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ABSTRACT

DYNAMIC MODELLING AND CONTROL OF A GIMBALLED AIRBORNE
ANTENNA PLATFORM WITH MASS UNBALANCE AND FRICTION

Şeref, Tuğçe

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal Leblebicioğlu

August 2018, 101 pages

Inertial stabilized gimballed systems are widely-used in many applications to achieve
a high precision positioning. Airborne antennas pointing target as a part of the satel-
lite communication may be examples of such systems.

This thesis presents the dynamic modelling and control of a two axes gimballed air-
borne antenna platform. First, reference frames and the transformation matrices are
defined to build up the motion of the antenna and kinematic equations of each gimbal
are derived. Next, the dynamic equations including mass unbalance of the gimbals
and the friction torques about pivot points are obtained.

Then, the study puts emphasis on the concepts of the static and dynamic mass unbal-
ance and also argues how much each mass unbalance affects the operation. Further-
more, a dynamic model, Lugre friction, establishes the friction torques for both of the
gimbals.

All these studies results in the complete dynamic model of the two axes gimballed air-
borne antenna platform. The overall system model is implemented in MATLAB/Simulink
environment. Next, system identification studies to determine the parameters of the
Lugre friction model have been performed by two different methods based on real
and simulated data. Finally, PI based controllers have been designed for the overall
system in several design stages.

v



Keywords: Gimballed systems, friction identification, dynamic and static mass un-
balance, cascade PID controller.
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ÖZ

ÇİFT EKSENLİ, HAVA ARACINA MONTE ANTEN PLATFORMUNUN
KÜTLE DENGESİZLİĞİ VE SÜRTÜNME İLE DİNAMİK

MODELLENMESİ VE KONTROLÜ

Şeref, Tuğçe

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Ağustos 2018 , 101 sayfa

Yüksek hassasiyette konumlanma ve kontrolün sağlanması için gimbal sistemleri bir-
çok alanda kullanılmaktadır. Uydu haberleşmesi yapacak hava araçlarına yerleştirilen
bu şekilde tasarlanmış anten platformları bu uygulamalara örnek olarak gösterilebilir.

Bu tez böyle bir anten platformunun dinamik modellenmesi ve kontrol edilmesini
anlatmaktadır. Öncelikle referans koordinat düzlemleri ve bu düzlemler arasında çev-
rimleri gerçekleştirecek geçiş matrisleri tanımlandı. Bu kavramlar kullanılarak kine-
matik ve dinamik denklemler elde edildi.

Daha sonra kütle dengesizliği üzerinde duruldu. Hem statik hem de dinamik kütle
dengesizliğinin sistemi nasıl etkilediği gösterildi. Ek olarak, her iki gimbal için de
Lugre sürtünme modelinin tanımlanması yapıldı.

Bütün bu çalışmalar sonunda tüm sisteme ait matematiksel model elde edilmiştir. Bu
model daha sonra MATLAB/Simulink ortamında kodlanmıştır. Ortaya çıkan karma-
şık yapıdaki Lugre sürtünme modeline ait katsayılar, iki farklı yöntemle, gerçek ve
benzetim verileri üzerinden sistem tanımlama yöntemleri ile bulunmuş ve sonuçlar
karşılaştırılmıştır. En sonunda, çok katlı PI denetleyicileri ile tüm sistem için kontrol-
cular tasarlanmıştır.
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Anahtar Kelimeler: Gimbal sistemleri, sürtünme modelleme, dinamik ve statik kütle
dengesizliği, çok katlı PID denetleyici.
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CHAPTER 1

INTRODUCTION

1.1 Inertially Stabilized Systems

Inertially stabilized platforms (ISP) may be encountered in many engineering appli-

cations such as target tracking, missile guidance, communication, hand-held cameras,

etc. The electromechanical design of such platforms varies with type of the applica-

tion; yet, they can be regarded as the combination of a mechanical structure, motor,

bearings, mounted-gyroscopes called as a gimbal. In most applications, at least two

orthogonal gimbals are implemented [1]. The configuration of a gimballed system

may alter according to the application; they may be mounted on aircrafts, space-

crafts, ground vehicles, ships, etc. When a gimballed system is mounted on a moving

base, it becomes more complicated due to the base movements, inertial dynamics and

sometimes environmental distortions [2], [3].

Even though the specifications and configurations differ widely, the main purpose of

ISPs is to keep the orientation of the object towards a specified target. They try to

achieve the stable operation via the electro-optic sensors despite the system dynamics

such as friction, mass unbalance and the environmental disturbance [1], [4], [5].

This study concentrates on an inertially stabilized system, the two axes gimballed

antenna platform that will be mounted on an unmanned aerial vehicle and to be de-

veloped by ASELSAN, which is shown in Figure 1.1.
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Figure 1.1: The airborne antenna platform [6]

The airborne antenna control platform is a part of a satellite communication termi-

nal which implements voice and data communication. It aims to maintain the link

between the satellite and to maximize the satellite tracking accuracy by two axes sta-

bilization control loops; azimuth and elevation axes. The gimballed antenna body has

two gimbals named as outer and inner gimbals. The gimbals have their own DC mo-

tors; moreover, the encoders and gyros are mounted on them so that they handle the

stable operation for a more accurate positioning. Since the RF component in charge

of the communication with the satellite takes place at the center of the inner gimbal,

especially, the positioning of the inner gimbal gains more importance.

1.2 Motivation for Work

The antenna body is designed and developed by ASELSAN; however, it is not an end

product yet, which is still worked on as a prototype. Therefore, the modelling and

control of the stabilization loops have not been finalized yet. The main motivation

behind the study is to model and to control the system appropriately by simulating

the platform under different test conditions imitating the operation of the antenna in

real world.
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To fulfill the motivation, first, the dynamic modelling of the antenna has been studied

in a detailed way, which has the greatest importance throughout the whole study since

the accurate stabilization of the system depends on more detailed and correct plant

modelling [7]. Kinematic equations have been derived for each gimbal. By Newton-

Euler method, the dynamics of the system have been obtained.

During the modelling, the inertial dynamics of the gimbals have been investigated.

The effect of non-symmetrical system geometry in the dynamic modelling may be

seen as mass unbalance which has been usually ignored in many applications [7].

However, in this study, dynamic and static mass unbalance have been introduced to

the system modelling and, how static and dynamic mass unbalance affect the perfor-

mance has been analysed for each gimbal under different base motions.

Next, the other nonlinear distortion, friction force, has been investigated to come up

with a dynamic friction model. Throughout the work on the friction identification,

a set of measurements have been taken with a prototype physical platform. In other

words, the plant model and the primary control loop are not only based on dynamic

equations suggested in this study but also obtained experimentally by ASELSAN

to get a set of real measurements. By utilizing the set of data obtained from the

experiments, the friction identification has been performed for the Lugre Model, a

well-known dynamic friction model, for both outer and inner gimbals. Thus, all the

terms established in the dynamic equations have been examined and the dynamic

modelling has been completed.

Then, the cascaded PI controllers for each gimbal are designed such that they can

achieve a high precision positioning. For such systems, many control methods may

be proposed. For this case, a cascade control system have been introduced for the

stabilization loop since the effectiveness and the applicability of PI controller has

been verified in both simulation environment and in industrial world [8]. Next, the

required positioning has been improved by an effective tuning procedure [9].

All in all, this study is mainly about the dynamic modelling and also control of a two

axes gimballed system; a part of a satellite communication system, which is presented

in Figure 1.2. It provides a plant model covering the main nonlinearities and proposes

an effective positioning control method with high accuracy in satellite tracking.

3



Figure 1.2: Two axes gimballed airborne antenna platform

1.3 Organization of the Thesis

The remaining part of the thesis work is arranged as following;

Chapter 2 focuses on the kinematic and dynamic equations. First, reference frames,

transformation matrices and the derivatives of the transformation matrices have been

determined. By using these concepts, the angular velocities of outer and inner gimbals

are derived. Then the derivation of the angular velocities of the gimbals takes place.

Next, Newton-Euler method is used to obtain the dynamic equations which mainly

consist of the angular velocity and angular acceleration terms. As a result, the system

dynamics of both inner and outer gimbals are introduced, which will be investigated

in a detailed way in next chapters.

Chapter 3 deals with dynamic and static mass unbalance concept. First, Newton-Euler

equation for each gimbal is reviewed to concentrate on the terms causing dynamic

mass unbalance. Then, how dynamic mass unbalance the gimbals experience affect

the performance of the system is investigated with different test cases with a basic

stabilization control loop. Next, the concept of static mass unbalance is studied which

is already declared due to the asymmetrical geometry of the gimbals in the dynamic

equations. Similarly, the influence of the static mass unbalance is investigated via

varying test cases as well.
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In Chapter 4, the friction force appeared in Newton-Euler equation is studied. First,

the dynamic friction model, Lugre friction model, is established by addressing a set

of equations based on a number of parameters. Friction identification consists of two

set of experiments; sliding and presliding experiments performed with the physical

antenna body to estimate the Lugre friction parameters. After identifying the ex-

act parameters, Lugre friction of the gimbals are implemented in Simulink and then

a dynamic system identification procedure is performed to estimate the parameters

from the model developed in Simulink. Finally, they are compared with the exact

parameters identified via the physical experiments.

Chapter 5 discusses the controller part of the thesis. After studying all the compo-

nents of the dynamic equations, the dynamic model of the gimbals are completed in

Simulink and cascade control systems are designed for each gimbal. Two stabiliza-

tion control loops; the primary and secondary control loops are established for inner

and outer gimbals separately in which PI controllers are implemented as the primary

and the secondary controllers. Therefore, an effective and an easily-applicable control

method is developed on for accurate positioning.

In Chapter 6, all the work carried out in the thesis is summarized. Furthermore, the

future work for the end product is addressed.
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CHAPTER 2

KINEMATIC AND DYNAMIC EQUATIONS

2.1 Introduction

Dynamic modelling of inertially stabilized systems stands for the formulation of a

set of equations characterizing the relationship between the total forces and torques

acting on the system and the motion of the system. For a stable control operation, the

modelling of plant dynamics is regarded as the first stage but it is the most signifi-

cant work. Dynamic modelling starts with the derivation of the kinematic equations.

Before dealing with the kinematic equations, the reference frames of each gimbal de-

scribing the motion should be assigned properly which also establishes the transfor-

mation matrices. Kinematics describe the angular velocities and angular accelerations

of the two axes stabilized system [10], [11].

In literature, there are two widely followed approaches to derive the dynamic equa-

tions of the system; Euler-Lagrangian formulation and Newton-Euler formulation

[12]. While Lagrangian method provides a set of equations based on the energy calcu-

lation, Newton-Euler approach builds up the dynamic model on the balance of forces

acting on the system by which observation of the internal dynamics in the equations

may be more convenient. Thus, Newton-Euler method may be encountered mostly in

the dynamic modelling of the stabilized gimballed systems [13], [14], [15].

In this section, the kinematic modelling is studied and then the dynamics of the outer

and inner gimbal are investigated via Newton-Euler approach including inertia ten-

sors, motor torques, friction force, static and dynamic mass unbalance to be able to

attain the required stabilization [11].
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2.2 Reference Frames and Transformation Matrices

In this thesis, the gimbaled antenna platform shown in Figure 2.1 is worked on. The

body has two gimbals which can achieve angular motion around their own axes: inner

gimbal and outer gimbal. For the antenna body, three reference frames are assigned

as follows: The coordinate axes of the antenna frames are indicated in Figure 2.1:

Figure 2.1: Frames of antenna body

Frame Base (Fb): Reference frame fixed to the antenna body with ubx, uby, ubz axes,

Frame Outer (Fo): Reference frame fixed to the outer gimbal with uox, uoy, uoz axes,

Frame Inner (Fi): Reference frame fixed to the inner gimbal with uix, uiy, uiz axes.

Moreover, to handle the stabilization of the airborne antenna, we need to take the

motion of unmanned aerial vehicle into consideration. To do that, we define addi-

tional three frames that implement the sequential angular motions, yaw (ψ), pitch (θ)

and roll (φ), into whole movement. Those angles are called as Euler angles. Their

assigned frames can be defined as follows:

Frame Earth (Fe): Reference frame fixed to the earth,

Frame C and Frame F (Fc and Ff ): Intermediate reference frames between the earth
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frame and the antenna body.

The transformation between the frames is shown in Figure 2.2.

Figure 2.2: The transformations between the coordinates and frames

The unit vectors of all the frames are defined as

ux =


1

0

0

 , uy =


0

1

0

 , uz =


0

0

1

 (2.1)

If the Earth Frame (Fe) rotates around its z-axis by yaw-angle (ψ), a new frame whose

x-axis and y-axis differs from the earth exists: Frame C (Fc). Similarly, when pitch-

angle (θ) of rotation around y-axis of Fc occurs, the new unit vectors of Frame F (Ff )

are defined. Finally, when we rotate Ff by roll-angle (φ) around its own x-axis, Frame

Base (Fb), reference frame fixed to antenna body, is presented as shown in Figure 2.2.

