
RG-TREES: TRAJECTORY-FREE FEEDBACK MOTION PLANNING
USING SPARSE RANDOM REFERENCE GOVERNOR TREES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FERHAT GÖLBOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2018

Approval of the thesis:

RG-TREES: TRAJECTORY-FREE FEEDBACK MOTION
PLANNING USING SPARSE RANDOM REFERENCE

GOVERNOR TREES

submitted by FERHAT GÖLBOL in partial ful�llment of the requirements
for the degree of Master of Science in Electrical and Electronics Engi-
neering Department, Middle East Technical University by,

Prof. Dr. Halil Kal�pç�lar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çilo§lu
Head of Department, Electrical and Electronics Engi-
neering

Assoc. Prof. Dr. Af³ar Saranl�
Supervisor, Electrical and Electronics Engineering
Dept., METU

Assist. Prof. Dr. Mustafa Mert Ankaral�
Co-supervisor, Electrical and Electronics Engineering
Dept., METU

Examining Committee Members:

Prof. Dr. Kemal Leblebicio§lu
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Af³ar Saranl�
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Mustafa Mert Ankaral�
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Ömer Morgül
Electrical and Electronics Engineering Dept., Bilkent Uni.

Assist. Prof. Dr. Emre Özkan
Electrical and Electronics Engineering Dept., METU

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: FERHAT GÖLBOL

Signature :

iv

ABSTRACT

RG-TREES: TRAJECTORY-FREE FEEDBACK MOTION
PLANNING USING SPARSE RANDOM REFERENCE

GOVERNOR TREES

Gölbol, Ferhat

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Af³ar Saranl�

Co-Supervisor : Assist. Prof. Dr. Mustafa Mert Ankaral�

September 2018, 66 pages

Sampling based methods resulted in feasible and e�ective motion planning algo-

rithms for high dimensional con�guration spaces and complex environments. A

vast majority of such algorithms as well as their application rely on generating

a set of open-loop trajectories �rst, which are then tracked by feedback control

policies. However, controlling a dynamic robot to follow the planned path, while

respecting the spatial constraints originating from the obstacles is still a chal-

lenging problem. There are some studies which combine statistical sampling

techniques and feedback control methods which address this challenge using

di�erent approaches. From the feedback control theory perspective, Reference

Governors proved to be a useful framework for constraint enforcement. Very re-

cently, Arslan and Koditschek (2017) introduced a feedback motion planner that

utilizes Reference Governors that provably solves the motion planning problem

in simpli�ed spherical worlds. In this context, here we propose a �trajectory-

free� novel feedback motion planning algorithm which combines the two ideas:

random trees and reference governors. Random tree part of the algorithm gener-

v

ates a collision-free region as a set of connected simple polygonal regions. Then,

reference governor part navigates the dynamic robot from one region to the ad-

jacent region in the tree structure, ensuring it stays inside the current region

and asymptotically reaches to the connected region. Eventually, our algorithm

robustly routes the robot from the start location to the goal location without

collision. We demonstrate the validity and feasibility of the algorithm on simu-

lation studies.

Keywords: Reference Governor, Rapidly-exploring Random Trees (RRT), Se-

quential Composition, Obstacle Avoidance, Motion Planning

vi

ÖZ

RG-TREES: SEYREK RASSAL REFERANS YÖNET�C�
A�AÇLARI �LE YÖRÜNGES�Z GER� BESLEMEL� HAREKET

PLANLAMA

Gölbol, Ferhat

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. Af³ar Saranl�

Ortak Tez Yöneticisi : Dr. Ö§retim Üyesi Mustafa Mert Ankaral�

Eylül 2018 , 66 sayfa

Örnekleme tabanl� yöntemler, yüksek boyutlu kon�gürasyon uzaylar� ve karma-

³�k ortamlar için uygulanabilir ve etkili hareket planlama algoritmalar�na im-

kan sa§lam�³t�r. Bu algoritmalar�n büyük ço§unlu§u, öncelikle bir aç�k döngü

yörünge elde edip, sonradan bu yörüngeyi geri beslemeli kontrol ilkeleriyle ta-

kip etmeye dayal�d�r. Ancak dinamik bir robotu planlanm�³ bir yolu izleyecek

³ekilde kontrol etmek, ayn� zamanda engellerden kaynaklanan uzaysal k�s�tlama-

lara uymas�n� sa§lamak hala zorlu bir problemdir. Literatürde örnekleme tabanl�

yöntemlerle geri beslemeli kontrol metotlar�n� birle³tirerek bu problemi ele alan

uygulamalar bulunmaktad�r. Geri beslemeli kontrol teorisi literatüründe Refe-

rans Yöneticileri, k�s�tlamalar� uygulatmak için kullan�³l� bir yöntemdir. Yak�n

zamanda Arslan ve Koditschek (2017), Referans Yöneticisini kullanarak hareket

planlama problemini basit küre dünyalarda çözen bir yöntem ortaya koymu³-

tur. Bu ba§lamda bu çal�³mam�zda biz, rasgele a§açlar ve referans yöneticilerini

birle³tiren yeni bir �yörüngesiz� hareket planlama algoritmas� sunuyoruz. Algo-

vii

ritmam�z�n rasgele a§aç k�sm�, birbirine ba§l� basit çokgensel bölgelerin bile³imi

olan, içinde engel bulunmayan güvenli bir alan yarat�r. Referans yöneticisi k�sm�-

n�n görevi, dinamik robotu bulundu§u bölgeden, a§aç üzerinde bu bölgenin ba§l�

oldu§u di§er bölgeye götürmek ve bunu yaparken robotun bölgenin içinde kal-

mas�n� sa§lamakt�r. Bunun sonucunda algoritmam�z robotu gürbüz bir ³ekilde,

engellere çarpmadan ba³lang�ç konumundan hedef konumuna ta³�r. Algoritma-

m�z�n geçerlili§ini ve uygulanabilirli§ini simülasyonlar üzerinde gösterdik.

Anahtar Kelimeler: Referans Yöneticisi, H�zl� Ke³feden Rasgele A§açlar, S�ral�

Ard�³�k Bile³im, Engelden Kaç�nma, Hareket Planlama

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to start by thanking my supervisors Af³ar Saranl� and Mustafa Mert

Ankaral� for their support, guidance and help throughout my academic studies.

They have always responded to my needs, they have listened to me patiently

and given me advices whenever I needed. We had invaluable discussions in

our research meetings, which helped me gain a deep understanding on how to

approach scienti�c problems.

It was Ömür Arslan who introduced to me the concept of Reference Governors,

which plays a major part in this study. I would like to thank him, for his

presenting their 2017 ICRA paper in our laboratory, ATLAS, and for the helpful

conversations we had afterwards. I am also grateful to Uluç Saranl� for his

guidance in his course, Robot Motion Planning and Control, and in ATLAS.

I had the opportunity to work with an amazing group of people in Robotics and

Autonomous Systems Laboratory, RoLab, and in ATLAS. Among them, special

thanks go to Ba³er Kandehir, with whom I worked together throughout my

M.S. studies. I thank Jean Piere Demir, Osman Kaan Karagöz, Halil �brahim

U§urlu, Abdullah Cem Önem, Nurullah Gülmü³, Lütfullah Tomak, Ay³e Deniz

Duyul, Merve Özen and Seyit Yi§it S�zlayan. They made the hours I spent in

the laboratory and my M.S. journey enjoyable.

I am thankful to TÜB�TAK, the National Scienti�c and Technological Research

Council of Turkey, for granting me their M.S. studies scholarship.

And above all, I am thankful to my mother, Feride Gölbol, my father, Heysem

Gölbol, my sister Esra Gölbol, and my brother, Ali Gölbol, for their endless love

and support.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xx

CHAPTERS

1. INTRODUCTION . 1

1.1 Literature Review . 2

1.2 Methodology and Contributions 3

1.3 Organization of the Thesis 4

2. BACKGROUND . 5

2.1 Reference Governors . 5

2.1.1 Calculation of O∞ 7

2.1.2 1D Reference Governor Example 8

2.2 RRT-Based Motion Planning 9

2.3 Sequential Composition 12

3. RG-TREES: A NOVEL FEEDBACKMOTION PLANNING AP-
PROACH . 13

xi

3.1 Tree Generation . 13

3.1.1 Node Generation 15

3.1.2 Node Expansion 17

3.1.3 RG*-Trees: Optimized RG-Trees 17

3.2 Motion Control . 21

3.2.1 Adding Speed and Acceleration Limits 23

3.2.2 Gateways . 23

4. IMPLEMENTATION AND RESULTS 27

4.1 Robot Motion Model . 27

4.2 E�ects of the Reference Governor 28

4.3 Performance Metrics . 29

4.4 Results on Sample Map 1 30

4.4.1 Case I: Basic RG-Trees Algorithm 30

4.4.2 Case II: RG-Trees with Node Expansion 31

4.4.3 Case III: RG-Trees with Tree Optimization . . 32

4.4.4 Case IV: RG-Trees with Node Expansion and
Tree Optimization 36

4.4.5 Comparison of Parameter Combinations 36

4.4.6 Case V: E�ects of Gateway Nodes 39

4.4.7 E�ects of Speed and Acceleration Limits . . . 42

4.4.8 Multiple-Query Tests 42

4.5 Results on Sample Map 2 47

4.5.1 Case I: Basic RG-Trees Algorithm 48

xii

4.5.2 Case II: RG-Trees with Node Expansion 50

4.5.3 Case III: RG-Trees with Tree Optimization . . 50

4.5.4 Case IV: RG-Trees with Node Expansion and
Tree Optimization 53

4.5.5 Comparison of Parameter Combinations 53

4.5.6 Case V: E�ects of Gateway Nodes 56

5. CONCLUSIONS . 59

5.1 Summary of Results . 59

5.2 Future Work . 60

REFERENCES . 63

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Block diagram of the algorithm. RG-Trees algorithm deter-

mines medium term set points, rt, which are reachable from the cur-

rent con�guration qt and steer to the goal location qgoal. Reference

governor modi�es rt such that the closed-loop robot does not collide

with the obstacles. 2

Figure 2.1 Block diagram of a reference governor applied to a closed loop

system. In this type of control schemes, an engineer �rst designs the

Controller (yellow) block ignoring the constrains, then he/she designs

the reference governor such that whole closed-loop system satis�es the

enforced constrains. 6

Figure 2.2 Simulation results of the example system (2.15) without RG

(no constraints) and with RG (constraint enforcement). In these Sim-

ulations solid red, yellow, and dark blue lines belong to state trajec-

tories and input respectively, wehereas solid light blue and dashed

black lines illustrate the �reference� signal and the constraint limit

respectively. (a) Unconstrained simulation (no RG) of the system in

(2.15). In this case, reference signal is unmodi�ed and constant at all

times. Thus, both x2 and u violate the constraints. (b) Simulations

with RG. RG successfully enforces the constraints by modifying the

reference signal. 10

xiv

Figure 2.3 RRT tree expansion process. A random state, qrand is sampled

from the free space. The nearest node on the tree, qnearest, is steered

towards qrand to obtain a new state, qnew. If the connection between

qnearest and qnew is collision-free, qnew is added to the tree. 11

Figure 2.4 Sequential composition. (a) The funnel steers a large set of

initial conditions to a smaller set. (b) Finding a global control policy

for a non-convex obstacle-free set is di�cult. (c) Constructing the

control policy as a composition of local funnels is simpler. 12

Figure 3.1 RG-Tree generation algorithm: (a) Initial map of the arena, (b)

A node generated(dark grey) and expanded(light grey) around goal

position, (c) A random point(red) sampled from the free space, closest

point to the previous tree(blue) calculated, a node generated(dark

grey) and expanded(light grey) around that point, (d) Another node

is generated and expanded as in (c). 15

Figure 3.2 Two consecutive nodes, CurrentNode(dark grey) and NextN-

ode(light grey), generated by the algorithm. The centroid of the in-

tersection(red point) is the set-point in CurrentNode. (x̄, ȳ) is Cur-

rentNode's coordinate frame, o�set by (x0, y0) and rotated by θ from

the global frame. 16

Figure 3.3 RG-Tree optimization. (a) A random tree generated by the

algorithm. The robot needs to turn CCW around the obstacle. (b)

Neighborhood graph that connects all intersecting node pairs. Dashed

lines illustrates the newly generated edges. (c) The optimal tree ob-

tained by running Dijkstra's algorithm on the graph. A shorter, CW

path is found. 19

Figure 3.4 (a) The tree generated before optimization, (b) Optimal tree

with the same nodes . 20

xv

Figure 3.5 Approximating speed limit constraint with a 32-sided polygon.

