
METRIC LEARNING USING DEEP RECURRENT NETWORKS FOR VISUAL
CLUSTERING AND RETRIEVAL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OĞUL CAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER, 2018

Approval of the thesis:

METRIC LEARNING USING DEEP RECURRENT NETWORKS FOR
VISUAL CLUSTERING AND RETRIEVAL

submitted by OĞUL CAN in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Department, METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering Department, METU

Assoc. Prof. Dr. Aykut Erdem
Computer Engineering Department, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: Oğul Can

Signature :

iv

ABSTRACT

METRIC LEARNING USING DEEP RECURRENT NETWORKS FOR
VISUAL CLUSTERING AND RETRIEVAL

Can, Oğul

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

September, 2018, 92 pages

Learning an image similarity metric plays a key role in visual analysis, especially for

the cases where a training set contains a large number of hard negative samples that

are difficult to distinguish from other classes. Due to the outstanding results of the

deep metric learning on visual tasks, such as image clustering and retrieval, select-

ing a proper loss function and a sampling method becomes a central issue to boost

the performance. The existing metric learning approaches have two significant draw-

backs; inadequate mini-batch sampling and disregarding higher-order relations be-

tween data samples. In this thesis, two novel methods are proposed to alleviate these

deficiencies. At first, a novel loss function is introduced to identify multiple simi-

lar examples in a local neighborhood. Moreover, a novel batch construction method

is presented to select representative hard negatives. The training of a deep network

is achieved by using this novel cost function through the proposed batch construc-

tion approach. In order to consider higher-order relations between samples, a novel

deep metric learning framework that contains recurrent neural networks architecture

is proposed. Extensive experimental results on three publicly available datasets show

v

that proposed approaches yield competitive or better performance in comparison with

state-of-the-art metric learning methods.

Keywords: Deep Metric Learning, Recurrent Neural Networks, Local Neighborhood

Sampling

vi

ÖZ

GÖRSEL KÜMELEME VE BULGETİR İÇİN DERİN YİNELGELİ AĞLAR
KULLANARAK METRİK ÖĞRENME

Can, Oğul

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

2018 , 92 sayfa

Görüntü benzerlik metriğini öğrenmek, özellikle diğer sınıflardan zor ayrışan olum-

suz örneklerin çokça barındığı eğitim setlerinin görüntü analizlerinde anahtar rol oy-

namaktadır. Derin metrik öğrenmenin görsel kümeleme ve bulgetir gibi çalışma alan-

larındaki başarısı nedeniyle uygun kayıp fonksiyonu ve örnekleme yöntemini şeç-

mek, başarımı arttırmak için odak noktası haline gelmektedir. Ancak, varolan met-

rik öğrenme yaklaşımlarının iki kayda değer sınırlaması mevcuttur; yetersiz küçük

yığın örnekleme yöntemleri kullanılması ve verideki üst seviye ilişkileri gözardı et-

meleridir. Bu tezde bahsedilen eksiklikleri gidermek için yenilikçi iki yöntem öne-

rilmektedir. İlk olarak, yerel komşuluktaki çoklu benzer örnekleri tanımlamak için

yeni bir kayıp fonksiyonu tanıtılmaktadır. Devamında, diğer sınıflardan zor ayrışan

temsili olumsuz örnekleri seçmek için yenilikçi bir olumsuz yığın oluşturma yöntemi

sunulmuştur. Derin ağların eğitilmesi önerilen yığın oluşturma yöntemi kullanılarak

yenilikçi kayıp fonksiyonuyla sağlanmıştır. Üst seviye ilintileri modellemek için ye-

nilikçi bir yinelgeli ağ mimarisi kullanan derin metrik öğrenme çerçevesi önerilmiştir.

Üç kamusal veri setinden alınan kapsamlı deneysel sonuçlar sonunda, önerilen yak-

vii

laşımların önde gelen metrik öğrenme yöntemleriyle kıyaslandığında rekabetçi ya da

daha iyi başarım sağladığı gösterilmiştir.

Anahtar Kelimeler: Derin Metrik Öğrenme, Derin Yinelgeli Ağlar, Yerel Komşuluk

Örnekleme

viii

To Canan and Canan Can...

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor

Prof. Dr. A. Aydın Alatan for all of his contributions to my academic endeavors.

He is the man who changed my interests in the first place as I was so fascinated by

his wisdom and intelligence. During my time at METU Center for Image Analysis

(OGAM), he has always shown me endless tolerance and patience for my shortcom-

ings. I want to thank him for trusting me even at the times when I was ready to give

up on myself. I am truly indebted to him for providing me insightful comments and

scholarly feedbacks throughout my journey, which eventually enabled this thesis to

came into existence. I feel privileged to have this brilliant person as a mentor and be

a part of his research team.

Furthermore, I would like to extend my gratitude to the current and past members of

OGAM. I offer my special thanks to Yeti Ziya Gürbüz who has not only been one of

my biggest supporters but also a great friend and a genius counselor. His excellent

background knowledge and our academic discussions helped me look deeper into my

findings and enrich my interpretations. I thank Ece Selin Böncü for being my gym

buddy and partner in crime. I also thank one of her many personalities, sweet potato,

for being a lovely friend. I offer my sincerest thanks to Ömürcan Kumtepe, for he was

the one whose companionship enabled me to adapt to my new workplace. I thank Dr.

Alpez Koz for sharing his wisdom and wise guidance in both academic and personal

life. I thank the talented artist of our laboratory, Emre Can Kaya, for showing me

how to look at academic studies from a creative perspective. I thank İzlen Geneci

and Aybüke Erol for making my time in the laboratory enjoyable and being good

friends. I also thank Esat Kalfaoğlu for permitting me to use his computer during

this thesis work and his nice personality. I also would like to acknowledge Bahar

Taşkesen, Emrecan Batı, Berkay Yeşilyurt, Dr. Gökhan Koray Gültekin, Mustafa

Kütük, Mertalp Öcal, İhsan Emre Üstün, Mustafa Ergül and Alp Eren Sarı as great

colleagues.

x

Most importantly, I would like to offer a heartful of thanks to Büşra Temel for her

endless love and support. Without her by my side, I would lose my mind and could

not survived. She has always been able to calm me down and put me back on my

feet whenever I felt overwhelmed by the huge amount of work required to finish this

thesis. On the other hand, although they hindered me throughout this painful journey,

I would also like to thank my best friends Ömercan Bayıraş, Selin Özkul, Utku Çalış

and Yılmaz Oğuz Ölke for growing up with me (the list is alphabetically ordered).

My sincerest thanks go to my parents, Canan Can and Mehmet Canan Can. I want

to thank my mother for years of support and lifetime funding. I could not possibly

thank her enough since she still takes care of me as if I were a baby. I thank my

father for making me believe that I can achieve anything that my heart desires. He

shaped the man I am today. Moreover, I thank my lovely sister Anıl Didem Erdoğan

for allowing me to be raised as a single child. Finally, I thank my aunt Hülya Kolunan

and my uncle Gencer Kolunan for believing in me and encouraging me to pursue an

academic career.

Last but not least, I also would like to take this chance to thank ASELSAN for funding

my research project.

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition . 2

1.2 Motivation and Contributions 3

1.3 Outline of the Thesis . 4

2 RELATED WORK . 7

2.1 Metric Learning . 7

2.1.1 Linear Metric Learning Methods 8

2.1.2 Non-linear Metric Learning Methods 11

2.1.2.1 Contrastive Embedding 11

2.1.2.2 Triplet Embedding 12

xii

2.1.2.3 Lifted Structured Embedding 14

2.1.2.4 Multi-class N-Pair Embedding 16

2.1.2.5 Angular Embedding 18

2.1.2.6 Embedding via Facility Location . . . 19

2.2 Deep Neural Networks . 22

2.2.1 Deep Feedforward Networks 22

2.2.2 Loss Functions 24

2.2.3 Optimization . 26

2.2.4 Backpropagation 29

2.2.5 Convolutional Neural Networks 30

2.2.6 Recurrent Neural Networks 34

2.2.7 Encoder-Decoder Models with Attention Mecha-
nism . 42

3 METRIC LEARNING USING DEEP LEARNED REPRESENTA-
TIONS . 47

3.1 Motivation . 47

3.2 Deep Metric Learning Framework 49

3.3 Proposed Loss Function . 50

3.4 Local Neighborhood Sampling 53

3.5 Regularization of Embedding Vectors 56

3.6 Experimental Results . 57

3.6.1 Benchmark Datasets 57

3.6.2 Evaluation Metrics 58

3.6.3 Training Setup 58

xiii

3.6.4 Effect of the Parameter K 59

3.6.5 Ablation Studies 60

3.6.6 Baseline Methods 62

3.6.7 Quantitative Results 62

3.6.8 Qualitative Results 65

4 DEEP METRIC LEARNING FOR RECURRENT NEURAL NET-
WORKS . 71

4.1 Motivation . 71

4.2 Proposed Deep Metric Learning Framework with RNN . . . 72

4.3 Experimental Results . 74

4.3.1 Ablation Study 76

4.3.2 Quantitative Results 76

4.3.3 Qualitative Results 79

5 CONCLUSIONS . 83

REFERENCES . 85

xiv

LIST OF TABLES

TABLES

Table 3.1 Clustering and retrieval performances (%) of the proposed algo-

rithm for different K values on the test set of Stanford Online Products

dataset[1] @20k iterations. The best results are indicated in bold. 60

Table 3.2 Clustering and retrieval performances (%) of the proposed loss func-

tion with different sampling approaches on the test set of Stanford Online

Products dataset[1]. The best results are indicated in bold. 60

Table 3.3 Clustering and retrieval performances (%) of the proposed loss func-

tion with different sampling approaches on the test set of Stanford Online

Products dataset[1]. The best results are indicated in bold. 61

Table 3.4 Clustering and retrieval performances (%) of the proposed algorithm

on the test set of CUB-200-2011 dataset[2]. The best results are indicated

in red whereas the second best results are showed in blue. (Best viewed in

color.) . 64

Table 3.5 Clustering and retrieval performances (%) of the proposed algorithm

on the test set of Cars196 dataset[3]. The best results are indicated in red

whereas the second best results are showed in blue. (Best viewed in color.) 64

Table 3.6 Clustering and retrieval performances (%) of the proposed algorithm

on the test set of Stanford Online Products dataset[1]. The best results are

indicated in red whereas the second best results are showed in blue. (Best

viewed in color.) . 65

xv

Table 4.1 Clustering and retrieval performances (%) of the proposed algorithm

described in Chapter 3 for the CNN network trained through different it-

erations on the test set of Stanford Online Products dataset[1]. The best

results are indicated in bold. 76

Table 4.2 Clustering and retrieval performances (%) of the proposed algorithm

by utilizing RNN framework with and without ordering inputs on the test

set of Stanford Online Products dataset[1]. The best results are indicated

in bold. 76

Table 4.3 Clustering and retrieval performances (%) of the proposed algorithm

with the RNN framework on the test set of CUB-200-2011 dataset[2]. The

best results are indicated in red whereas the second best results are showed

in blue. (Best viewed in color.) . 77

Table 4.4 Clustering and retrieval performances (%) of the proposed algorithm

with the RNN framework on the test set of Cars196 dataset[3]. The best

results are indicated in red whereas the second best results are showed in

blue. (Best viewed in color.) . 78

Table 4.5 Clustering and retrieval performances (%) of the proposed algo-

rithm with the RNN framework on the test set of Stanford Online Products

dataset[1]. The best results are indicated in red whereas the second best

results are showed in blue. (Best viewed in color.) 78

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 An example illustration in order to show the motivation behind

metric learning approaches which learn mapping, fθ(.), such that similar

examples are mapped to closer points on a embedding space and dissimilar

examples are mapped to relatively far away points. Green and red lines

indicate similarity and dissimilarity, respectively. (Best viewed in color.) . 3

Figure 2.1 The cone S2
+ of positive semi-definite. 9

Figure 2.2 (a) A typical visualization of mini-batch construction with six ex-

amples for contrastive learning. Green and red lines indicate similarity

and dissimilarity, respectively. (b) Training CNN architecture with con-

trastive embedding loss. (Best viewed in color.) 12

Figure 2.3 (a) An illustration of mini-batch construction with six examples

for triplet embedding learning. Green and red lines indicate similarity

and dissimilarity, respectively. (b) Training CNN architecture with triplet

embedding loss. (Best viewed in color.) 13

Figure 2.4 (a) An visualization of mini-batch construction with six examples

for lifted structured embedding learning. Green and red lines indicate

similarity and dissimilarity, respectively. (b) Training CNN architecture

with lifted structured embedding loss. (Best viewed in color.) 15

Figure 2.5 (a) An illustration of mini-batch construction with eight examples

for N -pair embedding learning. Green and red lines indicate similarity

and dissimilarity, respectively. (b) Training CNN architecture with multi-

class N -pair embedding loss. (Best viewed in color.) 17

xvii

Figure 2.6 A failure example for local metric learning methods. Since repul-

sive gradient signals generated by negative pairs illustrated in red lines is

larger than an attractive gradient signal created by a positive pair denoted

as a green line, two similar examples cannot be clustered correctly. (Best

viewed in color.) . 20

Figure 2.7 An example of multilayer perceptrons with two hidden layers.

(Best viewed in color.) . 23

Figure 2.8 An example of the softmax classifier for three classes case [4].

(Best viewed in color.) . 25

Figure 2.9 An illustration of the gradient descent technique that utilizes the

derivatives of the function in order to reach the global minimum [5]. . . . 27

Figure 2.10 A visualization of the forward pass and backpropagation for f(x, y, z) =

5z(2x + 3y) expression where x = 2, y = −2 and z = 1. The computed

values in forward propagation are indicated in blue whereas the gradients

with respect to trainable variables which are calculated by recursively ap-

plying chain rule in backpropagation are denoted in red. (Best viewed in

color.) . 31

Figure 2.11 (a) A conventional 3-layer deep feedforward neural network (b)

The layers of CNN consists of neurons which has three dimensions (width,

height and depth) as illustrated in one of the layers. The input layer is

indicated in red. It has the same size as input images. Hence, its width

and height are the dimensions of the images and its depth is three (red,

green and blue channels) [4]. (Best viewed in color.) 32

Figure 2.12 A simple CNN architecture example. Conv, Pool and FC denote

convolutional, pooling and fully connected layers, respectively. (Best

viewed in color.) . 33

Figure 2.13 The 3x3 convolution kernel is applied by sliding over the input to

produce the neurons in the next layer [6]. (Best viewed in color.) 34

xviii

Figure 2.14 Max pooling utilizing 2x2 window and stride 2. Each color indi-

cates a distinct window. (Best viewed in color.) 35

Figure 2.15 (a) The block of the RNN cell. (b) The inside of the RNN cell at a

time instant, t. (Best viewed in color.) . 35

Figure 2.16 The illustration of the unrolled RNN. (Best viewed in color.) 37

Figure 2.17 The deep bi-directional RNN that consists of three hidden layers

[7]. (Best viewed in color.) . 38

Figure 2.18 The detailed illustration of the LSTM cell [7]. 39

Figure 2.19 The detailed visualization of the GRU cell [7]. 41

Figure 2.20 An example of the encoder-decoder or sequence-to-sequence RNN

model for a machine translation problem from English to Turkish. <Start>

and <EOS> are tokens which denote the start and end of the sentence.

(Best viewed in color.) . 43

Figure 2.21 An illustration of the encoder-decoder RNN architecture with an

attention mechanism while predicting the output at the time-step, t = 2,

[7]. (Best viewed in color.) . 45

Figure 3.1 The general framework of the deep metric learning algorithms.

(Best viewed in color.) . 50

Figure 3.2 Deep metric learning with (a) triplet described in Section 2.1.2.2,

(b) (N+2)-tuplet defined in Section 2.1.2.4 and (c) proposed (N+P+1)-

tuplet embedding loss functions. While pulling the embedding vector of

positive example, fpos, to the point of an anchor in the embedding space,

fanc, (N+2)-tuplet objective function keeps away embedding vectors of

N negative example, fneg
i , from fanc instead of pushing only one fneg

like the triplet loss. On the other hand, in proposed (N+P+1)-tuplet loss

function, P fpos
i are getting closer to fanc while dragging awayN negative

examples. (Best viewed in color.) . 52

xix

Figure 3.3 (a) triplet (b) N -pair (c) modified N -pair (d) local neighborhood

(when |C|=1) sampling methods. In order to construct mini-batch that

consists of N queries, Triplet, N -pair, modified N -pair and local neigh-

borhood batch construction approaches require 3N , 2N , N and Np passes

to produce embedding vectors, respectively. Np describes the number of

samples which has at least one similar example in the mini-batch. (Best

viewed in color.) . 54

Figure 3.4 Barnes Hut t-SNE visualization [8] of the proposed embedding

method on the test set of CUB-200-2011 dataset. (Best viewed on a mon-

itor when zoomed in.) . 66

Figure 3.5 Barnes Hut t-SNE visualization [8] of the proposed embedding

method on the test set of Cars196 dataset. (Best viewed on a monitor

when zoomed in.) . 67

Figure 3.6 Barnes Hut t-SNE visualization [8] of the proposed embedding

method on the test set of Stanford Online Products dataset. (Best viewed

on a monitor when zoomed in.) . 68

Figure 3.7 Visualization of top-7 retrieval results from queried images where

N -pair performs better than the proposed method on the test set of Stan-

ford Online Products dataset. The retrieved images that belongs to the

same class with the queried image is indicated in green border whereas

retrieved images which are dissimilar to the queried image is shown in red

borders. (Best viewed in color.) . 69

Figure 3.8 Visualization of top-7 retrieval results from queried images where

proposed method performs better than N -pair on the test set of Stanford

Online Products dataset. The retrieved images that belongs to the same

class with the queried image is indicated in green border whereas retrieved

images which are dissimilar to the queried image is shown in red borders.

