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ABSTRACT

FORCED VIBRATION ANALYSIS OF GENERALLY LAMINATED
COMPOSITE BEAM SUSING DOMAIN BOUNDARY ELEMENT
METHOD

Ahmed Zubair
M.S., Department of Mechanical Engineering
Supervisor: Pr o f . Dr. Serkan Daj

August2018 75 pages

Forced gnamic response of generally laminated composite beam is analyzed by
boundary element methodStatic fundamental solutions amesed as weight
functions in the weighted residual statenserifhe use of static fundamental
soluions gives rise toa new formulationnamedas Domain Boundary Element
Method. Displacement field dfe generally laminated composite beamvigtten in
accordance wittiirst order shear deformation theory aeguations of motion are
derived using Hamilw 6 s prDewdlpdped f or mul ati on i nc
effect as well asinfluence of rotary inertia and shear deformation. Bending,
extensional and torsional resgencouplings due to orthotropic nature of the
problem, are included in the formulation. Domain integrals, in the integral
formulation of the problem, are evaluated by discretizing the domain and using

interpolation functionsHoubolt method is used for solving the resulting system of



equations. Dynamic response, obtained via Houbolt metli®dverified by
comprison with analytical solution available faan homogeneousisotropic
Timoshenkobeam Dynamic response of generally laminated composite beam
studied under the action of time based excitatiensh asconcentrated step,
harmonic,impulsive and uniformly distributed stépads. Influences of fiber angle
in each lamina andtacking arrangemern temporal variation of deflections and
longitudinal normal streshave beerstudied in parametric analysdt has been
demonstrated that ¢hdeveloped technique is an accurate effective alternative

for forcedvibrationanalysis of generally laminated composites.

Keywords: Forced Vibration, Dynamic Analys{Senerally laminated composite
beam, Domain Boundary Element Method
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CHAPTER 1

INTRODUCTION

1.1. Composites Overview

The term composite material refers to a class of materials, in which two or more
individual materials are combined in orderdbtain a new material having fifent
characteristics from its constituenbsdividual components are combined such that
they remain distinct in the final structure. Resulting structure has better performance
characteristics as compared to its constituents aatorge The flexibility of being
engineered as per application requirement renders composite matea#tigctive

choicein design of differeninechanicabind aerospacgructures.

In aviation industry, emposite materials have been used for manufacturing
secondary structuséor many year$ut currently, due to advancement in composite
manufacturing and maintenancechniques composite are also used fo
manufacturing primary structure of aircraftBhey are preferred in automotive
industry because of their high strengthmieight ratiq superiorcrash performance

and recyclability. Renewable energy sector, sports and marine industry are other

notable application areas of composites

Composite structuremostly consistof basic structural elements such as beams,
plates andshells Beam is a one dimensionglement.e. one dimension is large as
compared to other two ang suitable for carryingbending loads.Laminated
composite beams (LCBs) are composed of different individual laminas glued
together Material properties o laminaare orthotropic in natureBased on the
alignment of principal material axes with natural body ak€Bs can be classified

into two categoriesLCBs are termed aspecially orthotropic if natural and



principal material axes are aligndtlprincipal material and natural body axes are

not coincident then they are termed as generally orthotropic.

Mechanics of composite materials is more involved as compared to isotropic
materials and accurate prediction of response under external forces is of
fundamental importance when designing a composite for a specific application
Stacking sequence, thickness arientation angle of fiberg each lamindhave a
significant effect on the responséo external excitations. Experimental
determination of responsharacteristics is unfeasible due to its high cost. In order
to save the time and cost associated with experimental testirduartdcomposite

ma t e rinvolvédsnéchanicsccurate and efficient numerical solution procedures

are required fooptimizeddesign ofgeneally laminated composites.

1.2. Literature Survey

Boundary Element Method (BEM) encompasses a group of numerical techniques
where fundamental solutionsf governing equations of the probleare employed

as weight functions. BEM has several @ats for instance Domain BEM, Time
Domain BEM and Dual Reciprocity BEM etc. These variants arise due to difference
in type of fundamental solutions and techniques of evaluation of domain integrals in
the integral form of a given problenThe technique deleped here for forced
vibration analysis of LCBs is Domain BEM {BEM). In this variant of BEM,
fundamental solutions are static in nature. By using these time independent
fundamental solutions in weighted residual statements, integral form of the
governirg PDEs is obtained as a result. Houbolt method is used for approximation
of time derivatives ofunknown primary variables.Use of static fundamental

solution results in decreased simulation time and enhanced stability characteristics

[1].

Numerous studiesan be found in the literature regarding composite materials. The
survey presented here will focus on the applicatioD-®8EM to various dynamic
analysis problems and analysis of generally laminated composite beams including
both free and forced vibratis. D-BEM has been employed for studying various

dynamic problems.In a study by Carrer etl. [1], homogeneoussotropic
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Timoshenko beam, having four types of classical boundary conditions, was
analyzed. They studied the dynamic response of transvertsetaef under the
action of time dependent loads. Dynamic response obtained thro®#VDwas
validated by comparing it witananalytical solution foa pinnedpinned beam. For
fixed-fixed and fixedpinned cases, IBEM solution was verified by comparison

with dynamic responsebtained from Finite Difference Method (FDMJPU time
comparison was carried out andBEM was shown to be computationally efficient

than FDM in case of point step, point harmonic and distributed step loads.

Eshraghi and Dad2] dewloped DBEM formulation for functionally graded
Timoshenko beams. Functionally Graded Material (FGM) beam wapased of

Aluminum and Silicon Carbide (SiC)Characteristic material properties were

function of the depth and Mefianaka micromechanics mddeas used for the

cal cul ation of Poi s s o klassodymamitsi obfixedixed EI| a st
and pinneebinned configurations of FGM beam, subgstto time dependent loads,

was studied. Ceramic volume fraction was varied using a power functiontand

effect on the time history results of longitudinal normal stress and transverse

deflection were analyzed.

