]− β/α)(1− z2)
(2.73)

By eliminating the (1 − z2) from both the denominator and the numerator of the

second term of equation (2.73) and dividing both of them by 0.5, we obtain;

dΦ

dz
=
α2 − Φ2

1− z2
− 2z

(1 + z − 2β/α)
(2.74)
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To convert the boundaries to the new variable, z = tanh(y);

y = ±∞ (2.75)

zb = tanh(∞) = 1 (2.76)

zb = tanh(−∞) = −1 (2.77)

Then from equation (2.57);

Φ(zb) = −α zb = 1 (2.78)

Φ(zb) = α zb = −1 (2.79)

They can be re-stated in the form of;

Φ(zb) = −zbα zb = ±1 (2.80)

To obtain eigenvalues of spatial theory, equation (2.74) is integrated for specific β

values. Starting from its boundaries towards z = 0 by forward and backward RK4

procedure (Runge-Kutta-Gill procedure given in Section 2.2) with an integration step

| ∆z |= 0.025. At z=0, the difference between the results of forward and backward

RK4 integration is evaluated for different α values. To minimize the difference, 2-

D Simplex method (1-D Simplex was used for timewise amplification approach is

utilized. Simplex methodology is explained in Section 2.3.) is used.

The most challenging point of RK4 integration process is calculating the Φ values just

one step after the boundaries. At these points, second order Taylor series expansion

is used instead of RK4 since equation (2.74) does not allow calculating Φ values due

to reasons explained below.

Third order Taylor series of Φ function which is expanded about z = zb can be written

as;

Φ(z) = Φ(zb) + Φ′(zb)(z − zb) +
Φ′′(zb)

2!
(z − zb)2 +

Φ′′′(zb)

3!
(z − zb)3 (2.81)
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To evaluate this Taylor expansion, Φ(zb), Φ′(zb), Φ′′(zb) and Φ′′′(zb) terms should

be calculated. It is already known from equation (2.80) that Φ(zb) equals to −zbα.

However, at the boundaries the first, the second and the third derivatives of the Φ(zb)

function can not be calculated, since they result in indeterminate forms, (i.e.0/0).

Therefore, in the Taylor series expansion of Φ(z), second, third and fourth terms are

calculated with the help of L’Hospital Rule.

Φ′(zb) is written in limit form as:

Φ′(zb) = lim
z→zb

Φ(z)− Φ(zb)

z − zb
=
α2 − Φ2(zb)

1− z2
b

− 2zb
(1 + zb − 2β/α)

(2.82)

α2 − Φ2(zb)

1− z2
b

− 2zb
(1 + zb − 2β/α)

=
α2 − α2

1− (±1)2
− 2zb

(1 + zb − 2β/α)
=

0

0
(2.83)

By using the definition of the limit, it is clearly seen from equation (2.83) that L’Hospital

Rule can be applied to calculate the Φ′(zb) term. Applying L’Hospital Rule by taking

the derivative of both the numerator and the denominator with respect to z of the limit

defition of Φ′(zb):

Φ′(zb) = lim
z→zb

Φ(z)− Φ(zb)

z − zb
(2.84)

Φ′(zb) = lim
z→zb

Φ′(z)− 0

1− 0
= lim

z→zb
Φ′(z) (2.85)

lim
z→zb

Φ′(z) =
α2 − α2z2

b

1− z2
b

− 2zb
(1 + zb − 2β/α)

(2.86)

lim
z→zb

Φ′(z) =
α2(1− z2

b )

1− z2
b

− 2zb
(1 + zb − 2β/α)

(2.87)

By cancelling the (1−z2
b ) from the first term of equation (2.87), we obtain an expres-

sion for Φ′(zb) finally as:

Φ′(zb) = α2 − 2zb
(1 + zb − 2β/α)

(2.88)

Similary, L’Hospital for Φ′′(zb);

Φ′′(zb) = lim
z→zb

Φ′(z)− Φ′(zb)

z − zb
= lim

z→zb
Φ′′(z) (2.89)
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By taking the derivative of equation (2.74), we obtain the equation for Φ′′(z):

Φ′′ =
−2ΦΦ′(1− z2) + (α2 − Φ2)2z

(1− z2)2
− −4z(1 + z − 2β/α)

(1 + z − 2β/α)2
(2.90)

First term of equation (2.90) is indeterminate since the denominator and the nomina-

tor of it equals to zero. Then, by applying the L’Hospital Rule again:

lim
z→zb

Φ′′(zb) =

lim
z→zb

−2[Φ2(1− z2) + ΦΦ′′(1− z)− 2zΦ′]− 4zΦ′Φ + 2(α2 − Φ2)

2(1− z2)(−2z)

−−4z(1 + z − 2β/α)

(1 + z − 2β/α)2
(2.91)

By re-arranging the terms:

lim
z→zb

Φ′′(zb) = lim
z→zb

−2Φ′2(1− z2)− ΦΦ′′(1− z2)− 2α2(1− z2)

2(1− z2)(−2z)
− A, (2.92)

where A = −4z(1+z−2β/α)
(1+z−2β/α)2

.

Canceling the (1− z2) terms from the first term of RHS:

Φ′′(zb) =
−2Φ′2(zb)− Φ(zb)Φ

′′(zb) + 2α2

−4zb
− 2− 4β/α

(1 + zb − 2β/α)2
(2.93)

Then, finally the equation (2.94) is obtained for Φ′′(zb) as shown below:

Φ′′(zb) =
(−2Φ′2(zb) + 2α2)/(−4zb)− (2− 4β/α)/(1 + zb − 2β/α)2

1− Φ(zb)/2zb
(2.94)

Similary, L’Hospital for Φ′′′(zb):

Φ′′′(zb) = lim
z→zb

Φ′′(z)− Φ′′(zb)

z − zb
= lim

z→zb
Φ′′′(z) (2.95)

lim
z→zb

Φ′′′(z) = lim
z→zb

A

(1− z2)4
+

2− 4β/α

(1 + zb − 2β/α)4
, (2.96)

where A is given by equation (2.97):