(Best viewed in color.) . 70

xx

Figure 4.1 Proposed Deep Metric Learning Framework that utilizes both of

CNN and RNN. (Best viewed in color.) 73

Figure 4.2 Barnes Hut t-SNE visualization [8] of the proposed embedding

method with the RNN framework on the test set of Stanford Online Prod-

ucts dataset. (Best viewed on a monitor when zoomed in.) 80

Figure 4.3 Visualization of top-7 retrieval results from queried images where

the conventional framework based on CNN performs better than the pro-

posed framework that contains RNN and CNN on the test set of Stanford

Online Products dataset. The retrieved images that belongs to the same

class with the queried image is indicated in green border whereas retrieved

images which are dissimilar to the queried image is shown in red borders.

(Best viewed in color.) . 81

Figure 4.4 Visualization of top-7 retrieval results from queried images where

the proposed framework that contains RNN and CNN performs better than

the conventional framework based on CNN on the test set of Stanford

Online Products dataset. The retrieved images that belongs to the same

class with the queried image is indicated in green border whereas retrieved

images which are dissimilar to the queried image is shown in red borders.

(Best viewed in color.) . 82

xxi

LIST OF ABBREVIATIONS

LMNN Large Margin Nearest Neighbors

ITML Information-Theoretic Metric Learning

CNN Convolutional Neural Network

NMI Normalized Mutual Information

RNN Recurrent Neural Network

ANN Artificial Neural Network

MLP Multilayer Perceptron

KL Kullback-Leibler

GPU Graphics Processing Unit

Adam Adaptive Moment Estimation

BPTT Backpropagation Through Time

ReLu Rectified Linear Unit

GRU Gated Recurrent Units

LSTM Long Short-term Memories

DAML Deep Adversarial Metric Learning

xxii

CHAPTER 1

INTRODUCTION

Metric learning aims to learn a feature mapping such that similar examples are mapped

to closer points on an embedding space and dissimilar examples are mapped to rel-

atively far away points. Learning a distance metric to measure similarities between

image pairs have been widely used in a variety of visual tasks, such as image clus-

tering [9], person re-identification [10, 11, 12], face identification [13, 14], feature

based retrieval [1, 15], challenging classification problems [16, 17, 18],visual track-

ing [19, 20], etc.

Existing metric learning methods are mostly divided into two main groups as linear

and non-linear approaches [21]. While linear methods aim to learn a metric that is

formulated by a linear relation such as Mahalanobis distance [13, 22, 23], non-linear

approaches exploit kernels and deep neural networks to model non-linear relations

in the data. Following the superior achievement of deep learning in numerous visual

tasks [24, 25, 26, 27], metric learning methods based on deep learning are proposed

to learn non-linear mappings [1, 9, 15, 28, 29, 30, 31, 32].

Although these methods yield promising results, they suffer from two significant lim-

itations. Firstly, due to the inefficient mini-batch construction methods to select hard

negatives which are difficult samples to classify from other classes, they keep dis-

similar samples away from similar examples by considering only a pair of samples

which belong to the same class. Secondly, existing metric learning frameworks are

trained with respect to some loss functions that are optimized by utilizing lower-

order relations in the data. This approach might lead to sub-optimal convergence in

an higher-order solution space [31].

1

In order to address the above-mentioned issues, two associated methods are proposed

in the scope of this thesis. At first, a novel loss function is proposed to utilize multiple

similar examples, while dragging multiple dissimilar samples away from them. Then,

a novel local neighborhood sampling approach is introduced in order to train proposed

loss function by inspiring from hard negative mining [33] and self-paced learning

[34]. Finally, in the light of these introduced loss function and sampling method, a

novel deep metric learning framework that utilizes RNN architectures is proposed in

order to capture higher-order relations between samples.

1.1 Problem Definition

Assume xi denotes a sample in a training set and x+
j ∈ Pi represents each sample in

the positive set that is constructed from examples that belong to same class as sample

i whereas x−k ∈ Ni indicates each dissimilar example to the sample i in the negative

set. The goal of the metric learning is to learn a mapping, fθ(.), where θ denote the

trainable parameters, so that the distance between fθ(xi) and fθ(x+
j) is kept smaller

while each distance from fθ(x
−
k) to fθ(xi) becomes larger.

An example case is visualized in Figure 1.1. Before utilizing metric learning, the

distances between pairs of the similar and dissimilar examples which are indicated in

green and red colors, respectively, are assumed to be equal. After applying mapping

into the learned embedding space, for instance, in Figure 1.1, embedding representa-

tions of two bicycles are getting closer to each other whereas an apple and a mobile

phone is getting far away.

Clustering and retrieval tasks are widely utilized to evaluate metric learning methods

in the literature [1]. Clustering is an unsupervised problem of grouping similar ex-

amples into the same groups (clusters), while the unsupervised task indicates that this

process does not exploit the target distribution of inputs with labels to solve some ma-

chine learning problems [35]. Mapping into a more discriminative embedding space

should lead clustering task to be easier. On the other hand, the retrieval task is di-

rectly related to the metric learning problem. It aims to retrieve similar samples from

k-nearest neighborhood of the queried sample.

2

Figure 1.1: An example illustration in order to show the motivation behind met-

ric learning approaches which learn mapping, fθ(.), such that similar examples are

mapped to closer points on a embedding space and dissimilar examples are mapped

to relatively far away points. Green and red lines indicate similarity and dissimilarity,

respectively. (Best viewed in color.)

1.2 Motivation and Contributions

Deep metric learning methods with supervised data are studied within the scope of

this thesis. The history of the deep metric learning literature is started with the con-

trastive loss [28] which minimizes the distance between a pair of similar examples

while keeping a pair of dissimilar samples away from each other. Later, triplet loss

[23, 29] is proposed that a set of triplets are established instead of paying attention

only to a pair of examples. These triplets consist of an anchor, a positive example of

the anchor and a dissimilar sample to the anchor. Therefore, selecting representative

negative examples of the triplet becomes an issue. Sohn [30] introduced N -pair loss

function and sampling method to address this problem. In [30], it is suggested to

construct mini-batches from N pairs of examples which belong to N different classes

and minimize the loss function by utilizing (N+1)-tuplets which contain an anchor,

one similar example and N -1 negative sample. However, these methods ignore the

representative power of multiple positive examples to ensure including an adequate

3

number of negatives in the mini-batch.

In order to utilize the full mini-batch information, lifted structured and embedding via

facility location objective functions are also presented [1, 15]. However, they neglect

the significance of selecting representative hard negatives.

Furthermore, Wang et al. [31] examined the existing deep metric learning methods

in a different aspect. The authors [31] claim that the distance based loss functions

consider only second-order relations in the embedding space. Hence, the angular

loss is proposed in order to capture third-order correlations by utilizing triangular

constraints in triplets. However, the solution space may still be higher-order.

In the scope of the above analysis, there are three main contributions in this thesis to

remove these deficiencies of the existing metric learning algorithms:

1. A novel metric learning loss function, which is an extension of N -pair em-

bedding loss, is proposed to improve the representation power of the network,

since the negative examples are kept away by considering multiple similar sam-

ples instead of considering only one positive example in N -pair loss function.

(Section 3.3)

2. In order to select hard negatives and eliminate outliers, a novel local neighbor-

hood sampling method is introduced. (Section 3.4)

3. Owing to these above-mentioned loss function and sampling method, deep met-

ric learning framework with RNN is presented to model higher-order relations

in the data. (Section 4.2)

1.3 Outline of the Thesis

This thesis consists of five chapters. Following the introduction to problem definition

of the metric learning task, motivation and contributions are summarized in Chapter

1.

Chapter 2 is reserved for the review of the literature on metric learning problem. At

first, metric learning methods are classified into two groups and significant points of

4

each group are detailed. The most attention is paid to deep metric learning methods

owing to outstanding performances in clustering and retrieval tasks. Following that, in

order to ensure comprehension, the last section is devoted to the deep neural networks.

Chapter 3 presents the proposed approach that consists of a novel deep metric learning

loss function and a sampling method to address issues in Section 1.2. Following

the interpretation of the motivation behind the novel deep metric learning approach,

the general framework of deep metric learning based on CNN is represented. Then,

each part of the proposed method is explained in detail under three main sections.

Finally, the efficiency of the proposed approach is demonstrated with quantitative

and qualitative experimental results.

Chapter 4 introduces a novel deep metric learning framework that contains both of

CNN and RNN by utilizing loss function and sampling method which are introduced

in Chapter 3. Following the explanation of the motivation behind this chapter, the

novel deep metric learning framework is thoroughly described. Finally, the efficacy

of the proposed framework is validated with quantitative and qualitative experimental

results.

Finally, Chapter 5 highlights the important points of the proposed method for effec-

tive metric learning and draw conclusions from the experiments. Additionally, future

research directions are mentioned in this chapter.

5

6

CHAPTER 2

RELATED WORK

In the scope of this thesis, the content of the background materials could be divided

into two groups. First of all, the metric learning background is a good start to clearly

comprehend the problem definition. Hence, conventional and novel metric learning

methods are described in Section 2.1. Furthermore, due to their remarkable achieve-

ment in metric learning area [1, 9, 15, 28, 29, 30, 31, 32], the last section of the related

work is reserved for deep neural networks. In Section 2.2, convolutional neural net-

works (CNN) and recurrent neural networks (RNN) are introduced for completeness.

2.1 Metric Learning

Learning similarities between pairs of examples has a major significant role for a

range of tasks, such as clustering [9], person re-identification [10, 11, 12], face iden-

tification [13, 14], feature-based retrieval [1, 15] and challenging classification prob-

lems [16, 17, 18]. The main aim of metric learning is to learn a feature mapping

such that embedding representations of similar examples are mapped to closer points

on a manifold and embedding representations of dissimilar examples are mapped to

relatively far away points.

Supervised metric learning approaches could be divided into two categories: linear

and non-linear methods [21]. Although the goal of linear approaches is to learn linear

metric such as, Mahalanobis distance [13, 22, 23], non-linear methods utilize neural

networks and kernels to capture non-linear relations in the data [1, 9, 15, 28, 29, 30,

31, 32].

7

2.1.1 Linear Metric Learning Methods

Although linear metrics are insufficient to model non-linear variations in the data,

their objective functions usually tend to be convex. Hence, their optimization is rela-

tively simple and also robust to overfitting [21]. The most popular linear metric is the

Mahalanobis distance which is usually exploited due to its simplicity and compre-

hensibility in terms of a linear projection [13, 22, 23]. The Mahalanobis distance can

be described as a distance measure between two random vectors, x1 and x2, which

are assumed to be from the same distribution whose covariance matrix is equal to S:

dMah(x1,x2) =
√

(x1 − x2)TS−1(x1 − x2) (2.1)

However, the term of Mahalanobis distance in metric learning literature is denoted as

a generalized quadratic distance:

dM(x1,x2) =
√

(x1 − x2)TM−1(x1 − x2) (2.2)

where M denotes trainable parameter such that M ∈ Sd
+, where Sd

+ indicates the

cone of positive semi-definite d × d square matrix whose elements are real-valued

(Figure 2.1). M requires to meet this condition in order for dM to satisfy the proper-

ties of a pseudo-distance where ∀x1,x2,x3 ∈ X:

1. dM(x1,x2) ≥ 0 (non-negativity)

2. dM(x1,x1) = 0 (identity)

3. dM(x1,x2) = dM(x2,x1) (symmetry)

4. dM(x1,x3) ≤ (x1,x2) + (x2,x3) (triangle inequality)

It is worth mentioning that the Euclidean distance could be obtained when M is an

identity matrix. If it is not, M could be defined as LTL, where L ∈ Rkxd and k

denotes the rank ofM . Hence, dM(x1,x2) could be reformulated as:

dM(x1,x2) =
√

(Lx1 −Lx2)T (Lx1 −Lx2) (2.3)

8

Figure 2.1: The cone S2
+ of positive semi-definite is described as

α β

β γ

 [21].

The Mahalanobis distance actually calculates the Euclidean distance between data

points which are linearly mapped by the transformation matrix, L. When M is low-

rank which means rank(M) = k ≤ d, the dimension of embedding vectors is re-

duced from d to k. Therefore, the data is linearly mapped from a higher dimensional

space to a lower dimensional space. It contributes to decrease in computational com-

plexity. Due to these great properties of the Mahalanobis distance, it is one of the

most preferred linear metric distances in the literature.

In spite of these nice properties of Mahalanobis distance, there are two noticeable

challenges during its learning phase. First of all, it is hard to ensure M ∈ Sd
+ con-

straint. The projected gradient method, which minimizes an objective function sub-

ject to a constraint, is usually utilized to satisfy constraint that by setting the negative

eigenvalues to zero [36]. Nevertheless, since the complexity of eigenvalue decom-

position is O(d3), the computational cost of the high-dimensional data is expensive.

Then, learning a low-rank matrix remains as the second challenge in order to pro-

vide dimensionality reduction. The reason of that challenge is due to the fact that

optimizingM , while maintaining a rank constraint, is an NP-hard problem [21].

One of the most popular methods to optimizeM is the Large Margin Nearest Neigh-

bors (LMNN) algorithm proposed by Weinberger et al. [23]. In this algorithm, the

optimization problem is solved by adding local constraints which are defined through

considering k nearest neighbors. The method attempts to keep similar classes in k

9

nearest neighborhood while pushing dissimilar classes away. The distance metric

could be learned as below:

{ min
M∈Sd+

(1− µ)
∑

(xi,xj)∈P

d2M(xi,xk) + µ
∑
i,j,k

ξi,j,k}

s.t. d2M(xi,xk)− d2M(xi,xj) ≥ 1− ξi,j,k ∀(xi,xj ,xk ∈ N)

P = {(xi,xj) : yi = yj and xj ∈ k-neighborhood of xi}

N = {(xi,xj ,xk) : (xi,xj) ∈ P, yi 6= yk}

(2.4)

where µ ∈ [0, 1] is control variable that provides a "pull/push" trade-off. ξi,j,k denotes

a slack variable which is a parameter that is used to convert the inequality constraint

to the equality constraint. This objective function is solved by sub-gradient descent

[37] and book-keeping [38] which handles billions of constraints. Although LMNN

suffers from overfitting due to a lack of regularization term, LMNN works well in

practice.

Davis et al. [22] proposed Information-Theoretic Metric Learning (ITML) method

that presents LogDet divergence regularization in order to prevent overfitting. This

Bregman divergence is described in the following equation:

Dlog−det(M ,M0) = tr(MM−1
0)− log det(MM−1

0)− d (2.5)

where d indicates the dimension of the input space. M0 is some positive definite

matrix which is desired to be close to M . M0 is usually selected as an identity ma-

trix, I , in order not to diverge from the Euclidean distance. The most significant

property of the LogDet divergence is that it is finite only when M is positive defi-

nite. Hence, minimizing Dlog−det guarantees thatM keeps positive semi-definiteness

10

without adding any constraint. ITML method could be defined as:

{ min
M∈Sd+

Dlog−det(M ,M0) + γ
∑
i,j

ξi,j}

s.t. d2M(xi,xj) ≤ u+ ξi,j ∀(xi,xj ∈ P)

d2M(xi,xj) ≥ v − ξi,j ∀(xi,xj ∈ N)

P = {(xi,xj) : yi = yj}

N = {(xi,xj) : yi 6= yj}

(2.6)

where u, v denote threshold values. γ is a trade-off parameter that is greater than

zero. The main goal of ITML is accomplishing similarity and dissimilarity constraints

by preserving M as close as possible to the Euclidean distance which means that

M0 is an identity matrix. Furthermore, minimizing Dlog−det equals to minimizing

the KL divergence [39] between two multivariate Gaussian distributions which are

constructed by M and M0. The minimization problem which is defined in (2.6)

could be solved as in [22]. Although ITML yields good results in the literature, the

performance highly depends on the selected value ofM0.

