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ABSTRACT

REPRESENTING THE NONDOMINATED SET WITH A SMALL SUBSET
IN MULTI-OBJECTIVE MIXED INTEGER PROGRAMS

Dogan, Ilgin
M.S., Department of Industrial Engineering
Supervisor : Assist. Prof. Dr. Banu Lokman

Co-Supervisor : Prof. Dr. M. Murat Koksalan

June 2018, 86 pages

Multi-Objective Mixed Integer Programs (MOMIPs) have a wide variety of applica-
tion areas in real-life decision making problems. Since the number of nondominated
points grows exponentially with the problem size and finding all nondominated points
is typically hard and impractical in MOMIPs, generating a subset having “desired
properties” rises as an important problem. Motivated with this fact, we observe that
the distribution of nondominated points may be critical in defining the desired prop-
erties of the representative subset to be generated. Based on our observations, we
develop algorithms to generate a small subset of nondominated points that represents
the nondominated set with a prespecified coverage gap. Our computational experi-
ments show that our algorithms outperform the existing algorithms in terms of the

cardinality of the generated representative set and the solution time.

Keywords: Multi-Objective Mixed Integer Programming, Representative Subset, Non-

dominated Point, Supported Point, Coverage Gap



0z

COK AMACLI KARISIK TAMSAYI PROBLEMLERINDE BASKIN
KUMENIN KUCUK BIR ALTKUME iLE TEMSIL EDILMESI

Dogan, Ilgin
Yiiksek Lisans, Endiistri Miihendisligi Boliimii
Tez Yoneticisi : Dr. Ogr. Uyesi Banu Lokman
Ortak Tez Yoneticisi : Prof. Dr. M. Murat Koksalan

Haziran 2018 , 86 sayfa

Bir¢ok karar verme probleminde genis bir uygulama alani bulunan Cok Amagl Kari-
sik Tamsay1 Problemlerinde (CAKTP) problem boyutu arttik¢a baskin nokta sayisi da
iissel olarak artmaktadir. Bu sebeple biitiin baskin noktalari iiretmek genellikle zor ve
kullanigsiz olup istenilen 6zelliklere sahip kiigiik bir altkiime ile biitiin noktalar1 tem-
sil etmek amaclanmaktadir. Bu motivasyon ile iiretilecek altkiime icin istenilen 6zel-
liklerin tanmimlanmasinda baskin noktalarin dagiliminin belirleyici olabilecegini goz-
lemledik. Gozlemlerimize baglh olarak gelistirdigimiz algoritmalar verilen bir temsil
hatas1 ile tiim baskin noktalari temsil edecek kii¢iik bir alt kiime iiretmektedir. Deney-
lerimiz, iiretilen alt kiimenin kardinalitesi ve ¢6ziim siireleri agisindan gelistirdigimiz

algoritmalarin mevcut algoritmalardan daha iyi ¢alistigin1 géstermistir.

Anahtar Kelimeler: Cok Amaclh Karigik Tamsay1 Programlama, Temsili Kiime, Bas-

kin Nokta, Destekli Nokta, Kapsama Hatas1
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CHAPTER 1

INTRODUCTION

In almost every real life problem, decision makers (DMs) encounter multiple objec-
tives that are usually conflicting with each other. Due to this conflict, these problems
do not have a single optimal solution but have a set of preferable solutions. The main
characteristic of these solutions is that in order to improve one objective, the DMs
must sacrifice from at least one of the other objectives. Then, the most preferred

solution is chosen from this set of solutions by the DMs.

In this thesis, we study Multi-Objective Mixed Integer Programs (MOMIPs). In the
MOMIP literature, these preferable solutions in the decision space are called as the
"efficient solutions" while their images on the objective space are called as the "non-
dominated points". The corresponding sets of these solutions are called as the "effi-
cient frontier" and the "nondominated frontier", respectively. Multi-Objective Integer
Programs (MOIPs) are a special case of MOMIPs where all variables are integers and

there is a finite number of nondominated points.

In large-sized practical problems, as the number of objectives increases, the number
of nondominated points increases exponentially. That is why, generating all nondom-
inated points is typically hard. Furthermore, trying to find the most preferred solution
among such a huge set is not practical for the DM. Therefore, to avoid unnecessary
computational effort, finding a subset of these points rises as an important research
area in MOMIPs. In the literature, there are some approaches developed to gener-
ate subsets of nondominated points considering certain quality measures specified by
the DMs. Such a subset can also be called as a representative set since it is used to

represent the whole nondominated frontier in terms of some desired quality measures.



In this study, we develop algorithms to generate representative sets with desired prop-
erties. The desired properties could naturally differ from application to application.
Ozarik (2017) observes that the distribution of nondominated points may be criti-
cal in defining the desired properties of the representative set to be generated. Once
the distribution of nondominated points is known, one may want to generate more
points from the densely populated regions. Alternatively, one may wish to positively
discriminate less dense regions in order to capture the properties of rare solutions
in addition to typical solutions. Considering all these possible implementations, our
algorithms are based on the typical properties of the distributions of nondominated

points in MOMIPs.

In MOMIPs, the points that can be found by solving a single-objective problem, that
is a weighted sum problem, are called as the "supported nondominated points". All
other nondominated points that cannot be generated by solving a weighted sum prob-
lem are called as the "unsupported nondominated points". In our algorithms, we
iteratively reduce the feasible set by excluding the regions that are dominated by the
previously found nondominated points. Then, we solve a weighted sum problem over
the reduced feasible set. While it generates a supported nondominated point defined
on the reduced region, the generated point may be an unsupported nondominated

point with respect to the original problem.

In the literature, there are some algorithms developed to generate representative sets
of nondominated points in MOMIPs. Some quality measures are defined to assess the
performance of these representative sets. Sayim (2000) suggests that a representative
set should cover each and every nondominated point of a MOMIP and how well each
point is covered can be measured by the coverage gap. There are some approaches
proposed to generate representative sets for a given coverage gap value. There is an
exact algorithm called as the Diversity Maximization Algorithm (DMA) proposed by
Masin and Bukchin (2008) and a similar approach developed by Sylva and Crema
(2007). These approaches try to find the most diverse set of nondominated points for
a given coverage gap value. Throughout the algorithm, as the number of generated
points increases, the number of binary variables and constraints added to their models
increase substantially. Therefore, the computational complexities of these algorithms

may be undesirable, especially in large-sized real-life problems.



As an improvement of these algorithms, Ceyhan et. al. (2014) propose two algorithms
called as the Subspace Based Approach (SBA) and the Territory Defining Algorithm
(TDA). These are also based on the same idea of iteratively generating the worst
represented nondominated point in terms of the coverage gap measure. SBA and
TDA present improvement in terms of the computational efficiency since they use
the search method proposed by Lokman and Kdoksalan (2013) that is based on the
enumeration of the nondominated subspaces. Due to this decomposition method,
their solution times are much less than the solution times of Sylva and Crema (2007)

and Masin and Bukchin (2008).

In this study, we propose two new algorithms that provide improvements to these
existing approaches in terms of both the solution quality and the computational effi-
ciency. Our purpose is to use the common properties of the density distributions of
the nondominated points in MOMIPs. We try to generate nondominated points from
the dense regions of the nondominated frontier in order to represent more points by
less number of representatives. To achieve this, while developing our algorithms, we
observed that the nondominated points which could represent more number of points

may have better weighted sum values due to the shape of the frontier.

In our first algorithm (called as the Territory-Excluded Supported Generating Algo-
rithm, TSGA), given a specific coverage gap value, we define some regions (called as
the territories) around each generated nondominated point and after excluding these
regions from the feasible space, we search for a new nondominated point by solving
a weighted sum problem over the reduced objective space. TSGA has a better per-
formance than the existing approaches in terms of both the solution quality and the
solution time. In our second algorithm (called as TSGA-II), we yield better represen-
tative sets in terms of the cardinality but the solutions times are longer than TSGA.
In this algorithm, we again work on the reduced objective space. We randomly se-
lect an objective and iteratively find the nondominated point that has the best value
in this objective. Then, we generate the representative point that will cover this point
by solving a weighted sum problem (excluding the selected objective) in each itera-
tion. The major characteristic of this algorithm is that we always guarantee to cover
all nondominated points in terms of the selected objective and for a problem with m

objectives, we search for the nondominated points in the (m — 1)-dimensional space.



Our computational experiments are performed on the randomly generated test in-
stances of the Multi-Objective Knapsack Problem (MOKP), Multi-Objective Assign-
ment Problem (MOAP) and mixed-integer knapsack problem. In order to assess the
performance of our algorithms, we generate all nondominated points of these prob-
lems. Then, we compare the quality of our representative sets with the quality of
the representative sets generated by Masin and Bukchin (2008) & Sylva and Crema
(2007) and Ceyhan et. al. (2014). We implement all algorithms by using the recently
proposed decomposition method by Dichert et. al. (2017). Our results show that
our algorithms outperform the existing ones in terms of both the cardinality of the
generated representative sets and the solution times. In addition, we solve for the
representative sets with the optimal cardinality for a given coverage gap value. Re-
sults indicate that our algorithms converge to the optimal cardinality better than the

existing approaches.

The organization of this thesis is as follows. In Chapter 2, we present the relevant pre-
liminaries including the quality measures and the description of the scaling method
used in our algorithms. In Chapter 3, we briefly review some recent approaches
developed to generate representative nondominated sets and some approximation al-
gorithms for MOMIPs. In Chapter 4, we first present the existing approaches that we
compare the performance of our algorithms against. Then, we describe our algorithms
TSGA and TSGA-II with their interactive applications. Finally, we report the results
of our computational experiments in Chapter 5 and we summarize our conclusions in

Chapter 6.



CHAPTER 2

PRELIMINARIES

In this chapter, we provide the relevant background in Multi-Criteria Decision Mak-
ing (MCDM) and definitions of the quality measures proposed by Sayin (2000) for

representative sets of nondominated points in MOMIPs.

2.1 Background - Definitions

As a mathematical model, a MOMIP can be defined as follows:

(MOMIP) “Maz” z = f(x), subjectto x € X,

where f(z) = {z(x),2(),..., zm(2)} is m-dimensional point in the objective
space, x is a vector in decision space. X C Z" is the feasible decision space and

Z is the feasible objective space.
Definition 2.1. A feasible decision point x’ € X is an efficient solution if there does
not exist any x’ € X such that

2(x7) > 2(x") Vk € {1,2,...,m} and z,(x7) > z,(x") for at least one k.
If x' is an efficient solution, then its image in the objective space, f(x), is said to be a
nondominated point.

For a MOMIP, we denote the set of efficient solutions as X and the set of nondomi-

nated points as Zyp.



Definition 2.2. The ideal point of a MOMIP, z'* = {z{" 21 . 2P} is defined

as a m-dimensional vector whose components are the best possible values of each ob-

jective. More specifically, it can be defined as follows for different types of MOMIPs:

e For a maximization problem:

e For a minimization problem:

zif = mel)?(zk(x)) vk

Definition 2.3. The nadir point of a MOMIP, V7 = {27 VP . 2]'P1 s defined
as a m-dimensional vector consists of the worst objective values in the set of efficient

solutions, Xp. Specifically,

e For a maximization problem:

2P = Helyl(n(zk(x)) VEk
x€XEg

e For a minimization problem:

zévp:rré%x(zk(x)) Yk
x€Xg

2.2 Quality Measures

In real-life multi-objective decision making problems, presenting all nondominated
points to the DM gets harder and time consuming as the problem size increases. In-
stead, working with a subset of nondominated points is more practical and easier.
While generating such a subset of nondominated points, our purpose is to represent
all nondominated points according to quality levels desired by the DM. In order to
specify the quality of a representative subset, Sayin (2000) defines three performance

measures which are coverage gap, cardinality and uniformity measures.
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2.2.1 Coverage Gap Measure, «

Sayin (2000) suggests that a representative set should cover every portion of the ef-
ficient frontier. In order to measure this coverage attribute, Sayin (2000) defines the

following coverage measure:

Definition 2.4. Let R C Zyp be a representative set of a maximization MOMIP. The
coverage gap for R can be calculated as follows:

a = max mind(z,y)
z€ZND YER

where d(z,y) is a distance metric.

To calculate the coverage gap of a representative set, Sayin (2000) uses a Tchebycheff
distance metric, i.e. k:n}?%7m |z — yx|- Each nondominated point (z) is assigned to its
closest representative point y in terms of this metric which is defined as the maximum
of the differences in objective values of these two points. The distance between a
nondominated point and its closest representative point is the coverage gap of this
specific nondominated point. Then, among all nondominated points, the one with the

maximum coverage gap determines the coverage gap of the representative set, ag.

This point is called as the the worst represented nondominated point.

Masin and Bukchin (2008) suggests a different distance metric considering only the
objectives in which the nondominated point () is better than the representative point
(y). In this case, coverage gap of the representative set can be calculated as follows:
T R e

In our studies, we use the distance metric defined by Masin and Bukchin (2008). If
the coverage gap of a representative set R is ag, then there exists a nondominated
point which is « better than its representative in at least one objective. Also, by def-
inition, all nondominated points are at most « better than their representatives in at
least one objective. Then, a nondominated point is said to be & — dominated by its

representatives.



Definition 2.5. Let R be a representative set of a maximization MOMIP. Lety € R
represent z € Zyp such that z;, <y +« forallk = 1,2, ...,m. Then, z is said to be

a — dominated by y.

In our computational experiments, we used a scaling coefficient so that the coverage

gap value specified by DM is defined on the interval [0, 1]. The scaling coefficient
1

for objective k is T where I?j 1s the range of objective k on the efficient frontier for

k
a maximization problem, i.e.

Ry, = max(z;,(x)) — min (z;(x))

2.2.2 Uniformity Measure, )

The points in a representative set are desired to be uniformly distributed over the
nondominated frontier in order to present to the DM as much information as possible.
In the ideal case of uniformity, the representatives should be located as equally-spaced
from each other with respect to a given distance measure. In terms of uniformity, it
is undesired to generate representative points which are mostly located as clusters in
specific regions of the nondominated frontier. Sayin (2000) defines the uniformity

measure as follows:

Definition 2.6. Let R be a representative set of a maximization MOMIP. Then, R is
said to be d-uniform if

min d(y',y?) > 0.

y'y2eR
2.2.3 Cardinality Measure

Another quality measure for a representative set is cardinality defined by Sayin (2000).
The main purpose of generating a representative set of nondominated points is to
avoid the inefficiency of generating all points. Therefore, while satisfying the quality
level desired by the DM, our aim is to achieve this level with the minimum number

of points to minimize the computational effort.

8



These three quality measures are closely interrelated with each other. For example,
we expect coverage gap to improve as the cardinality and uniformity increases. How-
ever, especially in large-sized real life problems, our main concern is to decrease the

computational effort which is directly related with the cardinality.

Example for Quality Measures

Consider a bi-objective problem with 8 nondominated points which are shown on
the scaled objective space in Figure [2.1] Suppose the generated representative set
is R = {(0.1,0.9),(0.6,0.6), (0.9,0.3) }. Accordingly, the values of three quality
measures are given in Figure [2.1] The worst represented point is also shown since it
is represented with the maximum coverage gap among all nondominated points and

it determines the coverage gap of R.

® Representative Nondominated Point

IR| =3
6=0.3
0.8 . a=0.2

0.9 ®

0.7 ]

0.6 o

0.5 ®

0.3 Worst Represented Point e

Z2

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Z1

Figure 2.1: Example of quality measures for a representative set
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CHAPTER 3

LITERATURE REVIEW

In this chapter, we review some exact and heuristic approaches in the MOMIP liter-
ature. There are so many approaches which have been proposed in order to generate
either all nondominated points in MOIPs or good representative subsets of nondomi-
nated points satisfying certain quality measures. Instead of the problem-specific ones,

we focus on general methods which can be applied to any problem type.

Finding all nondominated points of MOIPs requires high computational efforts es-
pecially in large-sized practical problems. Ehrgott and Gandibleux (2000) discuss
that as the problem size grows, the number of supported nondominated points in-
creases exponentially whereas the number of unsupported nondominated points in-
creases linearly. Therefore, while generating all nondominated points, the difficulty
of generating the supported ones increases the solution times mostly. As the number
of nondominated points increases, finding all of them becomes computationally hard.
As a result, several approaches have been developed in the literature to generate a

subset that represents all nondominated points for some desired quality measures.

Sylva and Crema (2007) propose an exact algorithm that can be used to generate
all nondominated points or a subset satisfying a given coverage gap value. They
iteratively solve a single model by adding m binary variables and (m + 1) linear con-
straints for an m-objective problem. Masin and Bukchin (2008) also develop a very
similar approach. They define a diversity measure that is maximized for minimiza-
tion problems whereas Sylva and Crema (2007) use a measure that is minimized for
maximization problems. Although they use different mathematical formulations, the
computational complexities of both approaches increase significantly as the problem

size grows.

11



Ozlen and Azizoglu (2009) present a recursive algorithm which can be used to gen-
erate either the whole set or a subset of the nondominated points. It is developed
as an improvement to the classical constraint method. They increase efficiency by
identifying efficiency ranges for objectives. Ozlen et. al. (2014) further improves
the efficiency of this algorithm by avoiding to solve previously solved submodels

throughout the solution process.

Lokman and Koksalan (2013) develop another exact algorithm for generating all non-
dominated points of MOIPs. In each iteration, after generating a nondominated point,
they reduce the search space by eliminating the regions dominated by the generated
point. Then, they decompose the reduced search space into subspaces by an enumer-
ation technique. This procedure outperforms Sylva and Crema (2007) and Ozlen and

Azizoglu (2009) in terms of the computational complexity.

Kirlik and Sayin (2014) also propose a method to generate all nondominated points.
For an m-objective problem, they project each generated nondominated point to an
(m — 1)-dimensional objective space. Then, they create (m — 1)-dimensional regions
around the generated points and search for the next nondominated point within these
regions. This approach again outperforms Sylva and Crema (2007) and Ozlen and

Azizoglu (2009) with respect to the solution times.

Boland et. al. (2015) present an objective space search method, called as the Balanced
Box method, which is designed to find all nondominated points of bi-objective integer
programs. This method enhances the efficiency significantly and shows a fast approx-
imation of the efficient frontier. They report that the performance of this method is
comparable with the e-constraint method. Similarly, Boland et. al. (2016) suggest
the L-Shape Search method (LSM) which aims to find all nondominated points of
a tri-objective integer program. They define rectangles around each generated point
and sort them in the non-increasing order of their areas. In each iteration, by inducing
an L-shape within each rectangle, they search for a new nondominated point whose
projection is in the rectangle. They state that the efficiency of LSM comes from its
reliance on solving single-objective integer programs (IPs). They also try to avoid
solving unnecessary IPs and increase the overall efficiency of LSM. They show that

LSM is 17% faster on the average than Kirlik and Sayin (2014).
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In large-sized practical problems, instead of generating all nondominated points, pre-
senting a small subset to the DM is more useful and efficient. There are some quality
measures defined in the literature in order to assess the performance of the generated
small subset of nondominated points. Sayin (2000) suggests three main measures
which are the coverage gap, uniformity and cardinality measures. The generated rep-
resentative subset should cover each and every nondominated point and should be
well dispersed over the nondominated frontier. For a given coverage or uniformity
level, the cardinality of the representative set should be minimized in order to avoid

unnecessary computational efforts.