As we come to the body, the rotation by azimuth-angle (η) around z-axis of Fb results

in Frame Outer (Fo) that also describes the motion of the outer gimbal. That is why

we can call z-axis of Fb or Fo as azimuth-axis. The angular motion of the inner gimbal

is around y-axis of Fo, the elevation axis, by the elevation-angle (ε) which ends up

with Frame Inner (Fi). Each rotation around an axis defines a transformation matrix

between the frames explained so far.
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In general case, the matrix “Rij” point outs the matrix that transforms of any vector in

reference frame (i) to reference frame (j). In Figure 2.3, coordinate axes of the frame

(i) and frame (j) are illustrated.

Figure 2.3: Coordinate axes

If we rotate frame (i) spanning R3 whose unit vectors are (xi, yi, zi) by θ-angle

around its z-axis, there will exist an orientated frame, with unit vectors (xj , yj , zj).

The position of the origins (oi, oj) are the same. The transformation between the

frames relies on the rotation matrix “Rij”.

To clarify the role of the rotation matrix, we concentrate on a point “P ” in R3. The

position vector of a point in a fixed reference frame is defined through the use of its

unit vectors (i.e., basis vectors). Therefore, we can denote the point “P ” via a position

vector in each frame differently;

The position vector of “P ” relative to frame (i): P i,

The position vector of “P ” relative to frame (j): P j .

The “Rij” represents a coordinate transform and it gives the orientation of trans-

formed frame relative to a fixed one. We can regard it as an operator satisfying the

equation;

P i = Rij P
j (2.2)
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Here, it actually means that the position vector of any point in R3 may be oriented

relative to a fixed reference frame as long as the rotation or transformation matrix is

assigned between the fixed and the oriented frame.

The transformations between the frames in Figure 2.2 are defined with the rotation

matrices;

Rec (ψ) = RT
ce (ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.3)

Rcf (θ) = RT
fc (θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (2.4)

Rfb (φ) = RT
bf (φ) =


1 0 0

0 cosφ −sinφ
0 sinφ cosφ

 (2.5)

Rbo (η) = RT
ob (η) =


cosη −sinη 0

sinη cosη 0

0 0 1

 (2.6)

Roi (ε) = RT
io (ε) =


cosε 0 sinε

0 1 0

−sinε 0 cosε

 (2.7)

2.3 Kinematic Equations

The kinematic equations will handle the definitions of angular velocities and then an-

gular accelerations of outer, inner gimbals. The essential idea behind the kinematics

can be considered as the derivative of the whole platform motion. The next step cor-

responds to the derivation of angular velocities to get angular accelerations of each
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gimbal. All in all, the kinematic equations will allow us to work with Newton-Euler

approach for dynamic modelling.

Before detailing the kinematic equations, some fundamental concepts may be revised

which accounts about how to calculate the derivative of a transformation matrix. In

[10] and [16], it is attributed to the property of the transformation matrix (T ) in 2.8;

T T T = I (2.8)

This actually leads to the following derivation;

dT T

dt
+ T T dT

dt
= 0 (2.9)

In other words;

T T dT

dt
= −dT

T

dt
T = −(T T dT

dt
)T (2.10)

The term "T T dT
dt

" is a skew symmetric matrix denoted by MΩ where

MΩ =


0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (2.11)

We may regard MΩ as an operator whose input is angular velocity vector:

Ω =


Ωx

Ωy

Ωz

 (2.12)

Therefore, that ends up with the equation 2.13

dT

dt
= MΩ .T (2.13)

2.3.1 Angular Velocities

2.3.1.a Angular Velocity of the Outer Gimbal

In this section, angular velocity of the outer gimbal will be represented as a function

of position. The combination of the displacement in each frame shown in Figure 2.2
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establishes the equation for the gimbal. To deal with all the motion, the rate of change

in position in each frame (Fe, Fc, Ff , Fb) is transformed to Frame Outer (Fo).

First, we express the angular velocity of the outer gimbal in Frame Outer (Fo) relative

to Frame Earth (Fe), represented in Frame Outer (Fo) as: ωoe

ωoe =


ωoex

ωoey

ωoez



ωoe = ωob + ωbf + ωfc + ωce (2.14)

Equation 2.14 point outs that:

ωoe = η̇uoz + φ̇ubx + θ̇ufy + ψ̇ucz (2.15)

where η is the angular displacement of the azimuth axis and

uoz : z-axis of Frame Outer(Fo),

ubx : x-axis of Frame Base(Fb),

ufy : y-axis of Frame F(Ff ),

ucz : z-axis of Frame C(Fc).

Therefore,

ωoe = η̇uz + φ̇ Rob ux + θ̇ Rof uy + ψ̇ Roc uz (2.16)

where

Rof = RobRbf

Roc = RobRbfRfc

Therefore, Equation 2.16 turns out to be

ωoe = η̇uz + φ̇ Rob ux + θ̇ Rob Rbf uy + ψ̇ Rob Rbf Rfc uz (2.17)
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ωoe =


ωoex

ωoey

ωoez

 = η̇


0

0

1

+φ̇ Rob


1

0

0

+θ̇ Rob Rbf


0

1

0

+ψ̇ Rob Rbf Rfc


0

0

1

 (2.18)

2.3.1.b Angular Velocity of the Inner Gimbal

Similarly, the expression of the angular velocity for the inner gimbal is represented

as ωie. The angular velocity of inner gimbal relative to Frame Earth (Fe) represented

in Frame Inner (Fi) is expressed as:

ωie =


ωiex

ωiey

ωiez


We can establish the relationship between the angular velocities ωie and ωoe as

ωie = ε̇ uiy + Rio ωoe (2.19)

where ε is the angular displacement of inner gimbal and uiy is y-axis of Frame Inner

(Fi). We can expand it in a detailed way as follows;

ωie = ε̇ uy+η̇ Rio uz+φ̇ Rio Rob ux+θ̇ Rio Rob Rbf uy+ψ̇ Rio Rob Rbf Rfc uz (2.20)

ωie =


ωiex

ωiey

ωiez

 =ε̇


0

1

0

+ η̇ Rio


0

0

1

+ φ̇ Rio Rob


1

0

0

+ θ̇ Rio Rob Rbf


0

1

0



+ ψ̇ Rio Rob Rbf Rfc


0

0

1


(2.21)
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2.3.2 Angular Accelerations

Now, we focus on the acceleration terms of the 2-DOF antenna body. Basically, the

acceleration can be obtained by taking time derivative of the angular velocity. In

the previous section, we have discussed the equations of their angular velocities that

are functions of angular displacements, relative to earth. In this section, the time

derivatives of the velocities will be evaluated; these will results in determination of

angular accelerations of the system. The calculations will bring about the derivatives

of the rotation matrices. That is why it may be crucial to turn our attention to find

them in the way described in Equation 2.13.

We start with Rio and continue on Rob, Rbf , Rfc, Rce, respectively;

Ṙio = MωioRio =


0 −ωioz ωioy

ωioz 0 −ωiox

−ωioy ωiox 0



cosε 0 −sinε

0 1 0

sinε 0 cosε

 (2.22)

Ṙob = MωobRob =


0 −ωobz ωoby

ωobz 0 −ωobx

−ωoby ωobx 0



cosη sinη 0

−sinη cosη 0

0 0 1

 (2.23)

Ṙbf = MωbfRbf =


0 −ωbfz ωbfy

ωbfz 0 −ωbfx

−ωbfy ωbfx 0




1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 (2.24)

Ṙfc = MωfcRfc =


0 −ωfcz ωfcy

ωfcz 0 −ωfcx

−ωfcy ωfcx 0



cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

 (2.25)

Ṙce = MωceRce =


0 −ωcez ωcey

ωcez 0 −ωcex

−ωcey ωcex 0



cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (2.26)
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2.3.2.a Angular Acceleration of the Outer Gimbal

First, the angular acceleration of the outer body is represented as αoe, which is the

time derivative of ωoe. We may denote it as;

αoe =


αoex

αoey

αoez

 (2.27)

and

αoe = Do ωoe (2.28)

where Do is the time derivative operator for the angular velocity of the outer gimbal.

Consequently, the expression of the angular velocity of the outer body is expressed in

Equation 2.17 as;

αoe = η̈uz

+ φ̈ Rob ux

+ θ̈ Rob Rbf uy

+ ψ̈ Rob Rbf Rfc uz

+ φ̇ Ṙob ux

+ θ̇(Ṙob Rbf +RobṘbf ) uy

+ ψ̇(Ṙob Rbf Rfc +Rob Ṙbf Rfc +Rob Rbf Ṙfc)uz

(2.29)

The matrices Ṙob, Ṙbf , Ṙfc have already been defined previously.

2.3.2.b Angular Acceleration of the Inner Gimbal

Secondly, the equation of angular acceleration is attained by taking the time derivative

of the angular velocity established in Equation 2.20:

αie = Di ωie (2.30)

where

αie =


αiex

αiey

αiez

 (2.31)
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and Di is the time derivative operator for the angular velocity of the inner body.

Therefore, the angular velocity of the inner gimbal results in;

αie = ε̈ uy

+ η̈ Rio uz

+ φ̈ Rio Rob ux

+ θ̈ Rio Rob Rbf uy

+ ψ̈ Rio Rob Rbf Rfc uz

+ η̇ Ṙio uz

+ φ̇ (Ṙio Rob +RioṘob) ux

+ θ̇ (Ṙio Rob Rbf +Rio Ṙob Rbf +Rio Rob Ṙbf ) uy

+ ψ̇ (Ṙio Rob Rbf Rfc +Rio Ṙob Rbf Rfc +Rio Rob Ṙbf Rfc

+Rio Rob Rbf Ṙfc) uz

(2.32)

Again, we may figure out the matrices Ṙio, Ṙob, Ṙbf , Ṙfc from the definitions at the

beginning of the section. Now, we have obtained the kinematics of each gimbal of

the antenna body that contributes us to achieve the dynamics of the system.

2.4 Dynamic Equations

The antenna platform we worked on is a 2-DOF stabilized plant that needs to be

modelled and controlled effectively. To attain the solution, the dynamic equations of

the gimbals should be formed, which include all the external forces, the kinematic

disturbances and several nonlinearities as well [17].

In literature, the method for obtaining the dynamic equations vary with the complex-

ity of the systems to be modelled. Euler-Lagrangian and Newton-Euler methods may

be regarded as the common approaches for dynamic modelling. We can define the

former one as a method which combines the energy-based equations that tackles the

multi-body systems as a whole whereas the latter one, Newton-Euler method, is fun-

damentally based on the balance of the forces and torques. Within this method, the

dynamic equations of each body or gimbal are written separately.
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In Euler-Lagrangian approach, the constraint (inertial) forces are eliminated automat-

ically that results in a compact set of equations including the torques and the displace-

ments. On the other hand, Newton-Euler method contains all the acting forces and

moments on each body in which also the coupling effects and the constraint forces are

incorporated. Moreover, we may claim that it is easier and more systematic to derive

the equations in Newton-Euler approach. Therefore, when these taken into consider-

ation, Newton-Euler method is superior to Euler-Lagrangian regarding the simplicity

in achieving the dynamic model of such a complex system [18].

Basically, Newton’s dynamic equation figures out that;

Sum of Forces = V ariation of LinearMomentum (2.33)

whereas Euler’s dynamic equation is based on;

Sum of Torques = V ariation of AngularMomentum (2.34)

In this section, we will work on Newton-Euler equation for each body by defining its

constraint (inertial) and external torques acting on them.

2.4.1 Dynamic Equation of the Inner Gimbal

For the inner body, we can write the Newton’s equation as

mi ai = Foi +mi g (2.35)

In other words;

Foi = mi (ai − g) (2.36)

where

mi: mass of the inner gimbal,

ai: linear acceleration of the center of gravity of the inner gimbal,

Foi: force applied by the outer gimbal on the inner gimbal,
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g: gravity vector.

Euler’s equation for the inner gimbal about the pivot point (the intersection of the

rotational axes of Frame Inner (Fi) and Frame Outer (Fo)):

H i = Ii ωie (2.37)

ΣΓ = ∆H i (2.38)

ΣΓ = Ii · αie + ωie × (Ii · ωie) (2.39)

Ii · αie + ωie × (Ii · ωie) = Toi + roci × (mig
i) (2.40)

where

H i: angular momentum of the inner gimbal,

ΣΓ: total torque acting on the inner gimbal,

∆H i: the variation of angular momentum of the inner gimbal,

Ii: inertia tensor of the inner gimbal about pivot point,

αie: angular acceleration of the inner gimbal relative to Frame Earth (Fe),

ωie: angular velocity of the inner gimbal relative to Frame Earth (Fe),

Toi: moment applied by the outer gimbal on the inner gimbal,

roci: position vector from the pivot point to COG of the inner gimbal,

gi: gravity vector transformed to Frame Inner (Fi) relative to Frame Earth (Fe).

