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ABSTRACT

ONLINE TRAJECTORY PLANNING FOR NONSTIFF ROBOTIC
DEBURRING MACHINES BASED ON DYNAMIC MOVEMENT

PRIMITIVES METHOD

Uğurlu, Musab Çağrı
M.S., Department of Mechanical Engineering
Supervisor : Assoc. Prof. Dr. Erhan İlhan Konukseven
Co-Supervisor : Assist. Prof. Dr. A. Buğra Koku

October 2018, 63 pages

Robotic deburring has an advance of precise and repeatable machining process on

specific surface profiles. However, different from traditional deburring, deburring

robots require generated trajectories on a workpiece with unknown chip thickness,

which is a hard task due to the low stiffness of robot arm and abrasive tool used. This

study presents a method for planning the online trajectory of a deburring robot by

considering tool deflection based on the motion primitives trained from offline tra-

jectories. From offline trajectories, task-related movements of 6-DoF deburring robot

and interaction forces between the tool and the known workpiece while performing

the deburring process are recorded. Then, by utilizing the laser scanner, the surface of

the workpiece is measured after the deburring process in order to determine the differ-

ence between the actual depth of cut of the workpiece and given set depth of cut. The

remained material is mainly because of the low stiffness of the tool which creates tool

deflection. Using force data as perception and remained material as action, Dynamic

Movement Primitives method is modified, then trained and used to predict deflection

on the tool. The linear deflection and angular deviation compensation are performed

in order to make adjustments on the trajectory while performing the deburring opera-
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tion online. Finally, the form error results of the robotic deburring process with DMP

is compared with three other processes; Standard robotic deburring process, robotic

deburring with PID control and robotic deburring with Active Disturbance Rejection

control.

Keywords: Deburring Process, Movement Primitives, Learning from Demonstration,

Online Path Planning, Tool Deflection Compensation
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ÖZ

DİNAMİK HAREKET PRİMİTİFLERİ METODU İLE KATI OLMAYAN
ROBOTİK ÇAPAK ALMA MAKİNALARI İÇİN ÇEVRİMİÇİ YÖRÜNGE

PLANLAMA

Uğurlu, Musab Çağrı
Yüksek Lisans, Makina Mühendisliği Bölümü
Tez Yöneticisi : Doç. Dr. Erhan İlhan Konukseven
Ortak Tez Yöneticisi : Dr. Öğr. Üyesi A. Buğra Koku

Ekim 2018 , 63 sayfa

Robotik çapak alma, belirli yüzey profillerinin hassas ve tekrarlanabilir işlenmesinde

kullanılmaktadır. Ancak, geleneksel çapak alma metotlarından farklı olarak bu robot-

lar, kullanılan aşıntırıcı takım ve robot kolun kendisinin düşük rijitliğinden dolayı zor

bir görev olan çapak kalınlığı bilinmeyen parça üzerinde yörünge planlamasına ihti-

yaç duymaktadır. Bu çalışma, çevrimdışı hareket primitivlerinden elde edilen takım

eğilme bilgisine göre çapak alma robotunun anlık yörünge planlaması için bir metot

sunmaktadır. Önce, çapak alma işlemi sırasında 6 serbestlik dereceli robotun görev

ile ilgili hareketleri ve takım ile bilinen iş parçası arasındaki etkileşim kuvvetleri kay-

dedilir. Sonra lazer tarayıcı ile işlenen bu parçalar taranarak istenen kesme derinliği

ile gerçek kesme derinliği arasındaki fark elde edildi. İşlenemeyen kalınlık büyük

oranda takımın düşük rijitliğinden kaynaklanmaktadır. Ölçülen kuvvetler algı, kalan

malzeme ise eylem olarak seçilerek Dinamik Hareket Primitivleri metodu modifiye

edildikten sonra toplanan data ile eğitilir ve takım eğilmesinin tahmininde kullanı-

lır. Lineer ve açısal sapmalar hesaplanarak, işlem sırasında anlık olarak telafi edilir

ve takım yörüngesi buna göre ayarlanır. Son olarak, bu metot sonucunda elde edilen
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formun hata analizi sonuçları standart çapak alma işlemi, PID kontrollü çapak alma

işlemi ve Active Disturbance Rejection kontrollü robotik çapak alma ile karşılaştırıl-

mıştır.

Anahtar Kelimeler: Çapak Alma İşlemi, Hareket İlkeleri, Gösterme ile Öğrenme,

Çevrimiçi Yol Planlaması, Takım Esnemesi Telafisi
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der, Ömer Okumuş, Kemal Açıkgöz and Masoud Latifi Navid for their immense sup-

ports and fruitful knowledge they shared. They were always available to discuss my

academic questions regardless of time and condition. I appreciate the sleepless nights

we shared to carry on our project.

I would like to express my profound gratitude to my parents, brothers and sister. Their

enlightened vision helped me to choose my goals and pursue them. This study would

not be finished without their patience, support and encouragements.

Finally, yet importantly, I am gratefully indebted to my colleagues and friends, Sinan

Özgün Demir, Tayfun Efe Ertop, Onurcan Kaya, Atae Jafari Tabrizi, Saadet Bal-
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CHAPTER 1

INTRODUCTION

1.1 Deburring Process

In manufacturing industries, in order to increase the quality of the machined part, final

finishing processes are performed. Deburring is one of the final finishing processes

that is used mostly in Aerospace structures, Automobile parts and medical implants

which the surface quality of machined parts should be functionalized to get more

efficient performance. Deburring is a process that removes unwanted small piece of

material (burr) remain attached to the surface and edge of machined part. Although

burrs are very small in size, they can cause unexpected complications during assembly

and early failure since they increase stress on structures in high pressure and etc. [6],

[10], [15].

There are various types of deburring process including Manual, Thermal, Electrical.

In industry, the most largely used deburring process is manual operation that is de-

pended on skills of human operator. Although human operator is adaptable to perform

deburring process on different workpiece surface shapes, in deburring process with

micron-size resolution, operators have a lack of dexterity and repeatability in mass

productions. Automation can be a solution of above-mentioned problems of human

manual operator, Figure 1.1.

Nowadays, by increasing the demand on repeatability and high precision of machined

parts in a mass production, robotic deburring process takes the place of the manual

deburring. Since deburring robots are not adaptable to various workpiece shapes, it

is better to have more study on manual deburring process. Since the generation of

action for each given task cannot be programmed for every environmental situation, a

1



Figure 1.1: Example of manual deburring process

proper general mathematical method can be utilized by using the library of previous

experiments performed before.

1.2 Force Interaction

Before generation of mathematical method for every task, the environment and the

interaction of robot with environment is required to be known. During deburring

process, when spindle tool gets in contact with the workpiece, the interaction force/-

moment occurs. By the help of interaction forces, user can have an idea about the

workpiece material, depth of cut, feed-rate of robot, tool position and orientation

with respect to workpiece and etc. However, in robotic deburring, significant tool de-

flection occurs due to the lower combined stiffness of the robot, tool and workpiece.

Tool deflection during robotic deburring operation changes the position of the tool

which is illustrated in Figure 1.2. Therefore, tool cannot achieving the set depth of

cut in the workpiece cross section. Also, the orientation of the tool become distorted

[14].

In micron-size resolution deburring process, tool deflection has to be compensated

in order to eliminate form error and geometrical errors. By utilizing the force/torque

sensor, the tool deflection and related created force can be collected. There are many

different tool deflection compensation methods. Firstly, This tool deflection can be

compensated by assuming the tool as a beam and then applying beam deflection meth-

ods. Since the angle and length of the tool are known, kinematic movements on robot

2



Figure 1.2: Example of tool deflection in light abrasive grinding. Tool deflection

errors are δn, δt, γt and βt [14]

.

can be performed. In addition, this can be embedded into the general mathematical

method of task generation.

1.3 Thesis Motivation and Objective

By explaining the concept of manual and robotic deburring processes and the interac-

tion force, one can realize that the main concept of this study is to perform deburring

process in micron-size resolution by utilizing non-stiff deburring robot by considering

the interaction force between the tool and workpiece.

There is a problem that should be solved in order to provide non-stiff robot to per-

form deburring process. Deburring forces causes deflections both on the tool and the

robotic system, therefore set depth of cut cannot be achieved during the process. In

order to solve this problem, a new trajectory should be generated so the required sur-

face profile will be achieved. Therefore, a trajectory generation method would be a

solution to this problem.
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General motivation of this study is to develop a mathematical method of trajectory

by utilizing Dynamic Movement Primitives (DMP). DMP is a method of trajectory

generation motivated by the desire to find a way to represent complex motor actions.

Also, its structure is very available to include sensory data as a function. It would be

a useful tool for adapting the deburring process to a robotic system.