Ceyhan et. al. (2014) develop three algorithms to produce representative sets of
nondominated points for MOMIPs. Firstly, they developed an improved approach of
Sylva and Crema (2007) and Masin and Bukchin (2008). Their first approach (the
Subspace-Based Approach) generates a representative set for a given coverage gap
value or for a given cardinality level. They use the decomposition method of Lok-
man and Koksalan (2013) which eliminate the additional binary variables and linear
constraints in Sylva and Crema (2007). By this way, SBA improves the computa-
tional efficiency. Secondly, they develop the Territory Defining Algorithm (TDA)
which generates a representative set for a given coverage gap value by the DM. TDA
reduces the search space by excluding the territories contructed for each generated
point from the search space. Although the solution quality may be worse than SBA,

TDA requires less solution times.

Vaz et. al. (2015) propose several algorithms to find representative sets for bi-
objective discrete optimization problems. They consider uniformity, cardinality and
e-indicator (similar to the coverage gap) measures. They develop several algorithms
which are either based on solving several subproblems or solving a sequence of feasi-
bility problems. They formulate these problems as special types of one-dimensional
facility location problems. For instance, the representation problem which tries to
maximize the uniformity for a given cardinality level, is defined as a k-dispersion
facility-location problem. They also develop algorithms which try to optimize two
performance measures simultaneously for a given number of representatives. They
conclude that since the related k-dispersion and k-center problems are generally NP-

hard, they say that their methods are not applicable for more than two objectives.
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Vassilvitskii and Yannakakis (2005) introduce the problem of finding a lower bound
on the cardinality of the representative set which will satisfy a certain coverage level.
Then, Bazgan et. al. (2015) work on this problem and for the bi-objective prob-
lems, they guarantee that their approximation method computes at most 3 times the
cardinality of the optimal representative set, which is called as a 3-approximation al-
gorithm. For the tri-objective optimization problems, they propose a greedy approach

under the assumption that all nondominated points are known in advance.

Filippi and Stevanato (2013) develop two approximation algorithms for bi-objective
combinatorial optimization problems. Their algorithms find a representative subset
such that each nondominated point is within a specific factor from a representative
point in terms of both objectives. They also show that the cardinality of their represen-
tative sets is at most three times worse than the optimal cardinality. The first algorithm
is called as the ABE algorithm which iteratively finds a new nondominated point and
partitions the objective space into four subspaces. The second algorithm is called
as AEC method which is stated as a modification of the well-known e-constraint
method. They conduct some experiments on the Travelling Salesman Problem with
profits where maximizing profit and minimizing cost are the two conflicting objec-
tives. Their results show that their algorithms yield a guaranteed approximation to

the results of exact methods in an efficient way.

Shao and Ehrgott (2016) propose a method to generate representative sets for the con-
tinuous but non-convex nondominated sets while guaranteeing a specific coverage gap
and uniformity level. Specifically, they try to solve the NP-hard problem of finding a
number of evenly-distributed nondominated points of a MOLP (Multi-Objective Lin-
ear Program) for a given coverage gap value. Their method is stated as a combination
of the global shooting and the normal boundary intersection (NBI) methods. By com-
bining these methods, they take the advantage of the global shooting method in satis-
fying the coverage property and the advantage of NBI in generating evenly-distributed
nondominated points (which satisfies the uniformity property). They call their new
approach as “Revised Normal Boundary Intersection” (RNBI) method. They show
that the generated representative points are indeed evenly distributed and the RNBI

method is applicable for MOLPs with up to 8 objectives.
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Koksalan and Lokman (2009) approximate the nondominated frontiers in MOCO
problems. After scaling all objectives, they try to fit a smooth hypersurface, called as
an L, surface, to the nondominated frontier which passes through all the hypothetical
extreme nondominated points and a centrally located nondominated point. Based on
their observations, they make analyses related with the typical characteristics of the

shapes of nondominated frontiers in MOCO problems.

Ozarik (2017) develops algorithms to generate representative sets for different types
of MOIPs by defining a new quality measure. They introduce a density measure
and make analyses for identifying the typical distribution properties of nondominated
points over the frontier. Their approaches first approximate the nondominated fron-
tier by using the method of Kdoksalan and Lokman (2009). Then, they categorize
this approximated nondominated set based on the estimated density measures in each

subregion. By this way, they generate density-based representative sets for MOIPs.

Dichert et. al. (2017) develop one of the most recent decomposition methods in
the MOMIP literature. They decompose the whole feasible objective space into sub-
spaces which are defined by lower bound vectors. Then, they define a specific neigh-
borhood relation between these lower bounds and update the search space in each
iteration by updating these neighborhood relations. They show that due to the effi-
ciency of their update procedure, they outperforms all existing search methods in the
literature (such as Lokman and Koksalan (2013), Kirlik and Sayin (2014)) in terms

of computational efficiency.
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CHAPTER 4

ALGORITHMS FOR GENERATING REPRESENTATIVE SETS OF
NONDOMINATED POINTS

In this chapter, we present two approaches for representation of nondominated sets in
MOMIPs in terms of the quality measures defined in Chapter 2. Our main concern
is to cover all parts of the nondominated frontier by generating a small representative
subset of the nondominated points. Therefore, our main quality measures are the
coverage gap and the cardinality. Specifically, we aim to find a small subset that
represents the whole nondominated set with a prespecified coverage gap value. The
uniformity measure is also controlled implicitly since the algorithms are designed to

produce representative points within at least a certain distance from each other.

Before presenting our approaches, we briefly describe the existing algorithms that we
compare our experimental results against. These algoritms are the Diversity Maxi-
mization Algorithm (DMA) proposed by Masin and Bukchin (2008), the Subspace
Based Approach (SBA) and the Territory Defining Algorithm (TDA) developed by
Ceyhan et. al. (2014). Given a coverage gap value, our approaches are compared
with these algorithms in terms of the cardinality, solution times and number of mod-
els solved. All of these approaches can be used either to generate a representative

subset or the entire nondominated set.
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4.1 Existing Approaches

4.1.1 Diversity Maximization Algorithm (DMA)

DMA is an exact algorithm developed by Masin and Bukchin (2008). It is very sim-
ilar to the approach proposed by Sylva and Crema (2007). These approaches itera-
tively generate the worst represented nondominated point by the previously generated
representatives. Starting with an initial supported nondominated point, they solve a
model in each iteration which generates the nondominated point with the maximum
coverage gap value (which is the worst represented nondominated point by the cur-
rent representatives). The model (Py) shows the mathematical formulation proposed
by Sylva and Crema (2007). Let R = {y',y?, ...y} be a representative set of a

maximization MOMIP with m objectives. Then,

(Po):
Max o + EZ)\kzk
k=1
s.to.
2(0) >y ph o — (M +U)(1 —pl) Vi=1,2,..., Rl Yk=1,2,...m
k=1 Vi=12.|R|
k=1
pi€{0,1} Vi=12.,|R Vk=12..m
a>0
xeX
where

M, is the lower bound for zj(x),

U is an upper bound for d(zx(x) — 2zx(x’)) for any x,x" € X where d is a Tchebycheff
distance metric,

A >0VE=1,2,....m,

€ 1s a sufficiently small positive number.
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In (Py), the first constraint ensures that the optimal « value will be the maximum of

the Tchebycheff distances from the optimal solution to each representative point.

Sylva and Crema (2007) solves (Py) in each iteration by adding the newly generated
nondominated point to the set R. This corresponds to adding m binary variables and
(m 4+ 1) linear constraints to the model. The mathematical formulation used in DMA
also have the same number of binary variables and linear constraints. Therefore,
in terms of computational complexity, DMA and the approach of Sylva and Crema
(2007) turn out to be very inefficient as the number of generated representative points

increases.

Both approaches have two alternative stopping conditions. They continue until the
coverage gap value of the last generated point hits to a lower bound on the coverage
gap of R. In this case, all nondominated points are at most « better in at least one
objective than their closest representatives in R. If this lower bound set to zero, then
their algorithms generate all nondominated points of a MOIP. Another stopping con-
dition can be an upper bound on the cardinality of the representative set, IR, desired
by the DM. Both of these stopping criteria can be used at the same time such that

algorithm continues until at least one of them holds.

4.1.2 Subspace Based Approach (SBA) and Territory Defining Algorithm (TDA)

Ceyhan et. al. (2014) propose the Subspace Based Approach (SBA). Similar to
the Diversity Maximization Algorithm (DMA), SBA iteratively generates the worst
represented point that is the nondominated point with the maximum coverage gap.
However, in order to eliminate the dominated regions by the already generated non-
dominated points, they use a decomposition method proposed by Lokman and Kok-
salan (2013) instead of adding new binary variables as in DMA. Lokman and Kok-
salan (2013) enumerate all subspaces that are not dominated by the current repre-
sentative points. Each subspace is defined by lower bounds on objectives where
Ib = {lby,lbs,...,lb,} is a lower bound vector. Then, SBA iteratively solves the

following model (P;) for a maximization problem:

19



(Py):
Mar o + EZ)\ka
k=1
s.to.
zk(x) > lbk +a Vk= 172, ..., m

xelX

In each iteration, SBA solves as many models as the number of nondominated sub-
spaces. After searching all subspaces and finding the nondominated points which
yield the maximum coverage gap in each subspace, they select the one with the max-
imum coverage gap among all found points and add this selected point to their repre-
sentative set. Similar to DMA, the stopping condition of SBA can be either a lower
bound on the coverage gap or an upper bound on the cardinality of the representative

set.

Although using the search method of Lokman and Koksalan (2013) provides a com-
putational advantage to SBA, the number of models solved in each iteration may
increase the solution times substantially as the number of generated points increases.
However, their computational experiments show that when both algorithms start with
the same initial nondominated point, solution times of SBA are significantly lower
than those of DMA especially as the cardinality of the representative set increases.
They argue that SBA solves much simpler models than DMA and the size of these
models do not increase as the algorithm proceeds. In addition, they keep the solutions
of the previously searched subspaces in order to avoid solving the same models un-
necessarily. As a result, as the cardinality increases, solution times of SBA increase

linearly while solution times of DMA increase exponentially.

In addition to SBA, Ceyhan et. al. (2014) develop the Territory Defining Algorithm
(TDA) which outperforms DMA and SBA in terms of solution times. TDA uses
the same subspace search method used in SBA and solves the model (P;) for each
subspace. However, in each iteration, TDA does not search all subspaces and does
not try to find the nondominated point with the maximum coverage gap. Instead, it
only solves the largest subspace and chooses its solution as the next representative

point. In other words, TDA solves only a single model in each iteration.
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They also suggest that instead of solving the largest subspace in each iteration of
TDA, different subspace selection techniques can be applied throughout the algo-
rithm. They also provide experimental results of selecting and solving a random
subspace in each iteration. According to their results, both cardinality and the solu-
tion times do not change significantly for two different subspace selection techniques

applied.

In order to satisfy a prespecified coverage gap, TDA defines specific regions around
each generated nondominated point called as territories. Specifically, all nondomi-
nated points that are a-dominated by a representative point y are included in its terri-
tory. Territory of y is defined by the hyperspace (H) in the m-dimensional objective
space such that H = {yk — A< z(x) <y +A VE € {1,...,m}, x € X} If
the region that is dominated by the hyperspace H is denoted as Hp, then the terri-
tory of a representative point y is defined by excluding two spaces from Hp which
are the space dominated by y (y,,) and the space dominating y (y;;), i.e. Ty = Hp \

{y pUY¥y } The territories defined in two and three dimensional spaces are illustrated
in Figures .1 and #.2] respectively.
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Figure 4.1: Territories in a two dimensional objective space

Source: Ceyhan et. al. (2014)
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In order to eliminate the territories from the search space, TDA creates an artificial
representative point (y’) for each nondominated point (y) generated such that y; =
yr+a Vk € { 1,.., m} for a maximization problem. Then, they define lower bounds
of new subspaces by using the objective values of these artificial points. This way,
they avoid searching the regions that are a-dominated by the true points generated
by TDA. At the end of the algorithm, they show that all nondominated points are a-
dominated by the final R and the coverage gap of this representation does not exceed

the desired coverage gap value, «.
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Figure 4.2: Graphical display of the three dimensional territory constructed around
point y*
Source: Ceyhan et. al. (2014)

The main difference of TDA is that since it does not search all subspaces in an it-
eration, it does not guarantee to generate the worst represented point as in SBA and
DMA. Although the solution quality (in terms of cardinality) may be worse than
DMA and SBA, Ceyhan et. al. (2014) show that the solution times decrease signifi-
cantly in TDA. It is much more efficient than DMA and SBA since it searches only a

single subspace and eliminates the territories from the search region in each iteration.
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4.2 Territory-Excluded Supported Generating Algorithm (TSGA)

In all of these approaches, assuming a coverage gap value specified by the DM, the
quality measure for a generated representative set is its cardinality. During an al-
gorithm, in order to reduce the cardinality of the final representative set, we should
iteratively generate nondominated points that will represent as many points as pos-
sible. Focusing on this purpose, we define a new attribute, called as the individual
representation power (irp), for each nondominated point that can be selected as a

representative point.

Definition 4.1. Let z € Zyp be a representative point of a maximization MOMIP.
Then, the number of nondominated points which are a-dominated by z is said to be

the individual representation power of z, F,.

In developing TSGA, our main purpose is to generate the nondominated points with
higher irps in each iteration. Our main motivation is based on some important obser-
vations related with the general characteristics of the shapes and the density distribu-

tions of the nondominated frontiers in MOMIPs.

Firstly, we use the observations of Koksalan and Lokman (2009) where they approx-
imate the nondominated frontiers of MOCO problems by fitting smooth L, hyper-
surfaces. Similar to our scaling method, they scale the objective space using the
ranges of the objectives on the nondominated frontier. Specifically, for a maxi-

mization problem, a nondominated vector (z;(x), 22(x), ..., 2, (x)) is transformed to
a scaled vector (27(x), z5(x), ..., 2/ (x)) where z (x) = 2k (x) = 2 " (x)
1 ) <2 ) k Z,I;P(X) o zléVP(x)

zi(x) <1 Vk e {1, e m}. In the scaled objective space, they define hypothetical

ooy 2y and 0 <
extreme nondominated points such that z; (x) = 1 and zj(x) = 0 Vj # k. They also
generate a centrally located nondominated point that has the minimum Tchebycheff
distance from the ideal point by solving rxnei)rfl(ml?x(zk(x) — zIP)). Then, they fit a
hypersurface to the nondominated frontier that passes through the central point and
all hypothetical extreme points. This hypersurface is called as the L, surface where
q > 0 satisfies the following equation for each and every hypothetical nondominated

vector: Ly(z') = (27)7 + (25)? + ... + (2,,)? = L.
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According to their results, the L, surface fitting the nondominated frontier of a mini-
mization problem generally has a convex shape whereas it is concave for a maximiza-
tion problem. An example is shown in Figure 4.3|for a bi-objective knapsack problem

with 200 items and 431 nondominated points.
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Figure 4.3: The fitted L, surface of a bi-objective knapsack problem instance

Secondly, Ozarik (2017) makes observations related with the typical density distribu-
tions of the nondominated frontiers of MOMIPs. They introduce a density measure,
approximate the frontiers by L, surfaces as in Koksalan and Lokman (2009) and
make analysis of the common properties of the nondominated sets. They define the
central point as the "center of density" and show that the value of their density mea-
sure decreases as we move away from this point through the edges of the frontier.
Especially in large-sized problems with many nondominated points, this observation
seems to be more typical. As an example, the density distribution of a knapsack
problem with three objectives and 5652 nondominated points is shown in Figure #.4]
where the density of the nondominated points increases as the color turns from blue to
red. According to their findings, 25% of the closest points to the "center of density"
contribute approximately 70% to the total density and the rest 75% of these points
contribute only approximately 30% to the total density. In other words, if we define
the parts around the central point as the "central region", their analyses show that the

"central region" of the nondominated frontier is typically the most dense region.
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Figure 4.4: Density distribution of a 3-objective knapsack problem instance
Source: Ozarik (2017)

If a nondominated point (z) has a high irp, then the number of nondominated points
that are c-dominated by z is high. If we remember the territory definition in TDA,
this corresponds to a high number of nondominated points located in the territory
of z. Therefore, in order to generate the representative points with high irps, we
should consider the number of nondominated points within the territories of these
representative points. When we consider the findings of Ozarik (2017) related with
the distributions of nondominated frontiers, we can conclude that if we generate non-
dominated points that are located closer to the dense regions of the frontier, their
territories will obviously include more number of points and their ¢rps will be high.
This is illustrated in Figure [.3] for a 2-objective knapsack instance with 5652 non-
dominated points assuming a coverage gap value of 0.15. As can be seen from this
figure, territory of point B includes fewer number of nondominated points than terri-
tory of Point A which is located in a dense region of the frontier. Particularly, we can
say that the nondominated points located in the dense regions of the frontier (that are
closer to the "center of density") have high irps. Considering our main motivation
of reducing the cardinality of our final representative set, we desire to generate these

nondominated points in our algorithms.

When the typical shapes of the nondominated frontiers of MOMIPs are considered, it
can be seen that we can generate nondominated points from the dense regions of the
frontier by optimizing a weighted sum of objectives. This is shown in Figure 4.6 for

a bi-objective knapsack problem with 431 nondominated points. Since it is a maxi-
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mization problem, when we maximize a weighted sum of two objectives (shown by
the black line), it hits the central region of the frontier and generates a nondominated

point with a high i7rp due to the shape of the frontier.
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Figure 4.5: Territories in the dense and sparse regions of the nondominated frontier

After making all these observations, we performed additional analyses that support
our arguments. We examine the correlation between irps of the nondominated points
and the weighted sum of their objective values. The corresponding relationship is
shown in Figure d.7|for a 3-objective knapsack problem instance with 3253 nondom-
inated points. The irp of each nondominated point is calculated for « = 50. When
we consider the individual data points in Figure although there are some devia-
tions, there is a strong positive correlation between the irps and weighted sum values
of the nondominated points. This can be observed more clearly in the histogram in
Figure which shows that the nondominated points with greater weighted sum

values represent more nondominated points on the average.