We have look at each matrix included in Equation 2.40 in a detailed way. we have

already worked on ωie and αie previously. First we start with inertia tensor of the

inner gimbal denoted as Ii;

Ii =


Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 (2.41)

The moment applied by the outer gimbal on the inner gimbal, Toi, is a 3x1 matrix
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representing external torques the inner body experiences;

Toi =


Toix

Tmi
+ Tfri

Toiz

 (2.42)

where Tmi
is the torque applied by the motor on the rotational axis of the inner gimbal.

Furthermore, Tfri is the friction torque between the motor and the pivot point of

the inner body. Therefore, the total external torque acting on the rotational axis or

elevation axis of the Frame Inner (Fi) can be figured out as Tmi
+ Tfri . Since the

principal axis of the motion is the elevation axis, we will not pay attention to Toix and

Toiz . Additionally, roci , the position vector from the origin of the Frame Inner (Fi) to

the center of the gravity of the inner gimbal is given by

roci =


rocix

rociy

rociz

 (2.43)

Consequently, the term gi should be concentrated on. The gravity vector in Frame

Earth (Fe) can be defined as−guz. gi is the gravity vector represented in Frame Inner

(Fi) relative to Frame Earth (Fe). We can express it as;

gi = −g · (Rio Rob Rbf Rfc Rce)uz (2.44)

Finally, we can write the Euler equation stated in Equation 2.40 in expanded form as


Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

αiex

αiey

αiez

+


ωiex

ωiey

ωiez

× (


Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

ωiex

ωiey

ωiez

)

=


Toix

Tmi
+ Tfri

Toiz

+


rocix

rociy

rociz

×mi


gix

giy

giz


(2.45)

2.4.2 Dynamic Equation of the Outer Gimbal

For the outer body, we can state the Newton’s equation;

(mo +mi)(aco − g) = Fbo + Fio (2.46)
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Here we can note that Fio = −Foi, which we have already figured out in Equation

2.36. Therefore Equation 2.46 results in

Fbo − Foi = (mo +mi)(ao − g) (2.47)

where

Fbo: force applied by base of the platform on the outer gimbal,

Foi: force applied by the outer gimbal on the inner gimbal,

mo: mass of the outer gimbal,

mi: mass of the inner gimbal,

ao: linear acceleration of the center of gravity of the outer gimbal,

g: gravity vector.

Euler’s equation for the outer gimbal about the pivot point (the intersection of the

rotational axes of Frame Outer (Fi) and Frame Base (Fb)):

Ho = Io ωoe +Roi H
i (2.48)

whereH i has already expressed in Equation 2.37. It means that the previous equation

can be detailed as follows:

Ho = Io ωoe +Roi (Ii ωie) (2.49)

ΣΓ = ∆Ho (2.50)

ΣΓ = Io · αoe + Ṙoi Ii ωie +Roi Ii αie

+ ωoe × (Io ωoe +Roi (Ii ωie))
(2.51)

Io · αoe + Ṙoi Ii ωie +Roi Ii αie + ωoe × (Io ωoe +Roi (Ii ωie))

= Tbo + Tio + roco × ((mo +mi) g
o)

(2.52)

where

Ho: angular momentum of the outer gimbal,

Roi: transformation matrix between Frame Outer (Fo) and Frame Inner (Fi),
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ΣΓ: total torque acting on the outer gimbal,

∆Ho: the variation of angular momentum of the outer gimbal,

Ii: inertia tensor of the inner gimbal about the pivot point,

Io: inertia tensor of the outer gimbal about the pivot point,

αie: angular acceleration of the inner gimbal relative to Frame Earth (Fe),

αoe: angular acceleration of the outer gimbal relative to Frame Earth (Fe),

ωie: angular velocity of the the inner gimbal relative to Frame Earth (Fe),

ωoe: angular velocity of the outer gimbal relative to Frame Earth (Fe),

Tbo: moment applied by the platform base on the outer gimbal,

Tio: moment applied by the inner gimbal on the outer gimbal,

roco: position vector from the pivot point to COG of the outer gimbal,

go: gravity vector transformed to Frame Inner (Fo) relative to Frame Earth (Fe).

Now, we can turn our attention to each matrix included in Equation 2.52. The terms

coming from the inner gimbal have already been handled. In this part we will concen-

trate on the matrices associated with the outer gimbal. ωoe and αeo have already been

derived previously. First we start with the inertia tensor of the outer gimbal denoted

as Io;

Io =


Ixxo Ixyo Ixzo

Iyxo Iyyo Iyzo

Izxo Izyo Izzo

 (2.53)

The moment applied by the inner gimbal on the outer gimbal, Tio, is a 3x1 matrix

represented by

Tio =


Tiox

Tioy

Tfriz

 (2.54)

Here in Equation 2.54 , Tfriz is the transformed friction torque to azimuth axis, the

principal rotational axis, between inner and outer gimbals. Tiox and Tioy will not be
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taken into consideration since the only motion takes place on the azimuth axis. The

moment applied by the base of the platform on the outer gimbal, Tbo can be written

as follows:

Tbo =


Tbox

Tboy

Tmo + Tfro

 (2.55)

where Tmo is the torque applied by the motor on the rotational axis of the outer gimbal.

Furthermore, Tfro is the friction torque between the motor and the pivot point of the

outer body. Therefore, the total external torque acting on the rotational axis or the

azimuth axis of the Frame Outer (Fo) can be expressed as Tmo + Tfro . Similarly,

as the principal axis of the motion is the azimuth axis, Tbox and Tboy have become

irrelevant. Furthermore, roco , the position vector from the origin of the Frame Inner

(Fo) to the center of the gravity of the outer body represented as

roco =


rocox

rocoy

rocoz

 (2.56)

go is the gravity vector represented in Frame Outer (Fo) relative to Frame Earth (Fe).

Therefore, it can be expressed as

go = −g · (Rob Rbf Rfc Rce)uz (2.57)

Then Euler’s equation stated in Equation 2.52 may be detailed as;
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Ixxo Ixyo Ixzo

Iyxo Iyyo Iyzo

Izxo Izyo Izzo

 ·

αoex

αoey

αoez

+


cosε 0 sinε

0 1 0

−sinε 0 cosε

 ·

Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

αiex

αiey

αiez



+


−sinε 0 cosε

0 0 0

−cosε 0 −sinε

 ·

Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

ωiex

ωiey

ωiez



+


ωoex

ωoey

ωoez

× (


Ixxo Ixyo Ixzo

Iyxo Iyyo Iyzo

Izx0 Izyo Izzo

 ·

ωoex

ωoey

ωoez



+


cosε 0 sinε

0 1 0

−sinε 0 cosε

 ·

Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

ωiex

ωiey

ωiez

)

=


Tiox

Tioy

Tfriz

+


Tbox

Tboy

Tmo + Tfro

+


rocox

rocoy

rocoz

× (mi +mo)


gox

goy

goz


(2.58)
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CHAPTER 3

DYNAMIC AND STATIC MASS UNBALANCE

3.1 Introduction

The purpose of two axes gimballed system, antenna body, is to provide a stabiliza-

tion for the link between antenna and the satellite it communicates. The gimballed

assembly experiences the disturbance resulting from external environment and body

motions. In such systems, the most significant disturbance sources are the platform

angular motion, the dynamics of the gimballed system and the gimbal mass unbal-

ance. That is why it has a great importance to implement all the dynamics of the

system in order to enhance the accuracy of the stabilization [19].

The two axes gimballed systems have been studied with different methods in many

cases in which each gimbal is balanced and responsible for only its rotational axis.

Those approaches simplify the kinematic and dynamic equations of the plant because

it is assumed that the rigid body called as the gimbal has no mass unbalance when the

equations of the motion are obtained [20]. For intance, the dynamic equations of the

two axes gimballed system have been obtained by assuming that mass distribution is

symmetrical and the system has no dynamic disturbances in [21]. Similarly, nonlinear

disturbances coming from mass unbalance have been ignored to simply the design

and to reduce the cost in [22]. Moreover, it is argued that the mass properties of the

gimbals play a role in stabilization platform; however, it may result in a costly and

time-consuming production in [23].

Additionally, in most studies, the azimuth and the elevation axes are assumed to be

identical and decoupled; therefore, each of them is implemented separately. That
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leads to ignoring the coupling effects, a source of disturbance caused by base angular

motion and internal dynamics of the system, between the gimbals. However, to attain

a more stable operation and to guarantee a more accurate stabilization, cross coupling

between the gimbals, the dynamics of the system, dynamic mass unbalance, and the

static mass unbalance should be expressed in plant dynamics [24] .

In this section, the dynamic mass unbalance and the static mass unbalance will be

derived from the dynamic equations obtained previously. By considering the cross

coupling, the effect of the base angular motion, how much mass unbalance will influ-

ence the system will be investigated.

3.2 Dynamic Mass Unbalance

Dynamic mass unbalance results from the unsymmetrical mass distribution called

as "Product of Inertia (POI)". We can attribute it with the inertia matrix [24], [23].

When a rigid body has a symmetrical mass distribution with respect to the frame axes,

non principal diagonal elements of the inertia matrix are zero; therefore, the inertia

matrix is diagonal and the rigid body has no dynamic mass unbalance. In the antenna

platform we work on, the inertia matrices of the gimbals are not diagonal; in other

words, the plant experiences the dynamic mass unbalance.
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3.2.1 Dynamic Mass Unbalance of the Inner Gimbal

We have already figure out Euler’s equation for the inner gimbal in Equation 2.40.
Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

αiex

αiey

αiez

+


ωiex

ωiey

ωiez

×


Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

ωiex

ωiey

ωiez




=


Toix

Tmi
+ Tfri

Toiz

+


rocix

rociy

rociz

×mi


gix

giy

giz


It can be written in a more detailed way as follows:
Ixxiαiex + Ixyiαiey + Ixziαiez

Iyxiαiex + Iyyiαiey + Iyziαiez

Izxiαiex + Izyiαiey + Izziαiez

+


ωiex

ωiey

ωiez

×


Ixxiωiex + Ixyiωiey + Ixziωiez

Iyxiωiex + Iyyiωiey + Iyziωiez

Izxiωiex + Izyiωiey + Izziωiez




=


Toix

Tmi
+ Tfri

Toiz

+


rocix

rociy

rociz

×mi


gix

giy

giz


When we carry out the Euler’s method, we will end up with three equations that de-

scribe the dynamics of the inner gimbal. However, since the principal axis of the

motion is elevation, the equation derived for y-axis is regarded as the dynamic equa-

tion of the inner gimbal, which is stated in Equation 3.1 as follows:(
Iyxiαiex + Iyyiαiey + Iyziαiez

)
+ ωiez

(
Ixxiωiex + Ixyiωiey + Ixziωiez

)
−

ωiex

(
Izxiωiex + Izyiωiey + Izziωiez

)
= Tmi

+ Tfri +mi

(
rocizg

i
x − gizrocix

) (3.1)

Each term in Equation 3.1 that is the multiplication of any element except for diagonal

ones in the inertia tensor can be related to the dynamic mass unbalance for the inner

gimbal. The moment transferred to y-axis (Iyyi) of the gimbal creates the angular

acceleration (αie). That acceleration may be considered as the source of the angular

motion we attempt to control. Therefore, we may arrange Equation 3.1 as follows

such that we can clarify what the role of dynamic mass unbalance is in the dynamic

Equation 3.2.

Iyyiαiey + TDynMassy = Tmi
+ Tfri +mi

(
rocizg

i
x − gizrocix

)
(3.2)
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where

TDynMassy = Iyxiαiex + Iyziαiez + ωiez

(
Ixxiωiex + Ixyiωiey + Ixziωiez

)
− ωiex

(
Izxiωiex + Izyiωiey + Izziωiez

)

3.2.2 Dynamic Mass Unbalance of the Outer Gimbal

Similarly, we have expressed the Euler’s equation for outer body in Equation 2.52.