The experimental setup that is used in this study has a force/torque sensor available

which can record instantaneously during the deburring process. By utilizing force/-

torque data with DMP, online trajectory manipulation can be performed. When force

is out of the range of desired range, DMP steps in and gives the new trajectory to

robot.

1.4 Thesis Outline

In this thesis, a method for eliminating form errors of workpieces machined by robotic

deburring machines is developed and applied. This work is presented as follows:

In chapter 2, literature survey is presented. This chapter includes similar previous

studies and also some inspirational studies that are not directly related.

In chapter 3, changes and additions on the classical DMP method to apply DMP to

deburring process for online trajectory adjustments are presented and explained.

In chapter 4, experimental setups which are developed and used, and specifications of

their components are introduced.

In chapter 5, The DMP method to learn motor skills of human expert performing

manual deburring operation is presented. The task-related movements of the human

expert are recorded. Then, the intrinsic movement primitives using an ordinary dif-

ferential equation are parameterized.

In chapter 6, experimental procedure for application of DMP is explained. This ap-

plication requires a series of experiments to train functions and validate that it is a

solution for the form errors.

In chapter 7, the results of the conducted experiments are shared and interpreted.

4



Also, the results of robotic grinding process with DMP is compared with grinding

processes with different controllers.

Finally, in chapter 8, the thesis is concluded by briefly summarizing the work done

and discussing possible future work for further development of the methods.
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CHAPTER 2

LITERATURE SURVEY

In today’s manufacturing, manual grinding process is still the most extensively used

grinding process in the industry. This is because human experts who perform the tasks

are adaptive to any new tasks and the tools are low-cost. However, by increasing the

need for more precise machined parts, the need for adaptive robotic grinding process

is increased and replaced with manual grinding process.

This brings the question that how a grinding robot can become adaptive? The robot

that will be customized has to be able to understand what to imitate and be capable of

mapping the perception coming from ongoing process to desired action in real-time

(online). Also, the robot should be able to acquire itself to the new task autonomously

and by collecting data sets from ongoing experiments, it must enhance itself to more

complex tasks without any additional effort from operator.

Robots can have imitative behavior in order to mimic the demonstrator [22]. This

demonstrator can be a human expert or the robot itself. The ability of imitation can

be learned based on theoretical deduction or empirical observation. For example, in

learning by imitation [7],[24],[4], the robot is supplied to the facility that supports fur-

ther learning and understanding by imitating the behavior given. When robot learns to

imitate, named learning to imitate [2], by performing through repetitive experiments,

it can solve the ‘Correspondence Problem’. In addition, in learning by demonstration

[26],[20], robot performs a new task which may or may not be an imitative behav-

ior. In the case of not having imitative behavior, named task-level imitation, robot

learns to perform a task of the demonstration of previous experiments by replicating

it, such as robots in mass production and assembly [13]. However, when giving the

knowledge of the goal of the task, robots have learned to perform a task [18], [17]

7



by making use of both the demonstrator’s movement and reform movements in order

to reach the goal and decrease error to minimum [3]. Figure 2.1 is from paper [17]

which was about teaching robot arm to hit the ball by using one of the methods of

Learning by Demonstration.

As it is mentioned before, imitative behavior can be transferred from previous experi-

ments of the robot to itself in order to learn and adapt to new task goals. Our problem

is to give grinding robot the ability to perform grinding process on workpieces with

random surface and unknown chip thickness in micron size resolution. In grinding

process, grinding forces causes deflections both on the grinding bits and the robotic

system, therefore set depth of cut cannot be achieved during the process. In order to

solve this problem, a general method should be generated so the required surface pro-

file can be achieved from any randomly shaped surface profiles. This method should

be able to recognize the forces created by burrs and compensate them in order to get

desired surface profile of the workpiece. Thus, robot has to use a general method to

know how to imitate and to understand what perceptual aspects are related to the task.

This imitation of grinding robot can be from human expert demonstrations or from

previous experiments of the same robot.

Broadly speaking, there are many general solutions to the problem of perceiving

movements, such as Hidden Markov models, motor primitives, division of move-

ments and etc. One of the methods encountered in the literature used for the purpose

of skill transfer is presented by S.Liu and H.Asada [16]. In this paper, the hand

movements of human operator are modeled by Artificial Neural Network. In this

method, the goal is to model each task that is being performed by the expert user

during the operation. When a user performs grinding on a certain workpiece, there

are two separate tasks: Tool manipulation by the user, and grinding process. The

aim is to find a relation between these two tasks. Parameters for simplified mod-

els of both tasks are identified and using a nonlinear mapping technique, a mapping

between parameters of the two models is created. By inspiring from [16], force inter-

actions and tool movements are the base for representing the robotic grinding process.

Hogan’s paper [8] claims that each movement can be categorized to three main move-

ment and sub-movements, which are Sub-Movements, Oscillations and Mechanical

Impedance. Sub-movements are very simple trajectories defined by a simple math-
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ematical function. Their combinations can provide any discrete movement. Oscil-

lations are special combinations of sub-movements and they are used to represent

rhythmic movements in the motion. Finally, mechanical impedance is to represent

the relation between the forces due to physical interaction and the motion. It is de-

fined as a dynamic operator which gives the force for a given displacement, velocity,

acceleration. Furthermore, [12] considers reaction forces as a crucial role on final

quality. It underlines learning skills which are focusing on interaction forces rather

than kinematics. Based on Kober’s study, there are three concepts for learning force

interaction skills. First, by using contact information, determination of segments from

kinesthetic demonstrations. Second, each segment can be associated with movement

primitive. Lastly, by using these movement primitives, transitions between them can

be determined.

Figure 2.1: Teaching robot arm to hit a ball, "Learning by Demonstration”

Considering papers mentioned, it can be said that splitting movement in Sub-Movements

with their velocity and accelerations are actually the Movement Primitives of the

movement. Dynamic Movement Primitives (DMP) is one of the methods of general-
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Figure 2.2: Blue lines: The desired trajectory, Red line: Trajectory obtained for dif-

ferent goal positions by DMP.

izing movement primitives which first developed by S.Schaal [23]. Then, in paper of

Pastor [20], human grasping and placing movements imitated by robot by using DMP

method. In [20], the problem of imitation of human grasping and placing movements

by a robot was solved with the help of three challenges: The correspondence problem,

generalization, and robustness against perturbation. The links and joints of robot may

not match with human arm which is the correspondence problem. In addition, gen-

eralization is required to demonstrate every single movement in different situations.

In other words, robot should be able to demonstrate the same motion primitive with

different start and desired end positions. Finally, robustness against perturbation is

another important problem. Environment is not always as perfect as it is thought in

which obstacles may appear suddenly in dynamic environment and cause collision of

the robot arm. To clarify these problems, DMP model was presented which is able

to represent any obstacle avoidance movement with a set of differential equations.

Figure 2.3: Example of Combination of Demonstrations
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In Figure 2.2, human hand movements are obtained from experiments from [20] are

shown with blue trajectory and the trajectories generated by DMP in different goal

positions are in red.

DMP method is not only limited to robot arm and industrial robot movements. For

instance, in [21], a framework for learning aggressive obstacle avoidance maneuvers

in flight control of UAVs was introduced. Firstly, aggressive maneuvers were imitated

by using the data taken from human performed obstacle avoidance maneuver. Having

inspired from the data taken during imitation, Dynamic motion primitives (DMP) of

the maneuver was introduced and extended using nonlinear contraction theory. In this

trajectory model, the complex primitive trajectories were generated by computing the

trajectory dynamics in DMP for different start and the desired end positions. There-

fore, DMP algorithm can be useful for complex trajectory movements with different

start and end positions without considering the model of UAV.

The works about DMP show that the complex trajectory movements with different

start and goal positions in high dimensions can be generated. Also, it can be assumed

the dynamic environments as interaction forces created during grinding process. Tra-

jectory generation can consider these forces as obstacles to avoid. There are some

works that are directly related to our problem. In [1], online trajectory generation by

using DMP method on grinding robot is investigated by utilizing teleoperation. Since

there is a teleoperation between 1-D setup and grinding robot, the correspondence

problem solved automatically. Force trajectories of human expert while doing grind-

ing process in 1-Dimensional setup are extracted to sub-force trajectories (movement

primitives). utilizing dataset of movement primitives, DMP can serve as a building

block for a human active controller. This building block can prevent forces out of the

desired range and move it back to the range.

Moreover, in [19], the specified DMPs (sDMP) approach is introduced. Since the

tool of spindle and the workpiece have contact with each other, the nonlinear term

of DMP should include contact force term which is related to specific grinding task.

