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ABSTRACT

ODYSSEY: A TOOL FOR MICRORNA-MRNA EXPRESSION AND
INTERACTION VISUALIZATION

TACIROGLU, Alperen
M.S., Department of Bioinformatics

Supervisor : Assist. Prof. Dr. Aybar Can ACAR

Co-Supervisor : Assoc. Prof. Dr. Özlen KONU KARAKAYALI

September 2018, 85 pages

MicroRNAs (miRNAs) are non-coding short RNA molecules that are found in
all metazoa studied so far. When distinct metazoa genomes considered up to 200
genes encode for unique miRNAs that show variability between species. Regu-
latory functions of miRNAs have been studied for 20 years starting after their
discovery. The research suggests that they are involved in a wide spectrum of
biological activities including apoptosis, tumorigenesis, development, homeosta-
sis and viral infections. miRNAs regulate these cellular processes at the post-
transcriptional level by binding to the messenger RNAs (mRNAs), leading to an
unstable derivative of the initial biological molecule. miRNA targets are under
strict evolutionary pressure which further implicates the importance of under-
lying biological mechanisms. Although there are several Gene/mRNA-miRNA
interaction visualization and analysis tools "Odyssey" was built for improved in-
teractive visualization the interaction network of miRNAs with along with their
target expressions for a user uploaded dataset. It is built using Shiny package
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of the R programming language leading to seamless online access and modu-
larity. In the end, I aim to provide users a user-friendly web-application which
consists of modules that allows: uploading of their own data; performing dif-
ferential expression (DGEx) analysis; and visualization of the network of which
"Odyssey" builds from either experimentally validated or predicted interactions
for individual miRNAs queried by the user. Odyssey further enables the user
to filter selected nodes of the networks using fold change cut-offs obtained in
DGEx step or expand the network using Gene Ontology (GO) terms to act as
a strong predictor of the phenotype of interest for the user-specified biological
data. Furthermore, the application has been demonstrated using two different
public miRNA-mRNA expression datasets.

Keywords: Bioinformatics, microRNA, Gene, Differential Expression, Graph
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ÖZ

ODYSSEY: MİKRORNA-GEN EKSPRESYONU VE ETKİLEŞİMLERİNİN
GÖRSELLEŞTİRİLMESİ ÜZERİNE BİR YAZILIM

TACIROGLU, Alperen
Yüksek Lisans, Biyoenformatik Programı

Tez Yöneticisi : Doktor Öğretim Üyesi Aybar Can ACAR

Ortak Tez Yöneticisi : Doç. Dr. Özlen KONU KARAKAYALI

Eylül 2018 , 85 sayfa

MikroRNA’lar kodlamayan RNA moleküllerinden olup şimdiye kadar çalışılmış
bütün omurgasız hayvanlar dahil pek çok organizmada işlevsel roller alırlar.
Farklı omurgasız türleri göz önüne alındığında, 200’e kadar farklı gen, mikroRNA
kodlamasında görev alabilir. İlk olarak 20 yıl önceki keşiflerinden bu yana, hücre
içerisindeki görevleri, hangi biyolojik yolaklarda regülatör olarak görevler aldık-
ları çok çeşitli araştırmalara konu olmuştur. Bu araştırmalar sonucunda, apop-
toz, homeostaz, gelişimsel biyoloji, kanser olusumu ve virus enfeksiyonları sonucu
aktive olan yolaklar dahil farklı birden çok önemli biyolojik mekanizmalarda et-
ken rol aldıkları gözlemlenmiştir. MikroRNA’lar bu mekanizmalara genel olarak
post-transkripsiyonel aşamada mesajcı RNAmoleküllerine bağlanıp, bu molekül-
lerin stabilitesini bozarak yön verirler. Evrimsel süreçte incelendiklerinde, nük-
leotit dizilimlerinin korunmuş olduğu fark edilmiştir ve bu da hücre içerisindeki
görevlerinin önemini vurgular niteliktedir. ’Odyssey’ mikroRNA’ların bağlandık-
ları genlerle olan ilişkilerini etkileşimli ağlar yoluyla çizmek için R programlama
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dilinin Shiny paketi kullanılarak geliştirildi. Bu web uygulaması geliştirilirken,
kullanıcıların kendi biyolojik ekspresyon datasını yükleyebilecekleri ve bu data
üzerinden karşılaştırmalı ekspresyon analizi yapabilecekleri, ayrıca bu analiz so-
nucunda çıkan sonuçları etkileşimli ağ olarak çizebilecekleri kullanımı kolay bir
arayüze sahip olmasına özen gösterildi. Ayrıca Odyssey’de bu ağları oluşturan
mikroRNA veya genlerin ekspresyon analizi sonucunda çıkan değerler üzerinden
filtrelenebilmesi için modüller eklendi. Web uygulamasının nihai amacı olarak
kullanıcının analizini yaptığı data fenotipini açıklayıcı nitelikte güçlü bir öngörü
aracı olarak kullanılabilmesi hedeflendi.

Anahtar Kelimeler: Biyoenformatik, mikroRNA, Gen, gen regülasyon ağları, gen
ekspresyon analizi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Producing increasing amounts of biological data has created and exposed
the need for analyzing these data at a faster pace. We need to find novel ways
to uncover the underlying biological meaning of the genome and transcriptome-
based datasets. As these data are produced through computational methods,
the analysis process also requires sophisticated computational methods. Ma-
chine learning in biological data mining [33] is one of the novel ways proposed
to extract knowledge from the biological data and the other is using graphs [18].
Generation of graphs from biological data provides a better extract of the system
even if only it is to be inspected visually. Researchers are not unfamiliar with
observing biological components with a naked eye, as microscopic images had
been observed under the microscope for almost 400 years. These cellular images
can now be visualized in the digital environment as data in much higher reso-
lutions than before. As there have been developments through computational
methods to visualize and extract information from biological images obtained
through microscopes, i.e. image processing, there are also newer methods to in-
vestigate biological networks laid out using graph generating software, i.e. graph
theory-based applications.

There have been many attempts to generate meaningful graphs from bio-
logical data and one of the major pieces of software that researchers frequently
use is Cytoscape [116] [131] [92]. Other software also exists specifically designed
for microRNA-gene networks generation (mentioned in detail in the Software for
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Biological Interactions Integration section) however, these software either have
a steep learning curve or might lack some important functionality (explained in
Scope and Goal section) necessary for efficient transcriptomics analyses. In any
case, ongoing research on this area is constantly improving and generating bet-
ter graphs using applications that are easy to use and have a vast opportunity
for further improvement through version updates.

Graphs are widely used by other disciplines as well, which is another reason
for encouragement but in this work, I only focused on a new software devel-
opment to generate biological graphs for mRNA and microRNA interaction as
well as annotation of nodes and edges with existing transcriptomics and interac-
tomics data. Being highly conserved through evolution and having experimental
documentation in important numerous cellular process, microRNAs take part
in different physiological and pathological conditions for multiple complex or-
ganisms. microRNA research has improved tremendously during the last two
decades, proven by the highly cited articles published recently, suggesting that
microRNAs can be candidates to develop therapeutic agents to be used in cancer
treatment [59] [96]. Therefore, it is important to better understand their regu-
latory potential and provide a systems biology approach to microRNA research
in different contexts. microRNA – gene interactions are a good candidate to
be displayed as graphs. In addition, the expression values of mRNAs and their
targeting microRNAs can enhance the information obtained from the graphs.

Furthermore, major tools that are used for graph generation, such as Cy-
toscape, require installation on local computers. Data to generate graphs, having
large storing space needs in the case of next-generation sequencing technologies,
also need to be stored within the same computational platform. This creates
an issue for many of the researchers with no access to high-performance com-
putational power. This is also one of the reasons why cloud-based software is
being widely used in the recent years [110]. My motivation in this study is to
reduce the need for local installation of the data and analyses tools and provide
a user-friendly and interactive environment for mRNA-miRNA interaction and
expression analysis.
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1.2 Scope and Goal

The primary objective of this research is to develop a web-based application
for microRNA – gene network generation and functional/expression annotation
that can be used easily by researchers that are not necessarily experienced on-
line biological tool users. Example data sets are provided as uploaded in the
application for new users to test Odyssey in accordance with the documen-
tary provided before moving forward to upload their own data and perform
analytic research. As a part of this study, two public mRNA-microRNA expres-
sion datasets (meningioma dataset GSE88721 and melanoma dataset GSE35389)
have been studied with Odyssey’s modules; and networks are drawn to demon-
strate findings at a systems biological scale (see Case Study chapter) and dis-
cussed in relationship with the existing literature. Emphasis has been placed on
a highly automated process of graph generation in Odyssey. This is to make up
for shortcomings of the existing relevant online software. User profiles of online
bioinformatics tools are diverse. Some users only need to generate a figure or a
graph using the tool whereas some users feel the need to learn the tool in detail
to correspond to the needs of a project. Bioinformatics tools need to cater to
this diverse user profile and make the application user-friendly overall. Odyssey
has been developed with a primary aim to provide a user-friendly interface for
color-coded visualization mRNA-miRNA interaction-expression networks.

In accordance with above-mentioned microRNA cellular functionalities, an-
other objective of this research through re-analyzing existing datasets is to
demonstrate emergent microRNA characteristics for future prospects of the mi-
croRNA related research. Apart from restating what has already been reported
with published literature, novel network components are anticipated to be re-
vealed by applying Odyssey into a public dataset. In addition, I aimed to allow
users to input their own datasets for a systems-biology perspective. Thereby
users are encouraged to perform their own analyses using Odyssey and discover
novelties on their own. Thus, the final and most important objective of this
study is to make a novel impact and contribute to the accumulated knowledge
in mRNA-miRNA interaction network software and in relevant biological sci-
ences.
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1.3 Existing Alternative Software

As briefly mentioned in the Background section, other tools exist that are
similar to Odyssey and/or relevant to the topic of the present study. Alter-
native and/or improved interpretations of the same dataset by using different
tools allow for the identification of different characteristics of the data and the
resulting networks. Therefore, why advantages of development of Odyssey have
been explained in this section through comparisons with these existing software.

1.3.1 miRTarVis

miRTarVis is a downloadable software for interactive network visualiza-
tion [58]. Expression data is reflected on the network based on differential anal-
ysis of the input data. miRTarVis is capable of filtering network nodes by expres-
sion value fold change or p-value cut-offs designated by the user. miRNA - gene
pairing is determined by either sequence-based prediction methods or expression
profile-based prediction algorithms. Thus, a resulting network is comprised of
predicted interactions. miRTarVis is further capable of generating the graph by
two different layout algorithms namely; node-link diagram or tree diagram. Fi-
nally, in relation with this study, miRTarVis is capable of analysing the networks
to generate a report of Gene Ontology Enrichment Analysis. The outcome of
this analysis is given as a downloadable report.

However, mirTARVIS is not able to annotate edges differentially as pre-
dicted or experimentally verified. Moreover, it is not interactive nor the layout
algorithm can be changed dynamically. Log-fold change cut-offs also cannot
be changed easily without starting a session from scratch. On the other hand,
advantages of MirTarVis includes treemap view of the network which is not pro-
vided by other software. MirTarVis is downloaded to local computers and run
without an internet connection or uploading user data to remote servers.
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Figure 1.1: An overview of the network layout types through a tutorial session
of miRTarVis.