2.1.2 Non-linear Metric Learning Methods

The drawback of the conventional linear metric learning approaches, which are de-

scribed in Section 2.1.1, is that they are unable to learn non-linear relations in the

data. Kernel tricks are usually utilized to address this issue [40, 41, 42, 43]. However,

since selecting a kernel is quite empirical, the generalization power of these methods

is limited. After observing the remarkable performance of deep learning in various

machine learning tasks [24, 25, 26, 27], deep metric learning methods are also pro-

posed [1, 9, 15, 28, 29, 30, 31, 32]. These recent works on deep metric learning is

summarized in this section.

2.1.2.1 Contrastive Embedding

The fundamental idea behind contrastive embedding is minimizing the distance be-

tween a positive pair of examples and maximizing the distance between a pair of

11

examples with the different class label. The objective function is described as follows

[28]:

Jcont−emb =
1

M

M/2∑
(i,j)

zi,jD
2
i,j + (1− zi,j)[α−Di,j]

2
+ (2.7)

Di,j = ‖f(xi)− f(xj)‖2 (2.8)

whereM denotes batch size, Di,j is distance between paired data, xi and xj , and f(.)

indicates the non-linear function which is learned by the neural network. If the class

label, zi,j , is 1, xi and xj are from the same class. If the class of xi is not same with

xj , vice versa. The hinge function, max(0, ·), is represented by [·] operator. Finally,

the margin, α, stands in order to penalize distances between a pair of negatives which

are smaller than α. The training process is illustrated in Figure 2.2.

Figure 2.2: (a) A typical visualization of mini-batch construction with six examples

for contrastive learning. Green and red lines indicate similarity and dissimilarity,

respectively. (b) Training CNN architecture with contrastive embedding loss. (Best

viewed in color.)

2.1.2.2 Triplet Embedding

Triplet embedding loss is an advancement on contrastive embedding loss [23, 29].

Instead of paying attention to a pair of examples, a set of triplets are established.

12

Each triplet consists of an anchor, a positive and a negative example. While an anchor

has the same class label with a positive example, a negative one has a distinct class

label. A sample of triplet construction and training in mini-batch with six examples

is illustrated in Figure 2.3. The aim of the method is that the embedding vector of

positive example is getting closer to the embedding representation of an anchor and

the distance between embeddings of an anchor and a negative example is getting

larger. The triplet embedding loss function could be defined in following equation:

Jtriplet =
1

|T|
∑

(i,j,k)∈T

[D2
i,j −D2

i,k + α]+ (2.9)

Di,j = ‖f(xi)− f(xj)‖2 (2.10)

where T is the set of triplets. Subscripts i, j and k denotes an anchor, a positive and

a negative example, respectively. f(.) is the mapping trained by the neural network.

The operator [·] stands for a hinge function which maps a negative argument to zero,

while α represents a constant margin.

Figure 2.3: (a) An illustration of mini-batch construction with six examples for triplet

embedding learning. Green and red lines indicate similarity and dissimilarity, respec-

tively. (b) Training CNN architecture with triplet embedding loss. (Best viewed in

color.)

13

In real applications, triplet sampling strategy has a key role in obtaining good results.

Schroff et al. [29] suggest that triplet could be constructed by selecting "semi-hard"

negative example for each positive pair in mini-batch. The embedding distance be-

tween "semi-hard" negative example, k, and an anchor, i, should be larger than the

distance of a pair constructed by an anchor, i, and a positive example, j. However, it

is still hard, since this distance is the closest one to the D2
i,j . Hence, the cost function

could be reformulated as:

Jtriplet =
1

|P|
∑

(i,j)∈P

[D2
i,j −D2

i,k̂(i,j)
+ α]+ (2.11)

k̂(i, j) = arg min
k∈z[k] 6=z[i]

D2
i,k s.t. D2

i,k ≥ D2
i,j (2.12)

where P is the set of positive pairs. If k̂(i, j) could not be found in Equation 2.12, the

furthest negative example is selected as below:

k̂(i, j) = arg max
k∈z[k] 6=z[i]

D2
i,k (2.13)

FaceNet method [29] utilizes huge mini-batches which contain 1800 images in order

to get good performance. Quite large mini-batches are required to pick correct semi-

hard negatives. Due to the memory capacity of GPU, the method makes it difficult to

train some networks.

2.1.2.3 Lifted Structured Embedding

Two methods which are described in Sections 2.1.2.1 and 2.1.2.2 build training mini-

batches by creating pairs and triplets, respectively. Since these methods do not exploit

all information from a batch, Song et al. [15] presented lifted structured embedding

loss. This method utilizes entire pairwise distances within a batch as illustrated in

Figure 2.4(a). The objective function of lifted structured embedding that consists of

14

all positive and negative pairs within a batch could be described as follows:

Jlifted =
1

2|P|
∑

(i,j)∈P

[Ji,j]
2
+ (2.14)

Ji,j = Di,j + max

(
max
(i,l)∈N

(α−Di,l), max
(j,k)∈N

(α−Dj,k)

)
(2.15)

Di,j = ‖f(xi)− f(xj)‖2 (2.16)

where P and N indicate sets of positive and negative pairs in training batch. f(.) is

the function that represents a trainable network. The desired margin value is shown

as α. Although the aim of the objective function defined in Equation 2.14 is obvious,

it is non-smooth and mining all negative and positive pairs in nested max functions

is too expensive. In order to obtain a differentiable smooth objective functions, the

log-sum-exp formulation is utilized while selecting hard negative pairs:

Ĵlifted =
1

2|P|
∑

(i,j)∈P

[Di,j+log(
∑

(i,l)∈N

exp{α−Di,l}+
∑

(j,k)∈N

exp{α−Dj,k})]2+ (2.17)

Figure 2.4: (a) An visualization of mini-batch construction with six examples for

lifted structured embedding learning. Green and red lines indicate similarity and

dissimilarity, respectively. (b) Training CNN architecture with lifted structured em-

bedding loss. (Best viewed in color.)

15

It should be noted that multiple CNN networks are no longer required as seen in

Figure 2.4(b) due to the log-sum-exp formulation which is defined in Equation 2.17.

2.1.2.4 Multi-class N-Pair Embedding

Although the aforementioned methods which are described in the previous subsec-

tions yield good results, they still suffer from undesired local minima and slow con-

vergence due to their hard negative mining methods. Elegant hard negative mining

search algorithms may address this issue but they are quite expensive to apply. In

[30], the authors propose an (N + 1)-tuplet loss which emphasizes one similar exam-

ple among N − 1 dissimilar examples. It is an extension to triplet loss described in

Section 2.1.2.2. When N = 2, N -pair embedding loss is equal to triplet embedding

loss. The (N + 1)-tuplet loss function is proposed as [30]:

Jn−pair = log(1 +
∑

(i,k)∈N

exp{Di,k −Di,j}) (2.18)

Di,j = f(xi)
Tf(xj) (2.19)

where (i, j) ∈ P and f(.) is the embedding function which is learned by the neural

network. P and N represent sets of positive and negative pairs in mini-batch. The

desired loss function described in Equation 2.18 is quite complex when the number

of output classes, L, is large. Even if the number of dissimilar samples per class is

restricted to one, it is still impossible to train, since the size of mini-batch should be

equal to at least L. Nevertheless, ideal (L+ 1)-tuplet loss is worth to define:

log(1 +
∑

(i,k)∈N

exp{Di,k −Di,j}) = − log
exp{Di,j}

exp{Di,j}+
∑L−1

k=1 exp{Di,k}
(2.20)

The loss function which is defined above resembles softmax loss that is multi-class

logistic loss function. It suggests that N -pair loss is a more generalized version of

triplet loss.

16

Figure 2.5: (a) An illustration of mini-batch construction with eight examples for N -

pair embedding learning. Green and red lines indicate similarity and dissimilarity,

respectively. (b) Training CNN architecture with multi-class N -pair embedding loss.

(Best viewed in color.)

In order to get rid of the computational burden of the N -pair embedding objective

function, one positive pair of similar examples is randomly picked while constructing

a mini-batch. After that, the negative examples which contain pairs of similar samples

that violate the triplet condition indicated in Equation 2.12 and 2.13 are selected at

random as hard negatives. The illustration of mini-batch construction is indicated in

Figure 2.5. Hence, the multi-class N -pair loss function could be reformulated as:

Jn−pair−mc =
−1

|P|
∑

(i,j)∈P

log
exp{Di,j}

exp{Di,j}+
∑

(i,k)∈N exp{Di,k}
(2.21)

Moreover, the objective function described in Equation 2.21 is minimized by not only

the direction of Di,j but also its magnitude. However, only the direction is significant

to determine the distance between examples. Although normalization seems like a

solution, forcing Di,j to be less than 1 makes optimization difficult. Instead of that,

17

L2 regularization term is added on loss:

Jn−pair−mc−reg = Jn−pair−mc +
λ

M

M∑
i=1

‖f(xi)‖2 (2.22)

where M and λ denote mini-batch size and regularization constant, respectively.

2.1.2.5 Angular Embedding

Wang et al. [31] put forth the disadvantages of relying on a certain distance metric

between similar and dissimilar examples in a training loss function. First of all, pro-

posed distance metrics have not robustness to scale change. The mentioned metric

learning algorithms enforce a distance gap between examples which belong to dis-

tinct classes. Selecting the same constant margin for all clusters overlooks different

scales of intra-class variation. Secondly, minimizing loss function by only taking

distances between examples into account, considers second-order information of the

dataset and neglects high-order correlations.

In order to overcome these issues, the third-order relation is added to conventional

triplet loss by restricting the upper bound of the angle at the negative example of the

triplet. This constraint provides keeping negative examples far away from anchors

and dragging positive examples closer to each other. This similar idea is utilized

to enhance pairwise constraints in Markov random fields [44]. The angular loss is

defined as belows:

Jangular =
1

|T|
∑

(i,j,k)∈T

[D2
i,j − 4 tan2 αD2

k,c]+ (2.23)

Di,j = ‖f(xi)− f(xj)‖2 (2.24)

where T denote the set of triplets. Subscripts i, j and k represent an anchor, a

positive and a negative example, respectively. Center point, xc, is calculated as

xc = (xi+xj)/2. f(.) is the function trained by the neural network. α stands for pre-

defined upper bound as before. Since N -pair loss and angular loss consider second

18

and third order information of dataset, respectively, the joint optimization with the

angular and N -pair loss that is described in Equation 2.22 increases the performance

of the network:

Jangular&n−pair = Jn−pair−mc−reg + γJangular (2.25)

where γ is a trade-off parameter between these two objective functions.

2.1.2.6 Embedding via Facility Location

The common property of the metric learning algorithms which are mentioned in the

above subsections can be summarized as being local methods. Figure 2.6 indicates the

weak side of the local metric learning methods. Whenever a pair of similar examples

is separated by dissimilar examples, repulsive gradient signals which are constructed

by negative pairs may be larger than an attractive gradient signal created by a positive

pair. This failure could cause many similar examples to be mapped in far away points

of the embedding space. In order to remove this problem, facility location embedding

loss that includes a clustering loss is proposed [15].

Let X = [x1, ...,xN] be a set of inputs and f(xi; θ) be a non-linear function which

maps each input into an embedding space. The aim of facility location is mapping

each input to its closest point from a selected set of landmarks, S ⊆ G, where G =

{1, ..., |X|} denotes the ground-truth set. The facility location function is defined by

the following equation [15]:

F (X,S; θ) = −
∑
i∈|X|

min
j∈S
‖f(xi; θ)− f(xj; θ)‖ (2.26)

The main idea behind facility location function is determining the sum of the distances

between each customer in X and their closest facility location in S. In the clustering

problem, S represents cluster medoids and clustering is performed according to the

closest medoid from each example point. Although optimizing Equation 2.26 is NP-

hard, a greedy approach with sub-modularity exits in the literature [3].

19

Figure 2.6: A failure example for local metric learning methods. Since repulsive

gradient signals generated by negative pairs illustrated in red lines is larger than an

attractive gradient signal created by a positive pair denoted as a green line, two similar

examples cannot be clustered correctly. (Best viewed in color.)

An oracle scoring function, F̂ , evaluates the quality of the clustering assignment with

respect to given ground-truth cluster labels, z∗:

F̂ (X, z∗; θ) =

|Z|∑
k

max
j∈{i:z∗[i]=k}

F (X{i:z∗[i]=k}, {j}; θ) (2.27)

The oracle scoring function should be larger than the clustering score which is ob-

tained by the worst clustering assignment. Therefore, facility location embedding

function can be defined as:

Jfacility = [max
S∈G, |S|=|Z|

(F (X,S; θ) + γC(g(S, z∗)))− F̂ (X, z∗; θ)]+ (2.28)

where z = g(S) denotes the function that maps to set of cluster labels by assigning

20

each sample point to the closest facility in S:

g(S)[i] = arg min
j
‖f(xi; θ)− f(x{j:j∈S}; θ)‖ (2.29)

The structured margin term, C(g(z, z∗)), is evaluation metric for clustering. When

clustering is performed perfectly, the output of this metric is 0. Besides, the poor-

est clustering quality is obtained if C(g(z, z∗)) is 1. The utilized margin term is

described below:

C(g(z, z∗)) = 1−NMI(z, z∗) (2.30)

where NMI stands for the normalized mutual information (NMI) [45]. NMI deter-

mines the clustering quality between two clustering assignments:

NMI(z, z∗) =
I(z; z∗)√
H(z)H(z∗)

(2.31)

where H(.) and I(., .) denote entropy and mutual information functions, respectively.

H(.) and I(., .) can be calculated by utilizing the marginal, P (i), and joint probability,

P (i, j), mass functions:

P (i) =
1

N

∑
j

I[z[j] == i] (2.32)

P (i, j) =
1

N

∑
k,l

I[z[k] == i]I[z[l] == j] (2.33)

where N is the number of samples. I[.] represents indicator function whose output is

one if the condition, [.], satisfies. If not, I[.] outputs zero.

To sum up, since facility location embedding loss realizes the global landscape of the

embedding space, it can escape the poor local optima which is illustrated in Figure 2.6

via pulling all positive examples to cluster medoids and pushing negative examples

further from medoids by the structured margin term.

21

2.2 Deep Neural Networks

Artificial neural networks (ANN) can be said to mimic the activity of human brains

that consist of biological neural networks [5]. These systems learn how to solve

specific problems instead of applying rule-based methods. Although the history of

artificial neural networks dates back to 1940s [46], it became very popular after the

computation power of computers is enhanced and the number of available training

data is increased. These innovations lead to building networks which have more

layers. For this reason, the term of the artificial neural network is replaced with deep

neural network.

Deep neural networks have acquired a lot of attention with its accomplishment in a

variety of tasks such as object detection [47, 24, 48], object instance segmentation

[49, 50], image captioning [51, 52, 53], face recognition [29, 54], natural language

processing [55, 56, 57], speech recognition [58, 59], etc. In this scope of thesis,

convolutional and recurrent neural network models are focused. Nevertheless, due

to integrity of the comprehension, the basic and advanced concepts of deep neural

networks related to this thesis are explained in below subsections.

2.2.1 Deep Feedforward Networks

Deep feedforward networks which is also known as multilayer perceptrons (MLP), is

typical deep neural network models. Multilayer perceptrons are utilized to estimate

some function, f . It could be described as a function, y = f(x;θ), that maps an

input, x, to an output, y, by learning network parameters, θ, which provides the best

approximation to the desired function. As the name of the model implies, there are

no feedback connections between the previous output and current computation.

More than one functions constitute deep feedforward networks which are a directed

acyclic graph. For instance, if MLP has two hidden layers that is illustrated in Figure

2.7, the output function of the network could be described as:

f(x) = f (o)(f (2)(f (1)(x))) (2.34)

22

In Equation 2.34, f (1), f (2) and f (o) denote first layer, second layer and output layer of

the network, respectively. In the training procedure, only the output of the final layer

is exploited to approximate the desired function according to some loss function.

Hence, f (1) and f (2) are called as hidden layers. As seen in Figure 2.7, each hidden

layer of the neural network is a vector and each element is entitled as a hidden unit.

Figure 2.7: An example of multilayer perceptrons with two hidden layers. (Best

viewed in color.)

Determining which functions, f (i), which are utilized to compute the neural network

is very significant. Since linear models have limited capacity to represent the model, it

is required to extend linear models by applying non-linear functions to hidden vectors,

h(i):

h(i) = W (i)x+ b(i) (2.35)

f (i)(x) = φ(h(i)) (2.36)

where W (i) and b(i) describe weight matrix and bias vector, respectively. The index

23

of layer is represented as i. The non-linear function, φ(.) is also called as an activation

function.

