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ABSTRACT

TRACKING NON-ELLIPSOIDAL EXTENDED OBJECTS USING
SEQUENTIAL MONTE CARLO

Kara, Süleyman Fatih
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Emre Özkan

September 2018, 73 pages

The problem of extended target tracking is considered in which the target extent

is represented with multiple ellipses. The resulting inference problem, which is

considered in the sequential Monte Carlo (SMC) framework, includes association

of the measurements between sub-objects. We make use of different particle

filtering approaches to solve the aforementioned association problem under the

assumption of known extent. When the extent is unknown, parameters of the

multiple ellipses should also be estimated. For this purpose, a particle filter

based method is derived for joint estimation of target’s kinematic and extent

states. The proposed method uses variational Bayes technique to obtain an

approximate conditional analytical expression, which enables the use of Rao-

Blackwellization (a.k.a. marginalization) idea in particle filtering.

Keywords: Sequential Monte Carlo, Extended Target Tracking, Marginalized

Particle Filter, Variational Inference
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ÖZ

SIRALI MONTE CARLO KULLANARAK ELİPS OLMAYAN
GENİŞLETİLMİŞ NESNELERİN TAKİBİ

Kara, Süleyman Fatih
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Emre Özkan

Eylül 2018 , 73 sayfa

Çoklu elips ile temsil edilen genişletilmiş hedef takip problemi ele alınmıştır.

Ortaya çıkan ve içerisinde ölçümlerin alt nesnelere sınıflandırılmasını içeren bu

problem sıralı Monte Carlo (SMC) teknikleri kullanılarak değerlendirilmiştir.

Çeşitli parçacık filtre tabanlı yöntemler kullanılarak bu birleştirme problemi he-

defin şeklinin bilindiği farz edilerek çözülmüştür. Hedefin şeklinin bilinmediği

takdirde ise çoklu elips parametreleri de tahmin edilmelidir. Bu amaçla hedefin

hereketsel durumunu ve şeklini birlikte kestirmek için parçacık filtresi tabanlı bir

yöntem tasarlanmıştır. Bu tasarlanan yöntem, değişken Bayes tekniği kullana-

rak yaklaşık koşullu analitik ifadeler elde eder ve bu ifadeleri parçacık filtresinde

marjinalleşme yöntemi uygulamak için kullanır.

Anahtar Kelimeler: Sıralı Monte Carlo, Genişletilmiş Hedef Takibi, Marjinal

Parçacık Filtresi, Değişken Çıkarımsama
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CHAPTER 1

INTRODUCTION

Many systems in the field of engineering (statistics, economics, etc.) can be

modeled by state-space models (SSMs). SSMs are constructed on a definition of

the state variable, together with its dynamics, and its relation to measurements.

In most cases, the state variables cannot be observed directly. Therefore, some

elements of the state must be estimated from the measurements. This estima-

tion problem can be cast into Bayesian framework, where one tries to find the

posterior density of the states given the observations.

For linear Gaussian SSMs, Kalman filter (KF) provides the optimal solution to

the state estimation problem by minimizing the mean square error. It computes

the exact posterior density of the states given the measurements. However, non-

linear SSMs are common in practical problems and using KF on these systems is

not possible without modifications. There are two common variants of KF which

apply to nonlinear systems: extended Kalman filter (EKF) [19] and unscented

Kalman filter (UKF) [20]. The EKF linearizes the equations that describe the

system using first-order terms of Taylor series expansion so that the standard

KF can be used with the linearized model. However, if the higher order terms

are not negligible, linearization errors will result in a poor approximation. UKF,

on the other hand, uses carefully chosen so-called sigma points to approximate

relevant integrals. Since both methods approximate the posterior density with a

Gaussian, they both fail to represent the posterior density accurately when the

posterior involves multi-modalities.

At the beginning of the ’90s, the first sequential Monte Carlo (SMC) based

algorithm was proposed by Gordon et al. [10] as a solution to the state estimation
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problem for nonlinear systems. SMC methods (a.k.a. particle filters) 1 are

robust tools which are based on simulating a number of hypotheses referred to

as particles. The particles that do not match the observations are discarded,

and the rest are updated in a sequential manner. Particle filters (PFs) find

application in positioning, target tracking, fault diagnostic, network systems,

signal and image processing, bioinformatics, economics, robotics, etc. [3], [16],

[28]. In this thesis, we will deal with a specific problem in the target tracking

literature and obtain solutions using PFs.

Early target tracking algorithms were developed to process radar measurements

which monitor large surveillance regions. In these methods, the targets are

modeled as point sources that generate at most one measurement per scan.

With evolving sensor technology, sensor systems which are capable of collecting

multiple measurements from a single object were developed. The measurements

are assumed to originate from different spatially distributed detection/reflection

points on the target’s surface. Using multiple measurements, one can extract

more information from the target, such as its shape, size, etc. The parameters

that define the target extent are called as the extent state variables whereas

the parameters that describe the dynamics and motion of the target are called

as the kinematic state variables. Estimating the extent state jointly with the

kinematic state is called as extended target tracking (ETT). Early methods

for ETT assume a pre-determined geometric shape for representing the target

extent, such as a rectangle, stick, circle or an ellipse [6], [12], [13]. Among

these methods, the elliptical extent model (a.k.a. random matrix approach),

which was initially proposed by Koch [23], has become the most popular. In

this approach, the extent is represented by a symmetric positive semi-definite

random matrix, which is estimated jointly with the kinematic state in a recursive

manner. However, in this model, the kinematic state is strongly coupled with

the extent state which limits the applicability of the model to more general

problems. In [9], Feldman et al. have overcome this restriction by removing

the dependency between the extent and the kinematic states at the expense of

exact inference. More recently, a variational Bayes based measurement update

1 Particle filter is a subset of SMC methods
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solution is proposed [27] for the improved random matrix model in [9]. The

method provides an approximate posterior by minimizing the Kullback-Leibler

(KL) divergence between the true and the approximate posterior. In [25], two

random matrix based ETT models are proposed with multiple model extensions

to track dynamic objects.

Other than random matrix based methods, there are also algorithms based on

random hyper-surface models [4]. More complex shapes are represented with this

model and successfully estimated using corresponding methods in [5]. Another

random hyper-surface based method is proposed in [31] using Gaussian process.

A comprehensive survey of the ETT literature can be found in [11].

The focus of this study is to extend the random matrix approach to multi-ellipse

ETT models. Representing extended targets with a single ellipse can result in

a coarse estimation of the true extent. Inability to capture the extent details

also results in poor tracking performance (see: [31]). Therefore we investigate

alternative ways of representing an extended target using multiple ellipses and

seek appropriate inference methods within SMC.

First, we investigate possible marginalization strategies to find an efficient PF

for a simplified version of the multi-ellipse ETT problem. In the simplified multi-

ellipse ETT problem, the extent parameters are assumed to be known and the

PF focuses on solving the association problem between the measurements and

the ellipses. For this purpose, three different PFs are implemented and their

performances are compared in simulations.

Second, we treat the full multi-ellipse ETT problem within SMC and propose

an efficient algorithm that is capable of tracking an object and estimating its

multi-ellipse extent jointly. The model defines a unified kinematic model for the

multiple ellipses. Unlike the existing methods proposed for multi-ellipse ETT

[14], [17], [24] our solution does not require any clustering, partitioning, mixture

reduction and merging methods. Our method is based on marginalized particle

filters where the analytical conditional expressions are found approximately by

minimizing the KL divergence between the true and the approximate densities.

3



The rest of this chapter covers background information for SMC methods. Chap-

ter 2 introduces some of the common PF approaches in the literature. These

approaches are employed in a multi-ellipse ETT problem with known extents

in Chapter 3. In Chapter 4, an SMC based solution to multi-ellipse unknown

extent ETT problem is presented. Finally, the conclusion is given in Chapter 5.
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CHAPTER 2

PARTICLE FILTER

The first practical SMC based filtering algorithm was proposed in 1993 by Gor-

don et. al. [10]. Several number of algorithms sharing similar ideas were pro-

posed such as bootstrap filters [10], survival of the fittest [21], Monte Carlo

filters [22] and condensation [18]. These algorithms are now referred to as SMC

methods or particle filters. Particle filters are used to approximate the poste-

rior density of the states given the observations for general state space models

(SSM).

Here, we will consider discrete time SSM where the state sequence {xk}k≥0
follows a Markov process. State variable itself is latent, and it is observed only

via available measurements {yk}k≥1. This system can also be interpreted as a

hidden Markov model (HMM) with continuous state variables. The system can

be described with the following equations,

xk+1 = f(xk, ek), (2.1a)

yk = h(xk, vk), (2.1b)

where f(·) is a known linear/nonlinear function of the system dynamics and h(·)
is a known linear/nonlinear function of the measurements. ek and vk represents

the noise terms, commonly known to as the process noise and the measurement

noise, respectively.

PF approximates the posterior density p(x0:k|y1:k) using a set of particles and

their weights,

p̂N(x0:k|y1:k) =
N∑
i=1

w
(i)
0:kδx(i)0:k

(x0:k), (2.2)

5



where {x(i)0:k}Ni=1 are referred to as particles and {w(i)
0:k}Ni=1 represent the corre-

sponding weights [28].

The flow of a generic PF can be described as follows: At each time step, we

extend the existing state trajectories by generating samples from an importance

density. Then a weight update is performed to reflect the effect of the new

measurement on the weights. Lastly, particles with higher weights, (which are

more likely to explain the dynamics and measurements) are copied and the par-

ticles with negligible weights are deleted in the resampling stage. This recursive

process can be illustrated in the figure below.

SamplingResampling Weight  
Update Resampling Sampling

Figure 2.1: Particle filter flow scheme.

Two essential steps of PF are the sampling and weight update stages. We

first sample the particles from the importance density q(xk|x(i)0:k−1, yk), then,

the weights are updated according to

w̄
(i)
k =

p(yk|x(i)k )p(x
(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
0:k−1, yk)

w
(i)
k−1. (2.3)

After the weight update the weights are normalized to sum up to 1,

w
(i)
k = w̄

(i)
k /

N∑
s=1

w̄
(s)
k . (2.4)

Lastly, we perform resampling [3]. This process is iterated from k = 1 to the

final time, T . A summary of a generic PF is given in Algorithm 2.1.

2.1 Particle Filter Output

Output of a particle filter at each time instant is the weighted samples which

approximate the posterior density. If a point estimate of the state is needed,

different estimates can be extracted with respect to different criteria. One can

choose to use the particle with the highest weight, which may not be accurate

6



Algorithm 2.1: Summary of the PF
1: Initialization at k = 0:

2: Sample the initial particles from the initial density {x(i)0 ∼ p0(x0)}Ni=1

and set their weights equally {w(i)
0 = 1/N}Ni=1

3: Iterations:

4: for all k = 1, . . . , T do

5: for all i = 1, . . . , N do

6: Sample the particles from importance density x(i)k ∼ q(xk|x(i)0:k−1, yk)

7: Update the weights according to (2.3)

8: end for

9: Normalize the weights according to (2.4)

10: Resample, if necessary

11: end for

due to resampling stages involved in PF. The most common choice is to minimize

the expected mean square error (MSE) and use the mean of the approximated

posterior as a point estimate,

x̂MSE
0:k =

N∑
i=1

w
(i)
0:kx

(i)
0:k. (2.5)

In PF, state trajectories x0:k (particles) which are candidates for representing the

true state are sampled from the importance density. Therefore, a good choice of

importance density improves the performance of PF [3]. In the following section,

we will introduce the simplest, also the most common, choice of importance

density, the bootstrap proposal density.