1.3.2 miRNet

Unlike miRTarVis, miRNet is an interactive tool that can be used directly
through web browsers without having the need to download and install the tool
in a local computer. MiRNet supports expression data from different platforms,
i.e. RNA-seq, microarray, qRT-PCR and there are built-in expression data
is separated by organisms and tissues for easy differential expression analysis
according to the need of researchers researcher’s needs. Functional enrichment
of the nodes and different layout types are combined with an intuitive user
interface which makes miRNet a powerful online tool for network-based visual
analysis. [36].

However, although miRNet is interactive and has multiple interchangeable
network layouts to incorporate mRNA and microRNA expression levels, example
dataset implemented within miRNet does not have a miRNA data counterpart
whilst having mRNA data, which increases the steepness of the learning curve
of the software. GO term enrichment tool occasionally falls short for recovering
statistically significant clusters calculated with p-values mostly due to lacking
nodes connected to the query second-degree. In addition, miRNet focuses on
experimentally validated targets of microRNAs while there is no integration of
predicted target information; it does not allow using intersection or union of
validated and predicted microRNA targets.

5



Figure 1.2: An overview of the user interface through an example session of
miRNet.

1.4 Outline

The present thesis presents detailed documentation of how Odyssey was
developed, what the motivation was behind the research produced Odyssey and
how it can be used for generating microRNA - gene networks using exemplary
datasets. There are five main chapters comprising the whole document exclud-
ing the abstract provided in the first pages and references provided at the end
of the document.

A short introduction section is spared for explaining the Motivation, the
Scope and Goal (aims under Odyssey development in general) and a compari-
son of Odyssey with existing similar tools by a brief discussion on its modules.
Larger Background chapter is where a literature overview of microRNA related
research, explanation of biological networks are given and software that are cur-
rently present and open for user experience are briefly debated. Graph layout
types are explained in detail, the available type of microRNA - Target Interac-
tion databases and how they are created are explained. Gene Ontology (GO)
Terms is a good way to summarize gene functions and also valuable to interpret

6



the networks in general which is described as a subsection of background part.
Finally, the Background section is concluded with describing R programming
environment in general and packages to analyze microarray data with and de-
tails of the Shiny package in which Odyssey developed in.

In method section, user interface structure of Odyssey is discussed sepa-
rately for the sidebar and main panels. How Odyssey works is described in
detail, together with the underlying reasoning for adding modules like filter-
ing the nodes by expression value difference and expanding the network with
second-degree interactions etc. The Methods section is concluded by explaining
the data structure processed at the back-end of Odyssey, performance details
under why specific data structures are chosen store databases in.

In the case study section, analysis of example data and outcomes of these
analyses are explained in detail. The document is finalized with the Conclusion
section where results, expectations and shortcomings of Odyssey are debated
mainly focusing on the analysis of example data. Future prospects and modules
that are under development are explained in the last paragraph of the Conclusion
section.
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CHAPTER 2

BACKGROUND

2.1 Small inhibitory agents of gene expression: MicroRNA

MicroRNAs(miRNAs) are 22 nucleotides (nt) long, small non-coding RNAs
that regulate various cellular and metabolic pathways. Although they were first
discovered in Caenorhabditis elegans [2],miRNAs regulate gene expression levels
of various other species including Homo sapiens [135].

microRNAs are first transcribed as pri-miRNAs in the nucleus. The Drosha
enzyme cleaves pri-miRNA to precursor-miRNA (pre-miRNA) with a length of
70 nucleotides. After being exported from the nucleus by Exportin 5 in the
pre-miRNA form, the Dicer enzyme cleaves the pre-microRNAs into a miRNA
duplex. Thus, two successive cleavages of the pri-miRNAs through RNAase-III
family enzymes Drosha and Dicer play very important roles in the maturation of
miRNA molecules [102]. Dicer interacts and couples with double-stranded RNA
binding protein TRBP to form a Dicer/TRBP complex which takes part in the
next step of maturation of the miRNA duplex. The mature miRNA duplex
unwinds and incorporates into RNA-induced silencing complex (RISC). RISC
blocks mRNA function by either cleavage or degradation of mRNA through
near-perfect complementary binding to 3’UTR region of the mRNAs [146] [126].
Argonaute2 (Ago2, a core component of RISC in human cells) is an important
element in microRNA mediated mRNA silencing. Ago2 is responsible for con-
centrating mRNAs in processing bodies (called P-bodies) where mRNA silencing
occurs in animal cells [32].

Many important cellular processes have been documented to be mediated
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by microRNA-directed mRNA silencing. Although cell differentiation [94] and
developmental pathways [67, 121] are two of the cellular pathways microRNAs
function initially have been documented in, pathways regulated by miRNAs
include hematopoiesis [5] and also human pathologies like cancer [38].

Figure 2.1: Illustration of how microRNAs function within cell.

[Alsharafi et al. [3].]

2.2 Biological Networks

Different sub-disciplines of biological science are represented by different
network models because the number of molecules that affect the biological pro-
cesses is vast (DNA, RNA, protein, drugs, and other chemicals etc.). Never-
theless, these networks are still poorly understood at the systems biology level,
although the scientific community putting continuous effort to gain knowledge
on these sub-disciplines [105] [68] [69]. In order to infer biological knowledge,
different types of biological networks are generated. While generating these
networks, researchers aim to capture an assembled summary of the underlying
biology from a schematic representation. For that purpose, categories of dif-
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ferent biological network types and software that generate them have emerged
(See Introduction). Importantly, networks drawn with this purpose are captions
that represent the human understanding of underlying biology which in reality
cannot be considered separately.

Protein-protein interaction networks, gene co-expression networks, metabolic
networks, phylogenetic trees and gene regulatory networks (GRNs) are examples
to different categories of biological networks. Gene co-expression networks are
generated to be able to capture similar expression patterns of different genes
based on stimuli of interest, e.g. drug administration [118].
Metabolic networks are generated to demonstrate chemical processes driven by
biological molecules (e.g. ATP) as nodes. Edges in this type of network repre-
sent the chemical reactions e.g. dephosphorylation [98].
Protein-protein interaction networks represent interactions between proteins,
placed as nodes in the network. Edges in this type of network represent the
type of interaction between the nodes they connect, e.g. activation, deactiva-
tion [11].
Phylogenetic trees are another type of biological network usually generated to
reconstruct the evolutionary history of taxa [125]. Proteins, genes and other
similar biological molecular that are shaped by the evolutionary process can be
plotted into this type of network as nodes. Edges represent the similarity or
dissimilarity between nodes using unit measures derived through mathematical
formulation to represent the strength of the evolutionary forces acted upon the
nodes connected by it. Timeline in which effect of these forces is being calcu-
lated is measured with distant time intervals generally scaling up to millions of
years [55].
Gene regulatory networks, apart from co-expression networks, are generated to
visualize direct interactions between genes (transcription factor (TF) activation
of particular genes) that results in expression difference in the corresponding
targeted node [63]. Other internal cellular stimuli (not only TFs) also cause
regulation in the gene expression levels, e.g. microRNAs. In the case of gene
regulatory networks driven by microRNAs, interaction type is uni-directed mi-
croRNAs target genes to deregulate genes that results in a decrease of gene
expression levels, usually detected by high-throughput expression profiling as-
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says [112] [45] [4]. MicroRNAs are represented in the GRNs as source nodes that
an edge emerges directed towards the target nodes that are genes. In this study,
I have developed Odyssey to visualize gene regulatory networks integrated with
transcriptomics, interactomics and functional data. MicroRNAs are represented
in the GRNs as source nodes that an edge emerges directed towards the target
nodes that are genes. Such networks are also called "Bipartite Networks" [8].
Nodes in bipartite networks are composed of two different sets of non-interacting
entities, miRNAs and mRNAs for the case of Odyssey. Thus, vertices represent
interactions between miRNAs to mRNAs and no interaction is observed within
the same set of nodes e.g. mRNA to mRNA interaction.

Figure 2.2: Software for Different Type Biological Network Generation.

[Hecker et al. [49]]

12



2.3 Software for Biological Interactions Integration and Visual Anal-

ysis

Next Generation Sequencing (NGS) technologies have sped up the genera-
tion of biological data remarkably [84] [48]. In return, biological data analysis
tools are being used more frequently to handle the challenge brought up by
NGS technologies, called the "Big Data", according to the report of EMBL-
EBI [22]. Rather than analyzing the biological interactions of isolated parts
on the molecular level, system level approaches provide valuable and realistic
ways to explore cellular biology empowered with high throughput data based on
molecular level understanding [47, 65, 111, 119, 143]. Using networks integrated
with gene expression data is one such effective way of interpreting the biological
data. Cytoscape [124], MiRTarVis [58], miRNet [36] are a few examples of soft-
ware created to address this issue that generates biological networks, the former
being a more general application with potential for integration of plug-ins.

Cytoscape, developed first among these software, is the most cited. With
the help of presence of larger amounts of biological data, there has been also a
continuous increase in biological databases that house protein and/or chemical
interactions over the last two decades [72]. Studying biological phenomena sys-
tematically at systems biology level thus has attained greater importance [23].
Researchers continue to develop new software to decipher biological data into
knowledge or upgrade frequently used software such as Cytoscape with plug-ins
like BiNGO [81]. These software and their comparative relation to this study is
explained in the Introduction section.
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Figure 2.3: Cytoscape Desktop User Interface used for Biological Network Gen-
eration.

2.4 Graph Layout Algorithm Types

Types of different graph layout algorithms yield layouts with varying qual-
ity in terms of network visualization and performance establishing the node and
edge positions with speed. All layout algorithms aim to have a good visual rep-
resentation of the graph although ’good’ is a relative term which may depend on
different parameters amongst users. Graph drawing problem can be summarized
as the placement of ’n’ number of nodes and ’e’ number of edges to a surface
(generally 2-Dimensional) of ’L’ length and ’W’ width. Cytoscape js a package
is implemented into R language as rcytoscapejs which allows several different
types of graph layout algorithms.
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2.4.1 Force-directed Graph Layouts

Force-directed graph algorithm, a solution to the problem of placing com-
ponents on a printed circuit board, has originally been put forward by Quinn et
al. (1977) [108]. After their claim of having successfully tackled the issue, the
mathematical formulation they came up with has been studied and developed
to solve problems from different disciplines including biological sciences. Some
force-directed layout algorithms [56] visualize the problem of network generation
as a mechanical system where nodes are replaced by constant weights and edges
are springs keeping these weights in balance. Nodes generate a repulsive force
acting particles trying to get away from the system like through gravitational-like
forces whereas edges are attractive forces keeping nodes in place. A successful
force-directed layout algorithm tries to have a network where the system is in
the state of minimal energy expenditure. Thus, distances between the edges are
being adjusted accordingly in this type of layout algorithm [40].
Compound Spring Embedder (CoSE) is a force-directed automated layout algo-
rithm developed to generate the graph in a time efficient manner. The CoSE
algorithm can handle non-uniform node sizes, multi-layered nests within the
graphs and orphan nodes well [27], and is implemented to be used in R environ-
ment. Graph drawn with the CoSE algorithm acts like a singular object located
in the dimension where it is drawn because of the balance formed through opti-
mization of the energy within the system.

