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Supervisor, Actuarial Sciences, METU

Prof. Dr. Maria de Lourdes Centeno
Co-supervisor, Master Programme in Actuarial Science,
ISEG, Lisbon Portugal

Examining Committee Members:

Assoc. Prof. Dr. Ceylan Yozgatlıgil
Department of Statistics, METU

Prof. Dr. A. Sevtap Selçuk-Kestel
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ABSTRACT

REINSURANCE PRICING USING EXPOSURE CURVE OF TWO DEPENDENT
RISKS

Akarsu, Gülçin

M.S., Department of Actuarial Sciences

Supervisor : Prof. Dr. A. Sevtap Selçuk-Kestel

Co-Supervisor : Prof. Dr. Maria de Lourdes Centeno

June 2018, 52 pages

It is known that experience rating and exposure rating are used for insurance and rein-
surance pricing by many practitioners. One of the main tools of exposure rating which
is commonly used is exposure curves. It evaluates the percents of pure risk premium
shared by insurer and reinsurer. In practice, the exposure curves which depend solely
on claim history are widely utilized as an important indicator to determine the price
and retention level based on the preferences and strategies of the insurer and reinsurer.
The aim of this study is to present exposure curves, their use and statistical distribution
for single risk and then develop a theoretical distribution for bivariate case when two
risk sources generating claims behave under dependent assumption. Bivariate Pareto
distribution constructed is employed to generate exposure curves performing simula-
tion with respect to their parameters. Sensitivity of curves to the different values of
parameters are investigated and compared for better estimations. The findings of this
thesis show that the joint statistical distribution for dependent risks yield meaningful
exposure curves which may be easily implemented to practical use.

Keywords : Reinsurance, reinsurance pricing, exposure rating, exposure curve, Bivari-
ate Pareto distribution, dependent risks
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ÖZ

BAĞIMLI İKİ RİSKİN MARUZ KALMA EĞRİSİNİ KULLANARAK
REASÜRANS FİYATLANDIRMASI

Akarsu, Gülçin

Yüksek Lisans, Aktüeryal Bilimler Programı

Tez Yöneticisi : Prof. Dr. A. Sevtap Selçuk-Kestel

Ortak Tez Yöneticisi : Prof. Dr. Maria de Lourdes Centeno

Haziran 2018, 52 sayfa

Sigorta ve reasürans fiyatlandırması için deneyim oranı ve maruz kalma derecesinin,
bir çok uygulayıcı tarafından kullanıldığı bilinmektedir. Yaygın olarak kullanılan ana
maruz kalma derecesi araçlarından biri maruz kalma eğrileridir. Sigortacı ve reasürör
tarafından paylaşılan saf risk primi yüzdesini hesaplar. Uygulamada yalnızca hasar
geçmişine dayanan maruz kalma eğrileri, sigorta şirketinin ve reasürörün tercihleri
ve stratejileri temelinde, fiyat ve muafiyet seviyesini belirleyen önemli bir gösterge
olarak yaygın bir şekilde kullanılmaktadır. Bu çalışmanın amacı, mevcut maruz kalma
eğrilerini, kullanımlarını ve tek bir risk için istatistiksel dağılımlarını, daha sonra,
hasarları üreten iki risk kaynağının bağımlı olması varsayımı altında, kuramsal bir
dağılım oluşturmasını sunmaktır. İki değişkenli Pareto dağılımı, parametrelerine göre
simülasyon yapılarak maruz kalma eğrileri oluşturmak için kullanılır. Eğrilerin farklı
parametrelere duyarlılığı araştırılmış ve daha iyi tahminler için karşılaştırılmıştır. Bu
tezin bulguları, bağımlı riskler için ortak istatistiksel dağılımın, pratik kullanıma ko-
laylıkla uygulanabilecek anlamlı maruz kalma eğrileri verdiğini göstermektedir.

Anahtar Kelimeler : Reasürans, reasürans fiyatlandırması, deneyim oranı, maruz kalma
eğrisi, iki değişkenli Pareto dağılımı, bağımlı riskler
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CHAPTER 1

INTRODUCTION

Every company has main target to guarantee itself and its customers under the risk
of insolvency. For this reason, they implement reduction techniques to decrease their
risks. If all risks are incurred at the same time, insurance companies may not be able
to pay all of the incurred claims. Therefore, they need a risk transfer mechanism
called reinsurance. Reinsurance is a method of transferring a part of the risk which is
undertaken by an insurance company to the third parties.

The main goal of reinsurance is to reduce the risk on ceding company by sharing or
transferring the aggregate or individual claims. It provides companies avoiding from
catastrophic risks, remaining steady when extraordinary events occur. Insurer’s portfo-
lios are more balanced and homogenized, which enable to predict the expected losses
more likely. It regulates the income and makes the portfolios more productive and
manageable. Also, it affects the capital management in an efficient way and empower
the financial position. After reinsurance coverage, insurance companies will be able to
increase their capacity to accept more risks and write more business. This allows them
to increase underwriting risk capacity both in size and number.

Sharing risk premium with a predetermined loadings is called pricing in reinsurance
market. One of the parties, sometimes both of them, determines the price for the rein-
surance agreement and the other party chooses either to buy or decline the agreement
based on the price set by reinsurer. The price which is evaluated by underwriters de-
pends on the type of reinsurance contract and its characteristics. It is so obvious that
the premium determination is simple in proportional reinsurance agreements such as
quota share and surplus. The more cumbersome ones are non-proportional reinsurance
agreements which are excess of loss and stop loss. For these types of reinsurance,
the premiums are calculated by more exposure rating including different models and
techniques than experience rating.

Common methods for exposure rating for non-proportional reinsurance is exposure
curves. It gives a ratio so that insurer knows how much he\she should retain the part
of the premium over the total premium and how much of it to be paid for reinsurance
protection. It is apparent that, this ratio tends to change for different size of retention
level. Whereas, some reinsurance contracts offer a coverage from high level retention,
some of them offer low ones. For example, in the case of high retention level, the
insurer has to pay higher claims than reinsurer. Therefore, the insurer deserves higher
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premium and he\she should determine sharing level of the premium. In that point,
exposure curves has a significant role to give a ratio for settling this level. Retention
level is not just the one factor that affects the sharing ratio. The factors like type
of risks, size of risks and type of perils have impact on exposure curve. Therefore,
different kind of mathematical and statistical methods and models are used to construct
the exposure curve for incorporating the influence of different factors.

1.1 Literature Survey

There are vast amount of literature in reinsurance. Gerber [13] presents the optimal
level of retention for excess of loss reinsurance. He maximizes the adjustment coef-
ficient to minimize the probability of ruin. Waters [26] points out setting an optimal
deductible level under the condition that the ruin probability is minimum for the excess
of loss reinsurance. He uses insurer’s adjustment coefficient as a function of deductible
level to minimize the probability of ruin.

Dickson and Waters [9] study on the loading factor of reinsurance when it depends on
the deductible level. They analyze the effect of the reinsurance on the ruin probabilities
of both infinite and finite time. As further study, Dickson and Waters [10] examine the
minimizing the ruin probability in finite time for both discrete and continuous cases to
set optimal level of insurance. Thus, they introduce a condition that the expected gain is
greater than or equal to zero. They propose a formula for the ruin probability in finite
time for both discrete and continuous cases using the Bellman optimality principle
[11].

Centeno [2] carries out the combination of excess of loss and quota share reinsurance.
She also describes the adjustment coefficient of insurer as a function of the level of
deductible [6]. She reveals this level to the combination of excess of loss and quota
share reinsurance under Sparre Anderson model. In addition, Centeno [3] determines
the optimal deductible level to minimize the upper bound of the probability of ruin.
Centeno and Guerra [14] indicate the relation between maximizing both the adjust-
ment coefficient and the expected utility. They use the exponential utility as a utility
function.

De Finetti [5] shows that reinsurance decreases the some risks of insurer. These risks
that he focuses on are the probability of ruin and the variance of the gain. He indicates
the optimal deductible level by reinsurance principles in non-life insurance under the
conditions of minimizing the variance of the gain. He presents how this level should
be evaluated for non-proportional reinsurance.

Ignatov et al. [16] obtain a formula for the survival probability of cedant for the ex-
pected gain. They use the difference between the survival probability of the cedant
and the reinsurer for determination of the optimal level of reinsurance. They derive the
formula for the expected gain of both parties using joint survival probabilities.

Clark [4] introduces the reinsurance pricing. He explains experience rating and expo-
sure rating to calculate the premiums for both insurer and reinsurer. He mentions the
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pricing for different types of reinsurance. Deng and Zhang [7] approach to pricing in
more theoretical way. They use linear backward stochastic differential equations for
reinsurance premiums. Kreps [17] obtains the algorithm that applies investment cri-
terion relating to return to association of reinsurance agreement terms and economic
techniques. The algorithm detects the minimum price for an uncommon event, and
generally recommends a reduction in risk.

Meyer [20] focuses on the experience rating in his paper. He analyzes the effect of
features which does not have any compeer in the literature on Bayesian credibility. He
uses collective risk model to examine the effect of these features. He updates Paul
Dorweiler’s approach of testing experience rating models. The outputs generate the
parameters of experience rating models. Wang and Williamson [25] and Topel [24]
study on experience rating in unemployment line of business. Sloan [23] discusses the
applicability of experience rating in medical malpratice insurance. Ruser [21] analyzes
how an increase in the indemnity of workers’ compensation insurance influences the
claim ratio when the companies use different degrees of experience rating.

The first exposure rating technique and its application is developed by Salzmann [22].
She considers that both the claims transferred and the claims retained should be repre-
sent as a percentage. Furthermore, these percentages of claims which belong to each
layer of protection of insurance should be determined by a method that performs maxi-
mum affordability and flexibility. Firstly, the claim of homeowners fire line of business
are used and claim distributions as percents of insured volumes are developed. The re-
lation between fire claims and corresponding volume of insurance is examined. Mack
and Fackler [19] studies on liability insurance. They use Riebesell’s formula for rating
the premium. Ludwig [18] updates the study of Salzmann with homeowners fire claims
experience using the data for the accident years between 1984 and 1988. He applies
also the same approach to wind claims, property caused of claims and 1989 Hurricane
Hugo claims to observe whether the distributions of these claims as percents of insured
volumes are different from the fire claims.

Nevertheless, the theoretical studies on exposure curves are limited in literature. The
experts of firms or societies examine and develop the curves for reinsurance markets.
They use the data of companies to create the exposure curves. Gasser [12] develop
a new method for exposure rating to be used in reinsurance. The exposure curves by
using the fire loss data of Swiss Re for years 1959 and 1967 are plotted. Bernegger
[1] studies on a new parametrisation of Gasser’s exposure curves by using Maxwell-
Boltzman, Bose-Einstein, Fermi-Dirac (MBBEFD) distribution class. He presents
some of Swiss Re curves as an analytical function with two parameters. Guggisberg
[15] points out changing Swiss Re exposure curves under the effect of different factors
such as size of risk, type of risk and type of peril.

All these studies, which are not many in number, consider the claims with respect
to single risk. However, there exist no literature on exposure curves combining two
separate risks which may pose a certain dependence to each other.
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1.2 The Aim of Study

Exposure curves vary in different lines of business and it is known that some line of
businesses sometimes can not be considered as separately. In case of two dependent
line of businesses, the availability of exposure curves and their utilization in ratemak-
ing gain importance. Therefore, the question on finding the type of theoretical joint
distribution of exposure curves under dependence assumption and its behavior under
certain parameter values initiates the motivation for this thesis. In this frame, the aim
of this study is to derive the bivariate distribution of two dependent risks and their
marginals. Based on this joint distribution, exposure curves are plotted with respect to
certain parameter values.