This coupling term is multiplied with the resultant force exerted on the tool tip. As

reviewed on literature Survey, DMPs are more common in humanoid robots, robot

locomotion and robot arm tasks. Although these robots have to perform a task in
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dynamic environments, the robots do not need to be highly precise. However, in

robotic grinding, the environment can be considered static but the movements have to

be precise. The experiments in this work are performed by human participants hand

movements on haptic interface. The aim of this paper was to show the ability to apply

DMP on high precise grinding robots.

DMP method can be improved by combining with other methods. In [17] a method of

Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) is combined

with DMP model for segmenting demonstrations and generalizing tasks from that

unstructured demonstrations. By combining these two methods, a multi-step task can

be learned and generalized and it can be given to the potential library to collect skills

over time. Moreover, different DMPs taken from different demonstrations can be

combined [18], as shown in Figure 2.3.

In our robotic grinding process, surfaces in micron-size resolution have to be ob-

tained. By utilizing from inspiring academic works explained, our motivation is to

introduce a new trajectory model by utilizing DMP method. This new method is a

tool for generation of trajectory for an unknown chip thickness. The generation of

this trajectory is a hard task due to the low stiffness of robot arms and spindle tool

and unknown chip thickness.
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CHAPTER 3

METHODOLOGY

3.1 Dynamic Movement Primitives

Method of Dynamic Movement Primitives [25] is one of the most promising methods

in robotics for the purpose of transferring any kinds of movements to machines. In

simple words, using this method, a robot can follow very complex trajectories that is

demonstrated to the robot. This method enables the generalization of goal-oriented

tasks, such as grasping an object and moving it to a predefined position, while being

able to avoid obstacles with any shapes. From dynamical systems point of view, this

type of behavior is an attractor behavior, where two points in space are connected to

each other via a trajectory. Note that both point attractors and limit cycle attractors are

present. Modeling such a behavior is possible by introducing a simple linear differen-

tial equation, as a representative of a simple dynamical system, and then transforming

it into a weakly nonlinear system by an autonomous forcing term. This way both at-

tractor dynamics and trajectory of the system can be modified. Developed model

should be an autonomous one, that is, there should be no explicit dependency on

time. This feature enables adding other coupling terms to the main dynamical system

(e.g., to avoid obstacles, or to include force control considerations, or to implement

closed-loop perception-action systems).

The most basic linear dynamical system, which can be used as a model is a mass-

spring-damper system. This model is actually very suitable for motor control prob-

lems, which are most commonly described by second-order differential equations and

require position, velocity and acceleration information for control. The model is writ-
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ten as,

τzÿ = αz(βz(g − y)− ẏ) + f(x) (3.1)

Where τ is a time constant, and αz and βz are positive constants. And f(x) is the

forcing term. In this context, the variables y, ẏ, ÿ are interpreted as desired position,

velocity and acceleration for a control system, and a controller will convert these

variables into motor commands.

To make things easier, model will be rewritten in first-order notation as,

τ ż = αz(βz(g − y)− z) + f(x) (3.2)

τ ẏ = z (3.3)

This system is called “transformation system”, since it transforms simple dynamics

of unforced systems into a desired nonlinear behavior. Note that if the forcing term is

fixed to zero then the equation represents a globally stable second-order linear system

where

(z, y) = (0, g) (3.4)

The point above is a unique point attractor. A phasic forcing term will result in a

point attractive system, where the trajectory will end at the specified final point. On

the other hand, a periodic forcing term will result in an oscillator, that is, in a limit

cycle behavior.

Note that since the nature of the system is based on a mass-spring-damper system,

the trajectory between the two points might have an underdamped behavior, which

obviously is not an efficient trajectory to follow, when the goal is to minimize the

time. Therefore, if the positive constants αz and βz are tuned such that the system is

critically damped, then the trajectory will monotonically converge toward goal (i.e.

g). The system can be made critically damped if βz = αz

4
.
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To be able to modify this simple trajectory, as mentioned above, a nonlinear func-

tion, called forcing term is required. This function must be designed such that it is

possible to modify it later by a learning algorithm. Therefore, it is obvious that some

kind of an arbitrary nonlinear function with adjustable “weights” is suitable for this

application. It is a well-established methodology in machine learning to represent

arbitrary nonlinear functions in form of linear combination of basis functions. The

same procedure can be applied in this case too. Forcing function can be chosen as,

f(t) =

∑N
i=1 ψi(t)ωi∑N
i=1 ψi(t)

(3.5)

Where ψi are fixed basis functions and ωi are adjustable weights. The parameters ωi

can be adjusted using learning algorithms in order to produce complex trajectories

before reaching g. Forcing term introduced in this form has a problem, and it is its

explicit time dependency. The explicit time dependence of this non-linearity creates

a non-autonomous dynamical system. And as mentioned previously, such a system

does not allow straightforward coupling with other dynamical systems. Therefore a

replacement of time by means of a first-order linear dynamics is introduced as,

τ ẋ = −αxx (3.6)

Where αx is constant. Starting from some arbitrarily chosen initial state x0, such as

x0 = 1, the state x converges monotonically to zero. Thus x can be conceived of as

a phase variable, where x = 1 would indicate the start of the time evolution and x

close to zero means that the goal g has essentially been achieved. For this reason, it is

important that x = 0 is a stable fixed point of these equations. This equation is called

“canonical system” because it models the generic behavior of the model equations.

Therefore forcing function can be reformulated as,

f(t) =

∑N
i=1 ψi(t)ωi∑N
i=1 ψi(t)

x(g − y0) (3.7)
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With N exponential basis functions ψi(x) is

ψi(x) = exp
(
−hi(x− ci)2)

)
(3.8)

Where hi and ci are constants that determine the width and centers of the basis func-

tions respectively, and y0 is the initial state y0 = y(t = 0).

Note that the forcing term introduced above is modulated by both x and (g − y0).

The modulation by x means that the forcing term effectively vanishes when the goal

g has been reached; an essential component is proving the stability of the attractor

equations. The modulation by (g − y0) will lead to useful scaling properties of our

model under a change of the movement amplitude (g − y0).

The complete system is designed to have a unique equilibrium point at (z, y, x) =

(0, g, 0). Recall that τ ẏ = z, and x = 0 means that g is reached.

Thus, it has been shown that with modifying the weights of the forcing term, it is

possible to generate complex trajectories until it reaches the point attractor g. These

complex trajectories will be generated in order to make the robot follow the complex

and nonlinear trajectories.

If it is required to model the limit cycle behavior, instead of a point attractor, a similar

approach is followed. Obviously, a periodicity must be introduced into the system.

This periodicity can be introduced either in canonical system or the basis function.

Latter method is more convenient; therefore it will be shown here.

A phase oscillator for learning limit cycle can be used.

τ φ̇ = 1 (3.9)

Where φ ∈ [0, 2π] is the phase angle of the oscillator (in polar coordinates) and the

amplitude of the oscillation is assumed to be r. Forcing term can be created as,

f(φ, r) =

∑N
i=1 ψiωi∑N
i=1 ψi

(3.10)
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Where,

ψi = exp (hi (cos(φ− ci)− 1)) (3.11)

Exponential basis functions, in this case, are von Mises basis functions, which are

actually Gaussian-like functions that are periodic.

If such a forcing term is used in the transformation system, then the goal point g will

be a point where the trajectory will eventually follow the limit cycle around it. It can

be interpreted as an anchor point for the oscillatory trajectory, which can be changed

to accommodate any desired baseline of the oscillation. The amplitude and period of

the oscillations can be modulated in real time by varying r and τ respectively.

3.1.1 Training Procedure

Learning procedure of the system will be finalized by adjusting the weights of the

forcing term. During the learning procedure, there are two separate phases to be per-

formed. First, the high-level parameters will be determined. High-level parameters

are g, y0, and τ for the discrete movement, and g, r, and τ for the rhythmic movement.

Note that for the discrete movement the parameter g is the final position of the move-

ment, and y0 is the initial position. And the time constant τ must be adjusted to the

duration of the demonstration. For the rhythmic movement g is an anchor point, that

is, it is the mid-position of the rhythmic movement. The parameter is chosen to be

the period of the rhythmic movement that is demonstrated divided by 2π. The param-

eter r is used to modulate the amplitude of the oscillations, can be chosen to be 1.0,

without loss of generality.

In the next phase, the learning phase for estimating the weights will be performed.

Any function approximator can be used for this purpose. A useful learning method

specific for the purpose of this work is locally weighted regression (LWR). It is a

very fast learning method, and it helps to result in a stable parameterization that can
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be used for movement recognition. Rearrange the transformation system 3.2 as

τ ż − αz (βz(g − y)− z) = f (3.12)

During the demonstration session following information are to be recorded.