A = [−2Φ′2(1− z2)− 2ΦΦ′′(1− z2) + 2(α2 − Φ′2)](1− z2)2

−[−2ΦΦ′(1− z2) + 2(α2 − Φ′2)z](1− z2)(−4z) (2.97)
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The term (1− z2) can be cancelled from equation (2.96) and from the term A. Then

we obtain:

lim
z→zb

(1− z2)2[−2Φ′2 − 2ΦΦ′′] + (1− z2)[2(α2 − Φ′2) + 2ΦΦ′] + 8z2(α2 − Φ′2)

(1− z2)3

+
2− 4β/α

(1 + zb − 2β/α)4
= lim

z→zb
Φ′′′(z) (2.98)

By re-arranging terms;

lim
z→zb

−2Φ′2 − 2ΦΦ′′

1− z2
+ lim

z→zb

2(α2 − Φ′2) + 2ΦΦ′

(1− z2)2
+ lim

z→zb

8z2(α2 − Φ′2

(1− z2)3

+ lim
z→zb

2− 4β/α

(1 + zb − 2β/α)4
= lim

z→zb
Φ′′′(z) (2.99)

Clearly seen from equation (2.99) that applying L’Hospital Rule to Φ′′′(zb) term needs

very complicated process. Therefore, it is checked wheter derivation of Φ′′′(zb) term

is practical or not by checking the order of the terms. When we look at the numerical

values Φ′′(zb) attains, it is seen that order of Φ′′(zb) is about 10−4. Compared to

the third term of equation (2.81), the last term of the Taylor series expansion which

involves Φ′′′(zb), at most attains an order of 10−7. Because it is very difficult to

obtain an analytical expression for Φ′′′(zb) and it has neglible effect on the calculation

of Φ(z) -even no effect for the calculation of the eigenvalues-, this term is omitted

from Taylor series expansion which was accumulated by Michalke [18]. Then our

expression for Φ(z) becomes;

Φ(z) = Φ(zb) + Φ′(zb)(z − zb) +
Φ′′(zb)

2!
(z − zb)2 (2.100)

After the calculation of the boundaries, normal RK4 procedure is applied as men-

tioned above. For temporal amplification approach, however there are some important

changes to consider. The first change is in the Ricatti equation. In equation (2.54),

instead of β/α variable, imaginary part of phase velocity ci is used, due to temporal

amplifications. The second change is RK4 integration, which is evaluated only in one

direction, because of the fact that Φr(z) is an antisymmetric function and Φi(z) is a

symmetric one. Therefore, 1-D simplex method becomes suitable for minimizing Φ

at z = 0. The Ricatti Equation for the temporal approach transformed by the new
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variable z = tanhy is given below. It is time to remind that the disturbance wave

number for the temporal approach is real (i.e. α is real).

dΦ

dz
=
α2 − Φ2

1− z2
− 2z

(1 + z − i2ci)
(2.101)

By using this equation and aplying the procedure with the changes of temporal ap-

proach, the eigenvalues are calculated for the temporal amplification case.

2.2 Runge-Kutta-Gill Method

Runge-Kutta is a common method to solve differential equations numerically. They

are an important family of iterative methods for the approximation of solutions of the

ordinary differential equations developed by C. Runge and M.W. Kutta.

Consider an initial value problem defined as;

dx
dt

= f(t, x(t)) (2.102)

Where x(t) = (x1(t), x2(t), ...xn(t))T and the function f is defined in the interval of

[a, b] real set of numbers with an initial condition;

x(0) = x0 (2.103)

To calculate numerically the solution of x(t) over the interval t ∈ [a, b], the interval

[a, b] is divided into the M equal subintervals. The ending points of this subintervals

(i.e. the mesh points) can be defined as tj . Then;

tj = a+ jh (2.104)

Where j = 0, 1, 2, ...,M and h = (b − a)/M . The term h is called as step size. The

family of explicit Runge-Kutta (RK) methods of m’th stage can be stated as below;

x(tn+1) = xn+1 = xn + h

m∑
i=1

ciki (2.105)
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Where k defined as;

k1 = f(tn, xn),

k2 = f(tn + α2h, xn + hβ21k1(tn, xn)),

k3 = f(tn + α3h, xn + h(β31k1(tn, xn) + β32k2(tn, xn))),

.

.

km = f(tn + αmh, xn + h

m−1∑
j=1

βmjkj)

(2.106)

Specific Runge-Kutta methods can be defined by providing particular m (the number

of stages), and the coefficients αi (for i = 2,3,..,m), βij (for 1≤ j < i ≤ m), and ci

(for i = 1,2,..,m).

A fourth order Runge-Kutta (RK4) method can be defined by setting m = 4. For

Gill’s method for a fourth order Runge-Kutta, the formula should be as below with

specific α and β values;

xn+1 = xn +
1

6
[k1 + (2−

√
2)k2 + (2 +

√
2)k3 + k4] +O(h5) (2.107)

Where kn values are defined as;

k1 = hf(tn, xn)

k2 = hf(tn +
1

2
h, xn +

1

2
k1)

k3 = hf(tn +
1

2
h, xn +

1

2
(−1 +

√
2)k1) + (1− 1

2

√
2)k2

k4 = hf(tn + h, xn −
1

2

√
2k2 + (1 +

1

2

√
2)k3

(2.108)

2.3 Downhill Simplex Algorithm

The downhill simplex method was proposed by Nelder and Mead. Only function

evaluations is enough for the method, the derivatives of the functions are not needed.

Therefore, it is not a very efficient method in terms of the number of function eval-

uations that it requires. The downhill simplex method may frequently be the best
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method to use, if the aim is “get something working quickly” for a problem whose

computational burden is small [22].

The method has a geometrical naturalness by which description of the method can

be understood easily. A simplex is the geometrical figure consisting of N dimen-

sions and of N + 1 points (or vertices) and all their interconnecting line segments,

polygonal faces, etc. For two-dimensional case, simplex becomes triangle. In three

dimensionals, it is a tetrahedron, not necessarily the regular tetrahedron.

In one-dimensional minimization process, it is possible to restrict a minimum, so

that the success of a subsequent isolation is guaranteed. For multidimensional cases;

however, the best thing to do is to assign a starting guess to the algorithm which

is a vector of independent variables as the first point to try. Then, the algorithm is

supposed to make its own way downhill through the unimaginable complexity of an

N -dimensional topography, until it encounters a (local, at least) minimum.