This thesis is composed of six chapters. After the introduction part, Chapter 2 gives
the preliminaries on reinsurance and its pricing. The definition and the basis for con-
structing an exposure curve is given in Chapter 3 with illustrative examples, like Swiss
Re exposure curves. Chapter 4 presents the theoretical derivations of Bivariate Pareto
distribution yielding exposure curves for dependent risks. Simulations to illustrate the
outcome of proposed distribution are done with respect to different parameter values
in Chapter 5. The last chapter presents the comments and conclusion of the proposed
study.
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CHAPTER 2

REINSURANCE

The legal parties of reinsurance process are insurance company and reinsurer company.
Insurance company is called ceding company or cedant and it is the party that transfers
the risk. Reinsurer is the party that accepts the transferred risk. For uncertain catas-
trophic risks, even reinsurance company may need a financial protection. In this case,
reinsurer becomes a cedant and transfers a part of transferred risk to another reinsur-
ance company. This process is called as retrocession. The reinsurance agreement is
basically similar to the insurance agreement with the only difference that the clients of
cedant are people in insurance company whereas reinsurer have the cedants as clients.

2.1 Classification of Reinsurance Types

The types of reinsurance are classified as facultative and treaty and both of them can
be agreed for proportional or non-proportional forms. Facultative reinsurance contract
consists of a specified risk about large losses such as life or catastrophe insurances.
Facultative is barely preferred by insurers because: (i) Underwriting and personnel
expenses are higher since all calculations are redone for every individual risk. (ii) The
insurer has to retain all risks until the agreement is signed with reinsurers. (iii) The
reinsurer has an option to reject the facultative reinsurance agreement or to reprice it
to cover the combining of all expenses and premium.

On the other hand, treaty reinsurance contract is a group of several policies covered as
a lump for an explicit period. It offers stationary obligations and rules for continuity
of business. Treaty is more preferred type of reinsurance for insurers because: (i) The
reinsurer has to accept all the incurred risks under the treaty reinsurance coverage.
This implies that one has no right to pick the risk or policy from the treaty to reject the
payment. (ii) The underwriting cost of cedants is lower than facultative reinsurance’s
underwriting cost, which gives a rise to capability of writing more business. (iii) It
provides to cedant to manage the portfolio easily and properly.

In proportional reinsurance, the parties share the risk in specified percent. This per-
cent is changed according to the type of risk or the size of risk. The upper bound for
the agreement should also be indicated in the contract. Otherwise, the policies would
not be balanced and reinsurer would not determine the retained maximum loss. Quota
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share and surplus are known as proportional reinsurance types. Quota share reinsur-
ance runs with stable percentage for every policy. Furthermore, the shared premium
is calculated again according to this percentage. It is usually preferred by small com-
panies or new companies which have just involved to business. Surplus reinsurance
also runs with a specified percentage per policy. This percentage is determined by the
relation between the limit and the retention level of the policy. In surplus reinsurance,
the percentage and the rules of the contract are applied separately for every policy
while the rules and the ratios of the quota share are applied in the same percent for all
policies.

Non-proportional reinsurance is defined as that the claims are transferred when they
exceed the certain level of the claim. This level is determined as an amount or a ratio.
Insurer pays the part of the claims which are less than the prescribed level and transfers
the claims above the level to reinsurer. Excess of loss and stop loss are subbranches
of non-proportional reinsurance. Cedant accepts the risk under the determined level as
an amount called deductible, and agrees with reinsurer to transfer the risk that exceeds
the deductible in excess of loss reinsurance agreement. The agreement can be signed
for each policy or line of business. Whether the agreement may have the upper limit or
not depends on the decision of the parties. Stop loss reinsurance agreement has some
similarities with excess of loss type. It has also predetermined deductible level but
this level is represented only as a ratio. The reinsurer has a liability to pay above the
predetermined loss ratio in the agreement. The upper limit as a percentage can be also
included in the agreement in this reinsurance type. Besides of similarities, these two
types of non-proportional reinsurance have some differences. The main differences are
the payment time and deductible level. The parties agree for an option to pay the claim
or group of claims when they occur in excess of loss contracts. On the other hand, in
stop loss reinsurance, they pay the aggregated losses for the given time period which
is generally at the end of the year. Deductible level can change in both ratio or amount
according to characteristics of agreement in excess of loss. Unlikely, stop loss uses the
given percentage, not an amount, as a deductible level for the accumulation loss of the
year.

2.2 Reinsurance Pricing

Risk premium is the part of the premium without commission, costs and reinstate-
ments. It is the complicated process which involves statistical data, mathematical
methods, reinsurance market conditions and advanced actuarial calculations. Any mis-
take on the process may lead to price the reinsurance incorrectly and enormous claim
payments which may result in insolvency.

2.2.1 Pricing of Proportional Reinsurance

Reinsurance pricing for proportional type is easier than non-proportional one. We
assume that cedant and reinsurer share the premium under the given percentage k%
(such as 70%) in quota share reinsurance contract. It means that reinsurer pays (1−k)%
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(30%) of losses occurred under reinsured policies in return to gain (1− k)% (30%) of
the premium.

Surplus reinsurance pricing is more complicated than quota share pricing. The agree-
ment is built on the layers, named lines. There is a retention level for each line, and
these two entities determine the upper bound or the limit of the contract. Reinsurer
pays the loss exceeding the retention level up to the end of these lines. To make it
more clear, Example 1 is given.

Example 1: We assume that the retention level is set to $100000. The contract has
9 lines, which implies the limit of the protection is 9 times of retention and equals
to $1000000. If there exists a risk with $1500000 indemnity under the protection
of the reinsurance, cedant pays $100000 and reinsurer pays $900000. The rest of
the indemnity is out of the contract. Cedant might pay the remaining risk or go
for another reinsurance agreement. Suppose that cedant chooses to pay the remain-
ing part $500000. The payment of $600000 is left to cedant in total. So, the per-
centages are follows: cedant pays $600000/$1500000 = 40% and reinsurer pays
$900000/$1500000 = 60%. They share the premiums and the incurred losses ac-
cording to these percents in that policy.

Here, the main question is how the ratios or amounts above should be determined. One
of the foundation of the calculations is the historical experience. The data of written
premiums or claims incurred for a large time period or previous treaties information
should be collected. Extreme losses, which are low frequency with high severity, and
catastrophe like earthquake or hurricane are excluded from this part of the evaluation
because these kind of risks may lead to the underestimation of the price. To estimate
the future claims and premiums is also important for determining the retentions and
limits. If all required data is available and estimating models are sufficient, the ratio
of historical claims will be approximately equal to the ratio of expected claims for
the future claims. After selecting the ratio, the catastrophe ratio and expenses such as
commissions, personnel cost and broker free are loaded onto the risk premium.

2.2.2 Pricing of Non-Proportional Reinsurance

Excess of loss and stop loss are the types of non-proportional reinsurance. The claims
which exceed the retention level are paid by the reinsurer in both types of reinsurance.
They also have some similarities in pricing. Both experience rating and exposure rating
are used to price these reinsurance types. The main goal of the experience rating is to
obtain the best estimation of claims and premium for next business period. Historical
experience and properly ratemaking are the tools of the best estimation. The data of
historical claims and earned premiums that belong to past years are required. The more
years of data are available, the better is analyzing the experience rating. Like propor-
tional reinsurance, future projection for expected premiums, claims and also coverage
levels are determined by the rates. In addition, some analyses for experience rating are
evaluated by credibility [20]. Catastrophe rate should be computed separately again
like in proportional. Cat-rate and expenses should be added to the selected rate after
the calibrating all historical experience and ratemakings. There are several kinds of
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methods and models in literature for evaluating the cat-rates and weight given to each
expense. However, in this study, we only focus on the pure premiums, which are the
part of the rating before adding loadings such as commissions, expenses, reinstate-
ments and the remain expenses.

Exposure rating is another method that is more theoretical for approaching to pric-
ing non-proportional than the historical experience. The main characteristic difference
between exposure rating and historical experience is modeling the risk profiles in port-
folios. Loss distribution is required for modeling and it derives the exposure curves
which exposure rating concentrates on. To attain the part of the premium transferred
to reinsurer, the rating is obtained as the percentage of claims. So, the method uses
percents for all claims, deductibles and limits.
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CHAPTER 3

UNIVARIATE EXPOSURE CURVE

The exposure curves are based on risk profiles which consist of risk bands. All risks
have the same volume in terms of sum insured (SI), maximum probable loss (MPL)
or estimated maximum loss (EMP) within these risk bands. To be able to apply this
method, claim distribution is required. However, the problem is to detect the suitable
function for each risk band. Therefore, historical data helps us to define correct distri-
bution function. Incurred claims in the same kind of risk portfolios allow us to predict
the type of the claim distribution. These distributions are utilized as the main tool to
construct exposure curves.

Exposure curve is a function of the retention level as known as deductible. It gives the
information about sharing risk premium between cedant and reinsurer based on this
level. Exposure curves need to be used individually for each risk type and risk band.
Nevertheless, this leads to rise some questions such that which exposure curve should
be selected for a specific risk type and which conditions and assumptions should be
attained, if it is necessary. Before defining the construction of exposure curves, the
motivation of the basis of exposure curve is given basically.

3.1 The Basis of Exposure Curve

Portfolios consist of different line of business. Each policy has different amount of
loss in these portfolios. The amount of loss is converted into a percentage based on
indemnity so-called total exposure. Thus, loss ratios is used instead of loss amounts,
which makes the comparison of different volumed risk easier and standardized. An ex-
ample on the definition of univariate exposure curves is given to point out the function
of these curves under certain statistical distribution assumption.

Example 2: We assume that there are three different portfolios in different line of
business. Claims ratio data that are required for construction of curve is available for
a known period and assumed to follow Exponential distribution with parameter value
0.3. We first generate claim ratio using random variate generation techniques and
claims generated are shown in Figure 3.1a. They are sorted from the smallest to the
greatest as shown in graph Figure 3.1b. It is easily noticed that loss ratios create a
cumulative distribution and shows the percentage of the loss ratios in the portfolio. It
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(a) Exponentially distributed claims ratio (b) The sorted claims ratio given in part (a)

Figure 3.1: Generated loss ratios and sorted situation.

implies that the probability that the loss ratio is less than or equal to 20% is equivalent
to 70% approximately. It means that the policies, which have loss amount less than or
equal to 20% of their indemnities, consist of 70% of the portfolio.

If we divide the graph into two parts with a vertical line at any point defined as de-
ductible in Figure 3.2, the part on left of the line represents the loss ratios up to that
point. If this area is divided by the area corresponding the entire risk premium, the
ratio of deductible level measuring to that point is attained. If this division is applied
for every different point, the resulting graph are plotted and shows the exposure curve
corresponding to risk portfolio [15].

Figure 3.2: Loss ratios and the impact of deductible level.

Loss distribution is the important part to determine exposure curve. Even if loss distri-
bution function does not exist, exposure curve can be found using the loss distribution
of portfolio. Some simple examples are given to show how exposure curves occur
without loss distribution function.
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Example 3: Assume that we have a portfolio A which has total losses about 5% of total
portfolio, i.e, 5% of policies have losses amounting indemnity in Figure 3.3a. Assume
also that it has loss ratio of 60% which are 30% of portfolio. This means that 30%
of policies have losses amounting 60% of their indemnities. The rest of the policies
become then as follows: 25% of policies have loss ratios 20% and 40% of policies have
loss ratios 10%. Since the portfolio has four different loss levels, the corresponding
exposure curve function is a partial function of four components in Figure 3.3b.