Circle: the actual constraint set, Polygon: its �nitely determined

inner approximation. 24

Figure 3.6 Originally, the connection is CurrentNode → NextNode,

for which the intersection is small. We generate a temporary node

Gateway and update the connection as CurrentNode→ Gateway →
NextNode. In the new tree, intersections between consecutive nodes

are larger. 26

Figure 4.1 E�ect of the RG. The robot starts from `o' at 1m/s initial

velocity in the horizontal direction. The goal location is `x'. Left. In

the unconstrained simulation, the robot crosses the node boundary.

Right. The RG ensures that the robot stays inside the node. 29

Figure 4.2 Sample Map 1. `o' is the start location and `x' is the goal

location. 30

Figure 4.3 Three di�erent solution paths for Map 1, belonging to three

di�erent homotopy classes. 31

Figure 4.4 Histogram plots for Case I, where node expansion and tree

optimization are disabled. 33

Figure 4.5 An example tree and solution path for Case I. 33

Figure 4.6 Histogram plots for Case II, where node expansion is enabled

and tree optimization is disabled. 34

Figure 4.7 An example tree and solution path for Case II. 34

Figure 4.8 Histogram plots for Case III, where node expansion is disabled

and tree optimization is enabled. 35

Figure 4.9 An example tree and solution path for Case III. 35

Figure 4.10 Histogram plots for Case IV, where node expansion and tree

optimization are enabled. 37

xvi

Figure 4.11 An example tree and solution path for Case IV. 37

Figure 4.12 Box plot of parameter combinations. Red mark indicates the

median. Bottom and top of the box are 25% and 75% points, respec-

tively. Case I: node expansion and tree optimization disabled, Case II:

node expansion enabled, tree optimization disabled, Case III: node ex-

pansion disabled, tree optimization enabled, Case IV: node expansion

and tree optimization enabled . 38

Figure 4.13 Histogram plots for Case V, where node expansion and tree

optimization are enabled and gateways are used 40

Figure 4.14 An example tree and solution path for Case V. Gateway nodes

are shown in red. 40

Figure 4.15 Box plot of parameter combinations. Red mark indicates the

median. Bottom and top of the box are 25% and 75% points, respec-

tively. Case II: node expansion enabled, tree optimization disabled,

Case IV: node expansion and tree optimization enabled, Case V: node

expansion and tree optimization enabled and gateways used 41

Figure 4.16 An example solution path and its v-t and a-t graphs when

speed limit is set to 0.8 m/s. 44

Figure 4.17 An example solution path and its v-t and a-t graphs when

speed limit is set to 1.2 m/s. 45

Figure 4.18 An example solution path and its v-t and a-t graphs when

acceleration limit is set to 0.8 m/s2. 46

Figure 4.19 Multiple query example. The robot starts from (8, 0.5) ini-

tially. After it reaches the goal, it is relocated to (1, 1) and then to (5,

4), both of which might or might not be covered already. The robot

reuses the previously generated tree. 47

xvii

Figure 4.20 Histogram plots for tree generation and recalculation. Mean

CPU time is 0.35s, 0.26s and 0.03s for the �rst, second and third cal-

culations respectively. For the second calculation, in 176 simulations

had already been covered. This number is 920 for the third calculation. 47

Figure 4.21 Sample Map 2, which features local minima. `o' is the start

location and `x' is the goal location. 48

Figure 4.22 Histogram plots for Case I, where node expansion and tree

optimization are disabled. 49

Figure 4.23 An example tree and solution path for Case I. 49

Figure 4.24 Histogram plots for Case II, where node expansion is enabled

and tree optimization is disabled. 51

Figure 4.25 An example tree and solution path for Case II. 51

Figure 4.26 Histogram plots for Case III, where node expansion is disabled

and tree optimization is enabled. 52

Figure 4.27 An example tree and solution path for Case III. 52

Figure 4.28 Histogram plots for Case IV, when node expansion and tree

optimization are enabled. 54

Figure 4.29 An example tree and solution path for Case IV. 54

Figure 4.30 Box plot of parameter combinations. Red mark indicates the

median. Bottom and top of the box are 25% and 75% points, respec-

tively. Case I: node expansion and tree optimization disabled, Case II:

node expansion enabled, tree optimization disabled, Case III: node ex-

pansion disabled, tree optimization enabled, Case IV: node expansion

and tree optimization enabled . 55

Figure 4.31 Histogram plots when node expansion and tree optimization

are enabled and gateways are used 56

xviii

Figure 4.32 An example tree and solution path when node expansion and

tree optimization are disabled and gateways are used. Gateway nodes

are shown in red. 57

Figure 4.33 Box plot of parameter combinations. Red mark indicates the

median. Bottom and top of the box are 25% and 75% points, respec-

tively. Case II: node expansion enabled, tree optimization disabled,

Case IV: node expansion and tree optimization enabled, Case V: node

expansion and tree optimization enabled and gateways used 58

xix

LIST OF ABBREVIATIONS

RG Reference Governor

RRT Rapidly-exploring Random Trees

RRG Rapidly-exploring Random Graph

O∞, MOAS Maximal Output Admissible Set

xx

CHAPTER 1

INTRODUCTION

Obstacle avoidance motion planning is one of the most fundamental tasks of

mobile robotics. The problem can be stated as follows: given the robot dynamics

and the description of the environment, the motion planner �nds a sequence of

commands such that the robot reaches the goal con�guration(s), while respecting

the constraints such as avoiding collisions with the obstacles, remaining within

velocity, acceleration and motor voltage limits. Traditionally, an o�-line planner

determines a collision-free trajectory that reaches a goal con�guration for the

kinematic model of the robot, and an on-line feedback controller follows that

trajectory as closely as possible [1].

In this thesis, we propose a new trajectory-free, sampling based, computationally

e�cient motion planning algorithm that can handle arbitrary obstacle con�gu-

rations provided that the system dynamics are linear or feedback linearizable [2].

The algorithm is composed of two stages: a random tree generation stage and

a feedback motion control stage. The block diagram topology of our method

is illustrated in. Fig. 1.1. The motion planning stage generates a �tree� that

connects the start location to the goal location, where the nodes are collision-

free, overlapping, square-shaped areas/volumes. The goal location is located

inside the root of the tree, and start location is located at a leaf node. Then,

the reference-governor-based motion control stage navigates the robot from the

robot's current node to the parent node guaranteeing that no constraint violation

occurs, eventually to the root node where the goal position resides.

1

map

Figure 1.1: Block diagram of the algorithm. RG-Trees algorithm determines

medium term set points, rt, which are reachable from the current con�guration

qt and steer to the goal location qgoal. Reference governor modi�es rt such that

the closed-loop robot does not collide with the obstacles.

1.1 Literature Review

Several recent studies utilize the reference governor framework for motion plan-

ning applications under some constraints. Arslan and Koditschek [3] propose a

provably correct, computationally e�cient motion planner for a world of spher-

ical obstacles. Petersen et al. [4] use rotating virtual hyperplane concept, in-

troduced by Park et al. [5], which puts an additional, time varying constraint

to avoid collision. Finally, without emphasizing motion planning, Gilbert and

Kolmanovsky [6] suggest hybrid reference governors: the idea of dividing the

con�guration space into convex, collision-free subsets, which are managed using

reference governors. Technically our method in this paper, random reference

governor trees for feedback motion planning, shares some principles with this

study.

There exist numerous modi�cations and extensions of RRT, each of which con-

centrating on a di�erent aspect of the algoritm. For example, some researchers

focused on the optimality aspects of the algorithm, [7�10], whereas some oth-

ers extended the basic algorithm to solve dynamic motion planning problems

[11�15]. On the other hand, similar to our method, some researchers modi�ed

the RRT algorithm (or other sampling based techniques) to use regions (funnels)

instead of points, which are then acted as the �basins of attraction� of some local

feedback control policies [1,16,17]. These feedback policies are connected in the

essence of the sequential composition idea introduced by Burridge et al. [18].

Each region is associated with a feedback control policy, which is responsible

2

for navigating the robot inside the area/volume to a �nal location which is also

located inside a di�erent but sequentially connected region.

1.2 Methodology and Contributions

Our algorithm consists of two stages: a random tree generation stage and a

motion control stage. The random tree generation stage constructs, in an RRT-

like manner, a directed tree of connected rectangular regions which are located

in the obstacle-free region. The resultant directed tree structure can also be

considered as a sequentially composed �funnel� set, similar to [1, 17]. In this

context, the goal state is located inside the region (basin of attraction) of the

root node/funnel. The motion control part is responsible for steering the robot

from its current node to the parent node, ensuring that the robot always remains

inside the current node and does not violate other constraints. When the robot

enters the intersection of those two nodes, the parent node now becomes the

active node, and the procedure repeats inside this new region. This process

guarantees that the robot reaches the goal location, as it is in the root of the

tree. In order to guarantee that the robot strictly stays inside the region de�ned

by the active node and no other constraint violation occurs, we use the concept

of reference governors. Overall, RG-Trees algorithm guarantees collision free

dynamic navigation from any point that is located inside one of the convex

regions to the goal location.

The main contribution of this thesis is the synthesis of reference governors,

sampling-based planning, and sequential composition. We propose to split the

constraints which ensure that the robot remains in the square region de�ned

by the active node from all other constraints, such as speed and acceleration

limits, and to use two RGs in a cascade con�guration. We show the rotation,

translation and scale invariance of the motion of a double integrator. With the

remark that every square in the 2D plane is the unit square, which is rotated,

translated and scaled suitably, we show that for all square-shaped nodes in the

tree, we can reuse the RG which is calculated for the unit square. Therefore, we

show that in the presence of other constraints, our algorithm calculates only 2

3

RGs, regardless of the number of nodes on the tree and their orientations. For

each node, the algorithm uses the �rst RG by rotating, translating and scaling,

and the second RG directly.