Therefore, the downhill simplex method must be started not just with a single point,

but with N + 1 points which defines an initial simplex. If there is only one point

of initial starting points P0, then the other N points can be defined by the equation

below.

Pi = P0 + λei (2.109)

In the equation above, the ei’s are N unit vectors, and where λ is a constant which is

the problem’s characteristic length scale (different λi’s can be defined for each vector

direction, also).

The downhill simplex method takes a series of steps, most steps are just moving the

point of the simplex, which has the largest value of the function (“highest point”)

through the opposite face of the simplex to a lower point. These movement is called

as "reflection", and it is constructed to conserve the volume of the simplex (hence

maintain its non degeneracy).

The method can also expand the simplex in one or another direction to take larger

steps and when it reaches a “valley floor,” the method can contract itself in the trans-
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verse direction and tries to ooze down the valley.

If there is a situation where the simplex is trying to “pass through the eye of a needle,”

it contracts itself in all directions, pulling itself in around its lowest (best) point. The

basic moves of the method are summarized in Figure 2.2.

In Figure 2.2, a tetrahedron is shown at the top. It is the beginning sets of points

for the downhill simplex method. The simplex at the end of the step can be any

one of (a) a reflection away from the high point, (b) a reflection and expansion away

from the high point, (c) a contraction along one dimension from the high point, or

(d) a contraction along all dimensions towards the low point. By using appropriate

sequence of such steps the method converges to a minimum of the function.

Termination criteria can be delicate in any multidimensional minimization routine.

It may not be possible to have the option of requiring a certain tolerance for a sin-

gle independent variable without bracketing for multiple independent variables (i.e.

multidimensional simplex method). In these situations, "cycle" or "step" can be de-

fined to terminate the vector distance moved in that step that is fractionally smaller in

magnitude than some tolerance tol. Alternatively, the algorithm can be designed to

terminate, when the decrease in the function value in the terminating step be fraction-

ally smaller than some tolerance ftol.

2.4 Post-Processing Algorithms

By calculating the eigenvalues of the transformed Ricatti Equation (equation (74)),

behaviour of the disturbances in the shear layer can be understood, i.e. the value of β

corresponding to the most strong amplification rate can be determined, etc. However,

to interpret and examine the instability mechanism in detail, the eigenvalues and the

related eigenfunctions are not enough.

The flow patterns observed in the experiments are physically quantifiable (i.e. streak-

lines can be observed by implementing dye or smoke to the flows). Therefore, to

compare the results of the analytical methods with the experimental ones, the visual-
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Figure 2.2: Different step types in the downhill simplex method
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ization of the flow is another beneficial tool.

To calculate the vorticity amplitudes, the vorticity distributions and to visualize the

flow, additional algorithms are needed in addition to the Fortran code used to calculate

the eigenvalues.

First, the vorticity amplitudes and the vorticity distribution of the flow can be cal-

culated by using the eigenvalues and the corresponding eigenfunctions of the Ricatti

Equation. To calculate the vorticiy amplitudes ω, by re-arranging the terms of equa-

tion (2.23), an expression for ω term is obtained. The reason why equation (2.23)

is used instead of the equation (2.27) is that equation (2.23) only depends on the

eigenfunctions φ. To calculate ω with equation (2.23), the second derivative of the

eigenfunctions φ′′ is also needed.

ω(y) = −{U ′′/(U − β/α)}φ (2.110)

By putting U ′ term given by equation (2.65) into equation (2.5), which defines Ω0,

and calculating Ω1 with equation (2.17), the total vorticity distribution of the flow can

be obtained by equation (2.8). Ω0 is then;

Ω0 = −U ′ = −0.5sech2(y) (2.111)

And Ω1;

Ω1 = R{ω(y)ei(αx−βt)} = e−αix{ωr(y)cos(αrx− βt)− ωi(y)sin(αrx− βt)}
(2.112)

Sum of the total vorticity of the basic flow and the disturbances;

Ω(x, y, t) = −0.5sech2y + εe−αixA

A = {ωr(y)cos(αrx− βt)− ωi(y)sin(αrx− βt)}
(2.113)

Using equation (2.113) in sweeping different x and y values, constant vorticity lines

of the shear flow can be obtained.

Secondly, the pathlines and the streaklines are obtained by using velocity fields given
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by equations (2.6) and (2.7). The velocity components of the disturbances are ob-

tained with using the stream functions (equations (2.14) and (2.15)).

u1 =
∂ψ1

∂y
=
∂R{φ(y)ei(αx−βt)}

∂y
(2.114)

∂R{φ(y)ei(αx−βt)}
∂y

= e−αix{φ′r(y)cos(αrx− βt)− φ′i(y)sin(αrx− βt)} = A

(2.115)

Then, sum of the velocity of the main flow in x-direction with the disturbance velocity

component u1 yields;

u(x, y, t) = 0.5[1 + tanhy] + εe−αixA (2.116)

For y-component of the velocity field, only the disturbance velocity is considered.

v = v1 = −∂ψ1

∂x
= −∂R{φ(y)ei(αx−βt)}

∂x
(2.117)

v(x, y, t) = εe−αix{[αiφr(y) + αrφi(y)]cos(αrx− βt)

+ [αrφr(y) + αiφi(y)]sin(αrx− βt)}
(2.118)

The velocity components define the motion of a particle as shown below:

dx

dt
= u(x(t), y(t), t)

dy

dt
= v(x(t), y(t), t) (2.119)

Where right-hand sides of the equation (2.119) has already been obtained. Integrating

the equation, the motion of a particle can be simulated. The functions x(t) and y(t)

are position functions of the particles at a given time t. In order to define a specific

pathline different initial conditions and time values can be used. The initial positions

of the particles are defined by equation (2.120).

x(t0) = x0 y(t0) = y0 (2.120)

Pathlines of the particles are calculated for different initial time values to simulate

the release of the particles of the flow at different times from fixed locations. By

connecting the end points of these pathlines, streaklines patterns are drawn.
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CHAPTER 3

VALIDATION OF THE FORTRAN CODE & FURTHER DISCUSSION

3.1 Eigenvalues & Eigenfunctions

By using the algorithms described in the previous sections, eigenvalues of the Ricatti

Equation given by equation (2.54) in Section 2.1 are obtained for different disturbance

frequencies. For the spatial growth of the disturbances, the real and imaginary parts

of the eigenvalues are given in Table 3.1.