(a) Loss distribution (b) Exposure curve

Figure 3.3: Determination of exposure curve for portfolio A.

We obtain the exposure curve for portfolio A, GA(d), as a partial function. Each com-
ponent of function is evaluated separately. The expected value of policies equals to
0.32. Deductible level is considered to place in four different intervals since the port-
folio has four different loss levels. The area which is on the left of deductible level is
divided by its expected value. Finally, the exposure curve is obtained as following:

GA(d) =
1

0.32


d d ≤ 0.10
0.60 · d+ 0.04 0.10 ≤ d ≤ 0.20
0.35 · d+ 0.05 + 0.04 0.20 ≤ d ≤ 0.60
0.05 · d+ 0.18 + 0.05 + 0.04 0.60 ≤ d ≤ 1

 .

Example 4: We assume that another portfolio, B, consisting of 10% total losses, losses
with ratios 75% of 25% of policies, losses with ratio 50% of 40% of policies and
losses with ratio 20% of 25% of policies as shown in Figure 3.4a. Let GB(d) be the
exposure curve function for portfolio B. Following the same steps for GA(d), we plot
the exposure curve for portfolio B as given in Figure 3.4b and Equation (3.1).

Example 5: In this example we assume portfolio C represents a full damaged portfolio,
i.e, all policies have the loss ratio 100% in Figure 3.5a. Therefore, exposure curve
function for portfolio C should be linear, i.e. GC(d) = d.
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(a) Loss distribution (b) Exposure curve

Figure 3.4: Determination of exposure curve for portfolio B.

GB(d) =
1

0.5375


d d ≤ 0.20
0.75 · d+ 0.05 0.20 ≤ d ≤ 0.50
0.35 · d+ 0.20 + 0.05 0.50 ≤ d ≤ 0.75
0.10 · d+ 0.1875 + 0.2 + 0.05 0.75 ≤ d ≤ 1

 . (3.1)

(a) Loss distribution (b) Exposure curve

Figure 3.5: Determination of exposure curve for portfolio C.

We clearly observe that the shapes of the graphs change in every portfolio and all of
them except portfolio C are concave with beginning point (0, 0) and end point (1, 1).
These graphs imply that exposure curve of portfolios which have high ratio is close to
the diagonal. On the other hand, exposure curve is far away from the diagonal when
the portfolio has less losses. This concludes that the concavity depends on different
type of risk and may also depend on the class of risk, the type of peril and the size of
risk.
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3.2 The Construction of Exposure Curves

It has been mentioned earlier that on the stage of exposure curves, historical data is
also used for exposure rating. There are some exposure curves which are created using
both experience and exposure rating in the market. Some of them are used currently
but some of them are not preferred due to its timespan to be outdated. Lloyd’s [1]
curve is one of them and it is not used anymore. Salzmann’s [22] curves are made by
using homeowners data for 1960 fire losses, thereof the data is also old dated. Rein-
surers such as Munich Re and Skandia American Reinsurance Corporation have their
curves for mostly corresponding commercial insurance. They do not diversify the in-
surance by its volume. Ludwig’s [18] curves vary by protection and structure class
for homeowners and insurance class for personal and commercial and they embrace
property insurance with all perils. Insurance Service Office (ISO) uses the current data
based on Property Size of Loss Database (PSOLD) and update used data every two
years. The curves diversify by volume of insurance, peril, coverage and state. Swiss
Re curves developed by Gasser [12] are based on fire statistics of the Swiss Association
of Cantonal Fire Institutions. The curves are used generally for fire insurance class in
European reinsurance market daily. Bernegger [1] brings out some curves mentioned
above with new parametrisation, which is called Maxwell-Boltzmann, Bose-Einstein
and Fermi-Dirac (MBBEFD) curves which offers a statistical modeling based on his-
torical information.

It should be noted that exposure curves are partial linear functions, not a curve in the
examples given in this chapter. They are given to create basic idea for constructing the
exposure curves. If the portfolio has policies with different loss ratios, the lines turn
into a curve.

Bernegger [1] suggests a theoretical form for constructing exposure curves.

Definition 3.1. LetX denotes a random variable representing the claim amounts which
are normalized by the probable maximum loss, denoted by M . So the loss amount
turns into a loss ratio where 0 ≤ x ≤ 1. Thus, both the distribution function FX(x)
and probability density function fX(x) are distributed on the interval [0,1].

Definition 3.2. Let D be the retention level for non-proportional reinsurance. To con-
vert D to a ratio d, D is normalized and it is divided by M .

The mean value of cedant is E[min(d, x)] and the mean for reinsurer is E[min(1, x)]−
E[min(d, x)]. Therefore, the ratio of E[min(d, x)]/E[min(1, x)] derives the exposure
curve, denoted byG. G gives the proportion of premium that cedant should have under
the retention d [1].

G(d) =
E[min(d, x)]

E[min(1, x)]
=

∫ d
0
xfX(x)dx+

∫ 1

d
dfX(x)dx∫ 1

0
xfX(x)dx

=

[
− x
(
1− FX(x)

)]∣∣d
0

+
∫ d

0

(
1− FX(x)

)
dx+ d

∫ 1

d
fX(x)dx∫ 1

0
xfX(x)dx
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=
−d
(
1− FX(d)

)
+
∫ d

0

(
1− FX(x)

)
dx+ d

(
1− FX(d)

)∫ 1

0
xfX(x)dx

=

∫ d
0

(
1− FX(x)

)
dx∫ 1

0

(
1− FX(x)

)
dx

=

∫ d
0

(
1− FX(x)

)
dx

E[x]
.

Using integration by parts and the properties of probability we prove thatG(d) satisfies
the requirements of an exposure curve. That is, the first derivative of G with respect to
d is 1 − FX(d) ≥ 0 (by fundamental theorem of calculus), so G is increasing on the
interval (0,1). The second derivative of G is −fX(d) ≤ 0 and so G is concave on the
interval (0,1). It is obvious that G(0) = 0 and G(1) = 1.

Bernegger[1] uses the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac (MBBEFD)
distribution to find a new expressions for exposure curves which are still in use cur-
rently in reinsurance market. The parameters g and b are the factors that determine the
form of the curves. The condition b · g = 1 represents the Maxwell-Boltzmann and
similarly b · g > 1 and b · g < 1 represent Bose-Einstein and Fermi-Dirac, respectively.
The curve with parameters b and g and variable d is given as:

G(d) =



d g = 1 ∨ b = 0

ln
(
1 + (g − 1)d

)
ln(g)

g > 1 ∧ b = 1

1− bd

1− b
bg = 1 ∧ g > 1

ln
(

(g−1)b+(1−gb)bd
1−b

)
ln(gb)

b > 0 ∧ b 6= 1 ∧ bg 6= 1 ∧ g > 1



.

Determination of parameters depends on the calculation of the first and the second
moment and estimation of some end point probabilities. These curves can approximate
to Swiss Re curves at good level. After the calculation of parameters for every Swiss
Re curve, it is observed by plotting that the results come up to a smooth continuous
curves. These curves are formatted to functions to a single parameter c as follows:

b(c) = e3.1−0.15(1+c)c,

g(c) = e(0.78+0.12c)c.

MBBEFD curves now depend just the parameter c and when c = 0, the curve is a
linear function. In other words, the portfolio consists of total losses since g(0) = 1.
The concavity changes for every value of c. Increasing of c rises the concavity of curve.
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It means that the curves which yield a higher value of c have portfolio that consists of
less risky, i.e. lower loss ratio, policies. For the values of 1.5, 2, 3 and 4 of c, the
curves fit the Swiss Re curves (called Y1, Y2, Y3 and Y4) very well. The reason why all
Swiss Re curves are different from each other depends on several factors. These can be
the scope of application, the volume of risk size, the type of total exposure (SI, PML,
EML) and the perils covered. When c is equal to 5, the curve coincides with Lloyd’s
curve which is used for pricing the industrial risk [1].

Figure 3.6: Exposure curves based MBBEFD distributions for c = 0,1,2,3,4,5.

3.3 Pricing Using Exposure Curve

Exposure curves are more preferred tool to price non-proportional reinsurance con-
tracts. The method can be used for both agreements with limit or without limit. It
should be kept in mind that sharing the premium is calculated over the pure premium.
The other loadings like commissions and expenses should add after sharing the pure
premium.

We present some numerical examples using Swiss Re curves. Figure 3.7a implies the
curves of three different portfolios under the non-proportional reinsurance agreement
without limit.

To present the utilization of Swiss Re exposure curves, an example of three portfo-
lios whose information given in Table 3.1 is introduced. For portfolio X, insurer pays
%0.4826 of total premiums to reinsurer for transferring the risk exceeding $30000 (de-
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ductible amount of the agreement). On the other side, Figure 3.7b shows the ratio
of premium that cedant pays to reinsurer between the deductible and the limit. We
assume that there exists a facultative policy with sum insured $2000000 and pure pre-
mium $50000. Cedant is provided a reinsurance protection against to this risk by a
contract. According to this contract, the risk is transferred when it exceeds $1000000
and up to $1500000 ($1000000 XS $500000). In terms of ratio, the protection is from
%50 to %75 and insurer pays G(%75) − G(%50) = %12.25 of pure premium, which
corresponds to the amount $6125.

Table 3.1: Required entities for portfolios.

Portfolio D SI Total Prem. d G(d) Ins. Prem. Re. Prem.

Portf. X $30K $100K $10K 0.30 0.5174 $5174 $4826
Portf. Y $750K $1000K $30K 0.75 0.8994 $26981 $3079
Portf. Z $1300K $5000K $150K 0.26 0.26 $39K $111K

(a) Swiss Re curves of three portfolios without lim-
its. (b) Swiss RE curve of policy with limit.

Figure 3.7: Swiss Re curves for reinsurance pricing.
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CHAPTER 4

BIVARIATE EXPOSURE CURVES UNDER DEPENDENT
RISKS

There are different exposure curves that change under the effect of the several factors
like type or risk or size of risk in the reinsurance market. Therefore, we expect that
to depend two risks under the same policy might rise a different exposure curve with
recpect to their individual curves.

Under the assumption of collective risk model, let X1 and X2 denote the claim process
of two separate risks. Assume that the loss distribution functions of X1 and X2 are
given as FX1(x1) and FX2(x2) with probability density functions fX1(x1) and fX2(x2),
respectively.

Assume also that the risks are dependent under the same total exposure as chosen MPL,
denoted by B, by collective risk model S such that:

S =
N∑
n=1

X1n +X2n,

where the random variable N is the number of incurred risks.

Proposition 4.1. SI =
N∑
n=1

min
(
D, (X1n+X2n)

)
is the insurer’s expected value under

the reinsurance agreement with deductible amount D. Therefore, the exposure curve
of these two dependent risks is:

G(D) =

∫∫
x1+x2<D

(x1 + x2)fX1,X2(x1, x2)dx1dx2 +
∫∫

D<x1+x2<B

D · fX1,X2(x1, x2)dx1dx2∫∫
x1+x2<B

(x1 + x2)fX1,X2(x1, x2)dx1dx2

.

17



Proof.

