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Prof. Dr. Ayşen Dener Akkaya
Head of Department, Statistics

Assoc. Prof. Dr. Ceylan Yozgatlıgil
Supervisor, Statistics Department, METU

Examining Committee Members:

Prof. Dr. İnci Batmaz
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ABSTRACT

PERFORMANCE OF ENSEMBLE FORECASTING TOOLS FOR
ANALYSIS TURKISH CONSUMER PRICE INDEX

Aydemir, Petek

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceylan Yozgatlıgil

August 2018, 83 pages

Major challenge in time series analysis is to get reasonably accurate forecasts of

the future data from the analysis of the previous records. Accurate forecasting of

inflation has great importance in the market economies, the policymakers and the

monetary system since the inflation rate determines the cost and standard of living.

Also, it affects the decision on investments. In Turkey, the inflation rate is mea-

sured by the consumer price index (CPI). There exist many methods to predict the

future values of the CPI. In this study, six individual models were applied to fore-

cast the Turkish CPI. Those are Seasonal Autoregressive Integrated Moving Average

Model with Exogeneous variables (SARIMAX), Holt-Winters Exponential Smooth-

ing, Trigonometric Exponential Smoothing State Space model with Box-Cox trans-

formation, ARMA errors, Trend and Seasonal Components (TBATS) model, Arti-

ficial Neural Network (ANN), Theta Model, Seasonal Trend Decomposition with

LOESS (STL). Then, ensemble model was constructed to improve the forecast perfor-

mance. Ensemble model is combination of the several forecasting models to improve
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the performance of the forecast. The forecast accuracy of all models is evaluated by

the Root Mean Square Error and Mean Absolute Percentage Error. Our findings show

that SARIMAX(4, 1, 4)(2, 0, 1)12 and ensemble model composed of auto.arima, and

neural network produce the best forecasts for 12 month Turkish CPI.

Keywords: Time Series Analysis, Forecasting Inflation, Ensemble Model

vi



ÖZ

TÜKETİCİ FİYAT ENDEKSİ ANALİZİ İÇİN TOPLU ÖNGÖRÜ
ARAÇLARININ PERFORMANSI

Aydemir, Petek

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceylan Yozgatlıgil

Ağustos 2018, 83 sayfa

Zaman serileri analizindeki en büyük zorluk, geçmiş değerleri kullanarak gelecek

değerlere ait öngörüleri mümkün olduğunca doğru bir şekilde elde etmektir. Enflas-

yonun doğru öngörülmesi, piyasa ekonomilerinde, politika yapıcılarda ve parasal sis-

temde büyük bir öneme sahiptir, çünkü enflasyon oranı insanların yaşam maliyetini

ve standardını belirler. Ayrıca, yatırımcıların kararlarını da etkiler. Türkiye’de enf-

lasyon oranı tüketici fiyat endeksi (TÜFE) ile ölçülmektedir. Bu çalışmada TÜFE’nin

öngörü değerlerini elde etmek için altı bireysel modele başvurulmuştur. Bunlar, dışsal

değişkenli mevsimsel otoregresif tamamlanmış hareketli ortalama (SARIMAX) mo-

deli, Holt-Winters Üstel Düzgünleştirme, TBATS modeli, Yapay Sinir Ağları mo-

deli, Theta Modeli ve STL modelidir. Daha sonra, TÜFE’nin öngörü performansını

artırmak amacıyla birkaç metodun birleştirilmesi ile elde edilen topluluk modeli kul-

lanılmıştır. Kullanılan bireysel modellerin ve topluluk modelinin öngörü performansı

Hata Kareler Ortalamasının Kare Kökü ve Mutlak Hata Ortalama Yüzdesi kullanılarak
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değerlendirildi. Bulgularımız, SARIMAX(4, 1, 4)(2, 0, 1)12 modeli ve yapay sinir

ağları ve auto.arima’dan oluşan topluluk modeli 12 aylık TÜFE için en iyi öngörüleri

elde ettiğini gösteriyor.

Anahtar Kelimeler: Zaman Serisi Analizi, Enflasyon Öngörüsü, Topluluk Modeli
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Hüseyin Atamtürk and Ebru Şevik who do not leave me alone during the thesis period.

Finally, I want to express my grateful thanks to my dear mother Gülcan Aydemir

and my dear father Yıldırım Aydemir who have provided me through endless love,

emotional and unconditional support in my life.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 LITERATURE REVIEW ON FORECASTING INFLATION . . . . . 5

2.1 Studies on Inflation Forecast in Turkey . . . . . . . . . . . . 5

2.2 Studies on Inflation Forecast in the World . . . . . . . . . . . 8

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



3.1 Seasonal Autoregressive Integrated Moving Average Model

with the Exogeneous Variables (SARIMAX) . . . . . . . . . 15

3.1.1 Diagnostics of the SARIMAX Model . . . . . . . 18

3.2 Holt Winters Exponential Smoothing Method . . . . . . . . 18

3.2.1 Multiplicative Seasonality . . . . . . . . . . . . . 19

3.2.2 Additive Seasonality . . . . . . . . . . . . . . . . 20

3.3 TBATS Model . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Artificial Neural Networks (ANNs) . . . . . . . . . . . . . . 23

3.4.1 Biological Neural Network Structure . . . . . . . . 23

3.4.2 Artificial Neural Network Structure . . . . . . . . 24

3.4.3 Feed-forward Neural Networks . . . . . . . . . . . 25

3.4.4 Recurrent Neural Networks . . . . . . . . . . . . . 26

3.5 Theta Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 STL Decomposition Method . . . . . . . . . . . . . . . . . 28

3.7 Ensemble Model . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7.1 Simple average . . . . . . . . . . . . . . . . . . . 31

3.7.2 Cross Validated Errors . . . . . . . . . . . . . . . 32

3.7.3 The Proposed Ensemble Model Methodology . . . 33

xii



3.8 Measuring Forecast Performance . . . . . . . . . . . . . . . 33

3.8.1 Scale-Dependent Errors . . . . . . . . . . . . . . . 34

3.8.2 Percentage Errors . . . . . . . . . . . . . . . . . . 34

4 EMPIRICAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Pre-processing of the Data . . . . . . . . . . . . . . . . . . . 38

4.2.1 Exploratory Data Analysis . . . . . . . . . . . . . 38

4.2.2 Variance Stabilization and Stationarity Condition 40

4.2.3 Exogeneous Variables . . . . . . . . . . . . . . . 42

4.3 Forecasting Methods . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 SARIMAX Model . . . . . . . . . . . . . . . . . 44

4.3.2 Additive Holt Winters with Additive Error . . . . . 49

4.3.3 TBATS Forecast with Regressors . . . . . . . . . . 52

4.3.4 Neural Network Autoregressive (NNAR) Forecast . 53

4.3.5 Theta Forecast . . . . . . . . . . . . . . . . . . . 55

4.3.6 STL Decomposition Forecast . . . . . . . . . . . . 57

4.4 Ensemble Model . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



4.4.1 Ensemble Model with auto.arima, HW, TBATS,

NNAR, Theta and STL Models . . . . . . . . . . 59

4.4.2 Ensemble Model with auto arima, Theta, NNAR,

STL and TBATS . . . . . . . . . . . . . . . . . . 61

4.4.3 Ensemble Model with auto arima, Theta, NNAR

and STL . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.4 Ensemble Model with auto.arima, NNAR and Theta 63

4.4.5 Ensemble Model with auto.arima and NNAR . . . 64

4.5 Assessment of Forecast Performances of All Models . . . . . 66

5 CONCLUSION AND FURTHER RESEARCHES . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

APPENDICES

A APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 Decomposition of the Turkish CPI . . . . . . . . . . . . . . 77

A.2 Time series plots of Exogeneous Variables . . . . . . . . . . 78

A.3 SARIMAX Model with All Parameters and Exogeneous Vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.4 The forecast plot of SARIMAX Model with All Parameters

and Exogeneous Variables . . . . . . . . . . . . . . . . . . . 82

xiv



A.5 Assessment of Forecast Performance of Ensemble model based

on CV error and Ensemble Model with Equal Weight . . . . 83

xv



LIST OF TABLES

TABLES

Table 4.1 Descriptive Statistics of the Consumer Price Index . . . . . . . . . . 39

Table 4.2 The Estimates and Standard Errors of the SARIMAX(4, 1, 4)(2, 0, 1)12 46

Table 4.3 The Forecast Performance of the SARIMAX(4, 1, 4)(2, 0, 1)12 . . 47

Table 4.4 The Estimates and Standard Errors of the SARIMAX(3, 1, 3)(0, 0, 1)12 48

Table 4.5 The Forecast Performance of the SARIMAX(3, 1, 3)(0, 0, 1)12 . . 49

Table 4.6 Smoothing Parameters of the HW Model . . . . . . . . . . . . . . . 50

Table 4.7 Coefficients of the HW Model . . . . . . . . . . . . . . . . . . . . 50

Table 4.8 The Forecast Performance of the Holt Winters Method . . . . . . . 51

Table 4.9 The Forecast Performance of the TBATS Method . . . . . . . . . . 53

Table 4.10 The Forecast Performance of the NNAR Model . . . . . . . . . . . 55

Table 4.11 The Forecast Performance of the Theta Method . . . . . . . . . . . 56

Table 4.12 The Forecast Performance of the STL Method . . . . . . . . . . . . 58

Table 4.13 The Forecast Performance of the Ensemble Model based on CV error 60

Table 4.14 The Forecast Performance of the Ensemble Model based on CV error 62

Table 4.15 The Forecast Performance of the Ensemble Model based on CV error 62

Table 4.16 The Forecast Performance of the Ensemble Model . . . . . . . . . . 64

xvi



Table 4.17 The Forecast Performance of the Ensemble Model based on CV error 65

Table 4.18 The RMSEs and MAPEs for All Models . . . . . . . . . . . . . . . 67

Table A.1 The Coefficient of the SARIMAX(4, 1, 4)(2, 0, 1)12 . . . . . . . . 81

Table A.2 The RMSEs and MAPEs for Ensemble Model based on CV Error . . 83

Table A.3 The RMSEs and MAPEs for Ensemble Model with Equal Weight . . 83

xvii



LIST OF FIGURES

FIGURES

Figure 3.1 The time series plot of Additive and Multiplicative Seasonality . . 19

Figure 3.2 Structure of biological neural network [32] . . . . . . . . . . . . . 23

Figure 3.3 The General Concept of Artificial Neural Network . . . . . . . . . 24

Figure 3.4 Feed-forward Neural Network with Single Hidden Layer . . . . . . 25

Figure 3.5 Recurrent Neural Network with Single Hidden Layer . . . . . . . . 26

Figure 4.1 The overview of consumer price index . . . . . . . . . . . . . . . 39

Figure 4.2 The sACF and sPACF of The Turkish CPI . . . . . . . . . . . . . 40

Figure 4.3 The overview of differenced consumer price index data . . . . . . . 41

Figure 4.4 The CCF between Turkish CPI and each exogeneous variables . . . 43

Figure 4.5 The sACF and sPACF of the differenced series . . . . . . . . . . . 45

Figure 4.6 The SARIMAX forecasts of the CPI giving the best forecasts . . . 47

Figure 4.7 The SARIMAX forecasts of the CPI given the best train set perfor-

mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.8 The Holt Winters forecasts of the CPI . . . . . . . . . . . . . . . . 51

Figure 4.9 The TBATS forecasts of the CPI . . . . . . . . . . . . . . . . . . . 52

Figure 4.10 The ANN forecast of the CPI . . . . . . . . . . . . . . . . . . . . 54

xviii



Figure 4.11 The Theta model’s forecasts of the CPI . . . . . . . . . . . . . . . 56

Figure 4.12 The STL forecast of the CPI . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.13 Ensemble Model of auto.arima, HW, TBATS, NNAR, Theta and

STL Models with CV error . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.14 Ensemble Model of auto.arima, TBATS, NNAR, Theta and STL

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.15 Ensemble Model of auto.arima, NNAR, Theta and STL Methods . 63

Figure 4.16 Ensemble Model of auto.arima, Theta and NNAR Methods . . . . 64

Figure 4.17 Ensemble Model of auto.arima and NNAR Methods . . . . . . . . 65

Figure A.1 STL Decomposition of the Turkish CPI . . . . . . . . . . . . . . . 77

Figure A.2 Time Series plot of Producer Price Index . . . . . . . . . . . . . . 78

Figure A.3 Time Series Plot of Unemployment rate . . . . . . . . . . . . . . . 78

Figure A.4 Time Series Plot of Reel Effective Exchange Rate . . . . . . . . . 79

Figure A.5 Time Series Plot of Deposit Interest . . . . . . . . . . . . . . . . . 79

Figure A.6 Time Series Plot of Export Unit Value Index . . . . . . . . . . . . 80

Figure A.7 Time Series Plot of Import Unit Value Index . . . . . . . . . . . . 80

Figure A.8 Forecast Plot of SARIMAX(4, 1, 4)(2, 0, 1)12 with all exogeneous

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xix



LIST OF ABBREVIATIONS

ADF Augmented Dickey Fuller

AIC Akaike Information Criteria

ANN Artifical Neural Network

AR Autoregressive

ARCH Autoregressive Conditional Heteroscedasticity

ARFIMA Autoregressive Fractionally Integrated Moving Average

ARIMA Autoregressive Integrated Moving Average

BIC Bayesian Information Criteria

BMA Bayesian Model Average

BVAR Bayesian Vector Autoregressive

CBRT Central Bank Of Republic Of Turkey

CCF Cross Correlation Function

CPI Consumer Price Index

CumRAE Cumulative Relative Absolute Error

CV Cross Validation

DF Dickey Fuller

DMA Dynamic Model Averaging

DMS Dynamic Model Selection

ETS Exponential Smoothing

FAVAR Factor Augmented VAR

GARCH Generalized Autoregressive Conditional Heteroscedasticity

HEGY Hylleberg, Engle, Granger, and Yoo

xx



HW Holt Winters

HWT Taylors Adaptation of Holt Winters

IPG Industrial Production Growth

KPSS Kwiatkowski, Phillips, Schmidt and Shin

LASSO The Least Absolute Shrinkage and Selection Operator

LOESS Locally Weighted Scatterplot Smoothing

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

ME Mean Error

MLE Maximum Likelihood Estimation

MPE Mean Percentage Error

MSE Mean Squared Error

MSFE Mean Squared Forecast Error

NN Neural Network

NNAR Neural Network Autoregressive

OECD Organisation For Economic Cooperation and Development

OLS Ordinary Least Square

PCA Principle Component Analysis

PPI Producer Price Index

PVAR Panel Vector Autoregressive

RMSE Root Mean Squared Error

RW Random Walk

sACF Sample Autocorrelation Function

SARIMA Seasonal Autoregressive Integrated Moving Average

xxi



SARIMAX Seasonal Autoregressive Integrated Moving Average With Ex-

ogeneous Variables

SES Simple Exponential Smoothing

SIC Schwarz Information Criterion

sPACF Sample Partial Autocorrelation Function

STL Seasonal Trend Decomposition with LOESS

SVR Support Vector Regression

TBATS Trigonometric Exponential Smoothing State Space model with

Box-Cox trans-formation, ARMA errors, Trend and Seasonal

Components.