Hatzigeorgiou and Beskos [§lroposed a EBEM formulation for analyzing the
response of 3D elastaastic solidssubjected to dynamic excitatianThey used
steady state Kelvin fundamental solutions as weight functions andrmped
discretization of the whole domain. Houbolt method was employed for evaluation
of time derivatives. A number glampleproblems were analyzed and the accuracy
of devebped method was demonstrated by comparison with established nmesults

the literature

In a study of thin elastoplastic flexural platesder the action of lateral logds
Providakis and Beskos [4¢mployed DBEM for investigating the dynamic
responsewhile keeping the boundary conditions arbitrary. Boundary and interior
regionwere discretized using Quadratic isoparametric elements. Numerical results
obtained from the method were comparethtzse found byinite Element Method

for demonstration of accuracgoares Jr. al. [5] demonstrated iterative coupling



of D-BEM with Time Domain Boundary Element Method ((BEM). Domain was
partitioned intotwo partsand problem was solved independently in each.p@st
BEM was used to model the nonlinear part of pheblem and proposed scheme

was validated by solution of two example problems.

Two dimensional wave propagation problems in elastic media steied by
Carrer etal. in [6] & [7]. Approximation of time derivatives was performed using
both Houbolt and Nemark methods. A comparison study was performed and
applicability of Newmark method tsolution of D-BEM system of equationwas
demonstrated. Mathematical formulation was developed for inclusion of non
homogeneous initial conditionk a study by Providak [8], D-BEM was used for
analyzing dynamic response of elaptastic thick plates resting on a deformable
foundation. Winkler model was used for simulating the interaction between the
plate and boundarynvestigation of heat diffusion phenomena in hgemeous and
isotropic media, using IBEM, was investigated by Pettresatt [9]. Oyarzun etl.

[10] employed BBEM for investigating the scalar wave equation problem and
introduced a new time marching technique,

calculatecexplicitly.

Due to increasing demand and use of composite structures in various industries,
their dynamic response prediction has been the sulfjetease research. Banerjee
and Williams[11] formulated a dynamic stiffness matrix method for analytimey

free vibration problem of composite beams. In a study of free vibration problem of
composite ad deep sandwich beams, Marur and Ka2f employed higher order
beam theory and investigated the effect of boundary conditions on the natural
frequencies. Fee vibration characteristics of generally laminated composite
Timoshenko beams, using dynank&M, were studied by Jun el. [13]. Free
vibration problem of layered composite beam, having arbitrary layup
configurdions, was studied by Teboubnd Hajela[14] through symbolic
computations. Yildirim et al. [15] modeled generally laminated symmetric
compositebeams according to Eul®ernoulli and Timoshenko beam theories and
compared the iplane natural frequencies obtained from both modiela.study of
layered beams, Chen at. [16] proposed a new approach, for analyzing free

4



vibrations, based on the foundation of two dimensional elasticityn etal. [17]
investigated the free vibration response of generally layered composite beam under
the action of mial point force.Their formulation was based on a higher order beam
theory and exact vibration analysis was carried out using dynamic stiffness method.
In a study of laminated beams Bhao efl. [18], formulation was based on higher
order shear deforman beam theory andnethod of reverberation ray matrix
(MRRM) was employedor investigating their free vibration characteristi¢an et

al. [19] used Carrera Unified Formulation (CUB)obtain an accurate 1d modet
analyzing free vibration charactstics of a pinnegiinned beam. Exact analytical
solutions were obtained as a result and commercial FEM codes were used to
validate the proposed methodafariTalookolaeiet al. [20] obtained analytical
solutions for natural frequencies and mode shapgsrdrally laminated composite
beams by using Lagrange multipliers method. Previously published results in the

literature were used for comparison to validate the analytical solutions.

In a research study by a | [} dynamic response of layered composite beams
having noruniform crosssections was analyzed. Analysis was performed in
Laplace domain and in order to obtain the dynamic stiffness matrix, complementary
functions method was used to numericallywsdhe equation8oth free and forced
vibration response was analyzed. Influence of-aoiformity, material anisotropy

and fiber angle was investigated in the parametric anallysia. study regarding
nonlinear vibration anddamping analysis by Youzerat al. [22], Galerkin
technique was coupled with harmonic balance method for a pwinadd beam.

They calculated the damping parameters and performed forced vibration analysis of
laminated composite beann parametric analysis, they examined the effects
change in material properties and geometry of LGBa studyof thin-walled

LCBs, Machado andCortinez[23] investigated their dynamic stability under the
action of transverse loading. They determined the resonance frequencies and
instability regionsf r om Mat hi eu equat i oHEffectsicf fiberg Hs ud
angle, load height, beam dimensions and approximations to geometliaesmity

on the resultswere analyzedIn a studyof unsymmetric LCBs, Kadivar and

Mohebpour [24] studied their dynamic haracteristics in response to moving



external excitation. They employed FEM, with each element having 24 degrees of
freedom, for studying the dynamic response and validated their approach by
comparing the responsé an isotropic beam witanalytical solubn. They carried

out further analyses by varying the dag configuratiorand fiber anglesf LCB.

Bahmyari etal. [25] used FEM for studying the dynamésponse oinclined LCBs

under the actiorof moving distributed load$ased onboth Timoshenko beam
theory and Classical lamination theory (CLT) They wused Newmar kos
solving the system of equimins and studied the influence of layer stacking
sequence, distributed load length, fiber angle, inclination angle and mass on the
response of LCBIn a study involvingLCB moving in axial directionLi et al. [26]
investigated itdime basedhonlinear response under the action of blast loads in
temperature dependent environmehhey used large displacement theory and
Galerkin procedure for obtainireguilibrium anddifferential equationsParametric

study was performed to analyze the influence of thermal environment, longitudinal
velocity and type of blast load on the response of LGE etal. [27] studied fiber

met al I ami n adinear dybaeia nespdnse moonmoving excitations in
thermal environment. Equations of motion of the problem were based or Euler
Bernoulli beam theory andon Karman geometric nelinear theory. Main focus of

their analysis was the observation of change in dynamic respamith variation in
temperature, load velocity, material properties and geometridimegrity. In a

study of composite Timoshenkbeam having two layers, Hou and H28]
employeddifferential quadrature methofibr performing its static and dynamic
analyses. Results obtained were validated by comparison with FEMrther
comparison studies were carried out to show the superiority of developed scheme
overFEM in calculating natural frequencies and static response of LCB.

1.3. Objective & Approach

Main purposeof the undertaken study t® develop Domain Boundary Element
Method (D-BEM) formulationfor forced vibration analysis of generally laminated
composite beam&quations of motion of the problem are derived using first order

shear deformation theor@teadystate fundamental solutions are found for the-non



homogeneous redead form of governing equations, which are then used as weight
functions in the weighted residual statenseBvaluation of the weighted residual
statement results in integral form of thevgrning differential equations of the
problem. System of ordinary differential equatiamtaining time derivativess
obtained after employing discretization of the domain usingdraic cells andis

solved using Houbolt method.