2.2 Bootstrap Particle Filter

The bootstrap particle filter (BPF) is a subset of the generic particle filter whose

importance density q(xk|x(i)k−1, yk), is chosen as the transition density, p(xk|xk−1)
that is induced by (2.1a).

This choice of importance density also simplifies the weight update equation.
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Substituting q(xk|x(i)k−1, yk) in (2.3) results,

w
(i)
k ∝

p(yk|x(i)k )p(x
(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, yk)

w
(i)
k−1, (2.6a)

w
(i)
k ∝ p(yk|x(i)k )w

(i)
k−1. (2.6b)

The method is summarized in Algorithm 2.2.

Algorithm 2.2: Summary of the BPF
1: Initialization at k = 0:

2: for all i = 1, . . . , N do

3: Sample x(i)0 ∼ p0(x0)

4: Set initial weights w(i)
0 = 1

N

5: end for

6: Iterations:

7: for all k = 1, . . . , T do

8: for all i = 1, . . . , N do

9: Sample x(i)k ∼ p(xk|x(i)k−1)
10: Update the weights according to (2.6b)

11: end for

12: Normalize the weights

13: Resample, if necessary

14: end for

2.2.1 Example: Comparison of KF and BPF

In linear Gaussian systems, KF provides the exact analytical expression for the

posterior density. PF provides an approximation for the posterior density using

particles. The performance of PF heavily depends on the number of particles.

We will illustrate this dependency in the following simulation. Consider the

linear Gaussian system given below,

xk+1 = 0.7xk + ek, ek ∼ N (0, 0.1), (2.7a)

yk = 0.5xk + vk, vk ∼ N (0, 0.1), (2.7b)
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Table 2.1: RMSE values between the BPF and the KF estimates

Number of Particles

10 100 1000

RMSE 0.1342 0.0481 0.0197

where the initial density is chosen as x0 ∼ N (0, 1). We run the BPF with

N = 10, 100 and 1000 particles and compare the results. The state estimates of

the filters are given in Figures 2.2, 2.3 and 2.4, respectively.

By knowing the fact that KF provides the optimal state estimate (in the mean

square sense) we compare the state estimates of BPF with that of KF. Root

mean square error (RMSE) between the two estimates is defined as

RMSE =

√√√√ 1

N

T∑
k=1

(xBPF
k − xKF

k )
2
, (2.8)

where xKF
k is the state estimate of KF and xBPF

k is the state estimate of BPF.

RMSE results are given in Table 2.1.

0 20 40 60 80 100

time[s]
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x
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KF
BPF
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Figure 2.2: Estimation results of the KF and the BPF for 10 particles. The true value is

shown with blue solid line, the KF estimate is shown with orange dashed line and the BPF

estimate is shown with yellow dotted line. The measurements at each scan are represented

with black dots.

As it is observed from the figures and RMSE results, the BPF estimates converge
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Figure 2.3: Estimation results of the KF and the BPF for 100 particles. The true value is

shown with blue solid line, the KF estimate is shown with orange dashed line and the BPF

estimate is shown with yellow dotted line. The measurements at each scan are represented

with black dots.
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Figure 2.4: Estimation results of the KF and the BPF for 1000 particles. The true value is

shown with blue solid line, the KF estimate is shown with orange dashed line and the BPF

estimate is shown with yellow dotted line. The measurements at each scan are represented

with black dots.

to the KF’s with increasing number of particles for a linear Gaussian model.

In the BPF, the importance density only depends on the system model which

10



can degrade the performance of the algorithm. A more efficient approach is to

exploit the information provided by the measurements. This can be achieved

by using the measurements in the importance density which is described in the

following subsection.

2.3 Optimal Proposal Density

At the sampling step of a PF, new particles are generated by sampling from

the importance density. Using the measurement yk results in a more efficient

importance density than the bootstrap proposal density. As a result of that, less

particles will have negligible weights after the weight update, which increases

particle efficiency. Consider the following choice on the importance density,

qopt(xk|x(i)k−1, yk) , p(xk|x(i)k−1, yk)

=
p(yk|xk, x(i)k−1)p(xk|x

(i)
k−1)

p(yk|x(i)k−1)
. (2.9)

Substituting (2.9) into (2.3) results in,

w
(i)
k ∝ p(yk|x(i)k−1)w

(i)
k−1, (2.10)

where

p(yk|x(i)k−1) =

∫
p(yk|xk)p(xk|x(i)k−1)dxk. (2.11)

The above choice of proposal density minimizes the variance of the weights

Var
(
w

(i)
k

)
and maximizes the effective sample size [3]. Therefore it is called as

the optimal proposal density.

To be able to use the optimal proposal density, one should evaluate the integral

(2.11) and sample from p(xk|x(i)k−1, yk). This is possible only in a few cases, and

the most common ones are listed below:

• The density p(xk|x(i)k−1, yk) should be Gaussian and the measurement equa-

tion should be linear. The system dynamics could be either nonlinear or

linear. Detailed derivation for this case is given in [3].
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• xk should be a member of a finite set. In this case, the integral (2.11)

turns into a sum and it is possible to sample from p(xk|x(i)k−1, yk).

2.4 Marginalization Idea

Particle filters approximate densities by weighted random samples. This ap-

proach is quite efficient when the state dimension is low. Unfortunately, the

efficiency of a PF does not scale up well with the dimension of the state, hence

one needs a vast number of particles to approximate the posterior of high di-

mensional states. One way to mitigate this problem is to exploit some inherent

analytical structures in the target density p(xk|y1:k), if available.

A generic PF aims at approximating the target density p(xk|y1:k). Consider the
factorization of the target density into non-linear and conditionally linear parts,

p(xk|y1:k) = p(xlk, x
n
0:k|y1:k) = p(xlk|xn0:k, y1:k)p(xn0:k|y1:k). (2.12)

A Marginalized particle filter (MPF) (a.k.a. Rao-Blackwellized particle filter)

[29], [8] aims at sampling from the non-linear states and computing analytical

expressions for the conditionally linear part of the state (first factor in (2.12)).

By doing so, the target density can be represented as

p(xlk, x
n,(i)
0:k |y1:k) ≈

N∑
i=1

w
(i)
k δxn,(i)0:k

(xn0:k)p(x
l
k|x

n,(i)
0:k , y1:k). (2.13)

As an analogy, KF computes the posterior density as analytical expressions. PF

approximates the posterior density with weighted samples. MPF approximates

the posterior by using both weighted samples and analytical expressions. This

results in sampling efficiency in PF because, depending on the system model,

it might be possible to sample from a low-dimension non-linear state xnk , and

compute the posterior of the full state xk.

The MPF requires conditional analytical expressions in the posterior density.

Such analytical expressions exist in only certain type of systems. In the following

subsection, we will introduce multiple switching dynamics models which exhibit
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this property. Later, we will investigate different marginalization approaches for

this model.

2.4.1 Multiple Switching Dynamics Models

Common problems in engineering includes nonlinear models which are charac-

terized by different possible modes of operation. These types of problems are

referred to as hybrid-state estimation problems which involve continuous state

and discrete mode variables [30]. Here, we consider the following dynamic and

measurement equations for describing the hybrid system,

xk+1 = f(xk, rk, ek), (2.14a)

yk = h(xk, rk, vk), (2.14b)

where rk is the discrete mode variable. It is possible to model rk using aM -state,

first order Markov chain with transition probabilities,

πm` , P{rk = `|rk−1 = m} (m, ` ∈ S), (2.15)

where S , {1, . . . ,M}. Then, M ×M transition probability matrix is defined

as Π , [πm`] where the elements satisfy the following conditions:

• πm` ≥ 0,

•
∑M

`=1 πm` = 1.

An example of hybrid systems is jump Markov linear Gaussian systems where the

discrete mode variable is described as a jump Markov process and the continuous

state is described as a Gaussian random variable. This system can also be

classified as a subset of conditionally linear Gaussian systems (CLGS). The

system definition is given as

xk+1 = F rkxk + erkk , (2.16a)

yk = Hrkxk + vrkk , (2.16b)

where F rk is and nx × nx matrix which defines the system dynamics and Hrk is

an ny×nx matrix defining the relation between the measurements and the state
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variables. erkk ∼ N (0, Qrk) and vrkk ∼ N (0, Rrk) are zero-mean Gaussian noise

terms, known as the process noise and the measurement noise, respectively.

Qrk ∈ Rnx×nx is the process noise covariance matrix where, nx is the state

dimension and Rrk ∈ Rny×ny is the measurement noise covariance matrix where,

ny is the measurement dimension. These terms are dependent upon the mode

variable rk, and the system becomes linear Gaussian conditioned on rk.

It is possible to extend this model by removing the Markov assumption on the

discrete state. In that case, the mode variable at time k, will be independent

from the previous one at time k − 1. We will call this system as multinomial

CLGS and use it for the multi-ellipse ETT problem. Under the independence as-

sumption, the prior probabilities of the discrete states are distributed according

to the probability vector,

π = [π1, . . . , πM ]. (2.17)

The elements of the probability vector are defined as

π` , P{rk = `} (` ∈ S) (2.18)

where
∑M

`=1 π` = 1. If the prior assignment probabilities are equal, we have the

probability vector

π =

[
1

M
, . . . ,

1

M

]
. (2.19)

In the following subsections, two different marginalization strategies will be in-

vestigated to compute the joint posterior density of the continuous and discrete

states for the multinomial CLGS.

2.4.2 Marginalizing Out the Continuous State

In the multinomial CLGS, the target density to be approximated is the poste-

rior of the continuous and discrete states p(xk, r0:k|y1:k). Consider the following

factorization of the target density

p(xk, r0:k|y1:k) = p(xk|r0:k, y1:k)p(r0:k|y1:k). (2.20)
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Within the MPF framework, the posterior of the discrete states can be approx-

imated using particles,

p̂N(r0:k|y1:k) =
N∑
i=1

w
(i)
k δr(i)0:k

(r0:k). (2.21)

Conditioned on the discrete states, the system equations become linear and

Gaussian. Therefore, the conditional posterior of the continuous state can be

written as a Gaussian density p(xk|r(i)0:k, y1:k) = N (xk; x̂
(i)
k|k, P

(i)
k|k). The mean and

covariance of this density are calculated analytically using a KF. Furthermore,

the posterior density of the continuous and the discrete states are approximated

as

p(xk, r
(i)
0:k|y1:k) ≈

N∑
i=1

w
(i)
k δr(i)0:k

(r0:k)N (xk; x̂
(i)
k|k, P

(i)
k|k). (2.22)

Iterations of MPF at each time include:

’Measurement Update’ and ’Time Update’ steps for continuous variables;

’Sampling’ and ’Weight Update’ steps for discrete variables.