(ydemo(t), ẏdemo(t), ÿdemo(t)) , where t ∈ [1, . . . , P ] (3.13)

Where g = ydemo(P ) and y0 = ydemo(0). After determining the high-level parame-

ters, the following relation can be obtained.

ftarget = τ 2ẏdemo − αz (βz(g − ydemo)− τ ẏdemo) (3.14)

After obtaining the relation above, the goal is to fit the weights in forcing term, so

that it is as close as possible to ftarget. LWR algorithm fits for each basis function in

the forcing term a corresponding weight.

3.1.2 Using DMP for Multi-DoF Systems

So far, DMP method is explained for 1-DoF systems. When applying DMP for multi-

DoF systems, each DoF requires a separate transformation system whose form is

given in (3.2) and (3.3), however, to maintain coordination there should be only one

canonical system. By this way, on each DoF motion can be planned with a different

forcing function and synchronized movements can be achieved since these functions

take the same phase variable from one canonical system (See. Figure 3.1) [9].

3.2 Modifications on DMP

In the content of this thesis, DMP was used to compensate the deflections and angular

deviations of the tool tip which obviously cause form error on the workpiece. There-

fore, there were two transformation systems with extra nonlinear functions are used

to add force/torque data to the system as perceptions.
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Figure 3.1: Application schematic of DMP on multi-DoF systems

As mentioned in section 3.1.2, in application, each DoF of the system need to be

modeled with separate DMPs, that is, transformation systems. Although, the robotic

grinding setup is 6-DoF (Figure 4.2), in the operation there are 4-DoF since the trans-

lational movement along the tool (x-axis) and rotation about the tool (u-axis) are not

effective on the process and excluded. Therefore, there are two translational move-

ments in normal and tangential directions of the cutting operation and two rotational

movements about these axes are considered to be manipulated by DMP. Then, general

formulation for the translational coordinates of the tool becomes as,

τ ż = αz(βz(g − y)− z) + f(x) + fgrind(Fn, Ft) (3.15)

This extra nonlinear function is containing the information of process behavior. It has

the force feedback as perception therefore, the coupling term should be a function of

grinding forces. This new function is,

fgrind(Fn, Ft) =

∑N
i=1 ψi(Fn, Ft)ωi∑N
i=1 ψi(Fn, Ft)

(3.16)

Where, ωi’s are weights and ψi(Fn, Ft)’s are basis functions in a form similar to (3.7).

During the process it is assumed that the location of the workpiece is known, but the
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burrs or the amount of material to be removed is unknown so the forces can not be

predicted before the process. Therefore, the relation between the deflections/devia-

tions and the forces should be learned to make adjustments on the trajectory. In other

words the functions below should be extracted,

δ = f(Fn, Ft) (3.17)

θ = f(Fn, Ft) (3.18)

Where, δ is the deflection and θ is the angular deviation of the tool tip. Finally, the

transformation system is turned into the below form.

τ ż = αz(g − z) + f(x) + fgrind(Fn, Ft) (3.19)

Here the order of the transformation system is reduced to one to make the system

more responsive and get rid of the effects of second order behavior. In this equation

z is the generalized coordinate and can represent any parameter in the system to be

manipulated.
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CHAPTER 4

EXPERIMENTAL SETUP

4.1 Introduction

As it is mentioned before, the aim of this thesis is to have grinding process with

desired depth of cut. In order to determine the accuracy of the depth of cut in on-

line grinding processes, several experimental setups and devices are obtained. The

main experimental setup utilized in this work is robotic grinding setup. This robot

is developed for performing grinding/deburring process in micron-size resolution in

controlled environment. The workpiece position in this setup is defined before, how-

ever, the shape of the surface of the workpiece may or may not be defined. This setup

is also capable of measuring the form change and roughness of the surface of the

workpieces.

In addition, in order to record the movements and forces created by human operator

while performing grinding process, the motion primitives experimental setup is built.

For recording the hand and wrist movement of the operator the haptic device is used.

Also, by utilizing the 6-DOF force/torque sensor, the forces exerted while performing

the grinding process by operator can be recorded and collected.

Finally, before and after performing grinding process, we can measure the surface of

the workpiece on manual measurement setup. By the help of the point laser scanner

available in the setup, we can measure the surface roughness and form changes of

machined workpieces. As it is mentioned before, surface measurement can also be

performed by robotic grinding setup.
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4.2 Robotic Grinding Setup

This setup contains of 6-DoF parallel manipulator (Hexapod), a Force/Torque sensor,

a spindle, a point laser scanner and workpiece. The 6-DoF parallel manipulator is

attached to a fixed metal and has a free space to move in controlled environment.

Also, The spindle, which is attached to the front plate of the Hexapod, turns a tool for

performing machining process. While the process, the F/T sensor which is attached

to spindle can read and record force and torques created. An overall appearance of

the robotic grinding setup is shown in Figure 4.1.

Note that, the spindle can be replaced by point laser scanner. In order to attach the

spindle and laser scanner to Hexapod, there is a tool changer component that allows

mounting and demounting the spindle and laser scanner. Therefore, the setup can

have two configurations. One of them is to perform grinding with force feedback,

and the other is laser scanning for measuring the surfaces and edges of the workpiece

attached on the table. The robotic grinding setup while doing measurement with point

laser scanner is shown in Figure 4.2.

4.2.1 6-DoF Parallel Manipulator

PI H-824.G1 Hexapod is the main device in the setup that carries other components of

the setup. It is mounted on a chassis composed of sheet metal and extruded aluminum

parts. This device moves the tool, that is attached to the spindle, in a desired direction

and orientation in a limited environment.

Some of its specifications are,

• Min. incremental motion X, Y, Z: 0.3 µm

• Min. incremental motion A, B, C: 3.5 µrad

• Repeatability X, Y: ± 0.5 µm

• Repeatability Z: ± 0.15 µm

• Max. velocity X, Y, Z: 1 mm/s
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• Max. Load: 10 kg

• Connection type: Ethernet

Figure 4.1: Overall appearance of robotic grinding setup

Figure 4.2: Grinding robot with point laser scanner attached and the coordinate frame

of the setup.
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Figure 4.3: System 3R-628.24-S Macro Starter Package. Part names from left to

right: Table chunk, Draw-bar, and Pallet

Figure 4.4: ATI Gamma IP60 force/torque sensor

Figure 4.5: BMR Company’s 222-42-MHM Spindle and SFU 0200 Frequency Con-

verter.
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4.2.2 System 3R

3R-628.24-S Macro Starter Package is placed on the front surface of the Hexapod

robot to mount and demount different end effectors with a repeatability of 0.002 mm

without impairing calibration, e.g. spindle and scanner. The package has three parts

and they are shown in Figure 4.3.

4.2.3 F/T Sensor

In order to measure forces and torques on the spindle, an ATI Gamma IP60 force/-

torque sensor was utilized (See. Figure 4.4). It carries the spindle and records all the

forces and torques exerted on the machining tool.

Some of its specifications are,

• Sensing ranges Fx, Fy: ± 32 N

• Sensing range Fz: ± 100 N

• Sensing ranges Tx, Ty, Tz: ± 2.5 Nm

• Resolution X, Y: 0.00625 N

• Resolution Z: 0.0125 N

• Resolution Tx, Ty, Tz: ± 0.0005 Nm

4.2.4 Spindle

BMR Company’s 222-42-MHM Spindle and SFU 0200 Frequency Converter were

implemented on the setup to power-up the grinding tools (See. Figure 4.5). The

Frequency controller can be adjusted manually or from computer using serial com-

munication.

Some of its specifications are,

• Max. nominal output power: 0.3 kW
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• Max. rotation speed: 60,000 rpm

• Weight: 1 kg

• Housing diameter: 42 mm

4.2.5 Point Laser Scanner

Keyence LK-H008 model was utilized on the setup to measure the surface of the

workpieces without detaching it from the table, shown in Figure 4.2. When point

laser scanner reflects on the workpiece, it creates line because of distance, then, it

automatically takes the average distance of the line and gives one distance.

Some of its specifications are,

• Spot diameter (at standard distance): 20 µm

• Repeatability: 0.005µm

• Sampling cycle: 2.55-1000 µs (9 steps)

• Measuring distance: 8 mm

• Measuring range ±0.5 mm

• Controller: Keyence LK-H027

• Connection type: RS232

4.3 Motion Primitives Experimental Setup

The motion primitives experimental setup was built for recording the movements of

a deburring operator and the forces of the process simultaneously. Therefore, the

setup consists of a 6-DoF haptic device to record the hand movements of the operator

in 6 axes, a pneumatic spindle is mounted at the last link of the haptic device, and

a force/torque sensor to sense the forces when the operator executing the grinding

operation. The 6-DOF force/torque sensor is attached to fixed and heavy fixture.
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This fixture is attached to table by rubber glue in order to reduce the disturbance to

minimum. The overall configuration of motion primitives setup is shown in Figure

4.6.