Developed numerical pcedure is validated by comparing i&sults with analytical
solutiors available for a homogeneoussotropic beam Dynamic response of
generally laminated composite beam is studied uhdenonic, concentratestep,
uniformly distributed step and impulgivoads. Convergence studies are performed

for demonstrating the numerical accuracy of the developed procedure.

Intention of the undertaken endeavor is providmgew formulation for better

design and optimization studies of generally laminated comusites.

1.4. General Outline

Constitutive equations of laminated composite beam and derivation of governing
equations of motiorare described in chapter 2.

Chapter 3 focuses on the static fundamental solunbredl governing equations.
Stepwiseprocedure oDomain Boundary Element Methasl also explained in this

chapter

Chapter 4 includes the validatioof results obtained from current numerical
techniqueby comparison with analytical solution. @enetric analysg involving
different configurationsof laminated composite beam, aaéso described in this

chapter.

Summary of findings in current study and future resealirections are mentioned

in Chapter 5.






CHAPTER 2

GOVERNING EQUATIONS OF MOTION

Geometry ofthe generally laminated composite beaghavng a rectangular cross

section analyzed in this studig shown in Fig. 1Several unidirectional laminase

joined together to form LCRBvith the assumption that bonding between all layers is
perfect Hence there is no relative motion between any twertayength and

width of LCB are represented/th andb. h is the height of LCB and its value is

equal to sumof all individual layer thicknessex-z planeis used to study the
beambds response t o »axidisecointident weghioogidinalt i on s
axis of the beam ardaxisis thetransverselirection in which loads are applied.

le— b —>

e—=—

A q(x’t)

Figurel: Generally laminated composite beam



2.1. Displacement Field

Deformation ofthe generally laminated composite beamstsdiedin accadance
with Timoshenko beartheory which leads to the following displacement field

u (% zt) =u(xt) +zy, (xt) (1a)
u,(x,zt) =z ,(xt) (1b)
u,(X,z,t) = w(x,t) (1c)

Displacements in the-, y-, and zdirections are denoted by,, u, and u,.
Mi dpl aneds | ongitudinal and traandwer se disp
wherey , andy , represent the rotatigrof normal to the midplane abbx andy

axes respectively

2.2. Strain Displacement Relations

According to small strain theory, noemero strains resulting from the current

displacement field are given as follows

g =M P (2a)
pX K
Go=y + (2b)
X
gxy =z =4 . (2C)
X

e, k, and k,, are defined asnidplane strain in longitudinal direction, bending

curvatureand twisting curvatureespectivelyandgiven as

e =H (3a)
X
k, = “Lylxx (3b)
_Ww
k xy — WY (30)

10



2.3. LCB Constitutive Relations

For generally laminated composite beam, force and moment resultants are related to

curvatures and strairisrough the following equatiorj3, 2Q

eN, p eAu Bu Ele!{éefp
— U
M, I"=eBn Du D &, U (4)
1 P 1
I'Mxyy 8816 Dis DseHl'/(ny
and
Q. = Assg, 5)

where inplane longitudinal force, bending moment, torsional moment and shear

force are represented bBY,, M,, M, and Q,, respectivelySiffness constants in

Egs. (4) & (5) are giverby [13,29]

€Au Bu B geﬂn B, Beo A8 A; By,

e_ —
éBll Dun Dus Ggal D, D . Be B Dy,

16 u
@Bl6 D16 DGG u 6816 DlG D66 H Bg BBG D26

(6)
eA, As By é’ A As By ! 9
*g 6 s By 3* Bg B Du 3
€8, B D, U BE By Dy f
_ Y _
Ass =k, ) Q502 (7)
-

where A, B, andD; (i, = 1, 2,6) are components of ABD atrix of compsite
laminate. A, and D; represent the extensional and bending stiffnagdrices
whereasthe B, denote the bendingxtension coupling.The matrix stiffness

1

constantand transverse shear stif§seAss can be calculated §20, 29]

Aj:é}@:@ 2 (i,j=1,2,6) (8)

11



B =140Q(7 -7, (,i=1 2, 6) (8b)

22
ij 3 A |] (43 i 1) (|1J = 1! 2! 6) (8C)
As=8 kQi(z -2 (8

In the aboe equationssuperscripk indicatedayernumber anah is total number of
layers Layer coordinatesf thek™ laminafrom the geometric midplane of LCB are

denoted byz, and z,_,. Figs. 2and 3showfiber ande in an individual laminand

layercoordinatesn LCB, respectively

Figure2: Fiber angle orientation

12



Figure3: Layer coordinates

ks is the shear correction factor and is assumed to be consta@0]Mith a value

of 5/6. Transformed material constanfsr thek™ lamina, are denoted b@: and

are given as follows.

Q. =Q,codq +Q, Q) sif geos g@, sih (93)
Q,=(Q, +Q, 4Q)sifgcod g @[ sih g ceb ) (9b)
Q,=Q,sin'g 2(Q, 2Q,) sift gcod gG, cos (99)
Qe=(Q; -Q, 2Q)singcos g (@, Q, 204 sit gos (99)
Qe =(Q: -Q, 2Qg)sifgcosqg (@, Qs 24 sin gds (99
Qs =(Q, Q. 2Q, 2Qgsifgcod g Qf sih g cos ) (9f)
Qs = G,COS § 4Gy, sirf ¢ (99)

whered s the fiber angle an@®; (i, j = 1, 2, 6)in Eq.(9) are given as follows

13



Q= 5 (109

1- n, 4,
n,E nE
Q, = 122 — 11 100
- 1- I, B 1- 181 ( )
— Ez
sz B 1- Iy (100)
Qee = GlZ (100)

Longitudinal normal stress for generallantinated composite beam can be
calculated as follows
M

sxx=% 422-3 (11)

2.4. Hamilton Principle

Hamilton principle is employed for derivation of governing equations and boundary
conditions of the problem. It states that
t;

df{K - U +W)dt=0 (12)

t
where kinetic energy, strain energy and workeldy externaforces aredenoted
by K, U andW respectivelyFollowing are the expressions for kinetic energy, strain

energy andvork done by external forces

lL
:EOﬁNxeg -lMx {{ Mxy xé/ Qt(z x}@dx (13)
e , -
1.2 F3 5 AHU, D § 5
K=> AL, 0o o B 8Edzdx (14)
o h ’rgut —gt,l_(;tl.l—§
2
L
W = fja( x 1) wa> (15)
0