Figure 2.4: Mathematical formulation of energy state calculation of the system
in force-directed graph layouts.

The energy of the attractive and repulsive forces are calculated based on the
distance between the edges.
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Figure 2.5: Figure representation of repulsive and attractive forces strength in
force-directed graph layouts.

Point of ’k’ represent the distance between the edges where energy is optimised
to be theoretically at minimum - Copyright Clearance Centers RightsLink

License Number: 4381900146730.

2.4.2 Grid Graph Layout

After force-directed layout approach to the graph drawing problem, other
algorithms have been applied to biological networks to decipher the topologi-
cal structure of numerous biological interactions represented in a graph. In the
biological systems, nodes forming the graph are not equal in terms of cellular
function. Edges (in other words vertices) connecting these nodes can have vari-
ous meanings depicting biological processes like activation, repression, complex
formation, modification etc. Repulsive forces in between nodes in the force-
directed layout algorithms inadequately describe the chemistry between biologi-
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cal molecules in most of the biological graph types; because as mentioned, some
nodes need to be clumped together forming biologically meaningful clusters [76].
Grid layout algorithms are generally designed to start the drawing the graph by
placing the nodes at random places on the graph plane. Cost is calculated be-
tween the pairs of nodes in the graph and energy in the system is minimized
through a locally minimizing algorithm. The next step is perturbation of the
graph and re-plotting as a whole before rerunning the algorithm. Work-flow of
the grid layout algorithm is designed to have a more stable output layout as
the initial step is random node placement. Other methods to increase stabil-
ity to the issue of randomization at the beginning of grid layout drawing has
been offered in other articles, i.e. introducing node swapping in between locally
minimizing the graph [66].
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Figure 2.6: A process flow of grid layout of the E.coli heat shock response
network.

(a) An initial random layout; (b) a candidate layout obtained through local
minimizing the random layout a; (c) a perturbed layout of b; (d) a candidate
layout obtained through local minimizing the perturbed layout c; and (e) an

output layout. [Li et al. [76]]
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2.4.3 Circular Graph Layout

Some biochemical processes form a series of biological molecules that inter-
act with each other in an ordered manner. The Tricarboxylic Acid (TCA) Cycle
is an example of the circular graph formed through the evolution of millions of
years [82]. To be able to plot the TCA cycle and other similar networks, circular
graph layout algorithms have been proposed. These algorithms keep the inter-
connectedness of the nodes intact and easily visible within the graph and quick
to form required clusters is there is such a formation by graph elements [9] [31].
Biological processes are in fact inseparable from another in the sense that they
are each, a part of what creates a living organism. However, some series of
biological processes that share closely related molecules can be combined to vi-
sualize a comprehensive view of the connection existing between their elements.
Circular graph layout help researchers to provide such an overview of underly-
ing biology closer to authentic (theoretically or proven in molecular level) state
of interactions. All graphs can only represent the focused area of interactions
for most complex organisms. Recent publications have reports of being close
to having mapped all protein-protein interactions of some living organisms like
yeasts [106] [46] however, there has been constant upgrades on these reports over
the years.
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Figure 2.7: Combination of TCA cycle, Glycolysis and Urea cycle.
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2.4.4 Concentric (Centrifugal) Graph Layout

Nodes in the graph can be placed in an infinite number of ways but only
some of the placements grant a visual aid in the understanding of the network
drawn. One of the popular ways of node placement is called concentric layout.
In this type of layout, the nodes are placed in concentric circles [61]. Densely
connected nodes are placed towards more central locations of the graph and
scarcely connected nodes i.e. nodes connected with one vertice only are placed
at the outer circles. Therefore, generation of a weighted type of graph according
to the interconnectedness of the nodes is accomplished.

Figure 2.8: French data transmission system displayed in concentric (centrifugal)
graph layout format.

[Carpano et al. [16]]

2.4.5 Breadth-first Graph Layout

Graphs can be analyzed using a search algorithm based on the number of
vertices connecting the elements of the network. This is particularly important
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for large graphs because these algorithms are used in the identification of clusters
or sudden changes in the network which otherwise could not be detected due to
the massiveness of the network [7] [21]. Breadth-first search algorithms devel-
oped to search through graphs depends on the memory of the system rather than
CPU power because search relies on finding the shortest paths, connected com-
ponents in the network. Research has been performed to increase the efficiency
of these kinds of algorithm [147].

Figure 2.9: Multiple hierarchical view of a large graph.

Search algorithms are used to extract the nodes of known hierarchical status.
[Henry et al. [50]]

2.5 MicroRNA - Target Interaction (MTI) Databases

Large number of interaction databases have emerged in the past years cor-
responding to the need of researchers to search among numerously documented
microRNAs each of which has multiple targets [73, 74, 95, 113, 123, 139]. There
are two types of interaction databases classified according to how MTI are doc-
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umented. While some databases use only computational approaches to predict
the interactions as in the case of TargetScan [1], other databases prefer to have
only experimentally validated MTI, miRTarBase [51] or combination of both
experimentally validated and computationally predicted MTI, miRNet [36].

2.5.1 Predicted Interactions

Computational approaches predict hundreds of interactions based on seed
pairing of microRNAs with their targets, as seed pairing is a key factor of mi-
croRNA regulated gene expression inhibition [13, 14]. Contradictory research
that questions the potency of using seed pairing for prediction of MTI also has
been published [25]. Algorithms created for MTI prediction use diverse method-
ologies including Pattern-Based prediction methods [90] and Hidden Markov
Model based prediction methods [60]. However, most of them take advantage of
the evolutionary conservation of target sites for predictions [109].

2.5.2 Validated Interactions

Experimental methods are a less error-prone method of interaction vali-
dation which is also used to test the prediction strength of computational ap-
proaches [44]. Different methods to validate the authenticity of computationally
predicted or manually curated microRNA - Gene interactions have been estab-
lished in the literature [62, 78,132,133].

2.6 Gene Ontology (GO) Terms

Understanding the biology on the cellular level requires classification of its
fundamental parts into comprehensible categories. Gene Ontology consortium
[6] aims to classify genes using established vocabulary to clarify their functions.
Whilst establishing a biological network with multiple nodes and edges, GO
terms can be used to add new nodes to (expand) the network, i.e. adding new
genes that share common GO terms with existing genes, or filter the nodes out
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for visualizing the network on a specified level.

2.7 Gene and MicroRNA Nomenclature

After the initial discovery of the microRNAs and realization of their biologi-
cal significance, identifying microRNAs with a robust scheme became necessary.
miRBase [43] [104] is a source for such nomenclature that is widely accepted.
Designated scheme eases the burden of having a common microRNA language
to be used in peer reviews, flexible to changes and updates that come with novel
research and can be used across different species regarding the homology in be-
tween.

Gene nomenclature, as in microRNA nomenclature but raised as an issue
long before microRNA discovery, was essential to be established as a scheme
for the same reasons why microRNA nomenclature was needed. Having a des-
ignated gene naming system for researchers from different backgrounds to use
collaboratively indeed speeds up the pace of research. HUGO Gene Nomencla-
ture Committee (HGNC) [103] have provided a widely accepted scheme which
enables assigning unique names to genes to be discovered.

2.8 R Programming and Shiny Package

The R programming language is derived from the S language which was
used by statisticians and data analysts frequently in the past. Similarly, R is an
effective tool for data processing and analysis and in the field of Bioinformatics,
it is used frequently [42] [85] [99]. The community of R users expresses the
need to accomplish a task, bioinformatics related or otherwise, in the form of R
packages. Bioconductor [53] is an open source software project for developers
to contribute package development for R programming. At the time of writing
this thesis, 934 packages can be found in the Bioconductor libraries to be used
freely.

The Shiny package, although not a Bioconductor based package, has grown
amongst users to create a user-friendly interface for bioinformaticians to deliver
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their scripts to biological research community without having the need to learn
or write R scripts on their own [20]. R community has expanded their efforts
to correspond to the need of having a UI for using the bioinformatics tools
developed for the rest of the community [10] [86] [70] [28]. However, Shiny has
not been used yet to develop a miRNA-mRNA interaction/expression network
tool.

2.9 Microarray Data Processing and Analysis

Microarray platforms provide a high-throughput way of measuring gene
expression levels although next-generation sequencing technologies have been
predicted to surpass the need for microarrays in the future [54]. As there are
multiple platforms offered by different microarray provider companies, having a
standard post-processing methodology of the microarray data and revealing the
biological significance with the technical noise of the platform filtered out [97].
Minimum information about a microarray experiment (MIAME) [12] created
an opportunity for standardized microarray data. Researchers can use different
platforms [144] by themselves and/or take public microarray datasets to merge
them into bigger datasets of different platform compositions [114] for deriving
larger biological meaning out, by paying a lesser cost.

R programming, supported by a large research community, has numerous
packages offered to users for normalization, background correction and differen-
tial expression analysis of microarray data [41] [122] [115].
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CHAPTER 3

METHODOLOGY

3.1 ODYSSEY

Odyssey - a web application based on the Shiny package of R, is developed
to create a network representation of MTI. The name "Odyssey" comes from the
classic Greek epic poems attributed to Homer. Poems accommodate numerous
characters and complex social interactions between these characters that are vi-
sualized as a network on literary research for reaching a better understanding of
the epic poem [91].

CSS and HTML components were added to the design of the UI for creating
a friendly, easy to use UI and to avoid a steep learning curve. Resulting net-
works can be enriched for specific Gene Ontology terms and filtered out based
on expression data uploaded prior to network generation. For easy visualization
and transfer between peers, functionality to download the generated network in
the HTML format has been added as a feature. Odyssey is capable of analyzing
mRNA microarray data of GPL17692, GPL570, GPL96, GPL97 platforms and
miRNA microarray data of GPL21572, GPL8786 platforms from Affymetrix.
In the future versions, the capability to analyze data from Agilent microarray
platforms and RNA-seq data will be added.

To establish a user-friendly interface, modularity of the application has been
regarded as essential. Buttons are colored with selected black color whereas
slider bars are colored blue for the interval selected. Help tips are placed at the
bottom of each module to aid users what to expect by changing the settings
from default. Some functionality like choosing between different graph layouts
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are dynamically created as the user chooses between different layouts aimed to
give a smoother user experience.

Odyssey, apart from listed other tools, can build microRNA - gene/mRNA
networks to second-degree and thus aims to generate a more comprehensive net-
work of the underlying biology. The process of expanding the network is supplied
with one check-box which is checked as default for user convenience. Besides
this functionality, GO term based network expansion is also a novelty comes
with Odyssey. miRNet and miRTarVis generate reports for GO term enrich-
ment while Odyssey has the capability to provide a network expansion based on
the GO terms enriched in the network. This enrichment is guided by the userś
selection of GO terms found already enriched in the network in varying degrees.
Network expansion with GO terms that are not enriched in the network (de
novo GO term expansion) is not currently implemented in Odyssey however, it
is noted as a future goal of this research.

Initially filtering of the nodes has been performed using a default (-1,1)
expression value interval for both microRNA and gene nodes. Since this results
in less flexibility, I have updated this filtering feature such that newer versions
perform filtering by automatically calculated 5% and 95% quantile values based
on the expression value distributions. This change in the filtering process is
committed to having better automated graph generation, thus aiming to further
increase the quality of user experience. Apart from other tools, Odyssey deter-
mines filtering criteria automatically, calculated specifically for each data.