We also propose a couple of enhancements to the basic RG-trees algorithm. We

�rst introduce a node/region expansion phase at each iteration of the tree gen-

eration step to enhance sparsity of the planning algorithm. We then propose a

method to optimize the RG-tree structure which is similar to how RRG (Rapidly

Exploring Random Graphs) optimizes the RRT [19]. However, although opti-

mization step optimizes the path length, we show that it has some negative

e�ect on the navigation speed of the robot due to small intersections between

some nodes. In order to handle, this problem, we propose the usage of �gateway

nodes� which are generated in real-time. We implemented and tested RG-Trees

and its applicability and feasibility using Matlab simulations on two di�erent 2D

environments. In addition to some illustrative results, we also performed 1000

Monte-Carlo simulations to better assess the performance of di�erent cases. We

de�ned some performance parameters and presented their histogram plots and

comparative combined box plots.

1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we give the relevant back-

ground on reference governors, RRT and sequential composition. Subsequently,

in Chapter 3, we introduce our fundamental algorithm, RG-Trees, which com-

bines these ideas to formulate a guaranteed obstacle avoidance dynamic motion

planner. We also explain our proposed improvements on the fundamental algo-

rithm, which are node expansion, tree optimization, and gateway nodes. Then,

to test the feasibility and e�ectiveness of the algorithm, we make Monte-Carlo

simulations with di�erent parameter con�gurations. We share the implemen-

tation details and results in Chapter 4. Finally, we draw some conclusions in

Chapter 5.

4

CHAPTER 2

BACKGROUND

RG-Trees algorithm combines ideas and concepts from reference governors [20],

rapidly-exploring random trees [21] and sequential composition of dynamic be-

haviors [18]. For the sake of completeness, we brie�y covered the important

principles of these methods in this Chapter.

2.1 Reference Governors

The reference governor is an add-on scheme/controller that modi�es the refer-

ence command of a well-designed closed loop system [20] in order to enforce

some pointwise-in-time state and control input constraints. In a reference gov-

ernor based controller topology, one �rst designs a closed-loop controller ignor-

ing the constrains emphasizing other performance metrics and criteria such as

controller simplicity, speed of response, robustness, and disturbance rejection.

Then, he/she adds a reference governor in a cascade con�guration around the

closed loop system to ensure constraint enforcement [6]. Fig. 2.1 illustrates the

combined controller topology [22].

Consider a closed loop system given with discrete time state space model

qt+1 = Aqt +Bvt

yt = Cqt +Dvt
(2.1)

and constraint set, yt ∈ Y ∀t. The task of RG is to �nd the optimal modi�ed

reference signal, vt, given the initial state qt and unconstrained reference rt, such

that

5

Controller Plant

Closed-loop system

Governor

Figure 2.1: Block diagram of a reference governor applied to a closed loop sys-

tem. In this type of control schemes, an engineer �rst designs the Controller

(yellow) block ignoring the constrains, then he/she designs the reference gover-

nor such that whole closed-loop system satis�es the enforced constrains.

• vt is as close to rt as possible

• if vt is kept constant, no constraint violation occurs in the subsequent

motion

De�nition 1 Given a dynamical system S and a constraint set yt ∈ Y , the

pair of an initial state and a reference signal, (q0, v), is output admissible if,

starting from the initial state q0 and keeping the reference signal constant at v,

no constraint violation occurs in the subsequent motion.

De�nition 2 Given a dynamical system S and a constraint set yt ∈ Y , the

set of all output admissible pairs is called the Maximal Output Admissible Set

(MOAS), O∞ [23].

Algorithmic determination of O∞ is explained in detail in [23] and summarized

in Subsection 2.1.1. From [20], we have that if

• the matrix pair (C,A) is observable

• the matrix A is asymptotically stable

• the constraint set Y is a polytope containing the equilibrium point in its

interior, i.e., there exist a matrix S and a vector s for which

Y = {y | Sy ≤ s}1 (2.2)
1 Note that the vector comparison operator ≤ here indicates that all elements of the LHS are

smaller than or equal to the corresponding element in the RHS.

6

MOAS turns out to be a polytope:

O∞ = {(q0, v) | Hqq0 +Hvv ≤ h}, (2.3)

for which Hq, Hv and h can be calculated o�ine, if the system is time invariant

and the constraint set is static.

For MOAS calculated in (2.3), the Scalar Reference Governor is formulated as

follows: the modi�ed reference v is initialized to an initially output admissible

value given the initial state q0. Then, it is updated in a loop according to the

following equation:

vt = vt−1 + κt(rt − vt−1), (2.4)

where κt is maximized subject to

• 0 ≤ κt ≤ 1

• (qt, vt) is output admissible, i.e., Hqqt +Hvvt ≤ h

2.1.1 Calculation of O∞

Rewrite the state space equations given in (2.1) as

q̄t+1 = Āq̄t

yt = C̄q̄t
(2.5)

where

q̄t = [qt vt]
T , Ā =

A B

0 I

 , C̄ =
[
C D

]
(2.6)

so that

yt = C̄Ātq̄0 (2.7)

and for the constraint set yt ∈ Y , de�ne the k-time-step maximal output admis-

sible set

Ok =
{
q̄0 | C̄Ātq̄0 ∈ Y t = 0, 1, ..., k

}
(2.8)

Note that O∞ is the in�nite horizon maximal output admissible set.

Clearly,

O∞ ⊂ Ok1 ⊂ Ok2 ∀k1, k2 ∈ Z+, k1 > k2 (2.9)

7

It can be shown that if Ok∗+1 = Ok∗ for some k∗ ∈ Z+, then Ok = Ok∗ ∀k ≥ k∗,

thus O∞ = Ok∗ [23]. Therefore, to calculate O∞, it is su�cient to show that

two consecutive sets in the sequence O1, O2, ... are equal to each other.

Consider the constraint set given in (2.2). In order to show that two sets are

equal, rewrite the constraint set as

Ok = {y | Sy − s ≤ 0} =
{
y | SC̄Ātq̄0 − s ≤ 0 t = 0, 1, .., k

}
(2.10)

Now, to check whether the newly introduced constraint in Ok+1 reduces the set,

solve the following optimization problem:

maximize Jk+1(q̄0) = SC̄Āk+1q̄0 − s (2.11)

subject to

Jt(q̄0) = SC̄Ātq̄0 − s ≤ 0 t = 0, 1, .., k (2.12)

This optimization procedure is a linear programming problem and there exist

tools to solve it [24]. If all rows of the maximum value are less than 0, set

O∞ = Ok. Otherwise, try the same procedure for larger k.

2.1.2 1D Reference Governor Example

To illustrate the e�ect of RG on the reference signal and state variables, we

implemented the one-dimensional double integrator system given in [20]. Con-

tinuous time system model and controller are given as

ẋ1 = x2

ẋ2 = u

u = −0.917(x1 − r)− 1.636x2

(2.13)

and the constraint set is given as

|x1| ≤ 1, |x2| ≤ 0.1, |u| ≤ 0.1 (2.14)

The set point is r = 0.5. The system is discretized for the RG at a sampling rate

of Ts = 0.1s. Given the output de�nition, yt = [x1 x2 u]T , state space equations

take the form

xt+1 =

 1 0.1

−0.0917 0.8364

xt +

 0

0.0917

 rt,
8

yt =

1 0

0 1

−0.917 −1.636

xt +

0

0

0.917

 rt (2.15)

and the constraint with respect to the de�nition in (2.2) can be written as

1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1

yt ≤

1

1

0.1

0.1

0.1

0.1

(2.16)

Fig. 2.2 illustrates a simulation result without and with RG for the given ex-

ample system. It is clear that when there is no RG, i.e. Fig. 2.2(a), the system

trajectories violate the constraints on x2 and u. When we activate the RG, i.e.

Fig. 2.2(b), the modi�ed reference signal evolves nonlinearly and reaches in �-

nite time to the unmodi�ed reference such that no constraint violation occurs

in the simulation.

2.2 RRT-Based Motion Planning

Rapidly-Exploring Random Trees (RRT) algorithm constructs a tree of feasible

paths by incrementally adding a random, collision-free edge to the tree [21]. Its

algorithmic parameters such as time complexity, space complexity, completeness

and optimality are discussed in [19].

The algorithm works as follows: The tree is initialized to the start location as

its root. Then, a random point qrand is sampled from the obstacle-free space.

The closest vertex to qrand on the tree, qnearest, is determined. Then, the robot

con�guration at qnearest is steered towards qrand, giving a new point qnew. Usually

the step length is limited, thus qnew is a closer point to qnearest. Finally, if the

link connecting qnew to qnearest is collision-free, the vertex qnew and the edge

(qnew, qnearest) are added to the tree. This procedure iterates until the goal

9

0 4 8

0

0.2

0.4

0.6

0 4 8

v
x1x2
u

(a) (b)

Figure 2.2: Simulation results of the example system (2.15) without RG (no con-

straints) and with RG (constraint enforcement). In these Simulations solid red,

yellow, and dark blue lines belong to state trajectories and input respectively,

wehereas solid light blue and dashed black lines illustrate the �reference� signal

and the constraint limit respectively. (a) Unconstrained simulation (no RG) of

the system in (2.15). In this case, reference signal is unmodi�ed and constant

at all times. Thus, both x2 and u violate the constraints. (b) Simulations with

RG. RG successfully enforces the constraints by modifying the reference signal.

10

location is reached by a vertex. The procedure is given in Algorithm 1 [19], and

illustrated in Fig. 2.3.

If the samples are drawn uniformly, the probability that any particular vertex

in the tree becomes qnearest is proportional to the area of its Voronoi region. In

addition, larger Voronoi regions occur on the frontier of the tree. As a result,

RRT tends to grow towards the unexplored areas.

Algorithm 1 RRT

1: T ← InitializeTree(V ← {qinit}, E ← ∅)
2: for i = 1 to N do

3: qrand ← SampleFreeSpace(i)

4: qnearest ← Nearest(G = (V,E), qrand)

5: qnew ← Steer(qnearest, qrand)

6: if ObstacleFree(qnearest, qnew) then

7: V ← V ∪ {qnew}
8: E ← E ∪ {(qnearest, qnew)}
9: end if

10: end for

11: return G = (V,E)

Figure 2.3: RRT tree expansion process. A random state, qrand is sampled

from the free space. The nearest node on the tree, qnearest, is steered towards

qrand to obtain a new state, qnew. If the connection between qnearest and qnew is

collision-free, qnew is added to the tree.

11

2.3 Sequential Composition

In the previous literature, the metaphor of a funnel is used to describe feedback

motion planners. The funnel's task is to collect a large set of initial con�gurations

and steer them to a smaller set of goal con�gurations. In this metaphor, the

region of attraction of the feedback controller is the inlet of the funnel, and goal

con�guration set is its outlet. An example funnel is illustrated in Fig.2.4.a.

It is usually di�cult, sometimes even impossible, to �nd a single global funnel,

whose inlet is the entire free space [25, 26], as depicted in Fig.2.4.b. In such

cases, the global funnel can be constructed as a sequential composition of local

funnels [1, 17, 18]. Each local funnel's task now is to steer the con�gurations in

its inlet set to the next funnel, eventually to the master funnel, whose outlet is

the goal con�guration. This sequential composition is illustrated in Fig. 2.4.c.