Based on all of these discussions, we propose the Territory-Excluded Supported Gen-
erating Algorithm (TSGA) in which we generate the nondominated point that has the
maximum weighted sum value in the reduced search space at each iteration. We iter-
atively reduce the search space by excluding not only the dominated regions but also
the regions that are a-dominated by the previously generated representative points.
In order to achieve this, we define territories around each generated point as in TDA.
In order to exclude these territories from the search space, we define artificial repre-

sentative points that correspond to the upper corner points of the territories.
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Figure 4.6: Generating a nondominated point with high rp

For a given coverage gap value (o) and a generated nondominated point (y), an ar-
tificial nondominated point (y') is defined as yj, = y, + o Vk € {1,..,m} fora
maximization problem. Using these artificial points, we exclude the territories from
the feasible objective space and obtain a reduced search space in each iteration. Then,
by solving a weighted sum problem, we generate a supported nondominated point of

this reduced problem.
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Figure 4.7: Individual representation power vs. Weighted sum of objectives

In this weighted sum problem, we choose the weights based on the distribution of the
nondominated points over the feasible objective space. To maximize the individual
representation power, we target the dense regions. Ozarik (2017) shows that the dense

regions are typically located closer to the central point, z, that is the nondominated
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point with the minimum Tchebycheff distance to the ideal point. Based on this ob-
servation, we calculate the objective weights by using the plane that is tangent to the
L, surface at the point z©. Specifically, the coefficients in the equation of this tangent
plane are normalized and set as the objective weights in our weighted sum problem.
For a bi-objective knapsack problem with 431 nondominated points, the L, curve,
the "center of density" and the tangent line at this point are illustrated in Figure {.8]
This way, the weight of each objective is chosen so that the weighted sum problem

generates nondominated points from the dense regions of the nondominated frontier.
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Figure 4.8: The fitted L, surface and the tangent line at the center of density of a
bi-objective knapsack problem instance

We search the objective space using the recently proposed decomposition method by
Dichert et. al. (2017) which outperforms the decomposition method of Lokman and
Koksalan (2013) in terms of computational efficiency. Similar to Lokman and Kok-
salan (2013), the search procedure of Dichert et. al. (2017) partitions the search space
into subspaces and each subspace is defined by a set of lower bounds on objectives
(for a a maximization problem), Ib = {lbl, by, ..., lbm}. However, they introduce
a specific neighborhood relationship between these lower bounds which are updated
in each iteration. This update procedure is designed very efficiently and saves com-
putation time. Another point which makes their procedure faster is that they avoid

searching redundant search zones where redundancy is defined as follows:
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Definition 4.2. LetIb' and Ib? be two lower bound vectors of a maximization MOMIP.
If b}, = Ib} for some k =1,...,m and b} > Ib? for Vj # k, then Ib" is said to be

a redundant lower bound vector which defines a redundant search zone.

By definition, it is known that the optimal solution in the search zone of Ib* will be
either the same as or better than the optimal solution in the search zone of Ib*. This is
why there is no need to solve the submodel of the region defined by Ib'. As the prob-
lem size grows, Dichert et. al. (2017) observe that the number of redundant search
zones increases. Therefore, their search procedure results in a substantial decrease
in solution times. Using this decomposition method, TSGA iteratively generates the
nondominated point with the maximum weighted sum value in each subspace by solv-
ing the model (P,). Then, among all these generated points, TSGA selects the one

with the maximum weighted sum value as the new representative point.

(P2):

Mazx Z A2k
k=1

s.to.
Zk(X) > lbk Vk= 1,2, .., m

xeX

In the model (P,), A\; denotes the coefficient of objective k including a scaling factor
and a weight factor. Specifically, we can define this coefficient as \;, = Z—Z where Ry,
is the range of objective k on the efficient frontier and wy, is the weight of objective
k calculated from the center of density of the nondominated frontier. Since we work
on the scaled objective space, the prespecified coverage gap value is defined on the
interval [0, 1]. This way, the size of the territories constructed around each generated

point is also scaled.

Although TSGA calculates the weights of the objectives based on the center of den-
sity of the nondominated frontier, some interactive applications can be designed so
that these weights are adjusted considering the preferences of the DM. Accordingly,
the territory sizes can be set inversely proportional to these weights. This way, we
can discriminate the nondominated solutions that are more preferable by the DM.

Examples for such applications are discussed in Section 4.5.
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During the algorithm, we keep some sets and lists that are defined as follows: R is
the set of the generated nondominated points, A is the set of the artificial nondom-
inated points and LB is the list of the nonredundant lower bound vectors with the
corresponding optimal solutions of (P,). At the beginning of the algorithm, the DM
specifies the coverage gap value, a*. Then, the outline of the TSGA is given in the

following algorithm:

Algorithm 1 Territory-Excluded Supported Generating Algorithm (TSGA)
Initialization: R=0,A=0,LB=@.n = 0.

Step 0. Generate the initial nondominated point (y') by solving model (P,) for
Iy =0Vk=1,2...mR={y'},A={y"}, n =1 Update LB.

Step 1. For each Ib € LB do
Solve (P,) if necessary. If (P,) is feasible, let z? be the nondominated point
found. Update LB.

If there exists any feasible solution then
n=n+1.y" = argmax{z /\kzk}. R =RU {y"} A :Au{ym}. Update
LB. * Nk

Else go to Step 2.

Step 2. Stop.

TSGA stops when the entire search space is infeasible which means that each non-
dominated point lies within the territory of at least one representative point. In other
words, each nondominated point is a-dominated by at least one representative point
at the end of the algorithm. This way, we guarantee that all nondominated points are

a-dominated by the final representative set generated by TSGA.
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4.3 Territory-Excluded Supported Generating Algorithm - II (TSGA-II)

In this section, we introduce our second algorithm, TSGA-II, that generates represen-
tative sets of nondominated points for MOMIPs for a given coverage gap value. Sim-
ilar to TSGA, we generate nondominated points by solving a weighted sum problem
in the reduced search space obtained by excluding the territories constructed around
the points generated in each iteration. By eliminating these territories, we guarantee

to represent all nondominated points by at most a prespecified coverage gap value.

The main advantage of this algorithm is that it provides us the opportunity to work
on an (m — 1)-dimensional objective space. We randomly choose one of the objec-
tives (say the p'* objective) and we generate representative points in a nonincreasing
order of z,. After eliminating the nondominated points within the territories of cur-
rent representatives in each iteration, we first generate the nondominated point whose
p'" objective function value is the best among all nondominated points from the re-
duced space (denoted by z’»(x)). Then, we generate the nondominated point from the
reduced space that has the highest weighted sum of the remaining objectives (for a
maximization problem) and a-dominates z’» (x). This generated nondominated point

is selected as the new representative point.

In the first iteration of TSGA-II, the first representative point, y'(x), is generated by
solving model (P4) so that it a-dominates z'»(x) which is found by solving model
(P3). We show that the p!”* objective function values of all other nondominated points
are at most « larger than the p'* objective function value of y'(x). This enables us
to define the territories in the (m — 1)-dimensional objective space. As a result, we

optimize the weighted sum of (1 — 1) objectives in the reduced search space.

(P3):

m
Max Az, + € Z A2k
k=1, k#p

s.to.

xeX
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(P4):

Max Z Mezie + €(Ap 2p)
k=1, kp

s.to.
2k > z,ﬁp —aRy YEk=1,2,..m

xeX

In (P3) and (Py), € is a sufficiently small number and )\, = Z—Z where Ry is the range
of objective k on the efficient frontier and wy, is the weight of objective k. Due to the
scaling of objectives, the territory sizes are defined as a Ry Vk € {1, e m} where
a € [0,1]. In (Py), the first constraint ensures that the generated point a-dominates

z!7(x) that is the nondominated point corresponding to the optimal solution of (P3).

Proposition 4.1. In a maximization MOMIP, let y' € Zx p be the first representative

point generated by TSGA-II. Then, for any z € Zyp, y; > 2z, — oy,

Proof. By definition, z,{" > 2, V2 € Znp.
Since z/7 is a-dominated by y':  yi > z,ﬁ” —aR, Yk=1,...p,..,m.

Then, it directly follows: y; > zé” —aR, >z, —aR, VzeZyp.

As stated in Proposition 4.1., since the first representative point generated by TSGA-
II represents all nondominated points in the p*”* objective, there is no need to construct
territories in the p'* dimension of the objective space. This property is very significant

since it allows us to work on an (m — 1)-dimensional space throughout the algorithm.

In TSGA-II, we again search the objective space using the decomposition method of
Dichert et. al. (2017). In iteration n, TSGA-II solves model (Ps) for each nonredun-
dant lower bound vector, Ib. This model generates the nondominated point with the
maximum p*" objective value in the search space defined by Ib. Then, TSGA-II se-
lects the point with the maximum p*" objective value among the nondominated points
corresponding to the optimal solutions of (Ps) for all lower bound vectors. Let the

selected point be denoted as z/». Then, the algorithm solves (Ps) for each subspace
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in order to generate the nondominated point that a-dominates z’» and has the max-
imum weighted sum value for all objectives except z,. Lastly, among all generated
points, TSGA-II selects the one with the maximum weighted sum value (for (m — 1)

objectives) as the new representative.

(Ps): -
Mazx Mz, + € Z N2k
k=1, k#p
s.to.
zk(x) >y, YEk#p
xecX
(Po):

Max Z ez + €(Ap 2p)
k=1, k#p

s.to.
zk(x) > z,ﬁg(x) —a'R, Yk=1,2,...,m

xeX

where € is a sufficiently small number, A\, = Z—Z where 7 is the range of objective k
on the efficient frontier and wy, is the weight of objective k. The weight of each ob-
jective is assigned as in TSGA based on the density distribution of the nondominated
frontier of a MOMIP. Specifically, these weights are the coefficients in the equation

of the tangent plane to the L, surface at the center of density.

Another property of TSGA-II which should be highlighted is that it generates the
representative sets with the optimal cardinality for bi-objective mixed-integer prob-
lems. Since we work on an (m — 1)-dimensional space, the original bi-objective
problem reduces to a single objective problem. As a result, in addition to the solu-
tion quality, TSGA-II provides a significant computational advantage in bi-objective

mixed-integer problems.
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Proposition 4.2. In a bi-objective mixed-integer problem, let R = {y',y*,....y"} be
the current representative set in iteration n. Let the union of territories constructed
around n representatives be T = {T y1UTy U, .UTyn } Then, TSGA-II generates y™ !
with the maximum individual representation power in the reduced objective space, i.e.
Py = max P,

2€ZNp\T
Proof. Without loss of generality, let p = 1.
Consider n = 0.
For a maximization problem, let z/* be the optimal solution of (P3) and y' be the

optimal solution of (Py).

To get contradiction, suppose that there exists z* # y' € Zyp such that P, =

max F;.
Z€EZND

Then, P, < P~ which implies that there exists z € Zyp such that z € T~ and
z ¢ Ty Sincez € T,-,
2 <z +a'Ry “4.1)

29 < 25+ "Ry 4.2)
Since z ¢ T, at least one of the inequalities (4.3) and (4.4) must be satisfied:

21 >y o' Ry 4.3)

2 > Yy + Ry 4.4)

By the construction of the algorithm,
<yl 4o R 4.5)

2 <y (4.6)

By definition of the ideal point, z; < z{l.

By substitution to (4.5), it implies to z; < yi + o R; which contradicts with (4.3).
From (4.2) and (4.6), 22 < 23 + a*Ry < ys + a* Ry which contradicts with (4.4).
Therefore, if there exists z € Zyp such that z € T-, this implies thatz € T):.

Consider n > 0. Let z'1" be the nondominated point such that 2 = max\ 2.
z2€ZNnp\T
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Then, TSGA-II generates y"+! such that

I’ﬂ
Yot = max {zg\ 2 > 2 — "Ry YV, xeX, e> 0}.
2€ZNp\T

Suppose that there exists z"* € Zyp\T such that Pn = max P,.
ZEZND\T

Then, Pjn+1 < Ppn- which implies that there exists z € Zyp\T such thatz € T;»- and
Z ¢ Tyn+1.
Since z € Tyn-,
2 < 2"+ a'Ry 4.7
29 < 28" + "Ry (4.8)

Since z ¢ Tyn+1, at least one of the inequalities (4.9) and (4.10) must be satisfied:
2>yttt o' Ry (4.9)
2 > ystt o Ry (4.10)
By the construction of the algorithm,
A<yt Lot Ry 4.11)
25 < yott (4.12)
By definition of the ideal point, z; < zfl
By substitution to (4.11), it implies to z; < y’f“ + o Ry which contradicts with (4.9).

From (4.8) and (4.12), 20 < 28" +a* Ry < yQ“ +a* Ry which contradicts with (4.10).
Therefore, if there exists z € Zyp\T such that z € T;n«, this implies that z € Tyns1.

O

Corollary 4.1. In a bi-objective mixed-integer problem, let R = {y*,y*,....,y"! } be
the final representative set generated by TSGA-II. Then, ny is the minimum cardinality

which satisfies a given coverage gap value.

Proof. Let the union of territories constructed around ny representative points be
T, = {T1 JT,U..UT, f}. In each iteration n, TSGA-II generates y" such that
Py = zerzr}vag\ TPz where z, > z,? — o Ry Vk. Therefore, since TSGA-II represents
the maximum number of points in each iteration, it represents all nondominated points

with the minimum number of representative points. [
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The sets and lists that we keep throughout the algorithm are all the same with TSGA.
R is the set of the generated representative nondominated points, A is the set of the
artificial representative nondominated points and LB is the list of the nonredundant
lower bound vectors with the corresponding optimal solutions of (Ps). For a coverage
gap value (a*) specified by the DM, the algorithm stops when all available search
zones are infeasible. Similar to TSGA, since we exclude the territories constructed
around each representative point throughout the algorithm, it is guaranteed that all
nondominated points are a-dominated by at least one of the representatives when the

algorithm stops. The outline of TSGA-II is provided in the following algorithm:

Algorithm 2 Territory-Excluded Supported Generating Algorithm-II (TSGA-II)
Initialization: R =@, A =@, LB = @. n = 0. Randomly choose an objective p.

Step 0. Solve (P3). Let the optimal solution be z’». Then, solve (P,). Let the
optimal solution be y!. R = {y'},A = {y"* }, n = 1. Update LB.
Step 1. For each Ib € LB do
Solve (Ps) if necessary. If (Ps) is feasible, let z? be the nondominated point
found. Update LB.

If there exists any feasible solution then

z!» = argmax{z,}. Update LB. Go to Step 2.
zlb

Else go to Step 3.

Step 2. n =n + 1. For each b € LB do
Solve (Py). If (Pg) is feasible, let y* be the nondominated point found. Update
LB.

If there exists any feasible solution then
y" = arg max{z )\kzk}. R=RU{y"}.A=AU{y"}. Update LB.

Ib
Y k#p
Else y" = z'r.

Go to Step 1.
Step 3. Stop.
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While generating a representative set, there is always a trade-off between the solution
quality and the solution time. Although TSGA-II provides a significant improvement
in the solution quality, TSGA is much more efficient in terms of the computational
efforts. Since TSGA-II reduces one dimension in the objective space, the computation
times could be expected to decrease. However, TSGA-II generates two nondominated
points in each iteration by solving two models for each subspace. We keep the optimal
solutions of (Ps) for each subspace that is solved in the previous iterations. However,
the optimal solution of (Pg) for a subspace may change since the point z/» is updated
in each iteration n. Therefore, we need to resolve (Pg) for each feasible subspace in
an iteration. As a result, the solution times may increase significantly especially in

large-sized problems.
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4.4 TIllustration of All Algorithms

In this section, we demonstrate the procedures of TSGA, TSGA-II and DMA (which
is equivalent to SBA such that both algorithms iteratively generate the nondominated

point with the maximum coverage gap value).

Consider a bi-objective knapsack problem instance with 40 items and 14 nondomi-
nated points. The layout of the nondominated points in the scaled objective space is
shown in Figure Suppose that a representative set will be generated to satisfy a

coverage gap value a = 0.25.
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Figure 4.9: Nondominated points of the example bi-objective knapsack problem

We first need to calculate the weights of objectives for TSGA and TSGA-II. In terms
of the Tchebycheff distance metric, the closest nondominated point to the ideal point
is found as (0.61,0.70) that is the center of density (z©) of this problem. Then, the ¢
value is calculated as 1.610 when we solve the equation L,((0.61,0.70)) = 0.619 +
0.70? = 1. The equation of the line that is tangent to the L, curve at the point z© is
29 = —0.9192;. When the coefficients in this equation are normalized, the weight of

each objective is found as w; = 0.479 and wy, = 0.521.
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Both DMA and TSGA are started with the same initial point (0.61,0.70) that is the
optimal solution of rgg);((wl 21(x) + waz2(x)). For TSGA-II, suppose the randomly
selected objective is z1, then it generates the first representative point by solving the
model (P;) where z* = (1,0). Then, the generated representative sets are as follows:
Rpya = {(O, 1), (0.61,0.70), (0.88,0.29), (1,0)},

Rrsca = {(0.13,0.96), (0.61,0.70), (0.88,0.29)},

Rrsca—rr = {(0.40,0.79), (0.75,0.37)}.

In Figures [4.10} [4.11] and .12} these sets are shown where the representative points

are numbered according to their order of generation. The territories constructed

around each generated point in TSGA and TSGA-II are also shown.
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Figure 4.10: Illustration of DMA for the bi-objective example problem (o = 0.25)

DMA generates the most diverse representatives located through the edges of the
nondominated frontier. Although TSGA starts with the same initial point, it generates
the nondominated points located closer to the central region of the frontier. This
is why the cardinality of Rpgc4 is less than the cardinality of Rp,4. In Figure
B.12] it is clearly seen that TSGA-II satisfies the same coverage gap with only two
representatives located in the dense regions of the frontier. As a result, TSGA-II

generates the representative set with the minimum cardinality.
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Figure 4.11:

z2

Figure 4.12: Illustration of TSGA-II for the bi-objective example problem
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4.5 Interactive Applications of TSGA and TSGA-II

For a given coverage gap value o, TSGA and TSGA-II generate representative non-
dominated points by optimizing a weighted sum of objectives as in the models (P,)
and (Pg), respectively. As stated before, the coefficient of the k*" objective function,
Ak, in these models is composed of a scaling coefficient and a weight coefficient.
Specifically, A\, = Z—: where R}, is the range of objective k on the efficient frontier
and wy, is the weight of objective k calculated based on the density distribution of
the nondominated frontier. For 0 < w, < 1 Vk = 1,...,m, the size of the terri-
tories constructed around each representative nondominated point can be defined as

«
— Vk=1,...,m.
)\k Y 7m

Particularly, we define our territory sizes as inversely proportional to the coefficients
of objectives (\;). Using this relation, we can adjust the weights and territory sizes
of objectives according to the preferences of the DM. We present two alternative

scenarios for integrating the preferences of the DM to our algorithms.