Figure 4.6: Overall appearance of motion primitives experimental setup

4.3.1 6-DoF Haptic Device

A Phantom Premium 6-DoF haptic device was used in this setup to record hand move-

ments of deburring operator. Since there is an encoder stylus gimbal available in this

device, we can also record time, directions and orientations of operator during the

experiments. Thus, we can also calculate the angular velocities and accelerations of

human operator (See. Figure 4.7).

Some of its specifications are,

• Workspace: 381 W x 267 H x 191 D mm

• Nominal position resolution X, Y, Z: 0.03 mm
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Figure 4.7: 3D Systems Phantom Premium 1.0

• Nominal position resolution Yaw, Pitch: 0.0023 degrees

• Nominal position resolution Roll: 0.0080 degrees

• Connection interface: Parallel Port

4.3.2 Pneumatic Spindle

Pneumatic Spindle is a device which is connected to compressor from one side and

to the machining tool from the other side. The air coming from compressor goes to

spindle and rotates the tool. We can control the rotation speed of machining tool by

using the apparatus of spindle.

Some of its specifications are,

• Collet size: 3 mm

• Inlet air pressure: 90 PSI

• Unloaded speed: 70,000 rpm

• Housing diameter: 15.4 mm
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Figure 4.8: APAC A11-D3105 High Speed Mirco Die Grinder

4.3.3 F/T Sensor

In order to measure forces and torques on the workpiece, an ATI FT07638 force/-

torque sensor was utilized. It can be seen from Figure 4.9 that the F/T sensor is fixed

below the workpiece. During the deburring/grinding process, when machining tool

touches the workpiece, F/T sensor reads and records the moments and forces exerted.

Figure 4.9: ATI FT07638 force/torque sensor(below) with the workpiece fix-

ture(above) calibration SI-50-0.50

4.4 Manual Measurement Setup

The manual measurement setup is built in order to calculate the form change, rough-

ness and amount of the removed material of the surface of the workpiece before and

after the experiments. As shown in the Figure 4.10, the manual measurement setup
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consists of point laser scanner and 3-DOF positioning device. The laser scanner is

fixed and calibrated on the positioning device and reflects on the workpiece. Thanks

to precise 3D positioning device, point laser scanner can reach to any position of the

surface of the workpiece.

Figure 4.10: Overal appearance of manual measurement setup

4.4.1 Point Laser Scanner

The model of the point laser scanner utilized in this setup is Keyence LK-H027 (Fig-

ure 4.10). This scanner can measure from 17 mm to 23 mm and has a 0.02 µm

repeatability.
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CHAPTER 5

LEARNING HUMAN SKILL MOVEMENT PRIMITIVES

This chapter presents a new method to learn motor skills of human expert performing

manual deburring operation. The task-related movements of the human expert are

recorded using a haptic device. Then by using an ordinary differential equation of

DMP, the intrinsic movement primitives are parameterized. In this study, DMP is

used to extract the trajectory of the cutting tool interacting with the workpiece. This

trajectory contains the complex behaviors of the human expert. In order to model

human expert’s movements for precise robotic deburring process, DMP is modified

by addition of a non-linear function of deburring forces. Parameters of the modified

DMP model are estimated using two-layer feed-forward network, trained by Bayesian

regularization back-propagation algorithm. As it is known, these parameters are used

to generate human expert like movements for the precise robotic deburring.

5.1 Introduction

In manual deburring, human expert has specific performance during the movement of

tool on the workpiece. Experts have exclusive performance in using their wrist and

hand motions with the help of their specialized senses, such as understanding surface

roughness by touching workpiece surface, listening to the sound of the process for

hardness of material, using vision to understand the surface roughness and material

removal rate. Similar to manual deburring experts, deburring robots can have possible

senses of vibration, vision, sound and Force/Torque (F/T) sensors. Due to physical

interaction, F/T sensors are essential as they provide the primary information related

to process. Vision can provide valuable information about the overall trajectory but
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still this trajectory could not be in micron-size precision and in machining processes

generally the trajectory can only be known from the CAD model of the workpiece.

Additionally, any visual sensor could not sense machined area during the process.

Using force, vibration and sound sensors, characteristics of the process can be distin-

guished. Within these senses F/T is essential to understand what is happening during

the deburring process, other can be an option for further enhancements. Therefore,

in this study by using Force/Torque sensors it is planned to transfer the motion prim-

itives of the human expert skills to the robot for trajectory generation to be used in

deburring or precise grinding processes. Since the generation of a path for a task can-

not be programmed for every situation, DMP which is a general trajectory generation

method can replace the traditional methods.

5.2 Methodology

As it is known from the literature survey, chapter 2 and methodology, chapter 3 ana-

lyzed before, DMP is more common in locomotion of robots and humanoid robot arm

tasks, such as jumping robots, grasping and placing movements. In these tasks, there

is a dynamic environment and the movements of robots do not need to have a micron

size precision. However, in deburring process used in this study, the environment is

static and the trajectory of the tool tip must perform high precision machining on the

workpiece. In addition, instead of obstacle avoidance, deburring forces required to be

taken into account in deburring process because of the contact between the tool tip

and the workpiece which affect the trajectory. Therefore, in this case, coupling term

is calculated using deburring forces.

The performed deburring process has two degrees of freedom: depth of cut direction

and feed direction. Therefore, to execute this motions, there need to be two different

transformation systems.

In [20], the motion primitives were found using weighted summation of the kernel

functions, time constants, and time scaling factor were used as the guidance on how

to generate the given trajectory. In canonical form, x was used for gating the effect of

force term. Here, as an alternative, we propose to augment DMP equation and try to
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fit the characteristics of the trajectory to time constants and time scale factors under

the influence of current deburring forces.

Therefore, transformation system of the normal motion can be modified to

τDż = αD(βD(Dc
set −Dc)− z) + fD

DMP (x) + fD
Deburring(Fn, Ft) (5.1)

τDḊc = z (5.2)

Here, Dc is the depth of cut in the deburring process. Also, the transformation system

of the tangential motion on the trajectory is as below:

τf ḟR = αf (βf (g − p)− z) + ff
DMP (x) + ff

Deburring(Fn, Ft) (5.3)

τf ṗ = fR (5.4)

Where g is the scaled goal position of the trajectory and p is directly proportional to

the position of the tool with Scaling factor, τf and fR is the feed rate of the process.

In both DMPs there are two types of nonlinear functions, which fD
DMP (x) and

ff
DMP (x) are nonlinear forcing term for fitting the trajectory and fDDeburring (Fn, Ft)

and ff
Deburring (Fn, Ft) are nonlinear functions determined using two-layer feed-

forward network that are trained by Bayesian regularization back-propagation algo-

rithm where Fn and Ft are the deburring forces in normal and tangential directions,

respectively. Since both of the transformation systems uses Fn and Ft, they have an

implicit coupling between each other.

For formulating a function approximation problem, we rearrange (5.1) and (5.3) as

τDż − αD(βD(Dc
set −Dc)− z) = fD

DMP (x) (5.5)

τf ḟR − αf (βf (g − p)− fR) = ff
DMP (x) (5.6)
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Inserting the information from the demonstrated trajectory in the left-hand side of the

above equations, we obtain;

fDMP
D,target(x) = τD

2D̈c − αD(βD(Dc
set −Dc)− τDḊc) (5.7)

fDMP
f,target(x) = τf

2ḟR − αf (βf (g − p)− fR) (5.8)

Thus we have obtained a function approximation problem where the parameters of

fDMP
D (x) and fDMP

f (x) are to be adjusted such that fDMP
D (x) and fDMP

f (x) are as

close as possible to fDMP
D,target(x) and fDMP

f,target(x).

The cost function that is used to minimize the error is:

JDi =
P∑
t=1

ψi(t)(f
D
target(t)− ωDiξD(t))2 (5.9)

Jf i =
P∑
t=1

ψi(t)(f
f
target(t)− ωf iξf (t))

2 (5.10)

where the exponential basis function is,

ψi(x) = exp(hi(x− ci)2) (5.11)

ωDi and ωf i are the solution of the linear regression problem which have the equation

of below;

ωi =
sTΓiftarget

sTΓis
(5.12)
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where

s =


ξ(1)

ξ(2)
...

ξ(P )

 (5.13)

where ξD(t) = x(t)(g − p) and ξf (t) = x(t)(Dset
c −Dc) and,

Γi =


ψi(1) 0

ψi(2)
. . .

0 ψi(P )

 (5.14)

By using above equations in this part, the forcing terms are obtained, therefore, the

generated path is fitted to the trajectory.