Future upgrades of the software aim to generate graphs with non-uniform
node sizes. Node sizes are judged to be better adjusted with regards to the
degree of node interconnectivity to grant visual aid for better understanding the
knowledge present in the graph.
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Figure 3.1: An overview of network drawn using Odyssey.

GSE35389 data and HAPLN1 gene have been used to generate the graphics.

3.2 Designing the User Interface (UI)

UI of Odyssey is designed to modularize the functionality provided. When-
ever the user proceeds to a module from another module in the application,
parts of UI that are relevant to the previous module should be replaced with
related parts of UI. For example, replacing Cytoscape tab in the main-panel
with Network tab in the same panel when the user visualizes the Cytoscape file
and presses ’Generate Network’ button is an example of the desired behaviour
Odyssey executes. This is achieved through mentioned JavaScript libraries im-
plemented in R.

Warning texts and explanatory texts are displayed with red, small font size
lettering directly below the interactive parts of UI they are related to, i.e. "Check
the box to extend the network to second degree interactions" is displayed below
the "Show comprehensive network" check-box.

Home button added onto the logo that is displayed at the very top left
of the page. When clicked, a refreshed page of Odyssey opens up in the web
environment, discarding the selections that were made in the previous session
and allowing a new session of Odyssey. At the bottom of the Network tab, a
refresh button is placed to provide a similar functionality to Home button men-
tioned. One difference between "Home Button" and "Refresh Button" is, the user
might need to re-authenticate herself after the "Home Button" is clicked whereas
"Refresh Button" clears the selections of the current session while keeping the
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session intact.
Odyssey UI is divided into Sidebar Panel and Main Panel to modularize the

application into two main parts. Sidebar Panel is reserved for obtaining input
whereas Main Panel displays the output of application depending on the input
supplied in Sidebar Panel. The functionality of these two panels is explained in
detail below.

3.3 Sidebar Panel

3.3.1 Authentication Tab

Authentication tab in the side panel of the interface is created to hold a
Google Authentication button. Via Google authentication tokens, users who
are white-listed by the server can access Odyssey to proceed with data upload
or example data selection. By using a Google authentication interface, besides
giving permission to only registered and approved users to access the app, the
responsibility of securing the credentials of users - a password that would be re-
quired with the registration - and also the maintenance of the access account is
transferred to Google. Google authentication provides a more reliable environ-
ment for users to sign in. Blocking of the rest of the application for users with
no valid authentication token is implemented via JavaScript-based libraries [83]
of R. Hide and disable functionalities that performed this task is supplied by
another JavaScript-based package shinyjs [80] developed for shiny R.
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Figure 3.2: Schematic representing Google OAuth Authentication.

3.3.2 Data Selection Tab

Data Selection tab is composed of three user input dependent sections. Most
fundamental part of the Odyssey is where the user enters a miRNA or a gene
query in a text-box to be processed in that session of the web application. Query
input via text-box is where the user is allowed to enter many possibilities with-
out being restricted to the gene or microRNA related strings. Unrelated queries
had to be processed with proper user guidance for a better user experience. For
that purpose, this module is highly integrated with error handling functionali-
ties to make up for countless text that can be input. Apart from unrelated text,
some genes or microRNAs are not found within miRNet, TargetScan or other
databases or within the expression data to be used. Moreover, miRNAs and
genes have many different identifications (aliases as well as versions/sense/an-
tisense) i.e. HSA-MIR-29C molecule is separated into two different identifiers;
HSA-MIR-29C-3P and HSA-MIR-29C-5P. When textbox is input with HSA-
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MIR-29C, Odyssey is programmed to return these two possible choices to select
from, with a proper warning that query had multiple matches with the inte-
grated databases. Some gene queries might also return multiple matches. To
be able to explain that issue, ’PTX’ gene query and how Odyssey handles such
a query is explained below. ’PTX’ query does not have an exact match within
the databases, however, PTX is sub-strings of PTX3, PTX4, and APTX which
all are present in the databases to be processed in a session. In that scenario,
Odyssey creates a temporary user interface based on the initial query to be dis-
played directly below, with a multiple matches warning and expects the user to
select the most appropriate choice from the drop-down menu created for han-
dling the issue or change the initial query altogether.

Second part is where the user will select the MTI database. TargetScan,
miRNet, or TargetScan& miRNet options are given in a drop-down menu format.
If the user selects TargetScan& miRNet, another drop-down menu will appear
asking the user if intersection or union (Intersect, Union as they appear in the
drop-down menu) of both databases should be taken. This will most likely to
change the number of targets a miRNA has in the final network. The version of
miRNet updated in 11/16/2017 and TargetScan 7.2 Release on March 2018 are
currently implemented with Odyssey at the time of writing this document.

The third user dependent input section is designed to provide users two op-
tions to select for expression value representations that to be reflected on a final
created network. Users can either select to upload their own expression data or
use one of the two example dataset already have been loaded and ready to use.
This is arranged with a check-box placed within the tab. If the check-box for
’Use Example Data’ is clicked, a drop-down menu will be revealed giving users
a selection of example dataset implemented with Odyssey. If this check-box re-
mains unclicked, a data upload panel will remain visible.

In the Data Selection tab, there are two separate upload buttons. One of
the upload buttons is for mRNA data while the other is reserved for miRNA
data upload. Uploading the data section is not mandatory. Choosing not to
upload gives users the option to draw networks without expression data. In the
case of not using expression data for the network, filtering with expression data
functionality of Odyssey will become unavailable. Uploaded data need to be
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in the format of series matrix file downloaded from Gene Expression Omnibus
(GEO) [34]. Series matrix file format found in GEO consists of pre-processed
microarray experiments which generally does not require more processing. By
using this structure of data upload, I aimed to have a standardized flow of net-
work generation which is essential for obtaining consistent results. However,
uploading a custom pre-processed expression dataset is still permitted with this
system. In custom data uploads, tab, comma or semicolon delimited files are
accepted. After the upload of the data completed, Odyssey checks the format of
the data for handling errors that might be caused from incorrect or unsupported
data uploads. First measure is reading the uploaded file with read.table() func-
tion in R wrapped in try() error handling functionality. If the data format cannot
be read through this system, user will be notified with an error message. Series
matrix file format is read with these functions with an additional parameter to
designate lines that start with symbol of ’!’ as the comment lines which leaves
only the expression data to further analyze with Odyssey. Second measure is
checking whether the data is log2 transformed. Dynamic range of the microar-
ray data is verified with max() function within R applied on the data.frame.
Maximum expression value of +20 is chosen for an upper limit for any log2
transformed data point. This selected upper limit is safely within the bound-
aries of range of expression values reported in literature [77] [107]. Lastly, the
example data integrated in Odyssey can be downloaded via appointed ’Down-
load’ buttons in the Data Visualization Tab for learning more about the format
of expression data that is allowed in the system.

3.3.2.1 Example Data Collection

I integrated Odyssey with two example datasets to select from. These data
aimed to be used for test runs of the application. Both of the datasets are
downloaded from publicly available GEO with series id GSE35389 [138] and
GSE88721 [24].

Data with id GSE35389 has 15 samples in GEO, 7 miRNA samples from
the GPL8786 platform, 8 mRNA samples from GPL570 platform Affymetrix mi-
croarrays. Data with id GSE88721 has 30 samples in GEO, 15 miRNA samples
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from the GPL21572 platform and 15 mRNA samples from GPL17692 platform
Affymetrix microarrays.

In the process of example data integration, datasets with matching miRNA-
mRNA samples were taken into consideration to be able to reflect the matching
microarray data on the network. Thus, I aimed to lower technical variation and
increase significant biological signal derivation out of the data integrated.
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Figure 3.3: Network Options tab located in the Sidebar Panel.

3.3.3 Network Options Tab

After data selection part is completed by the user, access to Cytoscape tab
and Network Options tab are provided. If any data are uploaded during the
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previous step, filtering parameters of the network nodes based on expression
values will be determined in this window. By default, Odyssey will omit the
nodes with logarithmically transformed expression values that are beyond the
automatically calculated 5% and 95% quantile values based on expression values
lists, separately for both miRNA and mRNA nodes. Expression value distribu-
tions for miRNA and mRNA data are plotted using a histogram and displayed
under the slider bars provided to users for filtering optionality (Figure 3.3.). Al-
lowed filtering interval for expression values can be widened up to minus 5 and
plus 5 (-5, 5). Widening the filtering interval will result in a more strict filtering
and yielding networks that may have fewer nodes consequently (explained in
detail in Filter nodes by expression difference section). The stringency of the
filtering should be adjusted according to the density of the network which can
be understood by observing the Cytoscape tab. (See Cytoscape Tab in the Main
Panel section).

Using the 5% quantile and 95% quantile values generated networks of vary-
ing sizes depending on the query and the data selected for the analysis. Some
of the networks drawn this way could still be over-crowded and consume more
than available resources on the server. Moreover, this issue reduces the quality
of user experience on Odyssey because underlying biology behind large networks
is not easy to understand. For that purpose, a reactive network size calculation
has been added on Network Options panel. Because most of the resources are
spent on the visualization of the network, dynamic calculation of network size
based on parameters that change network size, e.g. filtering and expanding the
network to second-degree interactions, does not significantly reduce the perfor-
mance of Odyssey. Through this reactive network size calculation, Odyssey aims
to provide users with a network with controlled size and complexity prior to net-
work generation without changing pages online, which is not provided by other
similar software.

3.3.3.1 Display of the Comprehensive Network

Odyssey has the option of enlarging the network to the second-degree nodes
from the initial query targets, which I call ’Comprehensive Network’. When
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’Show Comprehensive Network’ check-box is clicked on, resulting network will
consequently be larger by including nodes of miRNAs and mRNAs that have
second-degree relations with the node of interest and its first neighbours. First
degree networks are useful for visualizing the interactions of the biological query,
however, increasing the network density to the second-degree connections in-
creases the degree of nodes. As the degree of nodes increases in a network,
expected force of those nodes also increase, a term used for measuring the over-
all influence of a node within a network [71]. Odyssey aims to provide a more
complete way of representation of the underlying biology through this module.
Increasing the network degree depending on user input might be implemented in
the following versions of the Odyssey, however, at this point, it is not included.
The reason for that decision lies with the inclination of keeping relevant nodes
and discarding information that might not be relevant to the initial query. Even
after this option is selected, node compositions will depend on filtering options
that are selected below at the same panel which again aiming to filter irrelevant
biological elements from final network based on educated input from the user.
Node degree and network degree are two similar terminologies used here that
should not be confused for one another. Node degree stands for a number of
connections a node makes with other nodes while in this thesis network degree
is used for expansion of network from initial query node by addition of more
interactions to the MTIdb declared connections of the initial query.
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3.4:
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Flowchart.
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3.3.3.2 Filtering of initial query nodes

In of the previous development versions of Odyssey, the user has ended up
with a network entirely unrelated to the query she/he initially searched for. This
issue has been caused by expanding and then filtering the network in the process
of creating it on the back-end of the application. In other words, adding nodes
to the initial query and then filtering out the whole network based on expression
data logFC selections could remove the initial query node and the singleton
nodes remaining in the network after the initial query node has been removed.
While this situation might result in an interesting network to be created, it
could also be misleading or undesirable depending on the user’s question of
interest. To prevent that, an optionality to keep the initially created network
out of the filtering process has been added. If the initial query is a microRNA,
gene products targeted by this microRNA recorded in a parallel process and the
newly added nodes are built upon on this parallel process. Resulting network
does not comply with the user selected filtering options for expression value
consequently for the initial network nodes that are kept regardless.