TURKSTAT Turkish Statistical Institute

TVAR Time Varying Parameter VAR

UCM Unobserved Component Model

UCSV Unobserved Component Stochastic Volatility

VAR Vector Autoregressive

xxii



CHAPTER 1

INTRODUCTION

The main objective of time series analysis is to produce accurate forecasts of future

values of the series from the analysis of the past values. Forecasting the future is

the most attractive field for researchers and experts. In today’s world, although there

exist various advanced forecasting tools such as time series models and econometric

models, obtaining precise forecast of time series is challenging task since the series

have some undesirable characteristics which are nonstationarity, seasonality, irregu-

lar fluctuation, cyclical variations and multicollinearity. Moreover, because almost all

countries have undergone the economy policy and structural changes for twenty and

thirty years, the political elements, economic activities and external factors affect the

future values of the target macroeconomic variables. The most widely used macroe-

conomic variable for forecasting is an inflation rate. The inflation rate measures the

changes of general level of prices of services and products, and it determines the cost

and the standard of living. It is an important element for economical activities because

unless it can be brought under control, it may lead to unfair distribution of income and

uncertainity. This uncertainity situation influences the decision of investors. Also, the

inflation rate is determinant for pensions and wage bargaining among employees and

employers. In addition, most of the decision makers and the financial institutes make

choice according to the inflation rate. Predictions provide clarity and confidence in

an economy, and the decision based on these predictions is important and efficient

factor to earn profit to overcome bankruptcy. Hence, forecasting inflation is crucial

issue for market economies, policymakers and monetary system in Turkey. There

exist several studies on modelling inflation in Turkey. The most common studies on
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inflation are done by the Central Bank of the Republic of Turkey (CBRT). The main

objective of the CBRT is to maintain and achieve price stability via an inflation tar-

geting regime. The inflation targeting is a type of monetary policy that Central Banks

determine acceptable inflation rate for a given period by taking into consideration the

general economical variables and their realizations, and they conduct their monetary

systems according to these regimes.

Many economists and statisticians try to develop a method for forecasting inflation.

Some of them apply econometric models such as Phillips curve. The others imple-

ment time series techniques which are univariate seasonal autoregressive integrated

moving average (SARIMA) model, vector autoregressive (VAR) model, Bayesian

VAR model and machine learning techniques like artificial neural network (ANN)

and support vector regression (SVR). Apart from econometric models, time series

models and machine learning techniques, ensemble model which has been trendy in

recent years is alternative approach for forecasting variables. Ensemble model is a

method that combines the forecasts obtained by several models. The idea of com-

bination forecasts was originally proposed by Bates and Granger [4]. Their findings

showed that combined forecasts produced smaller error than any of the individual

forecasts. The advantage of ensemble model is that the best possible combination re-

duces the forecast error and the risk of the forecasting failure. Because of the structure

of the target variables and the external factors, individual model may not be enough to

predict their future values, and the effect of more than one model on forecast values

may be significant. In contrast, in ensemble model, assigning optimal weights is a

problematic issue. Although there exist many studies on decision of optimal weights,

there are several methods to find optimal weights. Hence, it may need time to obtain

optimal weights for accurate forecasting.

Despites the advantages and drawbacks of the ensemble model, many researchers

have been interested in ensemble model building for forecasting the target variable.

For instance, Günay [23] did the study on forecasting Turkish inflation and industrial

production with individual models and combined model. He displays that the individ-

ual models obtain better results than the combined models for forecasting Turkish in-
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flation rate. Hibon and Evgeniou [25] did scientific study on whether forecasts should

be combined or not. Their findings show that the best potential combination is not

always better than the best potential individual forecasts. It depends on the selected

methods and their combinations. Similarly, Ang et al. [2] examines the individual

models and ensemble model for forecasting inflation rate in the U.S. Their compu-

tational analysis concludes that ensemble model does not give superior performance

than the individual models.

Terui and Van Dijk [51] investigated the combined forecasts of the nonlinear model.

It is indicated that the ensemble model performs well for forecasting some US and

Canadian macroeconomic variables. Öğünç et al. [38] studied on short time fore-

cast of Turkish inflation with model of forecast combination declares that the model

which integrates more than one individual methods gives outstanding performance in

comparison to the individual methods. Similarly, Huong et al. [27] built ensemble

model for forecasting consumer price index (CPI). They indicate that the ensemble

model has the lowest MSE for in-sample and out-of-sample forecast performance.

Ouyang and Yin [41] did a study on multi-step forecasting of time series with ensem-

ble model. It is concluded that the ensemble model has higher accuracy than the used

separate methods after many experiments on real foreign exchange rate and weather

temperature.

As it is understood from the literature review on the ensemble models, some of the

researchers find that the ensemble models have the best forecast performance. In

contrast, the others show that the individual methods have the lowest error for fore-

casting the target variables. Therefore, in this study, our aims are to produce accurate

forecasts of the Turkish inflation rate by modelling the CPI and to evaluate the fore-

cast performance of the ensemble model for Turkish inflation rate. In this approach,

we construct individual models and the ensemble model. The individual models are

seasonal autoregressive integrated moving average with exogeneous vairables (SARI-

MAX), HW Exponential Smoothing model, Trigonometric Exponential Smoothing

State Space model with Box-Cox transformation, ARMA errors, Trend and Seasonal

Components (TBATS), Artificial Neural Network (ANN), Theta model and Seasonal

3



Trend Decomposition based on LOESS (STL). Later, the ensemble model is built

by using "forecastHybrid" package in R studio with version 1.1.383 for forecasting

Turkish inflation rate. The ensemble model is composed of auto.arima, exponential

smoothing, theta, TBATS, neural network and STL models. The Root Mean Squared

Error (RMSE) and the Mean Absolute Percentage Error (MAPE) of all models are

computed to assess the forecast performance of the models. We examine whether

the performance of the ensemble model is higher than the individual models or not.

Due to the fact that the inflation rate is measured by the CPI in Turkey, we use Turkish

CPI series between 2005 and 2016 received from Turkish Statistical Institute (TURK-

STAT). Some exogeneous variables are added into the models to enhance the forecast

performance. These exogeneous variables are Turkish producer price index (PPI),

seasonally adjusted monthly Turkish unemployment rate, monthly Turkish deposit

interest, monthly real effective exchange rate of Turkey, monthly export unit value in-

dex of Turkey and monthly import unit value index of Turkey between January 2005

and December 2016 received from TURKSTAT.

The rest of this thesis is designed as follows: The Chapter 2 reviews the literature

on forecasting inflation. The Chapter 3 describes the univariate time series models,

nonlinear models and ensemble model. The Chapter 4 contains empirical analysis of

Turkish CPI data with individual models and ensemble model and comparison out-

of-sample performance of all models. Finally, the Chapter 5 includes conclusion and

further discussion.
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CHAPTER 2

LITERATURE REVIEW ON FORECASTING INFLATION

In this section, we will review the studies on forecasting inflation rate and investigate

the types of methods to predict the future values of the inflation rate. The litera-

ture consists of two part. Firstly, the studies on the inflation rate in Turkey will be

examined. Then, inflation forecast studies in the world will be reviewed.

2.1 Studies on Inflation Forecast in Turkey

The first main article on the inflation forecasts in Turkey is proposed by Öğünç et al.

[38]. Öğünç et al. employ the CPI data without tobacco and unprocessed food for

short period ahead inflation forecasts. They use series of methods which are univari-

ate techniques, nonlinear models, Phillips curve motivated time-varying parameter

method, approaches based on decomposition, Vector Auto-regressive (VAR) process,

Bayesian VAR process (BVAR), dynamic factor analysis. These methods are ap-

plied to estimate the CPI and obtain short period inflation forecast in Turkey. They

conclude that the models with more economic activities predominate the benchmark

random walk and the performance of the first two quarters ahead forecasts are aver-

agely 30% better. Later, they integrate their forecasts by assigning weights to each

model in order to enhance the predictive performance of the short period forecasts.

The overall result shows that BVAR model and combinations models with RMSE

weight more accurately predict the future values of inflation.

The newest study on inflation forecast in Turkey is proposed by Günay [23]. Günay
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implements two methods which are forecast combination and factor models in the

article in order to forecast the industrial production growth (IPG) and core inflation in

Turkey. The factor models are suitable for large data sets to obtain reliable forecasts.

In factor models, information of the data is learned by several underlying factors, then

these factors are utilized in the forecasting procedure. He applys principal component

analysis (PCA) to estimate the factors. He analyzes the influences of the factor num-

bers, aggregation level of data, factor extraction technique on the forecast accuracy.

His results indicate that best forecast performance hinges on the variable types that

he wants to be forecasted, time period and forecast horizons. When he compares both

models in terms of forecast performance, factor models outperform the combination

models.

Soybilgen and Yazgan [47] implement the auto-regressive (AR) model to predict the

inflation in Turkey. The AR model is compared with the inflation expectation of

CBRT which is based on the survey of decision makers and experts with respect to

root mean square errors (RMSEs). They find that the expectation of current infla-

tion gives more accurate results than the AR model, whereas; the AR model more

accurately predicts the two and twelve months step ahead forecasts of the inflation.

Önder [40] studies on forecasting inflation. He compares several forecasting tech-

niques for prediction of future values of inflation in Turkey. She suggests most widely

used method, the Phillips curve for five step ahead forecasts of the inflation in Turkey.

Specifically, the Phillips curve is an economical analysis which shows the negative re-

lationship between the expectation of inflation and past values of the unemployment

rate. She also applies the univariate ARIMA, the vector error correction models, the

vector autoregressive and naive no-change models to be able to make comparison

with the Phillips curve for five-step-ahead forecast of inflation. The results of her em-

pirical works indicate that according to RMSE and MAE, the Phillips curve provides

more accurate forecasts based on some macroeconomic activities, namely, interest

rates and money in Turkey.

Saz [45] proposes the use of the seasonal autoregressive integrated moving average

(SARIMA) models for inflation forecast in Turkey. In the forecasting procedure,
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he firstly applies the stationarity test and seasonality test for inflation series from

2003 to 2009 in Turkey. He shows that Turkish inflation rate series have both deter-

ministic and stochastic seasonality. The SARIMA model identification and estima-

tion procedures are conducted via the Box-Jenkins methodology, Akaike information

criterion (AIC) and Schwarz/Bayesian information criterion (SIC/BIC) after station-

arity condition is satisfied. His suggested SARIMA model is selected by step-by-

step procedure of the Hyndman-Khandakar algorithm. The best forecast model is

SARIMA(0, 0, 0)(1, 1, 1)12 for inflation rates in Turkey.

Domaç [18] focuses on three models; monetary models, Phillips curve and mark-

up models. According to monetary models, the inflation is virtually monetary phe-

nomenon. According to mark-up models, the price levels are calculated by given

mark-up and costs. In model estimation part done by training set of the inflation,

He adds two dummy variables to clarify the sharp rise in inflation.The forecasts of

the inflation in Turkey are obtained from the estimated model for three techniques.

The RMSE, the cumulative relative absolute error, mean absolute error (MAE), and

Theil’s Inequality Coefficient measures of the three models are evaluated. He finds

that monetary models and the Phillips curve have higher out of sample predictive

performance than the mark-up models. Therefore, these findings show that Phillips

curve enlarged with money models and exchange rates has a quite effective approach

for Turkish inflation rates forecasts.

Çatık and Karaçuka [10] study on forecasting Turkish inflation. Monthly seasonally

adjusted Turkish CPI series are used for forecasting inflation. The used forecasting

techniques are artificial neural network (ANN) with backpropagation technique and

unobserved components models (UCM) and linear time series models such as AR-

FIMA, ARIMA, random walk without drift models and fractionally integrated gen-

eralized autoregressive conditional heteroscedasticity (GARCH) model. The forecast

performance of both models are evaluated with respect to dynamic and static which

are multi-step-ahead forecasts and one-step-ahead forecast respectively. According to

MAE, RMSE and Theil’s U statistics for each model, the linear models are more ac-

curate forecasting tools for short term. However, ANN and UCM give more accurate
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forecasts for long term period.

2.2 Studies on Inflation Forecast in the World

Huong et al. [27] suggest a way of building an ensemble model for forecasting CPI

in order to improve the predictive performance. The proposed ensemble model is a

hybrid model of ANN with assigned weights for forecasting CPI of Spain and OECD

countries. They construct a set of M neural networks consisting same output neu-

rons, input neurons and hidden neurons. However, the weights of each neural net-

work model are different. Then, M individual neural network models are combined

according to assigned weights. In order to optimize the performance of the ANN

ensemble model, multi-objective evolutionary algorithm is implemented. They split

the data into train and test set to evaluate the forecast performance of the ensemble

model. Comparing the ARIMA, ANN and ensemble model, the least MSE for train

and test set of CPI belongs to proposed ensemble model.

McAdam and McNelis [36] propose linear and neural network (NN)-based "thick"

models for prediction of the future values of the inflation based upon formulation of

Phillips curve in the Euro areas, USA and Japan. Thick models stand for forecasts

obtained from trimmed mean of various NN models. Their findings indicate that

thick model has the best bootstrap and "real time" predictive performance for the CPI

in the Euro areas. The success ratio and RMSE values are very close for both linear

and "NN" thick model. Therefore, they conclude that thick model gives accurate

forecasts for CPI like linear models.