Ixxo Ixyo Ixzo

Iyxo Iyyo Iyzo

Izxo Izyo Izzo

 ·

αoex

αoey

αoez

+


cosε 0 sinε

0 1 0

−sinε 0 cosε

 ·

Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

αiex

αiey

αiez



+


−sinε 0 cosε

0 0 0

−cosε 0 −sinε

 ·

Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

ωiex

ωiey

ωiez



+


ωoex

ωoey

ωoez

× (


Ixxo Ixyo Ixzo

Iyxo Iyyo Iyzo

Izx0 Izyo Izzo

 ·

ωoex

ωoey

ωoez



+


cosε 0 sinε

0 1 0

−sinε 0 cosε

 ·

Ixxi Ixyi Ixzi

Iyxi Iyyi Iyzi

Izxi Izyi Izzi

 ·

ωiex

ωiey

ωiez

)

=


Tiox

Tioy

Tfriz

+


Tbox

Tboy

Tmo + Tfro

+


rocox

rocoy

rocoz

× (mi +mo)


gox

goy

goz
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Equation 2.52 can be expanded as
Ixxoαoex + Ixyoαoey + Ixzoαoez

Iyxoαoex + Iyyoαoey + Iyzoαoez

Izxoαoex + Izyoαoey + Izzoαoez



+


cosε(Ixxiαiex + Ixyiαiey + Ixziαiez) + sinε(Izxiαiex + Izyiαiey + Izziαiez)

Iyxiαiex + Iyyiαiey + Iyziαiez

−sinε(Ixxiαiex + Ixyiαiey + Ixziαiez) + cosε(Izxiαiex + Izyiαiey + Izziαiez)



+


−sinε(Ixxiωiex + Ixyiωiey + Ixziωiez) + cosε(Izxiωiex + Izyiωiey + Izziωiez)

0

−cosε(Ixxiωiex + Ixyiωiey + Ixziωiez)− sinε(Izxiωiex + Izyiωiey + Izziωiez)



+


ωoex

ωoey

ωoez

× (


Ixxoωoex + Ixyoωoey + Ixzoωoez

Iyxoωoex + Iyyoωoey + Iyzoωoez

Izxoωoex + Izyoωoey + Izzoωoez



+


cosε(Ixxiωiex + Ixyiωiey + Ixziωiez) + sinε(Izxiωiex + Izyiωiey + Izziωiez)

Iyxiωiex + Iyyiωiey + Iyziωiez

−sinε(Ixxiωiex + Ixyiωiey + Ixziωiez) + cosε(Izxiωiex + Izyiωiey + Izziωiez)

)

=


Tiox

Tioy

Tfriz

+


Tbox

Tboy

Tmo + Tfro

+


rocox

rocoy

rocoz

× (mi +mo)


gox

goy

goz


As we seek a solution to this equation, three equations that define the dynamics of

each axis of the outer frame are reached. Since the rotational axis of the body is the

azimuth axis, the last row of the solution matrix will be concentrated on, which is

represented in Equation 3.3.

Izxoαoex + Izyoαoey + Izzoαoez − sinε(Ixxiαiex + Ixyiαiey + Ixziαiez)+

cosε(Izxiαiex + Izyiαiey + Izziαiez)− cosε(Ixxiωiex + Ixyiωiey + Ixziωiez)

− sinε(Izxiωiex + Izyiωiey + Izziωiez) + ωoex(Iyxoωoex + Iyyoωoey + Iyzoωoez + Iyxi

ωiex + Iyyiωiey + Iyziωiez)− ωoey(Ixxoωoex + Ixyoωoey + Ixzoωoez+

cosε(Ixxiωiex + Ixyiωiey + Ixziωiez) + sinε(Izxiωiex + Izyiωiey + Izziωiez))

= Tmo + Tfro + Tfriz + (mo +mi)(rocox g
o
y − gox rocoy)

(3.3)
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Again, each term in Equation 3.3 that is the multiplication of any element except

for diagonal ones in the inertia tensor can be related to the dynamic mass unbalance

for the outer gimbal. The torque applied to z-axis (Izzo) of the gimbal results in the

angular acceleration (αoe). The acceleration (αoe) leads to the angular motion of

the outer gimbal. Consequently, we may figure out from Equation 3.3 that we can

understand what the role of dynamic mass unbalance is in the dynamic Equation 3.4.

Izzoαoez + TDynMassz = Tmo + Tfro + Tfriz + (mo +mi)(rocox g
o
y − gox rocoy) (3.4)

where

TDynMassz = Izxoαoex + Izyoαoey − sinε(Ixxiαiex + Ixyiαiey + Ixziαiez)+

cosε(Izxiαiex + Izyiαiey + Izziαiez)− cosε(Ixxiωiex + Ixyiωiey + Ixziωiez)

− sinε(Izxiωiex + Izyiωiey + Izziωiez) + ωoex(Iyxoωoex + Iyyoωoey + Iyzoωoez + Iyxi

ωiex + Iyyiωiey + Iyziωiez)− ωoey(Ixxoωoex + Ixyoωoey + Ixzoωoez+

cosε(Ixxiωiex + Ixyiωiey + Ixziωiez) + sinε(Izxiωiex + Izyiωiey + Izziωiez))

3.2.3 Simulation Results

3.2.3.a Simulation Construction

To understand the effect of the dynamic mass unbalance on the system, the path de-

scribed in [19] is followed. For this purpose, we will come up with the stabilization

loops for the azimuth and the elevation axes that include PI controllers so that we can

attain constant velocity control.

Throughout the simulations, angular velocities of each frame are attempted to be kept

constant as this is the case in [19]. The dynamic mass unbalance for each gimbal

expressed previously is implemented in MATLAB and Simulink environment with

these stabilization loops, which is indicated in Figure 3.1.
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Figure 3.1: Stabilization loops for outer and inner gimbals

In Figure 3.1, each loop is established by combining a PI controller, a DC motor

model, a gyro model giving the loop a velocity feedback. For the DC motor model,

the basic block diagram in [24] is implemented via the motor characteristics specified

by ASELSAN that also provides the gyro transfer function directly. The values of

parameters belonging to the gimbals can be found in Appendix. This model also

includes the cross coupling between the azimuth and the elevation axes, which is

implemented in "Dynamic Mass Unbalance" block.

The inputs and the outputs of the stabilization loops can be described as:

ωoeref : Reference angular velocity input for the outer gimbal,

ωieref : Reference angular velocity input for the inner gimbal,

ωbe: The angular velocity of the platform relative to Frame Earth (Fe),

ωoe: The angular velocity of outer gimbal relative to Frame Earth (Fe),
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ωie: The angular velocity of inner gimbal relative to Frame Earth (Fe),

TDynMassz : The disturbance due to dynamic mass unbalance induced on the outer

gimbal,

TDynMassy : The disturbance due to dynamic mass unbalance induced on the inner

gimbal.

The simulations have been conducted with different cases in which the angular veloc-

ity of the platform is adjusted to different values. These cases are listed in Table 3.1.

Table 3.1: Different test cases with varying angular velocity of the platform

Case
The Angular Velocity

of the Platform
ωbex

(deg/s)
ωbey

(deg/s)
ωbez

(deg/s)
Case 1 0 0 0
Case 2 30 30 30
Case 3 30 60 60
Case 4 60 60 60
Case 5 60 75 85

3.2.3.b Simulation Results of the Outer Gimbal

As explained in the previous section, a PI controller has been implemented for con-

stant velocity control. We can note the transfer function of it as:

Gouter = Kp +
Ki

s

where Kp = 20 and Ki = 50. Therefore, the transfer function of the controller may be

expressed in Equation 3.5.

Gouter = 20 +
50

s
(3.5)

Here the purpose is to observe how dynamic mass unbalance resulting from different

test scenarios listed in Table 3.1 affects the operation of the constant velocity control.

When there is no mass unbalance and friction, the PI parameters specified achieve

stable operation which can be concluded from Figure 3.2.
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Figure 3.2: Step response of the azimuth axis

In Figure 3.2, step response of the angular velocity of the outer gimbal is depicted

when there is no disturbance. To understand the effect of the dynamic mass unbal-

ance, we have conducted the test conditions listed in Table 3.1 with two different

constant velocities for the outer gimbal whereas the ωie is taken as 0.05 rad/sec, a low

velocity for each case to see the cross coupling effect as well.

First, the reference angular velocity is adjusted to 0.1 rad/sec while the disturbance

coming from the platform varying according to Table 3.1 and the results are observed.

By changing the reference to a higher value, 0.5 rad/sec, we aimed to see how the

dynamic mass unbalance of outer body influences the system response at a higher

constant velocity operation.

i. ωoeref = 0.1 rad/sec

In this section, ωoeref = 0.1 rad/sec (about 6 deg/sec) is selected as a low velocity and

the simulation has been done. The results can be seen in Figure 3.3.
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Figure 3.3: Results with test scenarios when ωoeref = 0.1 rad/sec

Here, in Figure 3.3, we can point out that as the angular velocity of the moving

platform increases in Case 1 and Case 2, the overshoot, the settling time increases;

however, the steady state error does not change. On the other hand, in Case 3, Case

4 and Case 5, the steady state is not reached any more, which means the system does

not attain a stable operation since it oscillates.

ii. ωoeref = 0.5 rad/sec

In this section, ωoeref = 0.5 rad/sec (about 30 deg/sec) is selected as a higher velocity

and the simulation results have been evaluated similarly. The result is presented in

Figure 3.4.
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Figure 3.4: Results with test scenarios when ωoeref = 0.5 rad/sec

Here, we can state that as the angular velocity of base frame increases, in Case 1 and

Case 2, the overshoot, the settling time increase slightly and the steady state error does

not vary. On the other hand, under the conditions in Case 3, Case 4 and Case 5, the

system starts to oscillate again. However, the amplitude of the oscillations observed

are less than the oscillations during the constant low velocity control, in Figure 3.3.

The system response of no dynamic mass unbalance case and the Case 5 (the system

experiences the highest disturbance due to dynamic mass unbalance) are compared in

Figure 3.5.
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Figure 3.5: The comparison between no disturbance and Case 5 when ωoeref = 0.5
rad/sec

Figure 3.5 shows the system response becomes oscillating under dynamic mass un-

balance more clearly when ωoe is kept at 0.5 rad/sec. However, Figure 3.3 and Figure

3.4 point out that the oscillation occurs much more remarkably at low angular veloc-

ities of the moving platform.

3.2.3.c Simulation Results of the Inner Gimbal

Similarly, a PI controller has been implemented for constant angular velocity control

of the inner gimbal. We may express the transfer function of it as:

Ginner = Kp +
Ki

s

where Kp = 10 and Ki = 30. Therefore, the transfer function of the controller may be

expressed in Equation 3.6 as:

Ginner = 10 +
30

s
(3.6)

Throughout the simulation, the aim is to evaluate how dynamic mass unbalance re-

sulting from different test scenarios listed in Table 3.1 influences the operation of the
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constant velocity control, for which the simulation procedure conducted for the outer

gimbal as well. Similarly, in Figure 3.6 , step response of the angular velocity of the

inner gimbal is shown when there is no disturbance.

Figure 3.6: Step response of the elevation axis

To understand the effect of the dynamic mass unbalance on the inner gimbal, we

have again carried out the simulation with the test conditions listed in Table 3.1.

Also, all the cases have been tested with a low angular constant velocity and a higher

one so that we can make a comparison between a slow constant velocity motion and

relatively faster one. During the simulation, ωoe is kept at 0.05 rad/sec.

i. ωieref = 0.1 rad/sec

In this section, ωieref = 0.1 rad/sec (about 6 deg/sec) is selected as a low velocity and

the simulation has been done. The results are shown in Figure 3.7.
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Figure 3.7: Results with test scenarios when ωieref = 0.1 rad/sec

Consequently, it can be argued that the increasing angular velocity of the platform

makes the system response unstable. In other words, the system undergoes the oscil-

lations in Cases 3, 4 and 5 that disrupts the stable operation.

ii. ωieref = 0.5 rad/sec

In this part, ωieref = 0.5 rad/sec (about 30 deg/sec) is the higher velocity and the

simulation results have been evaluated similarly, which are shown in Figure 3.8.
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Figure 3.8: Results with test scenarios when ωieref = 0.5 rad/sec

Here, again, we can state that disturbance due to the moving platform increases, the

system response becomes oscillating. However, Figure 3.8 shows that the oscillations

take place in a small range when ωie is kept at 0.5 rad/sec. Furthermore, Figure 3.7

and Figure 3.8 indicate that the amplitude of the oscillations are higher at low angular

velocities.

3.2.3.d Evaluation of the Results

All in all, when the results of inner gimbal and outer gimbal are compared with each

other, it can be concluded that the effect of the dynamic mass unbalance is a critical

issue for the both of the gimbals. Even though it is more obvious at constant low

velocity control, it is also clear that the dynamic mass unbalance degrades the system

at higher constant velocities as well. This implies it should be taken into consideration

when dynamic modelling performed.
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3.3 Static Mass Unbalance

Static mass unbalance is a disturbance torque due to the offset between center of

gravity of the gimbal and the pivot point [24]. The acceleration induced to the pivot

point ends up with the disturbance if the rotational point and the center of mass do not

coincide. Therefore, it becomes problematic for the stabilization loop of the body.

In the antenna platform, the center of the gravities of the gimbals are not located in

pivot points. That is why they are expected to experience the disturbance due to the

static mass unbalance.

3.3.1 Static Mass Unbalance of the Inner Gimbal

We have already obtained the dynamic equation of the inner gimbal in Equation 3.1

and expressed all applied torques on the body. Static mass unbalance is the term

which includes mass of the gimbal, the offset position from the pivot point and grav-

itational acceleration. Consequently, static mass unbalance of the inner body can be

stated as

TStaticMassinner = roci ×mi g
i (3.7)

where roci and gi have been explained in Equation 2.40 previously. The disturbance

torque induced on the elevation axis is the y component of the TStaticMassinner which

is represented as TStaticMassy

TStaticMassy = mi

(
rociz g

i
x − giz rocix

)
(3.8)

3.3.2 Static Mass Unbalance of the Outer Gimbal

Similarly, the dynamic equation of the outer gimbal in Equation 3.3 has been worked

on and we have expressed all the torques acting on the body. Again, static mass

unbalance may be considered as the term which covers mass of the gimbal, the offset

position from the pivot point and gravitational acceleration. Therefore, static mass

unbalance of the inner body can be depicted as

TStaticMassouter = rocz × (mo +mi) g
o (3.9)
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where roco and go have been explained in Equation 2.52 previously. The disturbance

torque induced on the azimuth axis is the z component of the TStaticMassouter which is

expressed as TStaticMassz

TStaticMassz = (mo +mi) (rocoz g
o
x − goz rocox) (3.10)

3.3.3 Simulation Results

3.3.3.a Simulation Construction

To observe the effect of the static mass unbalance on the system, the path described

in [24] is followed. For this purpose, we will work on the stabilization loops for

the azimuth and the elevation axes that include PI controllers such that we can attain

constant velocity control, which is the way we follow in the dynamic mass unbalance

case.