To validate the results of the code, the eigenvalues for more frequent β values are plot-

ted with the ones calculated by Michalke [18]. In Figures 3.1 and 3.2, red diamonds

indicate the real and imaginary parts of the eigenvalues calculated by Michalke and

the continuous blue lines show the results of the Fortran code developed.

In Figures 3.1 and 3.2, it is clearly seen that the results of the Fortran code developed

in-house and the calculations of the Michalke are in perfect agreement. Since the

spatial amplification rates are characterized by the imaginary parts of the eigenvalues,

it is more important to investigate the αi values in Figure 3.2.

When Figure 3.2 is examined, it will be seen that −αi reaches to a maximum at a

specific β value around 0.2, meaning that the growth rate of the disturbances be-

comes highest. To be specific, at β = 0.2067, the disturbance growth rate becomes

maximum with αi = 0.2284. The value of αr is 0.4031 at this specific β.

For the temporal growth of the disturbances, the eigenvalues calculated are the imag-

inary parts of the complex phase velocity c and α has no imaginary part. Disturbance

growth rates are characterized by the product of ci and α.
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Table 3.1: Eigenvalues of the spatial disturbance growth case

β αr αi c

0.5 1 0 0,5

0.45 0.925834 -0.04564 0.486048

0.4 0.844473 -0.091685 0.473668

0.35 0.753627 -0.137311 0.464421

0.3 0.649725 -0.180609 0.461734

0.25 0.52717 -0.216245 0.47423

0.2 0.381031 -0.227903 0.524892

0.15 0.234138 -0.187966 0.640649

0.1 0.129198 -0.11878 0.774006

0.05 0.056408 -0.054556 0.886399

Figure 3.1: Real parts of eigenvalues calculated with spatial amplification theory.
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Figure 3.2: Imaginary parts of eigenvalues calculated with spatial amplification the-

ory.

Calculations of the temporal disturbance growth are done for different wavenumbers

instead of the different frequencies, since the disturbance frequencies do not directly

appear in the Ricatti equation for temporal case (equation (2.101) in Section 2.1). The

results are tabulated in Table 3.2.

To validate the results of the code for the temporal case, the disturbance growth rates

obtained are compared with the calculations of Michalke [16]. In Figure 3.3, red dia-

monds indicate the temporal growth rates calculated by Michalke and the continuous

black line shows the results of the Fortran code developed.

With the results shown in Figure 3.3, it is understood that the algorithm of the code is

capable of calculating the temporal amplifications of the disturbances correctly.

When Figure 3.3 is examined, it is seen that the temporal amplification rate becomes

maximum at a specific α value around 0.2, just like the case for the spatial theory.

The growth rate gets its highest value as 0.0949 at α = 0.4446.
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Table 3.2: Eigenvalues of the temporal disturbance growth case

α ci αci

1 0 0

0.9 0.032383 0.0291447

0.8 0.066843 0.0534744

0.7 0.103613 0.0725291

0.6 0.143281 0.0859686

0.5 0.186602 0.093301

0.4 0.234922 0.0939688

0.3 0.290747 0.0872241

0.2 0.360156 0.0720312

0.1 0.468555 0.0468555

0 0.5 0

Figure 3.3: Disturbance growth rates calculated with temporal amplification theory.
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To check whether the results of the temporal theory are consistent with the ones cal-

culated by spatial theory, the amplification rates of the both theories are plotted as

shown in Figure 3.4. For temporal disturbance growth, the disturbance frequencies

are obtained by using its relation with the phase velocity, βr = crαr.

Figure 3.4: Comparison of amplification rates calculated with spatial and temporal

amplification theories.

It is observed from Figure 3.4 that the temporal and spatial amplification theories

have same trend for the amplification rates; they get maxima for specific disturbance

frequencies as the frequency increases. After the maxima, the amplification rates

damp with the increasing frequency values. For small disturbance frequencies the

difference between the disturbance growth rates of the temporal and the spatial am-

plification theory is higher compared to larger disturbance frequencies.

The higher differences at the amplification rates for the lower values of βr pose an

important question. Which theory is more convenient to predict the instability char-

acteristics correctly? Therefore, it was needed to check the results of the Fortran code

for two approaches with experimental data. In Figure 3.5, the amplification rates

37



obtained by the code for temporal and spatial approaches are plotted with the experi-

mental results of Freymuth [17]. Freymuth [17] used an axissymetric jet (shown with

yellow circles in Figure 3.5) and a plane jet (shown with green squares in Figure 3.5)

while conducting his experiments. Freymuth [17] used scale factor while plotting the

amplification rates with respect to the Strouhal number -defined as fθ/U0 (Where f

was the frequency of sound to produce disturbance, θ was momentum thickness and

U0 was jet velocity). Velocities of axis-symmetric and plane jets were 8 m/s in the ex-

periments. Because Rayleigh equation was derived from two-dimensional Helmholtz

vorticity equation, both the results of experiments of plane and axissymmetric jets

may be used to validate the theories, since both geometries have the same cross sec-

tion in 2-D.

Figure 3.5: Comparison of the spatial and temporal theories with experimental results.

In Figure 3.5, the results of the experiments conducted by Freymuth [17] are almost

overlapping the amplification rates of the spatial case for lower disturbance frequen-

cies. Therefore, it can be said that the spatial approach reflects the characteristics of

the disturbances with greater fidelity than the temporal approach at lower frequencies.

As the disturbance frequencies increase, the temporal amplification values becomes
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closer to the experimental ones. However, since the spatial theory involves some

essential features of instability properties of the free boundary layers which will be

explained while examining the derivatives of the eigenfunctions, the focus of this

thesis is on the spatial amplifications.

Because the eigenfunctions appear in certain flow parameters (i.e. y-component of the

disturbance velocity component, the vorticity amplitudes,...etc.), they have significant

role while interpretting the instability mechanism. Therefore, first the eigenfunctions

of the transformed Ricatti Equation are calculated and are compared with the results

of Michalke [18] for the spatial case. From Figures 3.6, 3.7, 3.8 and 3.9, it can be seen

that the Fortran code developed in-house gives very accurate results for the different

disturbance frequencies.