3.3.3.3 Filter nodes by expression difference

Odyssey has the option to reduce network size by removing microRNA
or gene nodes by the expression difference (logFC) calculated from expression
data. Whenever expression dataset allows the user to do any of these "tests vs.
control", "healthy vs. diseased", "normal vs. cancer" sample comparisons, an
expression difference based on the log2 expression value of the selected samples
is calculated. Expression difference is calculated for each row in both miRNA
and gene expression data and stored as two columns to be visualized in Cy-
toscape tab of Odyssey. One row of the file visualized in Cytoscape tab is in the
following format: ’ID’(row number of entries)- ’miRNA’ - ’gene’ - ’mRNA expres-
sion difference’ (abbreviated as Diff_ mRNA) - ’miRNA expression difference’
(abbreviated as Diff_ miRNA). Column names are abbreviated to prevent data
corruption because, in some packages of R programming language, multi-worded
column names are not handled well. Filtering of the nodes by the expression
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difference complies with the ’initial query nodes’ issue explained in the section
above. Filtering module is set to remove nodes with log2 expression value dif-
ference (EVd) within the boundaries. The filtering boundaries can be adjusted
using the slider bar provided, within (-5, 5) interval.

In order to aid users to generate standardized networks and give general
information about the expression data, differential expression gene distribution
plots are added below slider bars responsible for filtering the nodes by expres-
sion value. Also, the filtering intervals are calculated data specifically to ex-
clude miRNA and gene nodes with differential expression value 5% quantile -
95% quantile rounded to first decimal place. Default filtering interval can be
changed by the user to cover a larger or smaller interval.

3.3.3.4 Choose Graph Layout Algorithm

Six different layout algorithms are offered by Cytoscape.js [39] implemented
into R programming. As the default, networks are drawn with ’CoSE’ layout.
However, users have ’CoSE’, ’grid’, ’circle’, ’concentric’, breadthfirst’ or ’random’
algorithms to choose from. Depending on the algorithm selected, final networks
may have rigidly different layouts. The final graph layout depends on the size
of the network and interconnectedness of the nodes within the network as well.
Odyssey reactively changes graph layout as user drifts between different layout
options from the drop-down menu provided in the sidebar panel.

All of the five listed layout algorithms are explained in the Graph Layout
Algorithm Types Section in the Background part of this work apart from random
type layout. Random layout type is partially explained in Grid Graph Layout.
In random layout type, nodes are randomly distributed to the places on the
graph dimensional space and connecting vertices are added to finalize the output
graph.
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Figure 3.5: Graph Layout Algorithm Options provided by Odyssey.

1-) breadthfirst, 2-) cosy, 3-) grid, 4-) concentric, 5-) random, 6-) circle. In the
above graphic, GSE35389 has been used with a query miRNA hsa-miR-29b-3p.
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3.3.3.5 Color spectrum of nodes by expression difference

In this part of User Interface, a slider bar is provided to users to change the
EVd interval for node colour adjustment. By default, nodes are coloured accord-
ing to the interval (-5, 5). Nodes on the negative side of the interval are coloured
green and nodes on the positive side of the interval coloured red (nodes with
-5 EVd coloured green only, no red colour in the mix and nodes with +5 EVd
coloured red only, no green colour in the mix). This optionality is provided for
flexible network generation with datasets composed of skewed expression value
distribution amongst samples. Positive skewness (samples with low expression
value overall) might require using a narrower interval on the positive side while
negative skewness might require using a narrower interval on the negative side of
initially defined (-5, 5) interval. Adjusting the settings for datasets with expres-
sion value distribution skewness results in increased visibility for the nodes closer
to mode EVd in the distribution. However, it is advised to note that keeping
the default setting through multiple datasets yields standardized networks.

3.3.3.6 GO Term Enrichment and Graph Expansion

After the output graph is drawn, users are expected to visualize the network
and note results for their session. Gene Ontology terms enriched for output
network is also supplied in the sidebar panel determined by the gene-based
nodes and Panther database [88] implemented within Odyssey using official gene
symbols. Sometimes network nodes have significantly enriched Gene Ontology
terms for important biological terms. In these cases, it can be beneficial to
expand the network by adding more genes that share a common GO term with
existing network genes. Through this module, I aimed to grant a better visual to
the user for a GO term of interest, which can be a biological process or cellular
component or molecular function.

Addition of new nodes to the current network is important and can be used
to help the analysis for several reasons. New nodes that are not present before
node expansion through GO term are either nodes that have not been filtered
out during filtering step or the nodes that gene expression data supplied have
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not contained. In either case, these newly added nodes will be coloured grey (or
shade of grey if the filtering criteria for expression value difference were strict)
for their lack of having a significant expression value difference. Therefore, these
new nodes are distinguishable from the nodes that were present before graph
expansion. The degree of expansion and biological meaning of newly added
nodes by this process is an opportunity for deduction of biological signature
present in the experiment by analyses executed through Odyssey.

3.3.4 Information Box Tab

Information Box is designed to provide a summary of the network options
selected, altered from or remained as default settings. This tab also displays
expression data information for the user to be able to handle EVd based filtering
with ease, i.e. for a network with EVd (-3.4, 1.2) for miRNA nodes, using a
filtering for the interval (-3.5, 1.5) will not produce a network. This is because
the above-mentioned filtering interval will filter out all the miRNA nodes that
might have connected to gene targets.

Apart from the EVd value interval for miRNA and gene nodes separately, a)
selected dataset, b) show comprehensive network option, c) the platform of the
selected microarray experiment, d) filtering initial query nodes, e) chosen graph
layout algorithm and f) MTIdb selected is also displayed in the information box.

3.4 Main Panel

3.4.1 Data Visualization Tab

Data selection step in the sidebar panel might be concluded either with data
upload from user or selection of an example data stored in the server. If the
user decides to run Odyssey with example data provided, selected data are dis-
played in the Data Visualization Tab in two separate panels. MiRNA microarray
data are displayed at the top panel and mRNA microarray data are displayed
at the panel below. Expression data on the hand are stored in data.table [29]
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data structure defined in R. This format allows users to limit the number of rows
that are displayed in the table. A search box is also implemented with data.table
structure that allows users to do an exhaustive search through the table, which
can be used to extract expression values through samples for specific probe id
of interest.

Second option is for the user to upload her own data which requires the
user to manually select "control" and "treatment" samples (based on the exper-
iment setup, sample annotations might be different, i.e. ’cancer’ and ’healthy’
etc.). Selection of the samples is accomplished through the data.table structure
which allows selection of multiple columns at once. Two from "Gene Controls",
"Gene Treatments", "miRNA Controls" and "miRNA Treatments" buttons ap-
pear simultaneously as data upload completion at the bottom of each data.table
corresponding to the data uploaded. These buttons allow the user to save se-
lected column(s) as control or treatment samples to be processed. After one
of these four buttons is clicked, column selection on the table will reset, allow-
ing the user to proceed to the next selection without requiring to ’unselect’ the
samples selected before the button has been clicked. A differential gene expres-
sion analysis will be conducted based on the sample selection conducted in Data
Visualization Tab should the user chooses to upload her own data. If example
data is chosen to run Odyssey with, however, manual annotation of samples step
will be skipped. This is due to example data stored in the server has predefined
control and treatment samples.

3.4.2 Cytoscape Tab

After the data visualization part in the previous tab, pressing the forward
button in the bottom right of the Data Visualization Tab triggers the creation
of Cytoscape compatible ’Simple Interaction Format’ (SIF) which is displayed
in Cytoscape Tab. SIF file is also built using data.table structure, which means
studying the file is viable through the same methodology described. Generally,
a row of the SIF file will be composed of four cells, "miRNA", "target", "Diff_
mRNA", "Diff_ miRNA". If the user had run Odyssey without expression data
selection, the last two cells will be omitted and one row of SIF will be composed
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of either two or three cells. Variability in the data structure of the SIF file
is due to optional data selection part and also MTIdb selection undertaken in
the previous steps, i.e. if the union of TargetScan& miRNet MTIdbs is chosen,
another column describing where the corresponding miRNA-target interaction
information for each row of SIF file is taken from added to the table. Namely,
values in the added column can be: ’TargetScan’, ’miRNet’ or ’both’ indicating
that the same interaction information is present in both MTIdbs.

Another important information to take out of data.table in Cytoscape Tab
is the number of rows in the non-filtered SIF file. If user proceeds with default
expression value filtering settings number of rows in SIF file will decrease due
to filtering. However, the number of rows indicated at the bottom of the panel
displaying the data can be put to use for an educated guess as to how many
nodes will be in the non-filtered network. I predict a relatively flat learning
curve of Odyssey to allow users to use filtering options with competence after
a short period of usage. It should be noted networks larger than 50 nodes will
take time to build and consume server resources depending on the graph layout
algorithm selected.

3.4.3 Network Tab

Network Tab is where the output network is displayed. Networks are created
using cytoscapejs implementation package in R. This package allows interactive
network creation in HTML format. The user can zoom in to the network gen-
erated, move through the network and reset the zoom percentage to default
setting using the gadgets provided in the upper left corner of the network. Also,
a download button and a refresh button are provided at the bottom of the net-
work. Download button allows network download in HTML file format to be
transferred among peers. Refresh button allows the user to clear the parameters
entered in the text boxes or selected through drop-down menus without termi-
nating the session. Previous session information is saved for one run of Odyssey
to prevent recalculation of the same input data entered, should the user choose
to run Odyssey to visualize the previous session once more.
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3.5 Data Handling

In this section, I will discuss how example expression data and MTI databases
are processed and stored suitably for time efficient and convenient runs of the
application.

3.5.1 Example Data Handling

Selected public expression data are downloaded from GEO webpage in cel
file format. Cel files are processed in R using affy package as mentioned pre-
viously and assigned to an R object in data.table format mentioned. R pro-
gramming has varying efficiency scores to handle large delimited data. Mi-
crobenchmark package [87] of R offers information as to the efficiency of these
data handling functions. In this study, I used ".RData" for efficient saving and
loading of example data selected which is the most efficient flow of large data
handling except read_ feather function. Efficiency of load(*.RData) function is
currently sufficient for handling the data stored in Odyssey, however in the later
versions of Odyssey converting to the most efficient method is considered given
the collection of example data provided in Odyssey becomes larger.