The Nonlinear terms of DMP method in tangential and normal directions become

fDMP
D (x) =

∑k
i=1 ψi(x)ωi∑k
i=1 ψi(x)

x(Dset
c −Dc(0)) (5.15)

fDMP
f (x) =

∑k
i=1 ψi(x)ωi∑k
i=1 ψi(x)

x(g − p0) (5.16)

Nonlinear equations of fDeburringD (Fn, Ft) and fDeburringf (Fn, Ft) can be obtained us-

ing the information of demonstration, Ft and Fn to improve the fitting made using

only the nonlinear equations of fDMP
D (x) and fDMP

f (x).

fDeburringD,target (Fn, Ft) = τ 2DḊc − αD(βD(Dset
c −Dc)− τDḊc)− fDMP

D (x) (5.17)

fDeburringf,target (Fn, Ft) = τ 2f ḟR − αf (βf (g − p)− fR)− fDMP
f (x) (5.18)
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These non-linear functions are approximated using two-layer feed-forward neural net-

work that are trained by Bayesian regularization back-propagation algorithm by using

MATLAB Neural Network Toolbox [11]. Considering the offered methods in [27],

the number of hidden neurons of neural network is determined.

5.3 Results

In this section, the trajectory of the tool tip of the haptic device on the flat profile of the

workpiece is examined and the hand motions of human expert are imitated. The task

of the participant is to obtain a horizontal flat surface (Figure 4.9). In the experiment,

tool tip positions and F/T data is recorded. Then, by using DMP model, a curve fitting

of experimental data is obtained. After that, by utilizing the parameters of DMP

model, the movements for different attractor points were imitated. For simplicity, we

considered tool tip movement only in the tangential and normal direction and used

F/T sensor data in tangential and normal direction. It is verified that the trajectory in

the experiment and the trajectory obtained from DMP model are compatible.

Figure 5.1 shows the errors of estimated paths with DMP from the actual Path in nor-

mal direction while Figure 5.2 shows the errors of estimated paths with DMP from

the actual Path in tangential direction with respect to time. In each figure, red lines

show error of estimated path using DMP and blue lines error of estimated path using

DMP with grinding forces. Figure 5.3 shows the trajectories on the 2D workspace.

Where, red solid line is the curves belonging to the actual path followed by the par-

ticipant, blue solid line is the curves obtained using (5.5) and (5.6), and dashed line is

the trajectory generated from (5.1) and (5.3).

In normal direction (5.1) and (5.5) gives very similar results but mean square error

from the actual path of DMP with deburring forces is a little smaller than that of orig-

inal DMP. The mean square error values are 0.0512 and 0.0532 for the two models.

However, in tangential direction (5.3) gives better fit with respect to (5.6). The mean

square error from the actual path is 33% lower for the DMP with deburring forces

with the error values, 0.2783 and 0.4154.

Figure 5.3 shows the trajectories in both tangential and normal directions. As it can
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Figure 5.1: Errors of estimated paths with DMP from the actual Path in normal direc-

tion.
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Figure 5.2: Error of estimated paths with DMP from the actual Path in tangential

direction.
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be seen, estimations using the original DMP and DMP with deburring forces both fit

actual path very well. Although, the difference cannot be seen clearly from the figure,

the mean square errors are small enough for the imitation of the desired movements.
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Figure 5.3: Experimental and estimated trajectories in 2 dimensions using DMP and

DMP with deburring force

5.4 Conclusion

Human expert performs perfect deburring process using his/her set of motor capabili-

ties and senses. The expert internally develops an interaction model by experience in

his/her mind. This model adapts to changing environment accordingly due to expert’s

immense neural network. Instead of developing an explicit interaction model for de-

burring; the idea of utilizing a human expert’s already developed internal model to

generate trajectories of a robot for deburring operation is the core of this study. This

is accomplished by the extended additional term of the modified Dynamic Movement

Primitives (DMP) model. The nonlinear functions obtained from subjects, correspond

to an expert’s internal model of interaction and trained by a neural network.
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CHAPTER 6

EXPERIMENTAL PROCEDURE

The aim of this thesis is to reduce the form error of a ground workpiece on a robotic

grinding setup. As explained in chapter 3, DMP method is utilized to eliminate the

form error on the workpiece due to tool deflections. For this purpose, three sets of

experiments are designed and conducted.

First set of experiments is conducted to extract the non-linear function, fgrind given in

(3.16). For this purpose, standard process is applied on a workpiece while forces on

the spindle are recorded. Then, surface is measured in order to determine the amount

of material remaining due to tool deflection.

Second set of experiments aims to validate that using DMP method form error can

be reduced significantly compared to standard grinding with a non-stiff robotic setup

by only changing depth of cut. Therefore, (3.19) is applied only to the translational

motion in normal direction of the grinding process.

Lastly, form error can still occur due to the angular deviations of the tool tip. In order

to eliminate this, third set of experiments is conducted by applying (3.19) to both the

translational motion in normal direction and rotation about the tangential direction.

6.1 Force Relations Determination

In this section extraction of. The nonlinear function will be trained based on measured

deflection and force values. The flow chart for the procedure is shown in Figure 6.1.

First, a ramp is machined to the workpiece with specified initial height, h1 and final

height, h2 on the robotic grinding setup. Then, this workpiece is machined to get a
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Figure 6.1: General flow scheme of the experiments

straight and flat surface by assigning the robot to move on a straight line as illustrated

in Figure 6.2.The grinding forces are recorded during the process in the following

form.

F = f(y) (6.1)

The result of the process will not be as desired since the grinding forces cause tool

deflection. The resultant surface is measured by the point laser scanner and the form

error values are obtained in the following form.

δ = f(x, y) (6.2)

Also, rotation of the tool about the tangential direction is calculated by simply fitting

lines on the measurements of the machined surface of the workpiece, Figure 6.4.

Then, angular deviations are obtained in the following form.

θ = f(y) (6.3)
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Figure 6.2: Illustration of the first set of experiments.

As a result, required data to train the nonlinear function is obtained by matching data

of F and δ for equal y values and matching data of F and θ for equal y values, so

(3.17) and (3.18) are obtained. Then, the nonlinear function, fgrind(Fn, Ft) is trained

by adjusting weights of the function to fit the function to the data.

6.1.1 Scanning Machined Surfaces

Scanning of the workpiece is used to determine the 3D surface profile of the pre-

machined and machined workpieces. In this study, a certain rectangular shaped sur-

face is machined, however, in order to measure it, its orientation is need to be deter-

mined. For this purpose, four points at the edges of the rectangular surface are need

to be determined and then using these points a path for the surface scan can be gener-

ated. In Figure 6.3, the workpiece and the four points (r1, r2, r3 and r4) at the edges

are illustrated.

Figure 6.3: Illustration of the workpiece on the table of the robot with points at the

edges.
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The scanning direction is the direction of the vector connecting r4 to r2. Then the

scanner follows multiple parallel lines in the scanning direction which are drawn with

dashed lines in the Figure 6.3. End points of the lines are determined using r1 and r3.

After the scan is finished, a point cloud is obtained that has the information of the

scanned surface. Using those points, the form error of the workpiece is calculated

as well as the angular deviation of the workpiece by fitting lines perpendicular to

scanning direction. Fitted lines on a workpiece to calculate angular deviation are

illustrated in Figure 6.4.

6.2 Linear Deflection Compensation

After training the function in (3.17), DMP method is implemented for deflection com-

pensation in normal direction. For this purpose, (3.17) is reduced to the following

form.

τ ż = αz(g − z) + fgrind(Fn) (6.4)

Here, since the aim is to preserve a constant depth of cut, f(x) is dropped. Also, since

it does not effect the deflection in normal direction, tangential force, Ft, is eliminated

from arguments of nonlinear function, fgrind.

6.2.1 Determination of DMP Parameters

In (6.4) there are two parameters, which are τ and αz. These parameters affect the

dynamic characteristics of the system.

Among these parameters, αz determines the steady state value of z, which is the

position of the tool in normal direction. At steady state, value of ż approaches to

zero, therefore, from (6.4) expression for z comes as below.

z = g +
fgrind(Fn)

αz
(6.5)
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Figure 6.4: Fitted lines on a workpiece to calculate angular deviation.

By considering the above equation, it can be understood that the effect of nonlinear

function fgrind(Fn) on z is dependent to αz. Increasing value of αz results in smaller

adjustments of the tool position while decreasing value of αz increases the effect

of fgrind(Fn). Because fgrind(Fn) gives estimate form error for a given Fn, setting

αz = 1, assures achieving the desired surface at steady state.

Determination of τ depends on many parameters including spindle speed, feed rate

and other tool and material properties. Since the trained nonlinear function is only

applicable on unique tool and material pair and also for a specified tool length, data

from the first set of experiments could be useful to settle the value of τ . Feeding Fn

from those experiments to (6.4) for different τ values, it generates various trajectories.