Figure 3.6: Real and imaginary parts of the eigenfunctions of transformed Ricatti

equation for β = 0.1

To obtain eigenfunctions of Rayleigh Equation a reverse transformation from y to z

is necessary. This is achieved by solving a system of differential equations involving

the transformed Ricatti Equation and the equation for dz/dy. Therefore, integration

should be done in two steps. The real and imaginary parts of the eigenfunctions
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Figure 3.7: Real and imaginary parts of the eigenfunctions of transformed Ricatti

equation for β = 0.2

Figure 3.8: Real and imaginary parts of the eigenfunctions of transformed Ricatti

equation for β = 0.3
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Figure 3.9: Real and imaginary parts of the eigenfunctions of transformed Ricatti

equation for β = 0.4

obtained for different disturbance frequencies are shown in Figure 3.10 and 3.11,

respectively.

In Figure 3.12, the eigenfunctions of Rayleigh Equation for the temporal and spatial

cases can be seen at their most strongly amplifying frequencies. The real part of the

eigenfunction of the temporal case shows a symmetric characteristic and the imagi-

nary part has an antisymmetric function characteristic as mentioned in Section 2.1.

This situation changes for the spatial theory, however. For the spatial theory, both the

real and the imaginary parts of the eigenfunctions have no symmetric or antisymmet-

ric features.

The derivatives of the eigenfunctions of Rayleigh Equation also have importance

since they are related to x-component of the disturbance velocity u1. Thus, they

become useful while comparing the results of the theories with the experiments.

Michalke [18] stated that in the experiments, a phase reversal was observed outside
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Figure 3.10: Real parts of the eigenfunctions of the Rayleigh Equation for the spatial

theory.

Figure 3.11: Imaginary parts of the eigenfunctions of the Rayleigh Equation for the

spatial theory.
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Figure 3.12: Comparison of the spatial and temporal theories at their maximum dis-

turbance growth frequencies.

of the critical layer. Phase reversal means that the velocity component in the flow

direction becomes zero.

For spatial theory, the real and the imaginary parts of the eigenfunctions become zero

at almost the same values of y, shown in Figures 3.13 and 3.14. Therefore, a phase

reversal condition is obtained at the negative values of y by the spatial approach.

On the other hand, the temporal theory has symmetric and antisymmetric trends for

the real and imaginary parts of the eigenfunction derivatives, meaning that φr, φi

become zero at different values of y. This results in the absence of the phase reversal

in temporal approach while it occurs in experiments.

Then, it is not wrong to state that the spatial approach is more useful than the temporal

one to investigate the free boundary layers. In physical point of view, this situation

also makes sense since the disturbances observed in the experiments grow in space

not in time.
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Figure 3.13: Real parts of derivatives of eigenfunctions at various frequencies for the

spatial theory.

Figure 3.14: Imaginary parts of derivatives of eigenfunctions at various frequencies

for the spatial theory.
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3.2 Vorticity Amplitudes & Total Vorticity Distribution

Eigenvalues and eigenfunctions are not enough to examine the shear layer on their

own. The vorticity distribution of the disturbed flow helps more to understand the in-

stability mechanism. First step to calculate the vorticity distribution is the calculation

of the vorticity amplitudes.

From Figures 3.15, 3.16, 3.17 and 3.18, vorticity amplitudes calculated by the Fortran

code and the results of Michalke [18] are compared for different disturbance frequen-

cies. Obviously, the vorticity amplitudes of the Fortran code are totally compatible

with the literature data.

When the figures are examined, it will be seen that the vorticity amplitudes increase

with the increasing disturbance frequency, as expected. It is also notable that for the

negative values of y, meaning that the lower region of the shear layer, the vorticity

amplitudes get higher values.

Figure 3.15: Vorticity amplitudes for β = 0.1.

After the validation of the vorticity amplitudes, the vorticity distribution of the shear
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Figure 3.16: Vorticity amplitudes for β = 0.2.

Figure 3.17: Vorticity amplitudes for β = 0.3.
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Figure 3.18: Vorticity amplitudes for β = 0.4.

flow were calculated by using equation (2.113) in Section 2.4. Constant vorticity

lines are plotted along twice of the disturbance wavelength λ at two different times

(t = T, t = 1 : 5T ). The disturbance wavelength equals to 2π/αr. For most strongly

amplifying disturbances αr = 0.4031, which yields λ = 15.587.

Time value T is equal to 2π/β which is calculated as 30.398s for the most strongly

amplified disturbance frequency β = 0.2067. The disturbance magnitude was chosen

as ε = 0.0005. The magnitude of the local disturbance equals to εe−αix increasing

along the wavelength.

The vorticity distributions at two different times can be seen in Figures 3.19 and

3.20. In these figures, the constant vorticity lines are straight at the beginning and by

increasing local disturbance, they are distributed. Two peaks of vorticity are observed

- one is for y > 0 and the other is for y < 0. The vorticity peak in lower region

is bigger than the one in upper region at t = T . This is an expected result since the

vorticity amplitudes at the lower region have higher values. Mutual induction of these

peaks of the vorticity with time causes a rotational motion on the flow.
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Figure 3.19: Constant vorticity lines at t = T , disturbance magnitude ε = 0.0005

Figure 3.20: Constant vorticity lines at t = 1.5T , disturbance magnitude ε = 0.0005
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3.3 Pathlines & Streaklines

Investigation of the pathlines and the streaklines of the shear flow is very beneficial

since they help to monitor the flow. It also provides an opportunity to compare the

results obtained by the theory with the experiments visually. Streakline patterns are

more useful than the pathlines due to its spatial formation just like the growth of the

disturbances. Moreover, the experiments performed by injecting dye or smoke to the

flow reflects the streaklines patterns.

To calculate the streaklines of the flow, there are two steps just like the calculation of

the total vorticity distribution described in the previous section. First, the pathlines

are calculated by using velocity distribution of the disturbed flow. The velocity dis-

tribution is calculated using the relation between the streamlines and the velocities as

mentioned in Section 2.4.