Figure 2.4: Sequential composition. (a) The funnel steers a large set of initial

conditions to a smaller set. (b) Finding a global control policy for a non-convex

obstacle-free set is di�cult. (c) Constructing the control policy as a composition

of local funnels is simpler.

12

CHAPTER 3

RG-TREES: A NOVEL FEEDBACK MOTION PLANNING

APPROACH

RG-Trees algorithm consists of two stages. In the �rst stage, a tree structure

that is composed of connected square shaped regions is generated using the map

of the environment, ignoring the robot motion dynamics. First region is created

around the goal location. Then, tree extension is repeated until one of the newly

created regions covers the start location. In this way we ensure that there is a

�safe connection� between the start location and the goal location.

In the second stage, a reference governor based control strategy that navigates

the dynamic robot to goal location is used. It is important to note that this

algorithm does not generate an open-loop trajectory. Instead, it calculates a set

of connected regions where the robot can be controlled safely. The trajectory of

motion is then determined by the equations of motion of the robot.

The basic RG-Trees algorithm and node expansion process have been reported

in a conference paper [27].

3.1 Tree Generation

The aim of the tree generation stage is to cover the con�guration space, fully

or partially, by connected nodes (regions) for which the robot's motion can be

controlled independently, to construct a global motion planner [1, 17]. In [1],

con�guration space is covered by balls probabilistically, and a graph structure is

constructed. Then, global navigation problem is reduced to a search problem on

13

the graph. In [17], instead of a graph, a tree structure is used and tree generation

is stopped as soon as initial and goal con�gurations are connected, emphasizing

computational simplicity over path optimality. In these methods the nodes

are chosen to be circular, because of the applied control methods (Navigation

functions in [1] and Lyapunov function based controller in [17]), although there

are studies to use rectangular regions of attraction with navigation functions [28].

In this work, we use a reference governor based controller. Since �nite determi-

nation of reference governors is guaranteed under convex polygonal constraint

set [20], our algorithm's nodes are not circular. For the sake of simplicity and

feasibility, we adopted square-shaped regions. Note that one can use the algo-

rithm using any convex polygon or a set of predetermined convex polygons, with

only slight modi�cations.

We illustrate the tree generation algorithm in Fig.3.1. The algorithm starts from

the goal location. A node is generated around that point (see Sec.3.1.1), and

this node is expanded (see Sec.3.1.2). Then, until a stop condition is satis�ed,

the following procedure is repeated:

• a random point, qrand, is sampled from the space which is not covered by

a node

• from the covered area, the closest point to this sample, qnearest, is calculated

• a new node is generated and expanded around that point

Termination condition can be that the con�guration space is probabilistically

covered [1]. However, in our example, tree generation is terminated as soon as

the start location is covered by a node, as in [17]. The rationale behind this

choice is that tree generation algorithm is incremental, if the robot leaves the

covered space, new nodes can be added on-line, and the algorithm is su�ciently

fast for a variety of systems to be performed in real time.

After all nodes are generated, the constructed tree is optimized with respect to

approximate path length (see Sec.3.1.3). Pseudocode for RG-Tree generation is

given in Algorithm 2.

14

GOAL

(a) (b)

(c) (d)

Figure 3.1: RG-Tree generation algorithm: (a) Initial map of the arena, (b) A

node generated(dark grey) and expanded(light grey) around goal position, (c)

A random point(red) sampled from the free space, closest point to the previous

tree(blue) calculated, a node generated(dark grey) and expanded(light grey)

around that point, (d) Another node is generated and expanded as in (c).

3.1.1 Node Generation

When a new node is to be generated around a point qnearest, the closest point on

an obstacle to that point, qobs, is calculated. Then, a square region is constructed

with the former point being its center and the latter being its �rst corner.

The corner point is stored as the o�set of the node's reference frame, (x0, y0), and

the angle between the �rst edge and horizontal is stored as the node's rotation,

θ, see Fig. 3.2. Moreover, edge length of that square is stored as the node's

scale.

15

Figure 3.2: Two consecutive nodes, CurrentNode(dark grey) and NextNode(light

grey), generated by the algorithm. The centroid of the intersection(red point) is

the set-point in CurrentNode. (x̄, ȳ) is CurrentNode's coordinate frame, o�set

by (x0, y0) and rotated by θ from the global frame.

This procedure can be formalized as follows: Let WOi be the ith obstacle in the

workspace and WO be the obstacle set,

WO =
⋃
i

WOi. (3.1)

Let also B be the set of all points which are covered by a square node,

B =
⋃
i

Nodei. (3.2)

Then,

qnearest = arg min
q∈B

‖q − qrand‖ (3.3)

qobs = arg min
q∈WO

‖q − qnearest‖ (3.4)

This de�nition ensures that a ball with center qnearest and radius r = ‖qnearest−
qobs‖ resides inside the obstacle-free region, and therefore that any polygon

which is inscribed by this ball also resides totally inside the obstacle-free region.

We choose the polygon to be a square with center being qnearest and one of its

16

corners being qobs.

Nodei.o�set = qobs

Nodei.θ = ∠ (qnearest − qobs)−
π

4

Nodei.scale = ‖qnearest − qobs‖ ·
√

2

(3.5)

3.1.2 Node Expansion

Usage of larger nodes yields two major advantages. Firstly, since larger nodes

cover larger areas of the free space, they result in a more sparse tree. Secondly,

they allow the robot to move faster. The reference governor ensures that the

robot's motion is con�ned to the current node, which implicitly incurs a velocity

constraint on the robot. Larger nodes result in looser constraints.

For the sake of simplicity, the nodes are expanded in discrete steps. At each

step, the node's scale is multiplied by a constant factor γ, keeping the o�set and

the rotation unaltered. If the expanded node collides with an obstacle, the last

expansion is reverted. If no collision occurs, the procedure repeats.

Larger values for multiplication constant γ yield lower calculation time with

lower spatial resolution, and smaller values yield better spatial resolution at

the expense of slower calculations. A constant value of γ = 1.2 resulted in

satisfactory results in our experiments.

3.1.3 RG*-Trees: Optimized RG-Trees

A randomly generated tree is not likely to be optimal. However, in some appli-

cations, the path is expected to be optimal with respect to a given cost function,

such as path length or execution time. To ensure optimality, some extra com-

putational steps must be taken.

Several attempts have been made to �nd the �optimal� versions of sampling

based techniques im the literature. Among those, two are based on RRT: RRG

and RRT* [19]. In RRG, instead of a tree structure that is used in RRT, new

edges are generated (keeping the nodes �xed) such that tree structure is trans-

17

formed into an undirected graph. The algorithm starts like RRT, it attempts

to connect the sample point qnew to the closest node on the graph, as given

in Algorithm 1. If this connection is successful, RRG algorithm goes on to

attempt to connect qnew to all nodes within a neighborhood of it. After the

graph generation, optimal path is found using a graph search algorithm, usually

A*. RRG is best suited for multiple query missions with distinct start and goal

con�gurations.

RRT* constructs the optimal tree incrementally. The tree is obtained by re-

moving from RRG the edges which are not on a shortest path from any leaf

to the root. This algorithm also starts like RRT. If the sample point qnew can

be connected to the tree, RRT* attempts to connect qnew to all nodes within a

neighborhood of it. The algorithm constructs a local graph of connected nodes

this way. It runs a search algorithm on this local graph, and rewires the opti-

mal tree accordingly, if necessary. Since it stores the same nodes as and only a

subset of the edges of RRG, RRT* is more memory-e�cient compared to RRG.

Having a directed tree structure, this algorithm is used for single query missions

or multiple query missions with a single goal location.

Similar to RRT*, RG-Trees algorithm returns the optimal path in a tree data

structure. However, unlike RRT*, in our algorithm there is no need for an

optimisation step at every sample locally. Instead, RG-Trees algorithm performs

the optimization as a batch after the full RG-tree is constructed, similar to RRG,

putting emphasis on sparsity of the tree. Yet, in contrast to RRG, the graph

structure is not constructed by �nding all connections at each sample either.

Tree-to-graph conversion is also carried out after the full tree is generated. In this

context, compared to both optimization steps in RRT* and RNG, the additional

computational burden of RG*-Trees is quite limited.

RG-Trees �rst generates a tree of connected nodes, as RRT does. The nodes are

square-shaped regions in the obstacle-free workspace, see Section 3.1.1. Since all

nodes reside totally in the obstacle-free space, a direct feasible path exists from

a point P1 in a node node1 to another point P2 in another node node2 if and

18

only if the regions de�ned by these nodes have overlapping interiors [1, 6]:

int (node1 ∩ node2) 6= ∅. (3.6)

Therefore, the graph can be constructed by �nding and connecting all pairs

of intersecting nodes. All intersecting pairs of N polygons can be found with

Bentley-Ottmann algorithm [29] with O(N logN) time complexity. For the sake

of simplicity, the Euclidean distance between the centers of the overlapping nodes

are used as the edge weights, i.e. transition costs, although better heuristics can

be formulated. The resulting graph is similar to the Random Neighborhood

Graph [1].

Finally, we apply Dijkstra's algorithm to �nd the shortest paths from all leaf

nodes to the root. Like RRT*, we remove all edges which are not on a shortest

path and convert the graph into a directed optimal tree. Fig. 3.3 and Fig. 3.4

illustrate the tree optimization process.

(a) (b) (c)

Figure 3.3: RG-Tree optimization. (a) A random tree generated by the algo-

rithm. The robot needs to turn CCW around the obstacle. (b) Neighborhood

graph that connects all intersecting node pairs. Dashed lines illustrates the

newly generated edges. (c) The optimal tree obtained by running Dijkstra's

algorithm on the graph. A shorter, CW path is found.

19

(a) (b)

Figure 3.4: (a) The tree generated before optimization, (b) Optimal tree with

the same nodes

Algorithm 2 RG Tree Generation

1: GoalNode← GenerateSquareRegion(qgoal)

2: GoalNode← Expand(GoalNode)

3: T ← InitializeTree(GoalNode)

4: for k = 1 to K do

5: qrand ← SampleFree()

6: qnearest ← Nearest(T, qrand)

7: Nodek ← GenerateSquareRegion(qnearest)

8: Nodek ← Expand(Nodek)

9: T.InsertNode(Nodek)

10: if qinit ∈ T then

11: T ← OptimizeTree(T)

12: return T

13: end if

14: end for

15: Return NoSolution

20

3.2 Motion Control

Gilbert and Kolmanovsky [6] proposed a hybrid reference governor method,

which divides the con�guration space into overlapping, convex sets, and designs

a di�erent reference governor for each set. However, calculation of MOAS for

a given dynamical system and constraint set is computationally expensive. In

our study, for computational e�ciency and considering limitations in real-time

motion planning applications, we propose a method to minimize the number of

MOAS calculations. Observe the following:

• MOAS calculation is linear in the constraint set,

• If the equations of motion of the system are symmetric under rotation,

MOAS can be rotated (and translated),

• A reference governor with a large number of constraints can be divided

into two or more reference governors which address di�erent constraints of

the older reference governor.

