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ABSTRACT 

 

 

THE EFFECT OF STRUCTURAL LAYOUT ON THE SUPERSONIC 

FLUTTER CHARACTERISTICS OF A FIGHTER WING 

 

 

Okumuş, Başak 

M.S., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Altan Kayran 

 

August 2018, 134 pages 

 

The increase in flexibility of modern aircraft structures requires the aeroelastic effects 

be taken into consideration from the very beginning of the design phase in order to 

escape expensive iterations during the subsequent design phases and lower the 

required weight penalties resulting from compliance to certain aeroelastic 

requirements. Therefore, to be able to predict the supersonic flutter velocity is 

important in the preliminary design phase of fighter aircraft to increase design 

efficiency. In the first phase of the thesis study, the supersonic aerodynamics required 

for the flutter calculations are derived for a typical section wing section model using 

the application of Possio’s theory proposed by Garrick and Rubinow and the 

supersonic Piston theory. A code is developed applying these theories and it is used to 

estimate the supersonic flutter speed of a finite plate wing model. In the second phase 

of the study, the commercial aeroelastic solver ZAERO is utilized to calculate the 

flutter speed of the weakened AGARD 445.6 Wing. Finally, a fighter wing model is 

created and its various layout options are analyzed in terms of their effect on 

supersonic flutter speed with ZAERO. The spar number and orientation, the skin ply 

orientation and the effect of an external mass is analyzed to observe their effects on 

the supersonic flutter speed. 

Keywords: Typical Section Wing Model, Fighter Wings, Supersonic Aerodynamics, 

Wing Flutter, Aeroelasticity, Structural Layout  
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ÖZ 

 

 

SAVAS UÇAGI İÇ YAPISINDAKİ ALTERNATİF TASARIM 

ÇÖZÜMLERİNİN SES ÜSTÜ HIZLARDAKİ ÇIRPINMA 

KARAKTERİSTİGİNE ETKİSİ 

 

 

Okumuş, Başak 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Altan Kayran 

 

Ağustos 2018, 134 sayfa 

 

Modern hava araçlarında esnekliğin artışıyla, aeroelastik etkilerin tasarım fazının en 

başından dikkate alınması önem kazanmıştır. Aeroelastik isterlere uygunluğun, 

tasarımın erken aşamalarında doğru olarak belirlenmesi, tasarımın ileriki seviyelerinde 

olası iterasyonları ve düzeltmeleri engelleyerek maliyet ve zaman açısından verimliliği 

arttıracaktır.  Bu sebeplerden ötürü, konsept tasarım fazında ses üstü çırpınma hızının 

tespit edilebilmesi önem kazanmaktadır. Tez çalışmasının ilk aşamasında, çırpınma 

hesaplarında kullanılan ses üstü aerodinamiği, Garrick ve Rubinow’un öne sürdüğü 

Possio teorisi ve ses üstü Piston teorisi ile basit iki boyutlu kanat modeli için 

türetilmiştir. Bu teoriler temel alınarak üretilen kod, sonlu basit plaka kanat modelinin 

ses üstü çırpınma hızının tahmini için kullanılmıştır. Tez çalışmasının ikinci 

aşamasında, paket aeroelastik çözücü olan ZAERO kullanımıyla zayıflatılmış 

AGARD 445.6 kanadının ses üstü çırpınma hızı hesaplanmıştır. Çalışmanın sonunda, 

bir savaş uçağı kanat modeli oluşturulmuş ve çeşitli iç dizilimlerinin ses üstü çırpınma 

hızını etkisi araştırılmıştır. Spar sayısı ve oryantasyonu, kabuk tabaka oryantasyonu ve 

harici yük eklentisinin ses üstü çırpınma etkileri incelenmiştir. 

Anahtar Sözcükler: Basit İki Boyutlu Kanat Modeli, Savaş Uçağı Kanatları, Ses üstü 

Aerodinamiği, Kanat Çırpınması, Kanat İç Dizilimi 
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CHAPTERS1 

 

 

1 INTRODUCTION 

 

 

1.1 Motivation of the Thesis 

Preliminary design is a good starting point for a more detailed analysis when designing 

an air vehicle. The structural layout is usually shaped during this phase of the aircraft 

design. Finding the appropriate structural layout and sizes early on in the design 

process will help avoid expensive redesign and corrections and increase design 

efficiency. Additionally, with the increase in flexibility of modern aircraft structures, 

aeroelastic effects must be taken into consideration from the beginning of a design 

phase in order to escape expensive iterations during the following phases and lower 

the needed weight penalties resulting from compliance to certain aeroelastic 

requirements. In the scope of aeroelastic requirements, an air vehicle being free from 

flutter in its operational region may be considered to be the most critical issue as this 

is the aeroelastic phenomena which can have the most dangerous consequences. 

Moreover, although for conventional aircraft the subsonic or near sonic speed ranges 

may be the main concern, for a high-speed combat aircraft, the problem of aeroelastic 

instabilities in the supersonic region can become the primary issue. Therefore, 

understanding the effect of wing structural layout on supersonic flutter as a guide for 

preliminary design is crucial in terms design efficiency.  
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1.2 Literature Survey 

Aeroelasticity deals with the interactions between inertial, elastic and aerodynamic 

forces that act on a body exposed to a fluid flow [1]. The first systematic description 

of the aeroelasticity was given in 1946 by Collar, who defined a triangle of forces in 

which the inertial, elastic and aerodynamic forces each occupies a corner [2]. Each 

aeroelastic phenomenon can be located in the triangle according to the forces involved 

in its occurrence. The aeroelasticity triangle is illustrated in Figure 1.1. 

 

Figure 1.1 Collar’s Triangle of Aeroelasticity 

Flutter is a type of dynamic aeroelastic instability, which results from the interaction 

of the elastic, inertia and aerodynamic forces.  It may be considered as the most 

dangerous problem of aeroelasticity since this phenomenon can have violent 

consequences. Flutter occurs when the structure extracts energy from the air stream 

and self-excited unstable oscillations start to grow in the structure. The amplitude of 

these oscillations increases violently in the current flight condition in a short amount 

of time and therefore an external excitation may not be applied to the system before 

catastrophic failure occurs. The classical type of flutter is associated with potential 

flow and usually involves coupling of two or more degrees-of-freedom. The non-
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classical type of flutter is associated with separated flow, periodic breakaways, 

turbulence and stalling conditions [1]. 

The problem of supersonic flutter began to be studied more seriously when the aircraft 

started to be designed to fly at these flight conditions. In 1947 Charles Yeager became 

the first person to carry on a supersonic level flight with the X-l research airplane [3]. 

However the analytical flutter calculations had started to be considered a few years 

previous to that date. Von Borbely in 1942 [4], Temple and Jahn in 1945 [5] and 

Garrick and Rubinow [6] in 1946 expanding on Possio’s work [7] in 1937 are the 

earliest contributors to the development of the analytical calculations of supersonic 

flutter problem. These theories were based on thin airfoil theory and linearization of 

the equation of motions. However, in 1953 Lighthill [8] showed that the nonlinear 

thickness effects are more dominant on the supersonic regions compared to the 

subsonic speeds with the simple piston theory. Furthermore, this approach was proved 

to be a less complicated one since the problem of determining the forces on an 

oscillatory airfoil is reduced to a one-dimensional flow problem of finding the pressure 

of a piston moving in a tube with this method.  

The location of the aerodynamic center relative to the center of gravity is an important 

component of the aeroelastic instability. If the aerodynamic center is located behind 

the center of gravity, the aerodynamic forces and inertial forces will act in the same 

direction with respect to the shear center and therefore will oppose any deviation from 

equilibrium of the wing. However, if the aerodynamic center is located forward of the 

center of gravity, an opposite behavior will occur. The aerodynamic forces will 

reinforce an initial disturbance and will further remove the wing from equilibrium. The 

latter condition will result in a tendency towards instability compared to the former 

[9]. According to Raymer [10], for most airfoils, at subsonic speeds, the quarter-chord 

point is the aerodynamic center whereas at supersonic speeds, the aerodynamic center 

moves aft typically to about 45% of the mean aerodynamic chord. This shift of the 

aerodynamic center towards the rear may point to an unlikely occurrence of classical 

coupled flutter, however this is not the case as the effects of thickness, the changes in 

the flight altitudes and the different aircraft configurations that come to play due to the 

compliances in the supersonic regions, prevents flutter from being eliminated [3]. 
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From the earliest contributions explained to the current timeline, the problem of 

supersonic flutter has been widely investigated in various areas. Sabri and Lakis [11] 

applied the supersonic piston theory aerodynamics to determine the flutter speed of a 

cylindrical shell. They compared the flutter results with and without the curvature 

effects and concluded that the correction term to account for shell curvature provides 

a better approximation for the pressure loading acting on a curved shell exposed to 

supersonic flow. 

Niblett [12] examined the effects of engines mounted to the wing up to a Mach number 

of 2, on the flutter characteristics of the wing and the idea of engines acting as mass 

balancing components are investigated. He remarked that the torsional stiffness 

necessary to avoid flutter is greater than the bending stiffness stating that increasing 

the bending stiffness brings the natural frequencies closer together and increases the 

effect of any couplings that may occur. He concluded that the engines have a powerful 

mass balancing effect when placed at the forward locations of the wing. Furthermore, 

he stated that at supersonic speeds, the wing stiffness required to eliminate flutter 

shows a tendency to increase as the Mach number is reduced, highlighting the 

importance of the transonic region. 

Zhang et al. [13] developed a local classical piston theory by separating the total loads 

induced by air into two parts which are the steady mean part caused by the mean 

location of the wing and the unsteady fluctuations resulting from the motion of the 

wing around its mean location. Then, this theory is compared with the unsteady Euler 

method to predict the flutter boundary of an airfoil with pitching and plunging degrees 

of freedom. They concluded that the local piston theory offers a better accuracy and 

wider applicability range compared to classical piston theory, with better cost and time 

efficiency compared to the Euler method. 

Woolston and Huckel [14] presented the subsonic and supersonic flutter results for a 

wing having bending and torsional degrees-of-freedom as well as aileron rotation 

degree-of-freedom. They investigated the influence of the parameters that are the mass 

balance, control surface frequency relative to the wing frequency and the structural 

damping. In terms of mass balance, they concluded that the results indicate a reverse 

effect at the transonic speeds. In most of the calculations they conducted, at higher and 
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lower Mach numbers, overbalance aileron eliminates flutter however near a Mach 

number of 1, flutter occurs for an overbalanced aileron. With regard to the aileron 

frequency, a high value of the ratio of aileron frequency to wing bending or torsional 

frequency shows good results in eliminating wing-aileron flutter. Finally, they 

concluded that the influence of structural damping of the wing and aileron reduces the 

amount of mass balance or the value of the ratio of aileron frequency to the wing 

frequency required to avoid flutter. 

Broadbent [15] presented the effect and importance of the rigid body modes involved 

in the supersonic flutter analysis of delta and swept wings. He remarks that for 

conventional wings flutter instability occurs due to the coupling of the bending and 

torsion modes leading to the importance of torsional stiffness in these types of systems. 

He further adds that with the implementation of swept back wings for high speed 

aircraft, flutter can arise due to the coupling of a single elastic mode and a rigid body 

mode. If the first elastic mode is the bending mode for these types of systems then the 

bending mode becomes primary importance. He concluded that the body freedoms 

have a higher impact on the supersonic flutter speeds for a swept-back wing rather than 

an unswept design. He stated that this results because of the greater bodily motion in 

the fundamental normal mode in addition to the higher contribution to the pitching 

inertia that result from the wings. Moreover, he found that for a fighter wing, the 

critical flutter frequency can be almost as half the frequency of the fundamental normal 

mode. 

Mason [16] presented the theoretical and experimental results of a fighter wing concept 

adapted to increase the efficiency of supersonic maneuvering. He utilized the concept 

of Supercritic Conical Camber (SC3) which is based on providing efficient attached 

flow high lift during supersonic speed. This is done by controlling the expansion and 

recompression of the crossflow, the lift on the upper surface is obtained without the 

use of adverse pressure gradient or crossflow shock wave sufficiently strong to 

separate the boundary layer. He shows with experiment results that by modifying the 

upper surface such that the supercritical crossflow can be controlled, associated drag 

due to lift can be reduced by about 20% for fighter-type wing planforms. 
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Sasher [17] listed the most important design constraints for a combat aircraft as the lift 

to drag ratio and specific fuel consumption. He remarked that the delta wing is a good 

solution for the transonic and supersonic speed requirements stating that at supersonic 

speed these type of wings induce low wave drag with the thin profiles leading to 30% 

improvement to existing aircraft. He further stated that other key concerns for a combat 

aircraft regarding the wing design are issues that arise from the high angle of attack 

which are the vortex flow control, post stall capability, high maneuverability and 

lateral and directional stability. 

Striz and Venkayya [18] investigated the influence of structural complexity in the 

chordwise direction, in other words, the spar number variation of a fighter wing on its 

flutter characteristics. They analyzed a low aspect ratio wing with 5 and 10 spar 

configurations while keeping the total weight constant at a Mach number of 0.85. The 

model they analyzed had bending normal mode as well as coupled bending and torsion 

normal mode and in-plane bending mode. They showed that the natural frequencies as 

well as the flutter speed decreased when the spar number was increased. They 

concluded that while keeping the weight constant a coarser model in the chordwise 

direction is a non-conservative approach in terms of flutter constraints. 

Liu, Wan and Yang [19] investigated the effects of the front and rear spar locations on 

the flutter speed for a large wing. They showed that as the front spar moves to the rear, 

the wing-box size, structural weight and stiffness decrease leading to an increase in the 

vertical displacements in the wingtip and a decrease in the flutter speed. Moreover, 

they showed that as the rear spar moves to the rear, the increase observed at the wing-

box size, structural weight and stiffness are very little which results in the vertical 

displacements in the wingtip and a decrease in the flutter speed to be negligible. They 

concluded that the position of the leading edge spar had a far greater impact on the 

aeroelastic optimization process than the trailing edge spar. 

Abdullah and Sulaeman [20] conducted the supersonic flutter analysis of a wing 

equipped with external missiles located at the inner two rib and at the wingtip. They 

located the flutter mode to be the bending of the tip of the wing, which points to the 

importance of the missile attached at this location in flutter analysis. They calculated 

the flutter speed for various altitudes at supersonic speeds and reached the conclusion 
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that at lower altitudes flutter speed becomes more critical while no significant variation 

is observed at the flutter frequency.  

In terms of composite modelling of the wing structure, Turner and Grande [21] 

explored the effect of composite modelling on a wing with a cruise speed of Mach 2.7. 

A titanium wing configuration developed for a prior study was modified such that the 

upper and lower surface panels of the wing were given high strength 

graphite/polyimide sandwich panels, while the spar and ribs were kept as titanium. 

This resulted in a 17.8 % reduction in the weight compared to an all titanium wing. 

However, due to the large twist deflections at the tip region with this configuration, 

the flutter speed was quite low. The thickness of wing panel laminates was increased 

to improve the flutter speed and it was concluded that the final mass of the wing 

structure was significantly less than that of the titanium wing with  an equal flutter 

speed. 

Kennedy and Martins [22] evaluated the design of metallic and composite aircraft 

wings in terms of a trade-off between structural weight and drag. They showed that 

the composite wing designs are lighter between 34% and 40% than the equivalent 

metallic wings for the same lift to drag performance. Due to this large structural weight 

savings, the composite aircraft are able to achieve a fuel burn savings of between 5% 

and 8% and a take-off gross-weight savings of between 6% and 11%. 

Ali and Hamed [23] analyzed the effect of the ply orientations on the flutter 

characteristics of a wing idealized as load carrying beam structure. They concluded 

that the bending and torsion are decoupled when the ply orientation is one of the four 

orientations of  0°,-45°,45°,90° for woven fiber and 0° or 90° for unidirectional fiber. 

Furthermore, they showed that maximum bending stiffness is achieved when the 

orientations are 0° or 90° and maximum torsional stiffness is achieved when the 

orientations are -45° or 45°. They showed that torsional rigidity has a more significant 

effect on the flutter speed. 

Guo, Bannerjee and Cheung [24] carried on an analytical study on optimization of a 

laminated composite wing structure for achieving a maximum flutter speed and a 

minimum weight without strength penalty. They observed that the asymmetric layup 
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is more preferable in terms of aeroelastic effects due the contribution of the bending 

torsion coupling stiffness. They showed that torsional rigidity is more significant in 

reducing the flutter speed. Furthermore, they remarked that the front and the rear spar 

of the structure layups increased the wing stiffness however had little impact on the 

flutter speed. 

In terms of the structural layout of combat wings, Sensmeier and Samareh [25] carried 

on an extensive study on post-WWII aircraft. They researched a total of sixty-five 

different combat jet aircraft for the study and observed that high maneuver loads acting 

on the combat aircraft resulted in designs which have at least three spars and up to ten 

or more spars. In addition, one main deriving points of the wing structure design is 

integration with the fuselage structure. In terms of rib and spar spacing, they were able 

to reduce these fighter wings into two categories, which are multi-spar and multi-rib. 

Figure 1.2 shows that multi-rib configurations are more often observed in Russian and 

old U.S. fighter aircraft whereas multi-spar configurations are more dominant in 

modern U.S. fighters.  

 

Figure 1.2 Number of Spar and Rib Variations for Various Combat Aircraft [25] 

Figure 1.3 - Figure 1.7 give structural layouts of some of the popular fighter wings. 

The aircrafts F-16, F-35 JSF and Eurofighter Typhoon are examples of the multi-spar 

wing layout configuration whereas the MiG-31 and F-22A aircrafts are examples of 

the multi-rib wing layout configuration. 
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Figure 1.3 Lockheed Martin F-16 Wing Structural Layout [25] 

 

Figure 1.4 Mikoyan-Gurevich MiG-31 Foxhound Wing Structural Layout [25] 

 

Figure 1.5 Lockheed Martin F-22A Raptor Wing Structural Layout [25] 
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Figure 1.6 Lockheed Martin F 35 JSF Wing Structural Layout [25] 

 

Figure 1.7 Eurofighter Typhoon Structural Layout [26] 

It can be concluded that in modern combat aircraft, multi-spar layouts are more 

widespread. Furthermore, Weissberg, Green and Mey-Paz [27] have compared 

structural concepts for aircraft wings. They state that wing should be designed with 

respect to the constraints of aerodynamic forces acting on the wing and the torsional 

stiffness in order to avoid flutter. They further explain that the main limiting criterion 

for multi-spar and multi-rib configurations is the skin buckling. They show that in 

terms of skin buckling, reducing the distance between the spars have a larger impact 
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compared to the distance between the ribs. In the light of this information, for this 

study, the structural layout is varied such that the ribs are kept the same between the 

configurations and the effect of spar numbers and spar orientations on the supersonic 

aeroelastic instability speeds are investigated. 