2.2.2 Loss Functions

The aim of training neural networks is to estimate a distribution p(y|x; θ). In most

cases, the deep neural network tasks could be formulated as a classification problem.

For example, the softmax function is the most popular one for a multi-class classifi-

cation task. It is usually exploited in the final layer of the neural network to model

a probability distribution over n different classes. In order to generalize multi-class

classification problem, an output vector, ŷ, whose elements are ŷi = P (y = i|x)

should be obtained. First of all, unnormalized log-probabilities which is also called

as logits are acquired by applying a linear layer:

s = W (o)h(f) + b(o) (2.37)

si = P̂ (y = i|x) (2.38)

whereW (o) and b(o) describe weight matrix and bias vector which are used to linearly

map from last hidden layer, h(f) into an output layer. In order to satisfy the properties

of the valid probability distribution, each element of s, si is required to be valued

between 0 and 1. Besides, the sum of each si should be 1. Hence, the softmax

function which is illustrated in Figure 2.8 is defined as:

softmax(s)i =
exp zi∑
j exp zj

(2.39)

During the training process, it is generally assumed that the target probability dis-

tribution, p, is known. The loss function is determined to minimize the difference

between p and the estimated probability distribution, q. In order to compare these

24

Figure 2.8: An example of the softmax classifier for three classes case [4]. (Best

viewed in color.)

distributions that are assumed to be discrete, cross entropy is utilized:

H(p, q) = −
C∑
i=1

pi log qi (2.40)

where C denotes the number of classes. The general definition of the cross-entropy

could be written as in terms of the entropy, H(.) and the Kullback-Leibler (KL) di-

vergence, Dkl(.||.),:

H(p, q) = −Ep[− log q] = H(p) +Dkl(p||q) (2.41)

The KL divergence is a non-symmetric measure, Dkl(p||q) 6= Dkl(q||p), of the differ-

ence between two probability distributions, p and q:

Dkl(p||q) =
C∑
i=1

pi log
pi
qi

(2.42)

As seen in Equation 2.41, since the entropy of the true distribution, H(p), is a con-

stant, minimizing the KL divergence equals to minimize the cross-entropy. Hence,

25

the multi-class loss with softmax score function could be formulated as:

J(θ) = −
C∑
i=1

yj log
exp zi∑
j exp zj

(2.43)

where desired output, yj , is 1 at only the index of the correct class, k. The above

summation is zero at other indexes, j 6= k. The loss function that is defined in

Equation 2.43 could be summarized as follows:

J(θ) = − log
exp zk∑
j exp zj

(2.44)

Besides, the multi-class loss function with softmax could be extended for a dataset

which has N samples:

J(θ) = −
N∑
i=1

log
exp zik∑
j exp zij

(2.45)

where i superscript indicates the index of the sample.

2.2.3 Optimization

Once the loss function is determined, it is required to get neural network parameters

that minimize it. In the most deep learning applications, gradient-based optimization

is utilized. Assume that y = f(x) is the function which is requested to minimize

where x and y are real numbers. The derivative of this function, f ′(x), equals to the

slope of f(x) at the point x. This slope indicates how to alter the input to obtain a

small enhancement in y: f(x + ε) = f(x) + εf
′
(x). Hence, it is guaranteed that if

ε is small adequately, f(x − ε sign(f
′
(x))) is always less than f(x) where sign(.) is

a signum function. Therefore, the loss, y, could be decreased by moving x in small

steps with negative of the gradient. This optimization method is called as a gradient

descent [60]. The illustration of the gradient descent technique is indicated in Figure

2.9.

26

Three kinds of the gradient descent technique are mainly exploited in the deep learn-

ing area. They are distinguished according to the usage of the dataset while comput-

ing the gradient of the loss function. These differences provide a trade-off between

an accuracy of the model and training time.

At first place, a batch gradient descent which is as known as a vanilla gradient descent.

uses whole training data to calculate the gradient of the objective function, J(θ), with

respect to the neural network parameters, θ:

θ = θ − η∇θJ(θ) (2.46)

where η is the learning rate which determines the size of the steps to reach a local

minimum. Vanilla gradient descent guarantees to reach a local minimum . If the

loss function is convex, it is always converged to a global minimum. However, since

vanilla gradient descent utilizes an entire dataset for one update, it is slow and inap-

plicable to large datasets due to the memory constraints. Besides, it is not suitable for

an online training.

Figure 2.9: An illustration of the gradient descent technique that utilizes the deriva-

tives of the function in order to reach the global minimum [5].

In order to eliminate drawbacks of the vanilla gradient descent, stochastic gradient

descent method appears. Instead of updating parameters with respect to the whole

27

training set, it selects one training example, xi, and its label, yi, at each update:

θ = θ − η∇θJ(θ;xi; yi) (2.47)

Stochastic gradient descent method removes a redundant computation for large datasets

by updating parameters for only a single training instance. Hence, the training is

much faster and applicable to online problems. Furthermore, although it suffers from

a fluctuation of the loss function due to the variance of the dataset, the researches

show that it follows same behavior with a batch gradient descent when the learning

rate is decreased slowly during the training [61].

In order to reduce a variance of the parameter updates, mini-batch gradient descent

algorithm that is the most popular gradient descent technique is proposed. It performs

an update for each mini-batch which constructs N training example:

θ = θ − η∇θJ(θ;xi:i+N ;yi:i+N) (2.48)

This technique not only reducing a variance of the parameter updates for more stable

convergence but also allowing matrix optimizations that could be done in GPU. It

induces us to be able to utilize popular deep learning libraries such as Tensorflow

[62], PyTorch [63], Caffe [64], etc.

Despite this benefits of the vanilla mini-batch gradient descent, it does not guarantee

a good convergence. The reasons for that could be itemized as follows:

• Selecting proper learning rate could not be easy. If the learning rate is too high,

the model may overshoot the local minimum whereas a very small learning rate

leads to painfully slow convergence.

• Learning rate schedules that are usually exploited to decrease learning rate ac-

cording to pre-defined schedule to prevent sticking the local minima. However,

since it is required to be defined before the training, the schedule may not be

suitable for the characteristic of the dataset.

28

• The same learning rate is applied to all parameter updates. If the data is sparse

and it contains dissimilar examples in different frequencies, it causes the net-

work not to learn rare examples.

• When the loss function is highly non-convex, it is nearly impossible to avoid

getting stuck in the suboptimal local minima by utilizing vanilla mini-batch

gradient descent. Dauphin et. al. [65] claim that since the gradient of the

objective function at saddle point is nearly zero in all directions, it is very hard

to escape from saddle points for vanilla gradient descent techniques.

There are many advanced gradient descent algorithms which are the extensions of the

mini-batch gradient descent to overcome the aforementioned challenges. For further

reading, Ruder [61] widely overviews existing advanced gradient descent techniques

which are highly exploited in the deep learning area. In this scope of the thesis,

adaptive moment estimation (Adam) [66] which is the gradient descent method that

calculates adaptive learning rates for each parameter, is utilized since Adam works

better in practice while comparing with the other adaptive learning methods.

2.2.4 Backpropagation

In the training phase, after a forward propagation, a scalar cost, J(θ) is obtained.

Then, it is required to backpropagate this cost to trainable parameters which belong

current and previous layers. The backpropagation is a method that computes gradients

of the training parameters according to the objective function through the recursive

application of the chain rule. As discussed in Section 2.2.3, the parameters of the

network is updated with respect to∇θJ(θ).

Assume that the objective function which is desired to learn is the multiple composed

function, f(x, y, z) = 5z(2x + 3y). Although the gradient of this function is easy to

calculate, in order to understand the intuition behind the backpropagation concept, it

may be divided into two functions: q = 2x + 3y and f = 5zq. The derivatives of

29

these two expressions with respect to their inputs are given below:

∂f

∂q
= 5z,

∂f

∂z
= 5q (2.49)

∂q

∂x
= 2,

∂q

∂y
= 3 (2.50)

Since the derivatives of the intermediate values are not interested, the value of ∂f
∂q

is

not beneficial alone. Instead, the gradient of f with respect to its inputs, x, y, z is

significant. ∂f
∂x

and ∂f
∂y

could be computed by utilizing chain rule:

∂f

∂x
=
∂f

∂q

∂q

∂x
= 10z (2.51)

∂f

∂y
=
∂f

∂q

∂q

∂y
= 15z (2.52)

At the end, the gradient in the variables, ∂f
∂x

, ∂f
∂y

and ∂f
∂z

are obtained. They indicate the

sensitivity of the variables x, y and z on the function, f . This simple backpropagation

example is illustrated in Figure 2.10 where input variables x, y and z are valued to 2,

−2 and 1, respectively.

2.2.5 Convolutional Neural Networks

Convolutional neural networks (CNN) are a special type of the neural network that

process data which has grid-like topology [67]. It is very similar to deep feedforward

networks which are described in Section 2.2.1. CNN also consists of neurons that

have weights and biases which are to be learned. Each neuron takes some inputs,

performs a dot product and usually applies non-linearity. Besides, there is a still

differentiable loss function on the last layer.

The deep feedforward networks do not scale well to images due to their fully con-

nected structure. Assume that the size of images is 400x400x3 in the dataset. It

means that there should be 480000 neurons in the first layer and 480000xm weights

30

Figure 2.10: A visualization of the forward pass and backpropagation for f(x, y, z) =

5z(2x+3y) expression where x = 2, y = −2 and z = 1. The computed values in for-

ward propagation are indicated in blue whereas the gradients with respect to trainable

variables which are calculated by recursively applying chain rule in backpropagation

are denoted in red. (Best viewed in color.)

31

to compute neurons in the first hidden layer where m denotes the number of hidden

units in the first hidden layer. Moreover, while the number of hidden layers increases,

the parameters size of the neural network increases dramatically. Hence, the prob-

lem becomes intractable. Furthermore, the huge number of parameters may lead the

network to memorize the dataset quickly instead of learning.

Figure 2.11: (a) A conventional 3-layer deep feedforward neural network (b) The

layers of CNN consists of neurons which has three dimensions (width, height and

depth) as illustrated in one of the layers. The input layer is indicated in red. It has

the same size as input images. Hence, its width and height are the dimensions of

the images and its depth is three (red, green and blue channels) [4]. (Best viewed in

color.)

CNN utilizes the advantage of the inputs that consists of images which have the grid-

like topology in a more sensible way. Whereas the neurons of the feedforward neural

networks are 1-D, the layers of the CNN are composed of neurons that are arranged in

3 dimensions: width, height and depth. For instance, CIFAR-10 [68] dataset contains

images whose size are 32x32x3 (width, height and depth, respectively). As seen in

Figure 2.11, the neurons in the current layer are connected to a small field of the next

layer instead of fully connecting. Furthermore, the size of the neuron in the final layer

is 1x1x10 since there are 10 classes in CIFAR-10 dataset.

A simple CNN consists of a sequence of layers, each layer maps one volume of

activations to another via applying differentiable function. There are three main

types of layers to construct CNN architectures: convolutional, pooling and fully-

connected layer. A simple CNN architecture is visualized in Figure 2.12. A series of

the convolutional and pooling operations are performed in CNN architectures. After

each convolutional layer, rectified linear units (ReLu) which are non-linear function,

32

max(x, 0), are applied as an activation function. Fully connected layers are utilized

after last pooling layer to gather all the information. In the last layer, assuming that

the problem is a multi-classification problem, the softmax loss function is exploited.

Figure 2.12: A simple CNN architecture example. Conv, Pool and FC denote convo-

lutional, pooling and fully connected layers, respectively. (Best viewed in color.)

The most significant building block of the CNN is the convolutional layer. Convo-

lution is a mathematical operation that provides merging two sets of information. In

CNN, the convolution is performed on the input data by utilizing a convolution filter

which is also known as a convolution kernel in order to construct a feature map.

A convolution filter is operated by sliding the kernel over the input. At each location,

a element-wise matrix multiplication is applied and the result is summed onto the fea-

ture map. The example of the convolution operation with the 3x3 kernel is illustrated

in Figure 2.13. The size of the kernel is also called as a receptive field where the

convolution is performed.

Although this example is useful to understand the convolutional layer, 3-D convolu-

tion filters are utilized in real applications instead of 2-D since the input image usually

has multiple channels (red, green and blue). Besides, multiple different convolutions

are applied on an input to obtain distinct feature maps. Then, these feature maps are

stacked to produce the final output of the convolution layer.

Pooling layers usually follow convolutional layers in CNN to reduce the dimensional-

ity. It provides decreasing the number of parameters and preventing from overfitting

by downsampling each feature map independently. During pooling, width and height

of the inputs are reduced whereas the depth is preserved.

33

Figure 2.13: The 3x3 convolution kernel is applied by sliding over the input to pro-

duce the neurons in the next layer [6]. (Best viewed in color.)

The most popular pooling technique is max pooling that returns the maximum value

in the pooling window. Unlike the convolutional filter, pooling has no parameter. It is

required to define the window size and stride which describes how much to move the

pooling window at each step. If the window size and stride are selected as 2x2 and 2,

respectively, the pooling operation equals downsampling by 2 as seen in Figure 2.14.

2.2.6 Recurrent Neural Networks

Recurrent neural networks (RNN) are a robust and powerful type of the deep neural

networks for processing sequential data. Unlike CNN, RNN could be able to condi-

tion the model on all previous inputs in the sequential data.

RNN architecture is illustrated in Figure 2.15 where the prediction of the time instant

t is performed. Similar to CNN, each layer contains neurons, each of which applying

linear operation on its inputs followed by a non-linear activation function which is

tanh(.) in this case. The hidden units, ht, and the output probability distribution, ŷt,

34

Figure 2.14: Max pooling utilizing 2x2 window and stride 2. Each color indicates a

distinct window. (Best viewed in color.)

Figure 2.15: (a) The block of the RNN cell. (b) The inside of the RNN cell at a time

instant, t. (Best viewed in color.)

35

at the time instant t are calculated as:

ht = tanh(W hhht−1 +W hxxt) (2.53)

ŷt = softmax(W ohht) (2.54)

The parameters of the Equations 2.53 and 2.54 could be described as:

• xt ∈ Rd: input vector at time t which has d features.

• W hx ∈ Rnxd: weights matrix from the input layer at the current time-step, xt,

to the hidden layer at the current time-step, ht, which is exploited to condition

the input vector where n is the number of the hidden neurons.

• W hh ∈ Rnxn: weights matrix from the hidden layer at the previous time-step,

ht−1, to the hidden layer at the current time-step, ht, which is exploited to

condition the hidden vector at time t− 1.

• ht−1 ∈ Rm: the hidden vector which is produced by applying the non-linear

function at the previous time-step.

• h0 ∈ Rm: the initialized hidden vector at time, t = 0.

• W oh ∈ Rcxn: weights matrix from the hidden layer at the current time-step to

the output layer, ot, which is utilized to obtain the output probability distribu-

tion at time-step t, yt ∈ Rc. If the problem is multiple classification problem,

c denotes the number of the classes. However, in scope of this thesis, it is the

size of the embedding vector.

In the learning procedure of the RNN is completed by applying backpropagation

through time (BPTT) technique which backpropagates error on an unrolled RNN

which is visualized in Figure 2.16. By utilizing BPTT, the error is backpropagated

from the last to the first time instance while unrolling RNN for all time instances. The

rest of the process is the same with the backpropagation concept which is described

36

Figure 2.16: The illustration of the unrolled RNN. (Best viewed in color.)

in Section 2.2.4. It is worth to mention that, if the data is large in time, BPTT may be

computationally expensive.

Until now, RNN could estimate the output probability distribution by conditioning

the model on the previous inputs. It is possible to predict the output based on future

inputs by giving inputs in reverse order. Schuster et al. [69] presented bi-directional

recurrent neural networks which have two hidden layers at each time-step t, one for

the left-to-right propagation whereas the other one is the right to left propagation. The

output probability distribution is estimated through concatenating the results of these

hidden layers.

Figure 2.17 indicates the deep bi-directional RNN with three hidden layers. In the

hidden layers of the bi-directional RNN architecture, each hidden unit receives two in-

puts which are constructed from left-to-right and right-to-left hidden units at previous

time-step in addition to the inputs from the previous layer. Therefore, bi-directional

RNN could be formulated in the following equations:

−→
h

(i)
t = f(

−→
W (i)h

(i−1)
t +

−→
U (i)−→h (i)

t−1 +
−→
b (i)) (2.55)

←−
h

(i)
t = f(

←−
W (i)h

(i−1)
t +

←−
U (i)←−h (i)

t+1 +
←−
b (i)) (2.56)

ŷt = g(V [
−→
h

(o)
t ;
←−
h

(o)
t]) (2.57)

37

Figure 2.17: The deep bi-directional RNN that consists of three hidden layers [7].

(Best viewed in color.)

where right and left arrows over symbols denote left-to-right RNN and right-to-left

RNN, respectively. Superscripts indicate that the parameters belong to which layer.