Filippo [17] proposes approaches for forecasting CPI inflation in the United States

and Euro Areas. The proposed approaches are Dynamic Model Averaging (DMA)

and Dynamic Model Selection (DMS). According to his findings, DMS model per-

forms better than DMA model, and both DMA and DMS provide more accurate fore-

casts than random walk model. Due to the fact that he uses various sample periods

and diverse forecast horizons, the results of DMA and DMS models are robust and

DMA and DMS provide the best CPI forecasts.
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Stock and Watson [48] studies on forecasting US inflation. They apply generalized

Phillips curve based on aggregate activities instead of the unemployment rate. They

predict 12 month step ahead forecasts of the US inflation. According to the authors,

the Phillips curve plays an important role in short term inflation forecasting, and

Phillips curve is able to define the relation among the future inflation and the cur-

rent economic activities. Their finding indicates that Phillips curve obtains the most

accurate and reliable short term forecast of inflation rate in US based on interest rates,

commodity prices and monetary aggregates.

Wright [55] forecasts inflation in US via Bayesian model average (BMA) model

based on 93 financial and macroeconomic predictors for the period from 1971:Q1 to

2003:Q2. The logic behind BMA is to get forecasts from several models, but which

model is the true model is not known. Hence, the prior probabilities are determined

and used to calculate the posterior probability under the condition which each model

is the correct one. Then, all model forecasts are assigned weights by their posterior

probabilities. His empirical study shows that BMA model has higher forecast perfor-

mance than the simple average the forecasts from other models used in the study.

Ang et al. [2] analyze the forecast power of several alternative techniques for the

prediction US inflation. These techniques are ARIMA process, term structure models,

survey-based measures and regression hinged on real activity indicators. Also, they

investigate forecast combination methods. The forecast accuracy of the used models

are evaluated by RMSE of the each model. Their results indicate that model based

on survey outperforms in terms of obtaining reliable US forecasts, whereas the model

using term structure series has poor forecast performance. The combination methods

of average or medians do not perform better than the survey forecasts.

Reigl [44] considers the inflation rate in Estonia in his analysis. He applies forecasting

using factor models. In the factor augmented vector autoregressive (FAVAR) model

building procedure, the factors are built with PCA and they merge into VAR forecast

method. The results indicate that VAR models integrated factor model outperform

simple univariate AR model. For inflation forecasting, a few number of factors taken

from big datasets are more efficient to forecast. In addition, various factors taken
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from small datasets perform better than the benchmark model, univariate AR process

of order p in order to predict the future values of inflation.

Dees and Günthner [16] study on forecasting inflation by applying a panel vector

autoregressive (PVAR) method. They suggest PVAR model to estimate and pre-

dict the inflation dynamics in services, agricultural, industry and construction sectors

in France, Spain, Italy and Germany. While the inflation series are modelled, real

activity, wages and unemployment at the sectoral level are also taken into account.

According to out-of-sample forecast performance, the PVAR model outperforms au-

toregressive process and random walk with drift model for particularly short term

forecasts. The predictive performance of PVAR model starts to decline for long term

forecast. The proposed model gives reliable forecasts for inflation in the event of

Great Recession.

Garcia et al. [21] apply factor models with main predictors, adaptive the least abso-

lute shrinkage and selection operator (adaLASSO) method, random forests, complete

subset regression with main predictors for forecasting Brazilian inflation which is

measured by CPI in Brazil. Also, they include forecasts obtained by AR process and

random walk. In order to compare the forecast accuracy of each model, they prefer

to use RMSE and MAE. Their findings show that the LASSO and the adaLASSO

model have the smallest forecast errors for one and two step ahead forecasts, while

the complete subset regression model provides more reliable forecasts for more than

two step ahead forecasts of Brazilian inflation. Moreover, they combine all forecasts

by averaging the results. This combination method gives the best forecast for Brazil-

ian inflation. When they implement Bayesian VAR model, their finding shows that

BVAR generates accurate forecasts for short term horizon.

Plakandaras et al. [43] implement one of the machine learning techniques; support

vector regression (SVR) and LASSO in US inflation forecasts based on term struc-

tural and autoregressive models. In addition, ordinary least squares regression and

random walk (RW) models are used as benchmark. They calculate MAPE to make

comparison the predictive performance of each model. After the forecast analysis of

all models, their empirical results conclude that RW has higher MAPE value than the
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other models, the predictive performance of structural and autoregressive models are

similar, irrespective of forecasting terminology. The structural LASSO model pro-

duces the most reliable US inflation forecasts for three month ahead period; whereas,

the autoregressive OLS method has the lowest MAPE values for one month step fore-

cast period.

Omane et al. [39] examine time series methods for prediction of Ghana’s inflation.

In order to evaluate the performance of the models, they split the series into train

sample and validation sample. Train sample is used to build model, and validation

sample is used to assess the predictive performance of the models. The proposed

models are SARIMA and HW based on multiplicative seasonality. The accuracy

measure of validation sample forecasts is calculated using RMSE, MASE, MAE and

MAPE. Their findings emphasize that SARIMA(2, 1, 1)(0, 0, 1)12 model produce

best forecasts compared to HW technique.

Moshiri and Cameron [37] recommend Artificial Neural Network (ANN) model for

prediction of inflation. They make comparison performances of ANN model with

classical time series techniques which are ARIMA process, structural model, VAR

model and BVAR model. RMSE and MAE are preferred to examine whether the

models generate precise forecasts or not. Also, inflation series were splitted into train

and test set for robustness of the models. The authors apply two types of forecasts;

dynamic and static forecasts. In the static forecast, values of lagged response variables

are used. In contrast, in dynamic forecast, previous forecast of response variables is

used. Their empirical results show that for dynamic forecast, all models produce

similar one and three period ahead forecasts and BVAR model performs well for 12

period step ahead forecast of inflation. Moreover, for static forecast, VAR model and

ANN with ARIMA produce close one and three period forecast of inflation and ANN

with ARIMA outperforms for 12 period forecasts of inflation.

Binner et al. [5] apply both nonlinear and linear forecasting approaches in order to

predict Euro inflation. The univariate and multivariate ARIMA processes are pre-

ferred as traditional linear methods and Neural Network (NN) model is implemented

as nonlinear techniques. The main goal of authors is to display how several time series
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forecast techniques compare in forecast accuracy of Euro inflation. Their empirical

results display that the best NN model has superior performance to linear ARIMA

and VAR models for forecasting Euro inflation based on the out of sample MAPE,

RMSE and MAE values.

Lipovina et al. [34] mention the Montenegrin economy structure and internal fac-

tors which affect the Montenegro’s inflation. They test the practicality and utility of

ARIMA models for prediction of Montenegro’s inflation. In the forecasting prepro-

cess, the unit root test is checked by Dickey Fuller (DF) test and the inflation series

have trend-stationarity. Then, AR model of order 1 is implemented to estimate model

and forecast the inflation. It is concluded that ARIMA model based solely on own

past values are not enough to predict the future values of Montenegro’s inflation since

various external conditions affect the inflation rate in Montenegro.

Carlo and Marcal [9] examine different forecasting techniques using aggregated and

disaggregated Brazilian CPI series for 12 month ahead forecasts. Seasonal ARIMA

process estimates the disaggregated models, and SARIMA, Markov switching and

state-space models estimate aggregated models. Test sample performance is assessed

by model confidence set and mean square forecast error (MSFE) for one to 12 month

period. Their findings display that forecasts produced from disaggregated models are

closer to the actual values of the inflation in comparison with forecasts of aggregated

models. In addition, the SARIMA-52 which inflation series are divided into 52 items

had minimum MSFE. The maximum MSFE are calculated in aggregated models that

are SARIMA, state space and Markov switching. Later, they merge the estimated

models to increase the accuracy. The weights are assigned with respect to regression

performance of the estimated models. Their empirical results show that combina-

tion of Markov switching and SARIMA highly improve the prediction performance.

In contrast, combination of disaggregated models does not enhance the forecasting

performance for 12 month ahead.

Mandalinci [35] conducts diverse forecasting exercises to evaluate the test sample

predictive performance of several models including a benchmark AR, ARMA, recur-

sive and rolling Bayesian VAR, unobserved component stochastic volatility (UCSV)
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model, FAVAR model, time varying parameter VAR (TVAR) model, a factor aug-

mented TVAR model and TVAR with Bayesian variable selection model. The study

concentrates upon inflation forecasts in nine developing countries. It is concluded

that the predictive performances of all used models change remarkably across coun-

tries and time. The UCSV model outperforms in considering the countries. However,

when he takes into account time period, the UCSV model has low accuracy for fore-

casting in the period of global financial crisis, and TVAR model has high accuracy

for forecasting at that time.
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CHAPTER 3

METHODOLOGY

In this chapter, the forecasting methodologies will be investigated and introduced.

Forecast is the prediction of the future value of the time series data through the anal-

ysis of the past values of the data. The forecast methods enable to obtain the point

forecast of the variables. In this study, seven forecasting models are implemented.

The first six models are individual models. These models are the SARIMAX, HW

Exponential Smoothing, TBATS, ANN, Theta and STL models. The last model is the

combination of the six models which is called the ensemble model.

3.1 Seasonal Autoregressive Integrated Moving Average Model with the Exo-

geneous Variables (SARIMAX)

In time series analysis, the stationarity property is the most significant assumption

to draw a statistical inference about the structure of the time series. The core idea

behind the stationarity is that the probability laws that the mean, the variance, the co-

variance and the joint distribution of the time series do not change over the time. The

most commonly used stationary process in time series forecasting is Autoregressive

Moving Average (ARMA) process proposed by Box and Jenkins [6]. If the station-

arity condition is not satisfied, ARMA process is insufficient to identify the pattern

of the nonstationary time series. In this situation, Statisticians Box and Jenkins pro-

posed the most powerful and frequently used forecast approach for nonstationarity

time series data [6].This proposed approach is the Autoregressive Integrated Moving

Average (ARIMA) framework. In the ARIMA model, the future values of the vari-
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ables are linear function of several past observations and random error. The difference

between ARMA and ARIMA model is the number of regular differencing affecting

the ARIMA model. The most important factor in ARIMA model is to derive station-

ary time series by applying differencing and forecast future values. ARIMA model

has three parts. The components of the ARIMA model are Autoregressive (AR), In-

tegrated and Moving Average (MA). Autoregressive part shows that the future values

of the time series data are the function of the past values of the series. Integrated part

exhibits the number of differences needed to obtain stationary time series. Moving

Average part is the function of past forecast errors of the future values of the series.

The general ARIMA(p, d, q) process yt is:

ϕp(B)(1−B)dyt = θ0 + θq(B)εt (3.1)

where θ0 is the drift term, B is backshift operator, ϕp(B) is an autoregressive poly-

nomial of order p and θq(B) is an moving average polynomial of order q and εt is

distributed WN(0, σ2
a), and

ϕp(B)yt = 1− ϕ1yt−1 − ϕ2yt−1 − · · · − ϕpyt−p,

θq(B)εt = 1− θ1εt−1 − θ2εt−2 − · · · − θqεt−q.

A large number of real time series show seasonal behaviour. Seasonality means the

series repeating itself after a regular period of time. If there is a seasonal pattern in

time series data, ARIMA method fails to obtain accurate forecasts. In this situation,

the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was pro-

posed by Box and Jenkins [6]. The seasonal ARIMA is the extension of the ARIMA

process. Seasonal ARIMA denotes SARIMA (p, d, q)(P,D,Q)s. In here, (p, d, q)

represents non seasonal components, (P,D,Q) represents seasonal components and

s is the seasonal period.

The mathematical form of the Box-Jenkins multiplicative seasonal ARIMA model of

yt is:

ϕp(B)ΦP (B
s)(1−B)d(1−Bs)Dyt = θ0 + θq(B)ΘQ(B

s)εt (3.2)

where θ0 is a drift term, εt is a white noise sequence with 0 mean and variance σ2
a and
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the respective polynomials are given by

ϕp(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p,

ΦP (B
s) = 1− Φ1B

s − Φ2B
2s − · · · − ΦPB

Ps

θq(B) = 1− θ1B − θ2B
2 − · · · − θqB

q,

ΘQ(B
s) = 1−Θ1B

s −Θ2B
2s − · · · −ΘQB

Qs.

The ordinary AR and MA polynomials are represented by ϕp(B) and θq(B), re-

spectively. The seasonal AR and MA polynomials are represented by ΦP (B
s) and

ΘQ(B
s), respectively.

Using only the past observations of the series is sometimes inadequate to predict accu-

rately the future values of the series. The future values of the series may be influenced

by the past observations of the external variables. In this situation, the SARIMA

and the ARIMA model may not be enough to produce the forecast so it is needed

to add the covariates which helps to identify the main variable. In the time series

model building, adding external inputs is called utilization of exogeneous variables.

If the exonegenous variables are added into SARIMA model, the model is replaced

as SARIMA Model with exogeneous variables (SARIMAX). The mathematical form

of SARIMAX model is represented as:

ϕp(B)ΦP (B
s)(1−B)d(1−Bs)Dzt = θ0 + θq(B)ΘQ(B

s)εt, (3.3)

where

zt = yt − β1x1 − β2x2 − · · · − βbxb. (3.4)

In the SARIMAX model, the parameters; ϕp(B), θq(B), ΦP (B
s),ΘQ(B

s), are same

with the parameters of the SARIMA model. (1 − B)d and (1 − Bs)D are defined

as regular differencing and seasonal differencing of the series, respectively. zt is the

autocorrelated regression residuals, xk is kth exogeneous variable, b is the number of

the exogeneous variables and yt is the response variables at time t. In the parameter

estimation, mostly maximum likelihood estimation (MLE) is used.
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3.1.1 Diagnostics of the SARIMAX Model

There exist three diagnostics of the SARIMAX models. These are:

• The errors are normally distributed with mean 0.

• The errors are not serially correlated with their own lagged values.

• The error variance is constant (homoscedasticity).

• No multicollinearity.