1.3 Scope of the Thesis 

The research in the scope of the thesis can be divided into two main parts. The first 

part of the thesis is the theory of supersonic aerodynamics used for the flutter 

calculations. Two methods are investigated and applied for the calculations. These 

methods are derived for typical section wing models having bending and torsion 

degrees-of-freedom. The first method used is the application of Possio theory of non-

stationary flow for small disturbances in a two-dimensional supersonic flow proposed 

by Garrick and Rubinow [6] and the second method is the supersonic Piston theory 

[28]. With the use of these theories, a code is written in MATLAB and validated with 

the results in literature [29]. Then; the estimation of the supersonic flutter speed of a 

finite wing using the typical section wing aerodynamics is investigated. For this, a 

simple plate model with stiffeners along the leading and the trailing edge is created 

and the effect of the variation of parameters such as the span, beam cross-section and 

the material on the flutter speed are observed. The second part of the thesis is the 

investigation of the supersonic flutter speed of a fighter wing. Initially, the commercial 

aeroelastic solver ZAERO is applied to solve the flutter speed of a Weakened AGARD 

445.6 wing to validate its applicability with experimental results. Then, a fighter wing 

model is created to investigate the effect of structural layout on its supersonic flutter 

characteristics. The aspects of structural layout investigated are the spar number and 

orientation, the skin composite ply orientation and the effect of an external mass 

attached to the ribs of the wing. Various configurations are created to come to the 

conclusion of how the supersonic flutter speed is affected with the different 

configuration wings. 
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1.4 Content of the Thesis 

 In Chapter 2, the typical section model is introduced as a simplification of a finite 

wing. This reduction is done by giving the geometric and inertial properties of an 

appropriate section of a finite wing to the two-dimensional typical section model. 

Then, the aerodynamic lift and moment equations for a typical section wing model 

are derived by two supersonic theories, the first one being Possio theory proposed 

by Garrick and Rubinow and the second one being the supersonic Piston theory. 

Then, with the construction of the flutter problem with these methods, two codes 

are developed in MATLAB that solve the supersonic flutter speed. Finally, the 

validation of the codes with literature is presented as well as their comparison to 

each other. 

 In Chapter 3, the supersonic flutter speed of a finite wing is estimated with the two-

dimensional supersonic Piston theory with thickness effects. A simple plate wing 

model is created with stiffeners on the leading and trailing edges. The variation of 

the span, beam cross-section and the material properties is analyzed and its effect 

on the supersonic flutter speed calculated by the typical section aerodynamics is 

observed to show that this simplification can provide the change of flutter speed in 

terms of certain parameters correctly. Finally, the code results are compared to 

results obtained from ZAERO. 

 In Chapter 4, a general review of the commercial aeroelastic solver ZAERO is 

provided. The supersonic aerodynamics, the spline approach and the flutter 

calculation method implemented in ZAERO is summarized as basis information 

for the upcoming analysis. Then, ZAERO is utilized to solve the flutter problem of 

the Weakened AGARD 445.6 Wing and the results are compared with the 

experimental solutions to prove the applicability of the ZAERO commercial tool. 

 In Chapter 5, a finite element model of a fighter wing is created. Mesh refinement 

analyses of the structural and aerodynamic models are presented and the reasoning 

behind the mesh sizes chosen are explained. Then the effect of the various aspects 

of the layout of a fighter wing on its supersonic flutter speed is analyzed. Initially, 

the spar number is varied to observe the effects. Then, different spar configurations 
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are implemented to investigate the effect on flutter speed. In addition, the skin 

material is varied from aluminum to carbon fiber reinforced plastic as well as 

various composite ply orientations and the supersonic flutter speed is calculated. 

And finally, an external mass representing a missile or a pod is attached to the 

various locations of the middle rib of the baseline configuration and its effect is 

investigated.  

 In Chapter 6, the thesis is summarized and the results are discussed. In addition, 

the future work that can be carried on based on the work applied in this thesis is 

given. 
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CHAPTER 2 

 

 

2 SUPERSONIC FLUTTER ANALYSIS OF A TYPICAL WING SECTION 

 

 

2.1 Mathematical Modelling of a 2 DoF Typical Section 

In literature, when the sophisticated analysis tools that are used today were not 

available, aeroelasticity analyses were carried out by using a typical section model. 

The typical section model is a simplified aeroelastic system, which consists of a rigid, 

elastically restrained airfoil in two-dimensional flow. Figure 2.1 shows the 

representation of this system. 𝑍 = 0 is the centerline where 𝑏 is the half-chord length, 

𝑎 is the ratio of the distance between the centerline and the elastic axis to the half-

chord length, 𝑏 and 𝑥𝑎, which is the static unbalance, is the ratio of distance between 

the elastic axis and the center of gravity of the airfoil to the half-chord length, 𝑏. The 

airfoil is given plunging and pitching degrees of freedom represented by the linear 

springs located in the elastic axis whose restraining spring stiffness values are 𝐾ℎ and 

𝐾𝛼, respectively. The airfoil deflection in the plunging direction is represented with ℎ 

and the airfoil deflection angle in the pitching direction is represented with 𝛼. 𝐿 is the 

aerodynamic lift force and 𝑀𝑦 is the aerodynamic moment. 
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Figure 2.1 The 2 DoF Typical Section [1] 

The equations of motions for the typical section are given as; 

 𝑚ℎ̈ + 𝑚𝑏𝑥𝛼𝛼̈ + 𝐾ℎℎ = 𝐿 (2.1) 

 𝐼𝛼𝛼̈ + 𝑚𝑏𝑥𝛼ℎ̈ + 𝐾𝛼𝛼 = 𝑀𝛼 (2.2) 

where 𝑚 is the airfoil mass per unit span length and 𝐼𝑎 is the airfoil mass moment of 

inertia per unit span length. 

The motion is assumed to be simple harmonic and represented by; 

 ℎ = ℎ̅𝑒𝑖𝜔𝑡 (2.3) 

𝛼 = 𝛼̅𝑒𝑖𝜔𝑡 (2.4) 

Substituting the equations for simple harmonic motion gives a pair of algebraic 

equations for the amplitudes ℎ̅ and 𝛼̅ as; 
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 −𝑚𝑤2ℎ̅𝑒𝑖𝜔𝑡 − 𝑚𝑏𝑥𝛼𝑤2𝛼̅𝑒𝑖𝜔𝑡 + 𝐾ℎℎ̅𝑒𝑖𝜔𝑡 = 𝐿 (2.5) 

−𝐼𝛼𝑤2𝛼̅𝑒𝑖𝜔𝑡 − 𝑚𝑏𝑥𝛼𝑤2ℎ̅𝑒𝑖𝜔𝑡 + 𝐾𝛼𝛼̅𝑒𝑖𝜔𝑡 = 𝑀𝛼 (2.6) 

In order for the Equations (2.5) and (2.6) to be solved, the lift and moment variables 

have to be defined. In the scope of this study, two different methods will be used to 

determine the supersonic aerodynamics which are the Possio’s Theory in Section 2.2 

and Piston’s Theory in Section 2.3.  

2.2. Solution of the 2 DoF Model Equations using the Supersonic 

Aerodynamics based on Possio’s Theory 

The supersonic characteristics of an oscillating airfoil with an infinite aspect ratio is 

studied by Possio [7]. The theory assumes the airfoil to be very thin, with small angle 

of attack with the non-stationary flow being nonviscous, unseparated and free of strong 

shocks. As a result, the theory of small perturbations on the flow is used with the 

linearization of the velocity potential equation. 

Garrick and Rubinow [6] utilized the Possio theory of non-stationary flow for small 

disturbance in a two-dimensional supersonic flow to determine the aerodynamic forces 

acting on an airfoil. This chapter outlines the derivation of aerodynamic forces acting 

on the thin airfoil. 

In reference [6], the wave equation is defined as the differential equation satisfied by 

the velocity potential in fixed coordinates for infinitesimal disturbances as given in 

Equation (2.7). 

1

𝑐2

𝜕2𝜙

𝜕𝑡2
= 𝛻𝜙2 (2.7) 

where c is the speed of sound. 



18 

 

The wave equation satisfied by the velocity potential in two-dimensional flow with the 

supersonic speed 𝑣 in the negative x direction becomes; 

1

𝑐2

𝜕2𝜙

𝜕𝑡2
+

2𝑣

𝑐

𝜕2𝜙

𝜕𝑥𝜕𝑡
+ [(

𝑣

𝑐
)

2

− 1]
𝜕2𝜙

𝜕𝑥2
−

𝜕2𝜙

𝜕𝑦2
= 0 (2.8) 

The source creates a disturbance of magnitude 𝐴 originating at a point (𝜉, 𝜂) at a time 

𝑇  which creates an effect at a point (𝑥, 𝑦) at a later time 𝑡. As a result, the potential is 

a delayed potential and the elapsed time at (𝑥, 𝑦) since the formation of the disturbance 

becomes 𝜏 = 𝑡 − 𝑇. 

The source pulse in Equation (2.8) can be defined as; 

𝜙0 =
𝐴(𝜉, 𝜂, 𝑇)

√𝑐2(𝑡 − 𝑇)2 − [𝑥 − 𝜉 − 𝑣(𝑡 − 𝑇)]2 − (𝑦 − 𝜂)2
 (2.9) 

In supersonic flow, the point influenced  (𝑥, 𝑦)  is always behind the point of 

disturbance (𝜉, 𝜂) . The disturbance point, which moves forward with supersonic 

velocity, creates an angular region having half vertex angle of 𝜇 = ± sin−1 𝑐

𝑣
=

± sin−1 𝑀 as shown in Figure 2.2. This creates the so-called Mach wedge, which 

simplifies the calculation of the fluid motion at any particular point due to an arbitrary 

supersonic wing since conditions at a certain point are influenced only by the portion 

of the plane restricted by the fore cone [1]. Upstream of the Mach wedge, the value of 

the source impulse becomes zero. 
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Figure 2.2 Mach Angle μ [6] 

 

A disturbance at (𝜉, 𝜂) created at a time 𝑇 creates an influence at a point  (𝑥, 𝑦) after 

a certain time 𝜏1 has passed. The point moves at a speed greater than that of the wave 

which results in it entering the wave front of the disturbed region at a later time 𝜏2. 

Therefore, the duration of the disturbance becomes 𝜏2 − 𝜏1. The journey of a point 

travelling through a region of disturbance is described by the denominator of Equation 

(2.9) becoming zero. As a result, the values of 𝜏1 and 𝜏2 on the axis where 𝜂 = 0 can 

be given as; 

𝜏1 =
𝑀(𝑥 − 𝜉) − √(𝑥 − 𝜉)2 − 𝑦2(𝑀2 − 1)

𝑐(𝑀2 − 1)
 (2.10) 

𝜏2 =
𝑀(𝑥 − 𝜉) + √(𝑥 − 𝜉)2 − 𝑦2(𝑀2 − 1)

𝑐(𝑀2 − 1)
 (2.11) 

As previously stated, only the disturbances within the Mach wedge can create a 

disturbance. Figure 2.3 illustrates that a disturbance can affect (𝑥, 𝑦) only forward of 

the Mach angle region. 
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Figure 2.3 Disturbances Created with Vertex at 𝜉1 [6] 

Therefore, the total effect of the disturbances is obtained by the sum of any disturbance 

created in this region. From Figure 2.3, the following equation can be derived; 

𝑦

𝑥 − 𝜉1
= tan 𝜇 =

1

√𝑀2 − 1
 

which leads to; 

(2.12) 

𝜉1 = 𝑥 − 𝑦√𝑀2 − 1 (2.13) 

The total potential at (𝑥, 𝑦) at any time 𝑡 can be expressed as; 

𝜙(𝑥, 𝑦, 𝑡) = ∫ ∫
𝐴(𝜉, 0, 𝑡 − 𝜏)

√𝑐2𝜏2 − [𝑥 − 𝜉 − 𝑣𝜏]2 − (𝑦)2

𝜏2

𝜏1

𝜉1

0

𝑑𝜏 𝑑𝜉 (2.14) 

Rearranging the denominator of Equation (2.14) gives; 
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𝜙(𝑥, 𝑦, 𝑡) =
1

√𝑣2 − 𝑐2
∫ ∫

𝐴(𝜉, 0, 𝑡 − 𝜏)

√(𝜏 − 𝜏1)(𝜏2 − 𝜏)
𝑑𝜏 𝑑𝜉

𝜏2

𝜏1

𝜉1

0

 (2.15) 

If a tangential flow along the boundary of the airfoil is to be formed, then a vertical 

velocity of 𝑤(𝑥, 𝑡) has to be induced by the source. Accordingly, magnitude of the 

source, 𝐴(𝜉, 0, 𝑡 − 𝜏) can be obtained by the boundary condition of this tangential flow 

on the airfoil given in Equation (2.16). 

(
𝜕𝜙

𝜕𝑦
)

𝑦=0

= 𝑤(𝑥, 𝑡) =
𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
+ 𝑣

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
  (2.16) 

A new parameter 𝜃 is introduced in place of 𝜏 where; 

2𝜏 = (𝜏2 − 𝜏1) cos 𝜃 + 𝜏2 + 𝜏1  (2.17) 

Substituting Equation (2.17) into Equation (2.15) gives; 

𝜙(𝑥, 𝑦, 𝑡) =
1

√𝑣2 − 𝑐2
∫ ∫ 𝐴 (𝜉, 0, 𝑡 −

𝜏2 + 𝜏1

2
−

𝜏2 − 𝜏1

2
cos 𝜃)  𝑑𝜃 𝑑𝜉

𝜋

0

𝜉1

0

 (2.18) 

Differentiation of the disturbance velocity potential with respect to y gives [6]; 

𝜕𝜙

𝜕𝑦
=

1

√𝑣2 − 𝑐2

𝜕𝜉1

𝜕𝑦
𝜋𝐴 (𝜉1, 0, 𝑡 −

𝑀𝑦

𝑐√𝑀2 − 1
)

+
1

√𝑣2 − 𝑐2
∫ ∫

𝜕2𝐴

𝜕𝑡2
sin2 𝜃  𝑑𝜃 𝑑𝜉

𝜋

0

𝜉1

0

 

(2.19) 

In order to obtain the term 
𝜕𝜉1

𝜕𝑦⁄ , Equation (2.13) is differentiated with respect to y; 

𝜕𝜉1
𝜕𝑦⁄ = −√𝑀2 − 1 (2.20) 
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Substituting Equation (2.20) into Equation (2.19) and taking the limit as y approaches 

zero on the positive side gives, 

(
𝜕𝜙

𝜕𝑦
)

𝑦=+0

= −
𝜋

𝑐
𝐴(𝑥, 0, 𝑡) (2.21) 

When y approaches zero from the negative side, the equal but opposite sign result is 

obtained. The magnitude of the source can be obtained by rearranging Equation (2.21) 

and inserting Equation (2.16). 

𝐴(𝑥, 𝑡) = −
𝑐

𝜋
𝑤(𝑥, 𝑡) (2.22) 

The total potential equation can then be expressed as follows: 

𝜙(𝑥, 𝑡) = −
1

𝜋

1

√𝑀2 − 1
∫ ∫

𝑤(𝜉, 𝑡 − 𝜏)

√(𝜏 − 𝜏1)(𝜏2 − 𝜏)
𝑑𝜏 𝑑𝜉

𝜏2

𝜏1

𝑥

0

 (2.23) 

where from Equations (2.10) and (2.11); 

𝜏1 =
𝑥 − 𝜉

𝑐(𝑀 + 1)
 (2.24) 

𝜏2 =
𝑥 − 𝜉

𝑐(𝑀 − 1)
 (2.25) 

The total potential equation can be applied to an airfoil with leading edge at 𝑥 = 0 and 

chord of 2𝑏, moving in small oscillations. If the wing has a degree of freedom in the 

displacement ℎ and twist in 𝛼 about its elastic axis, the vertical velocity of any point 

on the airfoil can be expressed as; 

𝑤(𝑥, 𝑡) = −[ℎ̇ + 𝑣𝛼 + (𝑥 − 𝑥0)𝛼̇] (2.26) 
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where 𝑥0 is the position of the elastic axis measured from the leading edge. 

As previously stated, simple harmonic motion is assumed. Therefore, the velocity 

function can be expressed as follows for convenience; 

𝑤(𝜉, 𝑡 − 𝜏) = 𝑤(𝜉, 𝑡)𝑒−𝑖𝜔𝜏 (2.27) 

Substituting Equation (2.27) into Equation (2.23) gives; 

𝜙(𝑥, 𝑡) = −
1

√𝑀2 − 1
∫ 𝑤(𝜉, 𝑡) 𝐼(𝜉, 𝑥) 𝑑𝜉

𝑥

0

 (2.28) 

where  

𝐼(𝜉, 𝑥) =
1

𝜋
∫

𝑒−𝑖𝜔𝜏

√(𝜏 − 𝜏1)(𝜏2 − 𝜏)
𝑑𝜏 

𝜏2

𝜏1

 (2.29) 

Reintroducing the parameter 𝜃 as in Equation (2.17), using the values of 𝜏1 and 𝜏2 

from Equations (2.24) and (2.25) and the related Bessel function gives; 

𝐼(𝜉, 𝑥) = 𝑒
−𝑖𝜔

𝑥−𝜉
𝑐

𝑀
𝑀2−1 𝐽0 (

𝑥 − 𝜉

𝑐

𝑤

𝑀2 − 1
) (2.30) 

In the following sections, the variables 𝑥 and 𝜉 are used as non-dimensional quantities 

by dividing the original values by the chord 2𝑏.  

Introducing the frequency parameters as follows; 

𝑘 =
𝜔𝑏

𝑣
 (2.31) 

𝑤̅ =
2𝑘𝑀2

𝑀2 − 1
 (2.32) 
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Then, Equation (2.28) becomes; 

𝜙(𝑥, 𝑡) =
2𝑏

√𝑀2 − 1
∫[ℎ̇ + 𝑣𝛼 + 2𝑏(𝜉 − 𝑥0)𝛼̇] 𝐼(𝜉, 𝑥) 𝑑𝜉

𝑥

0

 (2.33) 

where the function 𝐼(𝜉, 𝑥) is; 

𝐼(𝜉, 𝑥) = 𝑒−𝑖𝜔(𝑥−𝜉)𝐽0 (
𝑤̅

𝑀
(𝑥 − 𝜉)) (2.34) 

In order to form the aerodynamic lift force and moment, the theory of small 

disturbances is utilized to obtain the basic pressure formula for 𝑝 as follows [6]; 

𝑝 = −𝜌
𝑑𝜙

𝑑𝑡
= −𝜌 (

𝜕𝜙

𝜕𝑡
+ 𝑣

𝜕𝜙

𝜕𝑥
) (2.35) 

where 𝜌 is the density of the atmosphere.  