4.5.1 Preference-Based Weight Selection in TSGA and TSGA-II

The DM may specify preferences on objectives such that the allowed coverage gap
value is smaller for more important objectives. In this case, we consider to set the
weights of objective functions in our models as directly proportional to the weights
given by the DM. Since the territory size in an objective is defined as inversely pro-
portional to its weight coefficient, this makes the territory size larger for an objective
with less priority. For instance, for a bi-objective problem, if the DM gives more
importance to the first objective than the second one, then we set our weight coeffi-
cients such that w; > ws. Accordingly, \; > )\, and the territory size in objective 1
is smaller than objective 2, i.e. @ < % These territory sizes are shown in Figure

1 2
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Figure 4.13: Illustrations of the interactive applications of TSGA and TSGA-II

4.5.2 Defining Indifference Regions in TSGA and TSGA-II

We may have the information related with the amounts for each objective that makes
the DM indifferent between alternative solutions. The DM can state these amounts
either at the beginning of the algorithm or can update these amounts based on the
generated points throughout the algorithm. Then, our territories can be defined as
indifference regions and their sizes can be set as directly proportional to these in-
difference amounts. Specifically, if the DM is known to be indifferent between yy,
and y;, + A, for the k™ objective, then our artificial point}% and the coefficients of
k

A
objectives are defined as follows: vy, = y;, + R—k and \;, = A, Vk € {1, - m}.
k k

Moreover, the DM can specify a desired range of values for each objective. Then,
by using these ranges, we can define regions in the objective space such that the DM
would prefer nondominated points generated from these regions. In our algorithms,
we generate a subset of nondominated points which represents the entire frontier.
However, we could adjust our territory sizes considering to generate more nondomi-
nated points from the desired regions. Specifically, we could define different territory
sizes such that the smaller territories are constructed around the points generated from
the desired region. This allows smaller coverage gap values in the regions desired by
the DM. This way, we discriminate the nondominated points located in the desired

regions.

42



An example is shown for the same bi-objective problem instance in Figure 4.13b]
where the desired region defined by the DM is shown by a rectangle. As can be
seen, a smaller territory is constructed around the representative nondominated point

A than the territory of point B.

To summarize, the preferences of the DM can be integrated in our algorithms by set-
ting the objective weights and territory sizes accordingly. Therefore, our algorithms
are convenient to be designed as interactive procedures for generating representative

sets in MOMIPs.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, we present the results of our computational experiments performed on
our algorithms (TSGA, TSGA-II) and three existing algorithms (DMA, SBA, TDA)
that are described in Chapter 4. We also compare our results with the representative

sets having the optimal cardinality for a given coverage gap value.

All experiments are conducted on randomly generated test instances of Multi-Objective
Knapsack Problem (MOKP) and Multi-Objective Assignment Problem (MOAP) with
three, four and five objectives (m = 3, 4, and 5). For each problem type and each m
value, we consider different problem sizes (/) and we have a set of 10 instances for

each problem size.

Additionally, in order to show that TSGA-II produces the same number of represen-
tative points with the optimal cardinality subsets, we also generate bi-objective (m =
2) knapsack and assignment problem instances. For each problem type, we have two

different problem sizes (/) and a set of 5 instances for each problem size.

In MOKP experiments, we have the following problem sizes:

For m = 2: 100 and 200 items (2MOKP100, 2MOKP200)

e Form = 3: 10, 20, 30, 40, 50, and 100 items (3MOKP10, 3SMOKP20, 3MOKP30,
3MOKP40, 3MOKP50, 3MOKP100)

For m = 4: 10, 20, 30, and 40 items (4MOKP10, 4MOKP20, 4MOKP30,
4AMOKP40)

For m = 5: 10 and 20 items (SMOKP10, SMOKP20)
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In MOAP experiments, we have the following problem sizes:

e For m = 2: 20 and 30 jobs (2MOAP20, 2MOAP30)
e Form = 3: 5, 10, 15, and 20 jobs (3AMOAPS, 3MOAP10, 3MOAP15, 3MOAP20)
e Form = 4: 5, 10, and 15 jobs (4AMOAPS, 4AMOAP10, 4AMOAP15)

e For m = 5: 5 and 10 jobs (SMOAPS, SMOAP10)

We define MOKP and MOAP problems as given below:
Multi-Objective Knapsack Problem (MOKP):

“Maz”  {z1(x), 22(x), ..., zm(x) }

s.to.

l
ijl’j S W
j=1
z;€{0,1} Vj=12,..1

where

l
(X)) =) g,
j=1

ci;: Coefficient of item j in objective k,
w;: Weight of item j in the knapsack,
W: Knapsack capacity,

x;: Binary decision variable denoting whether item j is included in the knapsack.

For the knapsack problems with four and five objectives, we use test instances which
are generated by Kirlik and Sayin (2014). For comparison purposes, all other knap-
sack test instances are generated as in Koksalan and Lokman (2009). The objective
function coefficients and weight coefficients of the items are generated randomly from
the discrete uniform distribution taking values between 10 and 100. Then, capacity
of the knapsack is set to the half of the total of the weight coefficients of all items. To
express mathematically,
l
2. wj

W= =1
2

where ¢, w; € [10,100].
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Multi-Objective Assignment Problem (MOAP):

“Min”  {z1(x), 22(x), ..., 2 (%) }

s.to.
l
day=1 Vi=1,2 .1
j=1
l
ay=1 Vji=12 .1
=1
zi; € {0,1} Vi, j=1,2,..1
where

l l

Zk:(x) = Z Z Clkijij,

i=1 j=1
crij: Coefficient for the cost of assignment of job i to worker j in objective k,

x;;: Binary decision variable denoting whether job i is assigned to worker j or not.

Similar to the MOKP instances with two and three objectives, all MOAP test instances
are generated just like in Koksalan and Lokman (2009) such that the assignment co-
efficients in objective functions are randomly generated from the Discrete Uniform

distribution in the interval [10, 100} ,1.e. cpij € [10, 100}.

The number of nondominated points for each of our MOKP and MOAP test instances
are provided in Appendices. In order to generate all nondominated points of these
problems, we used TSGA by setting the coverage gap value o = 0 which makes the

territory sizes equal to zero for all objectives.

Our algorithms TSGA and TSGA-II can also be implemented in Multi-Objective
Mixed Integer Programs (MOMIPs). In order to show this, we made computational
experiments with Mixed-Integer Knapsack test instances with three (3MIKP100),
four (4MIKP40) and five objectives (SMIKP20). The models of these problems
are same as the model MOKP defined above, except that half of the variables are
binary variables and half of them are defined as continuous variables between [0,

1]. These instances are also generated as in Koksalan and Lokman (2009) such that
22:1 Wj

cj, w; € [10,100] and W = >
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As mentioned before, we decided to use the most recent search method developed by
Dichert et. al. (2017) in all experiments performed for the five algorithms (DMA,
SBA, TDA, TSGA, and TSGA-II), although SBA and TDA are originally designed
with the subspace enumeration method of Lokman and Koksalan (2013). Dichert
et. al. (2017) argue that their efficiency is based on avoiding to search redundant
lower bounds whereas other existing approaches possibly include redundancies which
makes them more complex. For further discussion, see Klamroth et. al. (2015) and

Dachert et. al. (2017).

In our experiments, we generate representative sets for different coverage gap values
on the interval [0, 1]. We use five different coverage gap values (a = 0.05, 0.10, 0.15,
0.20 and 0.25) which are defined as a percentage of the ranges of all objectives, where
the range of an objective on the nondominated frontier of a maximization problem can
be expressed as:

Ry, = max(z;,(x)) — min (z;(x))
Since we generated all nondominated points of each of our MOIP test instances, we
are able to calculate the range values by using the true ideal and nadir values in all
objectives. However, in MOMIP experiments, since the true nadir point is not known,

we use the payoff nadir point to calculate the range of each objective.

In addition to the algorithms, since we know all nondominated points of each problem

instance, we solve the optimal cardinality model for each instance and « value:

Optimal Cardinality Problem:

n

Max Zri

i=1
s.to.

2 — 2ty — M1 —ty) <aRy Vi,j=1,2,...n,Vk=1,2,...m

dty=1 Vj=12..n
=1

ZtZJSMTZ Vi:1,2,...,n

j=1
ri€{0,1} Vi=1,2..n
t;; €{0,1} Vi, j=1,2..,n
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where n is the number of nondominated points of the problem,

M is a sufficiently large number,

zi : k' objective function value of nondominated point j,

t;;: Binary variable denoting whether nondominated point j is represented by point i,
r;: Binary variable denoting whether nondominated point i is selected as a represen-

tative.

Using the source code of Déchert et. al. (2017), all algorithms are coded in C pro-
gramming language by using the environment of Microsoft Visual Studio 2017 Pro-
fessional. We run these algorithms on parallel computers with Intel(R)Core(TM)i7-
4770S CPU @3.10 GHz, 16 GB RAM and Windows 10. As an optimization tool
to solve our mathematical models, we use the callable library of IBM ILOG CPLEX
12.5. Lastly, we solve the optimal cardinality problems using the software General
Algebraic Modeling System (GAMS) 23.9.5 and IBM ILOG CPLEX solver inte-

grated in its portfolio.

In Appendices, we report the averages and standard deviations of the performance
measures (cardinality, solution times and number of models solved) for all experi-
ments conducted with five algorithms. Here, we summarize our results by graphical
analyses. Firstly, in order to show the cardinality improvement of TSGA and TSGA-
II for different problem sizes, we compare the average cardinalities for 3-objective
knapsack problem instances in Figure [5.1] For the solution time improvement of
TSGA, a similar graph is provided in Figure [5.2] In both graphs, the values corre-

sponding to an algorithm are the averages of 10 test instances for each problem size.

Figure [5.1| shows that cardinality of our algorithms (TSGA and TSGA-II) are always
smaller than the cardinality of the existing approaches (DMA, SBA, TDA) for all
problem sizes. In addition, as the problem size increases, the gap between algorithms
also increases which shows that the cardinality improvement becomes more signif-
icant in large-sized problems. Specifically, for 3MOKP100 instances, the average
cardinality of TSGA is approximately 34% and 45% less than the average cardinali-
ties of DMA and TDA, respectively. For the same instances, the average cardinality

of TSGA-II is approximately 17% less than the average cardinality of TSGA.
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Figure 5.1: Cardinality comparison for different problem sizes of 3-objective
knapsack problem (Average of 10 replications, o = 0.05)

* Optimal cardinality model results could not be reported for 3MOKP100 instances since the models
were not solvable within 12 hours.

Moreover, the average cardinality of TSGA-II is the closest to the optimal cardinality
for all problem sizes. Particularly, for 3SMOKP10 and 3MOKP20 instances, TSGA-II
generates the same representative sets with the optimal cardinality model as can be

seen in Figure[5.1]

Figure shows that DMA is solved in excessive solution times especially in large-
sized problems. In terms of computational efficiency, TSGA is the best approach
among all other approaches. As the problem size increases, the solution time im-
provement of TSGA increases substantially. Although TDA solves a single model
in each iteration and TSGA solves as many models as the number of subspaces, the
average solution times of TSGA are less than the average solution times of TDA. For
3MOKP100 instances, the solution times of TSGA are approximately 41% and 46%
lower than those of SBA and TDA on the average. Lastly, TSGA-II requires longer
solution times than SBA and TDA due to the high number of models solved in each

iteration. However, it provides a significant improvement in the cardinality as shown

in Figure
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Figure 5.2: CPU time (secs) comparison for different problem sizes of 3-objective
knapsack problem (Average of 10 replications, o = 0.05)

In Figures[5.3|and[5.4] for a specific problem size, the cardinalities and solution times
of each algorithm are compared for 3, 4 and 5-objective problems. The values plotted

are the averages of 10 instances for 3SMOKP20, 4MOKP20 and SMOKP20 problems.

As can be seen in Figure [5.3] TSGA and TSGA-II generate representative sets with
smaller cardinalities than DMA, SBA and TDA for all problem sizes. As the number
of objectives increases, their cardinality improvements seem to be more significant.
For 4AMOKP20 instances, the average cardinality of TSGA is approximately 42% less
than DMA and TDA. Moreover, the cardinalities of the representative sets generated
by TSGA-II are always closer to the optimal cardinalities. On the average, the number
of representative points generated by TSGA-II is approximately 7%, 10% and 16%

higher than the optimal cardinalities for 3, 4 and 5-objective problems, respectively.

Figure [5.4] shows the time improvement of TSGA that increases as the number of ob-
jectives increases. For a knapsack problem with 20 items, as the number of objectives
increases from three to four, the saving in solution times increases from approxi-

mately 33% to 56% with respect to SBA and TDA.
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Figure 5.4: CPU time (secs) comparison for 3, 4 and 5-objective knapsack problems
(Average of 10 replications, [ = 20, o = 0.10)

Similar results are obtained in our experiments with MOMIPs. As can be seen in
Figures [5.5]and [5.6] TSGA and TSGA-II show better performances in MOMIPs. In
terms of the average cardinality, TSGA generates approximately 45-55% less number
of points than both SBA and TDA for all MOMIP instances. These cardinality im-
provements increases up to 65% for TSGA-II. (Since the problem sizes of SMIKP20
instances are much smaller than 3MIKP100 and 4MIKP40 instances, the cardinality
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improvement of TSGA-II seems to be less significant for SMIKP20 instances.) In
terms of solution times, TSGA again outperforms all other approaches. Its solution
times are approximately 57%, 73% and 65% less than those of SBA for 3MIKP100,
AMIKP40 and SMIKP20 instances, respectively.

IR

Number of Objectives

SBA uTDA HTSGA TSGA-II

Figure 5.5: Cardinality comparison for 3, 4 and 5-objective mixed-integer knapsack
problems (Average of 10 replications, o = 0.10)
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Figure 5.6: CPU time (secs) comparison for 3, 4 and 5-objective mixed-integer
knapsack problems (Average of 10 replications, o = 0.10)
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As discussed in Chapter 4, TSGA and TSGA-II choose the objective weights based
on the tangent plane to the L, surface at the center of density. However, for the test
instances used in our experiments, we observe that the calculated weights of objec-
tives are approximately equal to each other. For these specific problem types, it can
be concluded that we can generate points from the dense regions by assigning equal
weights to all objectives without using the L, surface. Based on this observation, we

conducted additional experiments for TSGA and TSGA-II.

Results of the experiments conducted by using the original weights and equal weights
are compared in Appendix F. For both TSGA and TSGA-II, the results of two varia-
tions are very similar to each other in terms of the cardinality of the generated repre-
sentative sets, the number of models solved and the solution times. However, TSGA
and TSGA-II use the problem-specific weights calculated based on the density distri-
bution of the nondominated frontier of any type of MOMIP.

As shown in Section 4.3, TSGA-II generates the representative set with the minimum
cardinality for a given coverage gap in bi-objective mixed-integer problems. In Table
the averages and standard deviations of the solution times of TSGA-II and the
optimal cardinality model are provided for 2MOKP200 and 2MOAP30 test instances.
As can be seen, for o = 0.10, the solution times of TSGA-II are approximately 100%
and 20% less than the solution times of the optimal cardinality model for the knapsack

and assignment problems, respectively.

Table 5.1: CPU time (secs) comparison of TSGA-II and
the optimal cardinality model for bi-objective problems

TSGA-II Optimal
Avg. StDev. Avg. StDev.

0.05 0.69 0.06 633.37 708.08
0.10 033 0.04 3343 37.14
2MOKP200 0.15 0.20 0.09 26.61 29.00
020 0.22 0.04 26.08 11.76
025 0.17 0.07 8.88 4.68

0.05 0.62 0.09 0.56 0.15
0.10 036 0.07 0.46 0.11
2MOAP30 0.15 0.22  0.02 0.63 0.09
0.20 0.18 0.06 0.37 0.16
0.25 0.10 0.01 0.33 0.11

Problem
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Table [5.1] also shows that as the coverage gap value decreases (and the number of
generated points increases), the solution time improvement of TSGA-II increases sig-
nificantly. In addition, since the problem sizes of 2MOKP200 instances are larger
than the 2MOAP30 instances, we can conclude that the solution time improvement
becomes more significant as the problem size grows. Especially for large-sized bi-
objective mixed-integer problems, TSGA-II is very efficient since it generates the

minimum cardinality representative sets much faster than the mathematical model.

Lastly, we test the sensitivity of TSGA-II to the objective function chosen randomly
at the beginning of the algorithm. For this purpose, we conduct preliminary exper-
iments with 3MOKP100 and 3MOAP20 test instances. For different coverage gap
values, the averages and standard deviations of the cardinalities of the 10 instances
for each problem type are reported in Table [5.2] Results indicate that different objec-
tives chosen at the beginning of the algorithm does not affect the solution quality of

TSGA-II significantly.

Table 5.2: The number of nondominated points generated for different
objective functions chosen at the beginning of TSGA-II

21 22 23
Avg. StDev. Avg. StDev. Avg. StDev.

0.05 3780 6.55 3810 7.85 36.70 6.80
0.10 1140 212 11.10 2.82 1130 2.21
3MOKP100 0.15 570 106 530 1.16 540 0.70
020 380 042 360 052 380 042
025 3.00 000 3.00 047 3.00 0.00

0.05 48.80 4.69 48.60 497 4950 4.79
0.10 14.00 1.63 14.00 1.63 13.80 0.92
3MOAP20 0.15 7.00 082 6.60 052 680 0.79
020 390 057 420 0.63 370 0.68
025 290 032 290 057 280 042

Problem a
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CHAPTER 6

CONCLUSIONS

In real-life multi-objective decision making problems, as the number of objectives and
the problem size increase, the number of nondominated points increases substantially.
In order to ease the decision making process of the DM and in order to decrease
the computational effort, we prefer generating only a small subset of nondominated
points. Considering the performance measures desired by the DM, presenting such
a representative subset is more useful and practical. In this thesis, we develop two
algorithms to generate representative sets of nondominated points in MOMIPs and
we assess the quality of our sets by using the coverage gap and cardinality measures.
For a prespecified coverage gap value, we show that our algorithms end up with less

cardinality in a shorter amount of time than the existing approaches in the literature.

Our first approach, TSGA, is developed based on the observations on the density dis-
tribution and shape of the nondominated frontier. Instead of selecting the most diverse
representative points as in DMA and SBA, we find out that if the representatives are
selected closer to each other and located in the dense regions of the frontier, then more
points could be represented with less number of representatives. In order to achieve
this, we iteratively solve a weighted sum problem in our algorithms. Specifically,
we observe that the nondominated points with better weighted sum values are able to
represent more nondominated points. Furthermore, in order to guarantee the desired
coverage gap value, we define territories around each generated point and search for
the next representative after excluding these territories from the search space. Our
experiments show that TSGA satisfies a given coverage gap value with less number

of representatives and in a shorter time than the existing approaches.
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Our second algorithm, TSGA-II, yields better results than TSGA in terms of the car-
dinality of the generated representative sets. Although TSGA-II requires longer so-
lution times than the other approaches, it outperforms all of them in terms of the
solution quality. In TSGA-II, we again define territories around each generated point
and iteratively solve a weighted sum problem in the territory-excluded search space.
TSGA-II is designed so that we can reduce one dimension of the origional problem.
Specifically, for an m-objective problem, we optimize the weighted sum of (m — 1)
objectives excluding a randomly selected one. The territories and subspaces are also
defined for (m — 1) objectives throughout the solution process. Since we work on
an (m — 1)-dimensional objective space, the generated points are able to represent
more nondominated points in the territory-excluded regions. As a result, for a given
coverage gap value, TSGA-II represents the nondominated frontier of a MOMIP by a
smaller number of representatives than the existing approaches. This way, it provides

a significant improvement in the solution quality especially in large-sized problems.