G(D) =
E[SI ]

E[S]
=

E[N ] · E[min(D,X1 +X2)]

E[N ] · E[X1 +X2]

=
E[min(D,X1 +X2)]

E[X1 +X2]

=

∫∫
x1+x2<D

(x1 + x2)fX1,X2(x1, x2)dx1dx2∫∫
x1+x2<B

(x1 + x2)fX1,X2(x1, x2)dx1dx2

+

∫∫
D<x1+x2<B

D · fX1,X2(x1, x2)dx1dx2∫∫
x1+x2<B

(x1 + x2)fX1,X2(x1, x2)dx1dx2

.

We need to derive joint probability function fX1,X2(x1, x2) to calculate the curve above.
In order to determine the joint probability, we choose Bivariate Pareto distribution
as suggested in literature [8]. We examine the intermediary steps to derive the joint
cumulative function.

4.1 Bivariate Pareto Distribution

LetX be a random variable which has Exponential distribution Exp(θ) with the distri-
bution parameter Θ = θ where Θ is also a random variable having Θ ∼ Gamma(α, λ).

fX|Θ(x|θ) = θe−θx where x > 0, θ > 0,

fΘ(θ) =
λα

Γ(α)
θα−1e−λθ where α > 0, λ > 0.

Posterior distribution of X|Θ is known to have Pareto distributions X ∼ Par(α, λ) as
shown in Equation (4.1).

fX(x|α, λ) =

∫ ∞
0

fX|Θ(x|θ)fΘ(θ)dθ

=

∫ ∞
0

θe−θx
λα

Γ(α)
θα−1e−λθdθ

=

∫ ∞
0

λα

Γ(α)
θαe−θ(x+λ)dθ

=
λα

Γ(α)

Γ(α + 1)

(x+ λ)α+1

∫ ∞
0

(x+ λ)α+1

Γ(α + 1)
θ(α+1)−1e−θ(x+λ)dθ

= αλα
(
x+ λ

)−α−1
x > 0, α > 0, λ > 0,

(4.1)
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since
∫∞

0

(x+ λ)α+1

Γ(α + 1)
θ(α+1)−1e−θ(x+λ)dθ = 1.

The cumulative distribution function of Pareto distribution with parameters α and λ is
attained as follows:

FX(x|α, λ) =

∫ x

0

fZ(z|α, λ)dz

=

∫ x

0

αλα(z + λ)−α−1dz

= αλα
((z + λ)−α

−α

)∣∣∣x
0

= −λα
[
(x+ λ)−α − λ−α

]
= 1−

(x+ λ

λ

)−α
= 1−

(
1 +

x

λ

)−α
x > 0, α > 0, λ > 0.

Definition 4.1. Suppose that two random variables X1 ∼ Exp(θ) and X2 ∼ Exp(θ)
share the same random affect Θ = θ. Therefore, they transform to dependent random
variables and their probability functions are given [8]:

fX1|Θ(x1|θ) = θe−θx1 ,

fX2|Θ(x2|θ) = θe−θx2 ,

fX1(x1|α, λ) = αλα(x1 + λ)−α−1,

fX2(x2|α, λ) = αλα(x2 + λ)−α−1,

FX1(x1|α, λ) = 1−
(

1 +
x1

λ

)−α
,

FX2(x2|α, λ) = 1−
(

1 +
x2

λ

)−α
.

The joint cumulative distribution function is then [8]:

FX1,X2(x1, x2|α, λ) = 1− F x1(x1|α, λ)− F x2(x2|α, λ)

+

∫ ∞
0

e−θ(x1+x2)
( λα

Γ(α)
θα−1e−λθ

)
dθ,

where F x1(x1|α, λ) is a survival function such that

F x1(x1|α, λ) = 1− Fx1(x1|α, λ).
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FX1,X2(x1, x2|α, λ) = 1− F x1(x1|α, λ)− F x2(x2|α, λ)

+

∫ ∞
0

e−θ(x1+x2)
( λα

Γ(α)
θα−1e−λθ

)
dθ

= 1−
(

1 +
x1

λ

)−α
−
(

1 +
x2

λ

)−α
+

∫ ∞
0

e−θ(x1+x2)
( λα

Γ(α)
θα−1e−λθ

)
dθ

= 1−
(

1 +
x1

λ

)−α
−
(

1 +
x2

λ

)−α
+ λα

∫ ∞
0

1

Γ(α)
θα−1e−θ(x1+x2+λ)dθ

= 1−
(

1 +
x1

λ

)−α
−
(

1 +
x2

λ

)−α
+

λα

(x1 + x2 + λ)α

∫ ∞
0

(x1 + x2 + λ)α

Γ(α)
θα−1e−θ(x1+x2+λ)dθ

= 1−
(

1 +
x1

λ

)−α
−
(

1 +
x2

λ

)−α
+

λα

(x1 + x2 + λ)α

= 1−
(

1 +
x1

λ

)−α
−
(

1 +
x2

λ

)−α
+
(

1 +
x1 + x2

λ

)−α
.

(4.2)
Since the inner part of integral is the probability density function of θ which is dis-

tributed Gamma θ ∼ Gam(α, λ), the term
∫∞

0

(x1 + x2 + λ)α

Γ(α)
θα−1e−θ(x1+x2+λ)dθ

equals to 1. We obtain the given Equation (4.2) in the form of survival and density
functions for simplicity. Hence, the joint cumulative distribution is found to be

FX1,X2(x1, x2|α, λ) = 1− F x1(x1|α, λ)− F x2(x2|α, λ)

+

∫ ∞
0

e−θ(x1+x2)
( λα

Γ(α)
θα−1e−λθ

)
dθ

= 1− F x1(x1|α, λ)− F x2(x2|α, λ)

+

∫ ∞
0

e−θx1e−θx2
( λα

Γ(α)
θα−1e−λθ

)
dθ

= 1− F x1(x1|α, λ)− F x2(x2|α, λ)

+

∫ ∞
0

fX1(x1|θ)
θ

fX2(x2|θ)
θ

fΘ(θ)dθ.

(4.3)

4.2 Distributions of Dependent Risks

Definition 4.2. Let the risk X has a mixture distribution FX(x) combining of two
distributions HX(x) and GX(x) such that

FX(x) = p ·HX(x) + (1− p) ·GX|Θ(x|θ),
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where

HX(x) =

{
0 X<0
1 X ≥ 0

}
,

GX|Θ(x|θ) =

{
0 X<0
1− exp(−θx) X ≥ 0

}
,

and GX|Θ(x|θ) is loss distribution having Exp(Θ), p ∈ [0,1].

We obtain the cumulative and density distribution functions of X , using Definition 4.2
as

FX|Θ(x|θ) =

{
0 X<0
1− (1− p)e−θx X ≥ 0

}
,

fX|Θ(x|θ) =

{
p X = 0
(1− p)θe−θx X > 0

}
,

respectively. In more detail, we define F as a mixture distribution to satisfy the condi-
tion that the probability of the loss being 0 to be FX(0) = p. If the loss is greater than
0, it is distributed as Exp(Θ) with Θ ∼ Gamma(α, λ). Then, GX|Θ(x|θ) has a new
distribution with new parameters α and λ, that is Pareto distribution.

GX(x|α, λ) =

{
0 X<0

1−
(

1 +
x

λ

)−α
X ≥ 0

}
.

Based on this set up, F becomes mixture Pareto distributions with the probability
FX(0|α, λ) = p. The function F is obtained:

FX(x|α, λ) = p ·HX(x) + (1− p) ·GX(x|α, λ)

= p+ (1− p)
(

1− (1 +
x

λ
)−α
)

= 1− (1− p)
(
1 +

x

λ

)−α
x ≥ 0.

(4.4)

Definition 4.3. Let two risks X1 and X2 have mixture Pareto distributions with the
probabilities Fx1(0|α, λ) = p1 and FX2(0|α, λ) = p2, respectively.

FX1(x1|α, λ) =

{
0 x1<0

1− (1− p1)
(

1 +
x1

λ

)−α
x1 ≥ 0

}
,

FX2(x2|α, λ) =

{
0 x2<0

1− (1− p2)
(

1 +
x2

λ

)−α
x2 ≥ 0

}
,

with probability density distributions:

fX1(x1|α, λ) =

{
p1 x1 = 0

(1− p1)
α

λ

(
1 +

x1

λ

)−α−1

x1 > 0

}
,

fX2(x2|α, λ) =

{
p2 x2 = 0

(1− p2)
α

λ

(
1 +

x2

λ

)−α−1

x2 > 0

}
.

(4.5)
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It makes sense to define the functions of cumulative distribution and probability density
as partial functions. For this reason, we define joint distribution such that probability
of the losses are equal to 0 is more likely event. Furthermore, this event’s probability
is pretty high actually for some lines of business in insurance portfolios.

When X1 and X2 are influenced by the same random effect, they may become depen-
dent to each other. The joint probability function of X1 and X2 is derived from their
bivariate distribution by substituting the terms into Equation (4.3).

FX1,X2(x1, x2) = 1− FX1(x1|α, λ)− FX2(x2|α, λ)

+

∫ ∞
0

fX1(x1|θ)
θ

fX2(x2|θ)
θ

fΘ(θ)dθ

= 1− (1− p1)
(

1 +
x1

λ

)−α
− (1− p2)

(
1 +

x2

λ

)−α
+

∫ ∞
0

(1− p1)e−θx1(1− p2)e−θx2
λα

Γ(α)
θα−1e−λθdθ

= 1− (1− p1)
(

1 +
x1

λ

)−α
− (1− p2)

(
1 +

x2

λ

)−α
+ (1− p1)(1− p2)

∫ ∞
0

e−θ(x1+x2) λα

Γ(α)
θα−1e−λθdθ

= 1− (1− p1)
(

1 +
x1

λ

)−α
− (1− p2)

(
1 +

x2

λ

)−α
+ (1− p1)(1− p2)

(
1 +

x1 + x2

λ

)−α
.

Definition 4.4. Let FX1,X2(x1, x2) denote the joint cumulative distribution function of
variables X1 and X2 defined in Definition 4.3 with parameters λ and α whose form is
given as:

FX1,X2(x1, x2) =



0 x1 < 0, x2 < 0

1− (1− p1)
(

1 +
x1

λ

)−α
−(1− p2)

(
1 +

x2

λ

)−α
+(1− p1)(1− p2)

(
1 +

x1 + x2

λ

)−α
0 ≤ x1, 0 ≤ x2


.

It is shown that FX1,X2(x1, x2) satisfies the requirements of joint cumulative distribu-
tion.

Theorem 4.2. If FX1,X2(x1, x2) is a joint cumulative distribution function function,
then limx1,x2→∞ FX1,X2(x1, x2) = 1.
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Proof.

lim
x1,x2→∞

FX1,X2(x1, x2) = lim
x1,x2→∞

(
1− (1− p1)

(
1 +

x1

λ

)−α
− (1− p2)

(
1 +

x2

λ

)−α
+ (1− p1)(1− p2)

(
1 +

x1 + x2

λ

)−α)
= 1− (1− p1) · 0− (1− p2) · 0 + (1− p1)(1− p2) · 0

= 1.

Theorem 4.3. If FX1,X2(x1, x2) is a joint cumulative distribution function, then
limx1,x2→−∞ FX1,X2(x1, x2) = 0.

Proof. It is proved by Definition 4.4.

Theorem 4.4. If FX1,X2(x1, x2) is a joint cumulative distribution function, then
limx1→∞ FX1,X2(x1, x2) = FX2(x2) and limx2→∞ FX1,X2(x1, x2) = FX1(x1).