In order to apply the Hamilton principle, expressions of kinetic and strain energy

can be written in displacement form as follows
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D — 1]

Jiu +Bnuxyxx +BlGUnyx 42_11 );xx EC Ay><$
— ax
T D 2 A55 T
A ——y w 2+ %

T%ﬁh(ﬂz W) b ) 2 ox

(|11|2’| 3)

r (1,2 ,zz)bdz

I
N‘Ijjz N o

By substituting Egs. (28) in Eq. (12), we get

el ¢ (. . 2
%ﬁll(u%w) (yX ;Vyz) 2H4i J;}dx - N
e o u
é a2 = 5 U
° & — T
ST By By, B F, Bo g 4] U
dhe < h2 ' Y ' dx %_0
b . A Ty
wgol 66, 2 8 w2 2+ v
é I 2 Y, X 2 (yf X yX\IVX) y u
.\ @
S+ x t) wdx u
€ o H

(16)

17)

(18)

(19)

Eq. (19) is cast into the following form after carrying out integration by parts.

% I u I 2}7)( ;:llu XX _B'hyx XX g g

| ~ gu+ u

ei +Bi/ Voo

ly, A4 B Btu, fi U

'[ZL? _3y)( é'l llyXXX » XX ny+u
eﬁDlg/y w As(w, ¥) g g+

t o y <

e? Iayy 'IDBny XX BldJ , XX tly + H

& +D P u

e[ 16)/x XX y l:,l

g"l""’ Hes(V o W) Q(Fxt)}ﬂw u

c
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=0 (20)

Following are the equations of motion obtained from Eg. (20).

Aull, +Biy, o + By o = L+ 10, (21a)
Dit/ o + Bull o+ Dag/ - Pes(W, +y, )= 157, + 1, (21b)
Deg/ ,  + Bill ,, + Dagy/, ,, = 1, (21c)
Aol ., + W, ) +a(xt) = LW (21d)

By using Egs. (4) and (5)atural and essential boundargnditionsobtained from
Eq. (20 are given below.

u=0 or N, =0 (22a)
Yy=0orM, =0 (220)
y,=0o0rM, =0 (22¢c)
w=0 orQ,=0 (22d)
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CHAPTER 3

D-BEM FORMULATION

In Boundary Element Method, fundamental solution of differential operator is
employed as weight function in weighted residuhtement Fundamental
solutions, employed here, are independent of time and amd feing reduced nen
homogeneous forms of differential equationBme derivative and coupled
quantities in the differer@tl equations are discarded while deriving thiatic
fundamental solutionThe steadystate nature of fundamental solutions eventuates

in DomainBoundary element method.

3.1. Fundamental Solutions

In case of ordinary differential equatiohn™ order, having constant coefficients,
fundamental solution satisfies the following relation

Lev (xx) g 4x - ). (23
whered(x- Y is Dirac delta function and differential operatois given by
dn dn-l dn 2

L=
dx’ e daxt % dx 2

In Eq. (23, V (% x) is fundamental solutioand is given as follows

T an-t_gx 3 (24)

v (xx)=H(x - x ). (25
where H (x- x) is the Heavisidenit step function and is related to Dirac delta
as follows

d .

8(@H(x- x) g=4x -) (26)

First derivative of fundamental solutiomentioned in B. (25 is given as

17



dv

Yoo - Po(x e H(x Yt x ) @
Let v(xx)=0 at x=x

. dv
Y d_\;:H(X x)Vi( % ¥ (29

By taking derivative of B. (2§, wehave

vaz*:d(x - pa(x )x H(x ) w(ixi) (29
Let vi(xx) =0 at x=x

L diV _

Y 07 =H(x x)vi(k X (30)

Similarly, let v ?(xx)=0at x=x, w hre2o is theiorder of the derivative.

v OV k() (x ¥ 31)

By differentiating Fj. (31) with respect tx we get

d"v

S A0 3% )x Hix o (%) (32
Let Vi (xx)=1at x=x
W fx - yrH(x W (x) 33

By expanding Eq. (23) and using€ (24) to (33, following equations are
obtained.

dlc- ¥ H(x W(x ) xaH(x )UK x) x

cra H(x Nu(x ¥ aH(x Y x) x (=) %9
Y H(x-x)Lgv(x ¥ g0 (35
Y Lgv(xx) go (36)

Hence fundamentab#ution is given by

18



V(xx) = Hx - 3% ). (37)
where

Lgv(xx) g0 (39)
and for a differential operator of' order, we have

vix=x) 2M(x F WHixi )x-= Vix ) X0

(39
vii(x=x) 4

3.1.1. Fundamental Solution ofEquation 1
Following inhomogeneous form is used fording thefundamental solution of Eq.

(21a)

d?u’ (xx)
dx®

In Eq. (40 u*(xx) is the fundamental solutionx represents the source poirt,

=d(x - ¥ (40)

represents the field poiand a’(x- /) represens the Dirac delta functioWe have

u(xx)=H(x - Yu(x ). (41

Following relation is obtainedyldifferentiating Eq. (41) twice and using H39.
., d2u’(xx) dfu x X

-\ - x)— 27 42

Y v: H(x ) 7 ffx ) (42)

Substitution ofEq. @2) in Eq. @0) results in

d?u( xx)

H(x- x) 7 +@x -)x fxd ) (439)
v H ()TN (430)
, d?u(xx) _

v 5 =0 (4%)

After integratingeq. @3c) twice, we get
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u(xx)=Cx +C, (44)
Let u(xx)=0at x=x & ui(xx)=1at x=x . By applying these conditions; C

and G are found ad Ej. (44 can be written as follows

u(xx)=(x - ¥ (45

Y u(xx)=(x - ¥YH(x -). (46)
Any constant multiple of a solution and addition of two 8ohs is also a solution
SO

0 (xx)=(x - FH(x xo{x ) (473)

\ u*(x,x):(x_zx){ZH(x - X ]} (47b)

v o (xx) =X (47c)

3.1.2. Fundamental Solution ofEquation 2

In order to fnd the fundamental solution ofgE(21b), following inhomogeneous

form is wed.