For both TSGA and TSGA-II, we provide some application alternatives such that the
DM can incorporate in the weight selection process. The DM can either define some
preferences among objectives or specify an indifference range for each objective.
In both cases, we can define the weight of each objective as inversely proportional
to the territory size. Such an interactive process would be beneficial for presenting

representative sets that are more suitable to the preferences of the DM.

We conduct our computational experiments with the randomly generated MOKP,
MOAP and mixed-integer knapsack problem test instances with three, four and five
objectives. Then, we compare our results with the results of the existing approaches
in the literature that are called as DMA, SBA and TDA. To make a fair comparison,
we implement all algorithms by using the decomposition method recently developed
by Dichert et. al. (2017). These comparisons are made in terms of the cardinality of
the generated representative sets, the solution times and the number of models solved
by each algorithm. Our results show that TSGA and TSGA-II work well and outper-
form the existing approaches in terms of both the solution qualities and the solution

times.
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As future research, some interactive and problem specific solution strategies can be
designed for TSGA and TSGA-II. The preferences of the DM can be incorporated
throughout the solution process. The coverage gap value can be altered in each iter-
ation based on the region where the generated nondominated point is located. Fur-
thermore, in order to decrease our solution times (especially for TSGA-II), instead of
searching all subspaces in each iteration, the representative points may be generated
only from the specific regions desired by the DM. Lastly, an interesting work may be
changing the structure of the territories constructed around each representative point.
Especially for problems with more than two objectives, these territories may be de-
fined so that more subspaces could be excluded from the search space in each iteration

resulting in higher computational efficiency.
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APPENDIX A

LISTS OF THE GENERATED MOKP AND MOAP TEST INSTANCES (ALL
NONDOMINATED POINTS)

Table A.1: MOKP and MOAP Instances with m = 2

2MOKP100 2MOKP200 2MOAP20 2MOAP30

1 85 296 69 89
2 172 417 56 80
3 94 336 56 88
4 112 431 53 80
5 119 408 65 77

Table A.2: MOKP Instances with m = 3

3MOKP10 3MOKP20 3MOKP30 3MOKP40 3MOKP50 3MOKP100

1 6 54 125 245 221 3523
2 10 98 83 168 674 3114
3 14 57 198 175 750 2714
4 2 13 65 112 346 4773
5 6 25 206 212 736 2433
6 15 43 65 252 537 7203
7 3 37 88 269 379 3307
8 8 14 113 349 526 3062
9 9 17 147 90 127 4355
10 20 16 289 420 913 3198
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Table A.3: MOAP Instances with m = 3

3MOAP5 3MOAPIO 3MOAP15 3MOAP20

O 00 3 O Lt A W N =

—_
e}

20
21
20
28
18
13
15
19
6
20

104
135
169
193
270
183
249
125
325
141

578
650
940
362
640
664
554
801
299
597

1970
1247
1806
2150
2246
2813
1825
1591
1916
1521

Table A.4: MOKP Instances withm =4andm =5

4MOKP10 4MOKP20 4MOKP30 4MOKP40 5MOKPI0 5MOKP20
1 10 60 563 901 20 220
2 13 143 535 5018 19 95
3 7 325 226 508 23 76
4 6 17 517 1248 28 89
5 9 74 281 2351 13 110
6 19 152 191 1920 9 87
7 15 175 480 1435 9 61
8 5 116 262 741 25 211
9 22 77 186 3409 6 237
10 10 229 735 555 10 426
Table A.5: MOAP Instances withm = 4andm =5
4MOAPS5 4MOAP10 4MOAP15 5MOAP5 S5MOAP10

1 50 657 9463 37 3647

2 34 435 6254 42 2838

3 60 789 6032 42 3363

4 10 7099 4657 61 4832

5 45 1441 5748 48 2195

6 36 789 9921 50 4839

7 31 1234 8412 57 2622

8 24 671 4248 59 2775

9 40 1311 4437 60 3502

10 45 844 4346 44 3069
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APPENDIX B

CARDINALITY COMPARISON FOR DMA, SBA, TDA, TSGA, TSGA-II
AND THE OPTIMAL SUBSETS

Table B.1: Cardinality Comparison for MOKP (m = 3)

DMA SBA TDA TSGA TSGA-IT Optimal*
Problem |Zyp| o  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
005 17.60 857 17.40 878 17.10 8.65 1440 628 1440 633 1430 6.29
0.10 10.80 4.10 1080 4.10 10.70 4.11 800 287 750 246 7.00 2.11
3MOKP10 930 015 810 311 810 311 790 292 530 177 480 148 460 143
020 590 218 590 218 570 1.70 3.60 097 340 107 320 0.79
025 420 162 420 162 420 155 280 079 270 0.67 250 0.53
0.05 36.80 7.07 3690 7.08 40.70 9.10 2770 566 27.00 490 2530 4.52
0.10 19.00 3.06 19.00 3.06 1940 3.72 1220 225 1170 189 980 1.32
3MOKP20 3740 0.15 1250 251 1250 251 1190 223 680 1.14 6.60 1.17 540 0.70
020 880 132 880 132 860 178 490 08 4.00 0.82 350 0.53
025 560 1.17 560 117 560 084 330 048 3.00 0.67 250 0.53
0.05 36.80 7.07 3690 7.08 40.70 9.10 27.60 558 27.00 4.81 2530 4.52
0.10 19.00 3.06 19.00 3.06 1940 372 1200 236 1150 196 980 1.32
3MOKP30  137.90 0.15 1250 251 1250 251 1190 223 7.10 129 6.60 1.07 540 0.70
020 880 132 880 132 860 178 450 097 380 079 350 0.53
025 560 1.17 560 117 560 084 310 074 3.00 0.67 250 0.53
0.05 3990 983 3970 9.75 4170 12.81 26.70 8.67 25.00 847 2230 7.35
0.10 20.60 4.45 2060 445 2040 3.84 1010 242 940 196 750 2.01
3MOKP40 22920 0.15 12.80 225 1280 225 1250 268 570 125 510 1.29 450 1.08
020 860 259 860 259 830 226 390 074 370 048 3.00 0.67
025 500 183 500 183 49 179 3.00 115 260 070 230 048
0.05 50.10 1347 4980 13.16 53.80 1521 31.30 9.17 2950 743 20.00 4.24
0.10 2280 590 2270 585 2280 641 1130 343 990 281 675 096
3MOKPS0 52090 0.15 13.60 430 1360 430 13.60 422 620 193 540 171 325 050
020 940 255 940 255 960 280 410 120 340 052 250 0.58
025 600 149 6.00 149 600 1.05 300 067 280 042 200 0.00
0.05 68.90 10.10 69.00 1045 8230 10.77 4530 897 37.80 6.55 - -
0.10 30.20 4.69 3020 469 31.80 459 1330 333 1140 212 - -
3MOKP100 3768.20 0.15 19.10 238 19.10 238 2000 287 680 140 570 1.06 - -
020 12.80 1.75 1280 1.75 13.10 218 430 067 380 042 - -
025 790 166 7.80 162 790 137 390 032 3.00 0.00 - -

* Results for 3MOKP100 instances are not reported since the models were not solvable within 4 hours.
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Table B.2: Cardinality Comparison for MOKP (m = 4)

DMA* SBA TDA TSGA TSGA-II Optimal**
Problem |Znp| « Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 850 395 8.50 3.95 8.40 406 790 384 7.80 365 780 3.65
0.10 6.70 3.47 6.70 3.47 6.50 317 570 245 550 246 550 246
4MOKP10  11.60 0.15 520 2.35 5.20 2.35 5.40 250 450 1.51 440 1.58  4.20 1.14
0.20 3.90 1.91 3.90 1.91 4.00 1.89  3.40 1.71 3.30 142 3.10 1.52
0.25 2.90 1.20 2.90 1.20 3.00 1.15 290 099 280 092 240 0.84
0.05 4330 1993 4330 1993 43.60 21.00 32.80 1499 33.10 1555 31.80 14.35
0.10 22.00 845 2200 845 2280 931 13.00 4.69 13.10 461 1190 431
4MOKP20 136.80 0.15 13.70 5.68 13.70  5.68 1440 667 760 347 740 237 640 2.07
020 8.60 291 8.60 291 8.40 337  5.00 1.76  4.30 134 4.00 1.15
0.25 5.70 1.95 5.70 1.95 5.30 1.95  3.30 1.06  3.20 1.03 280 0.79
0.05 75.60 2247 76.10 2273 82.60 2575 54.10 1598 52.60 14.66 48.00 12.46
0.10 3330 7.04 3370 745 3480 884 17.60 438 1750 3.17 13.60 295
4MOKP30 397.60 0.15 18.60 4.27 18.70 424 19.00 3.80 9.00 .76 8.40 1.65 6.38 1.30
020 10.80 2.74 1090  2.77 1150  3.10 5.60 1.35  5.00 1.15 320 0.84
025 6.60 1.71 6.60 1.71 7.00 176 380 092 3.10 0.88 240 0.55
0.05 86.25 995 12020 37.93 12850 42.84 7630 2536 7200 2382 39.50 5.26
0.10 4420 8.16 4420 816 4490 14.13 2050 640 1880 5.14 10.00 1.00
4MOKP40 1808.60 0.15 23.00 440 23.00 440 2290 4.65 1040 3.06 800 249 - -
020 1330 2.63 1330 2.63 13.50 2.80 6.00 1.41 520 092 - -
025 7.80 262 7.80 2.62 7.90 228 370 0.82 330 0382 - -
* Fewer than 10 instances per cell are reported for 4AMOKP40 since DMA could not be finalized within 12 hours.
“* Results for 4MOKP40 instances (a > 0.15) are not reported since the models were not solvable within 4 hours.
Table B.3: Cardinality Comparison for MOKP (m = 5)
DMA SBA TDA TSGA TSGA-II Optimal
Problem  |Zyp| «  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 1430 6.09 1430 6.09 14.10 6.05 1370 542 1370 542 1370 542
0.10 1050 3.84 1050 3.84 1070 4.08 930 347 930 347 930 347
SMOKP10 1620 0.15 820 266 820 266 840 2091 7.20 193 7.00 2.11 690 213
020 6.80 220 680 220 6.60 227 570 142 530 1.64 520 1.48
0.25 4.60 1.51  4.60 1.51 4.40 1.35 470 1.06  4.30 125 390 0.88
0.05 55.00 2478 5520 2499 5440 2480 46.60 20.71 46.50 20.94 4440 19.69
0.10 2500 849 2500 849 2380 831 1860 7.21 1660 587 1430 4.81
SMOKP20 161.20 0.15 1490 390 1490 3.90 1290 453 940 241 880 2.10 7.00 2.00
020 870 236 870 236 800 240 490 218 4.60 1.84 380 0.79
025 640 227 630 2.11 630 236  3.60 1.65  3.50 1.08 240 0.52
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Table B.4: Cardinality Comparison for MOAP (m = 3)

DMA SBA TDA TSGA TSGA-II Optimal*

Problem |Znp| o  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

0.05 1420 3838 1410 398 1430 422 1330 4.11 13.10 415 13.10 4.15
0.10 1070 330 1060 327 11.10 370 940 337 890 288 880 282
3MOAP5 18.00 0.15 830 245 820 244 830 271 6.80 175 6.70 177 6.60 178
020 6.10 1.91 5.90 1.97 5.80 1.99 490 145 450 1.51 4.30 1.34
025 460 190 440 190 4.50 196 400 163 3.50 1.08  3.10 099

0.05 47.50 10.23 4820 1030 5390 13.03 3460 6.10 3340 6.52 3140 532
0.10 2230 440 2240 422 2380 394 1400 3.65 1230 1.83 1030 1.83
3MOAPIO 18940 0.15 1470 2.16 1490 197 1490 1.60 720 092 7.10 120 5.67 0.87
020 930 164 920 162 910 197 510 152 410 088 356 0.53
025 6.0 120 590 120 570 1.16 330 0.67 290 074 244 053

0.05 6290 10.06 61.50 1041 6840 1349 3930 987 3720 6.63 26.00 3.83
0.10 28.00 294 27.00 340 2840 392 1420 220 11.80 2.15 - -
3MOAPI5 608.50 0.15 1630 279 16.10 269 17.10 213 730 157 590 0.99 - -
020 10.50 207 1020 204 1060 222 490 074 390 0.74 - -
025 600 125 6.00 125 6.10 129  3.00 067 280 042 - -

0.05 78.60 631 7880 7.74 9240 724 5670 6.29 4880 4.69 - -
0.10 31.40 3.13 31.60 3.13 3490 3.18 1690 238 1400 1.63 - -
3MOAP20 1908.50 0.15 2120 3.22 2150 344 2140 327 8.60 1.17  7.00 0.82 - -
020 1350 190 1350 201 13.60 201 480 079 390 0.57 - -
025 860 1.71 850 1.65 8.0 135 370 067 290 032 - -

* Fewer than 10 instances per cell are reported for SMOAP15 (o = 0.05). Other results are not reported for SMOAP15 and 3SMOAP20
instances since the models were not solvable within 4 hours.

Table B.5: Cardinality Comparison for MOAP (m = 4)

DMA* SBA TDA TSGA TSGA-II Optimal**

Problem |Znp| o Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

0.05 27.10 1071 27.10 10.58 27.30 10.63 27.00 1046 2670 10.44 26.50 10.27
0.10 1920 807 19.10 816 1930 7.73 1690 6.14 1630 640 1600 6.38
4MOAP5 3750 0.15 13.10 574 1330 5.87 13.10  5.11 10.70  3.62 9.70 347 940 337
020 940 3.98 9.40 4.01 9.60 422 7.80 2.53 7.10 242 570 1.83
025 6.70 2.83 6.80 3.05 6.70 2.83 5.50 1.43 4.90 145 370 095

0.05 149.60 3838 14540 35.80 16230 3546 10430 26.06 10040 2507 7533 16.52
0.10 5130 996 5090 921 5520 11.08 29.50 5091 2650  6.13 - -
4MOAPI0 1527.00 0.15 2720 496 26.80 4.83 2760 486 1450 259 1220 3.12 - -
020 1550 337 1530 3.68 1590 3.31 8.00 1.25 6.70 1.49 - -
025 9.50 1.35 9.30 1.25 9.10 1.10 5.10 0.88 4.10 0.88 - -

0.05 - - 23340 84.84 27290 93.70 147.30 57.22 134.00 52.74 - -
0.10 6830 2373 69.60 2356 7640 2725 3350 1220 2940 10.74 - -
4MOAPLI5 6351.80 0.15 3420 1243 3500 1243 3590 1232 13.00 4.37 1120 355 - -
020 1950 7.41 1970 775  20.60  7.66 7.50 2.68 6.20 1.99 - -
025 11.00 394 11.00 4.00 11.70 4.35 4.90 1.60 3.80 1.14 - -

* Results are not reported for 4AMOAP15 instances (o = 0.05) since DMA could not be finalized within 12 hours.
“* Fewer than 10 instances are reported for 4MOAP10 (a = 0.05). Other results for 4MOAP10 and 4MOAP15 instances are not reported
since the models were not solvable within 4 hours.
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Table B.6: Cardinality Comparison for MOAP (m = 5)

DMA* SBA TDA TSGA TSGA-II Optimal**

Problem |Zyp| o  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 3690 599 3660 572 3670 5.62 3580 588 3570 5.89 3530 5.50

0.10 2190 486 2210 482 2330 529 21.00 383 2030 3.74 20.00 337

SMOAP5  50.00 0.15 1450 3.63 1470  3.62 1490 281 1280 230 11.70 177 1190 251
020 1060 227 1030 241 1120 239 8.30 1.49 8.00 149  7.10 145

025 810 1.85 7.60 1.43 8.00 1.56 6.30 1.06 5.60 143 490 0.57

0.05 - - 371.30 81.15 417.20 92.84 279.70 6235 27220 62.55 - -

0.10 96.00 16.32 99.00 1693 10890 1893 60.60 1043 56.60 12.84 - -

SMOAPI0 336820 0.15 4340 626 4340 650 4610 840 2340 375 2090 4.04 - -
020 2410 570 2410 6.06 2560 640 1230 258 10.90  1.37 - -

025 1370 3.74 1400 394 15.00 3.77 8.00 1.63 7.00 1.15 - -

* Results are not reported for SMOAP10 instances (o = 0.05) since DMA could not be finalized within 12 hours.