3.2 Holt Winters Exponential Smoothing Method

Exponential smoothing was originally introduced by Brown in 1950s [8]. Exponen-

tial smoothing method has been one of the most popular and flexible technique for

forecasting univariate time series since 1950s. It is popular because it is a deter-

ministic model and easy to obtain forecast with high accuracy. It is flexible as it is

not necessary to fit the parametric model [22]. Forecasts of exponential smoothing

method are described as weighted averages of recent observations, whose weights

are exponentially decreasing towards past values [28]. There exist many methods in

exponential smoothing family. If the time series data exhibit linear trend and single

seasonality pattern, the Holt Winters Exponential Method is preferred to get reliable

forecast. The Holt Winters (HW) method is simple to conduct and perform well in

practice.

The HW method is proposed by Winter [54]. HW Exponential Smoothing method

was an extension of Holt methods of exponential smoothing by Holt [26]. The HW

method is a forecasting technique for the series which has seasonality and trend. In

the HW method, time series data are modelled by local level, local trend and local

seasonality factor that are updated by exponential smoothing. The local trend gives

the change in the underlying level expected between period t and period t + 1. The

local level gives the exponentially smoothed series. The seasonal factor gives seasonal
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term of the HW model. The HW method is designed for seasonality types which are

multiplicative and additive way.
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Figure 3.1: The time series plot of Additive and Multiplicative Seasonality

Figure 3.1 demonstrates the graph of additive and multiplicative seasonality model.

As it is seen from Figure 3.1, the additive seasonality means that seasonal component

is stable in time series data and time series plot gives same seasonal pattern in all

periods. Differently, the seasonal component is inconstant and seasonal period shows

increase and decrease in time.

3.2.1 Multiplicative Seasonality

The basic mathematical representation for the Holt Winters’ multiplicative method

are followed by [28]:

The h-step ahead forecast:

ŷt+h = (lt + bth)st−m+h+
m

(3.5)

where
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Level: lt = α yt
st−m

+ (1− α)(lt−1 + bt−1)

Trend: bt = β(lt − lt−1) + (1− β)bt−1

Seasonal: st = γyt
lt−1+bt−1

+ (1− γ)st−m.

m is period of seasonality, lt represents the level of the series at time t, bt denotes the

local trend at time t, st is the seasonal component at time t, ŷt+h is the forecast for h

period ahead and h+
m = [(h − 1)modm] + 1. The smoothed parameters are denoted

by α, β, γ and these smoothed parameters take values between 0 and 1. The values of

the smoothing paramaters are incremented until the smallest MSE value is obtained.

3.2.2 Additive Seasonality

Although additive seasonality model is seen rarely in the real data, the mathematical

representation of h-step-ahead forecast is followed by :

ŷt+h = lt + bth+ st−m+h+
m

(3.6)

where

Level: lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

Trend: bt = β(lt − lt−1) + (1− β)bt−1

Seasonal: st = γ(yt − lt−1 − bt−1) + (1− γ)st−m.

Like multiplicative seasonal model, m is a period of seasonality, lt represents the level

of the series at time t, bt denotes the trend trend at time t, st is the seasonal component

at time t, ŷt+h is the forecast for h period ahead and h+
m = [(h − 1)modm] + 1. The

trend term is same for both additive and multiplicative models. However, the level and

seasonal equations change as the seasonal factor. That is, seasonal indices are added

or substracted rather than multiplication or ratio [28]. The smoothed parameters are

denoted by α, β, γ and these smoothed parameters take values between 0 and 1. The

values of the smoothing paramaters are incremented until the smallest MSE value is

obtained.
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Taylor extended the HW model as Taylor’s adaptation of Holt Winters (HWT) method

by introducing second seasonal component and error term in the model [50]. Hynd-

man expresses HWT model as a statistical model to generate prediction intervals and

developed and ets() function in the forecast package [30].

3.3 TBATS Model

Most of the time series data display complex seasonal behaviour like multiple sea-

sonal periods, high frequency seasonality and non-integer seasonality. It is hard to

model this type of seasonality in time series data by using traditional statistical meth-

ods such as Exponential Smoothing and SARIMA. Hence, Livera introduces a new

alternative approach which is the modification of the ETS model based on trigono-

metric formulation in order to deal with the seasonal complexities in 2011. The new

alternative approach is Trigonometric Exponential Smoothing State Space model with

Box-Cox transformation, ARMA errors, Trend and Seasonal Components (TBATS)

[15]. TBATS model consists of Box-Cox transformations, Fourier representations

with time varying coefficients, and ARMA error correction.

Firstly, the original series yt is transformed by using Box-Cox transformation to over-

come the heteroscedasticity in the model.

y
(w)
t =


ywt −1

w
w ̸= 0

logyt w = 0.
(3.7)

y
(w)
t represents Box Cox transformed observations with the parameter w, where yt is

the observation at time t [15].

y
(w)
t = lt−1 + ϕbt−1 +

T∑
i=1

s
(i)
t−mi

+ dt. (3.8)

The equation shows that the Box-Cox transformed observations is the function of the

level, trend and seasonality.

Level equation is illustrated as:

lt = lt−1 + ϕbt−1 + αdt, (3.9)
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where lt is local level in period t, ϕ is a damping parameter on the trend. α is the

smoothing parameter on the ARMA error component.

Trend equation is illustrated as:

bt = (1− ϕ)b+ ϕbt−1 + βdt, (3.10)

b is a long term trend in the data. If we ignore βdt , the current trend bt is the weighted

function of the long term trend (b) and short term trend bt−1 with the weight ϕ [33].

β is the smoothing parameter on the ARMA error component.

Error component is illustrated as:

dt =

p∑
i=1

ϕidt−i +

q∑
i=1

θiεt−i + εt (3.11)

where dt denotes an ARMA(p,q) process and εt is a Gaussian white noise process with

mean equal to 0 and constant variance equal to σ2 [15].

Trigonometric Seasonal component is illustrated as:

s
(i)
t =

ki∑
j=1

s
(i)
j,t , (3.12)

s
(i)
j,t = s

(i)
j,t−1 cosλ

(i)
j + s

∗(i)
j,t−1 sinλ

(i)
j + γ

(i)
1 dt, (3.13)

s
∗(i)
j,t = −sj,t−1 sinλ

(i)
j + s

∗(i)
j,t−1 cosλ

(i)
j + γ

(i)
2 dt, (3.14)

λ
(i)
j =

2πj

mi

. (3.15)

The above equations are the trigonometric representation of seasonal components

based on Fourier series. γ
(i)
1 and γ

(i)
2 are the smoothing parameters. The stochastic

level of the ith seasonal component is described by s
(i)
j,t . The stochastic growth in the

level of the ith seasonal component essential to identify the change in the seasonal

component in progress of time by s
∗(i)
j,t .
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3.4 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) is a computing system inspired by biological neu-

ral networks sending signals by way of neurons and synapses. Structurally, in the

neural network model, interconnection of many autonomous individual processing

units behave similarly in certain respects to the interconnections of individual neu-

rons in the brain [7]. The method generates correlation between input and output

information with network system. In order to learn ANNs comprehensively, it is

necessary to understand biological neural network structure.

3.4.1 Biological Neural Network Structure

Figure 3.2: Structure of biological neural network [32]

Figure 3.2 shows the biological neural network. Dendrites transmit the signals which

are conveyed from other neurons to nucleus. The nucleus is the center which aggre-

gate all signals transmitted by dendrites. The nucleus transmits an aggregate signal to

axons. Axons are transmission lines that convey the information to synapses which

are located on the margin of the axons. Synapses is capital importance to convey all

the information to next neurons since before conveying, synapses is preprocessor that

if the received signal is higher than the threshold value, it fires and is transmitted to

next neurons’ dendrites. By this way, biological neural network is constructed.
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3.4.2 Artificial Neural Network Structure

The ANN is a nonlinear forecasting method for time series. The Artificial Neural

Networks have fairly similar components as the biological network. Figure 3.3 give

the architecture of the ANNs.

Figure 3.3: The General Concept of Artificial Neural Network

In the structure of ANNs, neurons are the basic building blocks that is fundamental

to the operation of the neural networks [24]. As it is seen from Figure 3.3, the ANN

model contains a bias, denoted by bk. xn is an input signal, wn is a weight of the input

signal. The summation function obtains the weighted sum of all input signals. Acti-

vation function states the conditions for the decision of the output neuron. Activation

function is used to decide whether the neuron should be activated or not. Decision

of the output neuron is the condition related to whether the weighted sum with a bias

fires or not. Activation function is really important for the ANN model because it

enables to learn and make sense of nonlinear complicated functional mappings be-

tween the inputs and the target variable. If the weighted sum with the bias is higher

than threshold value, it fires. The fired weighted sum with bias is the output signal of

neurons, denoted by yk.

The mathematical representation of neuron k illustrated in Figure 3.3 is defined as:

uk =
m∑
j=1

wkjxj (3.16)
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and

yk = f(uk + bk). (3.17)

The most commonly used activation functions in time series analysis is the sigmoid

(logistic) function. The mathematical equation of sigmoid function is illustrated by:

f(
m∑
j=1

wkjxj) =
1

1 + e−x
. (3.18)

There are two major types of neural networks in terms of connections between neu-

rons and direction of data propagation: feed-forward and recurrent networks.

3.4.3 Feed-forward Neural Networks

The feed-forward structure shows that the network intelligence starts from the input

and continues towards the output [7]. In feed-forward neural network, there exist

hidden layers. The computation part of hidden layer is named hidden neurons or

hidden units; hidden means the fact that the network does not flow directly from either

input or the output of the network. By adding one or more than hidden layers, they

intervene between the input layers and output of the network to capture the nonlinear

structure of the data [24].

Figure 3.4: Feed-forward Neural Network with Single Hidden Layer
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Figure 3.4 indicates the architecture of three-layered feed-forward neural network.

The input layer passes the data received to the hidden layer. Then, hidden layer trans-

mits them to the output layer. In the structure of feed-forward, there exists network

with interconnections, but these interconnections do not form any loops [20].

3.4.4 Recurrent Neural Networks

The second neural network model is the recurrent neural network. The recurrent neu-

ral network was proposed by Elman [19]. The difference between the feed-forward

neural network and the recurrent neural network is "feedback loop". That is, each

neuron feeds its output, then the output signal turns back as the inputs of all the other

neurons so the output get involved in the flow of the network. The structure of recur-

rent network is illustrated in Figure 3.5 .

Figure 3.5: Recurrent Neural Network with Single Hidden Layer

As it is seen from Figure 3.5, there exist one or more loops of interconnections in

the recurrent neural network. The nodes receive feedback from the other nodes. The

input signal is the combination with the former activation by way of adding weight

layer. Therefore, the feedback connections are occurred after updating the network.
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3.5 Theta Model

There exist wide variety of patterns in time series data and it is useful to classify some

of the patterns and behaviours seen in the time series data by splitting a time series

into several components, each representing one of the underlying categories of the

pattern. This phenomenon is described as time series decomposition. Decomposed

parts are trend, seasonality and the irregular part which are designed individually into

the future and recombined to create a forecast of the underlying series. Assimakopou-

los and Nikolopoulos [3] introduced Theta model inspired by time series decomposi-

tion. The benefit of the Theta Model is that there is no need to know comprehensive

statistics. The logic behind Theta model is to extrapolate the useful information em-

bedded in the data which has short and long term components. Then, the integration

of the components improves the accuracy of the forecast in time series. The model

is related to the modification of the local curvatures of the time series through the

theta coefficient (θ) which is carried out directly to the second differences of the time

series [3]. For example, if the original series are represented as yt, a theta line can be

computed as [33]:

Zt(θ) = θyt + (1− θ)(α̂ + β̂t). (3.19)

In the equation, the fitted time trend is (α̂ + β̂t), the estimated intercept parameter is

α̂ and the estimated slope parameter is β̂. θyt is the curvature of the data.

If the θ is equivalent to 0, the model is represented by:

Zt(0) = (α̂ + β̂t). (3.20)

This equation gives the linear regression of the time trend. It is necessary to compute

the long term trend by taking out the curvature of the data.

If the θ is other than zero, the theta lines are a weighted combination of yt and linear

regression time trend. If θ is higher than 1, the line increases the short term dynamics

of the time series. If θ is less than 1, the line increases the long term trend of the

series. Whether the local curvatures are removed or enlarged is determined by the θ

value.
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Theta method is a dynamic forecasting approach that the number of theta lines are

decided by the user and the individual forecasts are combined with equal and unequal

weights. In the Standard Theta model, there exist two theta lines used with θ. The

steps of the Standard Theta model is defined as [33]:

Step 0: Whether the seasonality exists in time series data is determined by applying

autocorrelation function and statistical test of the autocorrelation coefficients.

Step 1: If the seasonality occurs, a seasonal decomposition of data is applied under

the multiplicative relationship for the seasonal part.

Step 2: Time series decomposition is performed by splitting the series into two lines.

The first line is a linear regression time trend Zt(0) and the other line is theta line of

the series Zt(2).

Step 3: Linear regression is applied to estimate Zt(0) and simple exponential smooth-

ing is used to estimate Zt(2).

Step 4: When the estimation of the two lines are integrated with equal weights, the

forecasts are obtained.

Step 5: Lastly, if the forecasts are seasonally adjusted in step 1, the seasonal part is

incorporated.

3.6 STL Decomposition Method

STL method is a Seasonal-Trend Decomposition Procedure Based on the locally

weighted scatterplot smoothing (LOESS). The concept of the STL method is based on

the decomposition of time series into three components: trend, seasonal, and remain-

der. If time series data (Yv) have the trend part, the seasonal part, and the remainder

part denoted by Tv, Sv, Rv, respectively, for v = 1 to N, then the mathematical form

of the method is given by [13]:

Yv = Tv + Sv +Rv.
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According to Cleveland, STL method is such a filtering procedure that it decomposes

the data via a sequence of applications of smoothing operations using the LOESS

[14]. Locally weighted polynomial regressions at each point in the dataset are im-

plemented by a LOESS smoother. LOESS is the estimation technique for regression

surface by means of a multivariate smoothing procedure. This procedure is fitting a

function of explanatory variables locally, which enables to estimate a broader class of

regression surface than the usual classes of parametric function [14].