The details of the aforementioned steps will be described as follows.

At any time k, we first propagate the continuous state per particle which corre-

sponds to the KF’s time update equations provided as

x̂
(i)
k|k−1 = Fkx̂

(i)
k−1, (2.23a)

P
(i)
k|k−1 = FkP

(i)
k−1F

T
k +Q. (2.23b)

Then, we sample the discrete state rk from the importance density,

r
(i)
k ∼ q(·), (2.24)

which is the prior probability vector q(·) = π if we use the bootstrap proposal

density. The importance weights are updated with the following expression,

w
(i)
k ∝ p(yk|r(i)0:k, y1:k−1)w

(i)
k−1. (2.25)

For the continuous state, the measurement update is performed using the KF
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measurement update equations,

x̂
(i)
k = x̂

(i)
k|k−1 +Kk(yk −Hx̂(i)k|k−1), (2.26a)

P
(i)
k = (I −KkH)P

(i)
k|k−1, (2.26b)

Kk = P
(i)
k|k−1H

T (HP
(i)
k|k−1H

T +R)−1. (2.26c)

As a last step, resampling is employed, if necessary.

We will call the MPF where the continuous states are marginalized out as CMPF

for the rest of this thesis. The CMPF is summarized in Algorithm 2.3.

Algorithm 2.3: Summary of the CMPF
1: Initialization at k = 0:

2: for all i = 1, . . . , N do

3: Sample the discrete state r(i)0 ∼ π0

4: Set the initial weights w(i)
0 = 1

N

5: Set the initial parameters of the continuous state x̂(i)0 = x̄0, P̂
(i)
0 = P̄0

6: end for

7: Iterations:

8: for k = 1, . . . , T do

9: for all i = 1, . . . , N do

10: Perform time update of the continuous state according to (2.23)

11: Sample the discrete state, r(i)k ∼ q(·)
12: Update the weights according to (2.25)

13: Perform the measurement update of the continuous state

according to (2.26)

14: end for

15: Normalize the weights

16: Resample, if necessary

17: end for

2.4.3 Marginalizing Out the Discrete State

In order to marginalize out the discrete state, we slightly modify the target

density as p(x0:k, rk|y1:k). In multinomial CLGS, it is possible to obtain an
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analytical expression for the density of the discrete state when conditioned on

the continuous states. Consider the following factorization of the target density,

p(x0:k, rk|y1:k) = p(rk|x0:k, y1:k)p(x0:k|y1:k). (2.27)

The continuous states are expressed using a set of weighted particles [32] where

each particle set represents the state trajectory x0:k ∈ Rk+1×nx . The posterior

of the continuous states can be approximated using particles,

p̂N(x0:k|y1:k) =
N∑
i=1

w
(i)
0:kδx(i)0:k

(x0:k). (2.28)

When x0:k is given, the conditional density of rk can be found using a conditional

HMM filter [32]. We define the mode probabilities as

α
(i)
k (`) , P(rk = `|x(i)0:k, y1:k). (2.29)

We will call the MPF where the discrete states are marginalized out as DMPF

for the rest of this thesis. The basic flow of DMPF for each time instant k, can

be summarized as follows.

Due to independence of the multinomial CLGS, we can propagate the mode

probabilities as follows,

α
(i)
k|k−1(·) = α

(i)
k−1(·), (2.30)

where {α(i)
k−1(`)}M`=1 is represented with α

(i)
k−1(·) for the sake of simplicity. The

continuous state xk is propagated by sampling from the importance density,

x
(i)
k ∼ qk(xk|x(i)0:k−1, y1:k). (2.31)

Here, one can use the bootstrap proposal density provided as

q(xk|x(i)0:k−1, y1:k) =p(xk|x(i)0:k−1, y1:k−1)

=
M∑
`=1

f(xk|x(i)k−1)α
(i)
k|k−1(`). (2.32)

When a new measurement is available, we perform the weight update. Since the

continuous state x(i)k carries information about the discrete state rk, it serves as
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an extra measurement [32]. αk(·) in (2.29) can also be expressed in terms of the

joint density

α
(i)
k (·) = P(rk|x(i)k , x

(i)
0:k−1, yk, y1:k−1)

=
P(rk, x

(i)
k , yk|x

(i)
0:k−1, y1:k−1)

P(x
(i)
k , yk|x

(i)
0:k−1, y1:k−1)

∝ P(rk, x
(i)
k , yk|x

(i)
0:k−1, y1:k−1). (2.33)

For simplicity, we define a mid quantity γk,

γ
(i)
k (rk) , p(rk, x

(i)
k , yk|x

(i)
0:k−1, y1:k−1)

= grk(yk|x
(i)
k )f(x

(i)
k |x

(i)
k−1)α

(i)
k|k−1(rk). (2.34)

Using γk we can compute αk(·),

α
(i)
k (`) ∝ γ

(i)
k (`), (2.35a)

α
(i)
k (`) =

γ
(i)
k (`)∑M

m=1 γ
(i)
k (m)

. (2.35b)

The importance weights are updated with,

w
(i)
k ∝

p(x
(i)
k , yk|x

(i)
0:k−1, y1:k−1)

q(x
(i)
k |x

(i)
0:k−1, y1:k)

w
(i)
k−1, (2.36)

where the numerator of (2.36) is the marginalization of (2.34) over rk which is

equal to
∑M

m=1 γ
(i)
k (m). Substituting this expression in the numerator of (2.36)

results in,

w
(i)
k ∝

∑M
m=1 γ

(i)
k (m)

q(x
(i)
k |x

(i)
0:k−1, y1:k)

w
(i)
k−1. (2.37)

Lastly, we perform resampling, if necessary.

The DMPF is summarized in Algorithm 2.4.

2.5 Conclusion

We have provided a general framework of particle filtering. Popular approaches

in PF, such as bootstrap proposal density, optimal proposal density, and marginal-

ization idea are introduced. Multiple switching dynamic models are defined

18



Algorithm 2.4: Summary of the DMPF
1: Initialization at k = 0:

2: for all i = 1, . . . , N do

3: Sample the continuous state x(i)0 ∼ p0(x0)

4: Set initial weights w(i)
0 = 1

N

5: end for

6: Iterations:

7: for k = 1, . . . , T do

8: for all i = 1, . . . , N do

9: Compute {α(i)
k|k−1(`)}M`=1 according to (2.30)

10: Sample the continuous state, x(i)k ∼ qk(xk|x(i)0:k−1, y1:k)

11: Compute {γ(i)k (`)}M`=1 according to (2.34)

12: Compute {α(i)
k|k(`)}M`=1 according to (2.35)

13: Update the weights according to (2.37)

14: end for

15: Normalize the weights

16: Resample, if necessary

17: end for

where two different marginalization approaches are possible. This model and

the particle filtering approaches will be used in a multi ellipse ETT problem

whose details will be provided in the next chapter.
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CHAPTER 3

NON-ELLIPSOIDAL EXTENDED TARGET TRACKING WITH

KNOWN EXTENT

In an ETT application, there are two nested problems to be solved: estimation

of the target extent; and tracking the kinematic state of the target. In this

chapter, we focus on the latter problem assuming that the multi-ellipse target

extent is known. Under this assumption, different marginalization strategies are

investigated to solve the association problem between the measurements and

ellipses. The performances of the algorithms are tested in simulations and the

results are compared to present the advantages and drawbacks of the algorithms.

3.1 Target Extent Model

Here, the target extent is represented with multiple ellipses where each ellipse

is called as a sub-object. Various complex shapes can be represented by this

model as shown in Figure 3.1. Each sub-object is associated with a known

symmetric positive definite (SPD) matrix {X`}M`=1 ∈ Rd×d and a known mean

vector {µ`}M`=1 ∈ Rd whereM is the number of sub-objects and d is the dimension

of the extent. Here, µ1 is assumed to be zero to define the first sub-object as

the main body of the target.
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Figure 3.1: An example of target extent representation with 5 ellipses under the assumption

of known extent.

Let Yk = {yjk}
mk
j=1 ∈ Rny be the set of mk random measurements collected from

the target extent at time k. The measurement equation corresponding to the

extent model can be written as a mixture of Gaussians under additive Gaussian

measurement noise assumption as

p(yjk|x
c
k) =

M∑
`=1

π`N (yjk;x
c
k + µ`, sX` +R), (3.1)

where π` ∈ [0, 1] are the mixture weights, i.e., the prior probability that a

measurement belongs to `th sub-object. s ∈ R is the positive constant scaling

factor which is added to spread contribution of the object extension [9]. In

some practical applications, it could be more realistic assumption to model the

measurement sources as uniformly distributed on the object extent. In that

case, the scaling factor is used to approximate the uniform distribution using a

Gaussian distribution [11].

The state vector xk holding the relevant variables of the model can be defined

as follows,

xk , [(xck)
T (x̃k)

T ]T , (3.2)

where xck is the position of the centroid and x̃k denotes the additional state

variables.
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In the Bayesian framework, one can define appropriate priors to compute the

posterior density of unknown variables. Our aim is to find a recursive update

for the posterior density

p(xk|Y1:k), (3.3)

where this posterior density is intractable since we do not know the true associ-

ations between the measurements and sub-objects.

To solve this assignment problem, we first define an association variable rjk for

each measurement yjk. r
j
k indicates the index of the sub-object that the measure-

ment yjk belongs and it is assumed to be multinomial distributed as described in

Section 2.4.1.

For the target extent model described so far, we will use particle filtering meth-

ods to approximate the posterior density of the target kinematic state and the

association variables.

3.2 Inference

Under the assumption of known extent matrices X1:M and mean vectors µ1:M ,

the system can be represented by a multinomial CLGS model. In this case, our

aim is to approximate the joint posterior density of the association variables and

the kinematic state recursively,

p(xk, rk|Y1:k), (3.4)

where rk = [r1k . . . r
mk
k ]T . The system equations are given as follows,

xk+1 = Fxk + ek, (3.5a)

yjk = Hxk + v
rjk
k , (3.5b)

where the process noise and the conditional measurement noise can be expressed

respectively as

ek ∼ N (0, Q), (3.6a)

v
rjk
k ∼ N (µr

j
k , sXrjk +R). (3.6b)
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The posterior density 3.4 will be approximated using the system definition pro-

vided in 3.5 and different particle filtering approaches.

3.2.1 Adaptation of the Algorithms for Multi-Measurement Systems

The particle filtering approaches introduced so far are derived for a single mea-

surement system. Therefore, we need to perform modifications in their measure-

ment update steps to adapt them into a multi-measurement system.

The first algorithm that we will consider is the BPF. The general flow of the

BPF in a multi-measurement multinomial CLGS can be described as follows.