™ Results are not reported for SMOAP10 instances since the models were not solvable within 4 hours.
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APPENDIX C

CPU TIME COMPARISON FOR DMA, SBA, TDA, TSGA AND TSGA-II

Table C.1: CPU Time (secs) Comparison for MOKP (m = 3)

DMA SBA TDA TSGA TSGA-II

Problem o Avg. StDev.  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

005 0.39 0.20 043 025 044 027 042 023 064 045
0.10  0.30 0.12 034 022 032 017 032 015 044 026
3MOKP10 0.15 0.24 0.07 022 010 025 013 025 010 032 0.16
020 0.22 0.06 0.17 006 019 008 0.18 0.05 021 0.07
025 0.20 0.06 0.15 006 017 008 015 003 019 0.06

0.05 1.37 0.97 144 079 142 086 120 071 230 1.70
0.10  0.67 0.34 074 030 074 032 049 022 086 047
3MOKP20 0.15 0438 0.23 055 025 047 019 031 0.16 046 024
020 0.34 0.15 036 018 032 013 020 0.08 029 0.14
025 0.25 0.12 025 012 022 011 015 0.05 021 0.08

0.05 16.73 1980 345 094 401 134 254 074 577 191
0.10 1.98 0.77 148 031 1.41 039 086 0.21 1.69  0.50
3MOKP30 0.15 0.90 0.24 08 021 073 014 045 012 077 0.19
020 0.58 0.11 061 008 051 009 028 005 038 0.12
025 035 0.09 036 007 029 005 019 004 028 0.11

0.05 2947 29.00  3.97 1.26 443 1.97 237 095 5.61 2.73
0.10  3.17 2.25 1.69 048 1.60 043 073 024 136 051
3MOKP40 0.15 1.07 0.40 097 017 085 020 037 0.2 059 021
020  0.58 0.21 061 018 052 014 023 004 035 0.07
025 032 0.14 034 014 029 012 016 0.07 023 0.09

0.05  89.75 82.06 5.61 188 592 222 337 120 811 3.28
0.10  4.70 243 218 074 195 075 092 030 163 073
3MOKP50 0.15 1.45 0.80 .15 039 092 029 043 015 074 032
020 0.77 0.31 072 017 065 020 029 013 033 0.11
025 046 0.18 048 0.12 038 007 020 006 031 0.08

0.05 1029.92 1040.06 10.83 245 11.82 213 637 184 1484 435
0.10 11.74 3.83 364 050 338 058 135 043 235 0.69
3MOKP100 0.15  3.69 0.95 199 017 176 030 055 016 1.00 0.30
0.20 1.62 0.51 123 0.15 1.04 017 035 005 050 0.08
025 0.77 0.23 073 016 059 010 037 011 040 0.04
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Table C.2: CPU Time (secs) Comparison for MOKP (m = 4)

DMA* SBA TDA TSGA TSGA-II

Problem @ Avg. StDev.  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

005 045 0.23 078 048 067 045 073 0.34 1.46 0.82
0.10  0.32 0.16 052 038 046 030 052 0.19 0.85 0.43
4MOKP10 0.15 0.25 0.11 035 026 035 023 041 0.12 0.65 0.24
020  0.19 0.08 021 012 024 013 034 0.12 0.46 0.13
025 0.15 0.05 0.14 007 016 007 030 0.11 0.38 0.13

0.05 2249 31.58 887 520 1012 727 675 446 30.86 26.06
0.10 233 1.94 3.43 1.88 382  2.60 1.59 081 4.58 2.67
4MOKP20 0.15 097 0.51 1.68  0.95 1.82 1.30  0.77  0.50 1.71 0.83
020 051 0.18 0.8 036 084 052 040 020 0.76 0.38
025 033 0.12 0.51 021 044 021 024 0.08 0.43 0.21

0.05 37546 46928 18.65 6.73 2573 11.79 1340 522 56.08 26.82
0.10 11.38 8.27 6.78 327 677 3.05 253 091 7.88 3.51
4MOKP30 0.15 2.15 1.19 18.26 2698 273 1.03 085 025 2.06 0.81
020 0.87 038 3444 3977 128 050 044 0.11 0.87 0.34
025 047 0.15 077 037 067 026 028 0.07 0.41 0.16

0.05 1987.14 2479.89 4098 2042 51.55 27.09 2120 1136 121.68 69.42
0.10  90.30 82.17 1025 3.19 10.68 589 3.13 1.59  10.07 5.38
4MOKP40 0.15 6.40 4.03 377 098 345 122 122 053 2.35 1.29
0.20 1.61 0.70 177 047 1.64  0.68 052 0.16 0.98 0.32
025 0.70 038 4480 1672 0.74 032 031 0.11 0.47 0.20

* Fewer than 10 instances per cell are reported for 4AMOKP40 since DMA could not be finalized within 12
hours.

Table C.3: CPU Time (secs) Comparison for MOKP (m = 5)

DMA SBA TDA TSGA TSGA-II

Problem o  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

005 087 050 292 207 249 166 242 157 7.50 6.15
0.10 051 024 165 089 151 081 133 0.67 3.20 2.07
SMOKP10 0.15 039 016 105 0.60 096 052 096 042 1.79 0.96
020 032 012 076 037 068 032 0.61 0.20 1.06 0.62
025 021 007 038 016 034 015 044 0.16 0.65 0.26

0.05 4574 6182 31.81 27.10 37.56 3739 28.68 2897 177.36 181.65
0.10 430 430 913 748 925 789 573 531 18.12  15.77
SMOKP20 0.15 123 0.69 346 229 269 235 1.51 0.98 3.97 2.53
020 055 024 148  0.66 124 063 065 0.53 1.28 1.01
025 038 016 087 044 080 050 041 0.27 0.69 0.32
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Table C.4: CPU Time (secs) Comparison for MOAP (m = 3)

DMA SBA TDA TSGA TSGA-II
Problem o Avg.  StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 0.73 026 062 020 070 024 053 0.18 1.10 045
0.10 0.48 0.19 039 0.14 048 022 036 0.14 063 027
3MOAP5 0.15 035 0.12 029 0.11 033 014 024 008 044 0.16
020 0.25 0.09 020 007 027 011 018 006 026 0.11
025 0.20 008 015 007 020 010 0.15 0.07 0.19 0.06
0.05 1236 1079 4.72 1.19 535 1.58 274 0.69 841 2.84
0.10 1.74 0.61 .72 0.44 1.82 036 091 0.25 1.92  0.54
3MOAP10 0.15 0.93 0.20 1.05 025 09 0.14 044 007 089 022
020 0.53 0.10 054 013 050 0.14 028 0.10 040 0.14
025 033 0.07 033 007 028 008 0.18 0.04 026 0.09
0.05 6642 57.03 8.68 1.78 927 234 413 1.17 1486 4.78
0.10 4.10 099 316 038 320 075 124 023 260 0.85
3MOAPI5 0.15 1.52 0.25 1.66  0.26 1.63 023 061 012 098 0.39
020 0.85 0.19 1.00 025 088 0.19 040 007 050 0.10
025 0.46 0.11 055 015 047 0.1 024 0.05 033 0.05
0.05 217.16 101.19 16.13 190 17.89 140 8.05 126 2944 3.61
0.10 9.24 212 542 060 559 083 198 030 445 0.75
3MOAP20 0.15 3.52 0.87 317 0.62 278 046 094 0.16 1.67 032
020 1.60 0.25 1.70  0.28 145 022 051 013 072 0.12
0.25 0.90 023 096 020 079 0.12 035 006 050 0.07
Table C.5: CPU Time (secs) Comparison for MOAP (m = 4)
DMA* SBA TDA TSGA TSGA-II
Problem o Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
005 221 1.56 3.86 2.43 3.50 201 270 140 11.03 745
0.10 1.19 0.74 2.32 1.55 2.30 1.37 148 0.75 4.47 2.86
4MOAP5 0.15 0.68 0.37 1.48 1.02 1.32 076 085 0.35 1.86 0.98
020 044 0.24 0.88 0.63 0.83 053 054 0.21 1.09 0.55
025 033 0.18 0.53 0.42 0.49 033 036 0.13 0.59 0.27
0.05 7596.01 8417.43 5435 18.09 65.58 2299 3345 1059 25731 137.87
0.10 32.10 20.26 13.65 3.86 1493 443 544 193 2219 1030
4MOAPI0 0.15 4.04 1.71 5.29 1.34 5.26 1.44 181 046 5.53 2.88
0.20 1.28 0.38 2.38 0.73 2.30 085 0.75 0.16 1.68 0.67
025  0.66 0.10 1.15 0.32 0.98 026 045 0.10 0.74 0.28
0.05 - - 151.03 6426 176.79 75.15 5224 26.66 668.63 495.34
0.10 64476 722779 30.52 1236 3354 15.09 7.03 3.09 43.69 25.67
4MOAPI5 0.15 22.63 14.32 11.12 447 11.14 490 197 0.5 6.95 3.17
020  4.00 2.24 4.77 2.00 4.62 244 093 0.32 2.32 0.92
0.25 1.22 0.60 2.26 1.03 1.82 082 055 0.17 0.97 0.38

* Results are not reported for 4AMOAP15 instances (o = 0.05) since DMA could not be finalized within 12 hours.
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Table C.6: CPU Time (secs) Comparison for MOAP (m = 5)

DMA* SBA TDA TSGA TSGA-II
Problem o Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 546 2.02 1025 3.89 1024  3.73 8.73 3.13 43.74 14.41
0.10 1.71 0.76 19.94 4459  5.87 2.98 3.68 0.99 14.12 5.42
SMOAP5 0.15 0.84 0.24 5.94 8.74 3.19 1.22 1.91 0.62 4.86 1.37
020 0.55 0.13 1.77 0.82 2.06 1.08 0.97 0.24 2.30 0.83
025 041 0.12 1.01 0.38 1.12 0.49 0.68 0.23 1.14 0.50
0.05 - - 709.61 27431 848.09 373.67 44572 209.64 7376.14 5066.06
0.10 962.44 849.15 127.65 4993 13043 4774 40.66 16.69 303.68 177.52
SMOAPI0 0.15 3048 1475 3347 1248 3093 1420 7.46 3.20 36.95 19.56
020 5.56 2.90 1336 6.87 1216  6.90 2.88 1.39 8.76 3.11
025 1.57 0.90 5.08 2.75 4.90 2.93 1.39 0.51 3.46 1.53

* Results are not reported for SMOAP10 instances (o = 0.05) since DMA could not be finalized within 12 hours.
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APPENDIX D

COMPARISON OF NUMBER OF MODELS SOLVED FOR DMA, SBA, TDA,
TSGA AND TSGA-II

Table D.1: Comparison of Number of Models Solved for MOKP (m = 3)

DMA SBA TDA TSGA TSGA-II

Problem @ Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

005 7.60 381 2820 15.17 3020 1747 26.60 13.78 55770 40.82
0.10 630 254 2310 1054 2450 1217 2120 948  36.80 22.58
3MOKP10 0.15 500 170 17.60 647 1930 872 1650 652 2620 14.57
020 430 1.25 1490  4.75 1590 649 12.60  3.53 1770 6.78
025 380 1.14 1370 462 1460 622 1090 260 1550 548

0.05 17.60 857 68.60 3652 70.00 3814 53.00 2549 142.10 94.94
0.10 10.80 4.10 4140 17.02 4200 17.08 28.00 10.38 5440 30.25
3MOKP20 0.15 8.10 3.11 3090 1358 3040 1231 1850 6.70 28.00 12.66
020 590 218 21.10 846 21.10 734 1250 3.60 18.10  8.67
025 420 162 1470 572 1510 5388 9.80 294 1330  5.06

0.05 36.80 7.07 157.00 36.21 190.70 55.11 10690 25.70 321.70 103.87
0.10 19.00 3.06 7570 13.78 8130 21.08 4420 987 97.00 26.20
3MOKP30 0.15 1250 2.51 4620 9.60 4560 936 2330 4.06 4230 12.76
020 880 132 3200 400 3180 5.85 16.70 347 2150  6.54
025 560 1.17 19.70  4.11 19.60  3.03 11.40  1.71 1500 4.85

0.05 3990 983 167.10 47.61 192.00 7191 97.70 34.10 298.00 136.60
0.10 20.60 445 7940 1983 81.60 1691 3560 9.73 72.10 19.20
3MOKP40 0.15 1280 225 4690 831 4650 11.51 1970 457 3130 10.88
020 8.60 259 3030 9.3 3020 840 13.00 2.58 19.60 295
025 5.00 1.83 1740 622 1710 6.12 1020  3.88 12.80 4.21

0.05 50.10 1347 220.00 6732 26290 92.82 116,70 37.46 390.90 135.55
0.10 22.80 590 90.00 27.76 9880 34.89 40.10 1343 8320 36.35
3MOKP50 0.15 13.60 430 49.60 16.61 5120 17.15 2080 7.02 3330 1443
020 940 255 3300 826 3450 1036 13.80 439 17.10 4.38
025 6.00 149 2130 488 21.60 350 10.00 2.00 1460 295

0.05 6890 10.10 303.80 50.17 41640 58.60 167.90 36.88 546.80 120.74
0.10 3020 4.69 113.50 1820 138.30 2523 4690 14.17 92.80 22.14
3MOKP100 0.15 19.10 238 6840 842 7790 13.12 22,60 527 3620 948
020 1280 1.75 4460 628 4780 893 14.00 231 19.90  3.57
025 790 1.66 27.10 538 27.60 453 12,70 0.95 14.70 1.49
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Table D.2: Comparison of Number of Models Solved for MOKP (m = 4)

DMA* SBA TDA TSGA TSGA-II
Problem a Avg. StDev. Avg. StDev. Avg. StDev. Avg.  StDev. Avg. StDev.
0.05 850 395 49.20 2664 4980 2731 4280 2452 120.00 80.35
0.10 6.70 347 38.80 2320 38.00 20.27 30.80 1596 @ 66.60 47.46
4MOKP10 0.15 520 235 28.00 16.28 30.60 17.17  23.00 10.07  46.20 24.97
0.20 390 191 20.20 11.08  21.80 10.76  17.80 10.76  29.60 17.36
0.25 2.90 1.20 14.20 6.88 15.40 7.04 1440  5.58 22.20 9.94
0.05 4330 1993 44320 27596 489.20 332.02 259.40 149.88 1723.00 1344.08
0.10 22.00 845 19420 11295 225.00 13698 86.00 39.33 314.60 171.98
4MOKP20 0.15 13.70 5.68 101.60 57.65 121.00 82.08 47.00 32.69 117.60  55.51
020 8.60 2091 5540 2203 5840 3480 2680 11.68  48.20 20.96
025 570 195 32.80 12.02  31.20 1431 1620  6.05 29.80 13.31
0.05 75.60 2247 848.20 309.90 1062.80 431.71 449.60 151.87 2848.40 1147.50
0.10 3330 7.04 308.60 87.49 367.00 149.28 11440 3735 456.80 206.77
4MOKP30 0.15 18.60 4.27 143.80 4690 16120 49.76 50.00 13.27 13440  55.72
0.20 10.80 2.74 73.80 2247 82.60 31.22 2660 6.52 54.60 24.56
025 6.60 1.71 39.80 16.12  43.60 1549 1820 5.01 26.80 11.56
0.05 8625 995 1651.00 724.71 2097.00 977.34 702.00 341.66 6056.60 3240.56
0.10 4420 8.16  443.60 112.25 53740 256.67 143.20 67.02 578.60  289.92
4MOKP40 0.15 23.00 440 172.00 37.64 19460 5591 61.80 2577 13500 74.02
0.20 1330 2.63 85.60 19.32 9640  34.18 3020 9.20 61.00 19.04
025 7.80 2.62 0.93 0.36 47.80 17.44 1820  5.90 29.60 13.00

* Fewer than 10 instances per cell are reported for 4MOKP40 since DMA could not be finalized within 12 hours.

Table D.3: Comparison of Number of Models Solved for MOKP (m = 5)

DMA SBA TDA TSGA TSGA-II
Problem o  Avg. StDev. Avg. StDev. Avg. StDev.  Avg. StDev.  Avg. StDev.
0.05 1430 6.09 17580 106.04 17330 10430 15490 86.22 69890 536.68
0.10 1050 3.84 118.10  56.28 120.60 5836  97.00 4431 320.50 205.53
SMOKP10 0.15 8.20 2.66 81.60 39.60 84.70 4350 7020 26.54 18040  92.67
020 6.80 220 63.40 28.48 62.30 27.15 4930 15.11 108.60  73.88
025 460 151 34.10 12.90 33.00 1376 ~ 37.00 12.03  67.10 34.00
0.05 55.00 2478 1448.00 1257.49 1511.00 1367.14 923.30 819.24 9331.60 9104.69
0.10 25.00 849 48560 399.59 489.10 367.34 27250 228.08 1185.70 972.87
SMOKP20 0.15 1490 3.90 200.70 131.13 170.10 135.63 94.60 61.66 29720 176.52
020 870 236 90.30 43.46 84.30 4228 4320 3951  95.80 81.37
025 640 227 55.30 27.53 58.50 3417 2770 1920  51.00 28.93
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Table D.4: Comparison of Number of Models Solved for MOAP (m = 3)

DMA SBA TDA TSGA TSGA-II
Problem « Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 1420 388 5290 16.00 5590 1926 49.20 1632 11620 45.77
0.10 10.70 330 40.10 1351 4320 17.00 3440 1354 6690 29.24
3MOAP5 0.15 830 245 30.10 950  30.10 1032 2500 7.21 45.00 17.44
0.20 6.10 1.91 21.60 728 2120 7.77 1780 6.29  26.70  12.08
0.25 4.60 1.90 1580  7.08 1630 7.42 1430  6.55 19.20 6.97
0.05 4750 10.23 209.30 50.50 25430 68.61 130.20 26.47 497.10 165.85
0.10 2230 440 88.60 1924 100.80 19.66 51.10 1437 114.60 3091
3MOAP10 0.15 14.70 2.16 5430 825 56.80 7.16 2410 338 5320 13.36
0.20 9.30 1.64 3200 5.83 3280 7.73 17.10  5.65 24.80 8.75
0.25 6.10 1.20 2050 422 20.00 4.78 11.10  2.02 15.10 5.65
0.05 6290 10.06 269.70 47.18 333.60 77.74 15130 42.67 586.90 164.18
0.10 28.00 294 10630 12.07 12470 21.80 51.10 10.35 108.00 35.44
3MOAP15 0.15 1630 279 5830 853 6730 898 2540 546 40.10 13.38
0.20 1050 2.07 3590 7.78 38.60  8.25 16.70  2.83 22.10 5.74
0.25 6.00 1.25 20.70  4.16  21.80 492 1030  2.63 14.40 3.13
0.05 78.60 631 35550 38.05 455.70 3235 21920 25.76 818.90 98.59
0.10 3140 3.13 127.60 12.33 155.60 2038 6240 948 128.60 21.58
3MOAP20 0.15 21.20 3.22 80.20 13.75 84.60 13.72 30.60 430 48.80  7.66
0.20 1350 190 4720 7.27 50.10 7.28 16.60  3.41 22.10 3.84
0.25 8.60 1.71 28.80 5.09 2970 4.60 1220  2.10 15.20 2.20
Table D.5: Comparison of Number of Models Solved for MOAP (m = 4)
DMA* SBA TDA TSGA TSGA-II
Problem o Avg.  StDev.  Avg. StDeyv. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 27.10 1071 276.60 157.68 290.80 159.17 234.60 11640 1131.40  743.57
0.10 19.20 8.07 191.00 121.33  203.20 118.08 138.40 66.10  476.80 306.71
4MOAP5 0.15 13.10 574 12400 81.18 12020  68.31 81.00 3341 190.60 102.79
020 940 3.98 76.20 50.07 77.40 48.58 52.40 19.51 113.80 58.21
025 6.70 2.83 46.80 32.20 47.20 31.16 34.80 12.87 60.40 30.07
0.05 149.60 38.38 2077.60 630.21 2648.40 811.26 1078.20 333.31 11365.00 5809.17
0.10 5130 996  580.00 141.18 712.60 185.51 24240 72.08 116540  552.84
4MOAP10 0.15 2720 496 239.60 50.88 275.00 67.65 98.40  25.14 31040 163.68
020 1550 3.37 116.00  32.47 129.60  41.53 44.60 8.15 100.80 38.20
025 950 1.35 61.00 13.33 58.40 11.89 27.60 6.26 44.20 17.47
0.05 - - 3798.60 1530.84 5206.00 2053.43 1566.80 733.72 21795.60 15383.83
0.10 6830 23.73 838.40 320.61 1120.20 47390 260.80 111.70 1574.60 916.54
4MOAPI15 0.15 3420 1243 32520 125.62 40540 166.66  80.40  30.10  266.40 117.86
020 1950 741 147.60  58.07 18440  88.33 40.20 14.52 96.40 40.49
025 11.00 3.94 72.20 29.79 82.00 35.69 23.80 7.79 39.80 16.12