dZJ/;(X,)g_ZGS . _ i
9l d Koy g < (9

Let 255 =
D1

dy, (x4, . _
o (% K= (e ) “9

In Eq. (49 y;(x, )9 is the fundamental solutiorx represents the source poirt,

represents the field poinhd d(x- /}represents the Dirac delta function. We have

V(o A=H(x - ) fx ) (50)

20



By differentiating . (50 two times with respect toand using g. (39 results in

dy (x4 _ & X
%-H(x .x)% x ) (51

Substitution of Eqgs. (50) €61) in Eq. (49 gives

Y

Mo ) U s e nx ) ) b} 6
Y, _ Fdz)/x(x’)g - ﬁ

Y H(x X)'Il’—dXZ I Y% ))%@ (52)
Ay (%X 52
Y 0 I y(x k=0 (52c)
Let y, =€™. Eq. 62c) implies

re*- /e o w =/° (53
Solution to g. (52c) can be written as

v (x y=Ce” 1Cel" (54)

Lety,(x, H=0atx=x & yj(x, ¥ =1atx=x, we have

ce’*+c,e’ "0 (554)
cle +cA el = (550)
C, & C, are ob&ined adollows after the solution of ¢ (55a) and Fj. (55b)

C=—t (563)
2\//_6\//—)(
c,=—t (560)
2\/76 T x
Eqg. G4) can be written as
v :%{eﬁ(x- y gV -)}x 57)

By substituting §. 67) in Eg. (50, we get
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viboy= e e Hx ) (59

Any constant multiple of a solution and addition of two solutions is also a solution
SO

y;(x,%:%{eﬁ(x'* el _)}V H(x -} %/{ el ret )}_ (5%)

s e ¥ o) g
Y yu(x )9=2j/—§e 2e §2H(X - K 3 (5%)
V(% A= \/_smhe\/_(x - )EZH - - (5%)
V(% A= \/_smhe\/_4x - (59d)

3.1.3. Fundamental Soluion of Equation 3

Eq. (60 is the norFhomogeneous form utilized in calculatinige fundamental
solution of Eq. (28&):

w d(x - (60

y;(x, )9 is the fundamental solution. represents the sourpeint, x represents the

field point andd(x- ¥ represents the Dirac delta function. We have

yy(x A=H(x - ) fx) (62)
Differentiating the above equation twice with respect &amd using Eq. (3%esults
in
L 4y (%) ¢ Y% )x
y 2 ¥\ ' T —H X)) —7 . 62
™ (x =) 7 ffx ) (62

By substituting I§. (62) in Eg. (60) we get
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H(X-X)M +@x -)x £d ) (639)

Y.
v H(x-x)w . (630)
v M:o (63)

dx’

Integrating . (63c) twice, results in

yy(xl )ézclx +C2 (64)
Lety,(x, ¥=0atx=x & yj(x, H=1at x=x . Solution ofEq. (64 for C; and

C,, gives the following

(% y=(x-) (69
Yy, A=(x - WH(x -) (66)
Any constant multiple of a solutiomd addition of two solutions is also a solution
SO

yy(x A= (x - WH(x ) a(x ) (673
Yy, (% )g:(x'zx){zH(x - W 3 (670)
vy, (x 4= (670)

3.1.4. Fundamental Solution ofEquation 4

Eq. (69 shows the notmomogeneous formused for finding thefundanental
solution of Eq. (2d):

d’w (xx)
dx®

w (x,X) is the fundamental solution. represents the source poirtepresents the

:d(x - ,)’ (68)

field point andd(x- ¥ represents the Diraeta function. We have
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w(xx)=H(x - ¥w x ). (69)
By differentiating Eq. (69) twice and using|H39, following equation is obtained
d’w (%)

dx?
Substituton of Eq. (70) in Eq. (83) gives the following

v ~H (x «)%’ dx ) (70

d’w( xx)

H(x- x) 7 +{x -)x £7d ) (713)
v H(x- ) T (715
, dw(xx) _

\4 7 =0 (71c)

After integrating Eq. (7d) twice, we get

w(x.x)=Cx +C, (72

Let w(xx)=0at x=x & wi(xx)=1at x=x . Solving for G and G results in

w(xx)=(x - ¥ (73
w(xx)=(x - YH(x -). (74)
Any constant multiple of a solution and addition of two solutions is also a solution
SO
W (xx)=(x - FH(x -Jr{(x ) (759
¥ i (x0) = om(x -y 4 (7%0)
v i (xx) =221 (750)
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3.2. Weighted Residual Statement

Equations of motion of generally laminated composite beam are written as follows

in the weighted residual statement:
Lﬁﬂuu,xxﬂ_&;vx,xx By, KU 1) (% Pk O e
0
Hﬁlﬂ/x,xx+§11u,xx ik, AW, ) iy L fx ) dx O (76n)
0
H56d/y,xx+glﬁu,xx +_Dle,l/xxx *37} *)KX, )Qb( 0 (7ec)
0

AVt W) (X)) AW W () dx O (76d)

Application of integration by partssalts in the following form of Eq. (36

Fuu(% ) Uy (xx) e - { B yg( %X B ) )} Cul xDxo

- gﬂnux(m) +_Bld/y,x( XT) TBll)/”( X )} u( X )(ch

(77a)
+gR11U(X,t) +_Blg/y(x1) TBll)/x()ib}( 0. x )a (f
+Lﬁllu'(x,t) Hy, (O u (% R dx
5 Bl g B oo (B
Oﬁ:)l;vx(x’t),'i yx,xx(x’ >( 511 xyx, )gjx
- gBuu, (x 1) D (%) By, (% Jx )X} )

+Duy (6 1) Buu(x ) Buey, (% O 4, % ))(}

s (X (X 3 g7 B x) B yOx (gl x )
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+A 1Y) 4y, (o tbdx AW DY, (% X

ey, (1), (% M= L %) 0% )b
-gEmU’X(X,t) +Deg/ , (% ) ﬁeyxx(xi)} 3% )X:f

(77c)
+§56<j/y(x,t) %mU(Xt) E)_Lsyx(x t)}( JZX(X ))(cf

-}{Ealeu(x,t) D, (% 9} (VX ¥

E”]T‘ﬁs"\'(x D W, (xX) = Asg W XX W( X ¥ g

- sy, (1) (9} Wx D g (77d)
+(LJr”17%savx(>ct)w*x(x X dx -;{ Xy AW} wx xd

By using Egs. (2b), (3), (4) dr(5), following form of Eq. (7¥is obtained:

u(x 9t (xx) e - NCxX U XY g

P
- B, (6 ) By, (% ) (Ul X P b

(78a)
+EAu(x ) By, (x ) Buy O G(x ) ;f

+Lﬁ'1u(x1t) A7, (O} U (% R dx

P60 Yok e 22 o ) = BM(X ) (¥ )
0 ' 1 y (78b)