For each time instant k, the association variables rk and the kinematic state

should be sampled from their prior densities,

x
(i)
k ∼ p(xk|x(i)k−1), (3.7a)

r(i)k ∼ π. (3.7b)

To update the importance weights, the likelihood of the multiple measurements

are calculated as

p(Yk|x(i)k , r
(i)
k ) =

mk∏
j=1

p(yjk|x
(i)
k , r

(i),j
k ), (3.8)

where we assume that each measurement obtained at time k is conditionally

independent of the others. Using the likelihood above, the weights are updated

as follows,

w
(i)
k ∝ p(Yk|x(i)k , r

(i)
k )w

(i)
k−1. (3.9)

After calculating the weights, resampling is performed, if necessary. The sum-

mary of the BPF is given in Algorithm 3.1.
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Algorithm 3.1: Summary of the BPF for multi-measurement case
1: Initialization at k = 0:

2: for all particles i = 1, . . . , N do

3: Sample x(i)0 ∼ p0

4: Set initial weights w(i)
0 = 1

N

5: end for

6: Iterations:

7: for time k = 1, . . . , T do

8: for all particles i = 1, . . . , N do

9: Sample the kinematic state, x(i)k ∼ p(xk|x(i)k−1)
10: Sample the association variables, r(i)k ∼ π

11: Update the weights according to (3.9)

12: end for

13: Normalize the weights

14: Resample, if necessary

15: end for

The second algorithm that we will consider is the CMPF. CMPF factorizes the

posterior density into,

p(xk, r1:k|Y1:k) = p(xk|r1:k,Y1:k)p(r1:k|Y1:k), (3.10)

where p(xk|r1:k,Y1:k) can be expressed as a conditional Gaussian density. The

general flow of the CMPF in a multi-measurement multinomial CLGS can be

described as follows.

For each time instant k, the association variables rk are sampled from the im-

portance density,

r(i)k ∼ q(·). (3.11)

Here, if we want to use the bootstrap proposal density, the importance density

q(·) is chosen to be equal to the prior density π. Alternatively, one can use the

optimal proposal density to increase the performance as described in Section

2.3. The optimal proposal density is given by

π
(i),j
opt , p(r

(i),j
k |yj1:k, r

(i),j
k−1) ∝ p(yjk|r

(i),j
k , yj1:k−1)p(r

(i),j
k |r(i),jk−1), (3.12)
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where the predictive likelihood p(yjk|r
(i),j
k , yj1:k−1) is expressed further as

p(yjk|r
(i),j
k , yj1:k−1) =

∫
p(yjk|x

(i)
k , r

(i),j
k , yj1:k−1)p(x

(i)
k |r

(i),j
k , yj1:k−1)dxk

=

∫
N (yjk;Hx

(i)
k + µr

j
k , R + sXrjk)N (x

(i)
k ;x

(i)
k|k−1, P

(i)
k|k−1)dxk

=N (yjk;Hx̂
(i)
k|k−1 + µr

j
k , HP

(i)
k|k−1H

T +R + sXrjk). (3.13)

The optimal proposal density is calculated using the following expressions for

each sub-object `,

π̃
(i),j
opt,` = N

(
yjk;Hx̂

(i)
k|k−1 + µ`, HP

(i)
k|k−1H

T + sX` +R
)
π`, (3.14a)

π
(i),j
opt,` =

π̃
(i),j
opt,`∑M

n=1 π̃
(i),j
opt,n

, (3.14b)

where x̂(i)k|k−1 and P
(i)
k|k−1 are calculated in the time update step. Next, the particle

weights are updated according to the following equation,

w
(i)
k ∝

mk∏
j=1

p(yjk|r
(i),j
k , yj1:k−1)πr(i),jk

q(r
(i),j
k )

w
(i)
k−1. (3.15)

Time update of the continuous state is not affected by multiple measurements.

Measurement update of the continuous state is performed consecutively for each

measurement yjk,

x̂
(i)
k = x̂

(i)
k|k−1 +Kk(y

j
k −Hx̂

(i)
k|k−1 − µ

rjk), (3.16a)

P
(i)
k = (I −KkH)P

(i)
k|k−1, (3.16b)

Kk = P
(i)
k|k−1H

T (HP
(i)
k|k−1H

T + sXrjk +R)−1, (3.16c)

where we assign x̂(i)k|k−1 ← x̂
(i)
k , P (i)

k|k−1 ← P
(i)
k and iterate for j = 1, . . . ,mk.

As a last step, we perform resampling, if necessary. The method is summarized

in Algorithm 3.2.
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Algorithm 3.2: Summary of the CMPF for multi-measurement case
Initialization at k = 0:

for all particles i = 1, . . . , N do

Set initial weights w(i)
0 = 1

N

Set initial kinematic state of each particle x̂(i)0 = x̄0, P̂
(i)
0 = P̄0

end for

Iterations:

for time k = 1, . . . , T do

for all particles i = 1, . . . , N do

Perform time update of the kinematic state

Sample the association variables, r(i)k ∼ q(·)
Update the weights according to (3.15)

end for

Normalize the weights

for all particles i = 1, . . . , N do

for all measurements j = 1, . . . ,mk do

Perform measurement update of the kinematic states

according to (3.16)

Assign x̂(i)k|k−1 ← x̂
(i)
k , P (i)

k|k−1 ← P
(i)
k and iterate

end for

end for

Resample, if necessary.

end for

The third algorithm that we will consider is the DMPF. DMPF factorizes the

posterior density p(x0:k, rk|Y1:k) as follows,

p(x0:k, rk|Y1:k) = p(rk|x0:k,Y1:k)p(x0:k|Y1:k). (3.17)

At any time k, the mode probability variable α(·)(i),jk|k−1 should be calculated for

each measurement for a given time. In the measurement update step, γ and α
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variables are updated consecutively,

γ
(i),j
k (`) = g`(y

j
k|x

(i)
k )f(xk|x(i)k−1)α

(i),j
k|k−1(`), (3.18a)

α
(i),j
k|k (`) =

γ
(i),j
k (`)∑M

m=1 γ
(i),j
k (m)

. (3.18b)

Assuming that the bootstrap proposal density is used, the weights are updated

using the following expressions,

w
(i)
k ∝

∑M
`=1

∏mk
j=1 γ

(i),j
k (`)

p(xk|x(i)0:k−1,Y1:k)
w

(i)
k−1. (3.19)

As a last step, we perform resampling, if necessary. The method is summarized

in Algorithm 3.3.
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Algorithm 3.3: Summary of the DMPF for multi-measurement case
1: Initialization at k = 0:

2: for all particles i = 1, . . . , N do

3: Sample the initial kinematic state x(i)0 ∼ p0

4: Set initial weights w(i)
0 = 1

N

5: end for

6: Iterations:

7: for time k = 1, . . . , T do

8: for all particles i = 1, . . . , N do

9: for all measurements j = 1, . . . ,mk do

10: Compute α(i),j
k|k−1(·) according to (2.30)

11: end for

12: Sample the kinematic state, x(i)k ∼ p(xk|x(i)0:k−1,Y1:k)

13: for all measurements j = 1, . . . ,mk do

14: Compute γ(i),jk (·) according to (3.18a)

15: Compute α(i),j
k|k (·) according to (3.18b)

16: end for

17: Update the weights according to (3.19)

18: end for

19: Normalize the weights

20: Resample, if necessary

21: end for

3.3 Performance Evaluation

We test the algorithms on a simulation of a moving multi-ellipse object which

consists of 3-ellipses (see Figure 3.2). The object follows a linear path and the

number of measurements at each scan is Poisson distributed with an average of

7 measurements. Constant velocity model is used as the kinematic model of the

object which will be explained in the following subsection.
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Figure 3.2: Target extent model with 3 ellipses.

3.3.1 2-D Constant Velocity Model

Non-maneuvering 2-dimensional constant velocity model is one of the most com-

monly used models in target tracking problems [26]. The target speed is assumed

to be constant through a linear path and the system noise accounts for possible

accelerations that disturbs the speed. The state consists of two dimensional

positions and velocities

x =


x

y

vx

vy

 . (3.20)

The system matrices in (3.5) are defined as

F =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , H =

1 0 0 0

0 1 0 0

 . (3.21)
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The process noise covariance matrix Q is chosen as

Q = σ2


T 3/3 0 T 2/2 0

0 T 3/3 0 T 2/2

T 2/2 0 T 0

0 T 2/2 0 T

 ,
where T is the sampling time. The sampling time is set to T = 0.1s for the rest

of the simulations performed in this study.

The above-defined system is the basic 2-D non-maneuvering constant velocity

model which can be extended by including other kinematic parameters such as

heading, jerk or acceleration.

3.3.2 Simulation

The system is simulated in 100 Monte Carlo (MC) runs using the same measure-

ment realization to observe estimation consistency and variance. The numeric

results presented here is an average of the MC runs.

As a performance metric, RMSE (2.8) will be used. In addition to RMSE,

computation time of the algorithms will be compared. The abbreviations of

the methods used in simulations are as follows: BPF, CMPF-B (CMPF with

bootstrap proposal density), CMPF-O (CMPF with optimal proposal density)

and DMPF.

Since the BPF samples both the association variables rk and the kinematic

state xk, it requires an excessive number of particles to provide satisfying results

when compared with the other two algorithms. Therefore, the BPF is run with

N = 20 000 particles while the CMPF-B, the CMPF-O, and the DMPF are run

with 200 particles.

The mode probability vector π is chosen as in equation (2.19) which is a reason-

able choice when the measurement rates of the sub-objects are unknown. The

sampling time is set to T = 1s, the system noise variance is set to σ2 = 1 and the

measurement noise covariance is selected to be R = diag([10, 10])m2. The scal-

ing factor is taken as s = 1. Initial kinematics and their covariance matrix are
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chosen as x0 = [0, 0, 10m/s, 0]T , P0 = diag[400, 400, 100, 100] respectively. All

simulations are run in Matlab(R) R2016b on a standard laptop with an Intel(R)

Core(TM) i5-7200U 2.50 GHz platform with 8 GB of RAM running Windows.

The position estimates of all four algorithms are presented in Figures 3.3, 3.4,

3.5 and 3.6.
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Figure 3.3: Position estimates of the BPF for 100 MC runs with 20 000 particles. The red

and blue lines show the average MC run result and the true value respectively. The

transparent area shows the upper and lower bound of the MC estimates.
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Figure 3.4: Position estimates of the CMPF-B for 100 MC runs with 200 particles. The red

and blue lines represent the average MC run result and the true value respectively. The

transparent area shows the upper and lower bound of the MC estimates.
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Figure 3.5: Position estimates of the CMPF-O for 100 MC runs with 200 particles. The red

and blue lines represent the average MC run result and the true value respectively. The

transparent area shows the upper and lower bound of the MC estimates.
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Figure 3.6: Position estimates of the DMPF for 100 MC runs with 200 particles. The red

and blue lines represent the average MC run result and the true value respectively. The

transparent area shows the upper and lower bound of the MC estimates.

The average RMSE values for the position estimates are presented in Table 3.1.

Table 3.1: RMSE values of the four algorithms

RMSE[m]

BPF (with 20K particles) 2.91

CMPF-B (with 200 particles) 1.59

CMPF-O (with 200 particles) 1.33

DMPF (with 200 particles) 1.42
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The BPF has the largest MC variance and RMSE value even if it runs with 100

times more particles than the other algorithms. Therefore, one can claim that

using marginalization (if it is possible) has a positive impact on the performance

of the algorithm.