* Results are not reported for 4MOAP15 instances (o = 0.05) since DMA could not be finalized within 12 hours.
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Table D.6: Comparison of Number of Models Solved for MOAP (m = 5)

DMA* SBA TDA TSGA TSGA-II
Problem o  Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 3690 599 75090  280.56  774.70 262.15 641.60  186.02  4467.80 1423.35
0.10 2190 4.86 427.10  180.77  500.20 238.22 337.00 94.11 1524.60 581.19
SMOAP5 0.15 1450 3.63 252.00 106.63  282.70 108.05 182.70 58.19 512.00 150.90
0.20 10.60 227 143.80 64.96 184.90 97.75 93.10 23.05 249.10 94.38
025 810 1.85 87.20 30.92 102.10 44.40 64.30 21.63 122.30 56.63
0.05 - - 22859.50 8073.70 29379.30 11360.11 10408.50 4090.54 256990.30 162147.28
0.10 96.00 1632 447550 159649 5413.10 1763.32 1509.10 51196 12793.70  6761.05
SMOAPIO 0.15 4340 626 125690 422.89 1430.90  565.93 35410 12790  1837.10 879.57
020 2410 5.70 51720  250.51  615.30 335.27 161.50 68.76 485.00 170.97
025 13770 3.74 209.10 10031  259.70 142.45 82.60 27.17 203.50 69.31

* Results are not reported for SMOAP10 instances (o = 0.05) since DMA could not be finalized within 12 hours.
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APPENDIX E

COMPARISONS FOR EXPERIMENTS WITH MOMIPS

Table E.1: Cardinality Comparison for MOMIPs

SBA TDA TSGA TSGA-II
Problem @ Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 93.10 16.60 112.80 1848 6390 1443 4730 11.00
0.10 3350 486 37.60 493 16.80  3.36 1290 242
3MIKP100 0.15 22.00 4.03 22.10 4.48 7.60 1.78 6.20 0.92
020 1420 297 1490 3.3l 4.90 0.88 3.70 0.48
025 9.60 1.96 9.90 1.97 3.60 0.52 3.00 0.47
0.05 312.00 101.00 369.70 142.48 196.80 82.15 167.80 71.30
0.10 7390 21.67 86.60 27.58 37.00 1225 31.00 9.80
4MIKP40 0.15 37.50 11.35 39.00 1235 1470  4.35 11.60  3.06
020 2330 6.31 2370 793 8.00 1.94 6.30 1.70
025 1500 4.08 14.60  3.86 5.20 1.23 4.60 0.97
0.05 33540 299.97 351.50 317.07 238.70 223.06 206.70 210.07
0.10 7090 49.01 7560 52.64 4240 31.60 39.00 31.66
SMIKP20 0.15 33.30 16.55 3470 21.13 17.10 10.82 14.60 9.71
020 1870 7.86 1940  9.66 9.10 5.28 7.90 4.46
025 1270 6.70 11.70  6.04 5.60 2.50 4.80 1.93

77



Table E.2: CPU Time Comparison for MOMIPs

SBA TDA TSGA TSGA-II
Problem o Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 6.64 1.44 8.96 1.53 3.72 0.98 10.09 343
0.10 2.13 0.36 2.63 0.48 0.93 0.22 1.54 0.41
3MIKP100 0.15 1.21 0.26 1.34 0.35 0.41 0.11 0.58 0.13
020 0.72 0.14 0.81 0.18 0.26 0.05 0.31 0.06
025 046 0.10 0.52 0.13 0.20 0.03 0.25 0.05
0.05 73.13 2991 9830 5041 25.67 13.05 312.82 210.27
0.10 1253 5.64 16.13  7.50 3.37 1.33 16.92 10.20
4MIKP40 0.15 5.05 1.88 5.30 243 1.17 0.38 323 1.70
020 2.57 0.79 2.55 0.95 0.54 0.14 1.04 0.47
025 1.33 0.43 1.34 0.53 0.33 0.09 0.62 0.24
0.05 245.56 340.17 317.65 488.11 11994 190.41 3135.88 6895.00
0.10 30.67 36.78 3839 48.18 10.76 1452  99.03 198.39
SMIKP20 0.15 8.99 8.29 10.80 1147 295 3.00 13.06 18.35
020 394 3.35 4.20 3.40 1.17 1.23 3.45 4.36
025 2.17 2.08 1.93 1.76 0.55 0.37 1.07 0.70
Table E.3: Comparison of Number of Models Solved for MOMIPs
SBA TDA TSGA TSGA-II
Problem e Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 409.70 84.22 592.40 100.97  227.70 57.76 705.60 260.46
0.10  131.40 23.21 175.10 30.56 57.60 12.82 104.50 29.04
3MIKP100 0.15 80.40 15.56 92.50 24.07 25.30 6.29 38.50 8.62
020  51.20 10.79 56.10 12.74 16.10 3.07 18.60 3.37
0.25 33.70 6.78 35.60 7.52 11.80 1.55 14.20 2.94
0.05 4704.80 2071.14 7286.40 3761.62 1877.20 1012.74 27208.00 18091.66
0.10  836.40 348.46 1232.60 56596  250.80 96.90 1515.00 933.00
AMIKP40 0.15 333.60 119.58 412.60 188.33 86.60 32.78 262.40 145.23
0.20 177.60 50.18 199.60 75.11 40.00 10.80 88.00 41.22
0.25 100.80 30.35 105.00 40.69 25.20 6.00 52.60 21.88
0.05 16626.00 21980.52 20440.40 28423.01 7662.00 10998.90 244550.50 526726.66
0.10 2151.00 2446.02 279330 330424 81630 1051.83 8455.20 16563.03
SMIKP20 0.15 655.30 567.13 830.80 858.13  230.70  223.25 1177.10 1643.77
0.20  293.10 228.33 329.30 254.18 96.80 97.66 315.10 404.18
0.25 163.40 143.56 153.80 137.25 45.90 30.94 94.70 65.43
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APPENDIX F

COMPARISONS FOR VARIATIONS OF TSGA AND TSGA-II

Table F.1: TSGA Comparisons for MOKP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)
Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
005 720 352 720 352 042 023 045 0.28 26.60 1378 2580 13.26
0.10 570 221 560 227 032 015 035 0.19 21.20 948  20.00 8.81
3MOKP10 0.15 4.50 1.58  4.60 1.51 025 0.10 028 0.14 16.50  6.52 1590 532
020 350 08 3,60 084 018 0.05 025 0.16 1260  3.53 12.40  2.76
025 3.00 067 3.00 067 015 003 023 0.27 1090  2.60 10.50  2.07
0.05 1440 628 1450 643 120 0.71 1.64  0.95 53.00 2549 5390 2642
0.10 800 287 790 264 049 022 079 0.39 28.00 1038 27.80 10.01
3MOKP20 0.15 5.30 1.77  5.20 1.81 031 0.16 044 025 18.50  6.70 18.30  7.06
020 3.60 097 3.70 1.06 020 0.08 027 0.13 12.50  3.60 1290  4.20
025 280 079 290 074 015 0.05 022 0.08 9.80 2.94 10.00  2.62
0.05 27.70 566 2760 558 254 074 4.10 1.17 106.90 2570 108.10 25.77
0.10 1220 225 1200 236 086 021 1.25 0.40 4420 9.87 4330 11.00
3MOKP30 0.15 6.80 .14 7.10 1.29 045 0.12 055 0.16 2330 4.06 2430 442
020 490 088 450 097 028 005 039 0.5 16.70  3.47 1550  4.01
025 330 048 310 074 019 0.04 019 0.07 11.40 1.71 10.40 222
0.05 26.70 8.67 2680 883 237 095 371 1.61 97.70  34.10 98.10 3540
0.10 10.10 242 1030 287 0.73 024 1.03 041 3560 9.73 3570 10.82
3MOKP40 0.15 5.70 1.25 550 1.08 037 0.12 042 0.16 19.70  4.57 18.90  4.28
020 390 074 400 082 023 004 028 0.09 13.00 2.58 13.20  2.74
0.25 3.00 .15 290 099 0.16 0.07 0.17 0.06 10.20  3.88 9.70 2.98
0.05 3130 9.17 3150 891 337 120 3.19 1.04 11670 37.46 117.10 3493
0.10 11.30 343 1120 3.12 092 030 091 0.32 40.10 1343 4090 13.25
3MOKP50 0.15 6.20 193  6.10 1.60 043 0.15 039 0.12 20.80 7.02 2020 5.33
020 4.10 1.20 4.20 123 029 0.3 027 0.10 13.80 4.39 1420 4.24
025 3.00 067 310 074 020 0.06 0.19 0.07 10.00  2.00 1030  2.21
0.05 4530 897 4480 865 637 184 499 1.39  167.90 36.88 166.00 36.97
0.10 1330 333 1360 320 135 043 115 0.39 46.90 14.17 4730 13.36
3MOKP100 0.15 6.80 1.40  6.70 1.06 055 0.16 045 0.11 2260 527 2240 448
020 430 067 430 082 035 005 027 0.06 1400 231 14.00  2.58
025 390 032 380 042 037 0.11 025 0.04 1270 0.95 12.40 1.26
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Table F.2: TSGA Comparisons for MOKP (m = 4)

Cardinality CPU Time (secs) Number of Models Solved
problem o _TSGA (orig) TSGA (eqwt) TSGA (orig) TSGA (eqwt) TSGA (orig)  TSGA (eq.wt.)
Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
005 790 384 7.80 3.65 0.73 034 0.63 047 4280 2452 4140 21.68
0.10 570 245 550 246 052 019 040 0.29 30.80 1596 28.80 14.65
4MOKPI10 0.15 4.50 1.51 4.30 1.25 0.41 0.12  0.27 0.11 23.00 10.07 21.00 7.66
0.20 3.40 1.71 3.10 152 034 012 0.18 0.09 17.80 10.76  15.40 8.26
025 290 099 270 1.06 030 0.11 0.15 0.06 14.40 5.58 1320 5.29
0.05 32.80 1499 33.10 1553 6.75 446 7.10 486 25940 149.88 263.80 157.18
0.10 13.00 4.69 1320 520 1.59 0.81 1.71 0.98 86.00 39.33 8820 47.95
4MOKP20 0.15 7.60 347 7.60 3.10 077 050 0.70 041 47.00 32.69 45.60 26.50
0.20 5.00 176 5.00 176 040 020 040 020 2680 11.68 27.80 13.80
0.25 3.30 1.06 340 097 024 008 023 0.09 16.20 6.05 17.00 5.89
0.05 54.10 1598 54.00 1585 1340 522 13.01 5.19 449.60 151.87 445.60 154.81
0.10 17.60 4.38 18.00 4.55 253 091 2.33 0.81 11440 37.35 112.00 35.63
4MOKP30 0.15 9.00 176 880 2.04 085 025 082 024 5000 1327 47.80 14.55
0.20 5.60 1.35  5.30 1.57 044  0.11 040 0.14  26.60 6.52 25.60  7.18
025 380 092 370 067 028 007 024 0.06 18.20 5.01 17.80 4.24
0.05 76.30 2536 7450 25.14 2120 11.36 2095 10.93 702.00 341.66 683.00 324.54
0.10 20.50 640 2030 5.79 3.13 1.59 297 1.35 14320 67.02 13420 54.48
4MOKP40 0.15 1040 3.06 9.40 341 122 053 096 044 61.80 2577 53.00 23.70
0.20 6.00 141 5.60 1.35 052 0.16 044 0.16 30.20 920 26.60 7.76
025 370 0.82 3.60 097 0.31 0.11 0.26  0.08 18.20 5.90 16.60  4.20
Table F.3: TSGA Comparisons for MOKP (m = 5)
Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)
Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg.  StDev.
0.05 13.70 542 1370 542 242 1.57 251 1.79 15490 86.22 151.00 87.27
0.10 930 347 930 347 1.33  0.67 1.26  0.69 97.00 4431 9440 44.15
SMOKP10 0.15 7.20 193 690 213 096 042 0.73 0.36 70.20 26.54 6240 27.77
0.20 5.70 142 540 1.65 0.61 0.20 048 0.19 4930 15.11 4460 17.10
0.25 4.70 1.06  4.30 1.25 044 0.16 031 0.09 37.00 12.03 30.00 9.03
0.05 46.60 20.71 46.00 20.85 28.68 28.97 30.67 33.00 923.30 819.24 902.20 816.98
0.10 18.60 7.21 16.70 5.33 5.73 5.31 4.69 410 272,50 228.08 225.30 164.78
SMOKP20 0.15 9.40 241 9.10 296 1.51 0.98 1.41 1.30 94,60 61.66 8790 67.89
020 490 2.18 4.60 196 065 053 051 0.37 4320 39.51 3550 24.65
0.25 3.60 1.65 3.10 099 041 0.27  0.28 0.14 2770 19.20 22.10 10.75
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Table F.4: TSGA Comparisons for MOAP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)
Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 1330 4.11 1320 405 053 0.18 0.71 0.30 4920 1632 49.00 1542
0.10 940 337 9.10 3.14 036 0.14 042 0.16 3440 13.54 3350 1217
3MOAP5 0.15 6.80 1.75 6.80 1.87 024 0.08 034 0.10 25.00 7.21 2490 7.89
0.20 4.90 145 470 1.34  0.18 0.06 022 0.08 17.80  6.29 16.70  5.29
0.25 4.00 1.63 3.60 126 0.15 0.07 0.17 0.07 1430  6.55 1250  4.22
0.05 34.60 6.10 3470 6.11 274 0.69 3.01 0.87 130.20 2647 131.50 26.58
0.10 14.00 3.65 1390 341 091 025 091 0.25 51.10 1437 4990 13.75
3MOAP10 0.15 7.20 092 740 143 044 0.07 040 0.10 2410 338 2480 529
0.20 5.10 1.52  4.80 1.55 028 0.10 026 0.10 17.10  5.65 16.20  5.67
0.25 330 0.67 350 071 0.18 0.04 0.17 0.03 11.10  2.02 11.80 244
0.05 3930 9.87 3960 975 413 1.17 407 1.14 151.30 42.67 150.90 40.58
0.10 1420 220 1380 282 124 023 1.17 0.30 51.10 10.35 49.60 11.97
3MOAP15 0.15 7.30 1.57  7.00 125 061 012 054 0.12 2540 546 2410 431
020 490 074 460 084 040 0.07 0.31 0.05 16.70  2.83 1530 254
0.25 3.00 0.67 320 063 024 005 022 0.06 10.30  2.63 10.80  2.20
0.05 56.70 629 5650 633 805 126 7.76 1.01 219.20 2576 219.40 23.58
0.10 1690 238 1730 236 198 030 195 0.26 6240 948 6470 9.57
3MOAP20 0.15 8.60 1.17 8.80 1.14 094 0.16 0.87 0.15 30.60 430 31.00 424
020 480 079 510 099 051 0.13 045 0.10 16.60  3.41 1720 3.65
025 370 0.67 380 063 035 006 030 0.06 1220  2.10 1270 241
Table F.5: TSGA Comparisons for MOAP (m = 4)
Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA (orig.) TSGA (eq.wt.)  TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)
Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg.  StDev. Avg.  StDev.
0.05 27.00 1046 2650 1047 2.70 1.40  3.01 1.92 23460 11640 22840 12294
0.10 1690 6.14 16.50  6.49 1.48 0.75 1.50  0.82 13840 66.10 13440 71.76
4MOAP5 0.15 10.70  3.62 1040 384 085 035 080 0.39 81.00 33.41 76.20 35.79
0.20 7.80 2.53 6.80 278 054  0.21 046 024 52.40 19.51 43.20 20.73
0.25 5.50 143 4.80 1.62 036 0.13 031 0.14 34.80 12.87 28.40 12.44
0.05 10430 26.06 102.80 2523 3345 10.59 32.61 10.60 1078.20 333.31 1052.20 330.62
0.10 2950 5091 30.50 6.04 544 1.93 5.37 1.83 24240 72.08 246.80 67.49
4MOAP10 0.15 14.50 2.59 1430 2.63 1.81 0.46 1.58 0.38 98.40 25.14  91.80 21.61
0.20  8.00 1.25 8.00 1.05 075 0.16 0.71 0.15 44.60 8.15 43.80 8.34
0.25 5.10 0.88 4.90 0.88 045 0.10 0.38 0.08 27.60 6.26 25.00 4.90
0.05 14730 57.22 14890 57.23 5224 26.66 5230 25.80 1566.80 733.72 1583.60 711.04
0.10 33,50 1220 3520 13.11 7.03 3.09 7.5 336  260.80 111.70 276.80 123.55
4MOAPI15 0.15 13.00 4.37 14.10 491 1.97 0.75 2.13 0.92 80.40 30.10  92.20 38.62
0.20  7.50 2.68 7.50 259 093 032 091 0.37 40.20 14.52  42.00 16.87
0.25 4.90 1.60 4.90 1.60 055 017 050 0.17 23.80 7.79 24.20 7.79
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Table F.6: TSGA Comparisons for MOAP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved

Problem o TSGA (orig.)  TSGA (eq.wt.)  TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

005 3580 588 3530 5.0 8.73 3.13 7.93 2.65 641.60 186.02  608.90 184.55
0.10 21.00 3.83 2040 341 3.68 0.99 3.54 1.07 337.00 94.11 315.90 91.48
SMOAP5 0.15 12.80 230 11.80 1.81 1.91 0.62 1.64 0.54 182.70 58.19 153.90 48.16
020 830 1.49 7.90 0.88 0.97 0.24 0.85 0.20 93.10 23.05 84.20 19.38
025 6.30 1.06 5.70 0.82 0.68 0.23 0.51 0.14 64.30 21.63 50.80 13.18

0.05 279.70 6235 279.00 61.82 44572 209.64 43246 197.51 10408.50 4090.54 10261.10 4131.62
0.10 60.60 1043 5950 1023 40.66 16.69 37.61 1649 1509.10 511.96 143490 535.89
SMOAPI0 0.15 2340 375 2330 4.60 7.46 3.20 7.88 3.98 354.10 127.90  375.80 162.38
020 1230 258 1260 1.65 2.88 1.39 2.58 1.06 161.50 68.76 147.40 52.07
025 8.00 1.63 7.50 1.51 1.39 0.51 1.07 0.51 82.60 27.17 65.50 25.11

Table F.7: TSGA Comparisons for MOMIP Experiments

Cardinality CPU Time (secs) Number of Models Solved

Problem TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg.  StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

0.05 6390 1443 63.60 1420 3.72 0.98 3.47 0.87  227.70 57.76 226.70  56.89
0.10 16.80  3.36 17.00  3.09 0.93 0.22 0.87 0.18 57.60 12.82 57.40 11.46
3MIKP100 0.15 7.60 1.78 7.70 1.70 0.41 0.11 0.38 0.10 25.30 6.29 25.70 6.53
020 490 0.88 4.60 0.70 0.26 0.05 0.22 0.04 16.10 3.07 14.90 2.33
025 3.60 0.52 3.60 0.52 0.20 0.03 0.17 0.02 11.80 1.55 11.80 1.55

0.05 196.80 82.15 193.20 75.62 2567 13.05 2576 1421 1877.20 1012.74 1800.40 975.13
0.10 37.00 1225 37.80 1249 337 1.33 3.44 145  250.80 96.90 249.00 107.22
4MIKP40 0.15 1470 435 14.10  3.67 1.17 0.38 1.10 0.36 86.60 32.78 79.20 25.90
0.20  8.00 1.94 7.30 1.95 0.54 0.14 0.47 0.12 40.00 10.80 35.20 9.45
025 520 1.23 5.20 1.14 0.33 0.09 0.32 0.07 25.20 6.00 24.80 5.61

0.05 238.70 223.06 234.80 233.01 119.94 190.41 107.48 168.66 7662.00 10998.90 6727.20 9722.02
0.10 4240 31.60 40.70 3347 10.76 1452 10.05 1328 81630 1051.83 719.60  904.59
SMIKP20 0.15 17.10 10.82 16.40 10.04 295 3.00 2.58 239 230.70  223.25 198.10  173.70
020 9.10 5.28 8.60 4.60 1.17 1.23 0.96 0.82 96.80 97.66 77.40 64.34
025 5.60 2.50 5.20 2.70 0.55 0.37 0.48 0.38 45.90 30.94 40.40 30.07
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Table F.8: TSGA-II Comparisons for MOKP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved

Problem o TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg.  StDev. Avg. StDev. Avg.  StDev. Avg.  StDev. Avg.  StDev.