W , U and V stands for weights matrices. b denotes a bias vector. f(.) and g(.) are

non-linear functions. [.; .] operation means the concatenation along the last axis.

In the theory, a vanilla RNN which is mentioned so far could capture the correlation

between inputs, regardless of the number of the time-steps. However, in practice,

RNN could grasp only short-term dependencies owing to vanishing and exploding

gradient problems. Since there are many multiplications with the same weights ma-

trices in the backpropagation phase of the RNN, if one of the weights matrices is so

small, the gradient could be diminished in the more previous layers. This situation

is called the vanishing gradient problem. Furthermore, when one of them is very

large, the gradients may become infinite in the far-away layers; this issue is called the

exploding gradient problem.

In order to remove the exploding gradients problem, the simple heuristic approach

that clips gradients over a predefined small value could be utilized. Whenever the

value of any gradient exceeds the threshold value, it becomes this threshold value.

38

There are two common techniques to solve the vanishing gradient problem in RNN.

First of all, the weights matrices between hidden layers could be initialized as an iden-

tity matrix instead of the matrix whose elements are small. The other technique is to

use ReLu, max(0, x), as an activation function instead of tanh and sigmoid functions

since the derivative of the ReLu is 0 or 1.

Although the solutions which are mentioned above to capture the long-term depen-

dencies, RNN is still hard to train for this purpose. Two fancy extensions of the RNN

cell, gated recurrent units (GRU) [55] and long short-term memories (LSTM) [70],

are proposed to address this issue.

Figure 2.18: The detailed illustration of the LSTM cell [7].

LSTM is designed to capture long-term dependencies by having more permanent

memory. Before explaining the intuition behind LSTM, its mathematical expression

is described as below:

it = σ(W (i)xt +U (i)ht−1) (input gate) (2.58)

39

ft = σ(W (f)xt +U (f)ht−1) (forget gate) (2.59)

ot = σ(W (o)xt +U (o)ht−1) (output gate) (2.60)

ĉt = tanh(W (c)xt +U (c)ht−1) (new memory cell) (2.61)

ct = ft ◦ ct−1 + it ◦ ĉt (final memory cell) (2.62)

ht = ot ◦ tanh(ct) (current hidden state) (2.63)

The intuition behind the LSTM cell could be understood in the following stages which

are seen in Figure 2.18:

1. New memory generation: In this stage, a new memory cell, ĉt, is produced by

merging the input at current time-step, xt, with the previous hidden state, ht−1,

to describe the correlation between xt and ht−1.

2. Input gate: This gate utilizes xt and ht−1 in order to decide how much of xt

is significant to be preserved.

3. Forget gate: It determines whether the previous memory cell, ct−1, is impor-

tant to compute the current memory cell, ct, by looking the correlation between

xt and ht−1.

4. Final memory generation: At first, this stage forgets the past memory, ct−1,

by listening the forget gate, ft. Then, it pays attention to the input gate, ft,

to understand the required information of the new memory cell. Finally, it

combines two pieces of the information by adding operation to generate the

final memory, ct.

5. Output gate: This gate, ot, is utilized to determine required information of the

final memory, ct, to be stored in the hidden state, ht.

40

Figure 2.19: The detailed visualization of the GRU cell [7].

Although the motivation of designing GRU is same with LSTM, GRU is computa-

tionally cheaper than LSTM since it has fewer parameters. Before mentioning the

idea behind GRU, it could be formulated as:

zt = σ(W (z)xt +U (z)ht−1) (update gate) (2.64)

rt = σ(W (r)xt +U (r)ht−1) (reset gate) (2.65)

ĥt = tanh(Wxt + rt ◦Uht−1) (new memory) (2.66)

ht = (1− zt) ◦ ĥt + zt ◦ ht−1 (hidden state) (2.67)

The above equations could be considered as four main stages of the GRU cell as

illustrated in Figure 2.19:

1. New memory generation: In this stage, a new memory cell, ĥt, is generated

41

by combining the input at current time-step, xt, with the previous hidden state,

ht−1, to summarize xt according to ht−1.

2. Reset gate: This gate exploits xt and ht−1 in order to decide how important xt

is to summarize ĥt. The reset gate, rt has power to reduce past hidden states if

it decides that ht−1 is not significant to compute ĥt.

3. Update gate: It determines whether the previous memory cell, ht−1, is impor-

tant to compute the current hidden state, ct, by looking the correlation between

xt and ht−1. If update gate, zt, is 1, the current hidden state is same with the

previous hidden state. Conversely, if it is 0, ht become the value of ĥt.

4. Hidden state: Finally, the hidden state, ht, is produced by combining ht−1 and

ĥt with the advice of zt.

2.2.7 Encoder-Decoder Models with Attention Mechanism

RNN could be utilized to map an input sequence to a fixed-length vector. In the

Section 2.2.6, mapping the input and the output which have the same size is described.

However, the size of the input and the output could be different in some applications

such as machine translation, speech recognition, question answering etc.

The first RNN architectures which are utilized to map a variable-length sequence to

another variable-length sequence was introduced by Cho et. al. [56] and shortly later

by Sutskever et al. [57] in order to apply the encoder-decoder model to the machine

translation problem. This encoder-decoder RNN architecture is illustrated in Figure

2.20 for a machine translation task from English to Turkish.

The intuition behind the encoder-decoder architecture is simple. There are two RNN

architectures, encoder and decoder, which have different parameters. At first, the

encoder compresses the information of the input sequences, X = (x1,x2, ...,xN),

into the variable length context vector, c. Then, the encoder transmits c which is

obviously the final hidden state of the decoder to the encoder. The encoder receives c

and utilizes this context vector by assigning it to the initial state of the encoder. After

that, the decoder produces the output sequence, Y = (y1,y2, ...,yM). As mentioned

before, The lengths of input and output sequence,N andM , could be different. In this

42

architecture, these two encoder and decoder RNNs are trained jointly to maximize the

conditional probability, P (y1,y2, ...,yM |x1,x2, ...,xN).

Figure 2.20: An example of the encoder-decoder or sequence-to-sequence RNN

model for a machine translation problem from English to Turkish. <Start> and

<EOS> are tokens which denote the start and end of the sentence. (Best viewed

in color.)

The most important limitation of the encoder-decoder model is that the encoder may

not summarize a long sequence since the size of the context vector could be inade-

quate to represent a long sequence. In order to address this issue, Bahdanau et al.

[55] proposed an attention mechanism which learns the relation between elements of

the context sequence, ct, and the elements of the output sequence, yt. Where encoder

and decoder hidden states at time-step t are ht and st, respectively, the attention in

encoder-decoder RNN models could be formulated as:

et = [sTt h1, s
T
t h2, ..., s

T
t hN] ∈ RN (2.68)

αt = softmax(et) ∈ RN (2.69)

43

at =
N∑
i=1

αt
i(hi) ∈ Rm (2.70)

As seen equations above, at first, attention scores, et, are computed for input hidden

vectors at each time-step to determine the association with the focused output at the

time-step t, yt, by applying dot product where M describes the length of the input

sequence. Then, softmax function is applied to these attention scores in order to

obtain the attention distribution, αt, for the current decoder time-step t. After that,

attention output, at, is produced by taking a weighted sum of the encoder hidden

states where m is the number of hidden units in the encoder. Finally, the output

probability distribution, ŷt, is computed while its input is generated by concatenating

attention output with decoder hidden states along the last dimension.

Figure 2.21 illustrates these mentioned steps. On the decoder time-step where the

output probability distribution is produced in that example, the network is mostly

focused on "pauvres" input word while predicting "poor" output word.

44

Figure 2.21: An illustration of the encoder-decoder RNN architecture with an atten-

tion mechanism while predicting the output at the time-step, t = 2, [7]. (Best viewed

in color.)

45

46

CHAPTER 3

METRIC LEARNING USING DEEP LEARNED REPRESENTATIONS

In this chapter of the thesis, a novel deep metric learning loss function and a sampling

method are presented. Following the explanation of the motivation behind the novel

deep metric learning approach, the general framework of deep metric learning based

on CNN is described. Then, each part of the algorithm is introduced in details under

three main sections. Finally, the efficacy of the proposed approach is validated with

quantitative and qualitative experimental results.

3.1 Motivation

The metric learning methods based on deep neural networks are detailedly examined

in terms of their advantages and disadvantages in Section 2.1.2. One of the most major

issue in existing methods is to select proper negative examples while constructing

mini-batch.

Triplet embedding approach which is described in Section 2.1.2.2 utilizes mini-batch

construction method that associates each positive pair in the mini-batch with the

"semi-hard" negative examples. However, the size of the mini-batches is required to

be very large in order to ensure that each mini-batch has adequate hard negatives. In

N -pair embedding algorithm mentioned in Section 2.1.2.4, this mini-batch construc-

tion idea is improved by selecting N different positive pairs. The positive examples

of each pair should violate triplet constraint with respect to the anchors that belong to

the dissimilar classes. This mini-batch creation approach is called N -pair sampling.

Although the results on selected datasets are significantly improved by utilizing this

sampling algorithm [30], there are two key limitations of N -pair embedding:

47

1. Each anchor has one positive example and N − 1 negative examples in order to

ensure enough number of hard negatives due to the computational constraints in

GPU. However, it causes reducing the representation power of the loss function

since the embedding representations of the dissimilar examples are mapped to

far away points in the embedding space from the embedding representations of

the anchors by considering only one positive example.

2. Despite increasing the number of negative examples for each anchor, selecting

representative hard negatives is still not guaranteed since the number of exam-

ples in the mini-batch, 2N , could not be large as much as required.

Both of these deficiencies come out due to a lack of the number of representative hard

negatives. As it is expected, this is an old research area and there is a conventional

solution, originally called bootstrapping which is now referred to as hard negative

mining. Sung [71] introduces bootstrapping method for training face detection mod-

els. This approach constructs the set of dissimilar examples from wrongly classified

negative examples by gradually growing or bootstrapping. Hence, two training sets,

current and bootstrapped, are utilized to update model parameters in an iterative man-

ner.

The common motivation of hard negative mining algorithms is selecting easier sam-

ples as inputs in the training phase may lead the converge rate for model parameters

to be reduced since easier negatives usually contribute smaller gradients. Therefore,

emphasizing hard negative samples during training may accelerate the learning pro-

cess. An example could be defined as hard negative or not by looking its loss during

training process [33]. It means that the embeddings of the whole dataset should be

computed at each training iteration in order to obtain hard negative samples. Due to

this reason, it is too much computationally expensive to be performed in large training

sets.

To alleviate aforementioned drawbacks of utilizing N -pair sampling and hard nega-

tive mining, a novel local neighborhood sampling approach is proposed. This method

constructs mini-batches whose samples are randomly selected example defined as

center, and examples that belong to its k-nearest neighborhood in the learned embed-

ding space.

48

The idea behind this proposed sampling method is developed by inspiring from the

performance of existing methods [1, 9, 15, 28, 29, 30, 31, 32] in the literature on

Recall@K metric that is the proportion of similar examples found in the top-K re-

trievals. For instance, by following training procedure in [32], whereas the Recall@1

performance of theN -pair embedding method is 66.4%, Recall@100 metric is 92.1%

on the Stanford Online Products dataset [15]. It means that hard negatives which are

required to be focused for each sample is produced in its k-nearest neighborhood at

the end of the training. In the light of these observations, after training with N -pair

sampling through the predefined number of iterations, the learning process could be

continued as utilizing hard negatives that are produced by introduced local neighbor-

hood sampling.

Since the restrictions of existing sampling methods on the deep metric learning loss

functions are reduced owing to proposed sampling method, a novel loss function

which is an extended version of (N + 1)-tuplet loss function described in Section

2.1.2.4, could be introduced. This proposed loss function optimizes to identify P

similar examples from N negative examples. It provides enhancing the representa-

tion power of the network since the negative examples are kept away by considering

multiple similar samples instead of considering only one positive example in N -pair

objective function; when P = 1, it is equivalent to (N + 1)-tuplet loss.

3.2 Deep Metric Learning Framework

Letxi ∈X be an input vector which is the element of training set and yi ∈ {1, 2, ..., C}
be a class label of xi where C denotes the number of different classes in dataset. The

aim of the deep metric learning is to learn non-linear function, fθ(·), such that em-

bedding representations of similar examples are mapped to close points on a manifold

and embedding representations of dissimilar examples are mapped to far away points.

Figure 3.1 illustrates the overview scheme of deep metric learning algorithms. At

first, mini-batches which have N examples, are constructed by applying a sampling

algorithm that selects representative positive and negative samples from the training

set, X . Then, the non-linear function, fθ(·), which is CNN described in 2.2.5 takes

49

each of the examples in the mini-batch, xi, as an input and it produces the embedding

representation of xi, fθ(xi). Note that, by generating each xi, every CNN shares its

parameters. In other words, each CNN has the same weights and biases. Finally, after

obtaining embedding representations of all samples in the mini-batch, the network

is optimized with respect to deep metric learning loss function with the aid of mini-

batch gradient descent and backpropagation which are introduced in Section 2.2.3

and 2.2.4, respectively.

Figure 3.1: The general framework of the deep metric learning algorithms. (Best

viewed in color.)

3.3 Proposed Loss Function

A deep metric learning loss function is proposed in order to recognize multiple sim-

ilar examples from multiple dissimilar samples. (N+P+1)-tuplet of training sample

which is visualized in Figure 3.2 could be constructed as {xanc,xpos
i , ...,xpos

P ,xneg
j ,

...,xneg
N } where xanc, xpos

i and xneg
j denote an anchor, a positive example at index i

of xanc and a negative sample at index j of xanc. The (N+P+1)-tuplet loss function

50

could be formulated as below:

J(N+P+1)-tuplet = log(1 +
1

P

P∑
i=1

N∑
j=1

exp{fθ(xanc)Tfθ(x
neg
j)− fθ(xanc)Tfθ(x

pos
i)})

(3.1)

where fθ stands for the non-linear embedding function whose parameters are θ. Re-

call that when P = 1, it is equivalent to (N+2)-tuplet loss which is renamed from

(N+1)-tuplet loss in [30] to provide name consistency with the proposed loss. Fur-

thermore, it is worth the mention that if P = 1 and N = 1, the loss function is highly

similar to the triplet loss.

Since the desired loss described in Equation 3.1 requires all positive and negative

examples of the selected anchor, it is impractical to utilize this objective function in

large datasets. To alleviate this problem, the sets of positive and negative examples,

Pk and Nk, respectively, could be selected from the k-nearest neighborhood of the

anchor, K, which is indicated as subscript c from now. The further reasons of this

simplification are argued in Section 3.4. Hence, where Di,j = fθ(xi)
Tfθ(xj) ,the

loss function could be reformulated as:

Jk-nearest = log(1 +
1

|Pk|
∑
i∈Pk

∑
j∈Nk

exp{Dc,j −Dc,i}) = − log

1
|Pk|
∑

i∈Pk
exp{Dc,i}∑

k∈K exp{Dc,k}
(3.2)

Equation 3.2 resembles the multi-class softmax loss function where C, yj and zi

are the number of classes, desired output class and unnormalized log-probabilities,

respectively, which is defined as:

J(θ) = −
C∑
i=1

yj log
exp zi∑
j exp zj

(3.3)

In order to train Jk-nearest with the softmax loss for easy implementation since all deep

learning libraries have cross entropy with softmax loss function, easy trick could be

applied. By summation over |K| instead of C, y ∈ R|K| could be constructed as

{ y1
max(1,|P|) ,

y2
max(1,|P|) , ...,

y|K|
max(1,|P|)} where yi = 1 if yi ∈ P and yi = 0 when yi ∈ N.

51

Figure 3.2: Deep metric learning with (a) triplet described in Section 2.1.2.2, (b)

(N+2)-tuplet defined in Section 2.1.2.4 and (c) proposed (N+P+1)-tuplet embedding

loss functions. While pulling the embedding vector of positive example, fpos, to the

point of an anchor in the embedding space, fanc, (N+2)-tuplet objective function

keeps away embedding vectors of N negative example, fneg
i , from fanc instead of

pushing only one fneg like the triplet loss. On the other hand, in proposed (N+P+1)-

tuplet loss function, P f pos
i are getting closer to fanc while dragging awayN negative

examples. (Best viewed in color.)

52

3.4 Local Neighborhood Sampling

When the mini-batch size is M , M x (K + 1) examples are required to be passed

through the network where K stands for |K|. It could be intractable for convolu-

tional neural networks that have large parameters since the number of input samples

increases in quadratic to M and K.