We obtained the lowest MC variance and RMSE value with the CMPF-O.

The DMPF has the closest estimation performance to the CMPF-O in the sense

of RMSE and MC variance.

One can also observe the effect of using the optimal proposal density instead

of the bootstrap proposal density by comparing the results of the CMPF-B

and the CMPF-O. The optimal proposal density has a positive impact on the

performance of the algorithm.

A second simulation is performed to observe the relationship between the number

of particles (N) and RMSE values. In the simulation, all algorithms are run with

N = 200, 500, 1000 particles. The results are presented in Figure 3.7. RMSE of

the CMPF-B, the CMPF-O, and the DMPF converge to a small number as the

number of particles increases.
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Figure 3.7: RMSE results versus the number of particles of the three algorithms. The blue

line denotes the CMPF-B, the orange line denotes the CMPF-O and the yellow line denotes

the DMPF.
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Table 3.2: Average computation times per update of the algorithms

Computation Time[s]

BPF (with 20K particles) 0.089

CMPF-B (with 200 particles) 0.31

CMPF-O (with 200 particles) 0.32

DMPF (with 200 particles) 0.0019

Although RMSE values and the figures state that the CMPF-O has the best

estimation results among the others, it has one drawback. Since the algorithm

includes optimal proposal density computations and KF update equations per-

formed per particle, it requires vast computation effort when compared with

the DMPF. Average computation times per update are given in Table 3.2. The

DMPF has the smallest computation time since its implementation does not

include any complex equations.

3.4 Conclusion

We have investigated possible marginalization strategies to find an efficient parti-

cle filter for a simplified ETT problem where the extent parameters are assumed

to be known. Four different PFs are implemented and their performances are

compared in the simulations. Overall, the best estimation performance is ob-

tained by using the CMPF-O. However, the CMPF-O requires significant compu-

tational power. The DMPF has a close estimation performance to the CMPF-O

and it requires far less computational power. Therefore, using the DMPF can

be beneficial in practical applications.
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CHAPTER 4

NON-ELLIPSOIDAL EXTENDED TARGET TRACKING WITH

UNKNOWN EXTENT

Under the assumption of known extent, the problem of kinematic state estima-

tion in ETT is addressed using different PF techniques in the previous chapter.

In this chapter, we focus on the problem of joint estimation of the kinematic and

the extent states. The multi-ellipse approach will be used to model the target

extent as described in the previous chapter. A marginalized particle filtering

method which is based on variational Bayes is proposed. The method finds the

required analytical conditional expressions approximately by minimizing the KL

divergence between the true and the approximate densities. These approximate

analytic expressions are used in particle filtering to perform marginalization.

4.1 Target Extent Model

Here, we will use the same target extent model as in 3.1 except that the extent

matrices, {X`
k}M`=1 and mean vectors, {µ`k}M`=1 are unknown. In order to make

the target centroid xck observable, one of the mean vectors should be assumed

to be known. µ1
k is assumed to be zero to define the first sub-object as the main

body of the target (see: Figure 4.1). The measurement equation in (3.1) can be

re-expressed as

p(yjk|x
c
k, X

1:M
k , µ1:M

k ) =
M∑
`=1

π`N (yjk;x
c
k + µ`k, sX

`
k +R). (4.1)
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The augmented state vector which holds the relevant variables can be defined

as

xk , [(xck)
T (µ1

k)
T . . . (µMk )T (x̃k)

T ]T , (4.2)

where µ1:M
k denotes the mean vector (see: Figure 4.1). Furthermore, the poste-

rior density should also be redefined so that it covers the extent state,

p(xk, X
1:M
k |Y1:k). (4.3)
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Figure 4.1: An example of target extent representation with 5 ellipses under the assumption

of unknown extent.

However, this posterior density is intractable because of two reasons:

1) Given a set of measurements, we do not know which measurement belongs

to which sub-object. This creates a combinatorial problem which grows

exponentially with time k.

2) Assume that, we know the correct associations between the measurements

and the sub-objects; it is still not possible to find a closed form expression

for the posterior because of the additive noise covariance term R in (4.1),

which violates the conjugacy between the prior and the likelihood (see: [27,

Section -II]).
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We will solve the first problem using SMC techniques in a marginalized fashion.

The second problem will be solved by using variational inference.

We use the association variables r1:k in order to indicate the assignments between

measurements and sub-objects. Therefore, we include r1:k to the posterior den-

sity, p(xk, X1:M
k , r1:k|Y1:k).

Consider the following factorization of the posterior density

p(xk, X
1:M
k , r1:k|Y1:k) = p(xk, X

1:M
k |r1:k,Y1:k)p(r1:k|Y1:k). (4.4)

It is possible to approximate the first factor as an analytical expression, and the

second factor by a set of weighted samples,

p(r1:k|Y1:k) ≈
N∑
i=1

w
(i)
0:kδr(i)1:k

(r1:k). (4.5)

A summary of a generic MPF, where discrete states are sampled and the poste-

rior density of continuous states are analytically expressed, is given in Algorithm

4.1.

In the following section, we will provide the details of the measurement update

of the continuous state (line:13, in Algorithm 4.1). The time update of the con-

tinuous state, sampling and weight update steps (lines:[10-12], in Algorithm 4.1)

will be described in Section 4.3.

4.2 Measurement Update

Suppose at time k, the predicted density for the kinematic and the extent states

are given as follows,

p(x
(i)
k , X

1:M,(i)
k |r(i)1:k−1,Y1:k−1)

=N (x
(i)
k ; x̂

(i)
k|k−1, P

(i)
k|k−1)

M∏
`=1

IW(X
`,(i)
k ; v

`,(i)
k|k−1, V

`,(i)
k|k−1), (4.6)

where x̂(i)k|k−1 and P (i)
k|k−1 are the mean and the covariance of the Gaussian state

vector x(i)k of the ith particle, respectively. The variables v(i)k|k−1 and V
(i)
k|k−1 are
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Algorithm 4.1: Summary of the MPF
1: Initialization at time k = 0:

2: for all particles i = 1, . . . , N do

3: Set initial weights w(i)
0 = 1

N

4: Set initial continuous state statistics of each particle

5: end for

6: Iterations:

7: for time k = 1, . . . , T do

8: for all particles i = 1, . . . , N do

9: Perform time update of the continuous states

10: Sample discrete states r(i)k ∼ q(r(i)k |r
(i)
1:k−1,Y1:k)

11: Compute the likelihood

12: Update the weights w(i)
k

13: Perform measurement update of the continuous states

14: end for

15: Normalize the weights,

16: Resample, if necessary

17: end for
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the degrees of freedom variable and the scale matrix of the inverse Wishart

distributed extent state X(i)
k of the ith particle. The left-hand side of the (4.6)

is conditioned on the association variables and measurements up to time instant

k − 1. For notational simplicity, the superscript (i) will be dropped for the

remaining of this section.

The new rk samples are generated after the measurements Yk at time k are

available. Then, the joint posterior density of the kinematic and the extent

states can be computed recursively using Bayes’ formula,

p(xk, X
1:M
k |r1:k,Y1:k) =

p(Yk|xk, X1:M
k , r1:k)p(xk, X1:M

k |r1:k−1,Y1:k−1)

p(Yk|Y1:k−1)
. (4.7)

The measurement likelihood at time k can be expressed as follows,

p(Yk|xk, X1:M
k , r1:k) =

mk∏
j=1

p(yjk|xk, X
rjk
k , r

j
1:k)

=

mk∏
j=1

N (yjk;H
rjkxk, sX

rjk
k +R), (4.8)

where the measurements are assumed to be conditionally independent of the

others. The expression on the left hand side also can be expressed further as

Hrjkxk , xck + µ
rjk
k . (4.9)

For the likelihood given above, it is not possible to obtain a compact analytical

expression for the posterior in (4.7), hence, an exact update is not possible.

Note that, the required update can be interpreted as follows: In reference to

Figure 4.1, the unknown means µ`k’s, unknown centroid xck, and unknown extents

X`
k’s must be all updated given their last estimates and the measurements Yk

with their association variables rk. In the next subsection, we carefully derive

an approximate method by making use of indicator functions to update the

statistics of each sub-object with the measurements selected by the association

variables.
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4.2.1 Conditional Variational Inference

Using the variational approximation, one can find an approximate analytical

solution for the posterior density [7],

p(xk, X
1:M
k |r1:k,Y1:k) ≈ qx(xk, X

1:M
k ). (4.10)

The approximate density qx(xk, X1:M
k ) is chosen to be a product of factorized

densities,

qx(xk, X
1:M
k ) = qx(xk)

M∏
`=1

qX`(X`
k), (4.11)

where qx(xk) and qX1:M (X1:M
k ) are the approximate posterior densities for xk and

X1:M
k respectively. An additional instrumental variable is required to be defined

to address the problem caused by the additive measurement noise covariance

term R. This variable is called as noise-free measurement [27], and denoted by

zjk and Zk = {zjk}
mk
j=1. The measurement likelihood can be expressed using Zk as

N (yjk;H
rjkxk, sX

rjk
k +R) =

∫
N (yjk; z

j
k, R)N (zjk;H

rjkxk, sX
rjk
k )dzjk. (4.12)

The equation (4.12) can be interpreted as the marginalization of the following

joint density,

p(yjk, z
j
k|xk, X

rjk
k , r

j
k) = N (yjk; z

j
k, R)N (zjk;H

rjkxk, sX
rjk
k ), (4.13)

over variable zjk for each measurement yjk. Since we also want to estimate the

instrumental variable, Zk, it should also be included in the posterior,

p(xk, X
1:M
k ,Zk|r1:k,Y1:k) ≈ qx(xk)

M∏
`=1

qX`(X`
k)qZ(Zk), (4.14)

where qZ(Zk) is the approximate density of the instrumental variable Zk. The

idea of variational approximation [7, Ch. 10] is to seek factorized densities whose

product minimizes the following cost function.

q̂x, q̂X1:M , q̂Z = arg min
qx,qX1:M ,qZ

KL
(
q(xk, X

1:M
k ,Zk)||p(xk, X1:M

k ,Zk|r1:k,Y1:k)
)
.