Comparing generated (g − z) values with previously measured δ values, three fitting

conditions can be observed. For τ getting larger values, ż gets smaller so system

becomes bulky and cannot respond to force changes in time. For τ getting smaller

values, ż gets larger and this causes a very responsive system which fits to even noisy

fluctuations in the force data.

6.2.2 Machining Different Workpiece Profiles

There are four surface profiles machined to get a flat surface for validating that DMP

method is working well to reduce form error significantly. These profiles are named

as straight, ramped, trapezoidal and sinusoidal profiles, Figure 6.5.

Firstly, a straight profile is aimed to machined by constant material removal through

the profile. For this profile, it is expected that force values remain almost constant

since any grinding parameter is subjected to change except slight changes in depth of

43



Figure 6.5: Different shapes of profiles. (a) Straight profile. (b) Ramped profile. (c)

Trapezoidal profile. (d) Sinusoidal profile.

cut.

For the case of ramped profile, the depth of cut increases (or decreases) with the

feed. By using this profile, response of the DMP system to the ramp input can be

investigated.

The next one is the trapezoidal profile and it is a mixture of the first two profiles.

The last case of sinusoidal profile is used for observing the DMP system taking the

force input from a wide range of values. This profile provides more dynamic environ-

ment compared to others. By changing the period and amplitude of the sinusoidal, its

dynamic characteristic changes.

Figure 6.6: Two positions of the robot illustrating the angular deviation compansation

action. (x0, z0) is the position of the robot for v = 0 and (x, z) is the position of the

robot for a certain v value.
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Each profile is machined twice. One of them is without using DMP so it is a stan-

dard grinding process. The other is using DMP for online trajectory generation using

force input. Each profile is also measured with the laser scanner before and after the

process. After measurements, mean, standard deviation and RMS values of the form

error with respect to desired surface are calculated and compared.

6.3 Angular Deviation Compensation

The grinding forces cause also angular deviations on the tool tip as well as deflections.

Therefore, linear deflection compensation should be extended to get more accurate

surface finish with smaller form errors. Therefore, one more transformation system

is added on top of the existing one to control the position of the tool.

τvv̇ = αv(gz − v) + fgrind,v(Fn) (6.6)

Here, v is the rotational coordinate about the tangential direction (y-axis). Since tool

is located at a distance from the origin of the robot, adding rotation to the system also

results in translational motion at the tool. To eliminate this extra motion in x and

z axes, extra terms should be added to these coordinates. Therefore, this positional

adjustment of the robot is illustrated in Figure 6.6.

x = x0 − dx(1− cos(v))− dz sin(v) (6.7)

τz ż0 = αz(gz − z0) + fgrind,z(Fn) (6.8)

z = z0 − dx sin(v) + dz(1− cos(v)) (6.9)

Where, dx and dz are the offset of the tool tip from the origin of the robot in x and z

axes. x0 and z0 are the coordinates of the robot with v = 0 (See. Figure 6.6). (6.8) is

the same equation as (6.4) but the output is updated by additional terms.
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Now, the system is available for angular deviation compensation as well as linear

deflection compensation. The upcoming procedure is similar to section 6.2. Firstly,

DMP parameters are determined using the method explained in section 6.2.1, in this

case there are four of them.

Then, after determining DMP parameters, everything is ready to apply these equation

to the grinding process. The method is again tested on the profiles shown in Figure

6.5. Each profile is measured with the laser scanner before and after the process.

After measurements, mean, standard deviation and RMS values of the form error

with respect to desired surface are calculated and compared with the results obtained

by the linear deflection compensation method explained in section 6.2.
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CHAPTER 7

RESULTS AND DISCUSSION

In this chapter, the results of the experiments explained in chapter 6 are presented and

evaluated compared to standard robotic grinding (RG) process. Robotic grinding with

DMP (RG-DMP) is also compared with robotic grinding process with PID (RG-PID)

and ADRC (RG-ADRC) controllers. The criteria for the comparison is the flatness of

the surface and also the form errors from the desired surface.

7.1 Force Relations Determination

As described in section 6.1, multiple workpieces are machined to obtain a flat surface.

Then, from measured surface and recorded data, training data is created by matching

them. Finally, fgrind,z and fgrind,v in (6.4) and (6.6) are trained with the training

data. In Figures 7.1 and 7.2 , the training data and trained nonlinear functions linear

deflection and angular deviation are presented.
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Figure 7.1: Training data and nonlinear function for linear deflection

47



0 5 10 15 20 25 30 35 40

Normal Force, [N]

0

0.1

0.2

0.3

0.4

A
ng

ul
ar

 D
ev

ia
tio

n,
 [d

eg
]

f
grind,v

Training data

Figure 7.2: Training data and nonlinear function for angular deviation

In Figures 7.1 and 7.2, red scattered data is the training data obtained from experi-

ments. For normal force values of 0 and 40 N , deflection and deviation is assigned

to be 0 as well. Since tool goes more into the workpiece with the increasing nor-

mal force, this results in way more grinding forces so it could damage the tool and

the setup. To avoid this, tool won’t go into workpiece and keep force values lower

than 40 N . The blue solid lines in the figures are the trained nonlinear functions that

are used in DMP equations (6.4) and (6.6). Finally, using DMP equations with the

nonlinear functions, deflections of the tool can be estimated and compensated.

Figure 7.3: Surface scan of a workpiece before and after the grinding operation.
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7.2 Linear Deflection and Angular Deviation Compensation

In this section, the grinding process is applied on specified profiles of the workpieces.

Each process is performed with and without using the proposed methods, namely,

linear deflection compensation with DMP and angular deviation compensation with

DMP on top of linear deflection compensation. In other words, workpieces are first

machined with no trajectory adjustment and deflection compensation, then, they are

machined by only applying linear deflection compensation. Finally, they are ma-

chined by applying both linear deflection and angular deviation compensation. Also,

surface of each workpiece is scanned with laser measurement sensor before and af-

ter the process. An example scan of a ground workpiece is shown in Figure 7.3,

where, blue lines are the measured surface before the operation and colored lines are

the measured surface after the operation. The color is changes from blue to red with

increasing z value. The coloring is made in order to make the figure more understand-

able.

Table 7.1: Statistical values of form error and surface angle for "Almost Flat Surface".

Almost Flat Surface

Linear Error [mm] Angular Error [o]

MEAN STD RMS MEAN STD RMS

0.0000 0.0096 0.0096 0.0000 0.0172 0.0172

In Tables 7.2-7.6, statistical measures for 12 machined surfaces are listed. From Fig-

ure 7.4 to Figure 7.8 surface scans of these surfaces are presented. The first column

has the names of the profiles which are shown in Figure 6.5. The next number gives

the maximum depth of cut on that profile. Second and third columns give the types

of error which are mean, standard deviation and RMS values of the form error (Lin-

ear Error) with respect to desired surface and mean, standard deviation and RMS

values of the surface angle (Angular Error) with respect to desired surface angle. Fi-

nally, the remaining columns has the error values of three different processes applied.

Where, (SGP) stands for standard grinding process, that is no deflection compen-

sation, (DMP-L) for linear deflection compensation with DMP and (DMP-AL) for

angular deviation compensation with DMP on top of linear deflection compensation.
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Table 7.2: Statistical values of form error and surface angle of the experiments from

workpieces of straight profile machined with standard grinding and the two proposed

methods.

Profile Error Type SGP DMP-L DMP-AL

Linear MEAN 0.0701 0.0091 0.0043

Error STD 0.0231 0.0122 0.0117

Straight [mm] RMS 0.0738 0.0152 0.0125

450 µm Angular MEAN 0.2005 0.2120 0.0344

Error STD 0.1089 0.1375 0.0516

[o] RMS 0.2292 0.2521 0.0630

Figure 7.4: Results of grinding operations on Straight 450 µm. Y-Z view of scan.

Top: SGP, Middle: DMP-L, Bottom: DMP-AL.
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Table 7.3: Statistical values of form error and surface angle of the experiments from

workpieces of ramped profile machined with standard grinding and the two proposed

methods.

Profile Error Type SGP DMP-L DMP-AL

Linear MEAN 0.0256 0.0037 0.0015

Error STD 0.0180 0.0117 0.0137

Ramped [mm] RMS 0.0313 0.0123 0.0138

450 µm Angular MEAN 0.1516 0.1776 0.0573

Error STD 0.0802 0.0974 0.0516

[o] RMS 0.1675 0.2005 0.0745

Figure 7.5: Results of grinding operations on Ramped 450 µm. Y-Z view of scan.

Top: SGP, Middle: DMP-L, Bottom: DMP-AL.
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Table 7.4: Statistical values of form error and surface angle of the experiments from

workpieces of straight profile machined with standard grinding and the linear deflec-

tion compensation method.