In order to reduce this computational complexity, a novel batch construct method is

proposed. At first, the network is trained by utilizing N -pair sampling [30] with a

minor modification to produce k-nearest neighbors of the examples. In original N -

pair sampling method which is indicated in Figure 3.3(b), N pair of similar examples

are selected from different classes that violates triplet constraint defined in Section

2.1.2.2. One example of each class is described as an anchor and the other positive

examples which are dissimilar to an anchor is chosen as negative examples. This

batch construction approach constructs mini-batches whose size areN from 2N sam-

ples whereas triplet construction illustrated in Figure 3.3(a) requires 3N examples. In

order to provide full mini-batch usage like lifted structured embedding loss explained

in Section 2.1.2.3 , each sample in mini-batch is defined as an anchor or a center.

Instead of taking one of the pairs which have different classes from the center, each

dissimilar sample in mini-batch is assigned as a negative of the center.

After constructing mini-batches by utilizing this modified N -pair sampling which is

also illustrated in Figure 3.3(c), the deep neural network is trained through predefined

iterations. Although training could continue until the parameters of the network con-

verge, the number of iterations is predetermined to maintain the end-to-end training.

Therefore, the trained neural network , fpre−trained(·), is ready to extract hard nega-

tives. The embeddings of samples in the training set is produced only once by ap-

plying fpre−trained(·). Assume that C is the set of centers in the mini-batch and Kc

is constructed from K closest examples to each center at index c in the embedding

space that is mapped by fpre−trained(·). In order to minimize error on the mini-batch,

53

Equation 3.2 becomes:

Jk-nearest-mb =
1

|C|
∑
c∈C

− log

1
|Pk|
∑

i∈Pk
exp{Dc,i}∑

k∈Kc
exp{Dc,k}

(3.4)

where Pk is a set of positive examples of the center, c, in Kc. Note that the network

gains robustness to outliers by taking positive examples in the k-nearest neighborhood

of each sample instead of all similar examples in the training set. It has the same

spirit to self-paced learning [34] which makes the model more robust to outliers by

decreasing weights of hard similar examples in the loss function.

Figure 3.3: (a) triplet (b) N -pair (c) modified N -pair (d) local neighborhood (when

|C|=1) sampling methods. In order to construct mini-batch that consists ofN queries,

Triplet, N -pair, modified N -pair and local neighborhood batch construction ap-

proaches require 3N , 2N , N and Np passes to produce embedding vectors, respec-

tively. Np describes the number of samples which has at least one similar example in

the mini-batch. (Best viewed in color.)

To receive full information of each manifold in the mini-batch whose elements are

center, c, and its |Kc| closest samples in the embedding space, C is constructed by as-

suming all samples in Kc is the center. Although this approximation produces corre-

lated mini-batches and the aim of the most machine learning algorithms is construct-

ing independent and identically distributed mini-batches to increase the performance

54

of the gradient descent techniques, existing deep metric learning methods described

in Section 2.1.2 want to ensure that there are representative similar and dissimilar ex-

amples in the mini-batch. For future research directions, there is a study in [72] that

removes the negative effects of mini-batches which consists of correlated samples by

applying batch renormalization. Moreover, in order to taking advantage of utilizing

more negatives, each example in the mini-batch could be considered as the center of

the mini-batch. Hence, Equation 3.4 could be reformulated as:

Jcentralized-mb =
1

Np

N∑
i=1

− log

1
|Pi|
∑

j∈Pi
exp{Di,j}∑

k 6=i exp{Di,k}
(3.5)

where Pi is the set that contains positive examples in the mini-batch of the center, i. N

stands for the number of examples in the mini-batch whereas Np denotes the number

of samples which has at least one similar example in the mini-batch. Therefore, mini-

batch size, M , is equal to Np. The reason behind dividing summation over a set

of centers by Np is that examples which have not similar samples in the mini-batch

contribute zero gradients.

Finally, local neighborhood sampling which is visualized in 3.3(d) could be summa-

rized in the following steps:

1. Store Embedding Vectors: pass all training set through the pre-trained net-

work, fpre−trained(·), to extract the embedding vector of each sample, and store

each produced embedding vector inZpre−trained ∈ Rmxd wherem and n denote

the number of examples and embedding size, respectively.

2. Select Center: select one sample at random. Then, retrieve pre-defined |K|
closest examples to the center according to Zpre−trained.

3. Check Positive and Negative Examples: check sample labels in K. If there

are at least one similar and one dissimilar example to the center, construct a

temporary set, Stemp, from the center and retrieved samples. If not, return step

2.

4. Check Correlation: check whether one of the elements in Stemp is already

selected or not. If it is, return step 2.

55

5. Finalize Batch Construction: extend the set, S, which consists of examples in

mini-batch with the samples in Stemp. Go to step 2 until |S| is equal to N which

denote the required number of examples in mini-batch.

3.5 Regularization of Embedding Vectors

Since local neighborhood sampling constructs mini-batches by utilizing neighbor-

hood information in Zpre−trained which is calculated only once to reduce computa-

tional complexity instead of each iteration passing all training samples through the

network, the embedding representations of negative samples may be mapped into un-

desired far points from the center. In order to prevent this challenge, L2 norm of the

difference between produced embedding vectors and precomputed embedding vec-

tors could be regularized to be small:

Jreg-pre =
1

N

N∑
i=1

‖fθ(xi)− fpre−trained(xi)‖2 (3.6)

where fθ(·) and fpre−trained(·) stand for the current and the pre-trained deep neural

networks, respectively. Moreover, N denotes the number of samples in the mini-

batch.

Furthermore, similar to theN -pair loss function [30], the objective function described

in Equation 3.5 is minimized by not only the direction of Di,j but also its magnitude.

However, only the direction is important to calculate the distance between samples.

Although normalization seems like a solution, enforcing being less than 1 on Di,j

makes optimization difficult. Instead of that, L2 regularization term of the N -pair

embedding loss function is added on the proposed objective function:

Jreg =
1

N

N∑
i=1

‖fθ(xi)‖2 (3.7)

56

Finally, the proposed loss function becomes as the following equation:

Jcentralized−mb−reg = Jcentralized-mb + λJreg-pre + γJreg (3.8)

where λ and γ are regularization constants.

3.6 Experimental Results

In this section, the effectiveness of the proposed loss and batch construction method is

demonstrated by the conducting experiments on three widely-used benchmark datasets

for retrieval and clustering tasks. The proposed method has been shown to yield com-

petitive or better results while comparing with the state-of-the-art approaches.

3.6.1 Benchmark Datasets

In this scope of the thesis, the results are obtained by utilizing three public benchmark

datasets. Conventional protocol of splitting training and testing are followed for all

datasets:

• CUB-200-2011 [2] dataset consists of 200 species of birds with 11,788 images.

Whereas the first 100 species (5,864 images) are split for training, the rest of

100 species (5,924 images) are used for testing.

• Cars196 [3] dataset contains 196 classes of cars with 16,185 images. The first

98 classes (8,054 images) are used for training and remaining 98 classes (8,131

images) are reserved for testing.

• Stanford Online Products [1] dataset has 22,634 classes with 120,053 product

images. The first 11,318 classes (59,551 images) are split for training and the

other 11,316 (60,502 images) classes are used for testing.

57

3.6.2 Evaluation Metrics

Standard metric learning experimental protocol defined in [1] is followed to evaluate

the proposed method for retrieval and clustering performance. Conventional k-means

clustering [73] is used for the clustering task. In order to evaluate clustering per-

formance, normalized mutual information (NMI) [45] and F1 score is utilized. NMI

could be described as follows where Ω and C denote a computed set of the clusters

and a set of ground truth classes, respectively:

NMI(Ω,C) =
2I(Ω;C)

H(Ω)H(C)
(3.9)

whereH(·) and I(·, ·) denote entropy and mutual information functions, respectively.

NMI computes the label agreement between Ω and C neglecting the permutations

whereas F1 measures harmonic mean of precision, P , and recall, R, as follows:

F1 =
2PR

P +R
(3.10)

Furthermore, Recall@K metric [74] is exploited for the retrieval task. At first, each

image (query) in the test set retrieves K nearest neighbors from the test dataset. After

that, Recall@K score gives 1, if there is at least one sample that has the same label as

the query. Otherwise, it produces 0.

3.6.3 Training Setup

Tensorflow [62] deep learning library is used throughout the experiments. After im-

ages are normalized to 256x256, 224x224 random crop and data augmentation by hor-

izontal mirroring are performed for standard pre-processing. GoogLeNet [25] which

is pretrained on ImageNet ILSVRC dataset [75] are utilized as deep metric learning

framework and the last layer (fully connected layer) is initialized by random weights.

The weights of the randomly initialized layer are learned by utilizing 10 times larger

learning rate than the parameters of the other layers for fast convergence. The base

learning rate is selected as 10−4 for Stanford Online Products dataset whereas 10−5

58

learning rate is utilized to train CUB-200-2011 and Cars196 since they tend to meet

overfitting problem due to the limited dataset size. Adam [66] optimizer is used for

mini-batch gradient descent.

The embedding size of the samples is fixed at 512 throughout the experiment since

[1] shows that the embedding size does not have a key role on the performance of

the deep metric learning framework. Moreover, regularization constants, λ and γ,

described in Section 3.5 are empirically selected as 0.3 and 0.02, respectively. In

addition to that, weight decay constant [76] and dropout [77] are empirically fixed to

0.01 and 0.2, respectively, in order to prevent overfitting and increase generalization.

The maximum training iteration and mini-batch size are selected as 20,000 (10,000

with N -pair sampling and the rest by utilizing local neighborhood sampling) and

128, respectively, for a fair comparison with the existing state of the art deep learning

methods. The key parameter K that determines how many k-nearest examples are

sampled from each center is fixed to 16 regarding the results which are discussed in

the following section.

3.6.4 Effect of the Parameter K

As mentioned in Section 3.4, increasing K value provides exploiting more represen-

tative positive and negative examples in the k-nearest neighborhood. On the other

hand, it causes a mini-batch to become more correlated and it decreases the perfor-

mance of the mini-batch gradient descent. Although a recent study [72] shows that

utilizing batch renormalization reduces this performance degradation, it is not applied

to be fair while comparing with the other metric learning methods since the most of

them also generate correlated mini-batches to ensure sampling adequate number of

hard negatives.

The motivation behind this trade-off is validated by the experimental results of the

proposed loss function for variable K values on Stanford Online Product dataset

which is indicated in Table 3.1. Whereas the best clustering and retrieval perfor-

mances are obtained when K = 16, despite exploiting more representative positive

and negative examples, the proposed method when K = 128 suffer from a bad lo-

cal convergence. In the light of this results, K is selected as 16 for the rest of the

59

experiments.

Table 3.1: Clustering and retrieval performances (%) of the proposed algorithm for

different K values on the test set of Stanford Online Products dataset[1] @20k itera-

tions. The best results are indicated in bold.

K NMI F1 R@1 R@10 R@100

4 90.7 39.3 72.6 86.5 94.4

8 90.7 39.5 72.7 86.7 94.4

16 90.8 40.3 73.5 87.3 94.5

32 90.5 38.8 72.6 86.6 94.1

64 90.4 39.0 72.8 86.8 94.3

128 90.1 36.9 70.2 84.8 93.1

3.6.5 Ablation Studies

In this section, the importance of the proposed sampling method and the effect of

regularization term on the difference between produced embedding vectors and pre-

computed embedding vectors are highlighted.

Table 3.2: Clustering and retrieval performances (%) of the proposed loss func-

tion with different sampling approaches on the test set of Stanford Online Products

dataset[1]. The best results are indicated in bold.

Method NMI F1 R@1 R@10 R@100

N -pair [30] 87.9 27.1 66.4 82.9 92.1

Proposed Loss + P = 4 87.4 25.3 63.4 81.2 92.2

Proposed Loss + Sampling 90.8 40.3 73.5 87.3 94.5

At first, the proposed loss function is trained on the train set of Stanford Online Prod-

ucts dataset by selecting P positive examples of each class in a batch without utilizing

local neighborhood sampling. It is important to recall that when P is equal to 2, the

loss function is the same with N -pair loss function. For different P values which

60

are 2 and 4, clustering and retrieval performances of the proposed loss function are

given in Table 3.2. These results demonstrate the importance of training with as many

negative classes as possible by usingN -pair sampling method since performances are

reduced while increasing P . However, the local neighborhood sampling provides to

select representative positive and negative examples and it increases clustering and

retrieval performances.

Furthermore, the proposed loss function is trained on the train set of Stanford On-

line Products dataset without a regularization term which is indicated in Equation

3.6. Then, two different evaluation processes are followed. Firstly, the embedding

vectors are produced and evaluated in a conventional way. Secondly, while fixing

k-nearest neighborhood of each example according toZpre−trained, only retrieval per-

formance of the network is computed. As seen in Table 3.3, while retrieval task for

each example is restricted to samples which are selected from precomputed k-nearest

neighborhood, R@1 metric increases by up to 2.4 %. It validates that the embed-

ding representations of negative samples are mapped into undesired far points from

the center due to calculating a neighborhood information in Zpre−trained only once to

reduce computational complexity instead of each iteration passing all training sam-

ples through the network. In addition to that, Table 3.3 demonstrates that regularizing

L2 norm of the difference between produced embedding vectors and precomputed

embedding vectors eliminates this deficiency.

Table 3.3: Clustering and retrieval performances (%) of the proposed loss func-

tion with different sampling approaches on the test set of Stanford Online Products

dataset[1]. The best results are indicated in bold.

Method NMI F1 R@1 R@10 R@100

Proposed Loss + Sampling 90.0 37.5 71.4 86.2 94.0

Proposed Loss + Sampling by fixing k-nearest neighborhood - - 73.8 86.5 -

Proposed Loss + Sampling + Regularization 90.8 40.3 73.5 87.3 94.5

61

3.6.6 Baseline Methods

The deep metric learning framework described in [1] is applied on three aforemen-

tioned public datasets for a direct comparison with state-of-the art methods in the

literature that include contrastive embedding [28], triplet embedding [23] with N -

pair sampling and the more recent lifted structure [1], N -pair loss [30], clustering via

facility location [15] and angular loss [31].

Furthermore, recently, Duan et al. [32] proposed novel deep metric learning frame-

work based on an adversarial learning [78]. In [32], a deep adversarial metric learn-

ing framework (DAML) generates synthetic hard negatives from the observed nega-

tive samples to boost the performance of the existing metric learning loss functions.

Although it could be easily adapted for the proposed loss function in this section, it

exceeds the scope of this thesis. Nevertheless, in order to preserve the integrity of

the metric learning literature, DAML with N -pair loss function that has current state-

of-the-art results is also selected as one of the baseline methods. Besides, note that

DAML is trained through 40,000 iterations (20,000 for pre-training with N -pair loss)

instead of 20,000 iterations like proposed and the other baseline methods.

3.6.7 Quantitative Results

Tables 3.4, 3.5 and 3.6 indicate the quantitative results of the proposed method com-

pared with baseline methods on CUB-200-2011, Cars196 and Stanford Online Prod-

uct datasets, respectively, for clustering and retrieval tasks. The red values are utilized

to indicate best performances whereas the second best results are indicated in blue.

F1 performance of clustering via facility location approach is not given since it is not

available in its original paper [15].

At first, it is required to compare the proposed method with N -pair loss function

since the introduced loss function is equivalent to N -pair objective function when the

number of positive samples for each anchor in the mini-batch is 1. Although N -pair

embedding yields impressive results, the proposed loss function combined with the

introduced neighborhood sampling outperforms N -pair on all three datasets in terms

of clustering and retrieval performance by up to 3.9 %, 13.2% and 7.4% points on

62

NMI, F1 and R@1 metrics, respectively.

It demonstrates that the proposed sampling method is efficient to select representative

hard negative and positive samples and it leads the proposed loss function to exploit

more than one positive example while keeping dissimilar samples away unlike N -

pair. It is significant to notice that the large gap betweenN -pair and proposed method

in terms of F1 evaluation metric on Stanford Online Products dataset indicates that

proposed method considers not only recall but also precision performance by getting

all positive examples closer to each other while pushing negative samples away in the

k-nearest neighborhood.

Furthermore, the proposed method yields state-of-the-art results in terms of NMI, F1

and R@K scores on CUB-200-2011, Cars196 and Stanford Online Products datasets.

The largest performance margins by 1.4 % on NMI metric, 7.9 % on F1 score and 5.1

% R@1 metric between the proposed approach and current state-of-the-art method,

DAML, are obtained on Stanford Online Products dataset that is the most challenging

one of the utilized datasets as each cluster has approximately 5.3 images. It is ex-

pected since local neighborhood sampling approach could extract adequate number

of hard negatives even if K is selected as a small value.

63

Table 3.4: Clustering and retrieval performances (%) of the proposed algorithm on

the test set of CUB-200-2011 dataset[2]. The best results are indicated in red whereas

the second best results are showed in blue. (Best viewed in color.)