(4.15)
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where KL divergence is defined as

KL
(
q||p
)
,
∫
q log

(
q

p

)
dx. (4.16)

We use fixed-point iterations to solve the problem (4.15). At each iteration, only

one factorized density is updated while the rest is kept constant to their last

estimated values. The solution of the optimization problem (4.15) is provided

as [7, Ch. 10]:

log q̂x(xk) =Eq̂
X1:M ,q̂Z

[
log p(xk, X

1:M
k ,Zk,Yk|r1:k,Y1:k−1)

]
+ cx, (4.17a)

log q̂X`(X`
k) =Eq̂x,q̂Z,q̂X−`

[
log p(xk, X

1:M
k ,Zk,Yk|r1:k,Y1:k−1)

]
+ cX` , (4.17b)

log q̂Z(Zk) =Eq̂x,q̂X1:M

[
log p(xk, X

1:M
k ,Zk,Yk|r1:k,Y1:k−1)

]
+ cZ, (4.17c)

where cx, cX` and cZ are the constant terms with respect to the correspond-

ing variables. The joint density p(xk, X1:M
k ,Zk,Yk|r1:k,Y1:k−1) in the equation

(4.17) can be written explicitly as

p(xk, X
1:M
k ,Zk,Yk|r1:k,Y1:k−1)

=p(Yk|Zk, r1:k)p(Zk|xk, X1:M
k , r1:k)

× p(xk, X1:M
k |r1:k,Y1:k−1)

=

(
mk∏
j=1

N (yjk; z
j
k, R)

)(
mk∏
j=1

N (zjk;H
rjkxk, sX

rjk
k )

)

×N (xk; x̂k|k−1, Pk|k−1)
M∏
`=1

IW(X`
k; v

`
k|k−1, V

`
k|k−1). (4.18)

The full derivations for the (ξ+ 1)th iterations of approximate posteriors will be

presented in the following subsections.

4.2.1.1 Determination of q(ξ+1)
x (·)

We take expectation of (4.18) with respect to Zk and X1:M
k . The parts that does

not depend on xk are omitted and written as a constant term cx.

log q(ξ+1)
x (xk) = E

q
(ξ)

X1:M ,q
(ξ)
Z

[log p(Zk|xk, X1:M
k , r1:k)]

+ logN (xk; x̂k|k−1.Pk|k−1) + cx. (4.19)
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We can further express the expectation term as

log p(Zk|xk, X1:M
k ,r1:k)

= log

mk∏
j=1

N (zjk;H
rjkxk, sX

rjk
k )

= log

mk∏
j=1

[
1

(2π)n/2|sXrjk
k |1/2

e−
1
2
(zjk−H

r
j
kxk)

T (sX
r
j
k
k )−1(zjk−H

r
j
kxk)

]

=− mkn

2
log(2π)− 1

2

mk∑
j=1

log |sXrjk
k |

− 1

2

mk∑
j=1

[
(zjk −H

rjkxk)
T (sX

rjk
k )−1(zjk −H

rjkxk)
]
, (4.20)

which can be rewritten using trace (see Appendix A) as

log p(Zk|xk, X1:M
k , r1:k) =− mkn

2
log(2π)− 1

2

mk∑
j=1

log |sXrjk
k |

− 1

2

mk∑
j=1

tr
[
(zj −Hrjkxk)(z

j −Hrjkxk)
T (sX

rjk
k )−1

]
.

(4.21)

Taking expectation of (4.21) with respect to the variables X1:M
k and Zk results

in,

E
q
(ξ)

X1:M ,q
(ξ)
Z

[log p(Zk|xk, X1:M
k , r1:k)]

=− 1

2

mk∑
j=1

tr
[(
E
q
(ξ)
Z

[zjk]−H
rjkxk

)(
E
q
(ξ)
Z

[zjk]−H
rjkxk

)T
E
q
(ξ)
X

[
(sX

rjk
k )−1

]]
+ cx

=− 1

2
tr
[
m1
k

(
(z1k −H1xk)(z

1
k −H1xk)

TE
q
(ξ)

X1

[
(sX1

k)−1
])]

...

− 1

2
tr
[
mM
k

(
(zMk −HMxk)(z

M
k −HMxk)

TE
q
(ξ)

XM

[
(sXM

k )−1
])]

+ cx. (4.22)
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The above expression can be rewritten in terms of Gaussian densities as follows,

E
q
(ξ)

X1:M ,q
(ξ)
Z

[log p(Zk|xk,X1:M
k , r1:k)]

= logN

z1k;H1xk,

(
E
q
(ξ)

X1
[(sX1

k)−1]
)−1

m1
k


...

+ logN

zMk ;HMxk,

(
E
q
(ξ)

XM

[
(sXM

k )−1
])−1

mM
k

+ cx.

(4.23)

Knowing that m`
k is the measurement number labeled to the subobject `, we can

express zk as

z`k ,
1

m`
k

mk∑
j=1

{
E
q
(ξ)
Z

[zjk]
}
1(rjk = `) for ` = 1...M. (4.24)

Finally, (4.19) becomes,

log q(ξ+1)
x (xk) =

M∑
`=1

logN

z`k;H`xk,

(
E
q
(ξ)

X`

[
(sX`

k)
−1])−1

m`
k


+ logN (xk; x̂k|k−1.Pk|k−1) + c.

(4.25)

We obtain a Gaussian density by taking the exponential of the both sides of

(4.25), normalizing and using the KF measurement update equations [27],

q(ξ+1)
x (xk) = N (xk;x

(ξ+1)
k|k , P

(ξ+1)
k|k ), (4.26)

where the parameters are,

x
(ξ+1)
k|k = P

(ξ+1)
k|k

(
P−1k|k−1xk|k−1 +

M∑
`=1

m`
k(H

`)TE
q
(ξ)

X`
[(sX`

k)
−1]z`k

)
, (4.27a)

P
(ξ+1)
k|k =

(
P−1k|k−1 +

M∑
`=1

m`
k(H

`)TE
q
(ξ)

X`
[(sX`

k)
−1]H`

)−1
. (4.27b)
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4.2.1.2 Determination of q(ξ+1)

X` (·)

We take expectation of (4.18) with respect to xk, Zk and X−`k where X−`k denotes

the variables {X1
k , . . . , X

`−1
k , X`+1

k , . . . , XM
k }. The parts that does not depend

on X`
k are omitted and written as a constant term cX` .

log q
(ξ+1)

X` (X`
k) =E

q
(ξ)
x ,q

(ξ)
Z ,q

(ξ)

X−`
[log p(Zk|xk, X1:M

k , r1:k)]

+ log IW(X`
k; v

`
k|k−1, V

`
k|k−1) + cX` , (4.28)

where we can further express the expectation term as

E
q
(ξ)
x ,q

(ξ)
Z ,q

(ξ)

X−`
[log p(Zk|xk, X1:M

k , r1:k)]

=− m`
k

2
log |sX`

k| −
1

2
tr
[ mk∑
j=1

(
E
q
(ξ)
x ,q

(ξ)
Z ,q

(ξ)

X−`

[
(zjk −H

`xk)

× (zjk −H
`xk)

T

])
(sX`

k)
−1
1(rjk = `)

]
+ cX` . (4.29)

Then, we rewrite (4.28) as

log q
(ξ+1)

X` (X`
k) = log IW(X`

k; v
`
k|k−1, V

`
k|k−1)−

m`
k

2
log |sX`

k|

− 1

2
tr
[ mk∑
j=1

(
E
q
(ξ)
x ,q

(ξ)
Z ,q

(ξ)

X−`

[
(zjk −H

`xk)(z
j
k −H

`xk)
T

])
× (sX`

k)
−1
1(rjk = `)

]
+ cX` . (4.30)

The right hand side of (4.30) is sum of two logarithms of inverse Wishart den-

sities. As a result, we combine them and obtain a new one,

q
(ξ+1)

X` (X`
k) = IW(X`

k; v
`,(ξ+1)
k|k , V

`,(ξ+1)
k|k ), (4.31)

where the parameters are,

v
`,(ξ+1)
k|k = v`k|k−1 +m`

k, (4.32a)

V
`,(ξ+1)
k|k = V `

k|k−1 +
1

s

mk∑
j=1

(
E
q
(ξ)
x ,q

(ξ)
Z ,q

(ξ)

X−`

[
(zjk −H

`xk)(z
j
k −H

`xk)
T
])
1(rjk = `).

(4.32b)
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4.2.1.3 Determination of q(ξ+1)
Z (·)

We take expectation of (4.18) with respect to xk and X1:M
k . The parts that does

not depend on Zk are omitted and written as a constant term cZ.

log q
(ξ+1)
Z (Zk) = log p(Yk|Zk, r1:k) + E

q
(ξ)
x ,q

(ξ)

X1:M
[log p(Zk|xk, X1:M

k , r1:k)] + cZ,

(4.33)

where the expectation term can be further expressed as,

E
q
(ξ)
x ,q

(ξ)

X1:M
[ log p(Zk|xk, X1:M

k , r1:k)]

=

mk∑
j=1

−0.5tr

[(
zjk −H

rjk

(
E
q
(ξ)
x

[xk]
))(

zjk −H
rjk

(
E
q
(ξ)
x

[xk]
))T

× E
q
(ξ)

X
r
j
k

[
(sX

rjk
k )−1

]]
+ cZ. (4.34)

Finally, (4.33) can be rewritten as

log q
(ξ+1)
Z (Zk) =

mk∑
j=1

[
log p(yjk; z

j
k, r

j
1:k)

+ log p

(
zjk; H

rjkE
q
(ξ)
x

[xk]Eq(ξ)
X
r
j
k

[
(sX

rjk
k )−1

]−1)]
+ cZ. (4.35)

We obtain a Gaussian density by taking the exponential of the both sides of

(4.35), normalizing and using the KF measurement update equations,

log q
(ξ+1)
Z (Zk) =

mk∏
j=1

N (zjk; ẑ
j,(ξ+1)
k ,Σ

z,(ξ+1)
k ), (4.36)

where the parameters are

ẑ
j,(ξ+1)
k = Σ

z,rjk,(ξ+1)

k

(
E
q
(ξ)

X
r
j
k

[
(sX

rjk
k )−1

]
HrjkE

q
(ξ)
x

[xk] +R−1yjk

)
, (4.37a)

Σ
z,`,(ξ+1)
k =

(
E
q
(ξ)

X`

[
(sX`

k)
−1]+R−1

)−1
. (4.37b)
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The following equations are used to compute the relevant expectations:

E
q
(ξ)
x

[xk] = x
(ξ)
k|k, E

q
(ξ)
Z

[zjk] = ẑ
j,(ξ)
k ,

E
q
(ξ)

X`
[(sX`

k)
−1] = v`k|k

(
sV

`,(ξ)
k|k

)−1
,

E
q
(ξ)
x ,q

(ξ)
Z ,q

(ξ)

X−`

[
(zjk −H

rjkxk)(z
j
k −H

rjkxk)
T
]

=
(
ẑ
j,(ξ)
k −Hrjkx

(ξ)
k|k

)(
ẑ
j,(ξ)
k −Hrjkx

(ξ)
k|k

)T
+H`P

(ξ)
k|k(H`)T + Σ

z,`,(ξ)
k .

The expected value, E
q
(ξ)

X`
[(sX`

k)
−1] is found using the theorem given in [15,

Theorem 3.4.1]. The theorem states that if X is an inverse Wishart random

variable with the following parameters IW(X; v, V ), then X−1 is a Wishart

random variable with the following parameters W(X−1; v, V −1). Furthermore,

the expected value of the Wishart density is equal to v × V −1 [15, Theorem

3.3.15].

The initial conditions for the quantities are chosen as follows:

ẑ
j,(0)
k = yjk, Σ

z,`,(0)
k = sX`

k|k−1, x
(0)
k|k = x̂k|k−1,

P
(0)
k|k = Pk|k−1, v

`,(0)
k|k = v`k|k−1, V

`,(0)
k|k = V `

k|k−1.