Proof. We give the proof only for the one variable; the other is the same.

lim
x1→∞

FX1,X2(x1, x2) = lim
x1→∞

(
1− (1− p1)

(
1 +

x1

λ

)−α
− (1− p2)

(
1 +

x2

λ

)−α
+ (1− p1)(1− p2)

(
1 +

x1 + x2

λ

)−α)
= 1− (1− p1) · 0− (1− p2)

(
1 +

x2

λ

)−α
+ (1− p1)(1− p2) · 0

= 1− (1− p2)
(

1 +
x2

λ

)−α
= FX2(x2).

Theorem 4.5. If FX1,X2(x1, x2) is a joint cumulative distribution function, then
FX1,X2(a1, a2) ≤ FX1,X2(b1, b2) for a1 ≤ b1 and a2 ≤ b2, i.e, it is non-decreasing.

Proof. Take derivative of F with respect to x1.

∂

∂x1

FX1,X2(x1, x2) = (1−p1)
α

λ

(
1+

x1

λ

)−α−1

−(1−p1)(1−p2)
α

λ

(
1+

x1 + x2

λ

)−α−1

.
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Consider that the other variable is fixed.

x1 ≤x1 + x2(
1 +

x1

λ

)α+1

≤
(

1 +
x1 + x2

λ

)α+1

(
1 +

x1

λ

)−α−1

≥
(

1 +
x1 + x2

λ

)−α−1

(1− p1)
(

1 +
x1

λ

)−α−1

≥(1− p1)
(

1 +
x1 + x2

λ

)−α−1

.

Since p2 is probability and 1− p2 ≤ 1,

(1− p1)
(

1 +
x1 + x2

λ

)−α−1

≥ (1− p1)(1− p2)
(

1 +
x1 + x2

λ

)−α−1

.

Therefore,

(1− p1)
(

1 +
x1

λ

)−α−1

≥(1− p1)(1− p2)
(

1 +
x1 + x2

λ

)−α−1

(1− p1)
α

λ

(
1 +

x1

λ

)−α−1

≥(1− p1)(1− p2)
α

λ

(
1 +

x1 + x2

λ

)−α−1

=⇒ (1− p1)
α

λ

(
1 +

x1

λ

)−α−1

− (1− p1)(1− p2)
α

λ

(
1 +

x1 + x2

λ

)−α−1

≥ 0.

If we fix x1 and take partial derivative with respect to x2, we attain the same result

for x2. Since
∂

∂x1

FX1,X2(x1, x2) ≥ 0 and
∂

∂x2

FX1,X2(x1, x2) ≥ 0, FX1,X2(x1, x2) is

non-decreasing.

Definition 4.5. The joint probability density function fX1,X2(x1, x2) has to be consid-
ered also at the points where x1 = x2 = 0,

fX1,X2(x1, x2) =



FX1,X2(0, 0) x1 = 0, x2 = 0

∂

∂x1

FX1,X2(x1, 0) 0 < x1, x2 = 0

∂

∂x2

FX1,X2(0, x2) x1 = 0, 0 < x2

∂2

∂x2∂x1

FX1,X2(x1, x2) 0 < x1, 0 < x2


.
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fX1,X2(x1, x2) =



p1p2 x1 = 0, x2 = 0

(1− p1)p2
α

λ

(
1 +

x1

λ

)−α−1

0 < x1, x2 = 0

(1− p2)p1
α

λ

(
1 +

x2

λ

)−α−1

x1 = 0, 0 < x2

(1− p1)(1− p2)
α(α + 1)

λ2

·
(

1 +
x1 + x2

λ

)−α−2

0 < x1, 0 < x2



.

fX1,X2(x1, x2) satisfies the characteristics of joint probability density distribution.

Theorem 4.6. If fX1,X2(x1, x2) is a joint probability density distribution function, then
∞∫
0

∞∫
0

fX1,X2(x1, x2)dx1dx2 = 1 for x1 > 0 and x2 > 0.

Proof.

∞∫
0

∞∫
0

fX1,X2(x1, x2)dx1dx2 = p1p2 +

∞∫
0

(1− p2)p1
α

λ

(
1 +

x2

λ

)−α−1

dx2

+

∞∫
0

(1− p1)p2
α

λ

(
1 +

x1

λ

)−α−1

dx1

+

∞∫
0

∞∫
0

(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

x1 + x2

λ

)−α−2

dx1dx2

= p1p2 + (1− p2)p1
λ

−α
α

λ

[(
1 +

x2

λ

)−α∣∣∣∞
0

]

+ (1− p1)p2
λ

−α
α

λ

[(
1 +

x1

λ

)−α∣∣∣∞
0

]

+ (1− p1)(1− p2)
α(α + 1)

λ2

λ

−α− 1

∞∫
0

[(
1 +

x1 + x2

λ

)−α−1∣∣∣∞
0

]
dx2

= p1p2 + (1− p2)p1(−1)(0− 1) + (1− p1)p2(−1)(0− 1)

+ (1− p1)(1− p2)
−α
λ

∞∫
0

[
0−

(
1 +

x2

λ

)−α−1
]
dx2

= p1p2 + p1 − p1p2 + p2 − p1p2 + (1− p1)(1− p2)
α

λ

[
λ

−α

(
1 +

x2

λ

)−α∣∣∣∞
0

]
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= p1 + p2 − p1p2 + (1− p1)(1− p2)(−1)(0− 1)

= p1 + p2 − p1p2 + 1− p1 − p2 + p1p2

= 1.

For mathematical practicality and simplicity in double integration, we employ change
of variables to X1 and X2.

Definition 4.6. Let µ and η be the functions of U and Y such that

X1 = µ(U, Y ) = U,

X2 = η(U, Y ) = Y − U.
We choose new variables as above since the term X1 +X2 will turn to Y and this pro-
vides to evaluate Proposition in 4.1 using only one integral. In addition, the Jacobian,
JU,Y , of the transformation X1 = µ(U, Y ) and X2 = η(U, Y )

JU,Y =
∂(x1, x2)

∂(u, y)
=

∣∣∣∣∣∣∣∣∣
∂µ(u, y)

∂u

∂µ(u, y)

∂y

∂η(u, y)

∂u

∂η(u, y)

∂y

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1.

The integral part of Proposition 4.1 turns into a form as in the right hand side of Equa-
tion (4.6).∫∫
R

(x1 + x2) · fX1,X2(x1, x2) · dx1dx2 =

∫∫
S

y · fX1,X2

(
µ(u, y), η(u, y)

)
· JU,Y · dudy

=

∫∫
S

y · fU,Y (u, y) · dudy

=

∫
T

y · fY (y) · dy.

(4.6)

4.3 Joint and Marginal Distributions

We obtain joint probability density function of U and Y with Jacobian transform as
follows:

fU,Y (u, y) =



fX1,X2

(
0, 0
)
· JU,Y u = 0, y = 0

fX1,X2

(
u, 0
)
· JU,Y 0 < u, y = u

fX1,X2

(
0, y
)
· JU,Y u = 0, 0 < y

fX1,X2

(
u, y − u

)
· JU,Y 0 < u, 0 < y


.
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The joint probability distribution function based on the parameters α and λ and vari-
ables U and Y is given in Equation (4.7) which also satisfies the rule that the sum of
the probabilities equals to 1.

fU,Y (u, y) =



p1p2 u = 0, y = 0

(1− p1)p2
α

λ

(
1 +

u

λ

)−α−1

0 < u, y = u

(1− p2)p1
α

λ

(
1 +

y

λ

)−α−1

u = 0, 0 < y

(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

0 < u, 0 < y


. (4.7)

Theorem 4.7. If fU,Y (u, y) is joint probability density function, then
∞∫
0

∞∫
0

fU,Y (u, y)dudy = 1 in the defined interval for u and y.

Proof.

∞∫
0

∞∫
0

fU,Y (u, y)dudy = p1p2 +

∞∫
0

(1− p2)p1
α

λ

(
1 +

y

λ

)−α−1

dy

+

∞∫
0

(1− p1)p2
α

λ

(
1 +

u

λ

)−α−1

du

+

∞∫
0

∞∫
u

(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

dydu

= p1p2 + (1− p2)p1
λ

−α
α

λ

[(
1 +

y

λ

)−α∣∣∣∞
0

]

+ (1− p1)p2
λ

−α
α

λ

[(
1 +

u

λ

)−α∣∣∣∞
0

]

+ (1− p1)(1− p2)
α(α + 1)

λ2

λ

−α− 1

∞∫
0

[(
1 +

y

λ

)−α−1∣∣∣∞
u

]
du

= p1p2 + (1− p2)p1(−1)(0− 1) + (1− p1)p2(−1)(0− 1)

+ (1− p1)(1− p2)
−α
λ

∞∫
0

[
0−

(
1 +

u

λ

)−α−1
]
du

= p1p2 + p1 − p1p2 + p2 − p1p2 + (1− p1)(1− p2)
α

λ

[
λ

−α

(
1 +

u

λ

)−α∣∣∣∞
0

]
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= p1 + p2 − p1p2 + (1− p1)(1− p2)(−1)(0− 1)

= p1 + p2 − p1p2 + 1− p1 − p2 + p1p2

= 1.

The marginal distribution functions fU(u) and fY (y) are derived from joint distribution
function by taking integral with respect to variables u and y, respectively.

fY (y) =

y∫
0

fU,Y (u, y)du,

fU(u) =

u∫
0

fU,Y (u, y)dy.

We consider for two intervals y = 0 and y > 0. For the first interval, we obtain the part
fU,Y (0, 0). For the second interval, we obtain the sum of the rest of Equation (4.7). We

integrate the term (1−p1)p2
α

λ

(
1+

u

λ

)−α−1

itself directly since the condition is y = u.

The term (1 − p2)p1
α

λ

(
1 +

y

λ

)−α−1

is obtained as the same as itself because to sum
of the probabilities of u is not necessary since u = 0. We have to take integral just the

term (1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

since u > 0.

fY (y) =



p1p2 y = 0

(1− p1)p2
α

λ

(
1 +

y

λ

)−α−1

+(1− p2)p1
α

λ

(
1 +

y

λ

)−α−1

+
y∫
0

(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

du y > 0



=


p1p2 y = 0

(p1 + p2 − 2p1p2)
α

λ

(
1 +

y

λ

)−α−1

+y(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

y > 0

 .

(4.8)

Theorem 4.8. If fY (y) is probability density function, then
∞∫
0

fY (y)dy = 1 in the

defined interval for y.

Proof.
∞∫

0

fY (y)dy = p1p2 +

∞∫
0

(p1 + p2 − 2p1p2)
α

λ

(
1 +

y

λ

)−α−1

dy
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+

∞∫
0

(1− p1)(1− p2)
α(α + 1)

λ2
y
(

1 +
y

λ

)−α−2

dy

= p1p2 + (p1 + p2 − 2p1p2)
α

λ

λ

−α

[(
1 +

y

λ

)−α−1∣∣∣∞
0

]

+ (1− p1)(1− p2)
α(α + 1)

λ2

[
y

λ

−α− 1

(
1 +

y

λ

)−α−1∣∣∣∞
0

−
∞∫

0

λ

−α− 1

(
1 +

y

λ

)−α−1

dy

]
= p1p2 + (p1 + p2 − 2p1p2)(−1)(0− 1)

+ (1− p1)(1− p2)
α

λ

∞∫
0

(
1 +

y

λ

)−α−1

dy

= p1p2 + p1 + p2 − 2p1p2 + (1− p1)(1− p2)
α

λ

[
λ

−α

(
1 +

y

λ

)−α∣∣∣∞
0

]
= p1 + p2 − p1p2 + 1− p1 − p2 + p1p2

= 1.