Throughout the simulations, the angular velocities of each frame are attempted to be

kept constant as this is the case in [19]. Similarly, the static mass unbalance for each

gimbal figured out previously is implemented in MATLAB and Simulink environ-

ment with these stabilization loops, which is depicted in Figure 3.9.
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Figure 3.9: Stabilization loops for the outer and the inner gimbals

The simulations will be conducted with different cases in which the angular velocity

of the platform will be adjusted to different values. Table 3.2 lists the test cases as

follows:

Table 3.2: Different test cases with varying angular velocity of the platform

Case
The Angular Velocity

of the Platform
ωbex

(deg/s)
ωbey

(deg/s)
ωbez

(deg/s)
Case 1 0 0 0
Case 2 5 5 5
Case 3 10 10 10
Case 4 15 15 15
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3.3.3.b Simulation Results of the Outer Gimbal

As explained in the previous section, a PI controller has been implemented for con-

stant velocity control. The parameters of the PI controller have been taken the same

as the values in Equation 3.5. Here we can state that the aim is to evaluate how static

mass unbalance resulting from different test scenarios listed in Table 3.2 affects the

operation of the constant velocity control of inner body.

i. ωoeref = 0.1 rad/sec

We have already obtained the step response of the outer gimbal for ωoeref = 0.1 rad/sec

in Figure 3.2. The system response experiencing static mass unbalance can be seen

in Figure 3.10.

Figure 3.10: Results with test scenarios when ωoeref = 0.1 rad/sec

In Figure 3.10, we may see that the static mass unbalance results in an oscillating sys-

tem response even at low disturbance due to the moving platform. Increasing angular

velocity of the platform results in higher magnitude and frequency oscillations. In

fact, the gimbal can not be controlled at a constant velocity mostly.
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ii. ωoeref = 0.5 rad/sec

The results at a higher reference angular velocity of the outer gimbal is illustrated in

Figure 3.11.

Figure 3.11: Results with test scenarios when ωoeref = 0.5 rad/sec

The static mass unbalance still has a degrading effect on the stabilization at ωoeref

= 0.5 rad/sec at which can be concluded from Figure 3.11. That means the system

response still experiences high oscillations and there is no a steady state when the

static mass unbalance is introduced to the stabilization loop.

3.3.3.c Simulation Results of the Inner Gimbal

Again, the parameters of the PI controller have been taken the same as the in Equation

3.6. Therefore, the purpose of the simulation is to observe how static mass unbalance

resulting from different test scenarios listed in Table 3.2 affects the operation of the

constant velocity control of the inner body.
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i. ωieref = 0.1 rad/sec

The system response of the inner gimbal at 0.1 rad/sec and experiencing static mass

unbalance can be seen in Figure 3.12.

Figure 3.12: Results with test scenarios when ωieref = 0.1 rad/sec

In Figure 3.12, we see that the system response has changed significantly when the

disturbance due to static mass unbalance is involved in the stabilization loop. In other

words, the response again starts to oscillate and the gimbal can not track the reference

input precisely any more.

ii. ωieref = 0.5 rad/sec

The results at a higher reference angular velocity is illustrated in Figure 3.13.
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Figure 3.13: Results with test scenarios when ωieref = 0.5 rad/sec

As seen from Figure 3.13, at a high reference velocity, the response undergoes os-

cillations with lower amplitude than the case in which the angular velocity ωieref =

0.1 rad/sec even though the characteristics of the results seems very similar. In other

words, the system has no steady state when the disturbance coming from the base

movements increases which degrades the stable operation.

3.3.3.d Evaluation of the Results

Consequently, when the results of the inner and the outer gimbals are compared with

each other, it can be argued that the effect of the static mass unbalance is a signifi-

cant issue for both of the gimbals; especially for the outer gimbal. In other words,

both of the gimbals have higher oscillations at constant low velocity control and even

at higher constant velocities, the system can not achieve a stable operation as well.

Therefore, the static mass unbalance concept must be included in the system model

and it needs to be dealt with effectively.
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3.4 Comparison of the Effects of Dynamic and Static Mass Unbalance

For the outer gimbal, the effect of the static mass unbalance is greater than the effect of

the dynamic mass unbalance on the system response. That means that the disturbance

due to static mass unbalance to the system becomes significantly dominant over the

disturbance due to the dynamic mass unbalance. This result mainly relies on the

inertia tensor of the outer gimbal and the offset position of the center of the outer

mass. For this mechanical design, the position of the center of mass can be regarded

as a more problematic disturbance source for the system response.

On the other hand, for the inner gimbal, the effect of the dynamic mass unbalance

is more dominant over the disturbance due to the static mass unbalance. In other

words, the effect of the nondiagonal inertia tensor of the inner gimbal becomes more

degrading on the system response. Since the position vector of the center of the

inner mass from the pivot point takes a very small value around zero, the static mass

unbalance becomes a less critical disturbance source for the inner gimbal when it is

compared with the effect of the inertia on the system performance.
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CHAPTER 4

FRICTION IDENTIFICATION

4.1 Introduction

Friction can be defined as the force resisting to the motion as two mechanical bodies

slide against each other and it exists in every mechanical system [25]. It may be rep-

resented with the static friction model that reflects the mapping between the relative

speed of sliding surfaces and the friction torque is described as Coulomb torque, vis-

cous friction, Stribeck effect. However, the static model can not explain the friction

phenomena when the relative velocity of sliding surfaces is zero [26].

For a better understanding of the friction phenomena, it is necessary to describe the

behaviour of the friction torque at very low velocities around zero where it may ex-

hibit complicated dynamics [27], [28]. In fact, those dynamics may become domi-

nant over the other system dynamics. In such systems, the static models based on the

velocity-friction force mapping may not be sufficient for a high precision positioning

and tracking [28], [29]. Furthermore, the dynamics of friction may bring about many

other control problems such as large steady state errors and oscillations especially at

low velocities. Consequently, it is necessary to come up with a good friction model

with well-estimated dynamic parameters so that an accurate control of the system can

be achieved [30], [31].

The dynamic friction models take place instead of static models to address the internal

dynamics of the friction and to attain a better friction compensation. The Dahl model,

the Lugre model can be regarded as the well-known dynamic models to describe

the friction concept [26]. Dahl formed a dynamic friction model originated from
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Coulomb friction model that includes a hysteresis characteristic around zero velocity

[32]. Canudas de Wit et al. worked on the Dahl model by adding bristle concept

to it, which has been figured out as Lugre model [30], [33]. Lugre model aims to

describe the friction including static and dynamic properties in sliding and presliding

regimes. Dynamic parameters of Lugre model are attributed with the deflection of

the asperities between mechanical surfaces and this concept results in a hysteresis

behavior in presliding regime [34]. It also concentrates on the Stribeck effect that

is not stated in the Dahl model, which is one of the reasons why Lugre model may

achieve more accurate modelling [35], [36].

All in all, Lugre friction model, the more advanced dynamic model, will be consid-

ered in the friction identification part, which estimates the friction torques expressed

in the dynamic equations of the inner and the outer gimbals in Chapter 2 and 3.

4.2 Lugre Friction Model

Lugre model is a dynamic friction phenomena based on Dahl model and worked

up at the universities of Lund and Grenoble. It involves all the properties of Dahl

model. Additionally, it also captures Stribeck effect; therefore, it can predict stick-

slip motion [35]. In Lugre model, friction is regarded as the force due to bending

bristles or asperities between two surfaces which behave like springs shown in Figure

4.1.

Figure 4.1: The bristles in Lugre friction model [37]

.
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The equations describing the model can be written as

Tfr = σ0z + σ1
dz

dt
+ σ2υ

dz

dt
= υ − σ0

|υ|
s(υ)

z
(4.1)

where

Tfr: the predicted friction torque,

υ: the velocity between two surfaces in contact,

z: the inertial friction state,

σ0: stiffness coefficient,

σ1: damping coefficient,

σ2: viscous damping coefficient,

s(υ): Stribeck effect.

The inertial state z represents the average deflection of the bristles. σ0 and σ1 are

defined for small displacements; that means the spring behaviour of the bristles are

modelled at very low velocities. The function s(υ) is capturing Stribeck effect and

Coulomb torque in equation 4.2.

s(υ) = Tc + (Ts − Tc)e
|υ|
υs

δ

(4.2)

where

Ts: The stiction torque,

Tc: The Coulomb torque,

υs: Stribeck velocity,

δ: Stribeck shape factor.

Therefore, Lugre friction model is the combination of nonlinear functions consisting

of seven parameters; five static parameters and two dynamic parameters [26]. Next,

the experiments conducted to identify the parameters will be worked on.
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4.3 The Identification of Friction Model with the Physical System

Lugre Friction Model is considered as the combination of two different friction regimes;

presliding and the sliding regime. The sliding regime describes the friction as the

force between the two mechanical components resulting from the relative velocity.

Therefore, the sliding region points out a static mapping between the velocity of the

sliding mechanical body and the friction torque it experiences. This region identifies

the static parameters of the friction model.

However, the friction has internal dynamics such as stick-slip, frictional hysteresis

that can be described in the presliding regime [38], [39]. It is assumed that there

exist asperity junctions between the surfaces. These junctions deform elastically and

plastically when the tangential load is applied in which friction torque depends on the

displacements of these junctions. Therefore, the identification of the friction model

is based on the experiments conducted in two phases; sliding phase experiments and

presliding phase experiments. The former one can be attributed to static parameters

(steady state characteristics) of the friction whereas the latter identifies the dynamic

parameters of Lugre Model.

4.3.1 Sliding Phase Experiments

This section is based on the constant velocity experiments [40], [26], [37]. When

inner or outer body is controlled at a constant velocity, the torque applied on the body

equals to the friction torque since the system is balanced. To get the set of measure-

ments, the velocity of the inner or outer body has to be kept constant for a while which

means that the experiments should be conducted via a closed PI controller to attain a

steady state velocity.

The experiments for the inner gimbal and the outer gimbal have been done separately.

The sliding phase experiments of the inner gimbal describes the static parameters of

the friction between the inner gimbal and its pivot point while the inner body rotates

around it. On the other hand, the sliding phase experiments of the outer gimbal iden-

tifies the steady state characteristics of the friction between the outer body and the

platform.
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4.3.1.a Experimental Setup

For outer and inner gimbals, the experiments have been worked on 45 different con-

stant velocities ranging from 0.001 rad/sec to 0.1 rad/sec. At each different velocity,

the outer and inner gimbal attain a rotational motion around its axis from 0 degree

(initial position) to 75 degrees (final position). In order to concentrate on the Stribeck

effect, the number of the measurements at low velocities is greater throughout the

experiments. At each velocity, the average torque applied to the gimbal is recorded

and all the data is combined such that we can form a mapping between the velocity of

the gimbal and the corresponding torque measured, the friction torque. In Figure 4.2

and Figure 4.3, the experiment dataset for both inner and outer gimbals respectively

can be seen.

According to the friction-velocity mapping obtained from the experiments, it may be

concluded that the curves of the friction torque for inner and outer gimbals have the

same characteristics. The friction torque decreases when the angular velocity of the

gimbals increases up to a certain value, which can be defined as the Stribeck effect

and it starts to rise from that point with a specific slope, that is the viscous effect.

Figure 4.2: The friction-velocity graph of the inner gimbal from the experimental
data
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Figure 4.3: The friction-velocity graph of the outer gimbal from the experimental
data

4.3.1.b Identification of Static Parameters

The Lugre model for one-axis rotational motion can be written as

Tfr = σ0z + σ1
dz

dt
+ σ2υ

dz

dt
= υ − σ0

|υ|
s(υ)

z

s(υ) = Tc + (Ts − Tc)e
|υ|
υs

δ

In sliding phase experiments, the inner and outer gimbals are assumed to be balanced

when they are controlled such that they achieve a constant velocity angular motion.

Therefore, we can regard each constant velocity in the experiment set as a steady state

velocity for the gimbals. Under steady state velocity, the bristle deflection is constant;

therefore, dz
dt

equals to zero. By using Equation 4.1, the following can be written:

zss =
s(υ)

σ0

sgn(υ)

Tss = (Tc + (Ts − Tc)e
|υ|
υs

δ

)sgn(υ) + σ2υ

(4.3)

Therefore, Tc, Ts, σ2, υs and δ parameters can be obtained from the friction-velocity

map. To identify these static parameters of Lugre model, a curve fitting technique

based on nonlinear optimization, is implemented. The cost function of the optimiza-
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tion is stated in Equation 4.4.