The local pressure difference between the upper and lower surfaces of the airfoil at 

any non-dimensional point x can be expressed as;  

𝑝′ = −2𝜌 (
𝜕𝜙

𝜕𝑡
+

𝑣

2𝑏

𝜕𝜙

𝜕𝑥
) (2.36) 

The total force, in other words lift acting on the airfoil can be expressed as; 

𝐿 = 2𝑏 ∫ 𝑝′𝑑𝑥 = −2𝜌𝑣 ∫
𝜕𝜙

𝜕𝑥
 𝑑𝑥

1

0

1

0

− 4𝜌𝑏 ∫ 𝜙 𝑑𝑥
1

0

 (2.37) 

The moment acting on the airfoil about the elastic axis can be expressed as; 
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𝑀𝛼 = 4𝑏2 ∫ (𝑥 − 𝑥0)𝑝′𝑑𝑥                                           
1

0

= −2𝜌𝑣 ∫
𝜕𝜙

𝜕𝑥
 (𝑥 − 𝑥0)𝑑𝑥

1

0

− 8𝜌𝑏2 ∫ 𝜙 (𝑥 − 𝑥0)𝑑𝑥
1

0

 

(2.38) 

The sign convention of the lift and moment equations can be seen in Figure 2.1. In 

Reference [6] further reductions are carried out and the final aerodynamic expressions 

are obtained as follows; 

𝐿 = −4𝜌𝑏𝑣2𝑘2𝑒𝑖𝜔𝑡 [(
ℎ

𝑏

̅
) (𝐿1 + 𝑖𝐿2) + 𝑎̅(𝐿3 + 𝑖𝐿4)] (2.39) 

𝑀𝛼 = −4𝜌𝑏2𝑣2𝑘2𝑒𝑖𝜔𝑡 [(
ℎ

𝑏

̅
) (𝑀1 + 𝑖𝑀2) + 𝑎̅(𝑀3 + 𝑖𝑀4)] (2.40) 

where explicit expressions in the lift (L) and the pitching moment (M) expressions are 

given by Garrick and Rubinow [6] as follows: 

𝐿1 =
1

√𝑀2 − 1
{−2(𝑓0)𝑅 +

1

𝑘
[𝐽0 (

𝑤̅

𝑀
) sin 𝑤̅ −

1

𝑀
𝐽1 (

𝑤̅

𝑀
) cos 𝑤̅]} (2.41) 

𝐿2 =
1

√𝑀2 − 1
{−2(𝑓0)𝐼 +

1

𝑘
[𝐽0 (

𝑤̅

𝑀
) cos 𝑤̅ +

1

𝑀
𝐽1 (

𝑤̅

𝑀
) sin 𝑤̅]} (2.42) 

𝐿3 = 𝐿3
′ − 2𝑥0𝐿1 (2.43) 

𝐿4 = 𝐿4
′ − 2𝑥0𝐿2 (2.44) 

 𝐿3
′ = 𝐿1 +

1

𝑘
𝐿2 + 𝐴1 (2.45) 
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 𝐿4
′ = 𝐿2 −

1

𝑘
𝐿1 + 𝐴2 (2.46) 

 𝑀1 = 𝑀1
′ − 2𝑥0𝐿1 (2.47) 

 𝑀2 = 𝑀2
′ − 2𝑥0𝐿2 (2.48) 

 𝑀3 = 𝑀3
′ − 2𝑥0[(𝑀1

′ + 𝐿3
′ ) − 2𝑥0𝐿1] (2.49) 

 𝑀4 = 𝑀4
′ − 2𝑥0[(𝑀2

′ + 𝐿4
′ ) − 2𝑥0𝐿2] (2.50) 

 𝑀1
′ = 𝐿1 − 𝐴1 (2.51) 

 𝑀2
′ = 𝐿2 − 𝐴2 (2.52) 

 𝑀3
′ =

4

3
(𝐿1 − 𝐵1) +

1

𝑘
(𝐿2 + 𝐴2) (2.53) 

 𝑀4
′ =

4

3
(𝐿2 − 𝐵2) −

1

𝑘
(𝐿1 + 𝐴1) (2.54) 

The terms in the equations are given as follows [6]; 

𝐴1 =
1

√𝑀2 − 1

1

𝑀

1

2𝑘2
[

1

𝑀
(𝑓0)𝑅 −

1

𝑀
𝐽0 (

𝑤̅

𝑀
) cos 𝑤̅ − 𝐽1 (

𝑤̅

𝑀
) sin 𝑤̅] (2.55) 

𝐴2 =
1

√𝑀2 − 1

1

𝑀

1

2𝑘2
[

1

𝑀
(𝑓0)𝐼 −

1

𝑀
𝐽0 (

𝑤̅

𝑀
) sin 𝑤̅ − 𝐽1 (

𝑤̅

𝑀
) cos 𝑤̅] (2.56) 

𝐵1 =
1

√𝑀2 − 1

1

𝑀

1

2𝑘2
[−

2

𝑤̅
𝐽1 (

𝑤̅

𝑀
) cos 𝑤̅ +

1

𝑀
𝐽0 (

𝑤̅

𝑀
) cos 𝑤̅ + 𝐽1 (

𝑤̅

𝑀
) sin 𝑤̅] (2.57) 
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𝐵2 =
1

√𝑀2 − 1

1

𝑀

1

2𝑘2
[

2

𝑤̅
𝐽1 (

𝑤̅

𝑀
) sin 𝑤̅ −

1

𝑀
𝐽0 (

𝑤̅

𝑀
) sin 𝑤̅ + 𝐽1 (

𝑤̅

𝑀
) cos 𝑤̅] (2.58) 

 

where the values of  𝑓0(𝑀, 𝑤̅) = (𝑓0)𝑅 + 𝑖(𝑓0)𝐼 are defines as; 

(𝑓0)𝑅 =
1

𝑤̅
∫ 𝐽0 (

𝑢

𝑀
) cos 𝑢 𝑑𝑢

𝑤̅

0

 (2.59) 

(𝑓0)𝐼 = −
1

𝑤̅
∫ 𝐽0 (

𝑢

𝑀
) sin 𝑢 𝑑𝑢

𝑤̅

0

 (2.60) 

2.3. Solution of the 2 DoF Model Equations using Supersonic Aerodynamics 

based on Piston’s Theory 

Piston theory calculates the aerodynamic force and moments on an aircraft by relating 

the body’s motion and the local normal component of fluid velocity to each other. 

Piston theory has been extensively studied in literature and the basis relies on the quasi-

steady point-function relationship with the surface downwash and aerodynamic 

pressure point on an airfoil [28]. In this theory, an airfoil moving in a stream can be 

reduced to a piston moving in a one-dimensional channel with the reference frame 

(x,y) given in Figure 2.4. 

 

Figure 2.4 Piston Theory Reference Frame [28] 
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An airfoil moving with a velocity 𝑣 in a channel containing a gas with a density of 𝜌 

and undisturbed pressure of 𝑝∞  will generate a pressure on the upper and lower 

surfaces of the lifting surface as follows [28]. 

𝑝(𝑥, 𝑡) = 𝑝∞ [1 +
(𝛾 − 1)

2

𝑤

𝑐
]

2𝛾
𝛾−1

 (2.61) 

where the term 𝛾 is the specific heat ratio of gas which can be taken as 1.4 for air and 

the vertical velocity that is generated is; 

𝑤(𝑥, 𝑡) = − (
𝜕𝑦

𝜕𝑡
+ 𝑣

𝜕𝑦

𝜕𝑥
) = −[ℎ̇ + 𝑣𝛼 + (𝑥 − 𝑥0)𝛼̇] (2.62) 

which shows consistency to the equations in Possio’s Theory explained in Section 2.2. 

Furthermore, expanding Equation (2.61), the following third order equation holds true, 

𝑝

𝑝∞
= 1 + 𝛾 (

𝑤

𝑐
𝜆) +

𝛾(𝛾 + 1)

4
(

𝑤

𝑐
𝜆)

2

+
𝛾(𝛾 + 1)

12
(

𝑤

𝑐
𝜆)

3

 (2.63) 

where the aerodynamic correction factor is defined as; 

𝜆 =
𝑀

√𝑀2 − 1
 (2.64) 

The local pressure difference between the upper and lower surfaces of the airfoil can 

be expressed as [30]: 

𝑝′ =
4𝑞

𝑀
𝜆 [(

𝜕𝑤

𝜕𝑡

1

𝑣
+

𝜕𝑤

𝜕𝑥
) +

1 + 𝛾

12
𝜆2𝑀2 (

𝜕𝑤

𝜕𝑡

1

𝑣
+

𝜕𝑤

𝜕𝑥
)

3

] (2.65) 

where 𝑞 =
1

2
𝜌𝑣2 is the dynamic pressure. 
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Ashley [29] remark that the third order terms have been discovered to have negligible 

effects, therefore these terms are not included in the scope of this study. 

The lift and moment equations are obtained as in Possio Theory from Equations (2.37) 

and (2.38). And the final lift and moment equations [29] are as follows: 

𝐿 = −4𝜌𝑏𝑣2𝑘2𝑒𝑖𝜔𝑡 [(
ℎ

𝑏

̅
) (𝐿1 + 𝑖𝐿2) + 𝑎̅(𝐿3 + 𝑖𝐿4)] (2.66) 

𝑀𝛼 = −4𝜌𝑏2𝑣2𝑘2𝑒𝑖𝜔𝑡 [(
ℎ

𝑏

̅
) (𝑀1 + 𝑖𝑀2) + 𝑎̅(𝑀3 + 𝑖𝑀4)] (2.67) 

where explicit expressions in the lift (L) and the pitching moment (M) expressions are 

given as follow [29]; 

𝐿1 = 0 (2.68) 

𝐿2 = 1/𝑘𝑀 (2.69) 

𝐿3 = 𝐿3
′ − 2𝑥0𝐿1 (2.70) 

𝐿4 = 𝐿4
′ − 2𝑥0𝐿2 (2.71) 

 𝐿3
′ = 1/𝑘2𝑀 (2.72) 

 𝐿4
′ = (1/𝑘𝑀)  − [(𝛾 + 1)/𝑘](𝐴𝑤/8𝑏2) (2.73) 

 𝑀1 = 𝑀1
′ − 2𝑥0𝐿1 (2.74) 

 𝑀2 = 𝑀2
′ − 2𝑥0𝐿2 (2.75) 
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 𝑀3 = 𝑀3
′ − 2𝑥0[(𝑀1

′ + 𝐿3
′ ) − 2𝑥0𝐿1] (2.76) 

 𝑀4 = 𝑀4
′ − 2𝑥0[(𝑀2

′ + 𝐿4
′ ) − 2𝑥0𝐿2] (2.77) 

 𝑀1
′ = 0 (2.78) 

 𝑀2
′ = (1/𝑘𝑀)  − [(𝛾 + 1)/𝑘](𝐴𝑤/8𝑏2) (2.79) 

 𝑀3
′ = (1/𝑘2𝑀)  − [(𝛾 + 1)/𝑘2](𝐴𝑤/8𝑏2) (2.80) 

 𝑀4
′ = (4/3𝑘𝑀) − [(𝛾 + 1)/𝑘](𝑀𝑤/4𝑏3) (2.81) 

where 𝐴𝑤  is the cross sectional area of the airfoil and 𝑀𝑤  is the static moment of 

inertia of the airfoil about its’ leading edge. It is important to note that these terms 

vanish for the Zero Thickness Piston Theory. 

2.4. Solution of the Flutter Determinant using the Classical Flutter Method 

Sections 2.2 and 2.3 explain the supersonic aerodynamics of both theories and give the 

aerodynamic lift force and moment equations. The final forms of these expressions are 

the same however; the explicit equations of the lift (P) and the pitching moment (M) 

differ between the theories. These terms will be specified in the following sections. 

The flutter solution is carried on by finalizing the equation of motions. Merging 

Equations (2.5), (2.6) and (2.39), (2.40) gives; 

−
𝑚

4𝜌𝑏2
(

ℎ

𝑏

̅
) +

𝑚

4𝜌𝑏2
𝑥𝛼𝛼̅ +

𝑚

4𝜌𝑏2
(

𝑤ℎ

𝑤
)

2

(
ℎ

𝑏

̅
) = − [(

ℎ

𝑏

̅
) (𝐿1 + 𝑖𝐿2) + 𝑎̅(𝐿3 + 𝑖𝐿4)] (2.82) 
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−
𝑚

4𝜌𝑏2

𝐼𝑎

𝑚𝑏2
𝛼̅ −

𝑚

4𝜌𝑏2
𝑥𝛼 (

ℎ

𝑏

̅
) +

𝐼𝑎

𝑚𝑏2

𝑚

4𝜌𝑏2
(

𝑤𝑎

𝑤
)

2

𝛼̅

= − [(
ℎ

𝑏

̅
) (𝑀1 + 𝑖𝑀2) + 𝑎̅(𝑀3 + 𝑖𝑀4)] 

(2.83) 

Equations (2.82) and (2.83) are applicable for both methods however the terms 

𝐿1, 𝐿2, 𝐿3, 𝐿4 and 𝑀1, 𝑀2, 𝑀3, 𝑀4 differ accordingly. 

In order to simplify the coefficients, the following dimensionless parameters are 

introduced. 

With the use of these parameters, Equations (2.82) and (2.83) become as follows; 

 −𝜇 (
ℎ

𝑏

̅
) + 𝜇𝑥𝛼𝛼̅ + 𝜇 (

𝑤ℎ

𝑤
)

2

(
ℎ

𝑏

̅
) = − [(

ℎ

𝑏

̅
) (𝐿1 + 𝑖𝐿2) + 𝑎̅(𝐿3 + 𝑖𝐿4)] (2.85) 

−𝜇𝑟𝑎
2𝛼̅ − 𝜇𝑥𝛼 (

ℎ

𝑏

̅
) + 𝑟𝑎

2𝜇 (
𝑤𝑎

𝑤
)

2

𝛼̅ = − [(
ℎ

𝑏

̅
) (𝑀1 + 𝑖𝑀2) + 𝑎̅(𝑀3 + 𝑖𝑀4)] (2.86) 

For the flutter analysis, these algebraic equations are solved for the related flight 

conditions. Because the equations are linear and homogenous for (ℎ̅ 𝑏)⁄  and 𝛼̅, it is 

 𝜇 =
𝑚

4𝜌𝑏2
 (wing density parameter) 

(2.84) 

 𝑟𝑎
2 =

𝐼𝑎

𝑚𝑏2
 (radius of gyration parameter)  

 𝑤𝑎 = √
𝐾𝛼

𝐼𝑎
 (pitching natural frequency) 

 𝑤ℎ = √
𝐾ℎ

𝑚
 (plunging natural frequency) 
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necessary for Equations (2.85) and (2.86) to have a nontrivial solution. Therefore, 

Equation (2.87) must be satisfied. 

|
𝜇 (

𝑤ℎ

𝑤
)

2

− 𝜇 + 𝐿1 + 𝑖𝐿2 −𝜇𝑥𝑎 + 𝐿3 + 𝑖𝐿4

−𝜇𝑥𝑎 + 𝑀1 + 𝑖𝑀2 𝜇𝑟𝑎
2 (

𝑤𝑎

𝑤
)

2

− 𝜇𝑟𝑎
2 + 𝑀3 + 𝑖𝑀4

| = 0 (2.87) 

The determinant given by Equation (2.87) is called the flutter determinant. A new 

parameter can be defined as 𝜎 = (𝑤ℎ/𝑤𝑎). So a common term explicitly available 

shows up which is 𝑤𝑎/𝑤. Therefore, the expansion of the determinant will give a 

quadratic polynomial in the unknown (𝑤𝑎/𝑤)2. 

|
𝜇𝜎2 (

𝑤𝑎

𝑤
)

2

− 𝜇 + 𝐿1 + 𝑖𝐿2 −𝜇𝑥𝑎 + 𝐿3 + 𝑖𝐿4

−𝜇𝑥𝑎 + 𝑀1 + 𝑖𝑀2 𝜇𝑟𝑎
2 (

𝑤𝑎

𝑤
)

2

− 𝜇𝑟𝑎
2 + 𝑀3 + 𝑖𝑀4

| = 0 (2.88) 

To summarize and compare the dimensionless coefficients defining the lift and 

moment on the oscillating airfoil for the Piston and Possio theory, Table 2.1 is given. 