Motion of a particle released into the flow at time t0 can be simulated by equation

(2.119) in Section2.4. The initial locations of the particles are chosen at x0 = 0

and y0 = 0,±0.48,±1.03. The y0 values are determined by the help of the vorticity

distributions calculated in the previous section. In Figures 3.19 and 3.20, at the loca-

tions next to the y0 values mentioned, the constant vorticity lines with the basic total

vorticity ω0 = −0.5,−0.4,−0.2 can be seen.

In Figure 3.21, the pathlines of the particles released at t0 = 0 from different y0

locations are shown. The motion of the particles are stopped at t = T where T is

the period equal to 2π/β, since the disturbance flow is periodic. For this figure and

the following figures of pathlines and streaklines, β is chosen as 0.2067 at which the

disturbances grow most strongly and T equals to 30.4s. The disturbance magnitude

was chosen as ε = 0.0005 again to correctly correlate the results with the total vor-

ticity distributions obtained in the previous section. Clearly seen from Figure 3.21,

the length of the paths decrease when the particle are released from lower region of

shear layer for a constant time period. This is an expected result due to the hyperbolic

tangent velocity profile. As the y value decreases for the velocity profile, the basic

flow velocity U becomes slower.
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Figure 3.21: Pathlines calculated by the code and the particle locations of Michalke.

The diamonds at the end of the pathlines shown in Figure 3.21 indicate the locations

of particles calculated by Michalke [18] under the same conditions with the Fortran

code was run. Michalke [18] actually did not calculate the pathlines in his work.

Instead of this, he calculated the streakline patterns, and marked the particles starting

with constant time delay. Constant time delay equals to time period of the disturbance

and at the beginning of each period, one particle is released into the flow. In other

words, particles from different locations are released into the flow at t0 = mT where

(m = 0,±1,±2,±3, ..).

In Figure 3.21, the diamonds were obtained for one time period (i.e. locations of the

first particles released at time t = T ). Obviously, the Fortran code gives the same

results with Michalke [18].

In order to see the initial formation of the instabilities, the pathlines are drawn along

two times of the wavelength λ by the help of the periodicity of the flow. From Figures

3.22,3.23,3.24 and 3.25, the pathlines of the particles released from different locations

at four different times can be seen.
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Figure 3.22: Pathlines of the particles released from different locations at t = T .

Figure 3.23: Pathlines of the particles released from different locations at t = 1.25T .
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Figure 3.24: Pathlines of the particles released from different locations at t = 1.5T .

Figure 3.25: Pathlines of the particles released from different locations at t = 1.75T .
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It is hard to make an inference from Figures 3.22,3.23,3.24 and 3.25, because the par-

ticles track tangled paths. However, it can be said that the particles in the upper region

have a tendency to go down to the lower region of the shear layer in the beginning.

By the time, this tendency changes to reverse direction.

The particles released from the bottom of the layer (i.e. y0 = −1.03) makes an

exception since they always moves down. The effects of the disturbances are observed

the earliest on the particles released from the bottom. This is related to the highest

disturbance velocity magnitudes of these particles in y-direction.

Streaklines provide cleaner pictures of the flow compared to the pathlines. They are

related to the motion of the flow, not to the motion of particles in the flow. Therefore,

in Figures 3.26, 3.27, 3.28 and 3.29, the streakline patterns of the disturbed shear flow

are plotted for four different times.

Streaklines are obtained by using the calculations for the pathlines. To simulate the

flow, time increment used for the release of the particles into the flow is choosen very

small (i.e. ∆T = 0.1T ). By doing so, the particles become released just one after

another making a continuous flow. Then the pathlines are calculated by integrating

equation (2.119) in Section 2.4 from t0 = n∆t where (n = 0, 1, 2, .., T/∆t) to t =

nT . By connecting the end points of the pathlines, the streakline patterns shown in

figures below are obtained.

Streaklines drawn in Figures 3.26, 3.27, 3.28 and 3.29 are easier to interpret compared

to the pathlines shown in Figures 3.22, 3.23, 3.24 and 3.25. They reflect the motion

of the flow clearly and continuously.

When the motion of the flow is investigated, it is seen that the streaklines have a

tendency to roll up, since the particles starting originally in y > 0 region move to

y < 0 region where they slow down. The streakline patterns are compatible with

the calculations of the Michalke [18] and similar to the results of the experiments

conducted by Freymuth [17].

The periodicity of the results obtained by the Fortran code are also checked. This
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Figure 3.26: Streakline patterns of the flow at t = T .

Figure 3.27: Streakline patterns of the flow at t = 1.25T .
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Figure 3.28: Streakline patterns of the flow at t = 1.5T .

Figure 3.29: Streakline patterns of the flow at t = 1.75T .
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is achieved by calculating the streaklines just before the end of second time period

t = 2T . To make the differences between two streakline patterns more obvious, they

are plotted at t = 1.95T and t = 2T as depicted in Figure 3.30. Clearly, at t = 1.95

the streakline pattern becomes very similar to one at t = 2T as expected. Since the

flow is periodic, the streaklines at t = 2T have the same shape with the streaklines at

t = T .

Figure 3.30: Streakline patterns of the flow at t = 1.95T and t = 2T .

Streaklines are plotted for different disturbance frequencies other than β = 0.2067 at

which, the disturbances grows rapidly. In Figures 3.31 and 3.32, streakline patterns

for β = 0.150 and β = 0.300 are shown, respectively. Compared with streaklines for

β = 0.2067 given in Figure 3.26, growth of the disturbances are slow for β = 0.150

and β = 0.300. This is normal, since the amplification rates of disturbances alphai,

have lower values for β = 0.150 and β = 0.300.

The interesting point for the streaklines of different frequencies is that although at

β = 0.15 and β = 0.30, amplification rates are almost equal, the disturbances grow
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faster at β = 0.30 as seen from Figure 3.32. When this situation is investigated, it is

seen that for beta=0.300, the wavenumber of the disturbances are higher which makes

the growth of the disturbances faster. Therefore, it can be said that the wavenumber

has also impact on the growth rate of the disturbances in shear layer.

Figure 3.31: Streakline patterns of the flow at t = T for β = 0.150.

Another important point for the calculation of the pathlines and the streaklines is that

after almost two times of the wavelength of the disturbances, linear stability theory

fails. After two times of the wavelength, the vorticity amplitudes and its derivatives

attain very high values which can not be covered by the linear model. Since the distur-

bance velocity components are directly related to the vorticity amplitudes, calculation

of them become impossible.