Method NMI F1 R@1 R@2 R@4 R@8

Contrastive [28] 47.2 12.5 27.2 36.3 49.8 62.1

Triplet [23] + N -pair sampling 54.1 20.0 42.8 54.9 66.2 77.6

Lifted [1] 56.4 22.6 46.9 59.8 71.2 81.5

N -pair [30] 60.2 28.2 51.9 64.3 74.9 83.2

Facility [15] 59.2 - 48.2 61.4 71.8 81.9

Angular [31] 61.0 30.2 53.6 65.0 75.3 83.7

DAML with N -pair loss [32] 61.3 29.5 52.7 65.4 75.5 84.3

Proposed Method 63.3 31.1 55.4 66.8 77.3 85.8

Table 3.5: Clustering and retrieval performances (%) of the proposed algorithm on

the test set of Cars196 dataset[3]. The best results are indicated in red whereas the

second best results are showed in blue. (Best viewed in color.)

Method NMI F1 R@1 R@2 R@4 R@8

Contrastive [28] 42.3 10.5 27.6 38.3 51.0 63.9

Triplet [23] + N -pair sampling 54.3 19.6 46.3 59.9 71.4 81.3

Lifted [1] 57.8 25.1 59.9 70.4 79.6 87.0

N -pair [30] 62.7 31.8 68.9 78.9 85.8 90.9

Facility [15] 59.0 - 58.1 70.6 80.3 87.8

Angular [31] 62.4 31.8 71.3 80.7 87.0 91.8

DAML with N -pair loss [32] 66.0 36.4 75.1 83.8 89.7 93.5

Proposed Method 66.6 36.7 76.3 85.1 90.8 94.6

64

Table 3.6: Clustering and retrieval performances (%) of the proposed algorithm on

the test set of Stanford Online Products dataset[1]. The best results are indicated in

red whereas the second best results are showed in blue. (Best viewed in color.)

Method NMI F1 R@1 R@10 R@100

Contrastive [28] 82.4 10.1 37.5 53.9 71.0

Triplet [23] + N -pair sampling 86.3 20.2 53.9 72.1 85.7

Lifted [1] 87.2 25.3 62.6 80.9 91.2

N -pair [30] 87.9 27.1 66.4 82.9 92.1

Facility [15] 89.5 - 67.0 83.7 93.2

Angular [31] 87.8 26.5 67.9 83.2 92.2

DAML with N -pair loss [32] 89.4 32.4 68.4 83.5 92.3

Proposed Method 90.8 40.3 73.5 87.3 94.5

3.6.8 Qualitative Results

Figures 3.4, 3.5 and 3.6 visualize the t-SNE [8] 2-D plots on the embedding vec-

tors which are produced by proposed method on CUB-200-2011 [2], Cars196 [3] and

Stanford Online Products [1] datasets, respectively. Various representative clusters

are highlighted by magnifying corresponding regions. The best view could be ob-

tained on a monitor when zoomed in. As seen in figures, in spite of high variations

in pose, appearance and view point, the proposed approach produces mapping into a

compact embedding space that maintains semantic similarity.

Figures 3.7 and 3.8 compare the proposed loss function with N -pair in terms of top-7

retrieval performance on Stanford Online Products dataset. The green and red bor-

ders surrounding retrieved images indicate whether they belong to the same class as

the queried image or not, respectively. As seen in Figure 3.7, most failures of the

proposed method compared to N -pair stems from falsely retrieved images that have

almost identical classes of the queried images. For example, at the one and second

rows of the Figure 3.7, whereas N -pair retrieves four correct purple fans, the pro-

posed method retrieves only one true image but the other retrieved images are also

purple fans.

65

On the other hand, the efficiency of the proposed approach on identifying similar

examples is demonstrated in Figure 3.8. Since N -pair considers only one positive

sample while keeping negative examples away, it tends to fail in retrieving more than

one similar samples. For instance, at the third and fourth rows of the Figure 3.8,

whereas the second similar example of the queried image is the fourth closest sample

in the embedding space which is produced by N -pair, the top-6 images retrieved by

the proposed method contain six successful matches.

Figure 3.4: Barnes Hut t-SNE visualization [8] of the proposed embedding method

on the test set of CUB-200-2011 dataset. (Best viewed on a monitor when zoomed

in.)

66

Figure 3.5: Barnes Hut t-SNE visualization [8] of the proposed embedding method

on the test set of Cars196 dataset. (Best viewed on a monitor when zoomed in.)

67

Figure 3.6: Barnes Hut t-SNE visualization [8] of the proposed embedding method

on the test set of Stanford Online Products dataset. (Best viewed on a monitor when

zoomed in.)

68

Figure 3.7: Visualization of top-7 retrieval results from queried images where N -pair

performs better than the proposed method on the test set of Stanford Online Products

dataset. The retrieved images that belongs to the same class with the queried image is

indicated in green border whereas retrieved images which are dissimilar to the queried

image is shown in red borders. (Best viewed in color.)

69

Figure 3.8: Visualization of top-7 retrieval results from queried images where pro-

posed method performs better than N -pair on the test set of Stanford Online Products

dataset. The retrieved images that belongs to the same class with the queried image is

indicated in green border whereas retrieved images which are dissimilar to the queried

image is shown in red borders. (Best viewed in color.)

70

CHAPTER 4

DEEP METRIC LEARNING FOR RECURRENT NEURAL NETWORKS

In this chapter of the thesis, a novel deep metric learning framework with RNN is

presented by utilizing loss function and sampling method which are introduced in

Chapter 3. Following the explanation of the motivation behind this chapter, the novel

deep metric learning framework with RNN is introduced. Finally, the efficiency of

the proposed framework is validated with quantitative and qualitative experimental

results.

4.1 Motivation

In Chapter 3, the novel loss function and the batch construction method is proposed.

Existing approaches in the literature [1, 9, 15, 28, 29, 30, 31, 32] and also proposed

method does not consider high-order correlations in the dataset. Except angular em-

bedding loss explained in Section 2.1.2.5, deep metric learning models are optimized

with respect to distance-based loss functions that carries second-order information

[31] whereas angular embedding loss utilizes angle information which defines the

third-order triangulation among three points. Although angular objective function

exploits third-order relation between samples, the solution space may be higher or-

der.

RNN described in Section 2.2.6 is a powerful deep learning tool to model long-term

dependencies from the sequential data. However, this powerful tool could be also

utilized for sequential processing in absence of sequences [79, 80]. In [80], RNN

recognizes house numbers by reading images from left to right. In addition to that,

[80] uses RNN to produce images which contain digits by sequentially adding color

71

to a canvas.

The local neighborhood sampling method which is introduced in Section 3.4 gen-

erates mini-batches which consist of hard negatives and representative positives of

the selected centers. In other words, it creates a k-nearest neighborhood manifold

for each center so the high-order correlation between samples in the same manifold

could be modeled by using RNN. In order to input center and samples in its k-nearest

neighborhood in a sequential manner, the simple trick is applied. Each sequence is

generated by sorting the examples in a descending order regarding the distance to its

center.

4.2 Proposed Deep Metric Learning Framework with RNN

While training the deep metric learning framework described in Section 3.2 by utiliz-

ing proposed loss function or one of existing deep metric learning objective functions

in the literature, the high-order relations between samples are ignored [31] since they

optimize the network with respect to distances (second-order correlation) or angles

(third-order relation) between samples.

Recall the proposed Jk-nearest-mb objective function that is trained by utilizing local

neighborhood sampling introduced in Section 3.4 where Di,j = fθcnn(xi)
Tfθcnn(xj):

Jk-nearest-mb =
1

|C|
∑
c∈C

− log

1
|Pk|
∑

i∈Pk
exp{Dc,i}∑

k∈Kc
exp{Dc,k}

(4.1)

where C denotes the set of centers in the mini-batch and Kc is constructed from K

closest examples to each center at index c in the embedding space that is mapped by

fpre−trained(·). Besides, Pk indicates a set of positive examples of the center, c, in Kc.

As seen in Equation 4.1, the loss function is optimized by utilizing distances between

the center and examples that belong to its k-nearest neighborhood which create a

manifold. It provides that determining which samples are required to model high-

order relations among them for mapping hard negatives in far away points from the

center since the other negative samples could be mapped into the desired points in the

72

embedding space by utilizing conventional deep metric learning framework.

By inspiring from encoder-decoder models described in Section 2.2.7, bidirectional

LSTM encoder which is used to capture high-order correlations between samples in

the constructed manifold. The overview of the proposed deep metric learning frame-

work by utilizing bidirectional LSTM encoder is illustrated in Figure 4.1. Each input

sequence of bidirectional LSTM could be generated as sorting the embedding repre-

sentations of the examples which are produced by applying fθcnn(·) in a descending

order regarding the distance to its center:

X i
c = {fθcnn(xc), fθcnn(x1

c), fθcnn(x2
c), ..., fθcnn(xk

c)} (4.2)

Figure 4.1: Proposed Deep Metric Learning Framework that utilizes both of CNN

and RNN. (Best viewed in color.)

Therefore, the context of each input sequence could be mapped into a fixed-length

vector which is the final hidden layer of bidirectional LSTM. This is common tech-

nique that is used in LSTM encoder-decoder architectures to encode the long-term

dependencies [56, 57, 55]. The hidden units in the hidden layer i of the proposed ar-

chitecture, h(i)
t , could be calculated by utilizing the bidirectional LSTM formulation

73

that is detailedly explained in Section 2.2.6 where xt ∈X i
c.

After calculating the final hidden layer of the bidirectional LSTM, h(2)
k+1, where the

number of hidden layers is 2 in this architecture, the context information of the input

sequence could be passed through the network by concatenating h(2)
k+1 and the em-

bedding representation of the center example that is produced by CNN, fθcnn(xc),

along the last dimension. The concatenation operator, [.; .], is highly used in the net-

works with attention mechanism which is described in Section 2.2.7 to pass attention

information through the decoder.

Finally, the embedding representations of each sample could be produced by apply-

ing the proposed architecture, gθ(.|.), that contains RNN and CNN models where θ

denotes the parameters of the architecture:

gθ(xc|x1
c , ...,x

k
c) = W (e)[h

(2)
k+1; fθcnn(xc)] + b(e) (4.3)

In the training phase of the proposed deep metric learning model with RNN, the

same procedure with the proposed method based on CNN described in the Chapter

3 is followed by exploiting Equation 3.8 where the distances between samples are

calculated using the condition on their k-closest examples:

Di,j = gθ(xi|x1
i , ...,x

k
i)Tgθ(xj|x1

j , ...,x
k
j) (4.4)

On the other hand, in the inference phase, while the proposed framework produces

the embedding vector of each sample, its k-nearest samples are required in addition

to the queried example. This k-closest information could easily be extracted from

stored embeddings, Zpre−trained, which are generated by fpre−trained(·).

4.3 Experimental Results

Following the experimental protocol described in Section 3.6, the novel proposed

metric learning framework with RNN is evaluated on CUB-200-2011 [2], Cars196

[3] and Stanford Online Products [1] datasets for clustering and retrieval tasks. The

74

training and testing split procedures are mentioned in Section 3.6.1. NMI, F1 and

R@K scores where are detailedly explained in Section 3.6.2 are utilized to evaluate

clustering and retrieval performance.

Tensorflow [62] deep learning library is used throughout the experiments. The num-

ber of hidden layers in RNN architecture is empirically selected as 2. The number

of hidden units in each bidirectional LSTM is fixed to 512 for a consistency with the

embedding size. Whereas the half number of hidden units is reserved for left-to-right

LSTM, the rest is exploited as right-to-left LSTM. The dropout [77] between LSTM

layers is fixed to 0.5 as default. The parameters of CNN architecture is kept same

with Section 3.6.3 for a fair comparison. The new layer which is added to produce

embedding vectors which have a predetermined size is randomly initialized.

The maximum training iteration and mini-batch size are selected as 40,000 (20,000

with proposed and sampling method by using conventional CNN architecture whose

results are indicated in Section 3.6) and 128, respectively. K is fixed to 16 considering

observations in Section 3.6.4 during both of training and inference processes.

For a fair comparison with the conventional deep metric learning framework, it is

also trained by using the proposed method through 40,000 iterations while the pre-

computed embedding vectors are produced by the network trained for 20,000 itera-

tions. The results on the test set of Stanford Online Products dataset are indicated

in Table 4.1. The clustering and retrieval performances are almost fixed during net-

work training. It shows that the conventional framework has been already converged

in 20,000 iterations. Hence, the proposed method which is trained by utilizing deep

metric learning framework based on only CNN @20k iterations is picked to compare

with the proposed RNN based framework.

Furthermore, the introduced framework is also compared with baseline methods de-

scribed in Section 3.6.6 in terms of clustering and retrieval performances.

75

Table 4.1: Clustering and retrieval performances (%) of the proposed algorithm de-

scribed in Chapter 3 for the CNN network trained through different iterations on the

test set of Stanford Online Products dataset[1]. The best results are indicated in bold.

Iteration NMI F1 R@1 R@10 R@100

20000 90.8 40.3 73.5 87.3 94.5

25000 90.6 39.9 73.3 86.7 94.1

30000 90.7 40.1 73.4 87.0 94.2

35000 90.3 40.2 72.3 86.4 94.1

40000 90.5 40.1 73.0 86.8 94.2

4.3.1 Ablation Study

In this section, the importance of sorting examples in a descending order regarding

the distance to its center is highlighted. Table 4.2 validates the efficiency of ordering

inputs. While a sorting trick is not used, clustering and retrieval performances of the

proposed algorithm by utilizing RNN framework on the test set of Stanford Online

Products dataset decreases from even initial performances which are produced by

only exploiting CNN.

Table 4.2: Clustering and retrieval performances (%) of the proposed algorithm by

utilizing RNN framework with and without ordering inputs on the test set of Stanford

Online Products dataset[1]. The best results are indicated in bold.

Method NMI F1 R@1 R@10 R@100

Proposed Method 90.8 40.3 73.5 87.3 94.5

Proposed Method + RNN without ordering inputs 90.2 37.4 70.2 85.2 93.5

Proposed Method + RNN 91.4 42.8 74.3 87.9 95.2

4.3.2 Quantitative Results

Tables 4.3, 4.4 and 4.5 indicate the quantitative results of the proposed framework

compared with the conventional framework which is trained by using baseline meth-

76

ods on CUB-200-2011 [2], Cars196 [3] and Stanford Online Products [1] datasets for

clustering and retrieval tasks, respectively. The red values are utilized to indicate best

performances whereas the second best results are indicated in blue. F1 performance

of clustering via facility location approach is not given since it is not available in its

original paper [15].

Since the superior performance of the proposed method over the existing state-of-the-

art methods by using the conventional deep metric learning framework is thoroughly

discussed in Section 3.6.7, it is important to notice the clustering and retrieval perfor-

mances of the conventional and the proposed frameworks.

As seen in Tables 4.3, 4.4 and 4.5, the proposed framework outperforms the conven-

tional model with margin by up to 0.8% on NMI metric, 2.5 % on F1 score and 1.0 %

R@1 metric. By combining these results with observations in Table 4.1, it could be

easily deduced that utilizing RNN boosts the performance of the retrieval and clus-

tering tasks since it could model higher-order relations in the k-nearest neighborhood

while the conventional framework could not continue learning.

Table 4.3: Clustering and retrieval performances (%) of the proposed algorithm with

the RNN framework on the test set of CUB-200-2011 dataset[2]. The best results are

indicated in red whereas the second best results are showed in blue. (Best viewed in

color.)

Method NMI F1 R@1 R@2 R@4 R@8

Contrastive [28] 47.2 12.5 27.2 36.3 49.8 62.1

Triplet [23] + N -pair sampling 54.1 20.0 42.8 54.9 66.2 77.6

Lifted [1] 56.4 22.6 46.9 59.8 71.2 81.5

N -pair [30] 60.2 28.2 51.9 64.3 74.9 83.2

Facility [15] 59.2 - 48.2 61.4 71.8 81.9

Angular [31] 61.0 30.2 53.6 65.0 75.3 83.7

DAML with N -pair loss [32] 61.3 29.5 52.7 65.4 75.5 84.3

Proposed Method 63.3 31.1 55.4 66.8 77.3 85.8

Proposed Method + RNN 64.0 32.2 55.6 67.2 77.0 85.0

77

Table 4.4: Clustering and retrieval performances (%) of the proposed algorithm with

the RNN framework on the test set of Cars196 dataset[3]. The best results are in-

dicated in red whereas the second best results are showed in blue. (Best viewed in

color.)