Table 2.1 Comparison for the Dimensionless Aerodynamic Coefficients 

Parameter Possio Theory Piston Theory 

𝐿1 

1

√𝑀2 − 1
{−2(𝑓0)𝑅

+
1

𝑘
[𝐽0 (

𝑤̅

𝑀
) sin 𝑤̅

−
1

𝑀
𝐽1 (

𝑤̅

𝑀
) cos 𝑤̅]} 

0 
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𝐿2 

1

√𝑀2 − 1
{−2(𝑓0)𝐼

+
1

𝑘
[𝐽0 (

𝑤̅

𝑀
) cos 𝑤̅ +

1

𝑀
𝐽1 (

𝑤̅

𝑀
) sin 𝑤̅]} 

1/𝑘𝑀 

𝐿3 𝐿3
′ − 2𝑥0𝐿1 𝐿3

′ − 2𝑥0𝐿1 

𝐿4 𝐿4
′ − 2𝑥0𝐿2 𝐿4

′ − 2𝑥0𝐿2 

𝐿3
′  𝐿1 +

1

𝑘
𝐿2 + 𝐴1 1/𝑘2𝑀 

𝐿4
′  𝐿4

′ = 𝐿2 −
1

𝑘
𝐿1 + 𝐴2 

(1/𝑘𝑀) − [(𝛾

+ 1)/𝑘](𝐴𝑤

/8𝑏2) 

𝑀1 𝑀1
′ − 2𝑥0𝐿1 𝑀1

′ − 2𝑥0𝐿1 

𝑀2 𝑀2
′ − 2𝑥0𝐿2 𝑀2

′ − 2𝑥0𝐿2 

𝑀3 𝑀3
′ − 2𝑥0[(𝑀1

′ + 𝐿3
′ ) − 2𝑥0𝐿1] 

 𝑀3
′ − 2𝑥0[(𝑀1

′ + 𝐿3
′ ) −

2𝑥0𝐿1] 

𝑀4 𝑀4
′ − 2𝑥0[(𝑀2

′ + 𝐿4
′ ) − 2𝑥0𝐿2] 

 𝑀4
′ − 2𝑥0[(𝑀2

′ + 𝐿4
′ ) −

2𝑥0𝐿2] 

𝑀1
′  𝐿1 − 𝐴1 0 

𝑀2
′  𝐿2 − 𝐴2 

 (1/𝑘𝑀) − [(𝛾 + 1)/

𝑘](𝐴𝑤/8𝑏2) 
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𝑀3
′  

4

3
(𝐿1 − 𝐵1) +

1

𝑘
(𝐿2 + 𝐴2) 

(1/𝑘2𝑀) − [(𝛾

+ 1)/𝑘2](𝐴𝑤

/8𝑏2) 

𝑀4
′  

4

3
(𝐿2 − 𝐵2) −

1

𝑘
(𝐿1 + 𝐴1) 

(4/3𝑘𝑀)  − [(𝛾

+ 1)/𝑘](𝑀𝑤

/4𝑏3) 

In the flutter determinant the unknowns regarding the motion and flight conditions, 

there are four unknowns; 𝜇, 𝑤𝑎/𝑤, 𝑀 and 𝑘. In order for these values to be found, the 

second-degree polynomial equation from the determinant is solved. However, the 

complex quantities in the aerodynamic coefficients result in the complex equation 

representing two real equations, where both the real and imaginary parts have to be 

zero in order for the equations to be solved. In other words, since there are two 

equations to be solved, two of the four unknowns have to be defined. A procedure that 

can be used to solve the flutter problem is the Classical Flutter Method. The following 

steps outline this method:  

1. Specify the parameter 𝜇 which represents the altitude. 

2. Specify the Mach number, 𝑀. 

3. Specify a set of trial values for the reduced frequency, 𝑘. 

4. Calculate the aerodynamic functions 𝐿1, 𝐿2, 𝐿3, 𝐿4  and 𝑀1, 𝑀2, 𝑀3, 𝑀4  for 

each value of 𝑘 and construct the flutter determinant. 

5. Solve the flutter determinant for the corresponding values of (𝑤𝑎/𝑤)2 for 

each values of 𝑘. Since this is a quadratic equation with complex coefficients, 

the roots will have a real and imaginary part. The real part of the root is an 

estimation of (𝑤𝑎/𝑤)2 and the imaginary part is related to the damping of the 

mode.  
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6. Iterate until the 𝑘 at which imaginary part of one of the roots zero is detected. 

This can be done by interpolating between the reduced frequency values 

where the imaginary part crosses the zero axis.  

7. With the reduced frequency, 𝑘 obtained by interpolation, repeat steps 4 and 5 

until a reduced frequency value is found that gives an imaginary part closest 

to zero with a prescribed tolerance. This 𝑘  value is then used to find the 

corresponding real value of (𝑤𝑎/𝑤)2  from which the value of 𝑤  can be 

obtained. 

8. Determine the flutter speed using the values of 𝑤 and 𝑘 as follows; 

𝑈𝐹 = 𝑏𝑤
𝑘⁄  &  𝑀𝐹 = 𝑈𝐹/𝑐 (2.89) 

9. Repeat steps from 3 to 7 until the output 𝑀 obtained in step 8 converges to 

the initial 𝑀 value given in step 2. 

10. In order to sweep the whole flutter boundary in terms of altitude, repeat the 

process for different values of 𝜇. 

Figure 2.5 explains the classical flutter method in terms of a flowchart. 
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Figure 2.5 Flowchart for Classical Flutter Method Solution 

2.5. Setting up a Solver to Estimate the Flutter Speed of a Typical Wing Model 

The classical flutter method is an iterative process. Therefore, MATLAB [31] is 

utilized to significantly reduce the computation time. The eigenvalues of the flutter 

determinant are solved with the implementation of the “eig” command in MATLAB. 

In order for this command to be used, Equation (2.88) is rearranged in the form of 

[𝑋] − λ [𝑌] = 0 as,  

[
𝜇 − (𝐿1 + 𝑖𝐿2) 𝜇𝑥𝑎 − (𝐿3 + 𝑖𝐿4)

𝜇𝑥𝑎 − (𝑀1 + 𝑖𝑀2) 𝜇𝑟𝑎
2 − (𝑀3 + 𝑖𝑀4)

] −  λ [
𝜇𝜎2 0

0 𝜇𝑟𝑎
2] = 0 (2.90) 

where  λ = (𝑤𝑎 𝑤⁄ )2.  
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Hence, the flutter frequency and speed are determined from; 

𝑅𝑒(λ) = (
𝑤𝑎

𝑤𝑟
)

2

→ 𝑤𝑓 = 𝑤𝑟 =
𝑤𝑎

√𝑅𝑒(λ)
 (2.91) 

𝑈𝑓 =
𝑤𝑓𝑏

𝑘
=

𝑤𝑎

√𝑅𝑒(λ)

𝑏

𝑘
→

𝑈𝑓

𝑏𝑤𝑎
=

1

𝑘√𝑅𝑒(λ)
 (2.92) 

Two separate codes for Possio and Zero Thickness Piston Theory are generated using 

the supersonic aerodynamics described previously. The flutter speed and frequency 

are obtained with the iteration process explained in Figure 2.5.  

The inputs for the codes are given in Table 2.2.  

Table 2.2 Input Parameters of the Typical Section Flutter Analysis Codes 

Parameter Definition 

 𝑏 Half-chord 

 𝑥0 
Distance of elastic axis from the leading edge (non-

dimensionalized with respect to 2𝑏 chord length) 

 𝑥𝑎 
Distance of the center of gravity from the elastic axis (non-

dimensionalized with respect to 2𝑏 chord length) 

 𝜇 Wing density parameter 

 𝑀 Mach number 

 𝑟𝑎
2 Radius of gyration parameter of the wing 

 𝜎 
Ratio of the wing bending frequency to the wing torsion 

frequency 
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The codes written for Possio and Zero Thickness Piston Thery are validated with the 

results given in Reference [29]. Figure 2.6 and Figure 2.7 show the dimensionless 

flutter velocity 𝑈𝑓 𝑏𝑤𝑎⁄  vs. 𝑀 of a typical section wing at three different altitudes. The 

wing analyzed has a low frequency ratio of 𝜎 ≈ 0 and a radius of gyration of 𝑟𝑎
2 =

0.25 with elastic axis at its’ midchord and center of gravity at its 60 per cent chord. 

The results show that, even though at higher altitudes the code results begin to differ 

ever so slightly from literature, in general, the code results can accurately determine 

the flutter speed of a typical wing section for both theories. 

 

Figure 2.6 Comparison of the Code and Paper Results for the Possio Theory for 𝜎 ≈ 0, 𝑟𝑎
2 = 0.25, 

𝑥0 = 0.5, 𝑥𝑎 = 0.2 
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Figure 2.7 Comparison of the Code and Paper Results for the Piston Theory, Zero Thickness for 𝜎 ≈
0, 𝑟𝑎

2 = 0.25, 𝑥0 = 0.5, 𝑥𝑎 = 0.2 

 

Numerical comparison of the theories is given in Table 2.3. It can be observed that 

there is a good correlation between the two theories especially at the higher Mach 

numbers for all altitudes. In deciding on which theory to continue with in the 

subsequent chapters, literature is taken as reference. Ashley [29] has reached the 

conclusion that for values of 𝑀 ≥ 2.5, the piston theory approach yields flutter speed 

values of 10% to their exact counterparts for a two-dimensional bending-torsion 

flutter. Moreover, Ashley [29] have calculated the flutter speed of a two-dimensional 

bending-torsion flutter with a zero thickness 20 per cent chord flap with the use of 

Piston theory at a Mach number of 2, and come to the conclusion that the piston theory 

results are consistent when compared to the exact flutter speed. In the light of these 

results, the theory for the flutter estimations given in Chapter 3 are performed with the 

use of the Piston Theory. 
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Table 2.3 Comparison of the Possio and the Zero Thickness Piston Theories 

 

𝑴 

Wing 

Density 

 𝝁 

Possio Theory  

Flutter Speed  
𝑼𝒇

𝒃𝒘𝒂
⁄  

Piston (0t) Theory  

Flutter Speed  
𝑼𝒇

𝒃𝒘𝒂
⁄  

Difference 

% 

2 

3.927 

2.51 2.82 11.1 

3 3.18 3.31 4.2 

4 3.67 3.75 2.2 

5 4.09 4.14 1.4 

2 

7.854 

3.37 3.75 10.2 

3 4.32 4.50 4.0 

4 5.04 5.15 2.2 

5 5.64 5.73 1.5 

2 

15.708 

4.65 5.15 9.8 

3 6.01 6.25 3.8 

4 7.02 7.19 2.3 

5 7.88 8.01 1.6 
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CHAPTER 3 

 

 

3 ESTIMATING THE SUPERSONIC FLUTTER SPEED OF A FINITE 

WING WITH THE  TYPICAL WING MODEL AERODYNAMICS 

 

 

The analysis of a multi degree-of-freedom system can be reduced to a simple two-

dimensional typical section model for purposes of flutter prediction as demonstrated 

in Figure 3.1. This simplification can be done by giving the geometric and inertial 

properties of an appropriate section of a finite wing to the two-dimensional typical 

section model. For typical wing flutter, the modes involved are bending and torsion, 

therefore giving the airfoil the pitching and plunging degrees-of-freedom can be 

sufficient to simulate the motion of the oscillating wing. 

 

Figure 3.1 Simplification of a Wing to a Typical Section Model 

In this section of the study, the aim is to estimate the supersonic flutter characteristics 

of a finite wing applying the typical section supersonic aerodynamics of the Piston 

Theory outlined in Section 2.3. For this purpose, a parametric study is carried out 

changing various wing parameters and observing their effect on the supersonic flutter 

speed. The code generated in Section 2.5 is used to calculate the flutter speed with a 

slight addition. In Section 2.5, zero thickness piston theory was utilized in terms of 
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comparison with the Possio Theory however; for this part, the thickness effects are 

also included to the theory. 

3.1 Description of the Finite Element Model for the Supersonic Flutter Speed 

Estimation 

The finite wing is a plate model which is stiffened with two rectangular stiffeners at 

its’ leading and trailing edges as shown in Figure 3.2. The attachment of the wing-

fuselage is simulated by fixing the related grids in all degrees-of-freedom. 

 

Figure 3.2 Finite Element Model of the Wing Structure 

The cross-section of the finite element model is given in Figure 3.3. The flutter 

equations require the input of mass and moment of inertia per unit span, therefore, the 

wing is chosen with a constant cross-section to simplify the process of determining 

these parameters. Moreover, the symmetric nature of the model lets the center of 

gravity (CG) and the elastic axis (EA) to be located on the same plane which is the 

midchord.  

The wing has a chord length of 𝑐 = 2𝑏 and a half-span of 𝐿 with a plate thickness of 

𝑡𝑠 and a beam area of 𝑡𝑎 ∗ 𝑡𝑏. The material of both the stiffener and plate is kept the 

same and density of the wing is defined with the symbol 𝜌.  
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Figure 3.3 Cross-Section of the Wing Model given in Figure 3.2 

The mass per unit length of the wing cross-section can be found as; 

𝑚𝑝𝑙𝑎𝑡𝑒
′ =

𝑚𝑝𝑙𝑎𝑡𝑒

𝐿
=

2𝜌(𝑡𝑠𝑏𝐿)

𝐿
 (3.1) 

𝑚𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟
′ =

𝑚𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟

𝐿
=

2𝜌(𝑡𝑎𝑡𝑏𝐿)

𝐿
 (3.2) 

 𝑚𝑡𝑜𝑡𝑎𝑙
′ = 𝑚𝑝𝑙𝑎𝑡𝑒

′ + 𝑚𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟
′  (3.3) 

The mass moment of inertia per unit length of the wing cross-section can be found 

from the following equations: 

𝐼′𝑎 = 𝐼′𝑝𝑙𝑎𝑡𝑒 + 𝐼′𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟 = ∫ 𝑟2𝑑𝑚′ (3.4) 

𝐼′𝑝𝑙𝑎𝑡𝑒 = 2 ∫ 𝑟2
𝑚𝑝𝑙𝑎𝑡𝑒

′

2𝑏
𝑑𝑟

𝑏

0

 (3.5) 

𝐼′𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟 = 𝑚𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟
′ ∗ 𝑏2 (3.6) 
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The effect of the wing thickness is included with the terms 𝐴𝑤 and 𝑀𝑤 which are the 

airfoil cross-sectional area and the airfoil static moment of inertia about its leading 

edge. These terms can be found as; 

𝐴𝑊 = 𝐴𝑝𝑙𝑎𝑡𝑒 + 𝐴𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟 = 𝑡𝑠(2𝑏) + 2(𝑡𝑎𝑡𝑏) (3.7) 

 𝑀𝑊 = 𝑀𝑝𝑙𝑎𝑡𝑒 + 𝑀𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟 = 𝑡𝑠(2𝑏) (𝑏 +
𝑡𝑎

2
) + (𝑡𝑎𝑡𝑏) (2𝑏 +

𝑡𝑎

2
) +

(𝑡𝑎𝑡𝑏) (
𝑡𝑎

2
) 

(3.8) 

The baseline wing model has the parameters given in Table 3.1. 

Table 3.1 Baseline Wing Parameters 

Parameter Definition Value Unit 

 𝐿 Half-span  1.125 [m] 

 𝑏 Half-chord  0.075 [m] 

 𝑡𝑎 ∗ 𝑡𝑏 Stiffener Geometry  0.01 ∗ 0.035 [m2] 

 𝑡𝑆 Plate Thickness  0.005 [m] 

 𝜌 Wing Density  2700 [kg/m3] 

 𝐸 Modulus of Elasticity  70 000 [Pa] 
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3.2 Parametric Study 

The purpose of this section is to show that the results obtained with the typical section 

code gives applicable results for a finite wing as well. The following sections present 

how the supersonic flutter characteristics of the finite wing calculated using the Piston 

theory typical section aerodynamics is affected by the change of the half-span, beam 

area and modulus of elasticity of the wing material.  

One of the inputs of the code is the ratio of wing bending frequency to wing torsion 

frequency. Therefore, a modal analysis is conducted to determine the mode shapes of 

each configuration. The finite wing model with all the variations considered have first 

natural frequency as the first bending mode followed by the first torsion mode as the 

second natural frequency. As explained previously, the modes included for flutter 

prediction purposes are these two modes. Figure 3.4 shows the mode shapes for the 

baseline model calculated by MSC. Nastran [32].  

Mode 1 (1st Bending) Mode 2 (1st Torsion) 

Figure 3.4 Mode shapes of the Finite Wing 

After obtaining the natural frequencies from the normal modes analysis from MSC.  

Nastran, the code generated using supersonic Piston theory is utilized to obtain the 

flutter speeds. The flutter determinant in Equation (2.88)(2.81) is solved using the 

explicit lift and moment equations given in Equations (2.68) - (2.81). 
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3.2.1 Effect of the Span of the Wing on the Supersonic Flutter Speed  

The first parameter, whose effect studied, is the span of the wing structure. If the wing 

is structurally reduced to a cantilever beam/bar fixed at one end and free at the other, 

the bending and torsional natural frequency is related to the length as follows [33]; 

𝑤𝑏𝑒𝑛𝑑𝑖𝑛𝑔 ~ √
𝐸𝐼

𝜌𝐴𝐿4
 (3.9) 

𝑤𝑡𝑜𝑟𝑠𝑖𝑜𝑛 ~ √
𝐺𝐽

𝜌𝑘𝜃𝐿2
 (3.10) 

where 𝑘𝜃 is the torsional stiffness coefficient for the cross-section an 𝐴 is the cross-

sectional area.  

As explained in Section 3.2, the initial step to conducting the supersonic flutter speed 

of a finite wing using the typical section code is obtaining its modal frequencies. MSC  

Nastran is utilized to obtain the corresponding bending and torsion frequency for each 

span length configuration analyzed. Table 3.2 shows how the natural frequencies vary 

with the changing span lengths. Both the torsional and bending frequencies decrease 

with increasing span consistent with the simplified assumptions stated above. 

Moreover, the relations show that the bending frequency is more strongly affected by 

the length compared to the torsion frequency, which is also reflected in the results. 

Table 3.2 Comparison of Modal Frequencies w.r.t. Half-Span 

Half-Span [m] 1st Bending [Hz] 1st Torsion [Hz] 

0.900 24.9  75.1 

0.975 21.2 68.2 

1.050 18.3 62.4 

1.125 15.9 57.5 
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The supersonic aerodynamic force and moments, which are based on a two-

dimensional theory, are the same for all the span lengths considered since all the terms 

which appear are per unit span length. Therefore, the effect will be included with the 

stiffness terms when solving the flutter determinant. It was observed in Table 3.2 that 

increasing span leads to decreasing natural frequencies, which means decreasing 

bending and torsional stiffness. Figure 3.5 reflects this remark, showing that the code 

was successful in predicting the decrease in the flutter speed as the span increases. It 

should be noted that, this rate of decrease should be less for a rigid wing as the modes 

will not be as affected with the changing span as it does for a flexible lifting surface. 

 

Figure 3.5 Flutter Speed versus Half Span 

 

3.2.2 Effect of Beam Cross Section of the Wing on the Supersonic Flutter 

Speed 

As explained in Section 3.1, the finite wing model consists of a plate with stiffeners at 

each side. The stiffeners are modeled as beams and their cross-sectional area is 

modified to see how this parameter influences the supersonic flutter speed. Initially, a 

modal analysis is conducted for the finite wing using MSC. Nastran for each variation 

and the modal frequency results are given in Table 3.3. 
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Table 3.3 Comparison of Modal Frequencies w.r.t. Beam Area of the Side Stiffeners 

𝒕𝒂 ∗ 𝒕𝒃 [m2] 1st Bending [Hz] 1st Torsion [Hz] 

 0.01 ∗ 0.025 10.6 52.4 

 0.01 ∗ 0.030 13.2 55.1 

 0.01 ∗ 0.035 15.9 57.5 

 0.01 ∗ 0.040 18.8 59.7 

 

The results show that the increase in the beam area results in an increase in both the 

bending and torsion frequencies. Stiffeners when modeled as beams are capable of 

taking axial, bending, and shear loads, in addition to moments and torsional or twisting 

or torque loads. This results in them being able to account for large deflections and 

increasing the stiffness of the structure. Therefore, the increase in the natural 

frequencies observed in Table 3.3 is an expected result, since the increase in the 

stiffener area results in a more stiff structure. 