Now, using the expressions derived so far, we can set up a variational iteration to

find the estimate of approximate posteriors qx, qX` and qZ. In a similar fashion

to [27], Zk is marginalized out from the joint density, and an approximation for

p(xk, X
1:M
k |r1:k,Y1:k) is obtained.

4.3 Prediction, Sampling, and Weight Update

Once the measurement update of the continuous state is complete, a resampling

is performed (if necessary), and we proceed to the next time step. In the next

time step,

• time update of the continuous state,

• sampling the association variables,
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• weight update

tasks should be performed.

4.3.1 Time Update

Suppose at time k− 1, we have the following posterior density for the kinematic

and extent states:

p(x
(i)
k−1, X

1:M,(i)
k−1 |r(i)1:k−1,Y1:k−1) =N (x

(i)
k−1; x̂

(i)
k−1, P

(i)
k−1)

×
M∏
`=1

IW(X
`,(i)
k−1 ; v

`,(i)
k−1, V

`,(i)
k−1 ), (4.39)

where the superscript (i) denotes the statistics of the ith particle. In the time

update, the prediction density is computed by updating the sufficient statistics

of the Gaussian and inverse Wishart components according to system dynamics.

The dynamics of the state vector xk is described with the state space model

given below,

xk+1 = Fxk + ek, ek ∼ N (0, Q). (4.40)

Then, the prediction density N (x
(i)
k|k−1; x̂

(i)
k|k−1, P

(i)
k|k−1) is obtained by updating

the sufficient statistics (mean and covariance) of the Gaussian components in

accordance with the system dynamics

x̂
(i)
k|k−1 = Fx̂

(i)
k−1|k−1, (4.41a)

P
(i)
k|k−1 = FP

(i)
k−1|k−1F

T +Q. (4.41b)

Sufficient statistics of the the inverse Wishart density is updated by defining a

forgetting factor γk

v
(i),`
k|k−1 = γkv

(i),`
k−1|k−1, (4.42a)

V
(i),`
k|k−1 = γkV

(i),`
k−1|k−1. (4.42b)

The use of the forgetting factor γk results in the maximum entropy estimate of

the prediction density for systems with unknown but slowly varying transition

dynamics [33, Theorem 1].
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4.3.2 Sampling

The association variables can be sampled from their prior density π which is

defined in (2.17) as follows:

r
(i),j
k ∼ q(·) = π for i = 1, . . . , N. (4.43)

A more efficient approach would be choosing the proposal density as the optimal

proposal density,

r
(i),j
k ∼ q(·) = π

(i),j
opt for i = 1, . . . , N. (4.44)

Derivation of the optimal proposal density is given in the following subsection.

4.3.2.1 Optimal Proposal Density

The association variables can be sampled from the optimal proposal density [2]

which is defined as

π
(i),j
opt , p(r

(i),j
k |yj1:k, r

(i),j
k−1) ∝ p(yjk|r

(i),j
k , yj1:k−1)p(r

(i),j
k |r(i),jk−1). (4.45)

For each sub-object ` the optimal proposal density is evaluated using the fol-

lowing approximate expressions,

π̃
(i),j
opt,` = N

(
yjk;H

`x̂
(i)
k|k−1, H

`P
(i)
k|k−1(H

`)T +R + sX̂
(i),`
k|k−1

)
π`,

π
(i),j
opt,` =

π̃
(i),j
opt,`∑M

n=1 π̃
(i),j
opt,n

, (4.46a)

where x̂(i)k|k−1 and P
(i)
k|k−1 are given in (4.41). The approximation above is de-

scribed in likelihood computation discussions given in the next subsection.

4.3.3 Weight Update

Once the samples from the association variables are obtained, the updated

weights are calculated and normalized according to the following equations,

w
(i)
k ∝ w

(i)
k−1

mk∏
j=1

p(yjk|r
(i),j
k , yj0:k−1)πr(i),jk

q(r
(i),j
k )

. (4.47)
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The likelihood p(yjk|r
(i),j
k , yj0:k−1), a.k.a. predictive likelihood, in (4.47) can be

found by computing the following integral:

p(yjk|r
(i),j
k , yj0:k−1) =

∫∫
p(yjk|x

(i)
k , X

(i),rjk
k , r

(i),j
k , yj1:k)

× p(x(i)k , X
(i),rjk
k |r(i),jk , yj1:k)dxkdXk (4.48a)

=

∫∫
N (yjk;H

rjkx
(i)
k , R + sX

(i),rjk
k )N (x

(i)
k ; x̂

(i)
k|k−1, P

(i)
k|k−1)

× IW(X
(i),rjk
k ;V

(i),rjk
k|k−1, v

(i),rjk
k|k−1)dxkdXk. (4.48b)

There is no compact analytical expression for the integral given above, hence an

approximation is necessary. [9] and [27] provide different approximations for the

above integral.

When the degrees of freedom is large, the inverse Wishart density becomes peaky

around its mean. In that case, the likelihood can be approximated as

p(yjk|r
(i),j
k , yj0:k−1) ≈ N (yjk;H

rjk x̂
(i)
k|k−1, H

rjkP
(i)
k|k−1(H

rjk)T +R + sX̂
(i),rjk
k|k−1). (4.49)

Although simple, we used the approximation given by (4.49) in our simulations

to demonstrate the robustness of the proposed algorithm to likelihood approxi-

mations. The approximations presented in [9] and [27] can also be used at the

expense of computation time.

After having computed the importance weights, the measurement update is per-

formed as described in Section 4.2. Lastly, resampling is performed if necessary.

The pseudo-code of the proposed method is given in Algorithm 4.2.
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Algorithm 4.2: Summary of Variational inference based MPF
1: Initialization at k = 0:

2: for all particles i = 1, . . . , N do

3: Set initial weights w(i)
0 = 1

N

4: Set initial values for parameters x̂(i)0 , P
(i)
0 , v

(i)
0 , V

(i)
0

5: end for

6: Iterations:

7: for time k = 1, . . . , T do

8: for all particles i = 1, . . . , N do

9: Perform time update for the continuous states according to

(4.41) and (4.42)

10: for all measurements j = 1, . . . ,mk do

11: Sample the association variables, r(i),jk ∼ q(·)
12: Compute the likelihood, p(yjk|r

(i),j
k , yj1:k−1)

13: end for

14: Update the weights according to (4.47)

15: end for

16: Normalize the weights

17: for all particles i = 1, . . . , N do

18: Perform measurement update for the continuous state using

variational Bayes

19: end for

20: Resample, if necessary

21: end for
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4.4 Performance Evaluation

In this section, the performance of the proposed method is evaluated in three

different simulations. The object follows a linear path and constant velocity

model is used for the position of the object as described in Section 3.3.1. In

the first two simulations, the proposed method is compared with the random

matrix-based method proposed in [24]. The third simulation is performed only

with the proposed method. The method proposed here is denoted with VPF

and the one in [24] is denoted with JL.

4.4.1 The Method of JL

A standard random matrix approach proposed by [23] performs extended target

tracking using single ellipse represented with SPD matrix. The joint density of

the extent and kinematic states is approximated with Gaussian inverse Wishart

density and estimated using a Bayesian approach. The approach proposed by

[24] differs from that of [23] in the prediction step of the extent state and the

update step of both kinematic and extent states. Moreover, the new approach

is applicable for non-ellipsoidal shapes where single ellipse is not enough for

approximation. Similar to the method proposed in this paper, multiple ellipses

are used while representing the target extent. Each sub-object ` is represented by

an SPD random matrix X`
k. Unlike our method, each sub-object has separate

kinematics represented with a random vector x`k. The system model can be

expressed with,

x`k = φ`kx
`
k−1 + w`k, w`k ∼ N

(
0, D`

k ⊗X`
k

)
(4.50a)

zk = H̃`
kx

`
k + v`k, v`k ∼ N

(
0, B`

kX
`
k(B

`
k)
T
)

(4.50b)

p[X`
k|X`

k−1] =W
(
X`
k; δ

`
k, A

`
kX

`
k−1(A

`
k)
T
)

(4.50c)

where φ`k = F `
k ⊗ Id and H̃`

k = H`
k ⊗ Id. Because that the origins of measure-

ments are unknown, all the association possibilities should be considered with a

likelihood defined in [24, Sec. III-B.]. There are (n`k)
nk number of possibilities

where n`k is the sub-object number and nk is the measurement number. The
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Table 4.1: Summary of the method JL

State

x̂k|k−1 = (Fk ⊗ Id)x̂k−1
Pk|k−1 = FkPk−1F

T
k +Dk

x̂k = x̂k|k−1 + (Kk ⊗ Id)Gk

Pk = Pk|k−1 −KkSk|k−1K
T
k

Sk|k−1 = HkPk|k−1H
T
k + 1/nk|Bk|2/d

Kk = Pk|k−1H
T
k S
−1
k|k−1

Gk , ȳk − (Hk ⊗ Id)x̂k|k−1
ȳk = 1

nk

∑nk
r=1 y

r
k

E[xk|Y1:k] = x̂k

Extension

X̂k|k−1 = δk
λk−1

(v̂k|k−1 − 2d− 2)AkX̂k−1A
T
k

λk−1 = (v̂k−1 − 2d− 2

v̂k|k−1 = 2δk(λk−1+1)(λk−1−1)(λk−1−2)
λ2k−1(λk−1+δk)

+ 2d+ 4

X̂k = X̂k|k−1 +Nk|k−1 +B−1k ȲkB
−T
k

v̂k = v̂k|k−1 + nk

Nk|k−1 = S−1k|k−1GkG
T
k

Ȳk =
∑nk

r=1(y
r
k − ȳk)(yrk − ȳk)T

E[Xk|Y1:k] = X̄k = X̂k/(v̂k − 2d− 2)

update equations for the algorithm can be summarized in Table 4.1. Detailed

derivations and explanations can be found in [24].

4.4.2 Simulation

100 MC runs are performed for the simulations. Different measurement realiza-

tions are generated at each run. The numeric results presented here is an average

of the MC runs. The VPF uses N = 100 particles and a forgetting factor of

γk = 0.95 in the simulations. π vector is chosen as in equation (2.19) which

assigns equal probabilities for each mode. This is a reasonable choice when the

measurement rates of the sub-objects are unknown.

As a performance metric for the position estimate, RMSE as defined in (2.8)
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will be used. Performance measure for the target extent estimation is chosen

as intersection over union (IOU), which is originally used in computer vision

[1] and later employed in ETT [13]. Let A and B denote the true and the

estimated extents respectively, then IOU is defined as the fraction of the areas

of intersection and union of the extents A and B,

IOU(A,B) =
area(A ∩B)

area(A ∪B)
∈ [0, 1]. (4.51)

Note that IOU takes values between 0 and 1 where 0 corresponds to the worst

possible match and 1 corresponds to the best possible match.