3.5.2 MTI Database Handling

In Odyssey, there are four different type of MTI databases (TargetScan,
miRNet, TargetScan& miRNet - Intersection, TargetScan& miRNet - Union)
that are being stored. The total number of MTI databases (MTIdb) stored
is eight, however, this is the updated version of Odyssey which differs from
development versions which stored four MTIdb’s total. The increment in the
MTI databases is done considering user input type, which can be either a gene
or miRNA. Instead of converting the MTIdb according to user input dynami-
cally, storing a gene and a miRNA input specific correspondence of each MTIdb
is considerably time efficient and eases the work-load on the server processor.
Handling of these databases robustly for different runs of the application is con-
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sidered a significant part of time-efficient runs of the application. MTIdbs are
converted into R specific "list of vectors" format and stored as ".RData" for per-
formance considerations mentioned above. In the list of vectors format, each
gene or miRNA is an object that returns a vector of targeted genes (for miRNA
queries) or vector of targeting miRNAs (for gene queries). Through this imple-
mentation method, the issue of looping through the entire MTIdb is relieved
which reduces performance significantly for R programming scripts.
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CHAPTER 4

CASE STUDIES

4.1 Introduction to Case Studies

In order to demonstrate how Odyssey works on microarray expression data,
public datasets from GEO database are downloaded and integrated onto Odyssey.
Melanoma and Meningioma datasets were selected for the demonstration, pri-
marily because these datasets are paired expression modulation datasets con-
taining both miRNA expression data and mRNA expression data. In the gen-
erated networks, consequently, both miRNA and mRNA nodes are coloured by
the expression values obtained from differential expression analysis run on the
datasets. Thus, I aim to observe correlation on expression values of miRNA
nodes and targeted mRNA nodes and reach a biological insight on the cases.

There are further reasons for the selection of Melanoma and Meningioma
datasets. Both cases have published articles linked to the GEO database dis-
play webpage. After investigating the articles linked, I realized the opportunity
to explain the underlying biological network because comprehensive network
analysis was not conducted by the authors for either of the cases. In addition,
novel biomarkers both reported by the authors and also established melanoma
and meningioma driver genes in the literature presented a good opportunity
for reproducing the published results and thus to verify that Odyssey brings
results parallel to the established literature. Finally, the endeavour of reproduc-
ing established results may also conceive to novel biomarker discovery through
following Odyssey’s novel methodology.
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4.2 Melanoma Case, Identifying mRNA, MicroRNA and Protein

Profiles of Melanoma Exosomes

4.2.1 Introduction to Case

In this study, authors have compared the expression profiles of melanoma
cells and normal melanocytes focusing on the profile of exosomes. Exosomes
are bio-compartments that are secreted out of the cell through a process called
exocytosis. Authors declared that by studying the expression profile of exosomes
they are aiming for novel biomarker discovery that might successfully mark
melanoma-related bioprocesses in the organism (human for the case of particular
research). These biomarkers may be used to detect melanoma formation and
presence. Depending on the signature comes as biomarkers, diagnosis can be
made in an early stage and correct therapeutic agent administration can be
done in an appropriate dosage.

For their analysis expression data have been obtained from two different
commercially available cell lines. Human malignant melanoma cell line A375
and human normal epidermal melanocyte cell line HEMa-LP have been used for
that purpose.

Table 4.1: GSE35389 Sample Overview.

Case miRNA Samples mRNA Samples
1 GSM867220, melanoma cell A375 GSM867227, melanoma cell A375
2 GSM867221, melanoma cell A375 GSM867228, melanoma cell A375
3 GSM867222, melanoma exosome A375 GSM867229, melanoma exosome A375
4 GSM867223, melanoma exosome A375 GSM867230, melanoma exosome A375
5 GSM867224, melanocyte HEMa-LP GSM867231, melanocyte HEMa-LP
6 GSM867225, melanocyte HEMa-LP GSM867232, melanocyte HEMa-LP
7 GSM867226, melanocyte HEMa-LP GSM867233, melanocyte HEMa-LP exosome
8 - - - GSM867234, melanocyte HEMa-LP exosome
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4.2.2 Odyssey Analysis

GSE35389 dataset is comprised of exosome samples and melanocytes both
for miRNA platform GPL8786 array and mRNA platform GPL570 array (Table
4.1). Differential expression analysis can be made through several comparisons.
Selection of samples to perform differential expression analysis with is important
for results to be unbiased and biologically meaningful. In this work, after samples
were selected and DGex analysis was performed, corresponding networks were
drawn and resulting networks were investigated taking important notes from
literature. The aim of this section to propose an example method on how to
perform an efficient analysis using Odyssey for mRNA-miRNA interactions in
the context of the GSE35389 dataset.

4.2.2.1 Analysis on Melanomas vs Normal Human Melanocytes

Article published with the corresponding dataset makes important remarks
for the comparison of melanocyte and melanoma cell exosome expression pro-
filing. In this section of the document, a comparison has been done on cell
miRNA and mRNA coexpression/interaction rather than exosome profiling.
Thus, I aimed to conduct a novel analysis by selecting cellular expression data
instead of exosome samples which are also present in the dataset. For that
purpose, I selected GSM867224, GSM867225 normal melanocyte miRNA ar-
ray samples obtained from HEMa-LP human melanocyte cell line as controls
and GSM867220, GSM867221 melanoma cell miRNA array samples obtained
from A375 human malignant melanoma cell line as treatment (See Table 4.1).
Corresponding mRNA array GSM867231, GSM867232 normal melanocyte sam-
ples obtained from HEMa-LP human melanocyte cell line and GSM867227,
GSM867228 melanoma cell samples obtained from A375 human malignant melanoma
cell line are selected as the treatment to be compared via differential expression
analysis. The aim of the study is to extract mRNA-miRNA pairs that interact
with each other and at the same time are transcriptionally regulated and com-
bine them into a concise network to further help researchers to validate their
findings.
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Figure 4.1: Network generated by Odyssey through query search "HAPLN1" on
Melanoma Case.

TargetScan and miRNet Union database is used for the session. Dark red edges
represent interactions reported by miRNet only and dark blue edges represent
interactions reported by TargetScan only. Green edges are the microRNA -

gene interactions reported both by TargetScan and miRNet. Rectangular nodes
are genes whereas circular nodes are microRNAs. microRNAs are filtered
according to (-3, 3.5) interval to leave out microRNAs that have log fold

change within the interval. mRNAs in the network are filtered by the interval
(-3.5, 3.5). The concentric layout was used for the generating of the network
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HAPLN1 gene was reported as a finding by Xiao D. et al. authors of
Melanoma Case Study. In the published article, HAPLN1 stated to be a dif-
ferentially expressed melanoma exosomal protein which has been reported by
other sources to be a tumorigenic protein with strong evidence playing roles in
tumour invasion and metastasis [57] [142].

In the network generated by Odyssey (Figure 4.1), hsa-miR-212-3p is found
in the middle of a cluster of highly upregulated genes like HAPLN1 (confirm-
ing the findings by Xiao D. et al.) and other reported tumour growth related
genes e.g. ISB1 [127]. microRNAs play roles in proliferation and metastasis
of different cancer types. Hsa-miR-212-3p (converted to all capital letters for
ease of query search by the user), which is found in the centre of the cluster
by Odyssey, is reported to have such a function, reported being carried by exo-
somes of tumour cells to other cells in the tumour microenvironment to promote
tumour invasion and metastasis [26]. There seems to be a negative correlation
in the gene expression between hsa-miR-212-3p and itś targets. This specific
microRNA is down-regulated in the melanoma cells while the targets are mostly
upregulated. Another microRNA in the centre of the network is hsa-miR-211-
5p. Hsa-miR-211-5p is reported to suppress tumour invasion and proliferation
in Triple Negative Breast Cancer [19]. Hsa-miR-211-5p is found to be down-
regulated in the melanoma cells after differential expression analysis I made in
Odyssey compared against normal human melanocytes. The findings of Odyssey
help confirm the literature findings as well as providing other genes that might
be modulated by these two downregulated miRNAs. Since miRNAs target mul-
tiple genes, their inhibitory activity is partitioned into their targets. One can
assume a decrease in miRNA expression might lead to an increase in its target
mRNA expression. In this respect, has-miR-213-3p has more negatively corre-
lated mRNA targets than the 211-3p. In addition Odyssey show two different
color-coded edges for the network in Fig. 4.1 Red edges represent interactions
indicated within miRNet database while blue represent interactions within the
TargetScan database. Yet no green nodes indicating existence in both miRNet
and TargetScan which demonstrates that these two target prediction/validation
databases diverge between themselves significantly. The number of red edges
is not clearly different from blue edges in the count. The reason for this could
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be the disjunct way MTI prediction algorithms work compared to experimental
methods.

Figure 4.2: Network generated by Odyssey through query search "KIT".

TargetScan and miRNet Union database is used for the session. Dark red
edges represent interactions reported by miRNet only and dark blue edges
represent interactions reported by TargetScan only. Green edges are the
microRNA - gene interactions reported both by TargetScan and miRNet.

Rectangular nodes are genes whereas circular nodes are microRNAs.
microRNAs are filtered according to (-3, 3) interval to leave out microRNAs
that have log fold change within the interval. mRNAs in the network are

filtered by the interval (-4, 4). Cose layout was used for the generating of the
network and then nodes were manually adjusted for a better visualization.

KIT is a well-known melanoma driver gene. There are studies on mutations
of the KIT gene resulting in different forms of dermatosis, therefore, mutations
on KIT is considered important for patients suffering from any of these dis-
eases [129]. Interestingly, both under-expression and over-expression of KIT has
been detected to cause abnormalities depending on the underlying pathway dis-
ruptions consequence of the specific mutation. Therapeutic agents are developed
to target KIT to help battle melanoma [145]. In the network generated through
Odyssey (Figure 4.2), the KIT gene is seen to be at the centre of the network.
Four different microRNAs target KIT, namely; HSA-MIR-301A-3P, HSA-MIR-
335-5P, HSA-MIR-19A-3P and HSA-MIR-18B-5P. Published literature confirms
these microRNAs to belong to affected microRNAs in tumorigenesis and most
of them have evidently played roles in studied melanoma cases. HSA-MIR-
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301A-3P is found to be significantly upregulated in bladder cancer [35] and
early progression of melanoma [93]. Research indicates HSA-MIR-335-5P can
be used for the prognosis of gastric cancer [141]. Other studies report HSA-
MIR-335-5P plays role in metastasis and invasion of gastric cancer [120]. Al-
though these listed microRNAs (HSA-MIR-335-5P, HSA-MIR-301A-3P) are al-
ready reported in melanoma cases with strong evidence, HSA-MIR-19A-3P and
HSA-MIR-18B-5P still need research on their involvement on carcinogenesis of
melanoma. HSA-MIR-19A-3P targets 5-Lipoxygenase which is a key player in
immunologic responses including macrophage, monocyte recruitment, and den-
dritic cell maturation [15]. Differential expression of HSA-MIR-19A-3P might
cause direct regulation of 5-Lipoxygenase which in turn affects immunological
response to the tumour mass, tumour microenvironment or overall immune re-
sponse of the organism. HSA-MIR-19A-3P is found to be differentially expressed
in plasma-derived exosomes of metastatic melanoma patients when compared to
healthy melanocytes [101]. However, the way HSA-MIR-19A-3P operates in
melanoma patients, the degree of malignancy it might cause and whether these
findings can be used in the diagnosis or prognosis of patients still need work.
HSA-MIR-18B-5P is another biological molecule effects in melanoma patients
need to investigated like HSA-MIR-19A-3P. Functions of HSA-MIR-18B-5P is
studied in relation with hepatocellular carcinoma patients and it has been re-
ported that high expression of this particular microRNA significantly correlates
with shorter relapse-free survival time period of the patients. I strongly believe
that the network (Figure 4.2) put forward through analysis of Odyssey pro-
vides multiple candidate genes/miRNAs for prospective research for functional
studies. In addition, network elements can be used as signatures for melanoma
patients for both prognostic and diagnostic purposes.