In the concept of STL, eigenvalues and frequency response analysis of a given time

series are used to get the parameter of the STL in order to understand whether the

variation comes from either seasonal component or trend component. The procedure

is performed in an iterated cycle composed of two recursive procedures, which are the

inner and the outer loop [52]. In each pass of the inner loop, the seasonal and trend

components are updated by seasonal smoothing and trend smoothing. There exist six

steps in the inner loop:

Step 1: Detrending. S(k)
v and T

(k)
v are the seasonal and trend components at the end

of the kth pass. At (k + 1)th iteration, detrended series is computed by the formula

Yt − T (k)
v .

Step 2: Cycle-subseries Smoothing. LOESS smoother is implemented to each cycle-

subseries of the detrended series obtained in the first step. Then, temporary seasonal

series; C(k+1)
v , is calculated.

Step 3: Filtering of Cycle-subseries. The filtering procedure relates to a simple

moving average process. The simple moving average is implemented to the tem-

porary seasonal component obtained in the second step, pursued by the practice of

the LOESS smoother to describe any remaining trend; L(k+1)
v .

Step 4: Detrending of Smoothed Seasonality. The difference between temporary

seasonal component; C
(k+1)
v , computed in step 2 and temporary trend component;

L
(k+1)
v , estimates the additive seasonal component.

S(k+1)
v = C(k+1)

v − L(k+1)
v .
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Step 5: Deseasonalizing. Substracting additive seasonal component calculated in the

fourth step from the original data gives a seasonally adjusted series. The mathematical

equation is followed by:

Yt − S(k+1)
v .

Step 6: Trend Smoothing. The deseasonalized series is smoothed again. Then, trend

component denoted by T
(k+1)
v is estimated. In each pass of the inner loop, sea-

sonal smoothing is implemented to update the seasonal component, pursued by trend

smoothing implemented to update the trend component.

In an iteration of the outer loop, estimates of the seasonal and trend components

calculated in the inner loop are used to compute the irregular component

R(k+1)
v = Yv − T (k+1)

v − S(k+1)
v .

If the irregular component has a large value, it is described as an extreme value and a

weight is computed. Then, outer loop ends. In the next iteration of the inner loop, the

weights are used to reduce the effect of the extreme value. Hence, implementation

of the method within the algorithm for the application of STL procedure gives STL

returns, Tv, Sv and Rv for every time series Yt such that Yt = Tt + St + Rt where Tt

is the trend part, St is the seasonal part and Rt is the residual part [52].

3.7 Ensemble Model

The traditional forecast methods in time series have been popular for many years.

There exist various statistical methods to predict the future values of the time series

variable. However, in real life, most of the time series data exhibit complex struc-

ture, so the individual methods may have less predictive performance in time series

forecasting. In this situation, the concept of "combination of the forecasts" has more

remarkable performance than individual forecast methods. The ensemble model is

based on the combination of several individual forecasts with the weights. The idea

of combining forecasts is not a new approach. The combining forecasts was first

introduced by Bates and Granger in 1969 [4]. According to Bates and Granger, com-

bining forecast is an alternative approach and linear combination of forecasts give
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more accurate result than the single forecasting method. Many researchers have pre-

ferred to use ensemble model to get forecast which is close to real values instead of

individual method recently. The main question in ensemble model is how different

forecasting methods are combined. The logic behind the ensemble model is that the

several forecasting methods are trained separately, then the forecast of each method

are combined to increase the performance of the forecast. The combination of the

forecasts depends on the weight of each model.

Let Y = [yt+1, yt+2, ..., yt+h]
T be the actual values of testing data. The actual values

are predicted by using the past observations via forecasting methods.

Let Ŷ i = [ŷit+1, ŷ
i
t+2, ...ŷ

i
t+h]

T be its forecast through the ith model i = 1, 2, ...c.

Then, the general form of linear combination of these c forecast is mathematically

described as [1]:

ŷt+h = w1ŷ
(1)
t+h + w2ŷ

(2)
t+h + ....+ wcŷ

(c)
t+h =

c∑
i=1

wiŷ
(i)
t+h (3.21)

where i=1,2,...c. wi is the weight value for ith forecasting model and usually, the

weights are generally assumed to be higher than zero. The summation of all weights

is generally equivalent to 1. h stands for the number of forecasts for each model and

c represents the number of the forecasting models which are used in the ensemble

model. Then, the forecast vector for Y is ŷ = [ŷt+1, ŷt+2, ...., ŷt+h]
T .

Obtaining the best combination of forecasts depends upon the weight of each model.

Therefore, the main factor in the ensemble model is to specify the weights because the

values of the weights help to achive reliable results in ensemble model building. In

this study, two weight assignment techniques are discussed. These are simple average

and cross validated errors.

3.7.1 Simple average

In the simple average, equal weights are assigned to all forecasting methods. In this

procedure, each individual method is trained and the prediction of future values are

found by each method. Then, the forecasts are combined with equal weights. For
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example, when c forecasting methods are used, the weights of each model is wi =
1
c

where i=1,2,..,c .

The mathematical form of the ensemble model is followed by:

ŷt+h = w1ŷ
(1)
t+h + w2ŷ

(2)
t+h + ....+ wcŷ

(c)
t+h =

c∑
i=1

wiŷ
(i)
t+h =

c∑
i=1

ŷ
(i)
t+h

c
. (3.22)

3.7.2 Cross Validated Errors

Cross validation proposed by Stone is the most commonly used technique to eval-

uate the generalizability of the statistical prediction [49]. The concept of the cross

validation is on the basis of dividing the sample into two sets which one is trained

to estimate the model and the other one is used for the measure the accuracy of the

model. In time series analysis, cross validation is quite complicated due to the se-

rial correlation between the observations of the time series data. To deal with the

problem about the dependence of the observations, rolling cross validation is applied.

The rolling cross validation is an alternative approach that increase the length of the

training sets used to evaluate the sampling variation effect [42].

The rolling cross validation needs many iteration and takes a long time for computa-

tion. For example, supposing that there exist 10 years monthly time series data start-

ing from 1990 to 1999. In the rolling cross validation procedure, 5 fold framework

is applied. The rolling means that the in-sample periods are enlarged sequentially

beginning from 1990. One additional year is added to the in-sample period in each

successive fold. In this example, the first in-sample period starts from 1990 to 1994,

the second from 1990 to 1995, and the fifth from 1990 to 1998. Test set period is the

year after the training set period in each fold. Therefore, the 5 out of samples are used

as in the moving test procedure.

In the ensemble model based on cross validated errors building process, the errors of

the cross validated forecast models are firstly computed. Later, according to the cross

validation error, the weights of each model are assigned. The model with the highest

forecast error is assigned to have a less weight.
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3.7.3 The Proposed Ensemble Model Methodology

In this study, the ensemble model building is based on the cross validated errors for

optimal weights. The model procedure is followed by:

Step 1: Splitting the original time series data Y = [y1, y2, ...., yn]
T into the train set

and validation set.

Step 2: For c component forecast models, rolling cross validation is applied to the

train set.

Step 3: The forecasts are predicted by fitting the model for each individual method.

The forecast values of ith model are ŷi = ŷi1, ŷ
i
2, ...ŷ

i
h, i=1,...,h.

Step 4: The optimal weight is determined by the errors of the cross validated fore-

casting model. If the error is high in the ith model, the weight of the ith model is

small.

Step 5: The linear combination of the individual models are constructed with the

weights based on the cross validated errors. The h-step ahead forecasts are

ŷt+h = w1ŷ
(1)
h + w2ŷ

(2)
h + ....+ wcŷ

(c)
h =

c∑
i=1

wiŷ
(i)
h .

Step 6: Forecast performance of the ensemble model is assessed by measuring the

accuracy to determine how well the model predict the actual values of the time series.

3.8 Measuring Forecast Performance

The forecast performance means how well the forecast methods predict the future

values. The main goals for measuring forecast performance are (1) to calculate the

accuracy of how well we predicted the actual values, and (2) to compare the different

forecast techniques to specify the best forecast model [12]. In this study, seven fore-

cast techniques are implemented. To compare the performance of all methods, there

are several forecast accuracy measures used to evaluate the error size. The error is the

difference between the actual and the predicted values. The less the error values are,
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the higher performance of the model is. Most commonly used accuracy measures in

time series analysis are the scale-dependent errors and percentage errors.

The h-step-ahead forecast error is :

et+h|t = yt+h − ŷt+h

where yt+h is the original time series and ŷt+h is the forecast of original data in time

t.

3.8.1 Scale-Dependent Errors

The most widely used scale-dependent measures are the absolute error and squared

errors. However, according to Hyndman, mean absolute error (MAE) may not give

reliable results to compare the forecast methods [28]. The root mean squared errors

(RMSE) is the most preferable measure in time series analysis. In addition, evaluation

of the reliability of the macroeconomic series is based on the measure of RMSE,

following Cecchetti et al. [11]. The mathematical form of the RMSE is represented

by:

RMSE =

√√√√ n+h∑
t=n+1

(yt − ŷt)2/h (3.23)

where h is the number of forecasts that we want to obtain. If the RMSE value is low,

the forecast technique has high accuracy.

3.8.2 Percentage Errors

The advantage of the percentage errors is a scale-independent approach. The most

commonly used percentage errors in time series forecasting is the mean absolute per-

centage error (MAPE). The MAPE takes into consideration to the effect of the magni-

tude of the original values [31]. MAPE is calculated by the average absolute percent

error for each time period. The mathematical form of the MAPE is represented by:

MAPE = h−1

n+h∑
t=n+1

| yt − ŷt
yt

| . (3.24)
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MAPE is preferred many times because it is useful to make comparisons between

forecasts from different scenarios [12]. As with RMSE performance, if the MAPE

value is low, the forecast technique has high accuracy.
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CHAPTER 4

EMPIRICAL ANALYSIS

In this chapter, the datasets used in the analysis will be introduced firstly. Secondly,

preprocess of the data will be conducted. Then, the numerical results of 12 month

ahead forecasts for each selected model will be graphically displayed. Lastly, the

forecast accuracy of all selected models will be evaluated.

4.1 Data Description

The inflation measures the changes of general level of prices of services and prod-

ucts. It is vital factor as it determines cost and standard of living. The inflation are

measured by the CPI in Turkey. Hence, in this study, we used the data of the annual

change of the Turkish CPI from January 2005 to December 2016 in order to produce

12-month ahead forecasts of the Turkish inflation. The CPI data were received from

TURKSTAT. According to the literature and opinions of the experts at TURKSTAT,

the CPI is influenced by some macroeconomic variables. In the forecasting proce-

dure, adding these variables into the models helps obtaining more accurate results.

These variables are the annual change of Turkish producer price index (PPI), season-

ally adjusted monthly Turkish unemployment rate, monthly Turkish deposit interest,

monthly real effective exchange rate of Turkey, monthly export unit value index of

Turkey and monthly import unit value index of Turkey between January 2005 and

December 2016. The time period of Turkish CPI is equivalent to 144 months. In this

study, we applied R-Studio with version 1.1.383 to estimate the model and predict the

Turkish CPI from January 2017 to December 2017.
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4.2 Pre-processing of the Data

Before the application of forecasting techniques to the Turkish inflation series, it is

needed to look the data structure and conduct model building process. The general

procedure in constructing time series model was described by step-by-step:

Step 1: Conduct explanatory data analysis to look the general overview and control

the existence of the abnormalities in the series.

Step 2: Transform the data if the assumption of variance stabilization is not satisfied.

Step 3: Examine the stationarity condition of the data, and test the trend and sea-

sonality condition of the data by Kwiatkowski, Phillips, Schmidt and Shin (KPSS)

test, Augmented Dickey Fuller (ADF) test and Hylleberg, Engle, Granger, and Yoo

(HEGY) test. If the series are not stationary, take difference of the series to make it

stationary.

Step 4: Investigate the overall view of the exogeneous variables and test whether the

exogeneous variables are stationary or not.

Step 5: Examine the cross correlation function (CCF) between the exogeneous vari-

ables and the response variable and add the exogeneous variables and their lags into

the model based on the CCF structure.

Step 6: Identify the model and estimate the model parameters.

Step 7: Check the model diagnostic.

Step 8: Calculate the forecast of the series.

Step 9: Examine the forecast performance of the model.

4.2.1 Exploratory Data Analysis

Firstly, the descriptive statistics and the overall view of the Turkish CPI data were

examined. The overall view of the series enable to detect the trend, seasonality and
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stationarity of the series. Table 4.1 shows the descriptive statistics of the series.

Table 4.1: Descriptive Statistics of the Consumer Price Index

Min Mean Median Std Dev Variance Max

3.990 8.254 8.170 1.634 2.671 12.06

As it is seen from Table 4.1, the mean and median are very close to each other. The

range is not large so there is no outlier in the Turkish CPI series. The variance is

low compared to its mean. In addition, there are no missing values in the series. The

general overview of annual change of the Turkish CPI between January 2005 and

December 2016 is illustrated by Figure 4.1:
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Figure 4.1: The overview of consumer price index

Figure 4.1 shows that the series have seasonal behaviour. Also, the mean term is

not constant. It seems that there exists decreasing trend in the series. The definite

judgement can not be reached from the graphical display. Hence, it needs to test

for the existence of the regular unit root and the seasonal unit root by examining

the sample autocorrelation function (sACF) and the sample partial autocorrelation

function (sPACF), and conducting statistical tests.
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Figure 4.2: The sACF and sPACF of The Turkish CPI

The left side of Figure 4.2 shows the sACF of the data and the right side shows the

sPACF of the data. The autocorrelation function calculates the correlation between

Yt and Yt+k from the same process, and the partial autocorrelation function calculates

the correlation between Yt and Yt+k after the effects of the intervening variables Yt+1,

Yt+2,....,Yt+k−1 are removed. By sACF and sPACF plots, we can understand whether

the series are stationary and have seasonality. Also, we can identify the model or-

der for SARIMA. If the lags of the series periodically increase and decrease at lags

of multiples of seasonal period, the series have seasonal behaviour. The sACF and

sPACF plots exhibit that the series have seasonal pattern and the stationarity condition

of the series seems to be not satisfied.