In the first simulation, we consider the scenario S1 given in [24] which is called

as the line scenario since the measurements originate from 9 constant points

forming perpendicular two lines as illustrated in Figure 4.2. The values of the

measurements are given as
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−20
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0
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]

Figure 4.2: Measurement model of the line scenario.
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The target moves on a linear trajectory with the measurement model provided

above and estimation performances of two algorithms are compared. For this

purpose, all the initial conditions of the unknown parameters are kept the same

for two algorithms as described in [24]. Since there is no true extent surface

here, IOU cannot be computed. Therefore we only provide RMSE values of the

two algorithms in Table 4.2. An example of one MC run with snapshots of the

corresponding frames t ∈ {0, 8, 16, 24, 32, 40} are shown in Fig. 4.3.

0 200 400 600 800 1000 1200
x[m]

9900

9950

10000

10050

y[
m

]

0 200 400 600 800 1000 1200
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9950

10000

10050

y[
m

]

Figure 4.3: Estimation results of a single MC run, for the target represented with two

perpendicular lines. The JL estimate is shown with blue, the VPF estimate is shown with

orange solid lines. The measurements at each scan are represented with star-shaped dots.

The second simulation is performed with a target which consists of two elliptical

sub-objects and it is called as elliptic scenario. The measurements originate

from the surface of the ellipses whose true values are given as

µ1
true =

0

0

 , µ2
true =

−10

0

 , X1
true =

400 0

0 10

 , X2
true =

10 0

0 400

 .
The illustration of the ellipses are given in Figure 4.4.
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Figure 4.4: Measurement model of the elliptical scenario.

The object moves on a linear trajectory the same as the previous case with

the parameters of simulation the S2 in [24]. The measurement number is kept

constant at each scan asNmeas = 9. An example of one MC run with snapshots of

the corresponding frames t ∈ {0, 8, 16, 24, 32, 40} are shown in Fig. 4.5. RMSE

and IOU results are presented in Table 4.2.
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Figure 4.5: Estimation results of a single MC run, for the target with two elliptical

sub-objects. The JL estimate is shown with blue, the VPF estimate is shown with orange

and the true extent is represented with black solid lines. The measurements at each scan are

represented with star-shaped dots.

Table 4.2: RMSE and IOU results of the JL and the VPF in the first two simulations

IOU
RMSE[m]

Sub-object Line Scenario Elliptical Scenario

JL
1st

0.62
2.08 5.81

2nd 1.09 8.52

VPF
1st

0.86
1.79 2.29

2nd 1.02 2.75

In the first two simulations, the VPF algorithm performs better in terms of both

RMSE and IOU. Compared with the JL, the extent estimates of the VPF are

more stable, in the sense that no abrupt changes are observed in consecutive

frames. The computation times per update of two algorithms are given in the

Table 4.3. In contrast to the JL method, the computation time of the proposed

algorithm does not increase exponentially with the number of measurements. All

simulations are run in Matlab(R) R2016b on a standard laptop with an Intel(R)
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Core(TM) i5-7200U 2.50 GHz platform with 8 GB of RAM running Windows.

Table 4.3: Average computation times per update of the JL and the VPF

Computation Time[s]

9-Measurements 15-Measurements

JL 0.14 8.38

VPF 0.37 0.56

In the third simulation, the performance of the proposed algorithm will be

demonstrated using the system model described in 3.3.1 and a target that con-

sists of 5 sub-objects as illustrated in 4.6.

-150 -100 -50 0 50 100 150

x[m]

-100

-50

0

50

100

y[
m

]

Figure 4.6: Target extent model with 5 ellipses.

The true values of the matrices and vectors representing the model are given as
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follows:

X1
true =

900 0

0 100

 , X2,3,4,5
true =

300 0

0 50

 ,
µ1
true =

0

0

 , µ2
true =

−100

80

 , µ3
true =

100

80

 , µ4
true =

−100

−80

 , µ5
true =

100

−80

 .
The number of measurements at each scan is Poisson distributed with an average

of 20 measurements. The system noise variance is set to σ2 = 0.1 and the

measurement noise covariance is selected to be R = diag([10, 10])m2. The scale

factor is taken as s = 1. Number of variational iterations is set to 5. Initial

kinematics, initial covariance matrix and initial extents are chosen as

x0 =


0 m

104 m

200 m/s

0 m/s

 , P0 =


400 0 0 0

0 400 0 0

0 0 100 0

0 0 0 100

 , X1,2,3,4,5
0 =

100 0

0 100

 m2.

The initial degree of freedom is set to v0 = 10. An example of one MC run with

snapshots of the corresponding frames t ∈ {0, 20, 40, 60, 80, 100} are shown in

Figure 4.7.
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Figure 4.7: Estimation results of a single MC run, for the target with 5 elliptical

sub-objects. The VPF estimate is shown with orange, true extent is shown with black solid

lines. The measurements at each scan are represented with star-shaped dots.

RMSE and IOU results are presented in Table 4.4.

Table 4.4: RMSE and IOU results of the VPF for third simulation

VPF

Sub-obj: 1st 2nd 3rd 4th 5th

RMSE[m] 1.50 3.48 4.59 3.42 3.96

IOU 0.88 0.86 0.85 0.86 0.85

As shown in Figure 4.7 and in Table 4.4 the algorithm is capable of tracking the

extended object with five sub-objects successfully. The positions and extents of

all sub-object are estimated accurately. In our experiments, we observed that

the performance of the algorithm is not highly sensitive to the selection of π.
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4.5 Conclusion

A new approach for tracking non-ellipsoidal targets is proposed, where the target

is modeled with multiple ellipses. The resulting inference problem is treated in

SMC framework. An efficient particle filter is derived using the marginalization

technique. The variational approximation is used to obtain an analytical approx-

imation for the joint density of the multiple unknown extent matrices, target

kinematic state, and unknown mean vectors of the extent. This approximation

enables, otherwise impossible, marginalization. Furthermore, optimal proposal

distribution is used for minimizing the estimation variance and boosting the

particle efficiency.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this research, the problem of extended target tracking is studied in the SMC

framework. Various object extents are represented by multiple ellipses. This

multi-ellipse representation creates an association problem between the mea-

surements and the sub-objects. This problem is solved by defining discrete asso-

ciation random variables. The joint density of the discrete and continuous states

is approximated using PF where different marginalization strategies are possible.

In the first part of the thesis, the ETT problem is handled under the assumption

of known extent to focus on the association problem. Four different PF methods

are investigated and their performances are compared in simulations.

The marginalization technique significantly improves the performance under the

same computational capacity. The standard particle filter without marginal-

ization approximates the density of the discrete and continuous states using

weighted particles. Thus, it requires an excessive number of particles to provide

satisfying results. The marginalized algorithms (CMPF and DMPF), on the

other hand, uses analytical expressions for either the continuous state or the

discrete state. Therefore, they require a smaller number of particles.

We investigate two different marginalization techniques. In the first one (CMPF),

the continuous state is marginalized out by approximating the density of the dis-

crete states using weighted particles. The conditional density of the continuous

state is found analytically using Kalman filters. In the second marginalization

technique (DMPF), the discrete state is marginalized out by approximating the

density of the continuous states using weighted particles. The conditional den-

sity of the discrete state is found analytically using HMM filter. The CMPF
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algorithm requires more particles as the number of measurements increases. In

the DMPF algorithm, the space that we sample remains the same regardless of

the increasing number of measurements.

We also illustrate the advantages of using optimal importance sampling in the

CMPF algorithm via simulations. Since the optimal proposal density (CMPF-O)

also uses the information provided by the latest measurement, it provides better

results with a smaller number of particles.

Among the particle filters considered here, the CMPF-O and the DMPF per-

form best. The CMPF-O provides satisfying results even with a small number

of particles however, its computation time is the highest one. The CMPF-O

uses Kalman filter measurement update equations and optimal proposal density

calculations per particle per time step. Performance of the DMPF is very close

to that of the CMPF-O and it requires far less computational power. Therefore

using the DMPF in practical applications could be beneficial. To the best of our

knowledge, it is the first time that these novel SMC methods are used in ETT

problems.

In the second part of the thesis, the complete problem of non-ellipsoidal extended

target tracking is considered. A new particle filter based approach for the joint

estimation of kinematic and extent states is proposed which uses marginaliza-

tion and variational Bayes techniques. The continuous state is marginalized

out and the density of the association variables is approximated using weighted

samples. The density of the continuous state includes the extent and kinematic

states which is represented with normal-inverse Wishart density. To be able

to perform marginalization, the density of the continuous states should be ex-

pressed analytically which is not possible in our case. Therefore, we propose to

use the variational Bayes method to obtain approximate analytical expressions.

Our proposed algorithm is a novel approach which is based on the variational

Bayes and marginalized particle filter. Among the non-ellipsoidal ETT meth-

ods which are based on the random matrix model, our algorithm is the only

one which does not require mixture reduction, merging or clustering steps. The

performance of the algorithm is tested in a simulation and compared with an
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existing method of [24]. It is shown that the proposed algorithm outperforms

the existing solution.

Some possible directions for future work are proposed as follows. The prior prob-

abilities that a measurement is associated with sub-objects are assumed to be

known in our model. It would be interesting to estimate these probabilities by

defining appropriate prior. The performance of the algorithm can be improved

by including maneuvering motion models and clutter rejection techniques. An-

other different but important task is to estimate the number of sub-objects.
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APPENDIX A

MULTIVARIATE GAUSSIAN DENSITY

The notationN (µ,Σ) with a mean vector µ and a covariance matrix Σ represents

the multivariate Gaussian density which is given explicitly as

N (x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (A.1)

The Gaussian density can also be expressed using the trace operator. The trace

of any n× n matrix can be expressed as,

tr[A] =
n∑
i=1

aii, (A.2)

where aij is the element where intersection point of ith row and jth column. The

trace operator holds the following properties:

(1) Invariance under matrix products, tr[ABC] = tr[CAB] = tr[BCA]

(2) if the matrix product AB results in a scalar value, then tr[AB] = AB.

Now we can use these properties for rewriting the multivariate Gaussian density

as

N (x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
=

1

(2π)n/2|Σ|1/2
exp

(
−1

2
tr
[
(x− µ)(x− µ)TΣ−1

])
. (A.3)

The equation above is satisfied first using the property (2) as (x− µ)TΣ−1(x−
µ) = tr[(x − µ)TΣ−1(x − µ)]. Then with property (1) we replace the matrices

inside the trace and obtain, tr
[
(x− µ)TΣ−1(x− µ)

]
= tr

[
(x− µ)(x− µ)TΣ−1

]
.
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APPENDIX B

INVERSE WISHART DENSITY

The inverse Wishart density is denoted with IW(X; v, V ) and expressed explic-

itly as

IW(X; v, V ) =
|V |v/2

|X| v+d+1
2 2

vd
2 Γd(

v
2
)

exp

[
−1

2
tr(V X−1)

]
, (B.1a)

Γd(v/2) = πd(d−1)/4
d∏
i=1

Γ(
v + 1− i

2
), (B.1b)

where V is the SPD scale matrix, v is the scalar degree of freedom, d is the di-

mension of X and Γ(z) =
∫∞
0
tz−1e−tdt represents the standard gamma function.

The expected value of the density is provided as

E{X} =
V

v − d− 1
, v > d+ 1. (B.2)
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