+€Duy (6 1) Buu(x ) By, (% B K, (% ))(:f
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A (X 0 (% ) - Bl x) B YOO el x )

1LY HyY (O} HRW XYY, (% Xd

Pey , (X 1)V, (% Jix= &M (%) "¥x ) B +Iif (%) ,(9)d
e, (x,1) Bstlx ) Buay, (x 0} ( (% Kk § (78c)

-Hélsu(x,t) D (% O (X Y O

Fosw(x )W, () e RQUXY W Xy g+ @)W X)X

L L (78d)
+iPey (% W, (x Hdx- { @ x) 4V x} W x xd

After using Egs. (40 (49), (60 and ©8), governing integral equations of the
problem ae written in the following form:

Bi1 Bus N . L
U(X1t)+x JAQR W I Ox =gN,(xu (x ) g

+g AU ) By, (x Y Bey, O (G x Y ‘Lf

(7%)
+:ﬁ|p(x, t) 4y (B} (U (% X)dx
yx(xt)+§—iu( 2 % W 0x =BML (6D () g
+g§1yx(x,t) Buu( X 1) Bleyy(xt)}( (% ))(:f (79b)
e B0 (% 3 ;g-b [Bu(x) B fx ) Com )
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FPesw(x 1 (x Adx +{ HUx) 4 W xF( ax )

VOSSR 52 DX M, () 00 §
+gﬁeg/y(x,t) +§16U(X,t) _'D.LGJ/X(Xt)}( J*Qx(x ))(E (79c)

Y, (1) Y, (% Jdx

W= BQL(XOW(X ¥ g R vex) W( x )X

L \ (79d)
+ey (X OW, (% Hdx - {f x) 49 x} W x xd

In order to evaluatéhe domainintegrals in k. (79), whole domain is divided into

guadratic cellaas shown in Fig. 4Each cell has three nodes and nunfenodes

N is related to number of cells vidd =(N -1)/2. In j" cell, W, =gx/, % ¢

1¢ j @ ; first, middle and last coordinaté | cell are represented by, , ij and

xJ respectively.

Cell# 1 Cell# 2 ~
I () je Cell# 3(M-1) |« Cell M > Boundary Nodes: 1, N

G| e— — | —— i EEE —— ) — —)
12 3 4 5 lG(N-3)—s  NZNLN

|‘L_|

Domain Nodes: 2 to (N-1)

Figure4: Discretization of domain

In order to approximate the value of a generic field variab(egj,t) ,atnoded i 0O

and timeo ting™ cell, following equation is employed.

Q=% .t (¥ () LN (% (80)
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where £/ (x) are polynomial interpolation functions of secatejreeand are given

as follows

<)X %)

o (81a)
F1(%) = (x- le)gx %) (81b)
he
o X7 %) (x %)
= (81c)

andh,=x) -X ® % is equal to half length of a cell.

Domain integral involving the load terrm Eq. (79d)will be evaluated depending

on type of the appliefiorce Governing equations in final fornmafter emploing
domain diseetization, are given in Eq. (82

u(x, t)+E X( .5

Hw'

W ,t)x%@u(o,t) U0,

2y, (08) (1) g )

211 lgN L0.)(x) -N(LD(L -¥ (822)
eri(x)ert(x,t)+ 1,5 (X t) gl

FER by

§+f;(x)g|l-u(x;t) y(x‘ ) g

(820)
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w(x,t) - %gw(o,t) +( 0,1)

gﬁzﬁ N 100 o) 50 (%) A(F () o

(82c)
51 u(00(1) QLY -F @F(xYi(x o
o () 100504 +H0) (%) 403 ) o
yx(Xt)+§_zu( X) % W)
- ;{ (0t) coskg\ﬁ )X@’f 1) COSh\/E(U )}
-ZB[;l{ Otcosl'g\f ¥ gu(Lt) COSh\/_( )}<
; 2[;1:1{ (0.t) cost‘g\ﬁ gr fLt) COSh\/—( )}
+2D’j5f{ w(0.)sinhg7 (¥ gw(LY) sinhJE(L -) k (824)
aﬂﬁy( X iGua ) (A %) S(xéx) d

wH o | )fff(X)%( XY+ A9 % )

=1 f+f3j(x) J§(><é't) f/
& e A O] 1) A0h Y o

-1 { L(0t)sinh&7 ( } 8M, (L 1) sinh/g(L )}‘
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I A CEE CRECR R
+Ja':lﬁ/;(x, )91% +2jl(x)g|2u(xiz’t) {'é"x(l/sz,t) dldx
T gl e §

3.3. Consolidated form of Equations

Matrix form of systen of equations for boundary nodes ixe.=(0,L), k=(LN),

and domain nodes i.e =(h,,2h,,3h,,...(N -3 h) k=(2,3..N -3, is given

as follows
¢ HI WD WY 0 o0 0 e
é x y eu |
211 bb bb bb bb bb bb bb bd bd bd 4 :
Znyu-FPyxu Hy’y nyyYnyyH xWYHxWY qu y 0 nyyy wa ':‘Y:’:
, bb bb bb M )
é Hyyu Hyyy H 5y 0 0 0 0 0 %Yt; :
e 0 P 0 He> 0 b 0 0w
A | |
g Hu HE H & 0 | H & H 0 qu’
4 1 db db db db db db db dd dd dd dd ad lyd |
gnyu"'Pyxu Hyy nyyy-nyy nyw+wa wa 'ny I H xx,yp'xyyypxwy'l‘yz i
A db db db dd dd 1Y, 1
g Hyyu Hyyy H VY 0 H y H y ¥y I 0 Iwﬁ i
g o P 0 HE® 0 R 0 R

A~ bb

gow O 0 0 €0 |

éo Gyl 0 0 %0 :

o 0 G, o ew it o

€o o0 0 G M 1e0
= w VLR t '