When the time performance of the Fortran code for the calculation of pathlines and

streaklines is considered, it can be said that it is very fast while calculating pathlines.

Figures 3.22,3.23,3.24 and 3.25 are plotted instantly after runnig the code. For streak-

line patterns, the run time of the code takes a little longer, since over 3000 pathlines
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Figure 3.32: Streakline patterns of the flow at t = T for β = 0.300.

are calculated for each t value. Specifically speaking, it takes about 4-5 minutes to

plot a streakline pattern like the one given in Figure 3.26.
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CHAPTER 4

DIFFERENT VELOCITY PROFILES

To test the capabilities of the developed Fortran Code, the different velocity profiles

should be used. In the previous section, the code was validated for the hyperbolic tan-

gent velocity profiles with temporal amplification approach. Therefore, in this section

the velocity profiles derived from hyperbolic tangent velocity profile and parabolic

velocity profiles are studied by the help of the code.

4.1 Hyperbolic Tangent Velocity Profile Family

In Figure 4.1, different versions of the hyperbolic tangent velocity profile investigated

in previous section can be seen. These are the velocity profiles observed in the experi-

ments of Freymuth [17], as the jet flow slows along the axial direction. With decrease

in the flow velocity, the slope of the velocity profile also decreases.

In Figures 4.2 and 4.3, the real and imaginary parts of the eigenvalues calculated for

hyperbolic tangent velocity profile family by using spatial amplification theory are

shown.

When the amplification rates are examined, it can be said that with decrease in the

slope of the velocity profile, the disturbance growth rate become smaller. Moreover,

the flow become more stable, since the frequency range, in which disturbances grow,

diminish. This means that with slower basic velocity, more stable flow can be ob-

tained.

This makes sense in physical point of view. With decrease in the slope in the basic
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Figure 4.1: Hyperbolic Tangent Velocity Profile Family

flow, velocity gradients become slower, the vorticity get smaller. Since for the invis-

cid instability, the driving mechanism is the vorticity, the flow become stable. This

principle can be used as flow control mechanism.

4.2 Capability of The Fortran Code for Parabolic Velocity Profiles

In Figure 4.4, the parabolic velocity profiles used by Ozgen & Uzol [21] are shown.

They analyzed the velocity profiles for incompressible, inviscid, axisymmetric flows

in cylindrical coordinates with temporal approach. To achieve this, they obtained a

dispersion relation by applying the small disturbance theory followed by a normal

mode analysis to the cylindrical momentum equations.

The parametrized equation of velocity profiles given in Figure 4.4 is given by equation

(4.1), where b is the velocity profile parameter and varies between 0 for a uniform

profile and 1 for a fully developed flow.

U(r) = 1− br2 (4.1)
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Figure 4.2: Real parts of eigenvalues for hyperbolic tangent velocity profile family

Figure 4.3: Imaginary parts of eigenvalues for hyperbolic tangent velocity profile

family
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In this thesis, the Fortran Code was developed from the Helmholtz’s vorticity equa-

tion which is applicable for 2-D. Therefore, the parabolic velocity profiles given by

equation (4.1) can be directy converted to the cartesian coordinates as;

U(y) = 1− by2 (4.2)

Figure 4.4: Parabolic velocity profiles.

The temporal version of the Ricatti equation given by equation (2.54) in Section 2.1,

should be transformed by using the equation (4.2). The first and second derivatives

of the equation (4.2) yields equations (4.3) and (4.4), respectively.

U ′ = −2by (4.3)

U ′′ = −2b (4.4)

By putting equations (4.2) and (4.4) to the temporal Ricatti Equation, the following

equation is obtained, the boundary conditions of which does not change and given by

Equation [101] in Section 2.1.

dΦ

dy
= α2 − Φ2 +

−2b

(1− by2 − i2ci)
(4.5)

62



To solve Equation (4.5), again z = tanh(y) transformation was applied which is

suitable to boundary conditions of the Ricatti Equation to solve numerically.

y = tanh−1(z) (4.6)

dΦ

dz
=
dΦ

dy

dy

dz
=
α2 − Φ2

1− z2
− 2b

(1− b(tanh−1(z))2 − i2ci)(1− z2)
(4.7)

Equation (4.7) was used to calculate the eigenvalues with the method mentioned in

sections 2.1 and 2.2. For the eigenvalue calculations two modes were examined as

Ozgen & Uzol [21] did. First wheter the code was capable to give a solution in

atomization regime was checked. It was seen that in the atomization instability mode

(i.e. α � 1), the code did not yield any eigenvalues for different velocity profile

parameters. This is an expected result, since the code was designed by Rayleigh

equation which is valid for Rayleigh regime (i.e. α < 1).

Secondly, the performance of the code was tested in Rayleigh regime. Although

Serkan & Uzol [21] had results in this regime for b = 0.2, the code developed could

not calculate the eigenvalues for the same b = 0.2. When the different parabolic ve-

locity profiles were examined, it was observed that the code did not work properly.

For example, for b = 0, 0.1, 0.2, 0.3, 0.4, 0.5 the code did not calculate any eigenval-

ues.

It was understood that the Fortran code developed was not capable to analyze the

parabolic velocity profiles, when the runs with these velocity profiles were investi-

gated. Then, the root causes of this failure were researched to determine whether the

algorithm of the code was wrongly established for the parabolic velocity profiles.

Ozgen & Uzol [21] obtained result for the parabolic velocity profile in the Rayleigh

instability regime. They used the cylindrical momentum equations to obtain disper-

sion relation and by the help of it they could calculate the eigenvalues. Therefore, the

main difference of the Fortran code is the equation on which the code depends.

The most unstable case for the parabolic velocity profiles is the uniform flow. equa-
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tion (4.7) re-written for the uniform flow (b = 0) is shown below.

dΦ

dz
=
α2 − Φ2

1− z2
− 2× 0

(1− 0× (tanh−1(z))2 − i2ci)(1− z2)
=
α2 − Φ2

1− z2
(4.8)

With the boundary conditions Φ(zb) = −zbα, equation (4.7) yields 0, which is our

search criteria for the eigenvalues of the temporal Ricatti Equation. Therefore, no

matter α value takes, at the first iteration of the eigenvalue search criteria is already

satisfied. Thus, instead of wrongly coding, it can be said that the mathematical model

(Rayleigh Equation) causes the problem which will be discussed in the next section.