Profile Error Type SGP DMP-L

Linear MEAN 0.0139 0.0047

Error STD 0.0116 0.0122

Straight [mm] RMS 0.0181 0.0131

300 µm Angular MEAN 0.2349 0.0516

Error STD 0.1203 0.0688

[o] RMS 0.2636 0.0859

Figure 7.6: Results of grinding operations on Straight 300 µm. Y-Z view of scan.

Top: SGP, Middle: DMP-L, Bottom: DMP-AL.
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Table 7.5: Statistical values of form error and surface angle of the experiments from

workpieces of trapezoidal profile machined with standard grinding and the linear de-

flection compensation method.

Profile Error Type SGP DMP-L

Linear MEAN 0.0319 0.0123

Error STD 0.0207 0.0099

Trapezoid [mm] RMS 0.0380 0.0158

450 µm Angular MEAN 0.0458 0.0573

Error STD 0.0401 0.0539

[o] RMS 0.0630 0.0802

Figure 7.7: Results of grinding operations on Trapezoidal 450 µm. Y-Z view of scan.

Top: SGP, Middle: DMP-L, Bottom: DMP-AL.
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Table 7.6: Statistical values of form error and surface angle of the experiments from

workpieces of sinusoidal profile machined with the two proposed methods.

Profile Error Type DMP-L DMP-AL

Linear MEAN 0.0136 0.0033

Error STD 0.0133 0.0088

Sinusoidal [mm] RMS 0.0190 0.0094

400 µm Angular MEAN 0.1057 0.0516

Error STD 0.1363 0.0458

[o] RMS 0.0859 0.0688

Figure 7.8: Results of grinding operations on Sinusoidal 400 µm. Y-Z view of scan.

Top: SGP, Middle: DMP-L, Bottom: DMP-AL.
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In Tables 7.2-7.6, mean values of linear and angular error is calculated by taking the

average of errors of individual measurements from the reference surface, i.e. the al-

most flat surface. Then, the standard deviation values are calculated using the formula

below.

STD =

√∑n
i=1(ei − µe)2

n
(7.1)

Also, RMS values are calculated by the following formula.

RMS =

√∑n
i=1(ei)

2

n
(7.2)

When these statistical values are investigated, it can be seen that linear deflection

mean values are highest for standard process, then, linear deflection compensation

comes and finally, angular deviation compensation method has the lowest average

form error. However, to determine the surface quality, standard deviation and RMS

values of the form errors are calculated and tabulated. Here, standard deviation can

be treated as a measure for the deviations in the form error of the surface. There-

fore, resultant surface roughness and the quality of the processes can be compared

among these values. For standard deviation values, results from DMP method used

are generally better than the ones from standard grinding. Still, for Straight 300 µm

(SGP) has very similar standard deviation with Straight 300 µm DMP-L. This could

be because of the low grinding forces which pushes the differences in the methods

into the background. DMP-AL provides average of 63% less mean of linear error but

only 7% less standard deviation of linear error than DMP-L. As a result, DMP-AL

does not manage to have distinctively better standard deviation, and surface quality

compared to DMP-L.

For the error of angular deviation, DMP-AL shows its eligibility and has significantly

lower mean of angular error with respect to other two processes, SGP and DMP-

L. Also, from standard deviation respect, DMP-AL has lower values with respect to

other two processes, SGP and DMP-L. DMP-AL provides average of 67% less mean

of angular error and 49% less angular error deviation than DMP-L.
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In Table 7.1, the least error values of the surface achievable with the grinding setup

is presented. This one named as "Almost Flat Surface" because, unlike other exper-

iments, the workpiece is machined for many passes to obtain best possible surface

achievable with the setup. Therefore, results for "Almost Flat Surface" are the perfect

results if everything goes ideally. When, this least error values are compared with

the ones in Tables 7.2-7.6, it can be conclude that proposed methods could achieve

standard deviation values of linear error at most 40% higher than the least standard

deviation values of linear error. However, the standard deviation values of angular er-

ror are at least 160% higher than the least standard deviation values of angular error.

7.3 Tool Deflection Compensation with PID and ADRC

In his work [5], Donder presented a method to compensate the form shaping errors

in grinding operations due to the lack of a prior knowledge of the surface profile. In

his study, the tool deflections are computed from the grinding forces in real time and

the compensation is performed by the hexapod robot in 6-DoF and two different con-

trol algorithms namely PID control and Active Disturbance Rejection Control were

tested on a robotic grinding setup and the experiment results are discussed. From

this work, RMS values of form resulting from PID controller with different reference

normal forces and ADRC are presented in Table 7.7. Also, the angle of the surface

form resulting from PID controller with different reference normal forces and ADRC

presented in Table 7.8.

Table 7.7: RMS values of form resulting from PID controller with different reference

normal forces and ADRC.

PID (Fn = 7.5N) PID (Fn = 10N) ADRC (Fn = 7.5N)

RMS [mm] 0.042 0.060 0.065

By comparing the error results of linear deflection of grinding process with DMP

(Tables 7.2-7.6) and PID and ADRC (Table 7.7), it can be conclude that grinding

process with DMP has at least 55% lower RMS value with respect to PID control

and at least 71% lower RMS value with respect to ADRC. Then, by comparing the
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Figure 7.9: Ground workpiece with the lines that the angle of the surface form is

measured.

Table 7.8: The angle of the surface form resulting from PID controller with different

reference normal forces and ADRC. All values are with unit [o].

Numbered lines

in Figure 7.9
1 2 3 4 5 6 7 8 Mean STD

PID Fn = 7.5N -0.15 -0.17 -0.12 -0.14 -0.10 -0.06 -0.09 -0.12 -0.119 0.035

PID Fn = 10N -0.16 -0.12 -0.13 -0.11 -0.05 -0.09 -0.09 -0.10 -0.106 0.032

ADRC Fn = 7.5N -0.19 -0.16 -0.13 -0.11 -0.12 -0.09 -0.13 -0.12 -0.131 0.031

error results of angular deviation of grinding process with DMP (Tables 7.2-7.6) and

PID and ADRC (Table 7.8), it can be said that grinding process with DMP has at

least 28% higher STD value with respect to PID control and at least 45% higher

STD value with respect to ADRC. Note that, PID and ADRC are applied to keep the

force at a certain level and these 7.5N and 10N forces are small forces compared to

the forces encountered for example during machining a Straight 450 µm profile with

DMP which has average force of 24.67N.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this thesis study, DMP method is utilized for trajectory generation of robotic grind-

ing operation. In standard robotic deburring, interaction forces can cause significant

deflection on the tool, workpiece and the robotic system. As a result, form errors

occur. Using force data as perception and form error as position, DMP method is

trained and used to predict deflection on the tool and make adjustments on the trajec-

tory, while performing the deburring operation online. Four different surface profiles

(Straight, Ramped, Trapezoidal and Sinusoidal) machined to get a flat surface.

The results of robotic deburring process with DMP (RD-DMP) show that, by per-

forming linear and angular adjustments, the form errors on the machined workpieces

decreased significantly compared to standard deburring (RD). It was shown that the

average form error of the surface profile obtained by RD-DMP is roughly 80% less

than the surface profile obtained by RD. Also, the average angular error of the surface

profile obtained by RD-DMP is roughly 70% less than angular error of the surface

obtained by RD. This result validates that DMP method is working pretty well to

decrease the form error considerably.

In addition, the DMP method for angular deviation and linear deflection compensa-

tion (DMP-AL) and the DMP method for linear deflection compensation (DMP-L)

are also compared. DMP-AL provides average of 63% less average linear error but

only 7% less standard deviation of linear error than DMP-L. Also, DMP-AL provides

average of 67% less average angular error and 49% less angular error deviation than

DMP-L.
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Moreover, RD-DMP is also compared with robotic deburring process with PID (RD-

PID) and ADRC (RD-ADRC) controllers. The form error of the surface profile ob-

tained by RD-DMP is roughly 28% higher than the surface profile obtained by RD-

PID and 45% times higher than RD-ADRC. Also, based on literature survey on the

same deburring robot, PID method result is better than ADRC in this application.

8.2 Future Work

In this work, DMP is utilized on two axes of a 6-DoF robotic deburring robot. The

first extension of this work can be increasing the number of axes controlled by DMP.

By this extension, the process can easily be used for grinding on very complex work-

pieces and surfaces like propeller, airfoil shape of the wing, etc. as long as the location

of the part is known and the machine code is generated for machining.

Another improvement can be made by using nonlinear functions with more complex

structures. In this study only forces are taken into account, however, overall stiffness

of the system can be trained on a function for all positions and configurations of the

robotic system.
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