We apply the same process to obtain marginal distribution function of U . For the case

u = 0, we obtain sum of the first term p1p2 and the third term (1−p2)p1
α

λ

(
1+

y

λ

)−α−1

of Equation (4.7). We should take integral of third term since y changes between 0 and
∞when u = 0. For the case u > 0, we obtain the sum of the left hand side of Equation

(4.7). We just take integral of the fourth term (1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

since y changes from u to∞ which yields

fU(u) =



p1p2 +
∞∫
0

(1− p2)p1
α

λ

(
1 +

y

λ

)−α−1

du u = 0

(1− p1)p2
α

λ

(
1 +

u

λ

)−α−1

+
∞∫
u

(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

dy u > 0
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=



p1p2 + (1− p2)p1
α

λ

λ

−α

[(
1 +

y

λ

)−α−1∣∣∣∞
0

]
u = 0

(1− p1)p2
α

λ

(
1 +

u

λ

)−α−1

+(1− p1)(1− p2)
α(α + 1)

λ2

λ

−α− 1

[(
1 +

y

λ

)−α−1∣∣∣∞
u

]
u > 0



=



p1p2 + (1− p2)p1(−1)(0− 1) u = 0

(1− p1)p2
α

λ

(
1 +

u

λ

)−α−1

+(1− p1)(1− p2)
α

λ
(−1)

[
0− (1 +

u

λ

)−α−1
]

u > 0



=


p1p2 + p1 − p1p2 u = 0

(p2 + 1− p2)(1− p1)
α

λ

(
1 +

u

λ

)−α−1

u > 0



=


p1 u = 0

(1− p1)
α

λ

(
1 +

u

λ

)−α−1

u > 0

 .

It is observed that fU(u) equals to fX1(x1|α, λ) in Equation (4.5).

Theorem 4.9. If fU(u) is probability density function, then
∞∫
0

fU(u)du = 1 in the

defined interval for u.

Proof.
∞∫

0

fU(u)du = p1 +

∞∫
0

(1− p1)
α

λ

(
1 +

u

λ

)−α−1

du

= p1 + (1− p1)
α

λ

[
λ

−α

(
1 +

u

λ

)−α∣∣∣∞
0

]
= p1 + (1− p1)

= 1.

The exposure curve of two risks is derived for the variable Y and using by single
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integral. We use the marginal distribution fY (y) for calculation of the expected values.

G(D) =
E[min(D,X1 +X2)]

E[X1 +X2]

=
E[min(D, Y )]

E[Y ]

=

∫ D
0
y · fY (y)dy +

∫ B
D
D · fY (y) · dy∫ B

0
y · fY (y) · dy

.

4.4 Distribution Function of Loss Ratios

Up to here, the distributions of claim amounts with respect to certain D are derived.
The same analytical derivations are presented for loss ratios which constitute the vari-
able of consideration in exposure curves. We propose that the losses in the portfolio
are distributed Pareto with parameters α and λ and all policies in the portfolio have the
same total exposure, which is maximum probable loss denoted by B. This means the
insurance company has a liability to pay a loss up to amount B for each policy and in
the case of the loss is exceeding the amount B is out off the insurance agreement.

Theorem 4.10. Let B denote an arbitrary number such that B > 0. Define X and Z
be positive random variables such that X=Z/B, where Z is a loss amount. If Z has a
mixture Pareto probability distribution Par(α, β) obtained in Equation (4.4), then X
has a mixture Pareto probability distribution Par(α, β/B).

Proof. Suppose that FZ(z) = 1 − (1 − p)
(

1 +
z

β

)−α
for α, β > 0, Z ≥ 0. Define X

such that X = Z/B, then

FX(x) = Pr(X ≤ x) = Pr(X ≤ Z

B
) = Pr(XB ≤ Z)

= FZ(XB) = 1− (1− p)
(

1 +
XB

β

)−α
= 1− (1− p)

(
1 +

X
β
B

)−α
α,
β

B
> 0, X ≥ 0.

Theorem 4.10 shows that if we consider B as MPL, all losses have to be smaller than
or equal to B. If we divide each loss by B, all results are obtained as the form of ratio
and can take a value at most 1. We prove that dividing claims to a constant does not
affect the distribution itself, but causes change in parameters.

If we change the notation
β

B
with λ, we obtain exactly the same function that we obtain

in Equation (4.4). The only difference is that X ′s are loss ratios on the interval [0,1].
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Similarly, ifD is divided byB, it also gives a ratio d = D/M which is called retention
ratio.

Joint and marginal distributions remains the same except the variable domains which
are reduced to the interval [0,1]. Note that the risks X1 and X2 are together under the
one policy, so the sum of them Y is less than or equal to B. Thus, the ratio of their
sum should be less than or equal to 1.

After dividing by MPL, X1, X2 and Y have the same domains, which is the interval
[0,1]. Therefore, the sum of all probabilities has to be 1 when they take every value
from 0 to 1. Therefore, the endpoints of the variables need to been considered sepa-
rately since the equation

∫ 1

0
f.(.) = 1 has to been satisfied. Bernegger [1] considers

that endpoint by subtracting the sum of all probabilities from 1.

Theorem 4.11. The density of the ratio Y, at y = 1 given as follows:

fY (1) = (1− p1p2)
(

1 +
1

λ

)−α
+ (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

.

Proof. Given fY (y) in Equation (4.8)

1 =

∫ 1

0

fY (y)dy

1 =

∫ 1−

0

fY (y)dy + fY (1)

fY (1) = 1−
∫ 1−

0

fY (y)dy

= 1−

[
p1p2 +

∫ 1−

0

(
(p1 + p2 − 2p1p2)

α

λ

(
1 +

y

λ

)−α−1

+ y(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2
)
dy

]

= 1−

[
p1p2 + (p1 + p2 − 2p1p2)

α

λ

λ

−α

(
1 +

y

λ

)−α∣∣∣1−
0

+ (1− p1)(1− p2)
α(α + 1)

λ2

(
y

λ

−α− 1

(
1 +

y

λ

)−α−1∣∣∣1−
0

−
∫ 1−

0

λ

−α− 1

(
1 +

y

λ

)−α−1

dy

)]

= 1−

[
p1p2 + (p1 + p2 − 2p1p2)(−1)

[(
1 +

1

λ

)−α
− 1
]
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+ (1− p1)(1− p2)
α(α + 1)

λ2

(
λ

−α− 1

(
1 +

1

λ

)−α−1

+
λ

α + 1

λ

−α

(
1 +

y

λ

)−α∣∣∣1−
0

)]

= 1−

[
p1p2 − (p1 + p2 − 2p1p2)

[(
1 +

1

λ

)−α
− 1
]

+ (1− p1)(1− p2)
−α
λ

(
1 +

1

λ

)−α−1

− (1− p1)(1− p2)
[(

1 +
1

λ

)−α
− 1
]]

= 1−

[
p1p2 − (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

−
(
(1− p1)(1− p2) + (p1 + p2 − 2p1p2)

)[(
1 +

1

λ

)−α
− 1
]]

= 1−

[
p1p2 − (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

− (1− p2 − p1 + p1p2 + p1 + p2 − 2p1p2)
[(

1 +
1

λ

)−α
− 1
]]

= 1−

[
p1p2 − (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

− (1− p1p2)
[(

1 +
1

λ

)−α
− 1
]]

= 1−

[
p1p2 − (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

− (1− p1p2)
(

1 +
1

λ

)−α
+ (1− p1p2)

]
= 1− p1p2 + (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

+ (1− p1p2)
(

1 +
1

λ

)−α
− 1 + p1p2

= (1− p1p2)
(

1 +
1

λ

)−α
+ (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

.

Based on this, the new form of the probability density function and intervals for Y are
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given as.

fY (y) =



p1p2 y = 0

(p1 + p2 − 2p1p2)
α

λ

(
1 +

y

λ

)−α−1

+y(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

0 < y < 1

(1− p1p2)
(

1 +
1

λ

)−α
+ (1− p1)(1− p2)

α

λ

(
1 +

1

λ

)−α−1

y = 1


.

(4.9)

4.5 Exposure Curve for Two Dependent Risks

Theorem 4.12. Let Y be the sum of two dependent risks defined in Definition 4.6 and let
G be the exposure curve of Y. Given the probability density function of Y in Equation
(4.9). The function of exposure curve is

G(d) =
(2− p1 − p2)

λ

1− α

[(
1 +

d

λ

)−α+1

− 1
]
− d(1− p1)(1− p2)

(
1 +

d

λ

)−α
(2− p1 − p2)

λ

1− α

[(
1 +

1

λ

)−α+1

− 1
]
− (1− p1)(1− p2)

(
1 +

1

λ

)−α ,
where a > 1.

Proof. We substitute Equation (4.6) to Proposition (4.1).

G(d) =
E[min(d,X1 +X2)]

E[X1 +X2]

=

∫∫
x1+x2<d

(x1 + x2)fX1,X2(x1, x2)dx1dx2 +
∫∫

d<x1+x2<1

d · fX1,X2(x1, x2)dx1dx2∫∫
x1+x2<1

(x1 + x2)fX1,X2(x1, x2)dx1dx2

=

∫ d
0
y · fY (y) · dy +

∫ 1

d
d · fY (y) · dy∫ 1

0
y · fY (y) · dy

=

∫ d
0
yfY (y)dy + d ·

(∫ 1−

d
fY (y)dy + fY (1)

)
∫ 1−

0
yfY (y)dy + fY (1)

.

(4.10)
Note that if d takes the value 1, the nominator equals to denominator. In order to

simplify equation and not to repeat the same terms, we redefine some of them. Let A
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and B denote the terms (p1 +p2−2p1p2) and (1−p1)(1−p2), respectively. We divide
the terms of nominator into two parts to make the evaluation easier such that∫ d

0

yfY (y)dy + d ·
(∫ 1−

d

fY (y)dy + fY (1)

)
= I1 + I2,

where
∫ d

0
yfY (y)dy = I1 and d ·

(∫ 1−

d
fY (y)dy + fY (1)

)
= I2. We evaluate these

terms using integration by parts.