4.3 Discussion on the Rayleigh Instabilities

The boundary layers or shear layers are unstable when ci > 0. Taking this criteria

into consideration, by re-arranging the terms of the temporal Rayleigh equation and

multiplying it with the complex conjugate of φ, the following equations are obtained.

dφ2

d2y
−
(
α2 +

U ′′

U − c

)
φ = 0 (4.9)

φ̄
dφ2

d2y
−
(
α2 +

U ′′

U − c

)
| φ |2= 0 (4.10)

Integrating equation (4.9) from y1 to y2 with respect to y, where y1 or y2 is finite for

boundary layers and the both are infinite for shear layer;∫ y2

y1

φ̄
dφ2

d2y
dy −

∫ y2

y1

(
α2 +

U ′′

U − c

)
| φ |2 dy = 0 (4.11)

Where | φ |2= φφ̄. Integrating the first term of equation (4.10) by parts;[dφ
dy
φ̄
]y2
y1
−
∫ y2

y1

dφ

dy

dφ̄

dy
dy −

∫ y2

y1

(
α2 +

U ′′

U − c

)
| φ |2 dy = 0 (4.12)

First term of the equation above equals to zero, since φ̄(y1) = φ̄(y2) = 0. By multi-

plying th denominator and the numerator of the second term with U − c̄ the equation

becomes;

−
∫ y2

y1

| dφ
dy
|2 dy −

∫ y2

y1

(
α2 +

d2U/dy2(U − c̄)
| U − c |2

)
| φ |2 dy = 0 (4.13)
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Where c̄ is complex conjugate of c. The imaginary part of equation (4.13) is;

−ci
∫ y2

y1

d2U/dy2 | φ |2

| U − c |2
dy = 0 (4.14)

Since ci > 0 for unstable flow as assumed at first, the integral I should be equal to

zero to satisfy the equation above. Since the terms | φ |2 and | U−c |2 are also greater

than zero, d2U/dy2 term remains to be zero which means that d2U/dy2 should change

its sign in the region (y1, y2).

The derivation mentioned above is known as Rayleigh’s inflection theorem, which

briefly defines the necessary condition for inviscid instability as the presence of an

inflection point in the velocity profile. According to the theorem, the absence of an

inflection point necessarily confers inviscid stability.

For the parabolic velocity profiles defined by equation (4.2), d2U/dy2 does not change

its sign in any domain and equals to −2b, meaning that they are stable. Therefore,

it makes sense that Rayleigh Equation does not yield any eigenvalue for the distur-

bance growth, since the parabolic velocity profiles are already stable according to the

inflection theorem.
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CHAPTER 5

CONCLUSION & FUTURE WORK

In this thesis, an in house Fortran Code developed to investigate the spatial and tem-

poral instabilities for inviscid shear layer by the linear stability theory. To establish

the mathematical model on which the code depends on Rayleigh and Ricatti equa-

tions were derived from the Helmholtz vorticity equation by utilizing the small and

wavy disturbances. For the hyperbolic-tangent velocity profile, the transformed Ri-

catti equation was solved by using space and time amplification approaches by an

in-house Fortran Code involving Runge-Kutta-Gill and simplex method algorithms.

By using the Fortran Code developed, eigenvalues of various disturbance frequen-

cies were calculated for both spatial and temporal amplification. It was seen that the

eigenvalues and the amplification rates obtained by the code were totally matching

with the literature. Then, the results of two theories were compared and the most

strongly amplified disturbance frequencies were evaluated. For the lower disturbance

frequencies, it was observed that calculations of the spatial theory were more reliable,

since they were closer the experimental results.

Eigenfunctions of spatial theory were plotted for various disturbance frequencies.

For the most strongly amplified disturbance frequency, eigenfunctions were calcu-

lated for both theories and compared. In spatial amplification case, derivatives of the

eigenfunctions were drawn and evaluated. Again, it was understood that the spatial

amplification model reflects the instability mechanism because it can model the phase

reversal phenomena observed in the experiments.

By using the post-proccessing tools of the Fortran Code, the vorticity amplitudes were

also calculated for different disturbance frequencies and validated with the results in
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the literature. Then, constant vorticity distributions of spatial amplification case were

plotted at different times in order to demonstrate the mechanism of instability.

At the most strongly amplified disturbance frequency of spatial theory, the motion

of particles at the different locations in the shear layer were investigated by drawing

the pathlines and the streaklines of them. The results for the pathlines were verified

by the calculations done in the past. When the pathlines and the streaklines were

evaluated, it was seen that the streaklines patterns gave more clear images of the

instability mechanism occurring in the shear layer.

The streaklines patterns at the different disturbance frequencies were plotted, also.

It was seen that before and after the most strongly amplified disturbance frequency,

growth of the disturbances are slower, as expected. Moreover, it is seen that wavenum-

ber has also an impact on the disturbance growth rate, when the streaklines at different

frequencies with same amplification rates are examined.

The code was run with the hyperbolic tangent velocity profile family and parobolic

velocity profiles to test its limits. It was seen that for the hyperbolic tangent velocity

profile family, with slower basic velocity, more stable flow was obtained. For the

parabolic velocity profiles, the code failed. The reason why the code was not capable

to analyze the inviscid parabolic velocity profiles were discussed. The mathematical

base of the code was main reason of the failure for the parobolic velocity profiles.

Rayleigh equation on which the code depends, directly resulted in satisfied stability

criteria since the parabolic velocity profiles did not have inflection points. Therefore,

by using it could not be possible to get the disturbance amplification rates which could

be calculated by the dispersion relation obtained from the momentum equations.

For the future studies, the gap in the code for the calculations of the parabolic velocity

profiles can be tried to be fulfilled. This can be done by adding the dispersion relation

feature based on Navier-Stokes equations. Moreover, by using Navier-Stokes equa-

tions, the effect of pressure can also be implemented to the code, however, it should be

noted that this will need much more things to do compared to incompressible case.
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