0.05 7.20 3.52 7.20 3.52 0.64 0.45 0.65 0.47 55770  40.82 5570  40.82
0.10 5.50 2.17 5.50 2.17 0.44 0.26 0.43 0.26 36.80 2258 36.80  22.58
3MOKP10 0.15 4.30 1.42 4.30 1.42 0.32 0.16 0.30 0.15 2620 1457  26.20 14.57
020 3.40 0.84 3.40 0.84 0.21 0.07 0.22 0.10 1770 6.78 17.70 6.78
025 3.10 0.74 3.10 0.74 0.19 0.06 0.19 0.07 1550 548 15.50 5.48

0.05 1440 6.33 14.30 6.29 2.30 1.70 2.24 1.67 142.10 9494 141.70 9441
0.10  7.50 2.46 7.50 2.46 0.86 0.47 0.84 0.48 5440 3025 5440 2997
3MOKP20 0.15 4.80 1.48 4.80 1.48 0.46 0.24 0.42 0.21 28.00 12.66  28.00 12.66
020 3.40 1.07 3.40 1.07 0.29 0.14 0.27 0.13 18.10  8.67 18.20 8.64
025 2.70 0.67 2.60 0.70 0.21 0.08 0.18 0.08 1330 5.06 12.60 4.97

0.05 27.00 490  27.00 4.81 5.77 1.91 5.48 1.81 321.70 103.87 322.60 99.62
0.10 11.70 1.89  11.50 1.96 1.69 0.50 1.56 0.48 97.00 2620 93.70  25.29
3MOKP30 0.15 6.60 1.17 6.60 1.07 0.77 0.19 0.68 0.16 4230 1276 42.10 10.73
0.20 4.00 0.82 3.80 0.79 0.38 0.12 0.35 0.10 21.50  6.54 19.80 5.75
0.25 3.00 0.67 3.00 0.67 0.28 0.11 0.24 0.07 15.00 4385 15.00 4.85

0.05 2500 847  25.00 8.47 5.61 2.73 5.54 2.68 298.00 136.60 297.60 136.37
0.10 9.40 1.96 9.20 1.93 1.36 0.51 1.31 0.53 72.10 1920 72.00  20.39
3MOKP40 0.15 5.10 1.29 4.90 1.29 0.59 0.21 0.54 0.19 31.30  10.88  29.60  10.38
020 3.70 0.48 3.60 0.52 0.35 0.07 0.30 0.05 19.60 295 18.70 2.67
0.25  2.60 0.70 2.60 0.70 0.23 0.09 0.21 0.07 12.80 421 12.80 421

0.05 2950 743 2940 7.44 8.11 3.28 8.17 3.42 390.90 135.55 395.90 141.39
0.10  9.90 2.81 10.00 2.87 1.63 0.73 1.55 0.72 8320 3635 84.00 36.22
3MOKP50 0.15 5.40 1.71 5.40 1.71 0.74 0.32 0.64 0.29 3330 1443 3330 14.43
020 3.40 0.52 3.40 0.52 0.33 0.11 0.32 0.08 17.10 438 17.10 4.38
025 2.80 0.42 2.80 0.42 0.31 0.08 0.27 0.06 1460 295 14.30 2.95

0.05 3780 6.55 38.20 6.83 1484 435 14.07 3.65 546.80 120.74 547.90 113.39
0.10 1140 212 11.50 222 2.35 0.69 2.28 0.62 92.80 22.14 94.40 19.25
3MOKP100 0.15 5.70 1.06 5.50 1.08 1.00 0.30 0.75 0.23 3620  9.48  34.10 8.99
020 3.80 0.42 3.70 0.48 0.50 0.08 0.43 0.09 1990  3.57 19.30 2.75
0.25 3.00 0.00 3.00 0.00 0.40 0.04 0.34 0.03 14.70 1.49 14.70 1.49
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Table F.9: TSGA-II Comparisons for MOKP (m = 4)

Cardinality CPU Time (secs) Number of Models Solved

Problem TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt) TSGA-II (orig)  TSGA-II (eq.wt.)
«

Avg.  StDev. Avg. StDev. Avg.  StDev. Avg. StDev. Avg. StDev. Avg. StDev.

0.05 7.80 3.65 7.80 3.65 1.46 0.82 1.26 0.92 120.00  80.35 120.00  80.35
0.10 5.50 2.46 5.50 2.46 0.85 0.43 0.68 0.50 66.60 47.46 66.60 47.46
4MOKPI0 0.15 4.40 1.58 4.20 1.14 0.65 0.24 0.42 0.20 46.20 24.97 42.40 16.47
0.20 3.30 1.42 3.20 1.48 0.46 0.13 0.27 0.18 29.60 17.36 29.00 18.93
025 2.80 0.92 2.60 0.97 0.38 0.13 0.20 0.10 22.20 9.94 20.40 10.59

0.05 33.10 1555 32.80 1523 30.86  26.06 32.14 2695 1723.00 1344.08 1694.40 1312.21
0.10 13.10  4.61 13.10 491 4.58 2.67 4.60 2.67 314.60 171.98  321.20 183.07
4MOKP20 0.15 7.40 2.37 7.50 2.46 1.71 0.83 1.62 0.80 117.60  55.51 120.00  61.56
0.20 4.30 1.34 4.70 1.89 0.76 0.38 0.74 0.44 48.20 20.96 57.60 36.45
025 3.20 1.03 3.20 1.14 0.43 0.21 0.37 0.21 29.80 13.31 30.20 16.12

0.05 52.60 14.66 51.70 1435 56.08 26.82 5390 2743 284840 1147.50 2792.60 1159.67
0.10 17.50  3.17  17.00 3.65 7.88 3.51 7.13 3.53 456.80  206.77 43720  208.21
4MOKP30 0.15 8.40 1.65 7.90 1.52 2.06 0.81 1.75 0.60 134.40  55.72 118.00  36.57
020 5.00 1.15 5.00 1.15 0.87 0.34 0.80 0.31 54.60 24.56 54.60 24.56
025 3.10 0.88 3.10 0.88 0.41 0.16 0.40 0.20 26.80 11.56 26.80 11.56

0.05 7200 2382 71.70 2333 121.68  69.42 11999 70.11 6056.60 3240.56 6061.20 3332.48
0.10 18.80 5.14  18.50 5.44 10.07 538 9.71 5.39 578.60  289.92  559.60  277.56
4MOKP40 0.15 8.00 2.49 8.00 2.16 2.35 1.29 221 1.20 135.00  74.02 133.60  65.67
020 5.20 0.92 4.90 0.99 0.98 0.32 0.86 0.29 61.00 19.04 54.40 18.36
025 3.30 0.82 3.30 0.82 0.47 0.20 0.44 0.20 29.60 13.00 29.60 13.00

Table F.10: TSGA-II Comparisons for MOKP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved

Problem o TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)  TSGA-II (orig.) TSGA-II (eq.wt.)

Avg.  StDev. Avg. StDev. Avg.  StDev. Avg. StDev. Avg. StDeyv. Avg. StDev.

005 1370 542 13.70 5.42 7.50 6.15 7.32 6.09 698.90  536.68 698.90  536.68
0.10 9.30 3.47 9.30 3.47 3.20 2.07 3.01 2.03 320.50 205.53  320.50  205.53
SMOKP10 0.15 7.00 2.11 6.90 2.13 1.79 0.96 1.59 0.90 180.40  92.67 173.60 9545
020 5.30 1.64 5.30 1.64 1.06 0.62 0.95 0.63 108.60  73.88 108.60  73.88
025 4.30 1.25 4.30 1.25 0.65 0.26 0.57 0.27 67.10 34.00 66.70 33.93

0.05 46.50 2094 46.00 20.81 17736 181.65 170.35 180.60 9331.60 9104.69 9233.90 9084.06
0.10 16.60 5.87 16.20 5.81 18.12 1577 17.11 16.14 118570 972.87 1153.40 974.22
SMOKP20 0.15 8.80 2.10 8.80 2.53 3.97 2.53 4.03 2.70 29720 176.52  311.80 189.71
020 4.60 1.84 4.50 1.65 1.28 1.01 1.09 0.81 95.80 81.37 87.10 65.67
025 3.50 1.08 3.40 1.07 0.69 0.32 0.59 0.36 51.00 28.93 50.90 32.71
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Table F.11: TSGA-II Comparisons for MOAP (m = 3)

Cardinality

CPU Time (secs)

Number of Models Solved

TSGA-II (orig.)

TSGA-II (eq.wt.)

TSGA-II (orig.)

TSGA-II (eq.wt.)

TSGA-II (orig.)

TSGA-II (eq.wt.)

Problem el
Avg.  StDev. Avg. StDev. Avg.  StDev. Avg. StDev. Avg.  StDev.  Avg. StDev.
0.05 13.10 4.15 13.10 4.15 1.10 0.45 1.08 0.45 11620 4577 116.20 45.77
0.10 8.90 2.88 8.80 2.82 0.63 0.27 0.59 0.26 6690 29.24  65.70 28.89
3MOAP5 0.15 6.70 1.77 6.70 1.77 0.44 0.16 0.40 0.16 45.00 17.44 4520 17.64
0.20 4.50 1.51 4.60 1.51 0.26 0.11 0.25 0.11 26.70  12.08 27.40 11.79
0.25 3.50 1.08 3.50 1.18 0.19 0.06 0.18 0.07 19.20 6.97 19.20 7.61
0.05 33.40 6.52 33.70 6.58 8.41 2.84 8.23 2.62 497.10 165.85 508.20 160.38
0.10 12.30 1.83 12.40 1.96 1.92 0.54 1.80 0.52 114.60 3091 11470 31.68
3MOAPIO 0.15 7.10 1.20 6.90 1.20 0.89 0.22 0.80 0.22 5320 1336 50.70 14.51
0.20 4.10 0.88 4.10 0.88 0.40 0.14 0.35 0.13 24.80 8.75 24.80 8.75
0.25 2.90 0.74 2.90 0.74 0.26 0.09 0.21 0.09 15.10 5.65 15.20 5.51
0.05 37.20 6.63 36.90 6.82 14.86  4.78 14.14 4.27 586.90 164.18 573.70 157.24
0.10 11.80 2.15 11.60 1.96 2.60 0.85 2.45 0.82 108.00 3544 10190 35.52
3MOAPI5S 0.15 5.90 0.99 5.90 0.74 0.98 0.39 0.89 0.25 40.10  13.38  39.90 9.98
0.20 3.90 0.74 3.60 0.52 0.50 0.10 0.41 0.08 22.10 5.74 19.50 3.41
0.25 2.80 0.42 2.80 0.42 0.33 0.05 0.28 0.05 14.40 3.13 14.40 3.13
0.05 4880 4.69 48.20 4.78 29.44 3.61 28.86 3.68 818.90 98.59 818.30 100.76
0.10 14.00 1.63 13.90 1.52 4.45 0.75 4.16 0.55 128.60 21.58 12490 18.77
3MOAP20 0.15 7.00 0.82 7.10 0.88 1.67 0.32 1.65 0.34 48.80 7.66 50.60 9.56
0.20  3.90 0.57 3.80 0.63 0.72 0.12 0.60 0.12 22.10 3.84 21.00 4.03
0.25 2.90 0.32 2.90 0.32 0.50 0.07 0.41 0.05 15.20 2.20 15.20 2.20
Table F.12: TSGA-II Comparisons for MOAP (m = 4)
Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)
Avg.  StDev. Avg. StDev. Avg.  StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 2670 1044  26.60 10.45 11.03 745 10.35 7.08 1131.40  743.57 112220  745.08
0.10 1630  6.40 16.10 6.33 4.47 2.86 4.11 2.68 476.80 306.71 475.80 303.53
4MOAP5  0.15 9.70 3.47 9.60 3.53 1.86 0.98 1.63 0.92 190.60 102.79 189.20 108.53
020 7.10 242 6.30 2.16 1.09 0.55 0.79 0.44 113.80 58.21 92.60 53.99
025 4.90 1.45 4.30 1.57 0.59 0.27 0.43 0.25 60.40 30.07 48.80 30.29
0.05 10040 25.07 99.50 24.05 25731 137.87 263.38 14542 11365.00 5809.17 11170.60 5584.60
0.10 2650 6.13  26.20 4.71 22.19  10.30  20.66 7.73 116540  552.84 111320  431.96
4MOAP10 0.15 1220 3.12 11.90 2.47 5.53 2.88 4.88 222 310.40 163.68 282.20 117.46
020 6.70 1.49 6.40 1.26 1.68 0.67 1.46 0.53 100.80 38.20 93.00 33.05
025 4.10 0.88 4.20 1.14 0.74 0.28 0.70 0.35 44.20 17.47 47.00 22.80
0.05 134.00 52.74 13850 5531 668.63 49534 687.92 49461 21795.60 15383.83 23299.80 15931.96
0.10 29.40 10.74 30.10 10.74  43.69 25.67 44.10 26.74 1574.60  916.54 1636.20  974.50
4MOAP15 0.15 11.20 3.55 11.20 391 6.95 3.17 6.67 3.13 266.40 117.86 265.40 121.17
020 6.20 1.99 6.10 2.13 2.32 0.92 2.18 1.08 96.40 40.49 95.80 45.65
025 3.80 1.14 4.10 1.20 0.97 0.38 0.98 0.37 39.80 16.12 45.40 17.33
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Table F.13: TSGA-II Comparisons for MOAP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA-II (orig.) TSGA-II (eq.wt.)  TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)
Avg.  StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 3570 5.89 3530 5.50 43.74 14.41 44.49 21.38 4467.80 1423.35 4365.00 1405.62
0.10 2030 3.74  20.10 3.57 14.12 5.42 12.87 4.83 1524.60 581.19 1487.10 565.10
SMOAP5 0.15 11.70  1.77 11.60 1.78 4.86 1.37 4.30 1.22 512.00 150.90 503.00 145.94
020  8.00 1.49 7.90 1.52 2.30 0.83 2.12 0.79 249.10 94.38 243.70 95.98
025 5.60 1.43 5.70 1.34 1.14 0.50 1.07 0.43 122.30 56.63 126.20 54.54
0.05 27220 62.55 27030 62.13 7376.14 5066.06 7113.76 4990.02 256990.30 162147.28 253655.40 159486.84
0.10 56.60 12.84 54.30 11.14  303.68 177.52 32363 177.87 1279370  6761.05 11720.00  5524.03
SMOAP10 0.15 2090 4.04 20.70 3.89 36.95 19.56 43.51 24.97 1837.10 879.57 1847.50 908.13
020 1090  1.37 10.40 1.35 8.76 3.11 8.78 3.33 485.00 170.97 436.50 124.55
025  7.00 1.15 6.10 1.20 3.46 1.53 2.81 1.38 203.50 69.31 156.80 69.01
Table F.14: TSGA-II Comparisons for MOMIP Experiments
Cardinality CPU Time (secs) Number of Models Solved
Problem o TSGA-II (orig.) TSGA-II (eq.wt.)  TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)
Avg.  StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.
0.05 4730 11.00 47.40 11.11 10.09 3.43 9.49 3.42 705.60 260.46 709.30 260.90
0.10 1290 242 12.90 2.56 1.54 0.41 1.46 0.41 104.50 29.04 106.10 30.54
3MIKP100 0.15  6.20 0.92 6.00 0.94 0.58 0.13 0.51 0.10 38.50 8.62 36.50 8.18
020 3.70 0.48 3.70 0.48 0.31 0.06 0.28 0.05 18.60 3.37 18.60 3.37
0.25  3.00 0.47 2.90 0.32 0.25 0.05 0.20 0.03 14.20 2.94 13.50 2.12
0.05 167.80 71.30 166.80 70.75  312.82 210.27 298.13 207.34 27208.00 18091.66  27217.80  18729.76
0.10 31.00 9.80  29.60 9.64 16.92 10.20 14.38 8.90 1515.00 933.00 1362.20 851.22
4MIKP40 0.15 11.60  3.06 11.90 3.70 3.23 1.70 2.95 1.67 262.40 145.23 272.60 161.94
020 6.30 1.70 6.60 1.71 1.04 0.47 1.11 0.50 88.00 41.22 100.40 45.65
025 4.60 0.97 4.50 0.85 0.62 0.24 0.55 0.22 52.60 21.88 49.80 20.27
0.05 206.70 210.07 207.00 217.84 3135.88 6895.00 3103.46 7147.06 244550.50 526726.66 253605.40 572271.84
0.10 39.00 31.66 39.10  30.86 99.03 198.39  95.93 190.90  8455.20 16563.03 8666.10 16829.32
SMIKP20 0.15 1460 9.71 15.10 10.62 13.06 18.35 14.33 20.63 1177.10 1643.77 1350.80 1942.35
020 7.90 4.46 7.40 4.09 3.45 4.36 2.80 3.63 315.10 404.18 267.20 346.96
025 4.80 1.93 5.00 2.49 1.07 0.70 1.21 1.16 94.70 65.43 117.00 113.29
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