@Guu 0 0 0 iMxy] 'l‘O i

g0 o, o o fouf  Tof

€0 0o G* 0 709

é Yy ¥y S

Led |
g0 0 0 G” i

A qbb b
es, S, O Y 80

€ o o uft
gsyxu Sl;xy 0 g’xw gxyxy 0 Oﬂ’:‘YE i
b d .
é 0 0 )Y 0 0 gyy Ou’l\yg
é ulb
>0 0 0 0 0 0 U!W
|

¢ € 0 oylvyl
20 0 s, o o &, oyl¥,i

|
|
|
i
I (83)
i
i
0 0 0 %8"7""

0
0
0
S
és® s 0 0 g £ 0 ouju |
S
¢ 0
§ s

0 0 0
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In the above system of equatipsantities related to boundary and domain nodes
are specified bythe use of superscripts and d. In the coefficient matrices
containing double superscripts, first one indicates the source or fixed point and
second indicates the field poimifferent entries otoefficient matrices in Eq. (33

are submatrices for e.gP and S are submatrices and arproduced by domain
integralsgiven in Appendix A Qx, My, My and Ny are transverse shear force,
twisting moment, bending moment and axial force respectivabading vector

zero matrixand identity matrix are denoteg b 0 andl. H andG submatrices are

given in Appendix B.

3.4. Load Vector

Load vector in Eg. (83is evaluated depending on the type of the applied load. In
case of distributed load on LCB, load integral in EfPd{ gives the following

expression
€ x2+(L -x° |
| |
12 &l | T x2+(L -9
fo= L P o= Q0w -y (84)
4Pss il 4Pss | {
1 |
| \

=P E°% —
2Aes (%, ~ L. 2Acs

T
—> =) ——>—> (D

|
].
| (89
|
1

Time derivatives ofinknownquantitiesin Eg (83 are approximated via Houbolt
method[30]. In this method, temporal variah of a parameter is estimated from
th2 tot = ty41via cubic Lagrange interpolatioBasel on this method, approximation

of first andsecond order derivatigean be pdormed as follows

. 1
yn+1 = 6_u{11yn 4 -18yn 9yn T 2-yn 2} (86)
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1
yn+1=¥{2yn1 5Y, 4Y,: ¥ (87)

Eq. (83) is implemented in MATLABor reveaing the dynamic response of LCB.
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5.1. Validation

In order to validate the numerical results obtaifredh D-BEM, undampedorced
vibration response an homogeneoussotropic Timoshenko beam is compared to
analytical solutions developed by Garcia eal. [3]], for a simply supported

homogeneoussotropic beam Following are thematerial and geometrigroperties

CHAPTER 4

NUMERICAL RESULTS

of the homogeneousotropicheam

Tablel: Properties of homogeneous Timoshenko beam

No. Property Value Units
1 E 50 [GPa]
2 G 20.833 [GPa]
3 Y 0.2 -

4 r 2500 [kg/m?]
5 ks 5/6 -

6 L 200 [mm]
7 b 20 [mm]
8 h 16 [mm]
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Dynamic loads, used in comparison, are given as follows

q="Pd(x -x) H({) Pointstepforce (88a)
q="Pd(x -x)sin( n) PointHarmonicforce (88b)
q=q,H(t) Uniformly Distributed Stegorce (88c)
q=Pd(x -%) {1 Impulseforce (88d)

Vari at i on sdaeflectionw(il/p, § and pirheepinned boundary condition
areusedfor comparing BBEM results withanalyticalsolutions.
5.1.1. Analytical Solutions

For a simply supported homogeneasstropicbeam, following form ofanalytical

solutions is assumed by employing separation of variables tecHtique

e} o

wW(x9)= & W t)singe”%( (8%)
yi(xt)= @ QY Cosger%( (8%)

Fdlowing expression is found fod, (t) [1, 31]

2

£ . e 3 5 2 01
w(9=Fria,() €eF® § ko @) b5 -
T e ¢L = o KGA&”T}O
¢

The termQ,,(t) is second order time derivative @,,(t) which is dependent on
the type of dynamic load acting oretktructure. For uniformly distributesiepload

q=qH(t), itis given by

&)= E|(ww;1?(L3ﬁ- p&ncod @) - ot ip 5 ) (o)

For concentrated step load=Pd(x -x) H(1), where x, is the point of

application the expression fo,,(t) is as follows
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2P sina? 8

SIH&T
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In case of point harmonic force at= x, and having a frequency= I, the

expression foQ, (t) is given by

Té w, € sin(g,t) sin( ¢) 39
2P(mp) (4 - w ) g 303
o.(9= 2]l De oo L4 Fggams
Lzafl P sm(Wt) i ¢ L
FG P ; r
2 (- @) ey g
For impulsiveexcitation ai = X, andt = 0, the expression fo® (t) [
2P(mp) esin( gt) sin 4 @ &mpx, & &1
%(1)= cart § g, d 2FL Ty o, (04)
0
where
=& -4 (95)
=V & t 4 (950)
and
a E &np %
rA+ A 4 @ g
an= c Bl - (96)
2arl 0
%G ¢
2 E &p ) , A& E ’ I@,O4
(raf+2( m)( Wed +— S Q1) 1
bm:\/ G k.G G L £ (?kj@ % (96b)
2601/’2| 0
% 9
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5.1.2. D-BEM and Analytical solution comparison

5.1.2.1. Distributed Step Load

Comparison of resudt obtained from BBEM formulation with analytcal solution

is shown in Fig. 5Discretization scheme, time stepthe analysiand magnitude

of the uniformly distibuted step load is given as follows

Table2: Distributed step loadnalysisvalidationparangters

No.

Parameter

Value

1

Number of cells

16

Time Step

4(10°) [s]

Load Magnitude

5 [KN/m]

w(L/2) [mm]

Excellent agreement is observed betweerBEM and closed form solution

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1:

= Analytical
O D-BEM 7

t [ms]

Figure5: Response Comparison in case of Distributed Step load

reflecting the high degree of accuracy achieved HHM.
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5.1.2.2. Concentrated Step Load

Fig. 6 shows the comparison between the resulaiobtd from DBEM formulation
and analytical solutiaNumber of cellstime stepof the analysignd magnitude of

theconcentratedtep load is given as follows

Table3: Concentrated Step load analysaidationparameters

No. Parameter Value
1 Number of cells 16
2 Time Step 4(10°) [s]
3 Load Magnitude 0.5 [kN]
0.5 .