4.2.2 Variance Stabilization and Stationarity Condition

Before starting forecasting the Turkish CPI, the series are standardized because there

are six exogeneous variables and the base year of these variables and CPI variable

are different. To overcome the problem, it is necessary to the standardization for all
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variables used. After standardizing the variables, assumptions of the time series data

were checked to estimate the model. The first assumption is the variance stabilization.

If the variance is not constant, Box-Cox transformation is implemented to the series.

After applying BoxCox.ar() in R, it was decided that the Box-Cox transformation was

not needed for the Turkish CPI. Hence, the first assumption of the series is satisfied.

The second main assumption is stationarity. If the time series data have unit root,

the stationarity condition is not satisfied. In this study, KPSS test and ADF test were

applied for checking whether the series have trend or not by using tseries and fUnit-

root packages in RStudio. Test results showed that the series do not have trend so the

series are stationary. However, as it is seen from Figure 4.1 and Figure 4.2, the series

exhibit seasonal behaviour. Hence, the HEGY test is utilized for testing the existence

of the regular and the seasonal unit root by using uroot package. Based on the HEGY

test results, we can say that there is no seasonal unit root, but there exists regular unit

root in the series. Therefore, it is necessary to take difference of the series. After dif-

ferencing, the stationarity condition is satisfied. Figure 4.3 illustrates the time series

plot of the differenced Turkish CPI data.
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Figure 4.3: The overview of differenced consumer price index data
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4.2.3 Exogeneous Variables

The annual change of the Turkish PPI, the seasonally adjusted monthly Turkish un-

employment rate, monthly Turkish deposit interest, monthly real effective exchange

rate of Turkey, monthly export unit value index of Turkey and monthly import unit

value index of Turkey are used as the exogeneous variables as mentioned in data de-

scription. However, adding these variables into analysis is not simple because the

structure of the CPI has to be similar with the structure of the explanatory variables.

From the previous analysis, differencing is applied to the CPI series to obtain the

stationary series. This condition of the CPI data has to be valid for the exogeneous

variables too. When the general overview and the stationarity condition of the each

exogeneous variable are examined, our findings are given below.

When the time series plots of the each exogeneous variable are examined, the sta-

tionarity condition of the each variables is not satisfied. For example, the Turkish

PPI series are trend-stationary and have a seasonal behaviour, the unemployment rate

series have fluctuations, the real effective exchange rate series show the decreasing

trend and the seasonal behaviour. There is no seasonal behaviour in the deposit inter-

est series, and the export and the import unit value index series have trend. Therefore,

KPSS test, ADF test, and HEGY test were implemented to test the existence of the

unit root for all exogeneous variables. Our findings showed that there exists stochas-

tic trend in all exogeneous variables. To handle this problem, differencing is needed.

After taking difference of all exogeneous variables, they become stationary.

Our aim is to produce accurately 12-month ahead forecasts of the Turkish CPI by

building the appropriate model with exogeneous variables. In accordance with this

purpose, it requires obtaining 12-month ahead forecasts of the exogeneous variables.

The forecast values of the exogeneous variables were predicted by auto.arima() and

ets(). The exponential smoothing forecast values were used for the PPI and the ex-

change rate because of the higher accuracy. The ARIMA forecast values were used

for the unemployment rate, the deposit interest, the import and the export unit value

due to the higher accuracy. The actual values from January 2005 to December 2016

and the forecast values were combined for each exogeneous variable. The cross cor-
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relation function (CCF) is calculated to decide which lags of these variables affect the

CPI series. The CCF gives the direction and strenght of the correlation between two

series [53]. The CCF takes value between -1 and +1. If the value is -1 or +1, there is

a strong relationship between two variables. If the value is 0, there is no relationship

between these variables. In this study, the CCF plot was drawn to give the correlation

between the Turkish CPI and each exogeneous variable. The negative lag part in the

CCF plot shows the effect of the Turkish CPI on the exogeneous variables. The pos-

itive lag part in the CCF plot indicates the effect of the exogeneous variables on the

Turkish CPI. Since we consider the effect of those variables on the Turkish CPI, the

positive lag part of the CCF is taken into consideration. The CCFs are illustrated in

Figure 4.4.
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Figure 4.4: The CCF between Turkish CPI and each exogeneous variables

As it is seen from the CCF, the current, 1st, 9th and 10th lag values of the PPI series

are significant; the 7th lag value of the unemployment rate is significant, 9th lag value

of the exchange rate is significant; the current, 1st and 2nd lag values of the deposit

interest are significant; the current and 9th lag values of the export unit values are
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significant, and the current, 5th and 9th lag values of the import unit values are sig-

nificant. These lag and current values of each exogeneous variable were combined

to be utilized for model estimation. However, when the lag values of the exoge-

neous variables were obtained, the first 12 observations were unobserved. To handle

this problem, the first 12 values of all exogeneous variables were dropped from the

model. Hence, the time period used in the analysis is from January 2006 to December

2016. Also, the time period of the Turkish CPI is from January 2006 to December

2016. In the forecasting procedure, the last 12 values of the combined data were used.

4.3 Forecasting Methods

In this study, our objective is to find the best model which produces 12-month ahead

forecasts of the Turkish CPI. The best model accurately predict the actual CPI series

by the least number of parameters and the exogeneous variables. In this purpose, we

implemented six different individual models and the ensemble model for 12-month

ahead forecasts of the inflation. The individual forecast methods are the SARIMAX

model, additive HW model with additive error, the TBATS model, the Artificial Neu-

ral Network model, the Theta model and the Seasonal Trend Decomposition with

LOESS method. Ensemble model combines forecasts of the individual methods with

optimal weights. Then, the RMSE and MAPE values of all forecast models were cal-

culated. According to the RMSE and the MAPE values of all models, the best model

for the forecast analysis of the Turkish CPI was selected.

4.3.1 SARIMAX Model

In constructing the SARIMAX model, we applied forecast package in RStudio. The

first step of the model building is model identification after the stationarity condition

of the target variable is satisfied. The Turkish CPI series became stationary after

taking difference. In model identification, the sample ACF and the sample PACF of

the differenced series were computed to determine the orders of the model.
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Figure 4.5: The sACF and sPACF of the differenced series

It is evident from Figure 4.5 that the orders of the seasonal ARIMAX model are

SARIMAX(4, 1, 4)(2, 0, 1)12. The h-step ahead forecast of Yn+h using the SARI-

MAX model is defined as:

Ŷn(h) = E[Y(n+h) | Y1, Y2, ..., Yn, X1, X2, ..., Xn, X̂n(1), X̂n(2), ...X̂n(h)] (4.1)

where Yi is the past values of the variables, Xi is the past values of the ith exogeneous

variable and the X̂n(i) is the forecast values of ith exogeneous variable.

After specifiying a tentative model, the parameters of the model which are ϕi, Φi,

θi, Θi were estimated according to the maximum likelihood estimation method. The

maximum likelihood estimation is a statistical method which estimates the model pa-

rameters from the sample data, and those parameter values maximize the probability

of obtaining the observed data. The model selection criteria is based on the Akaike In-

formation Criteria (AIC). This criteria is utilized to evaluate the quality of the model

fitting. The AIC is calculated :

AIC(M) = −2ln(maximumlikelihood) + 2M (4.2)

where M is the number of parameters in the model.
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The best forecast model is determined according to the significance of the exogeneous

variables and forecast performance. The best forecast model for 12-months ahead

forecasts of the Turkish CPI is represented in Table 4.2.

Table 4.2: The Estimates and Standard Errors of the SARIMAX(4, 1, 4)(2, 0, 1)12

Component AR1 AR2 AR3 AR4 MA1 MA2

Coefficient 0.5756 -0.2686 -0.2923 0.4102 -0.6711 0.1870

S.E 0.3682 0.4643 0.4284 0.2644 0.3446 0.4601

Component MA3 MA4 SAR1 SAR2 SMA1 PPI.0

Coefficient 0.1519 -0.6678 -0.2959 -0.1380 -0.5811 0.4545

S.E 0.4216 0.2770 0.2391 0.1864 0.2640 0.1116

Component PPI.1 INT.1 INT.2 EXP.0 IMP.5

Coefficient 0.1206 0.2131 0.1727 0.3446 -0.1436

S.E 0.1039 0.1765 0.1908 0.1514 0.1724

The model parameters are estimated by the MLE. As it is seen from Table 4.2, coeffi-

cients give the parameter estimates and standard errors give their standard errors. The

model is SARIMAX(4, 1, 4)(2, 0, 1)12 which has the highest out of sample forecast

performance. In this model, not all components are significant. The AR with order 4,

the seasonal AR with order 2, the first lag of the PPI, the first lag of the deposit inter-

est, the second lag of the deposit interest and the fifth lag of the import unit values are

not significant. However, the forecast values of the SARIMAX(4, 1, 4)(2, 0, 1)12

are very close to the actual values of the CPI.

Table 4.2 also shows that the current value of the Turkish PPI and the first lag of the

Turkish PPI affect positively the Turkish CPI. The first and second lag of the deposit

rates have a positive effect on the Turkish CPI. The current export unit value index

positively influences the Turkish CPI. However, the fifth lag of the import unit value

index has a negative influence on the Turkish CPI. In brief, the used exogeneous

variables except for import unit value impact positively the CPI. The forecast plot of

the model is illustrated by Figure 4.6.

In Figure 4.6, the dark line gives the actual values of the CPI between January 2006
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Figure 4.6: The SARIMAX forecasts of the CPI giving the best forecasts

and December 2016. The dark blue line gives the forecast values of the CPI series.

The red line gives the actual values of the CPI series. The forecast plot shows that

12 month ahead forecasts of the Turkish CPI are very close to the actual Turkish CPI

values from January 2017 to December 2017. Moreover, the CPI forecasts have same

seasonal pattern with the actual values of the CPI.

Table 4.3: The Forecast Performance of the SARIMAX(4, 1, 4)(2, 0, 1)12

ME RMSE MAE MPE MAPE MASE Correlation

0.0345 0.4566 0.4026 0.1817 3.6731 0.1669 0.8937

Table 4.3 shows the forecast accuracy of the SARIMAX(4, 1, 4)(2, 0, 1)12. The

RMSE is 0.4566 and the MAPE is 3.6731. Both accuracy measures are low.

The second model is SARIMAX(3, 1, 3)(0, 0, 1)12 which has the best train set per-

formance for 12-month ahead forecasts of the Turkish CPI. The optimal orders of the

SARIMAX model are selected by the number of parameters so that AIC is minimum.

After the checking the significance of the components, the coefficients of the model
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are given in Table 4.4.

Table 4.4: The Estimates and Standard Errors of the SARIMAX(3, 1, 3)(0, 0, 1)12

Component AR1 AR2 AR3 MA1 MA2

Coefficient 1.0961 -0.9433 0.4875 -1.2613 1.0784

S.E 0.2457 0.2295 0.1438 0.1996 0.1717

Component MA3 SMA1 PPI.0 INT.2 EXP.0

Coefficient -0.8171 -0.7516 0.5228 0.3270 0.1567

S.E 0.1389 0.0833 0.0934 0.1134 0.0996

Table 4.4 shows the parameter estimates and their standard errors of the each compo-

nent in the SARIMAX(3, 1, 3)(0, 0, 1)12 model. All components of the model are

significant. The forecast plot of the SARIMAX(3, 1, 3)(0, 0, 1)12 is demonstrated

in Figure 4.7:
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Figure 4.7: The SARIMAX forecasts of the CPI given the best train set performance

The dark line gives the actual values of the CPI between January 2006 and December

2016. The dark blue line gives the forecast values of the CPI series. The red line gives

the actual values of the CPI series. The forecast plot of the second SARIMAX model
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shows that forecast line catches the pattern of the actual values. However, forecast

values are lower than the actual values of the CPI series. Table 4.5 exhibits the fore-

cast accuracy of the model. The forecast performance of the model is evaluated by

the RMSE and the MAPE values. The RMSE value is 0.7620. The MAPE value is

5.9286. The accuracy measures of the model are low. However, the performance of

the first SARIMAX model is better than the SARIMAX(3, 1, 3)(0, 0, 1)12.

Table 4.5: The Forecast Performance of the SARIMAX(3, 1, 3)(0, 0, 1)12

ME RMSE MAE MPE MAPE MASE Correlation

0.6584 0.7620 0.6738 5.7716 5.9286 0.2794 0.9317

When the diagnostics of the models were tested, For SARIMAX(3, 1, 3)(0, 0, 1)12

and SARIMAX(4, 1, 4)(2, 0, 1)12, the p values of the Jarque Bera test were 0.9422

and 0.8342, respectively. We cannot reject the null hypothesis which is the normality

of the residuals. These results showed that the errors of the models are normally dis-

tributed. For SARIMAX(3, 1, 3)(0, 0, 1)12 and SARIMAX(4, 1, 4)(2, 0, 1)12, the

p values of the Ljung Box test were 0.7256 and 0.9993, respectively. We cannot reject

the null hypothesis which is "no serial correlation". These results showed that there is

no serial correlation in both SARIMAX models. For SARIMAX(3, 1, 3)(0, 0, 1)12

and SARIMAX(4, 1, 4)(2, 0, 1)12, the p values of the ARCH test were 0.0009 and

0.0305, respectively so we can reject the null hypothesis which is "constant error

variance". These results indicated that there exists heteroscedasticity in both SARI-

MAX models. The variation in errors can be modelled by GARCH type model but it

only affects the prediction interval of the forecasts, which is not the aim of the study.

Lastly, the Pearson Correlation showed that there exists no multicollinearity.

4.3.2 Additive Holt Winters with Additive Error

The second method to produce 12-month ahead forecasts of the Turkish CPI is ad-

ditive Holt Winters method with additive errors. We used ets() function in forecast

package in RStudio to build the model. In the additive Holt Winters with additive

error model building, the initial values of the parameters were automatically calcu-
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lated in ets() command in RStudio. Then, the smoothing parameters (α, β, γ) were

incremented until having the lowest mean squared error (MSE). The smoothing pa-

rameters of the final model for 12-month ahead forecasts of the Turkish CPI are given

in Table 4.6:

Table 4.6: Smoothing Parameters of the HW Model

Alpha Beta Gamma

0.9991 0,0067 0.0007

The alpha value is close to 1. This means that recent observations are assigned higher

weight than the past observations. In the fact that the beta value is close to 0 means

that the slope between the past consecutive observations is weighted higher than the

slope between the recent consecutive observations. Because the gamma is close to 0,

the past seasonal offsets have higher weights.