The �rst statement can be rewritten as follows: If

MOAS ({y | Sy ≤ s}) = {(q0, v) | Hqq0 +Hvv ≤ h}, (3.7)

for a particular system, then

MOAS ({y | Sy ≤ αs}) = {(q0, v) | Hqq0 +Hvv ≤ αh} ∀α. (3.8)

That is, for all square-shaped positional constraints of the form

{(x, y) | 0 ≤ x ≤ α, 0 ≤ y ≤ α}, (3.9)

it would su�ce to calculate MOAS for the constraint set

{(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (3.10)

21

The second statement indicates that, since the double integrator system is sym-

metric under rotation, any square-shaped positional constraint set can be con-

verted into the form given in (3.9). For example, for a 2D dynamic robot with

the canonical state variable q = [x y ẋ ẏ]T , for the square node given in Fig. 3.2,

conversion is given by

x

y

ẋ

ẏ

 =

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

 ·

x̄

ȳ

˙̄x

˙̄y

+

x0

y0

0

0

 (3.11)

The last statement allows that the square-shaped positional constraints, which

are required by the algorithm, constitute one reference governor, RG1, while all

other constraints such as velocity and control input limitations constitute an-

other reference governor, RG2, if necessary. Then, for any node of the generated

tree, RG1 is rotated, translated and scaled accordingly while RG2 is used di-

rectly. Design of RG2 for speed and acceleration constraints is given in Section

3.2.1.

RG-Trees motion control algorithm is as follows: Initially the node where the

robot is located is stored as CurrentNode and its parent as NextNode. Simi-

larly, the reference governors obtained by rotating, translating and scaling RG1

according to these nodes are stored as CurrentRG and NextRG, respectively.

Recall that the task of the motion control part is to navigate the robot from

its current node to the parent node, and eventually to the root node of the

tree where the goal location is situated. Therefore, the medium-term non-

modi�ed reference signal, rt, should be inside the intersection of CurrentNode

and NextNode. We use the centroid of this intersection for rt:

rt = centroid(CurrentNode ∩NextNode) (3.12)

We also initialize the modi�ed reference signal to the robot's initial location,

which is guaranteed to be output admissible for CurrentRG if the robot is

initially stationary:

v0 = qinit (3.13)

22

Then, in the control loop, vt is updated according to (2.4), using CurrentRG and

RG2 in series. When the pair of robot's state and the modi�ed reference, (qt, vt),

is output admissible for NextRG, the robot is said to enter NextNode. Then,

CurrentNode is updated to NextNode, and NextNode to its parent node.

CurrentRG, NextRG and rt are also updated accordingly. If CurrentNode is

the root node, the medium-term reference signal rt is set to qgoal.

3.2.1 Adding Speed and Acceleration Limits

In 2D, speed limit can be written as

v2x + v2y ≤ v2max. (3.14)

De�nition 3 A set Y is �nitely determined if it can be described by a �nite set

of linear inequalities, that is, if it can be written as in (2.2) with a �nite-size

matrix S and a �nite-size vector s.

The constraint (3.14) cannot be written as in (2.2) with �nite-size S and s,

therefore MOAS is not guaranteed to be �nitely determined, as in (2.3). Thus,

we use a �nitely determined inner approximation of this constraint set by con-

straint tightening [30]. We approximate the circle described in (3.14) with a

32-sided regular polygon, as illustrated in Fig.3.5. Since the polygon's outer

radius is vmax, the robot is guaranteed to not exceed the speed limit. Moreover,

the inner radius of the polygon is vmax · cos(π/32) = 0.9952 · vmax, therefore

approximation error is less than 0.5%.

We formulate the acceleration limit similarly as a 32-sided polygon.

3.2.2 Gateways

The reference governor part ensures that the dynamical robot stays inside the

square region de�ned by CurrentNode for all time. Therefore, it is expected

23

circle
polygon

Figure 3.5: Approximating speed limit constraint with a 32-sided polygon. Cir-

cle: the actual constraint set, Polygon: its �nitely determined inner approxima-

tion.

to slow down the robot as it approaches the borders of the region. In the de-

sired operation, before approaching the border, the robot enters NextNode.

Since NextNode's border is farther away than that of CurrentNode, the robot

continues its motion without slowing down. However, because the tree is gener-

ated randomly and then optimized, it is possible that the intersection between

CurrentNode and NextNode is small. In such cases, we observed in our sim-

ulations that the robot slows down before entering NextNode. In order to

prevent this e�ect, we propose using temporary nodes between CurrentNode

and NextNode, that we call gateways.

When the robot's speed falls below a threshold, the algorithm estimates that a

small intersection case occurred. To increase the intersection between consec-

utive nodes, RG-Tree execution algorithm generates and expands a temporary

node, Gateway, around the centroid of the intersection of CurrentNode and

NextNode. Then, it updates the connection CurrentNode → NextNode as

CurrentNode → Gateway → NextNode on the tree. This procedure is illus-

trated in Fig. 3.6.

24

Algorithm 3 RG Tree Execution

1: CurrentNode← T.LastNode()

2: NextNode← CurrentNode.Parent()

3: r ← Centroid(CurrentNode ∩NextNode)
4: v ← qinit

5: RG1← ReferenceGovernor(UnitSquareConstraints)

6: CurrentRG← RTS(RG1, CurrentNode) . Rotate, Translate and Scale

RG1 according to CurrentNode

7: NextRG← RTS(RG1, NextNode)

8: while qgoal not reached do

9: if in GoalNode then

10: r ← qgoal

11: else if OutputAdmissible(q,NextRG) then

12: CurrentNode← NextNode

13: NextNode← NextNode.Parent()

14: r ← Centroid(CurrentNode ∩NextNode)
15: CurrentRG← NextRG

16: NextRG← RTS(RG1, NextNode)

17: end if

18: if speed < THRESHOLD then

19: Gateway ← GenerateSquareRegion(r)

20: Gateway ← Expand(Gateway)

21: Gateway.Parent← NextNode

22: NextNode← Gateway

23: NextRG← RTS(RG1, Gateway)

24: r ← Centroid(CurrentNode ∩Gateway)

25: end if

26: v ← Modi�edReference(q, r, v, CurrentRG)

27: v ← Modi�edReference(q, r, v, RG2)

28: end while

25

Figure 3.6: Originally, the connection is CurrentNode→ NextNode, for which

the intersection is small. We generate a temporary node Gateway and update

the connection as CurrentNode → Gateway → NextNode. In the new tree,

intersections between consecutive nodes are larger.

26

CHAPTER 4

IMPLEMENTATION AND RESULTS

We illustrate the �ow of the RG-Trees algorithm and its feasibility on computer

simulations. We investigate the e�ects of node expansion, tree optimization and

gateway usage by repeating the simulations with di�erent parameter combina-

tions. For each combination, we make N=1000 Monte-Carlo simulations and

give their histogram plots. We also test the e�ects of velocity and acceleration

limits, discussed as RG2 in Chapter 3. Finally, we test multiple-query perfor-

mance of the algorithm. In this test, after the robot reaches goal location, we

relocate it to another point on the map and measure the replanning time. We

made Monte-Carlo simulations.

This chapter gives implementation details and simulation results.

4.1 Robot Motion Model

In the simulations, a fully-actuated, double-integrator, planar, point robot model

is used. State vector of the robot is q = [x y ẋ ẏ]T , and the input vector is

u = [ẍ ÿ]. Full state of the robot is measured. The system is discretized using

forward Euler method. Discrete time state space model of the open-loop robot

is then,

A =

1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 , B =

0 0

0 0

Ts 0

0 Ts

 ,

27

C = I4, D = 0, (4.1)

The reference governor works on the closed-loop system. In order to emphasize

the e�ectiveness of the algorithm, as the inner loop controller, an underdamped

PD controller is chosen:

u =

Kp(rx − x)−Kdẋ

Kp(ry − y)−Kdẏ

 =

−Kp 0 −Kd 0

0 −Kp 0 −Kd

 ·

x

y

ẋ

ẏ

+

Kp 0

0 Kp

 ·
rx
ry

(4.2)

The controller's parameters are Ts = 0.05s, Kp = 4.1 and Kd = 2.2. If these

parameters and (4.2) are substituted in (4.1) the overall discrete time state space

model of the closed loop system is obtained as follows:

A =

1 0 0.05 0

0 1 0 0.05

−0.205 0 0.89 0

0 −0.205 0 0.89

 , B =

0 0

0 0

0.205 0

0 0.205

 (4.3)

4.2 E�ects of the Reference Governor

In RG-Trees algorithm, the square regions, which are de�ned by the nodes,

are placed totally in the obstacle-free space. Therefore, collision avoidance is

guaranteed only if the robot stays inside such square regions, and it is RG's task

to keep the robot inside the region. In this section, we demonstrate the necessity

for the RG on an example scenario.

In Fig. 4.1, the robot starts from the point (0.1, 0.1) at a 1m/s velocity in

the x direction. The goal location is (0.95, 0.95), and the admissible region is

0 ≤ x, y ≤ 1, which is shown in grey. Without RG (left), the robot crosses the

node boundary, which might or might not result in a collision. When RG is

28

used, the robot stays within the node all the time, therefore collision avoidance

is ensured.

Figure 4.1: E�ect of the RG. The robot starts from `o' at 1m/s initial velocity

in the horizontal direction. The goal location is `x'. Left. In the unconstrained

simulation, the robot crosses the node boundary. Right. The RG ensures that

the robot stays inside the node.

4.3 Performance Metrics

In this thesis we introduced the fundamental RG algorithm and also proposed

some potential improvements. In order to have a comparative analysis between

di�erent methods, we utilize some performance metrics as described below

Success Rate: The number of successful missions out of N=1000 simulations

CPU Time: The time it takes for the algorithm to �nd a path

Number of Nodes: The total number of nodes on the tree

Path Depth: The number of nodes on the path

Average Speed: The average speed of the robot during its motion

Arrival Time: The time it takes for the robot to reach goal location

Path Length: The total length of the robot's trajectory

29

4.4 Results on Sample Map 1

Firstly, we tested RG-Trees algorithm on the sample map given in Fig. 4.2. The

boundary of the arena is square shaped, with edge length 12m. There exist six

di�erent polygonal obstacles in the arena.

Fig. 4.3 illustrates three di�erent alternative solutions with the same initial and

goal con�guration. Note that there exist di�erent homotopy classes of solutions;

therefore, the probability distribution of performance metrics are expected to

be multi-modal. Respective subsections provide the histogram results of the

performance metrics.

Figure 4.2: Sample Map 1. `o' is the start location and `x' is the goal location.

4.4.1 Case I: Basic RG-Trees Algorithm

In this case, node expansion, tree optimization, and gateways are all disabled. In

997/1000 simulations, the robot reached the goal location within the 60s time

limit. We observe that in the failure cases, intersection between some nodes

become too small which slows down the robot motion accordingly due to the

enforced constraints.

On average, RG-Trees algorithm found a path in 0.14s, with 106 nodes, of which

30

Figure 4.3: Three di�erent solution paths for Map 1, belonging to three di�erent

homotopy classes.

21 are on the path between the start and goal con�gurations. Again on average,

the robot reaches the goal location in 17.48s, with an average speed of 0.99m/s.