Method NMI F1 R@1 R@2 R@4 R@8

Contrastive [28] 42.3 10.5 27.6 38.3 51.0 63.9

Triplet [23] + N -pair sampling 54.3 19.6 46.3 59.9 71.4 81.3

Lifted [1] 57.8 25.1 59.9 70.4 79.6 87.0

N -pair [30] 62.7 31.8 68.9 78.9 85.8 90.9

Facility [15] 59.0 - 58.1 70.6 80.3 87.8

Angular [31] 62.4 31.8 71.3 80.7 87.0 91.8

DAML with N -pair loss [32] 66.0 36.4 75.1 83.8 89.7 93.5

Proposed Method 66.6 36.7 76.3 85.1 90.8 94.6

Proposed Method + RNN 68.2 37.2 77.3 85.0 89.8 93.7

Table 4.5: Clustering and retrieval performances (%) of the proposed algorithm with

the RNN framework on the test set of Stanford Online Products dataset[1]. The best

results are indicated in red whereas the second best results are showed in blue. (Best

viewed in color.)

Method NMI F1 R@1 R@10 R@100

Contrastive [28] 82.4 10.1 37.5 53.9 71.0

Triplet [23] + N -pair sampling 86.3 20.2 53.9 72.1 85.7

Lifted [1] 87.2 25.3 62.6 80.9 91.2

N -pair [30] 87.9 27.1 66.4 82.9 92.1

Facility [15] 89.5 - 67.0 83.7 93.2

Angular [31] 87.8 26.5 67.9 83.2 92.2

DAML with N -pair loss [32] 89.4 32.4 68.4 83.5 92.3

Proposed Loss + Sampling 90.8 40.3 73.5 87.3 94.5

Proposed Method + RNN 91.4 42.8 74.3 87.9 95.2

78

4.3.3 Qualitative Results

Figure 4.2 visualizes the t-SNE [8] 2-D plots on the embedding vectors which are

produced by proposed method on Stanford Online Products [1] dataset. Various rep-

resentative clusters are highlighted by magnifying corresponding regions. The best

view could be obtained on a monitor when zoomed in. As seen in the figure, in spite of

high variations in pose, appearance and view point, the proposed approach produces

mapping into a compact embedding space that maintains semantic similarity.

Figures 4.4 and 4.3 compare the proposed framework that contains both of CNN and

RNN architectures with the conventional framework that utilizes only CNN in terms

of top-7 retrieval performance on Stanford Online Products dataset. The green and

red borders surrounding retrieved images indicate whether they belong to the same

class as the queried image or not, respectively.

As seen in Figure 4.3, most failures of the proposed framework compared to conven-

tional one from falsely retrieved images that have similar context with the queried

images. For example, at the fifth and sixth rows of the Figure 4.3, whereas conven-

tional framework by using the proposed approach defined in Chapter 3 retrieves two

correct fans which have different colors with the queried black and white fan, the pro-

posed framework retrieves other black and white fans which belong to different class

of the queried image.

On the other hand, the efficacy of the proposed framework on learning higher-order

relations is demonstrated in Figure 4.4. Since the conventional framework considers

only distance based second-order relations in data, it tends to fail in large pose and

scale variations. However, introduced framework which contains RNN and CNN

architectures is more robust to rotation and scaling transformations of the images

owing to modeling long-term dependencies.

For instance, at the fifth and sixth rows of the Figure 4.4, whereas the conventional

framework lost context information when large pose and scaling variations occur, the

top-7 images retrieved by the proposed framework contain seven successful matches

while implicitly walking on a learned manifold.

79

Figure 4.2: Barnes Hut t-SNE visualization [8] of the proposed embedding method

with the RNN framework on the test set of Stanford Online Products dataset. (Best

viewed on a monitor when zoomed in.)

80

Figure 4.3: Visualization of top-7 retrieval results from queried images where the

conventional framework based on CNN performs better than the proposed framework

that contains RNN and CNN on the test set of Stanford Online Products dataset. The

retrieved images that belongs to the same class with the queried image is indicated in

green border whereas retrieved images which are dissimilar to the queried image is

shown in red borders. (Best viewed in color.)

81

Figure 4.4: Visualization of top-7 retrieval results from queried images where the pro-

posed framework that contains RNN and CNN performs better than the conventional

framework based on CNN on the test set of Stanford Online Products dataset. The

retrieved images that belongs to the same class with the queried image is indicated in

green border whereas retrieved images which are dissimilar to the queried image is

shown in red borders. (Best viewed in color.)

82

CHAPTER 5

CONCLUSIONS

Throughout this thesis study, a novel metric learning approach is proposed in order

to address two main limitations of deep metric learning methods. Firstly, most of the

existing approaches send negative samples away from the selected anchor by iden-

tifying only a pair of samples with the same label due to the inefficient mini-batch

construction methods to pick representative hard negatives. In order to remove this

deficiency, in Section 3.3, a novel loss function which is the extension of N -pair [30]

embedding is presented. The proposed loss function identifies multiple similar exam-

ples from several negative samples. Following that, local neighborhood sampling is

introduced in Section 3.4 to utilize the advantages of hard negative mining [33] and

self-paced learning [34] at the same time. This novel sampling method provides to

select representative hard negatives while discarding outlier positive examples.

Secondly, the existing metric learning frameworks disregard higher-order relations in

data. It may lead to sub-optimal convergence in higher-order solution space. A novel

metric learning framework is proposed to alleviate this problem in Section 4.2. At

first, input images in the same neighborhood are aligned in a sequential manner by

applying trick that is sorting examples in k-nearest neighborhood in ascending order

with respect to the selected center. Therefore, RNN which is a powerful deep learning

tool to capture long-term dependencies could be exploited to learn embedding space

concerning higher-order correlations.

The clustering and retrieval performances of the proposed approach are analyzed and

compared with the state-of-the-art methods in two sections. First of all, in Section

3.6, the conventional deep metric learning framework is used to compare introduced

approach that consists of presented loss function and sampling method with baseline

83

methods on widely used three public datasets. The superiority of the proposed ap-

proach over existing state-of-the-art work is verified on CUB-200-2011, Cars196 and

Stanford Online Products datasets by up to 2.0 % on NMI metric, 7.9 % on F1 score

and 5.1 % Recall@1 metric. Besides, these obtained outstanding quantitative results

are supported by visual outcomes.

Following that, the introduced deep metric learning framework is compared with the

conventional framework on CUB-200-2011, Cars196 and Stanford Online Products

datasets for clustering and retrieval tasks in Section 4.3. The efficiency of the pro-

posed framework on modeling higher-order relations in data is validated by quanti-

tative results. It boosts proposed approach that contains a novel loss function and

sampling with margin by up to 0.8% on NMI metric, 2.5 % on F1 score and 1.0 %

R@1 metric. Besides, the robustness of the proposed framework to pose and scale

variations is demonstrated by qualitative results.

In the future, the proposed approach could be extended in two directions. First, in-

stead of extracting precomputed embeddings from the pre-trained network by utiliz-

ing N -pair sampling, the batch construction method that exploits local and global

structures of the dataset could be used. Second, it is beneficial to combine proposed

approach with deep adversarial metric learning framework [32] to generate synthetic

negative examples in absence of dissimilar example in the k-nearest neighborhood.

84

REFERENCES

[1] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via

lifted structured feature embedding,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4004–4012, 2016.

[2] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd

birds-200-2011 dataset,” 2011.

[3] A. Krause and D. Golovin, “Submodular function maximization.,” 2014.

[4] “Stanford lecture notes for cs231n.” http://cs231n.stanford.edu,

[Online; accessed 15-August-2018].

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[6] “An intuitive guide to convolutional neural networks.” https://medium.

freecodecamp.org, [Online; accessed 16-August-2018].

[7] “Stanford lecture notes for cs224d.” http://cs224d.stanford.edu,

[Online; accessed 15-August-2018].

[8] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,” The Jour-

nal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245, 2014.

[9] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clustering: Discrim-

inative embeddings for segmentation and separation,” in Acoustics, Speech and

Signal Processing (ICASSP), 2016 IEEE International Conference on, pp. 31–

35, IEEE, 2016.

[10] Z. Liu, D. Wang, and H. Lu, “Stepwise metric promotion for unsupervised video

person re-identification,” in Computer Vision (ICCV), 2017 IEEE International

Conference on, pp. 2448–2457, IEEE, 2017.

85

http://cs231n.stanford.edu
http://www.deeplearningbook.org
https://medium.freecodecamp.org
https://medium.freecodecamp.org
http://cs224d.stanford.edu

[11] H.-X. Yu, A. Wu, and W.-S. Zheng, “Cross-view asymmetric metric learning

for unsupervised person re-identification,” in IEEE International Conference on

Computer Vision, 2017.

[12] J. Zhou, P. Yu, W. Tang, and Y. Wu, “Efficient online local metric adaptation via

negative samples for person reidentification,” in The IEEE International Con-

ference on Computer Vision (ICCV), vol. 2, p. 7, 2017.

[13] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? metric learning ap-

proaches for face identification,” in ICCV 2009-International Conference on

Computer Vision, pp. 498–505, IEEE, 2009.

[14] J. Lu, J. Hu, and Y.-P. Tan, “Discriminative deep metric learning for face and

kinship verification,” IEEE Transactions on Image Processing, vol. 26, no. 9,

pp. 4269–4282, 2017.

[15] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy, “Deep metric learning via

facility location,” in Computer Vision and Pattern Recognition (CVPR), vol. 8,

2017.

[16] A. Choromanska, A. Agarwal, and J. Langford, “Extreme multi class classifi-

cation,” in NIPS Workshop: eXtreme Classification, submitted, vol. 1, pp. 2–1,

2013.

[17] I. E.-H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. Dhillon, “Pd-sparse:

A primal and dual sparse approach to extreme multiclass and multilabel clas-

sification,” in International Conference on Machine Learning, pp. 3069–3077,

2016.

[18] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause,

“Lazier than lazy greedy.,” in AAAI, pp. 1812–1818, 2015.

[19] J. Hu, J. Lu, and Y.-P. Tan, “Deep metric learning for visual tracking,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 26, no. 11,

pp. 2056–2068, 2016.

[20] X. Wang, G. Hua, and T. X. Han, “Discriminative tracking by metric learning,”

in European conference on computer vision, pp. 200–214, Springer, 2010.

86

[21] A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning for feature

vectors and structured data,” arXiv preprint arXiv:1306.6709, 2013.

[22] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic

metric learning,” in Proceedings of the 24th international conference on Ma-

chine learning, pp. 209–216, ACM, 2007.

[23] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large

margin nearest neighbor classification,” in Advances in neural information pro-

cessing systems, pp. 1473–1480, 2006.

[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information

processing systems, pp. 91–99, 2015.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 1–9,

2015.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, pp. 1097–1105, 2012.

[28] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an

invariant mapping,” in null, pp. 1735–1742, IEEE, 2006.

[29] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding

for face recognition and clustering,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 815–823, 2015.

[30] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,”

in Advances in Neural Information Processing Systems, pp. 1857–1865, 2016.

87

[31] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning with angu-

lar loss,” in 2017 IEEE International Conference on Computer Vision (ICCV),

pp. 2612–2620, IEEE, 2017.

[32] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou, “Deep adversarial metric learn-

ing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2780–2789, 2018.

[33] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detec-

tors with online hard example mining,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 761–769, 2016.

[34] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent vari-

able models,” in Advances in Neural Information Processing Systems, pp. 1189–

1197, 2010.

[35] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on

neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[36] Q. Qian, R. Jin, J. Yi, L. Zhang, and S. Zhu, “Efficient distance metric learning

by adaptive sampling and mini-batch stochastic gradient descent (sgd),” Ma-

chine Learning, vol. 99, no. 3, pp. 353–372, 2015.

[37] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture notes of

EE392o, Stanford University, Autumn Quarter, vol. 2004, pp. 2004–2005, 2003.

[38] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,”

The computer journal, vol. 7, no. 2, pp. 149–154, 1964.

[39] J. Goldberger, S. Gordon, and H. Greenspan, “An efficient image similarity mea-

sure based on approximations of kl-divergence between two gaussian mixtures,”

in null, p. 487, IEEE, 2003.

[40] J. Lu, G. Wang, and P. Moulin, “Image set classification using holistic multiple

order statistics features and localized multi-kernel metric learning,” in Proceed-

ings of the IEEE International Conference on Computer Vision, pp. 329–336,

2013.

88

[41] F. Xiong, M. Gou, O. Camps, and M. Sznaier, “Person re-identification using

kernel-based metric learning methods,” in European conference on computer

vision, pp. 1–16, Springer, 2014.

[42] K. Q. Weinberger and G. Tesauro, “Metric learning for kernel regression,” in

Artificial Intelligence and Statistics, pp. 612–619, 2007.

[43] Z. Feng, R. Jin, and A. Jain, “Large-scale image annotation by efficient and

robust kernel metric learning,” in Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 1609–1616, 2013.

[44] A. Fix, A. Gruber, E. Boros, and R. Zabih, “A graph cut algorithm for higher-

order markov random fields,” in Computer Vision (ICCV), 2011 IEEE Interna-

tional Conference on, pp. 1020–1027, IEEE, 2011.

[45] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to information re-

trieval, vol. 39. Cambridge University Press, 2008.

[46] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–

133, 1943.

[47] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 779–788, 2016.

[48] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference

on computer vision, pp. 1440–1448, 2015.

[49] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Computer

Vision (ICCV), 2017 IEEE International Conference on, pp. 2980–2988, IEEE,

2017.

[50] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 3431–3440, 2015.

[51] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and

Y. Bengio, “Show, attend and tell: Neural image caption generation with visual

89

attention,” in International conference on machine learning, pp. 2048–2057,

2015.

[52] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image

caption generator,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 3156–3164, 2015.

[53] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating

image descriptions,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 3128–3137, 2015.

[54] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap

to human-level performance in face verification,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 1701–1708, 2014.

[55] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[56] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using

rnn encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.

[57] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neu-

ral networks,” in Advances in neural information processing systems, pp. 3104–

3112, 2014.

[58] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-

end attention-based large vocabulary speech recognition,” in Acoustics, Speech

and Signal Processing (ICASSP), 2016 IEEE International Conference on,

pp. 4945–4949, IEEE, 2016.

[59] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-

current neural networks,” in Acoustics, speech and signal processing (icassp),

2013 ieee international conference on, pp. 6645–6649, IEEE, 2013.

[60] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations si-

multanées,” Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

90

[61] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv

preprint arXiv:1609.04747, 2016.

[62] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, et al., “Tensorflow: a system for large-scale machine

learning.,” in OSDI, vol. 16, pp. 265–283, 2016.

[63] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[64] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-

ding,” in Proceedings of the 22nd ACM international conference on Multimedia,

pp. 675–678, ACM, 2014.

[65] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,

“Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization,” in Advances in neural information processing systems,

pp. 2933–2941, 2014.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[67] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”

Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[68] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for ad-

vanced research),”

[69] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[71] K.-K. Sung, “Learning and example selection for object and pattern detection,”

1996.

91

[72] S. Ioffe, “Batch renormalization: Towards reducing minibatch dependence in

batch-normalized models,” in Advances in Neural Information Processing Sys-

tems, pp. 1945–1953, 2017.

[73] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on informa-

tion theory, vol. 28, no. 2, pp. 129–137, 1982.

[74] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neigh-

bor search,” IEEE transactions on pattern analysis and machine intelligence,

vol. 33, no. 1, pp. 117–128, 2011.

[75] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recog-

nition challenge,” International Journal of Computer Vision, vol. 115, no. 3,

pp. 211–252, 2015.

[76] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,”

in Advances in neural information processing systems, pp. 950–957, 1992.

[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-

nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[78] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neu-

ral information processing systems, pp. 2672–2680, 2014.

[79] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,

“Draw: A recurrent neural network for image generation,” arXiv preprint

arXiv:1502.04623, 2015.

[80] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual

attention,” arXiv preprint arXiv:1412.7755, 2014.

92

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem Definition
	Motivation and Contributions
	Outline of the Thesis

	RELATED WORK
	Metric Learning
	Linear Metric Learning Methods
	Non-linear Metric Learning Methods
	Contrastive Embedding
	Triplet Embedding
	Lifted Structured Embedding
	Multi-class N-Pair Embedding
	Angular Embedding
	Embedding via Facility Location

	Deep Neural Networks
	Deep Feedforward Networks
	Loss Functions
	Optimization
	Backpropagation
	Convolutional Neural Networks
	Recurrent Neural Networks
	Encoder-Decoder Models with Attention Mechanism

	METRIC LEARNING USING DEEP LEARNED REPRESENTATIONS
	Motivation
	Deep Metric Learning Framework
	Proposed Loss Function
	Local Neighborhood Sampling
	Regularization of Embedding Vectors
	Experimental Results
	Benchmark Datasets
	Evaluation Metrics
	Training Setup
	Effect of the Parameter K
	Ablation Studies
	Baseline Methods
	Quantitative Results
	Qualitative Results

	DEEP METRIC LEARNING FOR RECURRENT NEURAL NETWORKS
	Motivation
	Proposed Deep Metric Learning Framework with RNN
	Experimental Results
	Ablation Study
	Quantitative Results
	Qualitative Results

	CONCLUSIONS
	REFERENCES