The effect of the beam cross-sectional area of the side stiffeners is included in the 

calculation of the supersonic aerodynamic force and moments. The mass per unit 

length (𝐴𝑤) and the mass moment of inertia (𝑀𝑤) of the wing which are directly 

affected by the stiffener area are included in the aerodynamic load expressions as seen 

in Equations (2.68) - (2.81). The effect of this combined with the increase in the 

stiffness of the wing with increasing beam area results in a variation of flutter speed as 

seen in Figure 3.6. The results show that the code was successful in correctly predicting 

the increase of the flutter speed with the increase in the cross-sectional area. 
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Figure 3.6 Flutter Speed versus Beam Area of the Side Stiffeners 

3.2.3 Effect of Material of the Wing on the Supersonic Flutter Speed 

Finally, the modulus of elasticity is changed and its effect on the flutter speed is 

observed. The modal frequencies of the various finite wing configurations of modulus 

of elasticity which are calculated in MSC. Nastran can be observed in Table 3.4. 

Equation (3.9) shows that the bending frequency is proportional to the square root of 

the elastic modulus. Moreover, in Equation (3.10), the frequency is related to the shear 

modulus which is 𝐺 = 𝐸 2(1 + 𝜈)⁄ , relating the torsional frequency to the elastic 

modulus.  Therefore, the results in Table 3.4, which show the increase of the bending 

and torsional stiffness with the increasing modulus of elasticity, is an expected 

outcome.  

Table 3.4 Comparison of Modal Frequencies w.r.t. Modulus of Elasticity 

𝑬 [Pa] 1st Bending [Hz] 1st Torsion [Hz] 

 60 000 14.8 55.7 

 65 000 15.4 56.6 

 70 000 15.9 57.5 

 75 000 16.5 58.4 
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Same as in Section 3.2.1, the elastic modulus parameter does not show itself on the 

aerodynamic force and moment equations. Therefore, the flutter speed is affected from 

the modulus of elasticity parameter in the way that the stiffness is varied. The modulus 

of elasticity is about the tendency of a structure to deform when opposing forces are 

applied and is associated with the stiffness of a structure.  As a result, as the modulus 

of elasticity is increased, the bending and torsional stiffness characteristically also 

show an increasing trend. Figure 3.7 shows the results consistent with this remark, 

leading to an increase of flutter speed with the increasing modulus of elasticity. 

 

Figure 3.7 Flutter Speed versus Modulus of Elasticity 

3.3 Comparison of the Code Results with ZAERO 

The flutter estimation of a finite wing using the typical section supersonic 

aerodynamics are given in Section 3.2 as a parametric study. In this section, the results 

of the parametric study are compared to supersonic flutter analysis results obtained by 

ZAERO [34]. ZAERO is a commercial aeroelastic tool whose capabilities include 

solution of supersonic flutter analysis. The ZAERO analysis procedure is explained in 

further detail in Chapter 4.  

The comparison for the supersonic flutter analysis are presented in Figure 3.8 - 3.10. 

The flutter speeds are normalized with respect to the lowest flutter speed obtained for 

each configuration such that the minimum flutter speed for each case becomes 1. It 
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can be observed from the plots that the increasing or decreasing trends are reflected in 

the ZAERO results as well as in the code results.  

The results show that, although, an exact flutter speed may not be calculated with the 

use of the two dimensional supersonic flutter analysis code created in this study, the 

effects of various parameters on the flutter speed can be observed. As a result, this 

code can be used for the evaluation of different design cases in a iterative design phase 

during which frequent design changes are made and the effect of design changes on 

the trend of the flutter speed is needed. Percent changes of the flutter speed 

corresponding to the design changes can be predicted with the 2D code and costly 

aeroelastic analysis can be avoided. Moreover, when a reliable flutter speed for a single 

case is known, flutter speed corresponding to a wing configuration with modified 

design parameter can also be estimated with the use of the two dimensional supersonic 

flutter analysis code developed without the need of various costly aeroelastic analyses 

to be carried out. 

 

Figure 3.8 ZAERO and Code Comparison for Half-Span Variation 
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Figure 3.9 ZAERO and Code Comparison for Stiffener Area Variation 

 

 

Figure 3.10 ZAERO and Code Comparison for Half-Span Variation 
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CHAPTER 4 

 

 

4 SUPERSONIC FLUTTER ANALYSIS USING ZAERO  

 

4.1 General Review of the Flutter Calculation Process of ZAERO 

ZAERO is a commercial software developed by ZONA Technology INC for the 

purposes of solving all kinds of aeroelastic problems that range from static 

aeroelastic/trim analysis to aeroservoelasticity [34]. An important feature of the 

ZAERO software is that it can generate Unified Aerodynamic Influence Coefficient 

(UAIC) matrices for full aircraft configurations. This solution can be done for all Mach 

numbers that is covered by the five aerodynamic methods that are detailed in Figure 

4.1. In the scope of this study, ZONA7 (𝑀 > 1) is used to formulate the supersonic 

aerodynamics for the lifting surfaces. 
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Figure 4.1 Capability of the ZAERO UAIC Module [34] 

ZAERO does not provide the structural finite element solution, therefore the computed 

normal modes solution is externally imported to the program. The Model Data 

Importer is a module that can process the output files of the commercial programs 

which have the computed structural free vibration data. In this study, the structural 

stiffness, mass, and damping matrices required by the aeroelastic analyses are 

generated by MSC. Nastran and saved in the Nastran output file (.f06). The Modal 

Data Importer reads these output files to get the information of the structural grid point 

locations for the spline calculation, the mode shapes, the natural frequencies, the 

generalized mass and the stiffness matrices of the structural finite element model.  

The unified aerodynamic influence matrix is constructed from the geometry of the 

aerodynamic finite elements whose aerodynamic grids are independent from the 

structural grids of the FEM. In this thesis study, the panel formulation for the lifting 

surfaces is generated by the supersonic unsteady aerodynamic module ZONA7.  

With the data obtained from the Nastran output (.f06) file, a structural spline is created 

to link the aerodynamic and the structural models by generating a transformation 

matrix relating the deflections of the aerodynamic and the structural grids. 
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The generalized aerodynamic loads are calculated for different reduced frequencies 

with the multiplication of the UAIC with downwash resulting from harmonic 

oscillation of the eigenmodes. The flutter solver evaluates the equations of motion for 

the frequency and damping coefficients within a specified flight envelope. The results 

such as the flutter boundary envelopes, the interpolated structural mode on the 

aerodynamic model or the mode at which flutter occurs can be converted for 

visualization into external post-process software including TECPLOT, MSC. Patran 

and Excel. This flutter analysis process chain is described schematically in Figure 4.2. 

 

Figure 4.2 The Process of Flutter Calculation in ZAERO 

4.2 Generation of the Supersonic Aerodynamic Influence Coefficient Matrix 

ZONA7 is the module that generates the Aerodynamic Influence Coefficient (AIC) 

Matrix in the supersonic Mach number range. As previously stated, simple harmonic 

motion is assumed such that the unsteady aerodynamic methods can be solved in the 

reduced frequency domain. Panel method is used to obtain the aerodynamic equation, 

which requires the aircraft model to be divided into small panels defined as 

aerodynamic boxes. Each of these boxes have a control point where the boundary 

condition is defined. The equations belonging to each box is individually derived and 

assembled together to approximate the entire aircraft equation. The coefficients of 

these added equations represent the aerodynamic effect of aerodynamic boxes to 
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control points and the assembled matrix is called the Aerodynamic Influence 

Coefficient Matrix.  

ZONA7 [34] bases its aerodynamic calculations on the linearized small disturbance 

equation given as follows, 

(1 − 𝑀2)𝛷𝑥𝑥 + 𝛷𝑦𝑦 + 𝛷𝑧𝑧 − 2
𝑀

𝑐
𝛷𝑥𝑡 −

1

𝑐2
𝛷𝑡𝑡 = 0 (4.1) 

where 𝛷 is the total velocity potential that can be divided into the steady and unsteady 

potential as 𝛷 = 𝜙0 + 𝜙1 and 𝑐 is the speed of sound. With this assumption and the 

fact that Equation (4.1) is a linear equation, Equation (4.1) can be decoupled to steady 

and unsteady linearized small disturbance equations. Then, assuming simple harmonic 

motion, the unsteady potential equation can be re-expressed by assuming the total 

velocity potential as; 

𝜙 = 𝜙̅𝑒𝑖𝜆𝑀𝑥′ (4.2) 

where 

𝜆 =
𝑘𝑀

√|1 − 𝑀2|
 (4.3) 

𝑘 =
𝑤𝐿

𝑉
 (4.4) 

 𝑥′ = 𝐿 √|1 − 𝑀2| 𝑥 (4.5) 

where 𝑉 is the main stream velocity, 𝑀 is the main stream Mach number, 𝐿 is the 

reference length, 𝑤 is the oscillation frequency and 𝑘 is the reduced frequency.  

Introducing Equation (4.2) into the unsteady linearized small disturbance equation and 

applying Green’s theorem results in an integral solution in terms of the unsteady source 

and doublet singularity distributions over a surface of the related configuration. This 
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derivation is explained in more detail in Reference [34]. For solving the integral 

equation, ZONA7 makes use of the panel method. 

There are two types of panel modelling available in ZAERO. The wing-like 

components are used to model any thin surface whose spanwise cross-section can be 

an airfoil such as wings, canards, tails, pylons etc. The body-like components are the 

parts that do not fall into the previous category such as fuselage, engine intake, external 

stores, etc. For the purpose of this study, wing-like components are utilized to model 

the wing. The wing-like components are assumed to be flat plate since the in the 

assumption of thin lifting surfaces, the thickness influence is rather small for the 

unsteady linear aerodynamics. To generate the lift, doublet singularity is utilized where 

source singularity is used to model the thickness effects; therefore, source singularity 

is not distributed on the wing-like components leading to the supersonic potential 

influence of the wing-like components to be; 

𝜙𝑊 =
1

2𝜋
∬ 𝛥𝜙(𝑥, 𝑦, 𝑧)𝑒𝑖𝜆𝑀𝜉

𝜕

𝜕𝑛
𝐾𝑑𝑆 (4.6) 

where 𝐾  is the Supersonic Kernel function, 𝑛  is the out-normal vector, and 𝑆 

represents the surface of the configuration of interest. The acceleration potential 

transformation is performed on Equation (4.6) leading to it being expressed directly in 

terms of ∆𝐶𝑝 as follows [34]; 

𝜙𝑊(𝑥0, 𝑦0, 𝑧0) =
𝛽

4𝜋
∬ 𝛥𝐶𝑝(𝑥, 𝑦, 𝑧)𝑒𝑖𝑘𝛽𝜉𝐾̅(𝜉, 𝜂, 𝜁)𝑑𝑆 (4.7) 

where 

𝛽 = √|1 − 𝑀2| (4.8) 

𝜉 = (
𝑥 − 𝑥0

𝛽𝐿
) (4.9) 



58 

 

𝜂 = (
𝑦 − 𝑦0

𝐿
) (4.10) 

𝜁 = (
𝑧 − 𝑧0

𝐿
) (4.11) 

𝐾̅ = − ∫
𝑒𝑖𝑘

𝛽
𝜏

𝜉

√𝜂2+𝜁2

𝜕𝐾

𝜕𝑛
𝑑𝜏 (4.12) 

where (𝑥0, 𝑦0, 𝑧0) are the field point to be influenced and (𝑥, 𝑦, 𝑧) are the sending 

points from the sources and doublets. 

The integrals of this new equation can be divided into many simple equations for each 

aerodynamic box and the Aerodynamic Influence Matrix (AIC) can be constructed. 

The detailed derivations can be found in Reference [34]. 

Finally, the influence of the displacements {ℎ}  of the aerodynamic panels on the 

aerodynamic forces {𝐹ℎ} can be expressed as; 

{𝐹ℎ} = 𝑞∞[𝐴𝐼𝐶]{ℎ} (4.13) 

where 𝑞∞ is the dynamic pressure. Furthermore, the vectors {ℎ} and {𝐹ℎ} can also be 

defined as the mode shapes and the force vectors on the wing box, respectively. 

Figure 4.3 shows a typical modelling of a wing-like component. The solid circles are 

the control points where the boundary conditions act on. The control points that lie at 

the mid-span of each wing box are located at 85% of the wing box chord for subsonic 

Mach numbers and at 95% of the wing box chord for supersonic Mach numbers. The 

lines represent the vortex generated by the elements. Each strip sheds two vortex lines 

from its side edges that start at the trailing edge and shed downstream. However, at 

edges shared by two adjacent strips, the strength of the two vortex lines partially cancel 

each other. Due to the singular behavior of the vortex line, several restrictions must be 

applied while modeling the wing-like components. Since, in the scope of this study, 

only a half-wing model is used these restrictions are not applicable, thus they are not 
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explained. While modelling full aircrafts they should be taken into account and are 

explained in detail in Reference [34]. 

 

Figure 4.3 Wing-Like Modelling in ZAERO [34] 

4.3 Interconnection of the Structure with Aerodynamics 

The ZAERO aerodynamic model covers the outer surface of an aircraft whereas, the 

structural Finite Element Model takes into account not only the outer geometry but 

also the internal load carrying components. In this sense, these two models are 

different types of representations therefore; the displacement and force transferal 

between them are not straightforward. A spline matrix is introduced to relate the 

aerodynamic to the structural degrees of freedom.  

The finite element model for an aircraft has many degrees-of-freedom leading to a 

large mass and stiffness matrices. Hence, a modal approach is introduced that reduces 

the size of the eigenvalue flutter problem to the modal coordinates in order to reduce 

the time and cost needed to compute the flutter problem in all degrees-of-freedom. 

Defining the {ℎ} vector as the displacements of the aerodynamic box and the {𝑥} 

vector as the structural deformations, the spline matrix [𝐺] can be defined as follows; 

{ℎ} = [𝐺]{𝑥} (4.14) 
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In addition, the structural {𝐹𝑎} and the aerodynamic {𝐹ℎ} forces can be related to each 

other as follows [34]; 

{𝐹𝑎} = [𝐺]𝑇{𝐹ℎ} (4.15) 

Equation (4.15) shows that the transpose of the spline matrix is sufficient to connect 

the aerodynamic forces to the structure. The transformation process given by Equation 

(4.14) can be described as interpolating the displacements at the structural finite 

element grid points to the aerodynamic grid points, and the transformation process 

given by Equation (4.15) is the interpolation of the forces at the aerodynamic grids to 

the structural grids. 

ZAERO offers various spline methods however, in this study, the Infinite Plate Spline 

(IPS) method is used since this is a 2D interpolation method, which is suitable for 

wing-like components [34]. 

4.4 Flutter Solution Analysis, the G-Method 

The ZAERO flutter module contains two flutter solution techniques which are the K-

method and the g-method. The g-method introduced by Chen [35], is a flutter solution 

method that generalizes the K-method and the P-K method for true damping prediction 

and can be considered as an extension of the widely used P-K method. It is based on 

the assumption that by adapting the damping perturbation method, a first order term 

derived from the Laplace domain aerodynamics can be included in the unsteady 

aerodynamic equation as follows; 

𝑄(𝑝) ≈ 𝑄(𝑖𝑘) + 𝑔
𝜕𝑄(𝑝)

𝜕𝑔
| 𝑔=0 ≈  𝑄(𝑖𝑘) + 𝑔𝑄′(𝑖𝑘) (4.16) 

where [𝑄(𝑖𝑘)] is the generalized aerodynamic force matrix and 𝑝 = 𝑔 + 𝑖𝑘 is the non-

dimensional Laplace parameter. 

The g-method equation, whose derivation is explained in more detail in Reference 

[34], is given by; 
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[(
𝑉

𝐿
)

2

[𝑀]𝑝2 + [𝐾] − 𝑞∞[𝑄′(𝑖𝑘)] − 𝑞∞[𝑄(𝑖𝑘)]] {𝑞} = {0} (4.17) 

where 𝑉 is the mainstream velocity, 𝐿 is the reference length, [𝑀] is the generalized 

mass matrix, [𝐾] is the generalized stiffness matrix and 𝑞∞ is the dynamic pressure. 

ZAERO calculates the flutter frequency 𝑤𝑓 and damping 2𝛾 at the reduced frequency 

where 𝐼𝑚(𝑔) = 0 from the equations; 

𝑤𝑓 = 𝑘
𝑉

𝐿
 (4.18) 

2𝛾 = 2
𝑅𝑒(𝑔)

𝑘
 (4.19) 

A sample damping velocity curve is given in Figure 4.4. When damping is negative, 

the structure is feeding energy into the vibration resulting in stable aeroelastic modes. 

When the damping curve passes from negative to positive the mode becomes unstable 

resulting in that point to be the flutter velocity. Furthermore, the slope of the damping 

vs velocity curve where it passes through the flutter point is a qualitative measure of 

how violently the oscillations would happen during flight.  

 

Figure 4.4 Sample Damping- Velocity Plot [1] 
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Furthermore, ZAERO has the capability to perform flutter analysis based on different 

configurations of flight conditions as shown in Table 4.1. In this study, FIXHATM 

and FIXMATM are used to conduct the flutter analyses by ZAERO. 

Table 4.1 Flutter Solution Methods Available in ZAERO [34] 

ZAERO Card Definition 
Flutter Analysis 

Performed 

FIXHATM 
Fixed altitude but varying Mach 

number 
Matched Point Analysis 

FIXMATM 
Fixed Mach number with varying 

altitudes 
Matched Point Analysis 

FIXMACH 
Fixed Mach number with varying 

velocity and density pairs 

Non-Matched Point 

Analysis 

FIXMDEN 
Fixed Mach number and density 

with varying velocities 

Non-Matched Point 

Analysis 

 

4.5 Using ZAERO to Find the Flutter Speed of the Weakened AGARD 445.6 

Wing 

The AGARD 445.6 wing is a standard aeroelastic wing, which is created for validating 

the flutter results of any numerical method with the corresponding experimental data 

obtained from the Langley dynamics tunnel. The AGARD 445.6 wing is modeled as a 

panel, which has an aspect ratio of 1.6525, taper ratio of 0.6576, a quarter-chord swept 

angle of 45° and a NACA 65A004 airfoil section [36]. Even though various wing 

configurations were tested, the most commonly used test case in computational 

aerodynamic problems is the weakened wing model. This model has a reduced 

stiffness achieved by drilling holes through the wing and filling the spaces with foam 

plastic in order to maintain aerodynamic continuity.   
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Figure 4.5 Structural FEM of the Weakened AGARD 445.6 Wing  

The wing created for this study is given in Figure 4.5. The wing is modeled with 

CQUAD4 shell elements with single orthotropic material with the attributes given in 

Table 4.2. The airfoil cross-section is defined by assigning the appropriate thickness 

to the shell elements along the chordline.  