= Analytical
O D-BEM

o
~

o
w

O
(N

w(L/2) [mm]

0.1

t [ms]
Figure6: Response comparison in case of Concentrated Step load

Perfect agreement is observed between theBEM and analytical solution

indicatingthe high degree of accuracy achieved bBEM.
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5.1.2.3. Concentrated Harmonic Load

For harmonic load, amparison between the resulobtained from BBEM
formulationandanalyical solution is shown in Fig.. Time step number of cells

frequency and egnitwe of the harmonic load agiven as follows

Table4: Concentrated harmonic load analysis validation parameters

No. Parameter Value
1 Number of cells 16
2 Time Step 4(10°) [s]
3 Load Magnitude 1 [KN]
4 Load Frequency 500 [rad/$
06 T T T
: | y Analytical
O D-BEM
0.4
—_ 0.2
S
E
& 06
N
N
3
-0.2
-0.4
_0.6 1 | | |
0 10 20 30 40 50
t [ms]

Figure7: Response Comparison in case of Concentrated Harmonic load

Closeagreement observed between th8BM andanalyticalsolutionindicates the
accuracy achieved by the developed technique.
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5.1.2.4. Impulsive Load

Fig. 8shows tle comparison of time variation of transverse deflection obtained via
D-BEM and analytical solutiariTable 5contains thesalues ofanalysisparameters

used for obtaining the dynamic response UWBEM.

Table5: Impulse load analysialidation parameters

No. Parameter Value
1 Number of cells 64
2 Time Step 1(10°) [s]
3 Load Magnitude 0.5 [N.s]
1.5 .
Analytical
" : ; { : ‘ % D-BEM
1 2 X y s
— 0.5
£
£
8 0
N
-0.5r
“1F I .
b | l
_1 .5 L 1 | 1
0 2 4 6 8 10

t [ms]
Figure8: Response Comparison in case of Impulse load

Comparisonndicates that results obtained froraAHEM are highly accurate.
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5.2. ConvergenceStudy and Parametric Analyses

General geometry of LCBexamined in parametric analgses shown in Fig. .1
AS4/3501 graphitepoxy is used as reial for constituent laminas whose

orthotropicpropertiesare given below

Table 6: Material properties of AS4/3501 GraphiEpoxy[20]

No. Property Value Units
1 E, 144.8 [GPa]
2 E,, 9.65 [GPa]
3 G, 4.14 [GPa]
4 G, 4.14 [GPa]
5 G,, 3.45 [GPa]
6 312 0.33 -

7 r 1389.23 [kg/m?]

Two different groups of LCBs are studied, which are named as1.@id LCB2.
Overall dimensions of both LCBare same andtheir length, width and total
thicknessare equal to 200 mm, 20 mm and 16 mm respectivielgjor difference
between the two LCBs is lamina thickness. A total of four laminas, having a
thickness of 4 mneach are used in constructing LEB On he other hand, LCR
contains eight laminas having same thickness of 2 Eexh type is further sub
divided into four configurations and a total of eight configurations are analyzed in
the parametric analyses. Different configurations of LCBs arise fromatioa in
orientation of fiber angle and stacking arrangement of lamiNasiation of
transverse deflection of midpoint and normal axial stress at midpoint of top surface
of all configurations with time, arestudied under thaction of time based loads.

Results are compared, under same load conditions, to assess the performance of all
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configurations.Details of the configurationsf LCB-1 and LCB2 examinedin

parametric analyseme given in Table 7 and &spectively

Table7: LCB-1 Configurations

No. Configuration Sequence Notation
1 Crossply [0790], CP1
2 Symmetric crosply [0790] CP2
3 Symmetric Angleply [45/- 49, AP1
4 Anti-symmetric Angleply [45/- 49, AP2

Table8: LCB-2 Configurations

No. Configuration Sequence Notation
1 Crossply [079q, CP3
2 Symmetric crosply [0/90/0794, CP4
3 Symmetric Angleply [45/- 45/ 45/ -4% AP3
4 Anti-symmetric Angleply [451- 434 AP4

5.2.1. Convergence Analyss

In order to investigate the convergence characteristics -8EM, undamped
dynamic response of configuration CP2 is analyzed under the adtiomformly
distributed step lad of magnitudel, = 50 kN/m. Fig. 9 shows the responsg(L/2,
t) of LCB-CP2 b time dependenibad M denotes the number of cells used for

discretizationTime step is specified as 1@ for all values oM.
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0.5

t [ms]
Figure9: Convergene Study Distributed Step loatbr CP2

Percentage differenc@D) valuesbetween deflection valugat certain points in
time, under different values d¥l are given in Tabl®. PD values between two
consecutive cell countaat same timeare used to chécif the convergence is
established. lis calculated as follows

_lw(M=4) -w(M 2 |*100

PD=
lw(M =2)| ®7
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Table9: Convergenc&tudy Distributed Step loatbr CP2

M (Number of cells)

t[s]
1 2 4 8 16
0,005 w= 0,06 w=1,08 w=0,36 w=0,53 w=0,54
PD = 1639 PD = 66,2 PD=46,6, PD=24
0,01 w=0,11 w=2,51 w=1,14 w=161 w=1,64
PD = 2196 PD=54,4 PD=40,9 PD=1,97
0,015 w=0,15 w=1,88 w=2,01 w=253 w=2,56
PD= 1120 PD=6,67 PD=26,3 PD=1,1
0,02 w=0,19 w=0,35 w=2,6 w=27 w=2,69
PD=81,6 PD =626 PD=4,8 PD=0,47
0,025 w=0,24 w= 0,54 w= 2,67 w=2,07 w=2,01
PD =128 PD =395 PD=22,1 PD=31
0,03 w=0,27 w= 2,03 w=2.2 w=106 w=0,98
PD = 640 PD=10,6 PD=52,3 PD=7,57
0,035 w=0,31 w= 2,26 w=15 w=0,34 w=0,30
PD =630 PD=33,4 PD=77,6 PD=115
0,04 w=0,3 w=0,92 w=0,76 w=0,321 w=0,37
PD = 166,7 PD=16,2 PD=56,9 PD=13,7

It is shown in Fig. @nd Table 3hat D-BEM results cowergeatM = 16.
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In the casef LCB-1-CP2 subjected tonpulsive load oimagnitudeP = 0.5 N.s it
has been shown in Fig. HEdhd Table 10thatD-BEM establishes convergence when
the time step is equal to #8 and nunber of cells is specified as 64

Figure10: Convergence Studyimpulsive loador CP2
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