I1 =

∫ d

0

yfY (y)dy

=

∫ d

0

y(p1 + p2 − 2p1p2)
α

λ

(
1 +

y

λ

)−α−1

dy

+

∫ d

0

y2(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

dy

=

∫ d

0

yA
α

λ

(
1 +

y

λ

)−α−1

dy

+

∫ d

0

y2B
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

dy

= A
α

λ

[
y
λ

−α

(
1 +

y

λ

)−α∣∣∣d
0

+
λ

α

∫ d

0

(
1 +

y

λ

)−α
dy

]

+B
α(α + 1)

λ2

[
y2 λ

−α− 1

(
1 +

y

λ

)−α−1∣∣∣d
0

+
λ

α + 1

∫ d

0

2y
(

1 +
y

λ

)−α−1

dy

]

= A
α

λ

[
d
λ

−α

(
1 +

d

λ

)−α
+
λ

α

λ

−α + 1

(
1 +

y

λ

)−α+1∣∣∣d
0

]

+B
α(α + 1)

λ2

[
d2 λ

−α− 1

(
1 +

d

λ

)−α−1

+
2λ

α + 1

[
y
λ

−α

(
1 +

y

λ

)−α∣∣∣d
0

+
λ

α

∫ d

0

(
1 +

y

λ

)−α
dy

]]

= A
α

λ

[
d
λ

−α

(
1 +

d

λ

)−α
+

λ2

α(−α + 1)

[(
1 +

d

λ

)−α+1

− 1
]]

+B
α(α + 1)

λ2

[
d2 λ

−α− 1

(
1 +

d

λ

)−α−1

+
2λ

α + 1

[
d
λ

−α

(
1 +

d

λ

)−α
+
λ

α

λ

−α + 1

(
1 +

y

λ

)−α+1∣∣∣d
0

]]

= A

[
− d
(

1 +
d

λ

)−α
+

λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1
]]
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+B

[
− d2α

λ

(
1 +

d

λ

)−α−1

+
2α

λ

[
d
λ

−α

(
1 +

d

λ

)−α
+

λ2

α(−α + 1)

[(
1 +

d

λ

)−α+1

− 1
]]]

= A

[
λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1
]
− d
(

1 +
d

λ

)−α]

+B

[
− d2α

λ

(
1 +

d

λ

)−α−1

− 2d
(

1 +
d

λ

)−α
+

2λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1
]]

= A

[
λ

−α + 1

(
1 +

d

λ

)−α+1

− d
(

1 +
d

λ

)−α
− λ

−α + 1

]

+B

[
− d2α

λ

(
1 +

d

λ

)−α−1

− 2d
(

1 +
d

λ

)−α
+

2λ

−α + 1

(
1 +

d

λ

)−α+1

− 2λ

−α + 1

]
=

Aλ

−α + 1

(
1 +

d

λ

)−α+1

− Ad
(

1 +
d

λ

)−α
− Aλ

−α + 1

− d2B
α

λ

(
1 +

d

λ

)−α−1

− 2dB
(

1 +
d

λ

)−α

+
2Bλ

−α + 1

(
1 +

d

λ

)−α+1

− 2Bλ

−α + 1

= −d2B
α

λ

(
1 +

d

λ

)−α−1

+
(A+ 2B)λ

−α + 1

(
1 +

d

λ

)−α+1

− (A+ 2B)d
(

1 +
d

λ

)−α
− (A+ 2B)λ

−α + 1
.

We use same letters A and B while calculation of I2.

I2 = d ·
(∫ 1−

d

fY (y)dy + fY (1)

)
= d ·

[∫ 1−

d

(p1 + p2 − 2p1p2)
α

λ

(
1 +

y

λ

)−α−1

dy
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+

∫ 1−

d

y(1− p1)(1− p2)
α(α + 1)

λ2

(
1 +

y

λ

)−α−2

dy + fY (1)

]

= d ·

[∫ 1−

d

A
α

λ

(
1 +

y

λ

)−α−1

dy +

∫ 1−

d

B
α(α + 1)

λ2
y
(

1 +
y

λ

)−α−2

dy + fY (1)

]

= d ·

[
A
α

λ

λ

−α

(
1 +

y

λ

)−α∣∣∣1
d

+B
α(α + 1)

λ2

[
y

λ

−α− 1

(
1 +

y

λ

)−α−1∣∣∣1
d

+
λ

α + 1

∫ 1−

d

(
1 +

y

λ

)−α−1

dy

]
+ fY (1)

]

= d ·

[
A(−1)

[(
1 +

1

λ

)−α
−
(

1 +
d

λ

)−α]
+B

α(α + 1)

λ2

[
λ

−α− 1

[(
1 +

1

λ

)−α−1

− d
(

1 +
d

λ

)−α−1]
+

λ

α + 1

λ

−α

(
1 +

y

λ

)−α∣∣∣1
d

]
+ fY (1)

]

= d ·

[
A

[(
1 +

d

λ

)−α
−
(

1 +
1

λ

)−α]
+B

α(α + 1)

λ2

[
λ

−α− 1

[(
1 +

1

λ

)−α−1

− d
(

1 +
d

λ

)−α−1]
+

λ

α + 1

λ

−α

[(
1 +

1

λ

)−α
−
(

1 +
d

λ

)−α]]
+ fY (1)

]

= d ·

[
A

[(
1 +

d

λ

)−α
−
(

1 +
1

λ

)−α]
+B

[
−α
λ

[(
1 +

1

λ

)−α−1

− d
(

1 +
d

λ

)−α−1]
−
[(

1 +
1

λ

)−α
−
(

1 +
d

λ

)−α]]
+ fY (1)

]

= d ·

[
A
(

1 +
d

λ

)−α
− A

(
1 +

1

λ

)−α
+B

[
−α
λ

(
1 +

1

λ

)−α−1

+
dα

λ

(
1 +

d

λ

)−α−1

+
(

1 +
d

λ

)−α
−
(

1 +
1

λ

)−α]
+ fY (1)

]

= d ·

[
A
(

1 +
d

λ

)−α
− A

(
1 +

1

λ

)−α
− Bα

λ

(
1 +

1

λ

)−α−1

+
Bdα

λ

(
1 +

d

λ

)−α−1

+B
(

1 +
d

λ

)−α
−B

(
1 +

1

λ

)−α
+ fY (1)

]

= Ad
(

1 +
d

λ

)−α
− Ad

(
1 +

1

λ

)−α
− Bdα

λ

(
1 +

1

λ

)−α−1

+
Bd2α

λ

(
1 +

d

λ

)−α−1

+Bd
(

1 +
d

λ

)−α
−Bd

(
1 +

1

λ

)−α
+ dfY (1)

= (A+B)d
(

1 +
d

λ

)−α
− (A+B)d

(
1 +

1

λ

)−α
− Bdα

λ

(
1 +

1

λ

)−α−1
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+
Bd2α

λ

(
1 +

d

λ

)−α−1

+ dfY (1)

= (A+B)d
(

1 +
d

λ

)−α
− (A+B)d

(
1 +

1

λ

)−α
− Bdα

λ

(
1 +

1

λ

)−α−1

+
Bd2α

λ

(
1 +

d

λ

)−α−1

+ d

[
(1− p1p2)

(
1 +

1

λ

)−α
+
Bα

λ

(
1 +

1

λ

)−α−1
]

= (A+B)d
(

1 +
d

λ

)−α
− (A+B)d

(
1 +

1

λ

)−α
− Bdα

λ

(
1 +

1

λ

)−α−1

+
Bd2α

λ

(
1 +

d

λ

)−α−1

+ d(1− p1p2)
(

1 +
1

λ

)−α
+
Bdα

λ

(
1 +

1

λ

)−α−1

= (A+B)d
(

1 +
d

λ

)−α
− (A+B)d

(
1 +

1

λ

)−α
+
Bd2α

λ

(
1 +

d

λ

)−α−1

+ d(1− p1p2)
(

1 +
1

λ

)−α
.

We sum the obtained parts I1 and I2:

I1 + I2 = −d2B
α

λ

(
1 +

d

λ

)−α−1

+
(A+ 2B)λ

−α + 1

(
1 +

d

λ

)−α+1

− (A+ 2B)d
(

1 +
d

λ

)−α
− (A+ 2B)λ

−α + 1
+ (A+B)d

(
1 +

d

λ

)−α
− (A+B)d

(
1 +

1

λ

)−α
+
Bd2α

λ

(
1 +

d

λ

)−α−1

+ d(1− p1p2)
(

1 +
1

λ

)−α
=

(A+ 2B)λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1

]
+ (−A− 2B + A+B)d

(
1 +

d

λ

)−α
+ (1− p1p2 − A−B)d

(
1 +

1

λ

)−α
=

(A+ 2B)λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1

]
+ (−B)d

(
1 +

d

λ

)−α
+ (1− p1p2 − A−B)d

(
1 +

1

λ

)−α
=

(p1 + p2 − 2p1p2 + 2− 2p1 − 2p2 + 2p1p2)λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1

]
+ (−1 + p1 + p2 − p1p2)d

(
1 +

d

λ

)−α
+ (1− p1p2 − p1 − p2 + 2p1p2 − 1 + p1 + p2 − p1p2)d

(
1 +

1

λ

)−α

=
(2− p1 − p2)λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1

]
− (1− p1)(1− p2)d

(
1 +

d

λ

)−α
.

We mention that if d = 1, we obtain denominator of Equation (4.10).Therefore, the
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exposure curve G is derived as follows:

G(d) =

(2− p1 − p2)λ

−α + 1

[(
1 +

d

λ

)−α+1

− 1

]
− (1− p1)(1− p2)d

(
1 +

d

λ

)−α
(2− p1 − p2)λ

−α + 1

[(
1 +

1

λ

)−α+1

− 1

]
− (1− p1)(1− p2)

(
1 +

1

λ

)−α .

The constraints on weights are investigated and analyzed. For p1 and p2, we have
0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1. α and λ are greater than 0. We need to define new
constraints for α such that α > 1 to avoid E[Y ] would be infinity, like the expectation
of Pareto distribution in literature. d is deductible in percentage, so it is also in the
interval [0,1]. Furthermore, the curve satisfies the objectives G(0) = 0 and G(1) = 1
of definition of exposure curve.

Theorem 4.13. If G is an exposure curve, it is increasing in the interval (0,1).

Proof. Take derivative of G:

∂G(d)

∂d
=

1

E[Y ]

[
(2− p1 − p2)

λ

1− α
(−α + 1)

λ

(
1 +

d

λ

)−α

− (1− p1)(1− p2)
(

1 +
d

λ

)−α
− d(1− p1)(1− p2)

−α
λ

(
1 +

d

λ

)−α−1
]

=
1

E[Y ]

[
(2− p1p2)

(
1 +

d

λ

)−α
+ d(1− p1)(1− p2)

α

λ

(
1 +

d

λ

)−α−1
]
.

We check that either the term (2 − p1p2) is greater than or equal to 0 since all other
terms are positive or equal to 0. Recall that p1 and p2 are probabilities:

0 ≤ p1 ≤ 1,

0 ≤ p1p2 ≤ 1,

1 ≤ 2− p1p2 ≤ 2.

We prove that 0 < (2 − p1p2) so
∂G(d)

∂d
≥ 0. Therefore it is increasing function on

the interval (0,1).

Theorem 4.14. If G is an exposure curve, it is concave in the interval (0,1).
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Proof. Take second derivative of G:

∂2G(d)

∂d2
=

1

E[Y ]

[
(2− p1p2)

−α
λ

(
1 +

d

λ

)−α−1

+ (1− p1)(1− p2)
α

λ

(
1 +

d

λ

)−α−1

+ d(1− p1)(1− p2)
α

λ

(−α− 1)

λ

(
1 +

d

λ

)−α−2
]

=
1

E[Y ]

[
(2p1p2 − p1 − p2 − 1)

α

λ

(
1 +

d

λ

)−α−1

− d(1− p1)(1− p2)
α(α + 1)

λ

(
1 +

d

λ

)−α−2
]
.

Since the other term is negative or equal to 0, we check the term (2p1p2−p1−p2−1):

0 ≤ p1 ≤ 1,

0 ≤ p1p2 ≤ p2,

p1p2 ≤ p2 + p1,

p1p2 − p2 − p1 ≤ 0,

p1p2 − p2 − p1 − 1 ≤ −1.