The novelty Odyssey brings is a systems biological view on KIT expression
and coregulation by microRNAs in using paired mRNA/miRNA data on the
same subjects. Although miRtarvis and MAGIA and miRNet can do similar
extractions have their own specific advantages/disadvantages; the advantages of
using Odyssey in identification of KIT in melanoma is easy UI, clear visualiza-
tion of the elements of the network, edge annotation indicating both predicted
and/or validated targets, and ability to expand the network to second degree
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starting with a single gene/miRNA.
GO terms and protein domains displayed in Figure 4.3 are significantly en-

riched for the gene set provided. Extracellular matrix and extracellular matrix
structural constituent GO terms are in parallel with melanoma exosomes stud-
ied in the dataset. Cluster 2 is mostly separated from protein domains related
to immune system components. Cluster 3 is composed of general GO terms and
this cluster is not discussed here because of itś unspecificity.

Figure 4.3: DAVID Bioinformatics Tool outcome based on Odyssey results for
query search "KIT" on Melanoma Case.

Results are extracted and the resulting gene list is input to DAVID
Bioinformatics Tool. [Huang et al. [52]] Enriched GO terms and disease related

terms and protein domains are displayed in the figure.
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Figure 4.4: Network generated with miRNet on Melanoma Case.

Differentially expressed genes and microRNAs are extracted as list and
microRNAs are filtered according to (-3, 3) interval to leave out microRNAs
that have log fold change within the interval. mRNAs in the network are

filtered by the interval (-4, 4). Resulting network is subjected Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment for the

nodes in the network.

4.2.3 Analysis of Melanoma vs Normal HumanMelanocytes via miR-
Net

Because miRNet is a similar software in terms of functionalities of Odyssey,
an analysis was performed using the same samples for GSE35389 and the re-
sults were compared with those of Odyssey. For that purpose, differentially
expressed filtered gene list used to generate Figure 4.2 is extracted and the
miRNet session is run with "1.0" degree cut-off parameter to obtain an in-
teractive network displaying the interactions between microRNAs and genes.
Replicating the procedure followed for analysis with Odyssey, GSE35389 dataset
GSM867231, GSM867232 normal melanocyte samples were selected as control
and GSM867227, GSM867228 melanoma cell samples were selected as the treat-
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ment to be compared via differential expression analysis using miRNet user in-
terface (See Figure 4.4). Two major nodes of the network appeared as HSA-MIR-
355-5P and KIT. These nodes were significant parts of the network generated
with Odyssey as well. GO term enrichment test applied through miRNet User
Interface by selecting "GO Term: Molecular Function" enrichment. Identical
protein binding, protein homodimerization activity, and cysteine-type endopep-
tidase regulator activity involved in the apoptotic process were the most enriched
GO terms with an insignificant p-value > 0.2 each. Some of the highly connected
nodes in this network were, documented genes or microRNAs that have func-
tions in cancer i.e. PODXL, reported to involved in Willms tumorigenesis via
p53-mediated transcriptional repression [130]: hsa-miR-let7b, a known inhibitor
of melanoma cell proliferation [140]: and hsa-miR-124-3p, a well-studied actor
of proliferation inhibitor in multiple types of cancer including melanoma [128]
and lung adenocarcinoma [136]. Highlighted nodes in the miRNet analysis were
different from the findings of Odyssey but not unrelated to case study explored
in this section. GO term enrichment analysis via miRNet was inconclusive for
this network as none of the terms was significantly enriched for the p values
obtained. One apparent shortcoming of miRNet was, UI did not allow upload-
ing microRNA expression data which rendered it unable to filter via microRNA
based log expression fold change between the control and treatment samples. In
addition coloring of the nodes based on log fold changes was not possible neither
the annotation of the edges as predicted or validated or both.

4.2.4 Discussion on the Results

Multiple queries based on melanoma data have been processed and anal-
ysed with Odyssey in this section. Based on the results, there are important
remarks supported by existing literature which indicates efficient ways of using
Odyssey, and also some results might shed light on future melanoma research.
Further, I aimed to have a clear comparison of the results between Odyssey and
the competitive existing software, miRNet.

Based on the literature research of the results given by both software, highly
functional and previously documented melanoma-related genes and miRNAs
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have been revealed by the networks. Some promising nodes, HSA-MIR-19A-
3P and HSA-MIR-18B-5P for Odyssey results and PODXL for miRNet results
might be beneficial for future research as knowledge associating these elements to
melanoma cases is still poorly understood. There are multiple ways proposed to
explore the functionality of these elements and attain the findings of melanoma
cases. One of which is uploading more microRNA - gene matching melanoma
expression data to Odyssey or miRNet and analyse the results. Another way
(but not necessarily the last) is to explore the functionality of these molecules on
the molecular level and try to correlate the findings to melanoma cases without
using software discussion in this document. Both of the experimental ways listed
would be interesting for the purposes of scientific discovery however, they are
out of context with this thesis. I hope that motivation for this proposed research
comes from results obtained with Odyssey that are in parallel with literature.

MicroRNA expression data can be uploaded to Odyssey and filtering can
both be done on microRNAs and genes which is an advantage compared to
miRNet. Without this functionality, microRNA nodes in the network have no
attained expression correlation with targeting nodes which causes only signifi-
cantly expressed genes to be predictive on the phenotype of data studied. On
the other hand, miRNet allows more filtering options on the network like degree
filtering or shortest path filtering which is useful for extracting highly regulated
components of the network and eliminating singularities which might be irrele-
vant to the study. GO term analysis of miRNet yielded no significant clusters
whereas gene list obtained from Odyssey revealed interesting GO terms clus-
ters that are parallel to data. This coordination between the literature search
and GO term enrichment analysis of results are esteemed to be an indication of
promising analyses will be conducted using Odyssey.

At this point, Odyssey does not allow users to enter multiple queries to
be analysed which is a fundamental difference between miRNet and Odyssey.
Odyssey rather builds a second-degree network based on the initial query which
is the main reason why the results are different between the two software. This
single query based way of work results in more isolated networks to be produced.
Capability to expand the network to second-degree interactions is beneficial for
a more comprehensive network view which is in parallel with high-throughput
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data analysis. Comprehensiveness of the network is limited by the initial query,
however, which in the end is able to produce a more focused and detailed network
from a single nodeś perspective. This phenomenon is also highly dependant on
the user because filtering parameters are subjected to change in every session
for Odyssey but also for miRNet as well. Odyssey might have an advantage
for calculation of initial filtering parameters that are automated with quantile
values mentioned in the methods section.

As a final remark, it should be noted miRNet has other functionalities
apart from drawing microRNA - gene networks for having documented lncRNA
- miRNA interactions or RT-qPCR - gene interactions etc.. These functionalities
at this point are, beyond the purpose of why Odyssey was developed.

4.3 Meningioma Case for simultaneous analysis of miRNA-mRNA

in human meningiomas by integrating transcriptome: A rela-

tionship between PTX3 and miR-29c

4.3.1 Introduction to Case

Meningioma is a type of brain cancer that causes serious morbidity [100].
Around 30 percent of all brain tumours are classified as meningioma and the
underlying biology behind this type of cancer is poorly understood [137]. In this
dataset, authors aimed to explore molecular mechanisms behind meningioma
cases by studying microRNA, mRNA relations through comparative transcrip-
tome analysis. Dataset comprises of 30 samples equally divided to miRNA and
mRNA assays in numbers. One control (normal meningial cell sample) is used
each against 14 meningioma samples for both miRNA and mRNA subset of the
whole dataset to be able to extract relative expression profiles. Authors pub-
lished an article (Dalan et al., cited in Example Data Collection section) that
focuses on the relation between PTX3 and miR-29c. In this article, PTX3 and
miR-29c are claimed to have a negative correlation in expression levels which is
interpreted as an indication of regulation of PTX3 by miR-29c. Same samples
have been chosen to be used in comparison to the analysis conducted in my own
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research. Odyssey is used to query PTX3 and miR-29c separately. However,
observing that PTX3 query has resulted in an inconclusive network with one
miRNA node interacting with multiple genes with varying expression levels I
have chosen to omit this particular network from the Case Study section of this
thesis. The same dataset also has been used for an analysis in miRTarVis which
is a similar software to Odyssey. Results obtained from Odyssey were planned to
be compared both with miRTarVis results and also the results published in the
article by Dalan et al, however, after the analysis with miRTarVis is abandoned
(explained in miRTarVis Analysis section below), miRNet software is used for
comparison for this dataset also.

Table 4.2: GSE88721 Sample Overview.

Case miRNA Samples mRNA Samples
1 GSM2344678 Meningioma 1 [miRNA] GSM2344693, Meningioma 1 [gene]
2 GSM2344679 Meningioma 2 [miRNA] GSM2344694, Meningioma 2 [gene]
3 GSM2344680 Meningioma 3 [miRNA] GSM2344695, Meningioma 3 [gene]
4 GSM2344681 Meningioma 4 [miRNA] GSM2344696, Meningioma 4 [gene]
5 GSM2344682 Meningioma 5 [miRNA] GSM2344697, Meningioma 5 [gene]
6 GSM2344683 Meningioma 6 [miRNA] GSM2344698, Meningioma 6 [gene]
7 GSM2344684 Meningioma 7 [miRNA] GSM2344699, Meningioma 7 [gene]
8 GSM2344685 Meningioma 8 [miRNA] GSM2344700, Meningioma 8 [gene]
9 GSM2344686 Meningioma 9 [miRNA] GSM2344701, Meningioma 9 [gene]
10 GSM2344687 Meningioma 10 [miRNA] GSM2344702, Meningioma 10 [gene]
11 GSM2344688 Meningioma 11 [miRNA] GSM2344703, Meningioma 11 [gene]
12 GSM2344689 Meningioma 12 [miRNA] GSM2344704, Meningioma 12 [gene]
13 GSM2344690 Meningioma 13 [miRNA] GSM2344705, Meningioma 13 [gene]
14 GSM2344691 Meningioma 14 [miRNA] GSM2344706, Meningioma 14 [gene]
15 GSM2344692 Meningial Cells [miRNA] GSM2344707, Meningial Cells [gene]

4.3.2 Odyssey Analysis

HSA-MIR-29C query returned two choices to select from which were both
present in the TargetScan& miRNet - Union database; HSA-MIR-29C-3P and
HSA-MIR-29C-5P. As reported by Dalan et al., the analysis has been carried on
by HSA-MIR-29C-3P selection which had lower log fold change value of -3.627
when compared to HSA-MIR-29C-5P which had -1.570 log fold change. Result-
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ing network had 34 nodes and 37 edges (See Figure 4.5). Importantly, the PTX3
gene was not amongst the listed targets of HSA-MIR-29C-3P for both miRNet
and TargetScan databases. Because of that, claims of the authors cannot be
verified using Odyssey. However, targets of HSA-MIR-29C-3P were displayed
in the network and some of these genes have indications in the literature for
the roles they might play in meningioma patients. Anthrax toxin receptor 2
(ANTXR2) is such a gene having proof of relation to meningioma although in-
directly documented in Li et al. [75]. YAP is an oncogene when knocked down,
causes an up-regulation in a list of genes including ANTXR2. ANTXR2 is highly
upregulated in the network drawn with Odyssey and it has been targeted by sev-
eral other microRNAs that are highly down-regulated. HSA-MIR-27B-3P was
another modulator of ANTXR2 which has been shown to be down-regulated
in meningiomas along with HSA-MIR-29C-3P in Ludwig et al. [79]. Thus, AN-
TXR2 appears to be a promising biological molecule to investigate in prospective
research dealing with meningioma.