The resulting average trajectory length is 16.87m. Histogram plots of CPU time,

path length, arrival time and average speed are given in Fig. 4.4. A sample tree

and path generated with this parameter con�guration are given in Fig. 4.5. As

expected, some histogram plots are multi-modal.

4.4.2 Case II: RG-Trees with Node Expansion

In this case, node expansion is enabled, but tree optimization and gateways are

disabled. In these MC simulations, the robot reached in all 1000 simulations

within 60s time limit. On average, RG-Trees algorithm found a path in 0.20s,

with 70 nodes, of which 18 are on the path. The robot reached the goal location

in 14.80s, at an average speed of 1.09m/s. The resulting average trajectory

length is 15.81m long.

The node expansion process also increases the area of the intersections between

di�erent nodes, thus we have never observed a failure case that is reported in

Case I. In addition to this improvement, thanks to larger nodes, the robot moves

31

10% faster on average, and since the robot is allowed to move farther away from

the obstacle boundaries, average path length is 6% shorter. As a result, the

robot reaches the goal location in 15% less time. The additional CPU time is

only 0.06s.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.6. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.7. These results show that node expansion adds

an almost negligible amount of computational complexity (on this map), yet

provides substantial performance improvements in other aspects.

4.4.3 Case III: RG-Trees with Tree Optimization

In this case, tree optimization is enabled, but node expansion and gateways are

disabled. We observed that in 989 of 1000 simulations, the robot reached the

goal location within 60s time limit. It can be seen that the number of failed

cases is even higher than the Case I. We suspect that the reason for this is the

occasional problematically small intersection regions between consecutive nodes

on the new optimized path. Such examples can be observed in Fig. 4.9.

On the other hand, in this case on average the algorithm found a path in 0.34s,

with 107 nodes, of which 16 are on the path. The robot reached the goal location

in 18.03s, at an average speed of 0.93m/s. The resulting trajectory is 16.22m

long. If the intersection is too small the robot unavoidably halts, otherwise it

slows down, which is the reason of the decrease in average speed. The resulting

path is slightly shorter.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.8. A sample tree and path generated with this parameter con�g-

uration are given in Fig. 4.9. These results suggest that performing optimization

with other improvements disabled is not a preferable option.

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

solut�on generat�on t�me (s)

0

50

100

150

200

250

300

fr
eq

ue
nc

y

12 13 14 15 16 17 18 19 20 21

path length (m)

0

20

40

60

80

100

120

140

160

180

fr
eq

ue
nc

y

12 14 16 18 20 22 24 26

run t�me (s)

0

20

40

60

80

100

120

140

160

fr
eq

ue
nc

y

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

average speed (m/s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

Figure 4.4: Histogram plots for Case I, where node expansion and tree optimiza-

tion are disabled.

Figure 4.5: An example tree and solution path for Case I.

33

12 13 14 15 16 17 18

run t�me (s)

0

50

100

150

fr
eq

ue
nc

y

0.9 1 1.1 1.2 1.3 1.4 1.5

average speed (m/s)

0

50

100

150

200

250

300

350

fr
eq

ue
nc

y

0 0.1 0.2 0.3 0.4 0.5

solut�on generat�on t�me (s)

0

20

40

60

80

100

120

140
fr

eq
ue

nc
y

13 14 15 16 17 18 19

path length (m)

0

50

100

150

200

250

fr
eq

ue
nc

y

Figure 4.6: Histogram plots for Case II, where node expansion is enabled and

tree optimization is disabled.

Figure 4.7: An example tree and solution path for Case II.

34

15 20 25 30 35

run t�me (s)

0

20

40

60

80

100

120

140

160

180

200

fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

average speed (m/s)

0

10

20

30

40

50

60

70

80

90

100

fr
eq

ue
nc

y

0 0.5 1 1.5

solut�on generat�on t�me (s)

0

50

100

150

200

250

fr
eq

ue
nc

y

12 13 14 15 16 17 18 19 20

path length (m)

0

20

40

60

80

100

120

140

160

180

fr
eq

ue
nc

y

Figure 4.8: Histogram plots for Case III, where node expansion is disabled and

tree optimization is enabled.

Figure 4.9: An example tree and solution path for Case III.

35

4.4.4 Case IV: RG-Trees with Node Expansion and Tree Optimiza-

tion

In this case, node expansion and tree optimization are both enabled, but gate-

ways are disabled. In this case, in 985/1000 simulations, the robot reached the

goal location within 60s time limit. On average, RG-Trees algorithm found a

path in 0.33s, with 70 nodes, of which 12 are on the path. The robot reached

the goal location in 15.46s, at an average speed of 0.98m/s. The resulting path

is 14.88m long.

The optimization is made with respect to path length, therefore the path is

slightly shorter than Case II (expansion on, optimization). However, due to

small intersection cases average speed of the robot is lower, thus it takes longer

for the robot to reach the goal location. In addition to these, there is a signi�cant

number of fail cases compared to Case II.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.10. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.11.

4.4.5 Comparison of Parameter Combinations

Boxplots for the four parameter combinations are given in Fig. 4.12. It can be

seen that when the node expansion is enabled; the resulting path is shorter,

tree is more sparse, average speed of the robot is higher and the arrival time

is smaller, as compared to when node expansion is disabled (Fig. 4.12, (b), (d)

vs (a), (c)). Solution generation time is slightly larger when tree optimization

is disabled, however with optimization enabled, it is smaller thanks to sparsity

of the tree. It can be concluded that node expansion is advantageous in almost

every respect.

36

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

average speed (m/s)

0

50

100

150

200

250

300

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1 1.2

solut�on generat�on t�me (s)

0

20

40

60

80

100

120

140

160

180

200

fr
eq

ue
nc

y

13 14 15 16 17 18

path length (m)

0

50

100

150

200

250

300

fr
eq

ue
nc

y

12 13 14 15 16 17 18 19 20 21

run t�me (s)

0

50

100

150

200

250

fr
eq

ue
nc

y

Figure 4.10: Histogram plots for Case IV, where node expansion and tree opti-

mization are enabled.

Figure 4.11: An example tree and solution path for Case IV.

37

Case I Case II Case III Case IV Case I Case II Case III Case IV

Case I Case II Case III Case IV Case I Case II Case III Case IV

Case I Case II Case III Case IV Case I Case II Case III Case IV

Figure 4.12: Box plot of parameter combinations. Red mark indicates the me-

dian. Bottom and top of the box are 25% and 75% points, respectively. Case I:

node expansion and tree optimization disabled, Case II: node expansion enabled,

tree optimization disabled, Case III: node expansion disabled, tree optimization

enabled, Case IV: node expansion and tree optimization enabled

On the other hand, the bene�ts of tree optimization are disputable for these

results. Resulting path length is shorter and solution path depth is smaller, since

38

Dijkstra's algorithm is used. However, due to small intersection cases, average

speed is lower, and in some simulations the robot halts before arriving at the

goal location. Since the optimization is made after the tree is fully constructed,

average number of nodes in the tree is not a�ected. For the same reason, solution

generation time is larger.

4.4.6 Case V: E�ects of Gateway Nodes

In this case, both node expansion, tree optimization, and gateways are enabled.

In the MC runs of this case, the robot reached the goal location within 60s time

limit in all of the 1000 MC simulations . On average, RG-Trees algorithm found

a path in 0.32s, with 78 nodes, of which 20 are on the path. The robot reached

the goal location in 14.38s, at an average speed of 1.06m/s. The resulting path

is 15.11m long.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.13. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.14. Boxplots comparing this con�guration with

Case II and Case IV are given in Fig. 4.15.

It can be seen from these results that gateway nodes resolve the problems in-

duced by tree optimization, while still enjoying the bene�ts the tree optimization

process. Similar to Case II, every simulation succeeded with this con�guration.

Moreover, the average speed is as high and convergence time is as low as Case

II (i.e. no optimization), while path length is obviously reduced.

Overall, for this map we can conclude that if additional computational cost is

not signi�cant Case V provides best overal result, however if computational cost

is critical Case II seems to be the best con�guration.

39

0.9 1 1.1 1.2 1.3 1.4 1.5

average speed (m/s)

0

50

100

150

200

250

300

350

400

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1

solut�on generat�on t�me (s)

0

20

40

60

80

100

120

140

160

180

fr
eq

ue
nc

y

13 14 15 16 17 18

path length (m)

0

50

100

150

200

250

300

fr
eq

ue
nc

y

12 13 14 15 16 17

run t�me (s)

0

50

100

150

200

250

fr
eq

ue
nc

y

Figure 4.13: Histogram plots for Case V, where node expansion and tree opti-

mization are enabled and gateways are used

Figure 4.14: An example tree and solution path for Case V. Gateway nodes are

shown in red.

40

Case II Case IV Case V Case II Case IV Case V

Case II Case IV Case V Case II Case IV Case V

Case II Case IV Case V Case II Case IV Case V

Figure 4.15: Box plot of parameter combinations. Red mark indicates the me-

dian. Bottom and top of the box are 25% and 75% points, respectively. Case II:

node expansion enabled, tree optimization disabled, Case IV: node expansion

and tree optimization enabled, Case V: node expansion and tree optimization

enabled and gateways used

41

4.4.7 E�ects of Speed and Acceleration Limits

Traditionally, the RG is used for enforcing state and input constraints, such as

velocity and acceleration. RG-Trees algorithm allows using a second RG for this

purpose, as explained in Subsection 3.2.1.

When the speed limit is set to vmax = 0.8m/s, the robot reaches this maximum

speed as quickly as possible, and moves at that speed for the rest of its motion.

This also provides a practical bene�t, since in general it is not very desirable if

autonomous vehicle changes its speed frequently. In this RG indirectly solves

this problem in a formal way. A sample simulation path and the robot's speed

and acceleration graphs are given in Fig. 4.16. As a result of the 32-sided polygon

approximation, the speed ripples around its maximum value.

When the speed limit is increased to a value between the robot's minimum

and maximum speeds, the robot can no longer move at this speed for all time.

However, speed limitation is respected, the robot moves at most at the maximum

speed. A sample simulation result for vmax = 1.2m/s is given in Fig. 4.17.

Similarly, when the robot's acceleration is limited to amax = 0.8m/s2, the robot

respects this limitation, see Fig. 4.18.

4.4.8 Multiple-Query Tests

RG-Trees constructs a tree structure of square nodes, the root of which contains

the goal location. Thus, it plans the robot's motion not only from start to the

goal, but from every point which is covered by a node to the goal. Moreover,

tree generation is incremental: even when the start location is switched to a

point which is not covered by any node, instead of constructing the tree from

scratch, the algorithm builds it on top of the previously constructed tree, which

generally takes a shorter time.

In this subsection, we provide Monte-Carlo simulation results of the following

multiple-query experiment. In this scenario, the robot starts from the point

(8, 0.5) as in the previous subsections and Case V con�guration is adopted in

42

these MC runs. After the robot reaches the goal, it is relocated/teleported

to the point (1, 1), which might or might not be already covered by a node,

and the simulation with the same goal location is repeated. Finally, the robot

is teleported to the point (5, 4) and the same procedure is repeated. Sample

trajectory of and MC run the robot is given in Fig. 4.19.