Table 4.2 Properties of the Material of the AGARD 445.6 Wing [37] 

Parameter Definition Value  

 𝐸1 Longitudinal Modulus of Elasticity   3.15 GPa 

 𝐸2 Lateral Modulus of Elasticity   0.42 GPa 

 𝜈 Poisson’s Ratio 0.31 

 𝐺 Shear Modulus 0.44 GPa 

 𝜌 Wing Density 381.9 kg/m3 
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MSC. Nastran is used to compute the natural frequencies of the wing model. Figure 

4.6 shows the first four mode shapes of the model created and Table 4.3 shows the 

comparison of the calculated natural frequencies with the experimental data given in 

Reference [36]. 

  

Mode 1 (1st Bending Mode) Mode 2 (1st Torsion Mode) 

  

Mode 3 (2nd Bending Mode) Mode 4 (2nd Torsion Mode) 

Figure 4.6 Weakened AGARD 445.6 Mode Shapes 

 

Table 4.3 Comparison of Natural Frequencies of the Weakened AGARD 445.6 Wing  

Wing Models Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz] 

Numerical 9.46 39.67 49.45 95.10 

Experimental 9.60 38.10 50.70 98.50 

 

The wing-like aerodynamic model created with ZAERO and plotted with TECPLOT 

is given in Figure 4.7. The outer dimensions are consistent with the structural model. 

There are 10 elements chordwise and 25 elements in the spanwise direction leading to 

a model with 250 aerodynamic elements in total.  
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Figure 4.7 Aerodynamic Model of the Weakened AGARD 445.6 Wing 

For the splines, all the structural grids in the model are included to have a conservative 

approach in terms of the connection of the aerodynamic and structural models. 

Considering that the model is a relatively small one, inclusion of the entire structural 

grid group does not lead to an analysis which is time-consuming. However, this 

approach will lead to unnecessary computational time for larger models, therefore; a 

less number of grids should be chosen, and the interpolated structural mode shapes 

should be plotted on the aerodynamic model to check the efficiency of the spline. For 

this model, Figure 4.8 gives the motion of the aerodynamic grids for the first and 

second free vibration modes. Comparison of Figure 4.6 with Figure 4.8 shows that a 

successful interpolation is attained by the present spline input. Hence, spline 

verification has been performed successfully. 
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Mode 1 (1st Bending Mode) Mode 2 (1st Torsion Mode) 

Figure 4.8 Spline Verification Performed for the First and the Second Structural Free Vibration Modes 

In all flutter calculations, the first four natural frequencies are employed. The structural 

damping is set to zero. The analysis is conducted in air conditions where the term 𝜌 

represents the air density. The inputs of the ZAERO flutter analysis given are 

consistent with the experimental data [36] as seen in Table 4.4. 𝑀 is the mainstream 

Mach number, 𝜌 is the air density, μ is the wing density parameter, 𝑤𝑎  is the first 

torsional natural frequency and 𝑏 is the half-chord length.  

Table 4.4 Inputs for the Flutter Analysis 

 𝑴 𝝆 [kg/m3]  𝛍  𝒘𝒂 [rad/s]  𝐛     [m] 

0.499 0.428 33.47 249.25 0.279 

0.678 0.208 68.75 249.25 0.279 

0.901 0.099 143.92 249.25 0.279 

0.954 0.063 225.82 249.25 0.279 

1.072 0.055 259.59 249.25 0.279 

1.141 0.078 182.74 249.25 0.279 
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The wind tunnel test results are presented in terms of a non-dimensional flutter speed 

index (FSI) defined in Equation (4.20). Therefore, the flutter speed (𝑉𝑓) obtained from 

ZAERO is also given in terms of this parameter as follows; 

𝐹𝑆𝐼 →  
𝑉𝑓

𝑏𝑤𝑎√μ
 (4.20) 

The results are given in Figure 4.9 and Table 4.5. These comparisons show good 

agreement in flutter characteristics for free-stream Mach numbers below one. The 

transonic dip predicted by the experimental methods is also reflected in the results. 

However, in the supersonic range, the computed results over predict the flutter 

boundary. This phenomenon of the premature rise of the FSI determined in the 

supersonic range is also observed in other computational aerodynamics methods in 

literature such as Navier-Stokes [38] and Euler Aerodynamics [39]. This effect could 

be credited to the fact that structural damping is not included in the ZAERO analysis 

whereas these effects are inherently included in the experimental results.  

 

Figure 4.9 Comparison of the Experimental and ZAERO Results  
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Table 4.5 Tabular Comparison of the Experimental and ZAERO Results  

 𝑴 EXPERIMENTAL FSI ZAERO FSI 

0.499 0.4459 0.4493 

0.678 0.4174 0.4107 

0.901 0.3700 0.3497 

0.954 0.3059 0.3019 

1.072 0.3201 0.4031 

1.141 0.4031 0.4981 
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CHAPTER 5 

 

 

5 FLUTTER ANALYSIS OF A FIGHTER WING  

 

5.1 Modelling of a Fighter Wing  

The structural finite element model of a generic fighter wing is modelled using MSC. 

Nastran [32].The internal layout of the wing FEM is modified for various 

configurations while keeping the external geometry constant as well as the modelling 

approach. The concept of the wing is determined to be conventional with a moderate 

aspect ratio, tapered in the leading edge and no taper in the trailing edge. Moreover, 

twist or dihedral effects are not included. The airfoil section is kept constant 

throughout the span of the wing. The interest of the study is the supersonic flutter that 

results as a coupling of the bending and torsion modes and the effect of other degrees 

of freedom are not investigated. As a result, control surfaces are not modelled since 

this process would be redundant as their modal frequencies is not a part of the study. 

Furthermore, in the conceptual design phase, the control surfaces are not usually not 

included in the aeroelastic analysis, as their design is not mature enough. 
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Figure 5.1 illustrates the airfoil chosen which is the NACA63-412. The geometrical 

dimensions of the wing is shown in Figure 5.2.  

 

Figure 5.1 Airfoil Geometry of the Wing 

 

Figure 5.2 Wing Dimensions 

 

The baseline model consists of five ribs and three spars. A coarse meshing strategy is 

applied for every configuration at this study which is further explained in Section 5.2. 

All components are modeled with shell elements and their corresponding thickness 

and material attributes are defined by different properties according to their geometric 

attributes. Figure 5.3 shows the internal layout for the baseline wing model. 
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Figure 5.3 Internal Layout of the Baseline Wing Model 

Table 5.1 lists the material properties used for the structural elements of the wing and 

Table 5.2 lists the properties of the components of the wing FEM. The total weight of 

the wing FEM is 217.93 kg. 

Table 5.1 Isotropic Material Properties of the Structural Elements of the Wing [40] 

Material 
Density, 𝝆  

[kg/m3] 

Modulus of Elasticity, 𝑬  

[MPa] 
Poisson’s Ratio, 𝝂 

2024-T851 2795.7 74 463 0.33 

7475-T7351 2795.7 72 050 0.33 

7075-T73 2795.7 70 327 0.33 
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Table 5.2 Material Properties of the Components of the Wing 

Component Material 
Thickness 

[mm] 

Element 

Type 

Weight [kg] 

Upper Wing 

Skin 
2024-T851 2 

CQUAD4 97.87 

Lower Wing 

Skin 
7475-T7351 2 

CQUAD4 98.19 

Spars 7475-T7351 3.5 CQUAD4 17.37 

Ribs 7075-T73 1 CQUAD4 4.49 

 

For the wing to fuselage attachment, the most appropriate boundary condition is the 

cantilever boundary condition. The wing is attached to the fuselage at grids associated 

with the spars. All the corresponding nodes are given zero translation in all directions 

and zero rotation about x-axis as shown in Figure 5.4. 

 

 Figure 5.4 Boundary Conditions on the Attachment Points of the Wing   
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The modal analysis is conducted using MSC. Nastran for all the configurations studied. 

In terms of flutter analysis the bending and torsion degrees-of-freedom are taken into 

account and the mode shapes for these modes of the baseline model are given in Figure 

5.5 and Figure 5.6. 

 

Figure 5.5 Bending Mode of the Baseline Wing Model [7.55 Hz] 

 

 

Figure 5.6 Torsion Mode of the Baseline Wing Model [22.53 Hz] 
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As previously explained, the aerodynamic lifting surfaces are modelled using wing-

like components. The same aerodynamic model can be utilized for all the wing 

configurations studied since the external geometry is not modified throughout the 

process. The chordwise spacing of aerodynamic panels is concentrated near the leading 

and trailing edges similar to a CFD grid distribution. The reason being that these 

sections are  subjected to high pressure gradient and the finer model is more accurate 

in capturing the high pressure gradient. There are 8 elements spanwise and 12 

aerodynamic panel elements chordwise resulting in 96 aerodynamic elements. The 

TECPLOT representation of the aerodynamic model is given in Figure 5.7. 

 

Figure 5.7 The ZAERO Aerodynamic Model of the Wing 

Following the generation of the aerodynamic model, splines are created to interpolate 

from the structural to aerodynamic degrees-of-freedom. Two or more grid points can 

be projected onto the same location on the plane of an element. To avoid a singular 

interpolation matrix, only one grid point should be selected at that location [34]. As a 

result, the structural grids for the splines are chosen as the entire grid selection on the 

upper skin for each model. The spline verification for the bending and torsion modes 

can be viewed in Figure 5.8 and Figure 5.9, which indicate a successful spline 

generation. 
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Figure 5.8 Bending Mode Plotted on the Aerodynamic Model 

 

 

Figure 5.9 Torsion Mode Plotted on the Aerodynamic Model 
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5.2 Mesh Refinement  

In this section, the mesh size effect is investigated for both the structural and 

aerodynamic models. The baseline wing model is chosen for this study. The models 

are compared in terms of their computational times and their effects on the modal and 

flutter results.  

5.2.1 Structural Model 

As explained in Section 5.1, the meshing strategy for the fighter wing model is a coarse 

model where elements are divided only at the rib and spar intersections. The support 

this assumption, a finer model is created as given in Figure 5.10. As a result, the 

baseline model has 54 CQUAD4 and 10 CTRIA3 elements whereas the finer model 

has 216 CQUAD4 and 40 CTRIA3 elements. The properties are kept the same 

therefore, the weight stays the same. 

 

Figure 5.10 A Finer Finite Element Meshing of the Baseline Model 

Figure 5.11 shows the first few modes and the torsion mode coupled with local modes 

detected at a higher frequency. The bending mode is not detected due to local modes. 

The results show that there are many local modes especially in the skin panels between 

the spars and ribs. The reason is that since no beam or bar elements are implemented 

to the FEM to model stiffeners, the quadrilateral elements between the spar and rib 

intersections are not supported enough to resist this motion. The existence of the local 
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modes prevents the analysis of pure bending and torsion and thus complicating the 

flutter analysis. However, a comparison is aimed for this study, therefore; having all 

the configurations modelled with the same approach is accepted as a valid strategy. 

Therefore, using a finer model by breaking the quads into four elements given in Figure 

5.10 is not chosen due to the unwanted degrees-of-freedom induced by the local 

modes. 

  

Local Mode [10.75 Hz] Local Mode [11.08 Hz] 

  

Local Mode [13.45 Hz] 
Coupling of Torsion and Local Modes [22.2 

Hz] 

Figure 5.11 Mode Shapes of the Finer Model 

A second approach for a more fine structural mesh size is adopted as given in Figure 

5.12. With this model, the local mode issue is eliminated since there is no nodes that 

are not supported by spar or rib elements.  
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Figure 5.12 Second Approach to a Fine Structural Mesh Size 

The results given in Table 5.3 show that increasing the element number by almost 

1000% does not have a significant effect on the final flutter speed.  

Table 5.3 Comparison of the Baseline and Fine Structural Models 

Model Element Number Flutter Speed 

Coarse 40 3.0 M 

Fine 428 3.3 M 

 

To further investigate the fine model, the wing with the six spar configuration is 

modeled with a fine approach as shown in Figure 5.13. 
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Figure 5.13 Fine Mesh of the Six Spar Configuration 

The results given in Table 5.4 show that increasing the element number does not affect 

the flutter speed of the model showing that the current approach to the mesh size is 

sufficient in accurately calculating the flutter speeds of the configurations.  

Table 5.4 Comparison of the Coarse and Fine Structural Models for the Six Spar Conf. 

Model Element Number Flutter Speed 

Coarse 115 6.6 M 

Fine 206 6.5 M 

 

5.2.2 Aerodynamic Model 

The aerodynamic model introduced in Section 5.1 is modified to a finer and coarser 

model while keeping the spline and structural models the same. The models can be 

seen in Figure 5.14. 
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Coarse Aero Model Baseline Aero Model Fine Aero Model 

Figure 5.14 Aerodynamic Model Mesh Refinement 

The effect of mesh refinement on the total computation time and on the flutter speed 

is given in Table 5.5. The coarsest mesh calculates the flutter speed fastest however; 

the flutter speed is estimated to be significantly higher than the other two models. 

Therefore, a model with this type of mesh is eliminated. When the fine and baseline 

model are compared, it can be observed that the flutter speeds are very close to each 

other however, the fine model conducts the flutter analysis in a longer time. Even 

though for this analysis the time difference may not seem significant, considering that 

many variations of the structural baseline model will be analyzed, computation times 

will accumulate unnecessarily while the flutter speed is not varied significantly as seen 

in Table 5.3. As a result, the baseline model is used throughout the study for the 

supersonic flutter analysis of various fighter wing configurations. 

Table 5.5 Effects of the Aero Mesh Refinements on Parameters 

 Coarse Model Baseline Model Fine Model 

Total Element # 24 96 195 

Flutter Speed 3.20 M 2.96 M 2.91 M 

Computation Time [min] 86 111 178 
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To further support this claim, flutter analyses with finer aerodynamic meshes are 

conducted to see that the flutter speeds lay within the 2.90-2.96 Mach range and a 

lower flutter point is not missed. Figure 5.15 shows that when the element mesh size 

is increased up to 475 elements, there is no significant decrease in the flutter speed. 

Therefore, the mesh size of 96 elements is concluded to be enough for the scope of 

this study. 

 

Figure 5.15 Effect of Element Number on the Flutter Speed 

5.3 Effect of the Various Aspects of the Fighter Wing on the Flutter Boundary 

The features that are studied within the scope of this study are the spar number, spar 

orientation, skin material in terms of composite and aluminum and finally the effect of 

an external mass representing a missile or a pod on the supersonic flutter speed.  The 

outer geometry and the location of the ribs and their number is not varied throughout 

the study. The boundary conditions are given zero translation in all directions and zero 

rotation about x-axis at the spar attachment grids. The materials and the properties of 

the elements are as listed in Table 5.1 and Table 5.2 and are not changed between the 

configurations. The aerodynamic model is constant while the spline grids are chosen 

from the upper skin nodes for every configuration.  
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The flutter analyses are conducted at sea level conditions and no structural damping is 

defined. As previously stated, the degrees-of-freedom that are included are the bending 

and torsion.  

5.3.1 Effect of Spar Number on the Supersonic Flutter Characteristics 

Initially, the spar number of the baseline configuration is varied. Figure 5.16 shows 

the three models with increasing spar numbers. This spar orientation is named as the 

continuous spar configuration.  

   

 Continuous 3 Spar Continuous 6 Spar Continuous 9 Spar 

Figure 5.16 Continuous Spar Number Variations 

The natural frequencies and the weights of the configurations are given in Table 5.6. 

The natural frequencies and the mode shapes are given in Appendix A. 

Table 5.6 Natural Frequency and Weight Comparison on the Continuous Spar Configurations 

Spar 

Orientation 

Spar        

# 

Bending 

Frequency 

[Hz] 

Torsion 

Frequency 

[Hz] 

Total 

Weight 

[kg] 

Continuous 3 7.55 22.53 217.93 

Continuous 6 7.81 24.46 233.31 

Continuous 9 7.82 24.72 248.52 
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The comparison of the spar configurations in terms of the natural frequencies shows 

that the rise observed when the spar number is increased from three to six is not 

observed between six and nine. This shows that for the continuous spar configuration, 

the bending and torsional stiffnesses reach a certain level at six spars and a further 

increase in the spar number does not have an effect on this attribute. 

The flutter boundary plots are given in Figure 5.17 - Figure 5.20.  

 

Figure 5.17 Damping vs Velocity Graph for the Bending Mode of the Continuous Spar Number 

Variation 
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Figure 5.18 Damping vs Velocity Graph for the Torsion Mode of the Continuous Spar Number 

Variation 

 

Figure 5.19 Frequency vs Velocity Graph for the Bending Mode of the Continuous Spar Number 

Variation 
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Figure 5.20 Frequency vs Velocity Graph for the Torsion Mode of the Continuous Spar Number 

Variation 

 

It is important to note that ZAERO has the capability to solve the subsonic and 

supersonic flutter problems at a single run by automatically switching the solvers with 

respect to the Mach number that is defined in the run file. The flutter frequencies as 

well as the interpolated flutter speeds of the three models are given in Table 5.7. No 

flutter point is detected for the nine-spar configuration up to Mach number of 9. For 

the three and six spar configurations, flutter occurs at the bending mode. 

Table 5.7 Spar Number Effect on the Continuous Spar Configuration Flutter Boundary 

Spar 

Orientation 

Spar        

# 

Flutter Frequency         

[Hz] 

Flutter Speed     

[M] 

Continuous 3 23.14 2.96 

Continuous 6 30.55 6.57 

Continuous 9 - + 9.00 
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From Table 5.6, it is seen that for the six and nine spar configurations the difference 

between the bending and torsional natural frequencies is higher compared to the three 

spar configuration. In the classical flutter event, it is known that flutter occurs when 

the bending and the torsional frequencies approach each other, which is illustrated in 

a generic flutter boundary plot given in Figure 5.21. It can be seen that flutter occurs 

at the speed where the bending and torsion modes get close to each other. Therefore, 

if the natural frequencies, which are the frequencies at zero velocity, become apart 

from each other, the flutter point can be expected to occur at a higher speed. Although 

a strict generalization can not  be made, one of the reasons for the higher flutter speed 

of the six or nine spar configurations compared to the three spar configuration could 

be due to the higher difference between the bending and torsional frequencies 

compared to the three spar configuration. Moreover, the natural frequencies of the six 

and the nine spar configurations are very close to each other implying that the bending 

and the torsional stiffness of the nine spar configuration are higher than the 

corresponding terms of the six spar configuration, because nine spar configuration has 

a higher mass which would normally account for higher bending and torsional 

stiffness. Hence, higher wing stiffness of the nine spar configuration results in higher 

flutter speed compared to the six spar configuration.   
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Figure 5.21 Generic Flutter Boundary Plots [1] 

The study for the effect of spar number is further expanded. The spar thicknesses are 

decreased, while the other attributes are kept constant, so that all the configurations 

have the same total weight. Table 5.8 gives the weight and natural frequencies of the 

spar configurations with the same weight.  