(4.11)

0 ≤ p1 ≤ 1,

0 ≤ p2 ≤ 1,

0 ≤ p1p2 ≤ 1.
(4.12)

When the last steps of Equations (4.11) and (4.12) are added, we obtain the result

2p1p2 − p2 − p1 − 1 ≤ 0. So
∂2G(d)

∂d2
≤ 0. Therefore, G is a concave function on the

interval (0,1).
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CHAPTER 5

NUMERICAL ILLUSTRATION

We perform the simulations to construct realistic exposure curves based on the pro-
posed models.

5.1 Constrains for Parameters

In the literature the pdf of Pareto distributions is shown to have a form that is decreasing
and convex. We recall the equation of fY (y) in Equation (4.8) and take derivative of it
with respect to y.

dfY (y)

dy
= (3p1p2−2p1 − 2p2 + 1)

α(α + 1)

λ2

(
1 +

y

λ

)−α−2

− (1− p1)(1− p2)y
α(α + 1)

λ2

(
1 +

y

λ

)−α−3

.

(5.1)

The second term of Equation (5.1) is negative or equal to zero obviously. The term
(3p1p2−2p1−2p2 + 1) ≤ 0 has to be checked if the curve is decreasing. If we assume
that (3p1p2 − 2p1 − 2p2 + 1) ≤ 0, this condition also satisfies the convexity of the pdf
and we attain the decreasing and convex function on the interval (0,1).

The constrains are determined for keeping the probabilities under 1. Since fY (y) is
decreasing on the interval (0,1), limy→0 fY (y) must be at most 1 and also at least 0
because of the definition of probability itself.

0 ≤ lim
y→0

fY (y) ≤ 1,

0 ≤ (p1 + p2 − 2p1p2)
α

λ
≤ 1,

(p1 + p2 − 2p1p2)α ≤ λ.

Additional to those 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1 and α > 0, we remind the other
constraints (3p1p2−2p1−2p2 +1) ≤ 0 and (p1 +p2−2p1p2)α ≤ λ. Figure 5.1 shows
the probability density function of Y under some parameter value assumptions.
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Figure 5.1: Probability density distributions of Y when p1 = 0.7, p2 = 0.6,
α = 2.2, λ = 1.1.

5.2 The Graph of Exposure Curve

The exposure curve of two dependent risks is obtained in Chapter 4 and the graph of
curve is in Figure 5.2. It has four parameters α, λ, p1 and p2 and one variable d. They
affect to the curve differently. We show that the curve is increasing and concave on the
interval (0,1) and G(0) = 0 and G(1) = 1. They are all observed in Figure 5.2.

Figure 5.2: Exposure curve of two dependent risks when p1 = 0.7, p2 = 0.6,
α = 2.5, λ = 1.2.
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5.3 Comparison of the Exposure Curves

We derive the exposure curves of the risks X1 and X2 from their probability distribu-
tions. We compare the exposure curve of Y to individual curves. We realize that even
though the expectation values of the risks depend on the probabilities p1 and p2, the
exposure curves do not depend on them and they are completely the same, as given

GX1(d) =

(
1 +

d

λ

)−α+1

− 1(
1 +

1

λ

)−α+1

− 1
,

GX2(d) =

(
1 +

d

λ

)−α+1

− 1(
1 +

1

λ

)−α+1

− 1
.

Figure 5.3: Individual and dependent exposure curves of two dependent risks when
p1 = 0.7, p2 = 0.6, α = 5, λ = 2.3.

When two risks become dependent, we expect that they create more risky portfolio.
Figure 5.3 shows the exposure curve of Y , which is the sum of the dependent risks,
is closer to diagonal than individual exposure curves of the risks X1 and X2. The
location of exposure curve which belongs to more risky portfolio is close to diagonal
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portfolios, as mentioned in Chapter 3. Thus, the sum Y is more risky portfolio than
others and this makes our prediction being justified. Furthermore, more risky portfolio
means that almost every policy has a loss ratio up to d or more so the cedant transfers
much more claims, and that is why insurer should keep less risk premium for itself and
pay more to the reinsurer. Therefore, the fact that exposure curve of Y is placed under
the individual exposure curves in Figure 5.3 makes sense.

The concavity changes for different values of parameters. For examination this chang-
ing, we fix three parameters and give different values to the fourth parameter. Four
graphs for four parameters are plotted in Figure 5.4(a-d).

(a) p1 = 0.6, p2 = 0.7, λ = 1.2 for all curves
with values of α=2, 2.5, 10.

(b) p1 = 0.6, p2 = 0.7, α = 2.5 for all curves with
values of λ=1.2, 2, 5.

(c) p2 = 0.7, α = 2.5, λ = 1.6 for all curves
with values of p1=0.2, 0.6, 0.8.

(d) p1 = 0.7, α = 2.5, λ = 1.6 for all curves
with values of p2=0.2, 0.6, 0.8.

Figure 5.4: Exposure curves with different values of parameters.
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We observe in Figure 5.4 the parameters α and λ affect the curve more than p1 and
p2. When α increases, the concavity also increases so G(d) increases in Figure 5.4a.
The increment in G(d) means the curve is getting far away from the diagonal. Thus,
it can be said that higher value for α brings less risky portfolio and many policies
have loss ratios less than the deductible ratio d. For that reason, the cedant pays more
claim and tends to keep more risk premium for itself. On the other hand, λ affects the
curve inversely. When it increases, the value of the curve decreases and the curve is
getting close to diagonal in Figure 5.4b. That means higher value for λ occurs more
risky portfolio, and cedant transfers more claim, and it pays more risk premium to the
reinsurer. The effect of the parameters p1 and p2 to the curve are the identical. G(d)
increases very slightly while they increase in Figure 5.4c and Figure 5.4d. We choose
these parameters to take into consideration of the probabilities of the claims can be
zero. It makes sense since higher p1 or p2 shows that the probability of the policy has
a claim more than zero is lower and it points the less risky portfolio.

5.4 Sensitivity Analysis

5.4.1 Sensitivity for α

The parameter α affects the curve positively. We realize that the value of G increases
when α increases. This is also observed in Table 5.1. For fixed deductible ratio d = 0.5
and given parameters p1 = 0.6, p2 = 0.7, λ = 1.2 and some values for α, changes in
the values of α and G are obtained as follows:

Table 5.1: The sensitivity of the curves to an increasing value of α.

α G(0.5) ∆α ∆G(0.5)

2.5 65.8257% - -
2.6 66.4315% 0.1 60.58x10−4

2.7 67.0331% 0.1 60.16x10−4

2.8 67.6306% 0.1 59.75x10−4

2.9 68.2237% 0.1 59.31x10−4

3.0 68.8119% 0.1 58.82x10−4

5.0 79.3824% 2.0 1057.05x10−4

10.0 94.3607% 5.0 1497.83x10−4

This table shows G increases decreasingly. The increment about 0.1 in α leads to
increase the value of curve as less than previous one on the same incremental amount.
When it is plotted, this is easily observed this in Figure 5.5
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Figure 5.5: Sensitivity of α when p1 = 0.6, p2 = 0.7, λ = 1.2, d = 0.5.

5.4.2 Sensitivity for λ

The parameter λ affects the curve negatively. The value of G decreases when λ in-
creases. The values of the result of the changes as amounts 0.01 and 0.1 in λ are given
in Table 5.2 when the parameters are p1 = 0.6, p2 = 0.7, α = 1.2 and fixed d = 0.5.
According to Table 5.2, we notice that when λ increases, the value of curve decreases
decreasingly.

Table 5.2: The sensitivity of the curves to an increasing value of λ.

λ G(0.5) ∆λ ∆G(0.5)

0.60 62.5260% - -
0.61 62.3947% 0.01 -1.313x10−3

0.62 62.2663% 0.01 -1.284x10−3

0.63 62.1405% 0.01 -1.258x10−3

0.64 62.0175% 0.01 -1.230x10−3

0.65 61.8967% 0.01 -1.208x10−3

0.60 62.5260% - -
0.70 61.3286% 0.1 -11.974x10−3

0.80 60.3421% 0.1 -9.865x10−3

0.90 59.5149% 0.1 -8.272x10−3

1.00 58.8110% 0.1 -7.039x10−3

2.00 55.0670% 1.0 -37.44x10−3

5.00 52.2263% 3.0 -28.407x10−3

10.0 51.1504% 5.0 -10.759x10−3

20.0 50.5848% 10.0 -5.656x10−3

46



Figure 5.6: Sensitivity of λ when p1 = 0.6, p2 = 0.7, α = 1.2, d = 0.5.

5.4.3 Sensitivity for p1 and p2

Both of the effects of the probabilities p1 and p2 are the same and positively. Therefore,
the Table 5.3 and the Figure 5.7 represent for both parameters p1 and p2. For same in-
cremental amounts in probabilities, G rises by increasingly and it is shown in Table 5.3
where one of the probabilities is equal to 0.7 and parameters λ = 0.4, α = 1.2 and fixed
d = 0.5.

Table 5.3: The sensitivity of the curves to an increasing values of p1 or p2.

p G(0.5) ∆p ∆G(0.5)

0.60 65.9143% - -
0.61 65.9338% 0.01 1.95x10−4

0.62 65.9538% 0.01 2.00x10−4

0.63 65.9744% 0.01 2.06x10−4

0.64 65.9956% 0.01 2.12x10−4

0.65 66.0172% 0.01 2.16x10−4

0.60 65.9143% - -
0.70 66.1358% 0.1 2.215x10−3

0.80 66.4374% 0.1 3.016x10−3

0.90 66.8721% 0.1 4.347x10−3

1.00 67.5527% 0.1 6.806x10−3
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Figure 5.7: Sensitivity of p1 when p2 = 0.7, λ = 0.4, α = 1.2, d = 0.5.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We explain why reinsurance is needed and the benefits. The classification and basic
components and rules of them are mentioned. The pricing methods are simplified for
both proportional and non-proportional reinsurance. Experience rating and exposure
rating techniques are implied and exposure curve is defined as one of a method of
exposure rating. The idea behind the exposure curve is explained clearly. Different size
of portfolios are given as examples in basically to reflect the the basis of construction of
exposure curve. Inferences of Swiss Re curves, their analytical functions and pricing
reinsurance by using Swiss Re curves are achieved using numerical examples.

We define the portfolio and distribution functions to approach the thesis’s aim. We
assume that we have two risk which are dependent in this portfolio. We use Bivariate
Pareto Distributions method to create joint distribution of dependent risks. We proved
that this distribution function satisfies the conditions of joint distribution function. We
change the variables and the intervals of the joint distribution to construct the exposure
curve practically and easily. Finally, we obtain the exposure curve of two dependent
risks around five parameters α, λ, p1, p2 and d. Certain constrains are set to satisfy
the existence of the joint probability density function and the curve itself to approach
meaningful result. We observe that the value of curve changes when the parameters
change. The increasing of α,p1 and p2 individually obtain an increment of the value of
the curve. However, the increasing of λ leads to decrease the value of the curve.

We incept the idea of the exposure curve of two dependent risks. We show that creation
the joint exposure curve under a certain dependency is possible in theoretical and may
be easily implemented to practical use. The procedure may be applied for different
line of businesses and claim distributions. We expect that the portfolio which has two
dependent risks is more risky than each individual portfolio. The joint exposure curve
proves that our expectation being justified. This result is observed as the conclusion of
the comparison of the curves of dependent risks and individual risks.
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6.2 Future work

This work is its first theoretical approach to derive joint distribution of exposure curves
in positively correlated risks. The extension of this study is planned on the analytical
analysis of loading factor under the same distributional approaches.
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