C(Tc, Ts, σ2, υs, δ) = min

n∑
i=1

( ˆTssi − Tssi)2 (4.4)

where ˆTssi is the experimental torque data obtained during constant velocity υi whereas

Tssi represents the output of Lugre friction model expressed in Equation 4.3.

i. Static Parameters of the Inner Gimbal

The estimated steady state output of Lugre friction model and the data points obtained

from the experiments are depicted in Figure 4.4.

Figure 4.4: The estimated friction-velocity graph of the inner gimbal and experimen-
tal data

Therefore, the identified values of the parameters resulting from curve fitting are listed

in Table 4.1.
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Table 4.1: The static parameters of Lugre friction model for the inner gimbal

Lugre Model
Parameter

Unit of the
Parameter

Optimized Value

Ts Nm 0.1451
Tc Nm 0.1376
υs rad/s 0.0075
σ2 Nm.s/rad 0.0336
δ - 1.4628

ii. Static Parameters of the Outer Gimbal

Similarly, for the outer gimbal, the estimated steady state output of Lugre friction

model and the data points obtained from the experiments are shown in Figure 4.5.

Figure 4.5: The estimated friction-velocity graph of the outer gimbal and experimen-
tal data

Consequently, the identified values of the parameters resulting from curve fitting are

listed in Table 4.2.
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Table 4.2: The static parameters of Lugre friction model for the outer gimbal

Lugre Model
Parameter

Unit of the
Parameter

Optimized Value

Ts Nm 0.2585
Tc Nm 0.2412
υs rad/s 0.0054
σ2 Nm.s/rad 0.0609
δ - 1.0459

4.3.2 Presliding Phase Experiments

Previously, it is argued that seven parameters describes Lugre friction model. Static

parameters have been estimated with sliding phase experiments and there are two

remaining in the equations, which are the dynamic parameters; σ0 and σ1. These

parameters can be attributed to the stiffness and the damping characteristics of the

bristles in the model. Therefore, the identification of σ0 and σ1 will be achieved in

the presliding phase.

Dynamic parameters are more difficult to be identified when it is compared with the

static parameters since they are related to the internal dynamics of the gimbals and z,

internal state of the friction model, which is not measurable. In this section, the time

domain approach suggested by Hensen [37] will be implemented in order to identify

these parameters.

For a rotating body, the following statement is valid:

Tinput = Iυ̇ + Tfr

where Tinput represents the input torque to the system, I is the inertia of the rotating

body induced on the rotational axis, υ̇ stands for the angular acceleration and Tfr is

the friction torque which is the output data of Lugre friction model. In the presliding

phase, small junction deformations occur and the condition |z|« s(υ) is valid, which

leads to dz
dt

= υ as suggested by Equation 4.1. Therefore, the following equation can
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be written within small displacements in the presliding phase:

Tfr = (σ1 + σ2)υ + σ0z

Tinput = Iυ̇ + Tfr

Tinput = Iυ̇ + (σ1 + σ2)υ + σ0z

(4.5)

Since dz
dt

= υ, we can express Equation 4.5 as the following;

Tinput = Iz̈ + (σ1 + σ2)ż + σ0z (4.6)

In Laplace domain;
z(s)

Tinput(s)
=

1

Is2 + (σ1 + σ2)s+ σ0

(4.7)

This transfer function represents a second order LTI system around the equilibrium

point within the small displacement. If Equation 4.7 is rewritten in the generalized

form as follows:
z(s)

Tinput(s)
=

K

s2 + 2ζωns+ ω2
n

(4.8)

where ζ is the damping ratio and ωn is the natural frequency of the system. From

Equations 4.8 and 4.7, the dynamic parameters of the Lugre friction model may be

expressed as;

σ0 = ω2
nI (4.9)

σ1 = 2ζωnI − σ2 (4.10)

4.3.2.a Experimental Setup

In this work, the input torque applied to the system is observed when the system

is controlled at very low velocity around zero point, 0.001 rad/sec, the minimum

velocity that can be driven by the system. It is observed that for a certain time, the

rotational motion does not exist clearly even though the current of the motor increases.

After a time interval, the angular displacement becomes observable and sliding of the

body starts. That time interval is noted as the presliding time and the input torque

on the interval is evaluated and checked whether it is smaller than the breakaway

torque identified previously or not because we have to ensure that the magnitude of

the input torque is less than breakaway torque such that the system attains presliding

micro displacements. Hence, we guarantee that the system is in presliding phase in
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which υ̇, υ remain zero; therefore, z̈ and ż equal to zero as well, that results in an

approximation based on the Equation 4.5.

∆ Tinput = σ0 ∆z (4.11)

Therefore, the estimation of σ0 may be achieved by investigating the input torque

within small displacements of the system. During the presliding phase experiments,

a slowly varying torque input versus very small displacements the system experience

has been assessed for the rotating bodies; inner and outer gimbals separately. Up until

sliding phase, those small changes in the angular position can be read from the en-

coder. Throughout the experiments the positions of the inner and the outer gimbals,

the input torque value as well just before the sliding phase starting are recorded with

many trials for the consistency. Next, by using the equation 4.11, σ0 is identified for

both of the gimbals. After specifying σ0, ωn can be calculated. Furthermore, the iner-

tia of the inner and outer gimbals can be considered as Iyyi and Izzo respectively. To

identify σ1, the only remaining parameter is the damping ratio; ζ . As σ1 is calculated

for the inner and the outer gimbals, the damping ratio, ζ , is considered between 0.8

and 1.0 for a stable operation [37].

In Table 4.3, how long the presliding phase of the gimbals takes have been noted.

Moreover, the change in angular position during their time intervals can be figured

out as well.

Table 4.3: Presliding phase experimental data

Presliding Time
(second)

∆AngularPosition

(degree)
Inner Gimbal 9.85 0.34
Outer Gimbal 10.3 0.63
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In Table 4.4, the identified dynamic parameters of Lugre friction model are depicted

for the inner and the outer gimbals.

Table 4.4: Dynamic parameters of Lugre friction model

∆Tinput
(Nm)

∆z

(rad/s)
σ0 σ1

Inner Gimbal 0.144 0.00060 271.68 6.97
Outer Gimbal 0.254 0.00106 238.88 16.02

4.3.3 The Identified Friction Models

4.3.3.a Lugre Friction Model of the Inner Gimbal

All the parameters identified for the inner gimbal are listed in Table 4.5.

Table 4.5: The parameters of Lugre friction model for the inner gimbal

Lugre Model
Parameter

Unit of the
Parameter

Optimized Value

Ts Nm 0.1451
Tc Nm 0.1376
υs rad/s 0.0075
σ0 Nm.s/rad 271.68
σ1 Nm.s/rad 6.97
σ2 Nm.s/rad 0.0336
δ - 1.4628

To evaluate the characteristics of Lugre friction model around zero velocity, a one-

period sine wave is input to the system representing the angular velocity of the inner

gimbal. The resultant friction- velocity map of the inner gimbal is shown in Figure

4.6.
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Figure 4.6: The friction-velocity graph of the inner gimbal with identified parameters

In Figure 4.6, the hysteresis behaviour of Lugre friction around zero velocity and also

the other characteristics attributed to the model can be seen clearly.

4.3.3.b Lugre Friction Model of the Outer Gimbal

All the parameters identified for the inner gimbal are listed in Table 4.6.

Table 4.6: The parameters of Lugre friction model for the outer gimbal

Lugre Model
Parameter

Unit of the
Parameter

Optimized Value

Ts Nm 0.2585
Tc Nm 0.2412
υs rad/s 0.0054
σ0 Nm.s/rad 238.88
σ1 Nm.s/rad 16.02
σ2 Nm.s/rad 0.0609
δ - 1.0459

Similarly, to observe the characteristics of Lugre friction model around zero velocity,

a one-period sine wave is input to the system representing the angular velocity of the
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outer gimbal. The resultant friction- velocity map of the outer gimbal is shown in

Figure 4.7.

Figure 4.7: The friction-velocity graph of the outer gimbal with identified parameters

Similarly, we can see the hysteresis behaviour of Lugre friction around zero velocity

and also the other characteristics attributed the Lugre friction model in Figure 4.7.

4.4 The Identification of Friction Model in Simulation Environment

4.4.1 Simulation Construction

In this section, the friction identification has been worked with the system model

in Simulink as a second approach. The output data of the physical system is im-

plemented in Simulink with the identified parameters of Lugre model in the previous

section, which are the exact parameters of the friction model. By adding band-limited

Gaussian white noise to the output data of the model in Simulink corresponding to

a reference input, we simulate the measured data of the physical body. Next, a new

parameter matrix identifying the friction torque is found using the simulated data.

As seen from Figure 4.8, a step input is given to the Simulink block that imitates the

actual behaviour of the physical system with actual parameters and to Simulink model
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Figure 4.8: The friction-velocity graph of the inner gimbal with identified parameters

based on the dynamical equations of the gimbals. The measurement noise, a band-

limited white noise, is added to the system response, which represents the measured

data whereas the output of the Simulink model is denoted as computed output data.

The difference between the system output and the model output is processed as the

error function which will be tried to be minimized via an optimization method. At

the end of each iteration, the parameter matrix of the friction model will be updated

so that the output of the model can approach to the measured output ultimately.

4.4.2 The Optimization Method

For the procedure, a gradient-based optimization is implemented. The error function

can be written as:

J(pk) =
1

2

n∑
i=1

‖ ωi
computed − ωi

measured ‖2 (4.12)

where n represents the number of sampling at each iteration whereas pk denotes the

parameter matrix of Lugre friction model at kth iteration represented as

pk =
[
Ts Tc υs σ0 σ1 σ2 δ

]T
(4.13)
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The optimization problem can be described as

min
pk

J(pk) = min
pk

1

2

n∑
i=1

‖ ωi
computed − ωi

measured ‖2

subject to

the dynamic equations of the gimbals,

Tc ≤ s(υ) ≤ Ts

At the end of kth iteration, the parameter matrix is updated with the following rule;

pk+1 = pk − αk∇J(pk)

where αk > 0 is the step size of the operation and∇J(pk) is the gradient vector.

∇J(pk) =
[

∂J
∂p1

∂J
∂p2

∂J
∂p3

∂J
∂p4

∂J
∂p5

∂J
∂p6

∂J
∂p7

]T
The partial derivatives in the gradient vector is calculated approximately as:

∂J

∂pj
' J(pk + ε ej)− J(pk)

ε
(4.14)

where j = 1, 2, 3..., 7 represents the jth parameter of Lugre friction parameter matrix

while ε indicates a very small derivation step. Additionally, ej is a 7x1 matrix whose

jth element is 1. By proceeding the explained operation, the parameters of Lugre

model for two gimbals are identified and compared with the exact parameters coming

from the measurement with the physical system.
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4.4.2.a The Friction Parameters of the Outer Gimbal

The identified parameters resulting from optimization are depicted in Table 4.7.

Table 4.7: The parameters of Lugre friction model for the outer gimbal

Lugre Model
Parameter

Unit of the
Parameter

Identified Value

Ts Nm 0.2555
Tc Nm 0.2455
υs rad/s 0.0055
σ0 Nm.s/rad 230.99
σ1 Nm.s/rad 14.99
σ2 Nm.s/rad 0.0655
δ - 1.05

Furthermore, in Figure 4.9 , the measured output of the system and the computed

output of the model are shown as well. It implies that the parameter matrix defined

via the optimization session minimizes the error function significantly.

Figure 4.9: The friction-velocity graph of the outer gimbal with identified parameters

In Table 4.8, the exact parameters and the idetified parameters in this section is com-
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pared.

Table 4.8: Comparison of the parameters

Ts Tc υs σ0 σ1 σ2 δ

Exact
Parameters

0.2585 0.2412 0.0054 238.88 16.02 0.0609 1.049

Identified
Parameters

0.2555 0.2455 0.0055 230.99 14.99 0.0655 1.05

Table 4.8 points out that the identified parameters with the simulated model are close

enough to the ones obtained from the measurements.

4.4.2.b The Friction Parameters of the Inner Gimbal

The identified parameters of the inner gimbal via the optimization method are listed

in Table 4.9.

Table 4.9: The parameters of Lugre friction model for the inner gimbal

Lugre Model
Parameter

Unit of the
Parameter

Identified Value

Ts Nm 0.1455
Tc Nm 0.1350
υs rad/s 0.0071
σ0 Nm.s/rad 270.01
σ1 Nm.s/rad 5.99
σ2 Nm.s/rad 0.0310
δ - 1.4510

Moreover, in Figure 4.10, the measured output of the system and the computed output

of the model are depicted as well. Similarly, it brings about that the parameter matrix

defined via the optimization session minimizes the error function crucially.
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Figure 4.10: The friction-velocity graph of the outer gimbal with identified parame-
ters

In Table 4.10, the exact parameters and the identified parameters in this section is

compared.