Table 5.8 Natural Frequencies of the Various Spar Number with Constant Total Weight 

Configurations 

Spar 

Orientation 

Spar        

# 

Spar 

Thickness 

[mm] 

Total Weight 

[kg] 

Bending 

Frequency 

[Hz] 

Torsion 

Frequency 

[Hz] 

Continuous 3 3.5 217.93 7.55 22.53 

Continuous 6 1.8 217.44 7.92 24.72 

Continuous 9 1.2 217.56 8.05 25.38 
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The flutter boundary plots are not included as the boundaries are not affected 

significantly and the trends observed in Figure 5.17 - Figure 5.20 still hold true. The 

flutter frequencies as well as the interpolated flutter speeds of the three models are 

given in Table 5.9. No flutter point is detected for the nine-spar configuration up to 

Mach number of 9. For the three and six spar configurations, flutter occurs at the 

bending mode. 

Table 5.9 Spar Number with Constant Total Weight Effect on the Continuous Spar Configuration 

Flutter Boundary 

Spar 

Orientation 

Spar        

# 

Flutter Frequency         

[Hz] 

Flutter Speed     

[M] 

Continuous 3 23.14 2.96 

Continuous 6 29.68 5.47 

Continuous 9 - + 9.00 

The results show that, although the weights are the same, continuous 9 spar 

configuration still has the highest flutter speed. This points to the fact that the high 

flutter speed at 9 spar configuration is not attributed to its high weight but rather to the 

increase of stiffness caused by the increase in the spar numbers. The remark that as the 

bending and torsion natural frequencies become apart from each other the flutter speed 

increases hold true for these results as well.  

5.3.2 Effect of Spar Orientation on the Supersonic Flutter Characteristics 

The second aspect of the structural layout that is investigated is the effect of the spar 

orientation on the flutter boundary. Research is carried out to determine the types of 

spar orientations that are used for fighter wing layouts. In the end, the following five 

types of orientations are used for the study; 

1. Continuous Spar Configuration 

2. Leading Edge Parallel Spar Configuration 

3. Y-Axis Parallel Spar Configuration 
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4. Two Section Spar Configuration  

The models are given in Figure 5.22. In order to be able to compare the configurations, 

for all models at the root sections there given six spars. The thicknesses of the skin, 

spar and rib elements are not changed between the configurations. 

The natural frequencies and the weights of the configurations are given in Table 5.10. 

The natural frequencies and the mode shapes are given in Appendix A. 

  

Continuous Spar Leading Edge Parallel Spar 

  

Y-Axis Parallel Spar Two Section Spar 

Figure 5.22 Spar Orientation Configurations 
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Table 5.10 Natural Frequency and Weight Comparison on the Spar Orientation Configurations 

Spar 

Orientation 

Spar        

# 

Bending 

Frequency 

[Hz] 

Torsion 

Frequency 

[Hz] 

Total 

Weight 

[kg] 

Continuous 6 7.82 24.46 233.31 

LE Parallel 6 8.26 24.27 232.85 

Y-Axis Parallel 6 8.04 24.35 223.07 

Two Sections 6 7.68 24.29 228.18 

 

In terms of the bending natural frequencies, although in overall the values do not differ 

considerably, the LE parallel configuration shows the highest stiffness followed by the 

y-axis parallel. The reason why these configurations perform better compared to the 

others is that their spars are positioned parallel to each other. The combination of the 

spars increases the resistance in the bending axis. In terms of the torsional natural 

frequencies, the difference is very little and hence negligible. Comparing the models 

in terms of their weight show that the continuous and the LE parallel models have the 

same mass while the y-axis parallel and the two sections configurations are 

approximately 10 kg lighter. 

The flutter boundary plots are given in Figure 5.23 - Figure 5.26. 
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Figure 5.23 Damping vs Velocity Graph for the Bending Mode of the Spar Orientations 

 

 

 

Figure 5.24 Damping vs Velocity Graph for the Torsion Mode of the Spar Orientations 
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Figure 5.25 Frequency vs Velocity Graph for the Bending Mode of the Spar Orientations 

 

Figure 5.26 Frequency vs Velocity Graph for the Torsion Mode of the Six Spars 

 

The flutter frequencies as well as the interpolated flutter speeds of the models are given 

in Table 5.11.  For all the six spar configurations, flutter occurs at the bending mode. 
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Table 5.11 Spar Orientation Effect on the Six Spar Configuration Flutter Boundary 

Spar 

Orientation 

Spar        

# 

Flutter 

Frequency 

[Hz] 

Flutter 

Speed  

[M] 

Continuous 6 30.55 6.57 

LE Parallel 6 20.21 2.05 

Y-Axis Parallel 6 21.72 1.89 

Two Sections 6 29.26 5.62 

 

According to Table 5.11, the highest flutter speed is observed for the continuous spar 

orientation followed by the two sections configuration. The most significant 

distinction of these two models is the number of spars at the tip sections with 

continuous having six and two-section having five. Since the continuous and the two 

section configurations have more number of spars at the tip sections compared to the 

other two configurations, bending and torsional stiffnesses of the outboard sections of 

the these configurations are the highest. It is known that the torsional stiffness is a 

dominant factor affecting the flutter speed. Moreover, continuous and two section 

wing configurations have higher differences between the bending and the torsional 

frequencies compared to the leading edge parallel and y-axis parallel configurations. 

Therefore, the flutter speeds of the continuous and two section configurations are 

higher than the leading edge parallel and y-axis parallel configurations.  

It is also noticed that the main difference between the leading edge and y-axis parallel 

configurations is the spar length. Leading edge parallel configuration has longer spars 

compared to the y-axis parallel configuration; hence, the leading edge parallel wing is 

heavier than the y-axis parallel wing. Since the torsional frequencies of both wings are 

very close to each other, torsional stiffness of the leading edge parallel configuration 

must be higher than the torsional stiffness of the y-axis parallel wing configuration. 
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Higher torsional stiffness of the leading edge parallel configuration accounts for higher 

flutter speed as seen in Table 5.11. 

5.3.3 Effect of Composite Skins on the Supersonic Flutter Characteristics 

The third aspect whose influence is investigated on the supersonic flutter speed is the 

composite modelling of the fighter wing skin. The skin material of the baseline model, 

which has 3 spars as seen in Figure 5.3, is changed from aluminum to carbon fiber 

reinforced plastic (CFRP) composite while keeping the rest of the modelling approach 

the same. Reference [41] shows a study regarding the unidirectional ply orientation 

with respect to the leading edge of a wing, stating that when the plies are stacked from 

0° to 45°, due to the reduction in the effective angle of attack, the aerodynamic loads 

will be the smallest around the 15° and 25° ply orientation. In this chapter, this 

approach is utilized to investigate if the same effect will be observed for the flutter 

speed as well. Furthermore, by modifying the first and final plies of the QI orientation, 

a modified quasi-isotropic orientation is created and the final flutter speeds are 

compared. 

In the wing skin, eight plies are used with a ply thickness of 0.25 mm leading to a total 

skin thickness of 2 mm. This value is deliberately chosen to be comparable to the 

aluminum skin thickness which is 2 mm as well. For the wing skin layup, quasi-

isotropic ply orientation [ 0° 45° -45° 90° 90° -45° 45° 0° ] is adapted. Both woven 

and unidirectional (UD) orthotropic materials are used for the analysis whose 

mechanical properties are given in Table 5.12. Figure 5.27 shows the reference fiber 

angle with respect to skin geometry. 

 

Figure 5.27 Definition of the Fiber Orientation Angle 
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Table 5.12 Mechanical Properties of the Standard CFRP Composite [42] 

Properties Fabric UD 

Modulus in the fiber direction, 𝐸1 70 000 MPa 135 000 MPa 

Modulus transverse to fiber direction, 𝐸2 70 000 MPa 10 000 MPa 

In-Plane Shear Modulus, 𝐺12 5 000 MPa 5 000 MPa 

Poisson’s Ratio, 𝜈 0.1 0.3 

Density, 𝜌 1600 kg/m3 1.600 kg/m3 

 

Initially, the UD ply orientation is modified such that all of the eight plies varies from 

0° to 45° to detect where the flutter speed becomes the highest. Figure 5.28 shows the 

damping vs velocity plot for the mode where flutter occurs.  

 

Figure 5.28 Damping vs Velocity for the Bending Mode of the UD Ply Orientations [0°- 45°] 
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Table 5.13 shows the natural frequencies as well as the flutter frequency and the 

interpolated flutter speeds. Flutter is observed at the bending mode for all 

configurations. It is important to note that this part is preparatory work for further 

analysis therefore the fact that the flutter does not occur at supersonic speeds is not 

significant. The natural frequencies and the mode shapes are given in Appendix A. 

Table 5.13 Interpolates Flutter Speeds for UD Ply Orientations [0°- 45°] 

Ply 

Orientation 

of UD Layer 

Bending 

Frequency     

[Hz] 

Torsion 

Frequency 

[Hz] 

Flutter 

Speed    

[M] 

Flutter 

Frequency 

[Hz] 

0° 8.23 21.00 0.333 18.56 

5° 7.31 21.58 0.512 17.32 

10° 6.54 21.86 0.607 17.19 

15° 5.93 21.83 0.610 16.97 

20° 5.44 21.53 0.629 16.47 

25° 5.06 20.99 0.631 15.89 

30° 4.77 20.27 0.616 15.27 

35° 4.54 19.41 0.586 14.58 

40° 4.37 18.48 0.536 13.78 

45° 4.24 17.58 0.369 14.45 

 

Table 5.13 shows that at 25°, the flutter speed becomes highest and further increase in 

the fiber orientation does not increase the flutter speed any further. It is important to 

note that for this fiber orientation, the wing has neither the highest bending nor the 

torsion natural frequency. However, it is noticed that for this orientation the difference 

the bending and torsional natural frequencies is one of the highest. It should be noted 
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that the difference between the bending and the torsional natural frequencies is not the 

sole factor that governs the flutter speed. However, if the difference between the 

bending and the torsional natural frequencies is high, then the flutter speed is also high 

and maximizing the difference between the bending and the torsional frequencies is a 

design practice recommended to increase the flutter speed. 

The next step is to replace the first and last plies of the quasi-isotropic layup (0o plies) 

by 25° plies and observe the effects on the flutter boundary. Table 5.14 shows the ply 

orientations and the weight effects. It should be noted that for the woven fabric material 

each ply is assumed to be composed of mutually perpendicular fibers but the total 

thickness of the ply of the woven fabric is same as the ply thickness of UD plies. 

Table 5.14 Comparison of the Aluminum and Composite Skin Wing Models 

Wing Skin 

Material 

Thickness     

[mm] 

Ply Orientation                    

[degree] 

Total 

Weight 

[kg] 

Aluminum 2 - 217.93 

Woven Fabric 0.25 x 8 =2 [ 0° 45° -45° 90° 90° -45° 45° 0° ] 134.08 

UD 0.25 x 8 =2 [ 0° 45° -45° 90° 90° -45° 45° 0° ] 134.08 

Modified UD 0.25 x 8 =2 [ 25° 45° -45° 90° 90° -45° 45° 25° ] 134.08 

 

The damping and frequency versus velocity plots for the aluminum, quasi-isotropic 

woven and unidirectional and the modified unidirectional models are given in Figure 

5.29 - Figure 5.32. 
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Figure 5.29 Damping vs Velocity Graph for the Bending Mode of the Ply Orientations 

 

Figure 5.30 Damping vs Velocity Graph for the Torsion Mode of the Ply Orientations 
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Figure 5.31 Frequency vs Velocity Graph for the Bending Mode of the Ply Orientations 

 

Figure 5.32 Frequency vs Velocity Graph for the Torsion Mode of the Ply Orientations 

The natural frequencies and the interpolated flutter speeds for the wing configuration 

with different wing skin materials considered are given in Table 5.15. For the modified 

UD ply orientation, no flutter is observed up to a Mach number of 9. For the other 

configurations, flutter occurs at the bending mode. 
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Table 5.15 Comparison of the Aluminum and Composite Wing Models 

Material 

Bending 

Frequency 

[Hz] 

Torsion 

Frequency 

[Hz] 

Flutter 

Speed      

[M] 

Flutter 

Frequency 

[Hz] 

Aluminum 7.55 22.53 2.96 23.14 

Woven [QI] 7.94 23.48 2.58 25.44 

UD [QI] 8.08 24.31 3.41 27.92 

Modified UD 6.77 25.48 + 9.00 - 

 

The results show that changing the skin property from aluminum to carbon epoxy 

composite significantly decreases the total weight of the wing while keeping the skin 

thickness the same. It should also be noted that except for the bending natural 

frequency of the modified UD quasi isotropic wing configuration, bending and 

torsional natural frequencies of the wings with composite skins are higher than the 

wing with aluminum skin. Wing with woven fabric skin has the lowest flutter speed.  

This could be due to the low Young’s modulus of the woven fabric in one of the in-

plane directions. It is noticed that  all the composite wing configurations have the same 

weight, therefore the differences  in the flutter speeds between the wings with 

composite configurations are mainly due to the different stiffness properties of the 

composite wings and not due to the inertial effects.  Comparing the quasi-isotropic 

orientations, it is seen that the wing with unidirectional plies has a higher flutter speed 

compared to all aluminum wing and the wing with woven skins. This results from the 

fact that the unidirectional plies have high stiffness in the fiber direction and the 

outermost plies, which are most effective especially on the bending stiffness of the 

wing, are aligned along the y axis of the wing as shown in Figure 5.27. In a sense, this 

ply orientation adds additional stiffness, similar to the spars, to support the wing 

against twisting and bending forces. Finally, the highest flutter speed is observed for 

the wing configuration with modified unidirectional ply orientation in which 0° plies 

are made 25°. Such a modification results in increased torsional stiffness and reduced 



101 

 

bending stiffness, which is evident from the natural frequency results given in Table 

5.15. Again, for the wing with the quasi-isotropic layup having modified UD plies, the 

difference between the bending and the torsional natural frequencies is maximum. 

However, when composite plies are placed in an off-axis fashion with respect to the 

wing axis, bending and torsional deformations are also coupled and such a coupling, 

named as bending-torsion coupling, has a lowering effect on the flutter speed since it 

promotes bending and torsion coupling. On the other hand, when the 0o plies are 

rotated towards the leading edge, due to the bending torsion coupling effective angle 

of attack of the wing sections reduce causing reduction in aerodynamic loads, which 

has an increasing effect on the flutter speed. As mentioned before, torsional stiffness 

of the wing increases due to the off-axis plies and when the 0o plies are rotated towards 

the leading edge torsional stiffness of the wing increases, which has an increasing 

effect on the flutter speed. Hence, flutter speed is governed by the complex interaction 

of the aforementioned effects and it turns out that the highest flutter speed occurs when 

the 0o plies of the quasi-isotropic skin layup are rotated towards the leading edge by 

an angle which is taken as 25o based on the previous study on skin laminate with pure 

UD plies.  Current study shows that fighter wings with composite skins may be 

advantageous in terms of having higher flutter speeds and lower mass compared to all 

aluminum wings. Moreover, the use of woven composites in the wing skins has no 

aeroelastic advantage when compared to the all aluminum wing except for lower mass. 

It should be noted that present study only considers the flutter aspect of wings with 

composite skins. In the fighter wing design, strength and stability considerations are 

also considered to decide on the optimum ply angle of the skin layup.  

5.3.4 Effect of External Weight on the Supersonic Flutter Characteristics 

The final aspect whose influence on the supersonic flutter characteristics of the fighter 

wing investigated is the effect of an external weight attached to the wing. This weight 

represents the missiles that the fighter wing is expected to carry. MSC. Nastran 

provides alternative ways to define mass which are by concentrated masses (CMASSi 

and CONMi), mass density on the material entries (MAT1, MAT2, etc.), and 

nonstructural mass defined on the property entries [32]. For the purpose of the study, 

a concentrated point mass element CONM2 is used to model a 40 kg point mass where 

the inertia properties are not defined.  
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The CONM2 element is attached to all grids of the middle rib of the baseline model 

by a multipoint constraint element. The purpose of these elements is to impose fixed 

constraints between components of motion at the grid points to which they are 

connected. Each constraint equation that emerges due to constraint elements, expresses 

one dependent degree of freedom as a linear function of the independent degrees of 

freedom [32]. For the purpose of the study, an RBE3 element is used to attach the 

external mass to the wing. RBE3 defines a constraint relation in which forces and 

moments applied to reference points are distributed to a set of independent degrees of 

freedom based on the RBE3 geometry and local weight factors without adding 

additional stiffness to the structure. MSC. Nastran recommends this element to be used 

for distributing applied loads and masses in a model [32]. The independent terms of 

the RBE3 element are given the translational degrees-of-freedom while the dependent 

term is given all six degrees-of-freedom. The attachment concept can be seen in Figure 

5.33. 

 

Figure 5.33 Connection of the Weight to the Wing 

The effect of the external weight is analyzed by placing the CG of the mass at different 

locations along the middle rib.  Figure 5.34 illustrates the configurations where the red 

circle represents the CG of the external mass and the purple circle represent the total 

CG of the wing including the external mass. The flutter results of these configurations 

are compared with each other and the clean configuration. 
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Clean Configuration Front Spar Configuration 

  

Middle Spar Configuration Rear Spar Configuration 

Figure 5.34 The External Weight Positions 

In this section, since the mass of the external weight is kept constant for each 

configuration the flutter speed is mainly affected by the updated center of gravity. The 

y and z-axes for the different configurations are the same; therefore, the x-axis will be 

affected. Table 5.16 shows the effect of the external weight positions on the x-axis of 

center of gravity.  
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Table 5.16 The X-Axis Center-of-Gravity and the Weight of the Configurations 

Configuration Total Weight [kg] X-Axis [mm] 

Clean 217.93 3121.04 

Front Spar 257.93 3005.02 

Middle Spar 257.93 3140.83 

Rear Spar 257.93 3276.61 

 

The distance between the center-of-gravity and elastic axis of a wing is called the static 

unbalance. This parameter is positive if the center-of-gravity is aft of the elastic axis 

and negative when the center-of-gravity is forward of the elastic axis. The flutter speed 

increases when the static unbalance becomes closer to zero, in other words, the elastic 

axis and the center-of-gravity gets closer to each other.  