The coefficient of the model components are given in Table 4.7.

Table 4.7: Coefficients of the HW Model

Component Level Trend Season.1 Season.2 Season.3

Coefficient 0.4106 -0.0328 -0.2799 -0.2439 -0.1359

Component Season.4 Season.5 Season.6 Season.7 Season.8

Coefficient 0.0911 0.1513 0.222 0.2223 0.0777

Component Season.9 Season.10 Season.11 Season.12

Coefficient 0.1015 0.0341 -0.1156 -0.1247

Because the seasonal period of the model is 12, 12 seasonal components were calcu-

lated. The level term is equal to 0.4106 and trend term is equivalent to -0.0328. Then,

the mathematical form of the h-step ahead forecast is calculated as:

ŷh = 0.4106− 0.0328 ∗ h+ sh (4.3)

where h=1,2,...,12. As it is understood from the mathematical model, the time period

negatively affects the forecast values of the Turkish CPI. The seasonal components
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from April to November positively influence the forecast values of the Turkish CPI.

The forecast plot of the Holt Winters Method is illustrated in Figure 4.8.
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Figure 4.8: The Holt Winters forecasts of the CPI

Like SARIMAX model, the dark line gives the actual values of the CPI between

January 2006 and December 2016, the dark blue line gives the forecast values of the

CPI series and the red line gives the actual values of the CPI series. The forecast plot

shows that the forecast values of the CPI are far away from the actual CPI values. The

actual and forecast values of the CPI series increase until the May 2017, but the actual

values increase much more than the forecasts. After May 2017, both the actual and

forecast values are decreasing. The origin CPI values again increase after July 2017,

but the forecast values continue to decrease. In addition, The Holt Winters forecasts

do not catch the seasonal behaviour of the CPI series. The forecast performance of

the Holt Winters model is displayed in Table 4.8.

Table 4.8: The Forecast Performance of the Holt Winters Method

ME RMSE MAE MPE MAPE MASE Correlation

2.2566 2.5482 2.2566 19.4790 19.4790 0.9357 -0.4562
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The RMSE value of the HW model is 2.5482 which is high. The MAPE value is

19.4790 which is quite high. These accuracy measures show that the predictive per-

formance of the Holt Winters model is low for forecasting the Turkish CPI.

4.3.3 TBATS Forecast with Regressors

In the TBATS model building, regression with ARIMA errors was implemented to

add useful covariates because the results of the both model are nearly similar. The

Fourier terms are used as additional covariates when the multiple seasonal period

exists in data. The number of Fourier terms and the order of the ARIMA model were

selected by minimizing the AIC. The best fitted model was obtained according to the

AIC. Then, 12-month ahead forecasts of the Turkish CPI were obtained from the best

fitted model. The forecast plot is illustrated in Figure 4.9.
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Figure 4.9: The TBATS forecasts of the CPI

The actual values of the Turkish CPI series is higher than the forecast values. The

forecast values of the CPI series have the same pattern with the original values of

the CPI series. Both actual and forecast values of the CPI have similar seasonal
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behaviour. That is, both actual and forecast values increase until May 2017, then

both decrease until July 2017 and again rise until September 2017 and finally go

down in December 2017. The fluctuation of the actual CPI values are larger than the

fluctuation of the forecast values of the CPI series. To decide if the model produces

accurate forecasts or not, it requires to look forecast performance. Table 4.9 gives the

accuracy measures of the model. When we look the RMSE and MAPE, the RMSE

Table 4.9: The Forecast Performance of the TBATS Method

ME RMSE MAE MPE MAPE MASE Correlation

1.9005 2.0448 1.9005 16.7265 16.7265 0.7880 0.6674

is 2.0448 and the MAPE is 16.7265. The RMSE and MAPE of the model are lower

than the RMSE and MAPE of the additive HW model with additive error. However,

the performance of the TBATS model is lower when we compare the TBATS and

SARIMAX model.

4.3.4 Neural Network Autoregressive (NNAR) Forecast

In the forecasting procedure of the Turkish CPI, the Neural Network Autoregressive

(NNAR) model was implemented. In this approach, we used forecast package in

RStudio for NNAR model building. As mentioned in the Chapter 3, there exist three

layers which are input, hidden and output in the neural network model. The NNAR

model in RStudio is based on the feed-forward neural networks with a single hidden

layer. The lagged inputs and the exogeneous variables in the input layer were used

for forecasting the Turkish CPI data. After applying nnetar() function in R, the ap-

propriate model was automatically found and the model is NNAR(4,2,7)[12]. The

model parameters are 4, 2 and 7. The number of the non-seasonal lags used as inputs

is 4 which is AR order, the number of the seasonal lags used as inputs is 2 which is

SAR order and the number of the nodes in the hidden layer is 7. In addition, we add 6

exogeneous variables as the inputs. These exogeneous variables are the current value

of the PPI, the first lag of the PPI, the first lag of the deposit interest, the second lag of

the deposit interest, the current of the export unit values and the fifth lag of the import
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unit values.

The network stucture of the model is "12-7-1". 12 gives the number of the inputs

which are composed of the nonseasonal lags, the seasonal lags and exogeneous vari-

ables. 7 is the number of the nodes in the hidden layer. The number of the hidden

nodes is equal to the half of the number of the input nodes plus 1 which is the output

node. The random starting weights were automatically assigned in nnetar() function.

Because the weights are assigned randomly, the different forecast values are obtained

for every NNAR model building process. Hence, after we repeated the model func-

tion in 30 40 times, we chose the best model which had the least RMSE and MAPE

values. After model building, the forecast plot of the NNAR model is demonstrated

in Figure 4.10.
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Figure 4.10: The ANN forecast of the CPI

Figure 4.10 shows that the forecast values of the Turkish CPI are approximately equal

with the actual values for January and February 2017. Later, both values increase but

the actual values increase further until April 2017. Later, the original values more

sharply decrease and increase than the forecast values. It is understood from the

forecast plot, the forecast values do not exactly catch the seasonal behaviour of the
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original CPI data. To prove this, we need to get accuracy measures for predictive

performance of the NNAR model. Table 4.10 shows the performance of the NNAR

model.

Table 4.10: The Forecast Performance of the NNAR Model

ME RMSE MAE MPE MAPE MASE Correlation

0.9277 1.1295 0.9751 7.9922 8.4765 0.4043 0.7850

Table 4.10 shows that the RMSE and MAPE of the NNAR model is not high. The

RMSE values is 1.1295 and MAPE is 8.4765. The forecast performance of the NNAR

model is lower than both SARIMAX models. However, the forecasts of the NNAR

model are closer to the actual values of the Turkish CPI than forecasts of the additive

HW with additive error model and the TBATS model.

Actually, it is hoped that the neural network model obtains more accurate forecasts

of the CPI series. However, RStudio limits the function of the neural network. It

permits applying feed-forward neural network with a single hidden layer. If we used

more than one hidden layer in the neural network structure, our forecast performance

could improve and the neural network model could produces more accurate forecasts

of the Turkish CPI.

4.3.5 Theta Forecast

The Theta model proposed by Assimakopoulos and Nikolopoulos [3] were imple-

mented to produce 12 month ahead forecasts of the Turkish CPI series. According

to Hyndman and Billah [29], the Theta model consists of many pages of algebraic

operations which are complex and confused, so they developed simpler method for

Theta model and they found that the forecasts of the Theta model are equivalent to

the forecasts obtained by the simple exponential smoothing (SES) with drift method.

Hence, in the application of the Theta model for forecasting the Turkish CPI, the

thetaf() function in the forecast package was used. The model results are equivalent

to SES with drift.
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The function automatically obtains 12 month ahead forecasts. The smoothing param-

eter; α, is 0.0001. Due to the fact that the smoothing parameter is close to 0, the

distant values are given more weights than the recent values. The forecast plot of the

Theta model is demonstrated in Figure 4.11.
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Figure 4.11: The Theta model’s forecasts of the CPI

Figure 4.11 shows that the forecast values of the CPI series are blue line and the actual

values of the CPI series are red line. The actual values and forecast values of the CPI

data from January 2017 to December 2017 do not share similarity. While the actual

CPI series increase, the forecast values of the CPI series decrease. Similarly, when

the actual CPI values go down, the forecast values rise. The forecast performance of

the model is described in Table 4.11.

Table 4.11: The Forecast Performance of the Theta Method

ME RMSE MAE MPE MAPE MASE Correlation

2.5628 3.0730 2.7440 22.5860 24.1053 1.1378 0.1586

The RMSE and MAPE values of the Theta model are 3.0730 and 24.1053, respec-
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tively. The predictive performance of the Theta model is quite low. The RMSE

and MAPE values of the Theta model are higher than the SARIMAX models, addi-

tive HW with additive error model, TBATS model and NNAR model. These results

showed that the Theta model is not appropriate for modelling the Turkish CPI series.

4.3.6 STL Decomposition Forecast

The final individual forecast method is the Seasonal-Trend Decomposition procedure

based on LOESS (STL). We used stats package and forecast package in RStudio to

construct the STL model and obtain 12 months ahead forecasts of the Turkish CPI

series. In the model constructing procedure; firstly, the original values of the Turkish

CPI from 2006 to 2016 were decomposed into trend, seasonal and remainder compo-

nents and the seasonally adjusted series of the Turkish CPI data were obtained. After

applying nonseasonal forecasting methods as either ARIMA or ETS to the seasonally

adjusted series and deseasonalizing using the last year of the seasonal components,

the forecast values of the STL model were obtained. In this study, we tried both mod-

els to forecast the Turkish CPI series, and ARIMA model gave better results than the

ETS model. Therefore, the ARIMA model was selected for forecasting of the Turk-

ish CPI. In addition, in the model building and forecasting procedure, we added the

lagged of the exogeneous variables into model. These exogeneous variables are the

current value of the PPI, the first lag of the PPI, the first lag of the deposit interest, the

second lag of the deposit interest, the current of the export unit values and the fifth

lag of the import unit values. The forecast plot of the STL Decomposition model is

illustrated in Figure 4.12.

As it is seen from Figure 4.12, both the actual and forecast values of the Turkish

CPI series increase. However, after a certain time, the forecast values of the Turkish

CPI series consistently increase whereas the actual CPI values start decreasing. Then,

the actual CPI values increase again. The forecast values of the CPI are lower than

the original values of the CPI. In addition, the forecast values of the Turkish CPI

show increasing trend. Therefore, the STL forecast method did not catch the seasonal

pattern of the Turkish CPI data.
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Figure 4.12: The STL forecast of the CPI

The accuracy measures of the model are shown in Table 4.12.

Table 4.12: The Forecast Performance of the STL Method

ME RMSE MAE MPE MAPE MASE Correlation

0.6422 1.0977 0.9172 5.3257 8.0794 0.3803 0.5315

The RMSE and MAPE of the model is 1.0977 and 8.0794, respectively. The per-

formance of the model is better than all other individual forecast methods except the

SARIMAX model.

4.4 Ensemble Model

The ensemble model is the combination of the forecasts obtained by the several fore-

casting methods with the optimal weights. We used the "forecastHybrid" package

written by Shaub in RStudio to construct the ensemble forecast model[46] . The

ensemble model in "forecastHybrid" package is composed of the auto.arima, the ad-
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ditive HW model with additive error, the Theta model, the NNAR model, the STL

model and the TBATS model. Two methods were used to assign the weights of the

ensemble model. First one is equal weight assignment. Second one is the weight

based on CV error assignment. Both methods were implemented. As can be seen

from Appendix A, the ensemble model with the weights based on the CV error have

the lower RMSE and MAPE values and the combination of the forecasts with the

weight based on the CV error provide to obtain more accurate forecasts. Thus, in this

study, the weights based on the CV error were preferred.

4.4.1 Ensemble Model with auto.arima, HW, TBATS, NNAR, Theta and STL

Models

In this study, in the ensemble model building, the forecasts are generated from the

combination of the auto.arima model, additive HW model with additive error, the

Theta model, NNAR model, STL model and the TBATS model with the weights

based on the CV error. In model building, the optimal weights assigned according to

the CV error of the each individual model. That is, the individual model with high

CV errors is assigned lower weight in the ensemble model. In this framework, we

constructed the first ensemble model which comprises of all individual methods used

before. The h-step-ahead forecasts of the Turkish CPI are calculated by :

ŷh = 0.21ŷauto.arima
h +0.227ŷhwh +0.012ŷthetah +0.104ŷnnetarh +0.227ŷstlh +0.22ŷtbatsh

(4.4)

where h=1,2,...,12.

ŷh is the h-step ahead forecast of the ensemble model and ŷih is the forecast values of

the ith model. As it is seen from the function, the forecasts of the exponential smooth-

ing model and the STL model were assigned high weights than the other models. The

lowest weight was assigned into the forecast of the Theta model. The forecast plot of

the ensemble model is illustrated in Figure 4.13.

Figure 4.13 indicates that the forecast values predicted from the ensemble model are

not similar to the actual values of the Turkish CPI series. While the actual CPI series
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Figure 4.13: Ensemble Model of auto.arima, HW, TBATS, NNAR, Theta and STL

Models with CV error

have seasonal behaviour, the forecast values of the Turkish CPI have increasing trend

and no seasonal pattern. Firstly, both actual and forecast values of the Turkish CPI

series increase, but actual CPI values increase a lot. Later, actual values of the Turk-

ish CPI decrease more than the forecast values. Finally, the original values increase

highly. Generally, the forecast values are quite lower than the original Turkish CPI

series. The forecasts values do not catch the seasonal pattern of the CPI series.

The accuracy measures of the ensemble model are shown in Table 4.13. When the

predictive performance of the ensemble model are considered, the RMSE and MAPE

values are high in comparison with individual models so this result shows that the

model does not give better results than the individual models.