Table 4.10: Comparison of the parameters

Ts Tc υs σ0 σ1 σ2 δ

Exact
Parameters

0.1451 0.1376 0.0075 271.68 6.97 0.0336 1.4628

Identified
Parameters

0.1455 0.1350 0.0071 270.01 5.99 0.0310 1.4510

Table 4.10 table concludes that the identified parameters with the simulated model

are coinciding with the ones obtained from the measurements.
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CHAPTER 5

MATHEMATICAL MODEL AND THE CONTROLLER

5.1 Introduction

The dynamic modelling of the inertially stabilized systems has a great importance

for a stable operation; however, not only the dynamic modelling but also the con-

troller design should be taken seriously such that the system can attain the required

positioning because the nonlinear terms involved in the dynamic equations make the

implementation of the controller harder for moving gimballed systems [41], [42].

For such systems, a great number of control methods have been proposed such as

sliding mode control, proxy-based sliding control, linear quadratic regulators, linear

quadratic Gaussian algorithm. In addition to these approaches, more advanced tech-

niques, such as robust control, variable structure control, fuzzy logical control have

also been performed in the stabilization problems [24].

However, in spite of the modern techniques listed above, commercial systems still

compromise on the cascade control systems based on PID control [43]. In other

words, the conventional PID method and the combination of two or more PID con-

trollers are still most widely-applied controllers since the modern approaches are

complicated and hard to implement in real world. Furthermore, the fact that the de-

sign of PID controllers is cost-effective and simple with satisfactory high performance

makes them the most attractive and the most used method in the industry [24].

Thus, cascade control systems, superior to the conventional PID in terms of posi-

tioning and tracking [44] are applied in this thesis work in order to obtain a high
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performance. Since derivative computations result in noise easily in industrial ap-

plications [45], the derivative gain is not included in the resultant controller. Hence,

cascade PI control method is proposed due to the advantages pointed out previously.

5.2 Dynamic Models

5.2.1 Dynamic Model Representation of the Outer Gimbal

Figure 5.1: The block diagram of the outer gimbal

In Figure 5.1, the block diagram representing the dynamic model of the outer gimbal

is indicated. It consists of mainly three sub-blocks; the stabilization loop implement-

ing the kinematic equations without any controller, mass unbalance block investigated

in Chapter 3 in a detailed way and Lugre Friction block worked in Chapter 4. It ba-

sically integrates all the elements of the dynamic equations into the model which

handles torques induced on the azimuth axis. Therefore, the dynamic model of the

outer gimbal shown in Figure 5.1 is implemented in Simulink/MATLAB. Next, the

controller will be added to the outer body dynamics to achieve a stable control on the

azimuth axis.

5.2.2 Dynamic Model Representation of the Inner Gimbal

Similarly, in Figure 5.2, the block diagram of the inner gimbal expressing the dy-

namic model is presented. Again, we may see three sub-blocks; the stabilization loop
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Figure 5.2: The block diagram of the inner gimbal

implementing the kinematic equations, mass unbalance block summarizing dynamic

mass unbalance and the static mass unbalance and Lugre Friction block identifying

the friction force of the elevation axis. In other words, the block diagram includes

all the elements of the dynamic equations in which torques induced on the elevation

axis is simulated. Consequently, the dynamic model of the inner gimbal shown in

Figure 5.2 is implemented in Simulink/MATLAB and it will be controlled to provide

a proper positioning.

5.3 Cascade PI Controller

In this thesis work, cascade PI controller is implemented in both azimuth and eleva-

tion axes. In a cascade control system; there are two control loops; primary loop or

the outer loop and secondary loop or the inner loop. The controller in the secondary

loop is called as the secondary controller or slave controller while the controller in

the primary loop is defined as the primary controller or the master controller. The

control signal of the primary controller is the input of the secondary controller or the

set point of it [46].

The cascade control systems studied in this thesis have also the primary and secondary

control loops; therefore, they include the primary controller and the secondary con-

troller. The former takes the feedback from the position of the gimbals whereas the

feedback of the latter comes from gyroscope of the related axis. The cascade system
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for inner and outer gimbals are indicated in Figure 5.3 and Figure 5.4.

Figure 5.3: The cascade control system for the outer gimbal

Figure 5.4: The cascade control system for the inner gimbal

Here, the aim of the secondary controller is to compensate the disturbance torque

quickly so that the effect of the disturbance on the primary loop output is small which

brings about more effective primary control. Furthermore, cascade controller may end

up with a more linear relation between the input of the secondary controller and the

angular velocities of the gimbals. In the secondary control loop, DC motor is regarded

as the actuator. When cascade control is implemented, secondary control loop may

be attributed with the new actuator having better linearity or proportionality and the

better linearity results in an easier tuning process of the primary controller [46].

All in all, when the advantages of the cascade control systems listed above and the

effective and easy-implemented control provided from PID controller are taken into
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consideration, PI controllers are chosen as the primary and the secondary controllers

whose transfer functions may be expressed as:

G(s) = Kp +
Ki

s

where Kp is the proportional gain while Ki represents the integral gain of the con-

trollers.

5.3.1 Tuning of the Controller Parameters

The tuning of these parameters is carried out to attain specific settling time, overshoot

and steady steady state error of the step response of the systems when the system is

induced to a high mass unbalance disturbance due to the moving platform and the

friction torque (The angular velocity of the moving base is adjusted to different val-

ues based on the test cases in Table 3.1 and Table 3.2 when tuning is performed).

The tuning of the parameters is performed step by step; first, the parameters of the

secondary controller are tuned and then the primary controller parameters are dealt

with.

For each controller,Kp andKi parameters are set to the initial values manually (while

one of them is fixed, the other one takes different values so as to maximize the per-

formance). When the parameters are adjusted to their initial values, the statements in

Table 5.1 guides the tuning [47].

Table 5.1: The effect of increasing PI parameters on the dynamic characteristics

Parameter Overshoot Settling Time Steady State
Error

Kp Decrease Increase Decrease

Ki Decrease Increase
Decrease

Significantly

Therefore, by comparing the system response in terms of steady state error, the over-

shoot and the settling time, the parameters are chosen for the secondary controller

and the primary controller, respectively.
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5.3.2 The Secondary Controller Design

i. The Secondary Controller of the Outer Gimbal

In Figure 5.5, the secondary loop of the outer gimbal is shown. The purpose of tuning

PI parameters of the controller is to attain the most appropriate step response of the

secondary control loop in terms of the criteria specified in the previous section.

Figure 5.5: The secondary loop of the outer gimbal

The initial values of the parameters are chosen as; Kp = 20 and Ki = 300. First, Ki is

fixed to 300 and Kp is tuned with the values listed in Table 5.2 and it also indicates

the dynamics of the step response of the control loop.

Table 5.2: The step response of the secondary control loop with different Kp when
Ki = 300

Kp
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
20 19.45 0.42 <1
40 11.25 0.48 <1
60 7.86 0.52 <1
80 6.01 0.54 <1
90 5.39 0.54 <1

120 4.07 0.55 <1
140 3.47 0.49 <1
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The step responses of the secondary control loop with different Kp gains are depicted

in Figure 5.6 as well.

Figure 5.6: The response of the secondary control loop with different Kp when Ki =
300

Figure 5.6 and Table 5.2 show that the best results occur when Kp takes 140.

Then Kp will be fixed to 140 when Ki has varying values listed in Table 5.3

Table 5.3: The step response of the secondary control loop with different Ki when
Kp = 140

Ki
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
250 2.87 0.44 <1
300 3.47 0.49 <1
350 4.06 0.52 <1
400 4.65 0.54 <1
450 5.22 0.55 <1

The step responses of the secondary control loop with different Ki gains are shown

in Figure 5.7 as well.
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Figure 5.7: The response of the secondary control loop with different Ki when Kp =
140

Figure 5.7 and Table 5.3 points out that the best results occur when Ki is assigned to

250. As a result, we can conclude that the best result for the secondary control loop

is achieved when Kp = 140 and Ki = 250.

ii. The Secondary Controller of the Inner Gimbal

In Figure 5.8, the secondary loop of the inner gimbal can be seen. Again, the aim of

tuning PI parameters of the controller is to attain the most appropriate step response

of the secondary control loop in terms of the criteria specified in the previous section.
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Figure 5.8: The secondary loop of the inner gimbal

The initial values of the parameters as chosen as; Kp = 5 and Ki = 300. First, Ki is

fixed to 300 and Kp is tuned with the varying values listed in Table 5.4 and it also

notes the dynamics of the step response of the control loop of inner gimbal.

Table 5.4: The step response of the secondary control loop with different Kp values
when Ki = 300

Kp
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
5 19.29 0.26 <1
10 11.26 0.27 <1
15 8.02 0.28 <1
20 6.26 0.31 <1
25 5.19 0.32 <1
30 4.47 0.32 <1
35 3.95 0.33 <1

The step responses of the secondary control loop with differentKp gains are indicated

in Figure 5.9.
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Figure 5.9: The response of the secondary control loop with differentKp values when
Ki = 300

Figure 5.9 and Table 5.4 figures out that the most appropriate results occur when Kp

is chosen as 35. Then Kp will be fixed to 35 when Ki has different values listed in

Table 5.5;

Table 5.5: The step response of the secondary control loop with different Ki when
Kp = 35

Ki
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
250 3.48 0.29 <1
300 3.95 0.30 <1
350 4.46 0.30 <1
400 4.95 0.30 <1
450 5.49 0.29 <1

Similarly, the step responses of the secondary control loop with different Ki gains are

shown in Figure 5.10.
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Figure 5.10: The response of the secondary control loop with different Ki values
when Kp = 35

Therefore, Figure 5.10 and Table 5.5 implies that the best results occur when Ki is

assigned to 250. Consequently, we can state that the best result for the secondary

control loop of the inner gimbal is performed when Kp = 35 and Ki = 250.

5.3.3 The Primary Controller Design

i. The Primary Controller of the Outer Gimbal

The primary control loop of the outer gimbal is figured out in Figure 5.3 previously,

which is in charge of position control. Again, the tuning of the parameters will be

carried out so that the step response of the primary control loop can satisfy the desired

conditions in terms of the overshoot, the settling time and the steady state error. The

procedure of tuning which is performed in the previous section is repeated in which

the PI gains of the secondary controller of the outer gimbal are already tuned with the

ones giving the best result.

The initial values of the parameters are specified as; Kp = 5 and Ki = 10. First, Ki is
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fixed to 10 and Kp is varied with the values listed in Table 5.6

Table 5.6: The step response of the primary control loop with different Kp when Ki

= 10

Kp
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
5 29.67 2.39 <1

5.5 28.75 1.65 <1
6 28.01 1.66 <1

6.5 27.26 1.68 <1
7 26.68 1.69 <1

7.5 27.97 1.69 <1
7.75 30.63 1.68 <1

The step responses of the primary control loop with different Kp gains are indicated

in Figure 5.11 as well;

Figure 5.11: The response of the primary control loop with different Kp when Ki =
10

Figure 5.11 and Table 5.6 conclude that Kp may be taken as 7. Next, Kp is fixed to 7

and Ki has different values listed in Table 5.7.
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Table 5.7: The step response of the primary control loop with different Ki when Kp

= 7

Ki
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
7 20.86 1.95 <1
8 22.82 1.85 <1
9 24.74 1.77 <1
10 26.68 1.69 <1
11 28.69 1.62 <1

The step responses of the primary control loop with different Ki gains are shown in

Figure 5.12 as well.

Figure 5.12: The response of the primary control loop with different Ki when Kp = 7

Here, Figure 5.12 and Table 5.7 imply that the best result occurs when Ki is assigned

to 7. Consequently, we can conclude that Kp, Ki parameters both should take 7.
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ii. The Primary Controller of the Inner Gimbal

The primary control loop of the inner gimbal can be seen in Figure 5.4 from the pre-

vious section, which handles the position control of the inner gimbal. The tuning of

the secondary control loop has been already performed and the suggested PI param-

eters giving the best result are implemented in the secondary controller here. For the

primary controller, Kp and Ki takes the initial values; 8 and 25. First, Ki is fixed

to 25 and Kp is varied with the values listed in Table 5.8. The step responses of the

primary control loop with different Kp gains are shown in Figure 5.13.

Table 5.8: The step response of the primary control loop with different Kp values
when Ki = 25

Kp
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
8 25.08 1.17 <1

8.5 25.24 1.18 <1
9 24.85 1.19 <1

9.5 24.53 1.22 <1
10 24.34 1.23 <1

10.5 23.71 1.24 <1
11 23.55 1.25 <1
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Figure 5.13: The response of the primary control loop with different Kp when Ki=25

Figure 5.13 and Table 5.8 show that Kp may be taken as 11. Next, Kp is fixed to 11

and Ki has different values listed in Table 5.9.