LOX gene was shown as another target of HSA-MIR-29C-3P and targeted
by multiple down-regulated microRNAs. LOX has been shown to be upregu-
lated in some meningioma cases and reported to take a role in cell adhesion in
Fèvre-Montange et al. [37] by its functional importance in collagen and elastin
cross-linking.

There has been only one gene, PRELP, emerged presently out of applied
filtering. PRELP is a candidate predictor of meningioma and chronic lymphoid
leukaemia (CLL) according to two studies where PRELP has been documented
in several meningioma and CLL cases to be differentially expressed [17] [89].
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Figure 4.5: Network generated by Odyssey through query search "HSA-MIR-
29C-3P" on Meningioma Case.

TargetScan and miRNet Union database is used for the session. Dark red edges
represent interactions reported by miRNet only and dark blue edges represent
interactions reported by TargetScan only. Green edges are the microRNA -

gene interactions reported both by TargetScan and miRNet. Rectangular nodes
are genes whereas circular nodes are microRNAs. microRNAs are filtered
according to (-3.5, 3.5) interval to leave out microRNAs that have log fold

change within the interval. mRNAs in the network are filtered by the interval
(-4.0, 4.0). The concentric layout was used for the generating of the network.
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4.3.3 miRTarVis Analysis

GSE88721 data has been uploaded miRTarVis which runs on local com-
puters, unlike Odyssey. Data format and sample names are important for data
uploaded to be completed successfully. The first row of the data holds the sample
names. This row was modified for miRTarVis to recognize which sample columns
were "Treatment" and "Control" samples following the data sample demonstra-
tion within miRTarVis folder downloaded; in the case of this dataset, they were
meningioma samples and normal meningial cells, respectively. MiRTarVis can
run one or two-tailed t-test on the samples for both miRNA and mRNA data
and asks whether to apply log transformation before running these tests. The
two-tailed t-test was chosen because of the identification of candidate genes and
miRNAs on both sides of the data distribution considered important. However,
the log transformation option was not applied because data were log transformed
before analysing it with Odyssey. MiRTarVis enables filtering on both p-value
and log fold change obtained from the two-tailed t-test. After the data upload,
statistical analysis conducted by miRTarVis yielded all miRNAs and genes to
have 0 fold change and 0 p-value. Thus, filtering was not possible to apply be-
cause any filtering applied would cause node count within the network reduced
to 0. After many unsuccessful attempts to fix the issue by going back and forth
to documentation supplied in the website of miRTarVis, the whole miRTarVis
analysis is abandoned and miRNet is used again for comparison with Odyssey.
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Figure 4.6: Network generated by miRNet through on Meningioma case.

Brain samples were chosen in miRNet and limma based differential expression
analysis is performed on the samples. mRNAs in the network are filtered by
the interval (-4.0, 4.0) and, 1.0-degree cut-off is applied on the graph. The

force atlas layout was used for the generating of the network.

4.3.4 miRNet Analysis

Compared to miRTarVis, miRNet analysis goes fairly straight-forward. MiR-
Net provides better documentation on how to run an analysis with working ex-
amples of example data. User-interface of miRNet designed as compact and
intuitive for smoother user experience. After mRNA data upload, (-4.0, 4.0)
log fold change interval has been selected to be removed from the network for
mRNA nodes and, 1.0 degree cut off is also used to remove singleton nodes.
Thus, only nodes with higher inter-connectivity remain in the network which
I find is a better way of extracting knowledge out. Degree cut-off parameter
remains optional, however, for users to experiment and find the best suiting
criteria for themselves.

After the graph has been generated several nodes took more space in the
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network observed from their node diameters. These nodes represented higher
connectivity within the network and as mentioned above, more suitable candi-
dates for further investigation. One such node was gene PMAIP1. PMAIP1
have some evidence in meningioma cases although not thoroughly investigated,
to be playing roles in recurrence and progression of meningioma cases [64] and, is
shown to be taking part in apoptosis-related pathways mediated by p53 expres-
sion [30]. Hsa-miR-155-5p is another such candidate and have stronger evidence
on brain neoplasia including but not limited to meningioma cases reported to
cause increased proliferation of cancer cells when over-expressed [134]. More-
over, hsa-miR-155-5p expression can be used as a predictor of numerous other
types of cancer including breast cancer and head and neck squamous cell carci-
noma for its property of being an oncogenic microRNA [117].

Finally, network nodes were enriched with functional and utility annota-
tions using KEGG database. Enriched Cell adhesion molecules (CAMs) and
Complement and coagulation cascades were the first two terms on the list with
subsequently 4 and 3 hits with insignificant p-value 0.291 for both terms. GO
terms: Molecular Function database is used next for enrichment. Amino acid
transmembrane transporter activity (4 hits, p-value 0.0144), neutral amino acid
transmembrane transporter activity (3 hits, p-value 0.0144) and L-amino acid
transmembrane transporter activity (3 hits, p-value 0.0268) were the most en-
riched terms found at the very top of the list amongst some other insignificantly
enriched terms. Solute Carrier Family proteins SLC7A5, SLC1A5 and SLC7A1
were the highlighted nodes resulted in the enrichment of transporter activity
related GO terms.

4.3.5 Discussion on the Results

Progress of whole analysis needs to be visualized with proper error reports
that guide the user to be able to complete the analysis. Also, comprehensive
documentation on demo usage of the tool is very important.

Both miRNet and Odyssey results have come up with links in the literature
published on cancer studies including meningioma and other brain neoplasia.
These candidates can be used for further analyses, however, at this stage, they
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alone provide insufficient information to be able to reveal the phenotypical back-
ground of the samples. Additional comprehensive literature search seems fun-
damental for evaluation of the findings and supporting the claims. Functional
enrichment analysis done in miRNet software does not appear to be useful in
meningioma dataset also. Enriched terms either have insignificant p-value or
they are very general terms like amino acid transmembrane transporter activity
which can be interpreted as a natural cellular activity for normal and diseases
samples.

Findings of Odyssey conflicts with the literature on PRELP because in Fig-
ure 4.5, PRELP is observed to be highly down-regulated compared to normal
meningial cells whereas according to literature up-regulation of the gene was
expected. There could be many explanations for this issue. One possible expla-
nation is that case-specific studies do not always reveal the underlying biology
behind the sample analysed. By increasing the sample size or number of experi-
ments and evaluating the findings altogether, expression profiling of more genes
can be brought to light with higher confidence. The second possible explanation
is that microRNA - gene interactions do not always have the dramatic effect to
regulate the pathways by itself, as there are other biological agents in effect to
suppress or further elevate the observed condition. Increasing the experiment
size as mentioned above as the first explanation might be helpful in revealing
the true biology underneath. Integration of multiple OMICS data alongside with
expression value data could be beneficial as well to help see how other biological
molecules affect the system.

One other explanation is that the network is too narrow for identifying how
each system element behaves under various conditions. Increasing the size of
the network might be helpful to understand the reasons why some nodes do
not follow the expected patterns in expression levels. However, even after all
of the listed methods are applied conflicting results between experiments can
occur which makes the collective evaluation of results more important. To the
prospective users of Odyssey, I advise not to jump into conclusions and use
Odyssey as a guiding tool rather than a definitive one, which I humbly believe
should be the way for any biological software present.
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CHAPTER 5

CONCLUSIONS AND FINAL REMARKS

Odyssey was developed for paired and unpaired miRNA and mRNA data
analysis and visualization of the analyses on an interactive graph. It is not the
first software to be developed for this purpose, miRNet, MAGIA and miRTarVis
were developed for the similar rationale. There are pros and cons of these tools
when functionalities are matched against each other. MiRTarVis and Odyssey
allow both paired and unpaired data analysis whereas miRNet does not have this
functionality. Paired data analysis is important for making correlations between
microRNAs and their targets in the biological system of interest. Using this
module, clusters within the network can be detected as candidate components
that are differentially regulated in the samples uploaded. MiRNet and Odyssey
allows analysis without any expression data upload, which makes them practical
for observing the sole interactions of any gene or miRNA query.

One of the most important conclusions of the present thesis is that mi-
croRNA - mRNA interactions might not explain all the variability on the sam-
ples investigated. Up-scaling the experiment set up to include more samples,
running additional experiments and backing the results with existing literature
is crucial for reaching conclusions with higher confidence. As discussed, inte-
gration of multi-OMICs data might reveal more information that is on systems
biology level which is an outlook for the future of Odyssey.

Odyssey falls behind of other similar software in statistical back up of the
session run. Fold change is an important filtering parameter to be used, however,
the addition of p values is also important for clarifying insignificant results and
confidently reporting candidates in the network. Besides, some of the network
nodes that are being filtered out due to low fold change values might also be
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important candidates for explaining the phenotype of the samples. Additional
statistical parameters like p-value or degree filtering might be helpful in terms of
more meaningful graph generation and reducing these graphs to most meaning-
ful sections. Both Odyssey and existing other software lack correlation analysis
of miRNAs with its targets based on the network studied. Implementing cor-
relation scores might be important to understand expression profiles of studies
coming from various sources. I intend to implement a module to calculate cor-
relation scores on various experiments on Odyssey. This prospective module
will be keeping this information to be reflected upon future Odyssey sessions.
Storing additional data on each user session should strictly be dependant on
user permissions.

New bioinformatics tools emerge at an increasing pace because of the need
to analyse massive amounts of biological data generated. These tools need to be
flexible to adapt ever-changing biological sciences and shape their functionali-
ties accordingly. Online based tools have the advantage at this era of biological
sciences because local computers lack sources to work with large amounts of
data. Moreover, error handling, updates, and related documentation are easier
to establish with online software as these software continuously collect session
data in log files based on real-time usage.

Software mentioned in this document provide a good guide for understand-
ing the biological features of an experiment run in a session. However, in my
personal opinion bioinformatics tools need to be improved towards using the
Systems Biology features; combining multiple aspects of biological data e.g.
RNA-seq, ChIP-seq. Exploring the underlying biology of a system from a sin-
gular perspective i.e. transcriptomics exclusively, is not enough for reaching a
comprehensive understanding.
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APPENDIX A

EK A

A.1 Copyright License Numbers

Some figures used are subjected to copyright permission. Usage of these figures
for this document is licensed. Copyright license numbers for permission obtained
are written below.

Figure 1.1 - Thesis / Dissertation Reuse. Open Access. Does not require a
formal reuse license

Figure 1.2 - Copyright Clearance Centers RightsLink License Number :
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