The flutter boundary plots for the four configurations considered are given in Figure 

5.35 - Figure 5.38. 

 

Figure 5.35 Damping vs Velocity Graph for the Bending Mode of the External Weight Configurations 
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Figure 5.36 Damping vs Velocity Graph for the Torsion Mode of the External Weight Configurations 

 

Figure 5.37 Frequency vs Velocity Graph for the Bending Mode of the External Weight 

Configurations 
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Figure 5.38 Frequency vs Velocity Graph for the Torsion Mode of the External Weight 

Configurations 

The elastic axis of the baseline wing model is estimated to be located close to the 

middle spar as the torsion mode shape of baseline model shown in Figure 5.39 

suggests.   

 

Figure 5.39 Upper View of the Torsion Mode Shape of the Baseline Model 
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The natural frequencies as well as the interpolated flutter speeds and flutter frequencies 

are given in Table 5.17. The natural frequencies and the mode shapes are given in 

Appendix A. 

Table 5.17 Comparison of the External Weight Configurations 

External 

Mass CG 

Location 

Bending 

Frequency 

[Hz] 

Torsion 

Frequency [Hz] 

Flutter 

Speed [M] 

Flutter 

Frequency 

[Hz] 

Clean Conf. 7.55 22.53 2.96 23.14 

Front Spar 7.36 20.62 2.54 20.29 

Middle Spar 7.26 22.28 3.60 24.14 

Rear Spar 7.12 19.76 1.91 20.28 

 

The results show that the highest flutter speed is observed when the cg of the wing is 

closest to the elastic axis, which is very close to the middle spar. This is due to the 

reason that at this location, the static unbalance is closest to zero. Moreover, the 

difference between the bending and the torsional natural frequencies is highest for the 

case for which the external mass is attached to the middle spar. As a matter of fact, 

from the results given in Table 5.17, one can see that flutter speeds and the differences 

between the bending and the torsional natural frequencies are in order. That is, highest 

flutter speed corresponds to the case that has the highest difference between the 

bending and the torsional natural frequencies. Combined effect of low static unbalance 

and difference between the bending and the torsional natural frequencies is deemed to 

be the main reason for the high flutter speed of the wing which has an external mass 

connected to the middle spar. Finally, comparing the configurations with external 

weight shows that flutter Mach number decreases as the mass is moved from the 

leading edge towards the trailing edge. This is consistent with the research that the 

flutter speed generally decreases as the center of gravity is moved aft of the elastic axis 

[43]. 
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CHAPTER 6 

 

 

6 CONCLUSION AND FUTURE WORK 

 

 

In Chapter 2, the typical section model is introduced as a simplification of a finite 

wing. This reduction is done by giving the geometric and inertial properties of an 

appropriate section of a finite wing to the two-dimensional typical section model. 

Furthermore, the typical section wing is given bending and torsional degrees-of-

freedom as these two are the most important modes when classical flutter is 

considered. It is important to note that, throughout the study, the only two degrees-of-

freedom considered for each flutter analysis are the bending and torsional DoFs due to 

this reason. Two supersonic theories, which are the Possio theory proposed by Garrick 

and Rubinow and the supersonic Piston theory, are used to derive the aerodynamic lift 

and moment equations used for the flutter calculations for a typical section wing 

model. Then the flutter problem is constructed using both of these methods and a code 

in MATLAB is developed that solve the supersonic flutter speed. The code written 

requires certain cross-sectional parameters that are listed in the related chapter as well 

as the ratio of the bending and torsional frequencies, therefore, a modal analysis is 

necessary to be solved beforehand as an input to the code. The code solves the flutter 

determinant using the classical flutter method which is also explained in detail. Finally, 

the validation of the codes with literature is presented as well as their comparison to 

each other. The code results with both theories show excellent agreement with results 

presented in literature. The flutter speeds calculated by the two theories get closer to 

each other at higher Mach numbers for all altitudes. In deciding on which theory to 

continue with in the subsequent chapters, literature is taken as reference and the 

supersonic piston theory is chosen. 
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In Chapter 3, the supersonic flutter speed of a finite wing is estimated with the two-

dimensional supersonic Piston theory with thickness effects. A simple plate wing 

model is created with stiffeners on the leading and trailing edges. The variation of the 

span, beam cross-section and the material properties is analyzed and its effect on the 

supersonic flutter speed calculated by the typical section aerodynamics. As inputs for 

the code developed in Chapter 2, modal analysis is run for each configuration to obtain 

the corresponding bending and torsional natural frequencies. Furthermore, due to the 

simple nature of the wing model created, the straightforward derivations for the cross-

sectional properties are also obtained. The first parameter studied which is the span 

variation showed results such that as the span increases, it results in a decrease in the 

bending and torsional stiffness of the wing. This decrease inherently leads to a decrease 

in the flutter speed which is successfully obtained from the results of the code. The 

second parameter which is the beam cross-sectional area showed an increase in wing 

stiffness in both degrees-of-freedom as the area increases. The code flutter results were 

again successful in reflecting this increase in stiffness and showed increase in wing 

flutter speed as the area increased. The final parameter which was analyzed was the 

change the modulus of elasticity of the material. The modulus of elasticity is about the 

tendency of a structure to deform when opposing forces are applied and is associated 

with the stiffness of a structure. Therefore, as the modulus of elasticity is increased, 

the bending and torsional stiffness characteristically also show an increasing trend. 

The code results were also successful in showing an increase in the flutter speed as the 

modulus of elasticity is increased.  Finally, the results for the variations in each 

parameter was compared to the results obtained from a commercial aeroelastic solver 

which is ZAERO. The results compared showed that even though a in terms of 

quantitative comparison may not be achieved, the trends observed with both methods 

were in good agreement. It is then concluded that, the estimation of the flutter speed 

of a finite wing with the code developed in this study using the typical section 

supersonic piston theory aerodynamics is purposeful when a flutter speed for a certain 

wing configuration is known. The effect of the variation of the design parameters on 

the flutter speed can be obtained in a fast manner in the absence of a supersonic 

aeroelastic solver. This is especially beneficial in the beginning of a design phase when 

large numbers of design concepts are to be analyzed in a short amount of time. 
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In Chapter 4, a general review of the commercial aeroelastic solver ZAERO is 

provided as a basis information for further analysis in the upcoming chapter. The 

generation of the supersonic aerodynamic influence coefficient matrix, the 

interconnection of the structural degrees-of-freedom to the aerodynamic model using 

the spline approach and the flutter solution method used which is the g-method is 

explained with basic equations used by ZAERO.  Finally, ZAERO is utilized to solve 

the flutter problem of the Weakened AGARD 445.6 Wing. The results are compared 

with the experimental solutions to prove the applicability of the ZAERO commercial 

tool. The comparison showed good agreement with the experimental results in the 

subsonic region, even reflecting the transonic dip predicted by the experimental 

methods. In the supersonic region, ZAERO over predicted the flutter speeds compared 

to experimental results however, in literature this trend is observed in the same way 

with other computational aerodynamic methods as well.  

In Chapter 5, all the work that has been done up to this point is put to use to estimate 

the supersonic flutter characteristics of a fighter wing. Initially, a finite element model 

of a fighter wing is created in MSC. Nastran. The baseline wing model has five ribs 

and three spars and the spars are continuous along the wing span. The wing is modelled 

with all quadrilateral shell elements with different properties for the upper and lower 

skins, spars and ribs. As previously emphasized, since the degrees-of-freedom taken 

into account for the flutter analysis are the bending and torsional natural frequencies, 

modal analysis is performed using the finite element model of the wing including these 

modes only. Then, mesh refinement analyses of the structural and aerodynamic models 

are presented. In terms of the structural mesh, any finer FEM than the one with a single 

element in the interaction of the each spar and rib resulted in the appearance of local 

modes that interfered with the desired uncoupled bending and torsion natural 

frequencies. When a second approach for a fine model is utilized, the results showed 

no significant difference in the flutter results. Therefore, a coarse model is chosen for 

the structural mesh. In terms of the aerodynamic mesh, a suitable mesh size is chosen 

that performed the best in a trade-off between the most accurate flutter speed and the 

fastest computation time. With the structural and aerodynamic mesh approach chosen, 

the effect of the various aspects of a fighter wing on its supersonic flutter speed are 

solved. Flutter deals with the interaction of the aerodynamic, elastic and inertial 
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aspects of a wing, therefore the flutter characteristics of each configuration are 

interpreted by understanding the variation of the bending and torsional natural 

frequencies and the total weight of the wing analyzed since the aerodynamic model is 

not changed between the configurations due to the fixed outer geometry. 

The first parameter whose effect on the flutter characteristics of a fighter wing studied 

is the spar number. The baseline spar number which is three is increased to six and 

nine. The modal analysis results showed that the bending frequencies did not show 

much increase when the spar number is increased from three to nine, however, there 

was a 2 Hz increase in the torsion frequency when the spar number was increased from 

three to six, and negligible increase from six to nine while the weight of the wing 

increased by 15 kg between each configuration.  In terms of the flutter results, the 

flutter speed for the three spar configuration was about  Mach 3, for the six spar 

configuration about Mach 6.5 and no flutter was observed with the nine spar 

configuration up to Mach 9. This increase in the flutter speed could be attributed to the 

increase in the weight between the configurations; however, further analysis is 

conducted to challenge this notion by keeping the weight of the total wing constant by 

adjusting the spar thicknesses accordingly. The flutter results showed similar trends 

compared to the initial analysis with the six spar flutter speed being around 5.5 and no 

flutter being observed up to 9 Mach for the nine spar configuration. This similar 

increase in the flutter speed when the total weight is kept constant shows that the 

increase in the flutter speed is not associated with the increase of the weight but is 

associated with the increase of the stiffness due to the higher number of continuous 

spars along the span.  

The second parameter whose effect on the flutter characteristics of a fighter wing 

studied is the of spar orientation. Four types of spar orientations are considered which 

are the continuous spar configuration, leading edge parallel spar configuration, y-axis 

parallel spar configuration and two section spar configuration which is parallel to the 

y-axis between the root and second rib and continuous in the remaining sections. In 

order for a healthy comparison, the number of spars at the root are kept constant at six 

spars for every case. In terms of the natural frequencies, the bending frequency varies 

around the 0.30 Hz mark while the change in the torsion frequency is even more 
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negligible. In terms of the weight, the continuous and the LE parallel configurations 

have the highest weight followed by the two sections and y-axis parallel configurations 

being less by average of 7 kg. When the flutter speeds are compared, the highest flutter 

speed is observed for the continuous spar configuration at about Mach 6.5 and 

followed by the two-sections at about Mach 5.5. The LE parallel and the y-axis parallel 

gave lower flutter speeds with  Mach 2 and Mach 1.9 respectively. The results show 

that the increase in the spar spacing at the tip of the wing has a dramatic effect on the 

flutter speeds of a fighter wing and for a delayed flutter point; the crowded spar spacing 

is preferable in terms of an aeroelastic point of view.  

The third parameter whose effect on the flutter characteristics of a fighter wing studied 

is the skin material of the baseline model with three spars. The change resulting from 

the switch of wing skin from aluminum to carbon fiber reinforced plastic is observed 

as well as the effect of various composite ply orientations. Two types of fabrics utilized 

for the composite modelling are UD and woven fabric. Eight plies are chosen each one 

having a thickness of 0.25 mm to be consistent with the total thickness of the initial 

aluminum material which is 2 mm. The ply orientations are chosen to be quasi-

isotropic ([ 0° 45° -45° 90° 90° -45° 45° 0° ]). A further analysis is conducted by 

varying the ply orientations of all eight plies of the UD fabrics from 0° to 45° towards 

the leading edge to detect where the flutter speed becomes the highest. Consistent with 

literature, the highest flutter speed is observed at 25°. A final ply orientation is created 

with the UD fabric by replacing the first and last plies of the quasi-isotropic layup (0° 

plies) by 25° plies and this configuration is defined as the modified QI UD lay-up. 

Comparing these three composite skin models with the aluminum skin model showed 

an 80 kg difference. In terms of the natural frequencies, the modified QI UD lay-up 

had a significantly lower bending frequency and the highest torsional frequency and 

the aluminum configuration had the lowest natural frequencies. The UD QI and woven 

QI lay-ups have similar natural frequency values. In terms of the flutter speed, 

comparing the composite models, the woven QI lay-up had the lowest flutter speed 

around 2.5 Mach followed by UD QI lay-up at around 3.5 Mach and no flutter is 

observed for the modified QI UD lay-up up to 9 Mach. The results show that fighter 

wings with composite skins is more advantageous in terms of having higher flutter 

speeds and lower mass compared to all aluminum wings. Moreover, the use of woven 
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composites in the wing skins has no aeroelastic advantage when compared to the all-

aluminum wing except for lower mass.  

The final parameter whose effect on the flutter characteristics of a fighter wing studied 

is an external mass representing a missile or a pod being attached to the middle rib of 

baseline wing configuration. The effect of the external weight is analyzed by placing 

the CG of the mass at different locations along the middle rib. Since the mass of the 

external weight is kept constant for each configuration the flutter speed is mainly 

affected by the updated center of gravity. In terms of the natural frequencies, the 

difference in the bending frequencies are negligible while the clean configuration and 

the middle spar configuration have a higher torsional frequency by around 2 Hz 

compared to the front and aft spar configurations. In terms of the flutter speed, the 

configuration where the CG of the external mass is at the middle spar is the highest 

with 3.6 Mach flutter speed, followed by the clean configuration with around 3.0 Mach 

flutter speed. The front and aft external mass configurations have flutter speeds of 2.5 

and 2.0 Mach respectively. The results show that regardless of the weight of the 

configurations, the updated center-of-gravity of the wing being closest to the elastic 

axis gives the highest flutter speed. The lower flutter speeds of the front and aft spar 

configurations can be attributed to the lower torsional frequencies however; an exact 

remark should not be made since for other cases studied throughout this study, the 

natural frequencies exclusively did not play a dominant role.  

The results from all the cases considered show that a high flutter speed cannot be solely 

attributed to high weight or high natural frequencies since the flutter phenomena is 

very complex. However, the same conclusion can be reached for all cases considered 

in this study. When the natural frequencies are observed, the flutter speed is found to 

be the highest when the bending and torsion natural frequencies become apart from 

each other. This is consistent to the nature of flutter since flutter can be defined as the 

coupling of two or more modes at a certain flight condition. Therefore, considering the 

decreasing tendency of the torsion mode and the increasing tendency of the bending 

mode with speed, if the initial frequencies at zero speed, which are the natural 

frequencies, are closer to each other, these modes are likely to reach each other at a 
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lower speed compared to a structure with initial frequencies further apart from each 

other. 

Future work that can further continue the work done for this study can be summarized 

as; 

 Codes created in Chapter 2 can be used to estimate the flutter speed of a more 

complex wing with a more sophisticated flutter solution method .  

 A generic load distribution can be applied to the various configurations and the 

resulting spar thickness and spacing could be carried out by an optimization 

process. The effect of the spar orientation can be done with the statically sized 

spar configurations. 

 The control surface degrees-of-freedom can be also included in the study along 

with the bending and torsion modes.  
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APPENDIX 

 

 

A. MODE SHAPES OF THE FIGHTER WING CONFIGURATIONS 

 

 

 This section gives the mode shapes of the configurations analyzed for the fighter wing 

model. 

1- Natural Frequencies for the Spar Orientation Variations 

- Continuous Spar Orientation (6 Spars) 

 

Figure A.1 Bending Natural Frequency – Continuous 6 Spar [7.82] 
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Figure A.2 Torsion Natural Frequency – Continuous 6 Spar [24.64] 

 

- Continuous Spar Orientation (9 Spars) 

 

Figure A.3 Bending Natural Frequency – Continuous 9 Spar [7.83] 
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Figure A.4 Torsion Natural Frequency – Continuous 9 Spar [24.72] 

 

- LE Parallel Spar Orientation (6 Spars) 

7.62 cm

 

Figure A.5 Bending Natural Frequency – LE Parallel 6 Spar [8.26] 
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Figure A.6 Torsion Natural Frequency – LE Parallel 6 Spar [24.27] 

 

- Y-Axis Parallel Spar Orientation (6 Spars) 

 

Figure A.7 Bending Natural Frequency – Y-Axis Parallel 6 Spar [8.04] 
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Figure A.8 Torsion Natural Frequency – Y-Axis Parallel 6 Spar [24.35] 

 

- Two Section Spar Orientation (6 Spars) 

 

Figure A.9 Bending Natural Frequency – Two Section 6 Spar [7.68] 
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Figure A.10 Torsion Natural Frequency – Two Section 6 Spar [24.29] 

 

2- Natural Frequencies for the Composite Skin Modelling of the Baseline Model 

- Quasi-isotropic Woven Ply Orientation  

 

Figure A.11 Bending Natural Frequency – Quasi-isotropic Woven Skin Configuration [7.94] 



129 

 

 

Figure A.12 Torsion Natural Frequency – Quasi-isotropic Woven Skin Configuration [23.49] 

 

- Quasi-isotropic Uni-directional Ply Orientation  

 

Figure A.13 Bending Natural Frequency – Quasi-isotropic UD Skin Configuration [8.08] 
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Figure A.14 Torsion Natural Frequency – Quasi-isotropic UD Skin Configuration [24.31] 

 

- Modified Quasi-isotropic Uni-directional Ply Orientation  

 

Figure A.15 Bending Natural Frequency – Modified Quasi-isotropic UD Skin Configuration [6.77] 
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Figure A.16 Torsion Natural Frequency – Modified Quasi-isotropic UD Skin Configuration [25.48] 

 

3- Natural Frequencies for the External Weight Orientation of the Baseline Model  

- External Mass CG located at the Front Spar  

 

Figure A.17 Bending Natural Frequency – Front Spar Configuration [7.36] 
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Figure A.18 Torsion Natural Frequency – Front Spar Configuration [20.62] 

 

- External Mass CG located at the Middle Spar  

 

Figure A.19 Bending Natural Frequency – Middle Spar Configuration [7.26] 
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Figure A.20 Torsion Natural Frequency – Middle Spar Configuration [22.28] 

 

- External Mass CG located at the Rear Spar  

 

Figure A.21 Bending Natural Frequency – Rear Spar Configuration [7.12] 
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Figure A.22 Torsion Natural Frequency – Rear Spar Configuration [19.76] 

 

 

 

 