Table 5.9: The step response of the primary control loop with different Ki values
when Kp = 11

Ki
Overshoot

(%)
Settling Time

(sec)
Steady State

Error(%)
20 20.18 1.50 <1
25 23.56 1.26 <1
30 27.09 1.10 <1
35 31.43 0.99 <1
40 36.90 0.91 <1

The step responses of the primary control loop with different Ki gains are shown in

Figure 5.14 as well.
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Figure 5.14: The response of the primary control loop with different Ki when Kp =
11

Therefore, Figure 5.14 and Table 5.9 imply that the best result occurs when Ki is

assigned to 20 and, Kp , Ki parameters should take 11 and 20, respectively.

5.3.4 The Response of the System

In Table 5.10, the resultant parameters of the primary and the secondary controller for

both gimbals are noted.

Table 5.10: The resultant parameters of the controller

Primary Controller Secondary Controller
Kp Ki Kp Ki

Outer Gimbal 7 7 140 250
Inner Gimbal 11 20 35 250

In the previous section, the step responses of the gimbals with the specified parame-

ters have already been investigated. Here, the system performance will be evaluated

with a different reference input that includes a small position displacement and a
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higher one for both gimbals.

Figure 5.15: The system response of the outer gimbal

In Figure 5.15, the system response of the outer gimbal with respect to the reference

signal consisting of two different levels of position tracking is shown. Similarly, the

system response of the inner gimbal to the identical reference signal is indicated in

Figure 5.16.

Figure 5.16: The system response of the inner gimbal
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The system responses of inner and outer gimbals reveals that the positioning at a

higher rate produces more overshoot, which degrades the operation. In fact, a much

lower overshoot can be achieved via a prefilter which suppresses the high frequency

components of the reference signal [17]. That is why the prefilters will be imple-

mented into the design so that the system response can be enhanced with small over-

shoots for both gimbals. The parameters of cascade PI will be tuned in a similar way

explained previously for the new system to which the prefilters are added.

5.3.5 Cascade PI Controller with Prefilters

In Figure 5.17, the placement of the prefilter block in the stabilization loop is depicted.

Figure 5.17: The block diagram of the system with prefilter

Transfer functions of the prefilter for the outer gimbal and the inner gimbal are opti-

mized relatively in such a way that the system can achieve a desired response in terms

of the overshoot, the settling time and the steady state error:

Gfilterouter =
4.72

1.3s+ 4.72

Gfilterinner =
6.28

s+ 6.28

Table 5.11 shows the resultant new parameters of the controllers for both gimbals

which are tuned via the suggested method in the previous section.
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Table 5.11: The resultant parameters of the controller with the prefilters

Primary Controller Secondary Controller
Kp Ki Kp Ki

Outer Gimbal 8 30 150 350
Inner Gimbal 25 300 35 250

Using these values as prefilter parameters, the same reference input specified to eval-

uate the system in Figures 5.15 and 5.16 is again applied to the control loops to check

the effect of the filters. Figure 5.18 and Figure 5.19 show that prefilters added to

the system enhance the operation by lowering the overshoot significantly for both

gimbals, which attains a much more stable operation.

Figure 5.18: The response of the outer gimbal with prefilter
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Figure 5.19: The response of the inner gimbal with prefilter

The system response of the outer gimbal to possible different position reference can

be found in Table 5.12. Figure 5.20 summarizes the system performance under vary-

ing position command.

Table 5.12: The performance of the outer gimbal with different reference inputs

Reference
Input

Overshoot
(%)

Settling Time
(sec)

Steady State
Error (%)

0.5 rad 2.85 1.53 <1
0.8 rad 2.87 1.62 <1
1.0 rad 2.86 1.60 <1
1.5 rad 2.89 1.74 <1
2.0 rad 2.92 1.75 <1
2.5 rad 3.27 1.78 <1
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Figure 5.20: The response of the outer gimbal

Table 5.13: The performance of the inner gimbal with different reference inputs

Reference
Input

Overshoot
(%)

Settling Time
(sec)

Steady State
Error (%)

0.2 rad 1.62 0.98 <1
0.8 rad 0.45 0.72 <1
1.0 rad 0.41 0.65 <1

In Table 5.13, the possible input references are listed and the system response is

evaluated for each one; which is also illustrated in Figure 5.21.
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Figure 5.21: The response of the inner gimbal

Therefore, for both outer and inner gimbals, the stable operation at different position-

ing references is succeeded in terms of the overshoot, settling time and the steady

state error with the cascade control systems. Even though the overshoot still exist

in outer loop, the prefilter design overcomes the high rate of the overshoot signif-

icantly. Table 5.12 shows that when the reference position gets higher values, the

overshoot and the settling time increases slightly which ensures the effectiveness of

the controllers. For inner gimbal, almost all reference inputs result in a very similar

characteristic implying that the controller achieves a stable and a consistent operation

after the prefilter is implemented in the inner loop. Hence, it can be concluded that

the controller design covered in this section provides inner and outer gimbals a high

performance operation.
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5.3.6 The Response of the System with Changing Inertia Parameters

In this study, the inertia parameters are obtained from the calculations done with CAD

drawing of the physical body. In other words, the parameters in the simulations are

the exact values if the pysical body is produced perfectly and totally consistent with

the drawings. However, this may not be possible all the time which means that the ge-

ometry of the body can be slightly different at the end of the production. This makes

the inertia matrices different from the predicted values. Therefore, the effectiveness

of the controller should be checked when the parameters of the inertia take slightly

varying values.

In this section, the system response of the inner and the outer gimbals have been

observed when the inertia matrices are assigned to slightly different values by consid-

ering the error margin of the parameters. Here, all the parameters of the inertia tensors

of both the inner and the outer gimbals are increased by twenty percent and the sys-

tem responses have been observed with different reference inputs again. The results

have been listed in Table 5.14 for the outer gimbal and in Table 5.15 representing the

system response of the inner gimbal.

Table 5.14: The performance of the outer gimbal with different reference inputs

Reference
Input

Overshoot
(%)

Settling Time
(sec)

Steady State
Error (%)

0.5 rad 5.51 1.83 <1
0.8 rad 3.41 1.81 <1
1.0 rad 2.87 1.75 <1
1.5 rad 2.84 1.74 <1
2.0 rad 2.95 1.81 <1
2.5 rad 4.39 1.83 <1

Table 5.15: The performance of the inner gimbal with different reference inputs

Reference
Input

Overshoot
(%)

Settling Time
(sec)

Steady State
Error (%)

0.2 rad 2.61 1.10 <1
0.8 rad 1.30 0.72 <1
1.0 rad 0.47 0.68 <1
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For the outer gimbal, when we compare the results in Table 5.14 and Table 5.12, it

can be argued that the overshoot and the settling time have increased; however, they

are still close to each other, which keeps the stable operation of the outer gimbal.

Therefore, the results imply that even if the error margin of the inertia parameters are

taken as twenty percent, the controller can achieve a stable operation.

Similarly, for the inner gimbal, when we look at the results in Table 5.15 and Ta-

ble 5.13, we can figure out that the overshoot and the settling time have increased

slightly, which still maintains the stable operation of the inner gimbal. All in all, the

comparison points out that even if the error margin of the inertia parameters of the

inner body are considered as twenty percent, the system response will be stable with

the controller implemented in this study.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In real world, many examples of the inertially stabilized systems are implemented

to achieve high performance in different tracking scenarios. The degree of freedom

and the electromechanical design may vary according to the application; however,

they all serve a common purpose, an effective stabilization. In this thesis work, one

example of the stabilized systems has been investigated. The aim is to stabilize the

two-axes gimballed antenna platform, a part of the satellite communication system.

The main idea has been to maintain the antenna consisting of the inner and the outer

gimbal linked with the satellite when the aircraft it is mounted on moves. To attain

this operation, the high precision positioning of both inner and outer gimbals has been

studied by working on the detailed dynamic modelling and the control of the system.

The study has started with the task focusing on the dynamic modelling in Chapter 2.

The problem of the chapter has been defined as to obtain the dynamic equations of

the antenna platform mounted on a moving aircraft. First, the reference frames and

the transformation matrices describing the projection between the frames have been

studied by probing the mathematical concepts behind it in a detailed way. And then,

the kinematic equations, standing for the equations describing the angular velocity

and the angular acceleration of the inner and the outer gimbal, have been established.

During the derivation of the kinematic equations, the mathematical concepts about

the reference frames and the transformation matrices have had a great important role.

Next, the dynamic equations worked via Newton-Euler approach, based on the rela-
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tionship between the all torques the system experience and the variation of the angular

momentum, have been built up. At this stage, in addition to the input torques due to

the actuators, the disturbance torques resulting from the nonlinearities of the system

have been also introduced to the work, which have also been detailed in Chapter 3

and Chapter 4 as dynamic, static mass unbalance and the friction torque.

Chapter 3 has presented an elaborative work regarding the mass unbalance. First, the

concept of the dynamic mass unbalance has been examined and the derivation of it

has been accomplished for the outer and the inner gimbals separately. The answer

for the question how dynamic mass unbalance affects the system operation under dif-

ferent conditions has been sought. For this purpose, the stabilization loops dealing

with the velocity control have been formed and tested with varying angular velocities

of the aircraft the antenna mounted on when the system is effected by the dynamic

mass unbalance. The similar procedure has been performed to understand the static

mass unbalance concept and the influence of it on the system performance. Conse-

quently, it has been concluded that mass unbalance may degrade the system operation

significantly for both inner and the outer gimbals. Especially, at low velocities, the

disturbance due to inertial dynamics have become more dominant and affected the

system more negatively. That is why, it has been clarified that the mass unbalance

concept should be taken into consideration not only to attain the required operation

properly but also to enhance the system performance.

The friction torque has been introduced to the system when the dynamic equations

have been derived in Chapter 2 and it has been investigated deeply in Chapter 4. First,

static and dynamic friction models describing the friction between two surfaces have

been studied and Lugre friction model, a dynamic model, has been compromised

to implement into the system. Friction identification has been accomplished with

two sets of experiments conducted on the real physical antenna platform provided by

ASELSAN. The experiments have been categorized as the sliding experiments han-

dling the velocity versus the friction torque mapping and the presliding phase exper-

iments describing the dynamic behaviour of the friction torque at very low velocities

around zero. The results have been evaluated with the defined identification meth-

ods and Lugre friction model has been achieved for both gimbals, which has been

integrated into Simulink/MATLAB model later. And then the dynamic identification
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of parameters of the friction model has been revised in Simulink environment with a

different method as well; thus, the results have been compared. Consequently, by the

means of this work, the friction torque appeared in the dynamic equations has been

described and implemented into the dynamic model of the system.

Finally, after the work so far, the detailed dynamic modelling has been succeeded and

carried into Simulink/MATLAB. Next, the aim has been to control the system in an

effective way. To determine the method of the control, many similar applications have

been investigated. Thus, cascade PI controller has become the approach for position-

ing since it provides a high performance and it is cost effective, easily-applicable in

industrial applications. The tuning has been performed on the coupled system which

experiences all the disturbance introduced previously. The response of the system has

been satisfying in terms of the settling time and the steady state error; however, the

overshoot has needed to be decreased. Therefore, a prefilter has been added to the

system, which has resulted in a lower overshoot of the responses of the inner and the

outer gimbals. All in all, the required control of the system dynamically modelled in

a detailed way has been achieved in Simulink/MATLAB environment.
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6.2 Future Work

In thesis thesis, the dynamic modelling and the control of of a 2-DOF gimballed

antenna system has been performed, in simulations mostly. Unfortunately, the work

has not been projected on the physical body since the proper conditions have not been

satisfied to work with the physical system yet. When the physical system is ready to

work, the system model may be compared with the model experimentally obtained.

Next, the controller design may be revisited again. In this thesis, only cascade PI type

controllers have been implemented. As the platform becomes available physically

and the dynamic model is verified, the other modern control methods may be applied

on system to attain a higher performance.

At the very beginning of this work, one of the main purposes was to come up with

a dynamic friction model for the system at different temperatures and to observe the

influence of the operational temperature on the friction dynamics since the system was

supposed to function at a wide range temperatures between −40◦C and 85◦C. That

is why, it was planned to perform the friction identification at different temperatures

and according to the result, to apply an adaptive control method. Therefore, when the

system is completed in terms of electromechanical integration, the planned task may

be worked on via the friction identification method suggested in this thesis work.
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APPENDIX A

THE PARAMETERS

Table A.1: The parameters of the outer gimbal

Parameter Value Unit
Ixxo 0.2028 kg.m2

Iyyo 0.3481 kg.m2

Izzo 0.4386 kg.m2

Ixyo = Iyxo 0.04218 kg.m2

Ixzo = Izxo 0.006896 kg.m2

Iyzo = Izyo 0.0002447 kg.m2

rocox 0.06356 m

rocoy -0.01475 m

rocoz -0.01767 m

mo 14.63 kg

Table A.2: The parameters of the inner gimbal

Parameter Value Unit
Ixxi 0.03047 kg.m2

Iyyi 0.06959 kg.m2

Izzi 0.06420 kg.m2

Ixyi = Iyxi 0.0004686 kg.m2

Ixzi = Izxi 0.0006625 kg.m2

Iyzi = Izyi 0.0002815 kg.m2

rocix 0.02084 m

rociy -0.0009696 m

rociz 0.007755 m

mi 5.08 kg
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