Tree generation and recalculation times are stored and their histogram plots are

given in Fig. 4.20. If one observes the histogram plots of recalculation times

for second and third solutions, he/she can see that there are peaks around 0,

which corresponds to cases where the robot is already inside a covered area. If

we isolate this part, average (re)calculation time is 0.35s, 0.26s and 0.03s for

the �rst, second and third calculations.

43

0 5 10 15 20 25

t�me (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

s
p

e
e

d
 (

m
/s

)

v
x

v
y

|v|

0 5 10 15 20 25

t�me (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

a
c
c
e

le
ra

t�
o

n
 (

m
/s

2
)

a
x

a
y

|a|

Figure 4.16: An example solution path and its v-t and a-t graphs when speed

limit is set to 0.8 m/s.

44

t�me (s)

s
p

e
e

d
 (

m
/s

)

t�me (s)

a
c
c
e

le
ra

t�
o

n
 (

m
/s

2
)

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

v
x

v
y

|v|

0 5 10 15 20
-2

-1

0

1

2

3

4

5

a
x

a
y

|a|

Figure 4.17: An example solution path and its v-t and a-t graphs when speed

limit is set to 1.2 m/s.

45

0 5 10 15 20 25

t�me (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a
c
c
e

le
ra

t�
o

n
 (

m
/s

2
)

a
x

a
y

|a|

0 5 10 15 20 25 30

t�me (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

s
p

e
e

d
 (

m
/s

)

v
x

v
y

|v|

Figure 4.18: An example solution path and its v-t and a-t graphs when acceler-

ation limit is set to 0.8 m/s2.

46

Figure 4.19: Multiple query example. The robot starts from (8, 0.5) initially.

After it reaches the goal, it is relocated to (1, 1) and then to (5, 4), both of

which might or might not be covered already. The robot reuses the previously

generated tree.

0 0.5 1

f�rst solut�on generat�on t�me (s)

0

50

100

150

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1

second solut�on generat�on t�me (s)

0

50

100

150

200

fr
e

q
u

e
n

cy

0 0.2 0.4 0.6 0.8 1

th�rd solut�on generat�on t�me (s)

0

200

400

600

800

1000

fr
e

q
u

e
n

cy

Figure 4.20: Histogram plots for tree generation and recalculation. Mean CPU

time is 0.35s, 0.26s and 0.03s for the �rst, second and third calculations respec-

tively. For the second calculation, in 176 simulations had already been covered.

This number is 920 for the third calculation.

4.5 Results on Sample Map 2

The second map that we tried RG-Trees algorithm is given in Fig. 4.21. This map

features local minima, from which potential �eld based planners su�er [10,31,32].

RG-Trees relies on random sampling, and the probability that it �nds a solution

47

approaches 1 as the number of nodes tends to in�nity, provided that there exists

a solution. That is, the algorithm is �probabilistically complete�. We veri�ed this

claim in our experiments. If we choose the node count limit (K in Algorithm 2)

small, the algorithm returns no solution. However, when we allow larger number

of nodes, the algorithm �nds a solution in all simulations.

The second arena is rectangular, with dimensions 8m x 12m, and there exist 4

obstacles in the map. The arena is almost symmetric, therefore the histogram

plots are unimodal.

Figure 4.21: Sample Map 2, which features local minima. `o' is the start location

and `x' is the goal location.

4.5.1 Case I: Basic RG-Trees Algorithm

In this case, node expansion, tree optimization and gateways are disabled.In

983/1000 simulations, the robot reached the goal location within 60s time limit.

On average, RG-Trees algorithm found a path in 0.22s, with 242 nodes, of which

52 are on the path. The robot reached the goal location in 33.59s on average,

with an average speed of 0.92m/s. The resulting average trajectory length is

30.79m. Histogram plots of CPU time, path length, arrival time and average

speed are given in Fig. 4.22. A sample tree and path generated with this pa-

rameter con�guration are given in Fig. 4.23.

48

26 28 30 32 34 36

path length (m)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y
0.6 0.7 0.8 0.9 1 1.1 1.2

average speed (m/s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

0.5 1 1.5 2 2.5

solut�on generat�on t�me (s)

0

20

40

60

80

100

120

140

160

fr
eq

ue
nc

y

25 30 35 40 45

run t�me (s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

Figure 4.22: Histogram plots for Case I, where node expansion and tree opti-

mization are disabled.

Figure 4.23: An example tree and solution path for Case I.

49

4.5.2 Case II: RG-Trees with Node Expansion

In this case, node expansion is enabled but tree optimization and gateways are

disabled. In all 1000 simulations, the robot reached the goal location within

60s time limit. On average, RG-Trees algorithm found a path in 0.35s, with

122 nodes, of which 35 are on the path. The robot reached the goal location in

23.72s, at an average speed of 1.29m/s. The resulting average trajectory length

is 30.67m.

Similar to the result in Map1, node expansion widens the nodes and their inter-

sections; thus, the robot runs faster and all simulations succeed.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.24. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.25.

4.5.3 Case III: RG-Trees with Tree Optimization

In this case, tree optimization is enabled but node expansion and gateways are

disabled. In 963 of 1000 simulations, the robot reached the goal location within

60s time limit. On average, RG-Trees algorithm found a path in 0.75s, with

243 nodes, of which 36 are on the path. The robot reached the goal location

in 33.71s, at an average speed of 0.84m/s. The resulting trajectory length is

28.12m.

Solution path depth and length are better than Case II. However, due to small

intersection problem, more simulations get stuck, and in those who succeed,

average speed is smaller than Case II.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.26. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.27.

50

29 29.5 30 30.5 31 31.5 32 32.5

path length (m)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y
1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36

average speed (m/s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

solut�on generat�on t�me (s)

0

20

40

60

80

100

120

140

160

180

200

fr
eq

ue
nc

y

22.5 23 23.5 24 24.5 25 25.5

run t�me (s)

0

20

40

60

80

100

120

140

160

180

fr
eq

ue
nc

y

Figure 4.24: Histogram plots for Case II, where node expansion is enabled and

tree optimization is disabled.

Figure 4.25: An example tree and solution path for Case II.

51

25 26 27 28 29 30 31 32

path length (m)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

0.6 0.7 0.8 0.9 1 1.1

average speed (m/s)

0

20

40

60

80

100

120

fr
eq

ue
nc

y

1 2 3 4 5

solut�on generat�on t�me (s)

0

20

40

60

80

100

120

140

160

fr
eq

ue
nc

y

30 35 40 45

run t�me (s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

Figure 4.26: Histogram plots for Case III, where node expansion is disabled and

tree optimization is enabled.

Figure 4.27: An example tree and solution path for Case III.

52

4.5.4 Case IV: RG-Trees with Node Expansion and Tree Optimiza-

tion

In this case, node expansion and tree optimization are enabled, but gateways

are disabled.In 950/1000 simulations, the robot reached the goal location within

60s time limit. On average, RG-Trees algorithm found a path in 0.93s, with

121 nodes, of which 21 are on the path. The robot reached the goal location in

25.51s, at an average speed of 1.13m/s. The resulting path is 28.50m long.

Solution depth is signi�cantly reduced. However, this con�guration also su�ers

from small intersections. Even more simulations get stuck. Average speed is

smaller than Case III, where tree optimization is disabled.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.28. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.29.

4.5.5 Comparison of Parameter Combinations

Boxplots of the parameter combinations are given in Fig. 4.30. It can be seen

that when node expansion is enabled, the tree contains a signi�cantly smaller

number of nodes. As a result, solution generation time is signi�cantly lower.

Similar to the results on Map1, when node expansion is enabled, the robot

moves at a higher average speed, and reaches the goal sooner.

When tree optimization is enabled, solution generation time increases, because

even when tree optimization is enabled, the tree is generated exactly as when it

is disabled, and optimization is performed as an extra. This extra time should

not be a major problem if the planning is done o�ine. Moreover, in some

applications, even this larger time is small enough to be performed in real-

time [4]. Optimization is made on approximate path length, thus resulting path

is shorter. However, due to small intersections, average speed of the robot is

smaller, hence arrival time is larger.

53

26 26.5 27 27.5 28 28.5 29 29.5 30 30.5

path length (m)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

0.7 0.8 0.9 1 1.1 1.2 1.3

average speed (m/s)

0

50

100

150

200

250

fr
eq

ue
nc

y

0.5 1 1.5 2 2.5 3

solut�on generat�on t�me (s)

0

50

100

150

200

250

fr
eq

ue
nc

y

22 24 26 28 30 32 34 36 38 40

run t�me (s)

0

50

100

150

200

250

300

fr
eq

ue
nc

y

Figure 4.28: Histogram plots for Case IV, when node expansion and tree opti-

mization are enabled.

Figure 4.29: An example tree and solution path for Case IV.

54

Case I Case II Case III Case IV Case I Case II Case III Case IV

Case I Case II Case III Case IV Case I Case II Case III Case IV

Case I Case II Case III Case IV Case I Case II Case III Case IV

Figure 4.30: Box plot of parameter combinations. Red mark indicates the me-

dian. Bottom and top of the box are 25% and 75% points, respectively. Case I:

node expansion and tree optimization disabled, Case II: node expansion enabled,

tree optimization disabled, Case III: node expansion disabled, tree optimization

enabled, Case IV: node expansion and tree optimization enabled

55

4.5.6 Case V: E�ects of Gateway Nodes

In this case, all node expansion, tree optimization and gateway nodes are en-

abled. In all 1000 simulations, the robot reached the goal location within 60s

time limit. On average, RG-Trees algorithm found a path in 1.10s, with 134

nodes, of which 34 are on the path. The robot reached the goal location in

22.90s, at an average speed of 1.26m/s. The resulting trajectory is 28.79m long.

Histogram plots of CPU time, path length, arrival time and average speed are

given in Fig. 4.31. A sample tree and path generated with this parameter con-

�guration are given in Fig. 4.32. Boxplots comparing this con�guration with

Cases II and IV are given in Fig. 4.33.

It can be seen from the boxplots that with gateway nodes, the resulting path is

as short as in Case IV, and average speed of the robot is as high as in Case II.

27 27.5 28 28.5 29 29.5 30 30.5 31

path length (m)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32

average speed (m/s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

0.5 1 1.5 2 2.5 3

solut�on generat�on t�me (s)

0

50

100

150

200

250

fr
eq

ue
nc

y

21 21.5 22 22.5 23 23.5 24 24.5

run t�me (s)

0

20

40

60

80

100

120

140

fr
eq

ue
nc

y

Figure 4.31: Histogram plots when node expansion and tree optimization are

enabled and gateways are used

56

Figure 4.32: An example tree and solution path when node expansion and tree

optimization are disabled and gateways are used. Gateway nodes are shown in

red.

57

Case II Case IV Case V Case II Case IV Case V

Case II Case IV Case V Case II Case IV Case V

Case II Case IV Case V Case II Case IV Case V

Figure 4.33: Box plot of parameter combinations. Red mark indicates the me-

dian. Bottom and top of the box are 25% and 75% points, respectively. Case II:

node expansion enabled, tree optimization disabled, Case IV: node expansion

and tree optimization enabled, Case V: node expansion and tree optimization

enabled and gateways used

58

CHAPTER 5

CONCLUSIONS

5.1 Summary of Results

In this thesis, we presented RG-Trees, a new obstacle avoidance motion planning

algorithm for a robotic system whose dynamics is linear and time-invariant and

with a closed-loop controller that is asymptotically stable. The algorithm is

a combination of a reference governor with Random Sequential Composition, a

derivative of rapidly exploring random trees adapted for systems with dynamics.