Table 4.13: The Forecast Performance of the Ensemble Model based on CV error

ME RMSE MAE MPE MAPE MASE Correlation

1.4578 1.6514 1.4578 12.5964 12.5964 0.6045 0.7275
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4.4.2 Ensemble Model with auto arima, Theta, NNAR, STL and TBATS

Although the forecast performance of the individual additive Holt Winters model with

additive error is highly low, the HW forecasts were assigned the high weights in

the ensemble model building process. Therefore, the Holt Winters forecasts were

dropped from the ensemble model to enhance the performance. Then, the h-step-

ahead forecasts are computed as:

ŷh = 0.275ŷauto.arima
h + 0.016ŷthetah + 0.127ŷnnetarh + 0.296ŷstlh + 0.286ŷtbatsh (4.5)

where h=1,2,...,12.

The forecast plot of the ensemble model is demonstrated in Figure 4.14.
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Figure 4.14: Ensemble Model of auto.arima, TBATS, NNAR, Theta and STL Models

As it is seen from Figure 4.14, there is no strong change in the forecast plot of ensem-

ble model with auto arima, Theta, NNAR, STL and TBATS, but the forecast values

of the CPI series catch the breakdown of the actual CPI values. In addition, the ac-

tual values of the Turkish CPI are higher than the forecasts of the ensemble model.

The predictive performance of the ensemble model based on CV error is illustrated in

Table 4.14.
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Table 4.14: The Forecast Performance of the Ensemble Model based on CV error

ME RMSE MAE MPE MAPE MASE Correlation

1.1780 1.3619 1.2005 10.1722 10.4020 0.4978 0.7807

The RMSE and MAPE are 1.3619 and 10.4020, respectively. The forecast accuracy

of the ensemble model without Holt Winters forecasts increase compared to the first

ensemble model composed of auto.arima, HW, TBATS, NNAR, Theta and STL Mod-

els.

4.4.3 Ensemble Model with auto arima, Theta, NNAR and STL

In the second ensemble model, the weight of the TBATS model is quite high although

the individual forecast performance of the TBATS model is highly low. Therefore, to

improve the predictive performance of the ensemble model, the TBATS model was

dropped from the ensemble model. The h-step-ahead forecasts are obtained by:

ŷh = 0.396ŷauto.arima
h + 0.023ŷthetah + 0.154ŷnnetarh + 0.427ŷstlh (4.6)

where h=1,2,...,12. The forecast plot of the third ensemble model is demonstrated in

Figure 4.15.

The forecast plot shows that after dropping the HW and TBATS model, the forecast

values start approaching to actual values of the Turkish CPI but the forecast values

have not catched the seasonal pattern of the actual values yet. In addition, the ac-

curacy measure of the model shows that there is enhancement for the forecasting

performance of the ensemble model because of the decrease in the RMSE and MAPE

values of the ensemble model.

Table 4.15: The Forecast Performance of the Ensemble Model based on CV error

ME RMSE MAE MPE MAPE MASE Correlation

0.7226 0.9652 0.8156 6.1896 7.1397 0.3382 0.7750
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Figure 4.15: Ensemble Model of auto.arima, NNAR, Theta and STL Methods

4.4.4 Ensemble Model with auto.arima, NNAR and Theta

To improve the predictive performance of the ensemble model, we built ensemble

model composed of three methods and compare the performance of all ensemble

model composed of three components. The results showed that the ensemble model

composed of auto.arima, Theta and NNAR models had higher accuracy. Hence, the

STL method was dropped from the ensemble model. Then, the h-step-ahead forecasts

of the ensemble model is calculated by:

ŷh = 0.726ŷauto.arima
h + 0.232ŷnnetarh + 0.042ŷthetah . (4.7)

where h=1,2,...,12

The forecast plot of the ensemble model is demonstrated in Figure 4.16. The forecast

plot of the combination of the auto.arima, Theta and NNAR models shows that the

forecast values of the Turkish CPI series are close to actual values of the data. In

addition, the forecast values catch the seasonal behaviour of the original series. How-

ever, the actual values more sharply go up and down than the forecast values of the

CPI series.
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Figure 4.16: Ensemble Model of auto.arima, Theta and NNAR Methods

The forecast performance of the ensemble model is described in Table 4.16. The

RMSE and MAPE values of the ensemble model decrease.

Table 4.16: The Forecast Performance of the Ensemble Model

ME RMSE MAE MPE MAPE MASE Correlation

0.7613 0.8849 0.7627 6.6310 6.6458 0.3163 0.9090

4.4.5 Ensemble Model with auto.arima and NNAR

Because the forecast performance of the individual Theta model was the lowest, the

Theta model was dropped from the ensemble model. The final ensemble model is

the combination of the auto.arima model and NNAR model. The model weights are

given in the formula of the h-step-ahead forecasts:

ŷh = 0.723ŷauto.arima
h + 0.277ŷnnetarh . (4.8)

where h=1,2,...,12
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The weights of the auto.arima forecasts are higher than the NNAR model. The final

ensemble model forecasts are demonstrated in Figure 4.17.
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Figure 4.17: Ensemble Model of auto.arima and NNAR Methods

Forecast plot of the final ensemble model indicates that the forecast values of the CPI

series are closer to the actual values of the CPI series, but actual CPI series are higher

than the forecast values of the CPI series. In addition, the forecast values of the CPI

series catch the seasonal behaviour of the actual CPI series.

Table 4.17: The Forecast Performance of the Ensemble Model based on CV error

ME RMSE MAE MPE MAPE MASE Correlation

0.5740 0.7356 0.6192 4.9706 5.4323 0.2567 0.8947

The forecast accuracy of the final ensemble model is evaluated in Table 4.17. The

final ensemble model has lower RMSE and MAPE. That means that the combination

of auto.arima and NNAR forecasts obtain more accurate forecasts in comparison with

the other ensemble models.
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4.5 Assessment of Forecast Performances of All Models

Table 4.18 gives out of sample forecast performances of both the individual models

and the ensemble models. Table 4.18 shows that the SARIMAX(4, 1, 4)(2, 0, 1)12

model has the lowest RMSE and MAPE so the best model for 12 month ahead

forecasts of the Turkish CPI is the SARIMAX(4, 1, 4)(2, 0, 1)12. The second best

model is final ensemble model composed of auto.arima and NNAR forecasts. The

SARIMAX(3, 1, 3)(0, 0, 1)12 model is the third best model for 12 month ahead fore-

casts of the Turkish CPI. The worst forecast models are Holt Winters and Theta model

due to having the highest MAPE and the RMSE. Our findings show that the ensem-

ble model improves a bit the forecast performance of the individual models. That is,

the combination of auto.arima and NNAR forecasts produce more reliable forecasts

than the individual models except for the SARIMAX(4, 1, 4)(2, 0, 1)12 models. It

is concluded that the combination of the several models do not always give the best

forecasts, the individual models may have high predictive performance.
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Table 4.18: The RMSEs and MAPEs for All Models

MODEL RMSE MAPE

SARIMAX(4, 1, 4)(2, 0, 1)12 0.4566 3.6731

SARIMAX(3, 1, 3)(0, 0, 1)12 0.7620 5.9286

HW with additive error 2.5482 19.4790

TBATS 2.0448 16.7265

NNAR (4,2,1)[12] 1.1295 8.4765

Theta 3.0730 24.1052

STL Decomposition 1.0977 8.0794

Ensemble 1 (auto.arima, hw, nnar, stl, tbats, theta) 1.6514 12.5964

Ensemble 2 (auto.arima, nnar, stl, tbats, theta) 1.3619 10.4020

Ensemble 3 (auto.arima, nnar, stl, theta) 0.9652 7.1397

Ensemble 4 (auto.arima, nnar, theta) 0.8849 6.6458

Ensemble 5 (auto.arima, nnar) 0.7356 5.4323
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CHAPTER 5

CONCLUSION AND FURTHER RESEARCHES

The inflation rate is simply identified as a rise in the general level of the prices. The

inflation rate is one of the most vital element for the governments as high inflation

may lead the uncertainity which affects the economical activities in the countries.

That is, investors do not want to invest, and they save their money. Therefore, fore-

casting inflation is so crucial factor that many governmental and economical decision

makers and policymakers conduct their system and take precautions according to the

reliable inflation forecasts. Though many forecasting approaches are implemented,

obtaining best forecasts of inflation rate is challenging task because the inflation se-

ries may have nonstationarity, irregular fluctuation, multicollinearity and seasonality,

and also there exist many external factors which influence the inflation rate. One of

the methods for forecasting inflation is the ensemble model which merges the results

of the several forecast techniques.

There are numerious studies on forecasting inflation, coping with aforementioned is-

sues. To forecast inflation, many methods are implemented in the literature. Some of

those are the Phillips curve, ARIMA model, seasonal ARIMA model, vector autore-

gressive model, the factor models and combination models. Some of them show that

ensemble model produces more reliable forecasts, the others find that the individual

models have higher forecast accuracy.

In this study, seven forecasting techniques were methodologically introduced. These

methods, SARIMA with exogeneous variables, Holt Winters Exponential Smoothing,

TBATS model, ANN, Theta model, STL and the ensemble model. Then, RMSE and
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MAPE were identified to evaluate the forecast performance.

In computational analysis, we performed seven forecasting techniques in R-Studio

with version 1.1.383 for forecasting Turkish inflation rate. Since the Turkish inflation

rate is measured by the Turkish CPI, we apply modelling of the Turkish monthly CPI

in order to predict the future values of the inflation. In addition, six exogeneous vari-

ables which were Turkish monthly producer price index, unemployment rate, deposit

interest, reel effective exchange rate, import unit value index and export unit value

index were used for the forecasting procedure. Firstly, all individual methods were

implemented. Then, all individual forecasts were combined by giving weights based

on their CV performance. Our findings showed that SARIMAX(4, 1, 4)(2, 0, 1)12

model has the lowest RMSE and MAPE. The second best model for forecasting the

inflation rate is the ensemble model composed of auto.arima and NNAR forecasts.

The Theta model and Holt Winters model have the lowest forecast performance. Al-

though the ensemble model composed of auto.arima and NNAR has high accuracy,

SARIMAX(4, 1, 4)(2, 0, 1)12 model more accurately predicts future values of Turk-

ish CPI compared to the ensemble models.

By getting this thesis as an initial point in forecasting Turkish inflation, further re-

searches can improve ensemble modelling of the monthly Turkish CPI by making

some simulation study to predict the future values of the CPI. To see the overall per-

formance of ensemble models and under which condition they are superior, detailed

simulation study is needed. In addition, some machine learning methods such as the

Boosting, the SVR can be implemented and their results can be compared with tra-

ditional time series model according to the forecast performance of the Turkish CPI

data.
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[18] İ. Domaç. Explaining and Forecasting Inflation in Turkey. Policy Research

Working Paper, 2004.

[19] J. L. Elman. Distributed representations, simple recurrent networks, and gram-

matical structure. Machine Learning, 7(2-3):195–225, 1991.

72
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APPENDIX A

APPENDIX

A.1 Decomposition of the Turkish CPI
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Figure A.1: STL Decomposition of the Turkish CPI
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A.2 Time series plots of Exogeneous Variables
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Figure A.2: Time Series plot of Producer Price Index
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Figure A.3: Time Series Plot of Unemployment rate
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Figure A.4: Time Series Plot of Reel Effective Exchange Rate
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Figure A.5: Time Series Plot of Deposit Interest
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Figure A.6: Time Series Plot of Export Unit Value Index
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Figure A.7: Time Series Plot of Import Unit Value Index
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A.3 SARIMAX Model with All Parameters and Exogeneous Variables

Table A.1: The Coefficient of the SARIMAX(4, 1, 4)(2, 0, 1)12

Component AR1 AR2 AR3 AR4 MA1

Coefficient -0.0672 -0.4926 0.4895 -0.0271 -0.0567

S.E 0.0290 0.0160 NaN 0.0081 0.0190

Component MA2 MA3 MA4 SAR1 SAR2

Coefficient 0.2660 -0.8417 -0.3662 -0.5989 -0.2875

S.E 0.0363 0.0580 0.0197 0.0129 0.0244

Component SMA1 PPI.0 PPI.1 PPI.9 PPI.10

Coefficient -0.3313 0.3855 0.0733 0.0310 -0.1095

S.E 0.0217 0.0996 0.0927 0.0884 0.0874

Component UNEM.7 EXC.9 INT.0 INT.1 INT.2

Coefficient -0.2097 -0.1519 -0.0633 0.0855 0.2789

S.E 0.0720 0.1085 0.2024 0.2553 0.2130

Component EXP.0 EXP.9 IMP.0 IMP.5 IMP.9

Coefficient 0.5023 -0.2353 -0.0578 -0.1543 -0.1183

S.E 0.2993 0.3882 0.2919 0.2032 0.3658
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A.4 The forecast plot of SARIMAX Model with All Parameters and Exoge-

neous Variables
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Figure A.8: Forecast Plot of SARIMAX(4, 1, 4)(2, 0, 1)12 with all exogeneous vari-

ables
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A.5 Assessment of Forecast Performance of Ensemble model based on CV er-

ror and Ensemble Model with Equal Weight

Table A.2: The RMSEs and MAPEs for Ensemble Model based on CV Error

MODEL
CV ERROR

RMSE MAPE

Ensemble 1 (auto.arima, hw, nnar, stl, tbats, theta) 1.6514 12.5964

Ensemble 2 (auto.arima, nnar, stl, tbats, theta) 1.3619 10.4020

Ensemble 3 (auto.arima, nnar, stl, theta) 0.9652 7.1397

Ensemble 4 (auto.arima, nnar, theta) 0.8849 6.6458

Ensemble 5 (auto.arima, nnar) 0.7356 5.4323

Table A.3: The RMSEs and MAPEs for Ensemble Model with Equal Weight

MODEL
SIMPLE AVERAGE

RMSE MAPE

Ensemble 1 (auto.arima, hw, nnar, stl, tbats, theta) 1.8744 14.7285

Ensemble 2 (auto.arima, nnar, stl, tbats, theta) 1.7280 13.3348

Ensemble 3 (auto.arima, nnar, stl, theta) 1.5411 11.5839

Ensemble 4 (auto.arima, nnar, theta) 1.5887 12.0546

Ensemble 5 (auto.arima, nnar) 1.0878 8.2288
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