The algorithm, through random sampling of the obstacle-free space generates

and grows square-shaped overlapping regions that are then connected to each

other sequentially. This process starts from the goal location (a node) and

proceeds until the start location (another node) is reached. When both start

and goal locations are covered, the reference governor part of the algorithm

steers the robot from the square region it is currently in to the next, sequentially

connected node. This steering procedure repeats until the robot reaches the goal

region and then the goal location. The RG ensures that the robot stays inside

its current region, and since these regions are guaranteed to be obstacle-free,

collisions are avoided. We have also showed that with some assumptions, a

single RG design in a canonical reference frame can easily be transformed to be

used in all connected regions through simple translation, rotation and scaling.

This allows signi�cant computational savings as compared to designing separate

governors for these regions.

The algorithm requires the obstacles to be mathematically de�ned shapes and

the planning is realized in the 2D work space. Thus the algorithm cannot be

59

easily generalized to higher dimensional complex con�guration spaces spaces.

In particular, con�guration space for higher dimensional robots have obstacles

that cannot be easily de�ned mathematically. However, the RG component

successfully handles the robot dynamics and constraints created by the physical

obstacles. This makes it possible to handle planning in 2D space for a planar

robot with dynamics, a higher dimensional state-space.

We de�ned three design parameters, namely node expansion, tree optimization

and gateway nodes, and seven performance metrics, namely success rate, calcu-

lation time, arrival time, number of nodes in the tree and on the path, average

speed of the robot and resulting dynamic path's length. We derived and im-

plemented the algorithm in detail for an example case of a double integrator

robot controlled with a PD controller. We have tested the e�ects of these de-

sign parameters in Monte-Carlo simulations in Matlab. We have presented the

distributions of performance metrics as histogram plots.

We have observed a phenomenon where two consecutive nodes on the path be-

comes too small and the robot slows down to ensure that the robot stays within

the region while converging to the overlap region. This may even result in a

stopped robot. We have overcome this di�culty with a variant of our algorithm

with �gateway nodes�. Note that in all simulations, the tree is generated and a

path is returned successfully. However, in some cases, such paths turned out to

be infeasible. In our simulations, node expansion generally solves this problem.

5.2 Future Work

In this thesis, we have implemented the algorithm only for a double integrator

robot in 2D environment. However, the algorithm can be directly generalized

to higher dimensions by incorporating higher dimensional polygons (e.g. cubes

for 3D environment). On the other hand, in its current form, RG-Trees is lim-

ited to systems where the dynamics are linear or feedback linearizable. The

most challenging but exciting future work will be the generalization of the al-

gorithm to nonlinear and nonholonomic systems. We would also like to address

60

uncertainties and process and measurement noises.

61

62

REFERENCES

[1] L. Yang and S. M. LaValle, �A framework for planning feedback motion

strategies based on a random neighborhood graph,� in Robotics and Au-

tomation (ICRA), 2000 IEEE International Conference on, vol. 1, pp. 544�

549, IEEE, 2000.

[2] S.-R. Oh and S. K. Agrawal, �A reference governor-based controller for a ca-

ble robot under input constraints,� IEEE Transactions on Control Systems

Technology, vol. 13, no. 4, pp. 639�645, 2005.

[3] O. Arslan and D. E. Koditschek, �Smooth extensions of feedback motion

planners via reference governors,� in Robotics and Automation (ICRA),

2017 IEEE International Conference on, pp. 4414�4421, IEEE, 2017.

[4] C. Petersen, A. Jaunzemis, M. Baldwin, M. Holzinger, and I. Kolmanovsky,

�Model predictive control and extended command governor for improving

robustness of relative motion guidance and control,� in Proc. AAS/AIAA

space �ight mechanics meeting, 2014.

[5] H. Park, S. Di Cairano, and I. Kolmanovsky, �Model predictive control

for spacecraft rendezvous and docking with a rotating/tumbling platform

and for debris avoidance,� in American Control Conference (ACC), 2011,

pp. 1922�1927, IEEE, 2011.

[6] E. G. Gilbert and I. V. Kolmanovsky, �Set-point control of nonlinear systems

with state and control constraints: A lyapunov-function, reference-governor

approach,� in Decision and Control (CDC), 1999 IEEE 38th Annual Con-

ference on, vol. 3, pp. 2507�2512, IEEE, 1999.

[7] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, �Lqr-

rrt*: Optimal sampling-based motion planning with automatically derived

extension heuristics,� in Robotics and Automation (ICRA), 2012 IEEE In-

ternational Conference on, pp. 2537�2542, IEEE, 2012.

63

[8] B. Akgun and M. Stilman, �Sampling heuristics for optimal motion planning

in high dimensions,� Georgia Institute of Technology, 2011.

[9] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, �Rrt*-smart:

Rapid convergence implementation of rrt* towards optimal solution,� in

Mechatronics and Automation (ICMA), 2012 International Conference on,

pp. 1651�1656, IEEE, 2012.

[10] O. Arslan, V. Pacelli, and D. E. Koditschek, �Sensory steering for sampling-

based motion planning,� in Intelligent Robots and Systems (IROS), 2017

IEEE/RSJ International Conference on, pp. 3708�3715, IEEE, 2017.

[11] J. Kim and J. P. Ostrowski, �Motion planning a aerial robot using rapidly-

exploring random trees with dynamic constraints,� in Robotics and Automa-

tion (ICRA), 2003 IEEE International Conference on, vol. 2, pp. 2200�

2205, IEEE, 2003.

[12] S. M. LaValle and J. J. Ku�ner Jr, �Randomized kinodynamic planning,�

The International Journal of Robotics Research, vol. 20, no. 5, pp. 378�400,

2001.

[13] S. Karaman and E. Frazzoli, �Sampling-based optimal motion planning for

non-holonomic dynamical systems,� in Robotics and Automation (ICRA),

2013 IEEE International Conference on, pp. 5041�5047, IEEE, 2013.

[14] J. J. Park and B. Kuipers, �Feedback motion planning via non-holonomic

rrt* for mobile robots,� in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, pp. 4035�4040, IEEE, 2015.

[15] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taïx, and J.-

P. Laumond, �Dynamic walking and whole-body motion planning for hu-

manoid robots: an integrated approach,� The International Journal of

Robotics Research, vol. 32, no. 9-10, pp. 1089�1103, 2013.

[16] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, �Lqr-trees:

Feedback motion planning via sums-of-squares veri�cation,� The Interna-

tional Journal of Robotics Research, vol. 29, no. 8, pp. 1038�1052, 2010.

64

[17] E. Ege and M. M. Ankarali, �Feedback motion planning of unmanned sur-

face vehicles via random sequential composition,� in review.

[18] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, �Sequential composition

of dynamically dexterous robot behaviors,� The International Journal of

Robotics Research, vol. 18, no. 6, pp. 534�555, 1999.

[19] S. Karaman and E. Frazzoli, �Sampling-based algorithms for optimal motion

planning,� The International Journal of Robotics Research, vol. 30, no. 7,

pp. 846�894, 2011.

[20] I. Kolmanovsky, E. Garone, and S. Di Cairano, �Reference and command

governors: A tutorial on their theory and automotive applications,� in

American Control Conference (ACC), 2014, pp. 226�241, IEEE, 2014.

[21] S. M. LaValle, �Rapidly-exploring random trees: A new tool for path plan-

ning,� 1998.

[22] E. Garone, S. Di Cairano, and I. Kolmanovsky, �Reference and command

governors for systems with constraints: A survey on theory and applica-

tions,� Automatica, vol. 75, pp. 306�328, 2017.

[23] E. G. Gilbert and K. T. Tan, �Linear systems with state and control con-

straints: The theory and application of maximal output admissible sets,�

IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1008�1020,

1991.

[24] N. Karmarkar, �A new polynomial-time algorithm for linear programming,�

in Proceedings of the sixteenth annual ACM symposium on Theory of com-

puting, pp. 302�311, ACM, 1984.

[25] R. W. Brockett et al., �Asymptotic stability and feedback stabilization,�

Di�erential Geometric Control Theory, vol. 27, no. 1, pp. 181�191, 1983.

[26] D. E. Koditschek, �Task encoding: Toward a scienti�c paradigm for robot

planning and control,� Robotics and Autonomous Systems, vol. 9, no. 1,

p. 5, 1992.

65

[27] F. Golbol, M. M. Ankarali, and A. Saranli, �Rg-trees: Trajectory-free feed-

back motion planning using sparse random reference governor trees,� in In-

telligent Robots and Systems (IROS), 2018 IEEE/RSJ International Con-

ference on, IEEE, 2018, to appear.

[28] N. J. Cowan, �Navigation functions on cross product spaces,� IEEE Trans-

actions on Automatic Control, vol. 52, no. 7, pp. 1297�1302, 2007.

[29] J. L. Bentley and T. A. Ottmann, �Algorithms for reporting and counting

geometric intersections,� IEEE Transactions on Computers, no. 9, pp. 643�

647, 1979.

[30] H. R. Ossareh, �Reference governors and maximal output admissible sets

for linear periodic systems,� arXiv preprint arXiv:1804.09262, 2018.

[31] J. Ng and T. Bräunl, �Performance comparison of bug navigation algo-

rithms,� Journal of Intelligent and Robotic Systems, vol. 50, no. 1, pp. 73�

84, 2007.

[32] N. Buniyamin, W. W. Ngah, N. Sari�, and Z. Mohamad, �A simple lo-

cal path planning algorithm for autonomous mobile robots,� International

journal of systems applications, Engineering & development, vol. 5, no. 2,

pp. 151�159, 2011.

66

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Literature Review
	Methodology and Contributions
	Organization of the Thesis

	BACKGROUND
	Reference Governors
	Calculation of O
	1D Reference Governor Example

	RRT-Based Motion Planning
	Sequential Composition

	RG-TREES: A NOVEL FEEDBACK MOTION PLANNING APPROACH
	Tree Generation
	Node Generation
	Node Expansion
	RG*-Trees: Optimized RG-Trees

	Motion Control
	Adding Speed and Acceleration Limits
	Gateways

	IMPLEMENTATION AND RESULTS
	Robot Motion Model
	Effects of the Reference Governor
	Performance Metrics
	Results on Sample Map 1
	Case I: Basic RG-Trees Algorithm
	Case II: RG-Trees with Node Expansion
	Case III: RG-Trees with Tree Optimization
	Case IV: RG-Trees with Node Expansion and Tree Optimization
	Comparison of Parameter Combinations
	Case V: Effects of Gateway Nodes
	Effects of Speed and Acceleration Limits
	Multiple-Query Tests

	Results on Sample Map 2
	Case I: Basic RG-Trees Algorithm
	Case II: RG-Trees with Node Expansion
	Case III: RG-Trees with Tree Optimization
	Case IV: RG-Trees with Node Expansion and Tree Optimization
	Comparison of Parameter Combinations
	Case V: Effects of Gateway Nodes

	CONCLUSIONS
	Summary of Results
	Future Work

	REFERENCES

