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ABSTRACT

COMPARISON OF ML AND MAP PARAMETER ESTIMATION
TECHNIQUES FOR THE SOLUTION OF INVERSE

ELECTROCARDIOGRAPHY PROBLEM

Erenler, Taha
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz

September 2018, 168 pages

This study aims to determine the cardiac electrical activity from body surface po-

tential measurements. This problem is called the inverse problem of electrocardio-

graphy. Reconstruction of the cardiac electrical activity from the body surface po-

tential measurements is not an easy task, since this problem has an ill-posed nature

due to attenuation and spatial smoothing inside the medium between the source and

the measurement sites, meaning that even small errors in the mathematical model or

noise in the measurements may yield unbounded errors or large oscillations in the

solutions. One remedy for this ill-posedness is to apply regularization, where one im-

poses deterministic or statistical constraints on the solution based on available a priori

information. In this thesis, Tikhonov regularization, Bayesian maximum a posteriori

estimation (BMAP), Kalman filter and regularized Kalman filter approaches are used

to solve the inverse problem of electrocardiography. In the context of Kalman fil-

ter, maximum likelihood (ML) and maximum a posteriori (MAP) estimation are used

to find Kalman filter parameters. By estimating Kalman filter parameters, we aim

to find an answer to an open question of how the essential parameters in the state-
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space representation are found without claiming strong assumptions in the literature.

The results showed that the mean correlation coefficient ranges from 0.99 to 0.66 for

MLIF and from 0.97 to 0.72 for MAPIF under 30 dB measurement noise. Our study

showed that ML estimation works well when the training set data and test data are

similar. However, due to over-fitting nature of the ML estimation, MAP estimation

should be preferred in order to improve generalizability of the method.

Keywords: Inverse Electrocardiography, Electrocardiographic Imaging, Kalman fil-

ter, Maximum likelihood estimation (ML), Maximum a posteriori estimation (MAP)
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ÖZ

TERS ELEKTROKARDİYOGRAFİ PROBLEMİNE UYGULANAN ML VE
MAP PARAMETRE KESTİRİM METODLARININ KARŞILAŞTIRILMASI

Erenler, Taha
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Yeşim Serinağaoğlu Doğrusöz

Eylül 2018 , 168 sayfa

Bu çalışma, vücut yüzeyinden alınan potansiyel ölçümleri kullanarak kalpteki elekt-

riksel aktivitenin bulunmasını amaçlamaktadır. Bu problem ters EKG problemi olarak

adlandırılır. Ters EKG problemi, elektriksel sinyallerin, kalpteki elektriksel kaynaklar

ve vücuttaki ölçüm noktaları arasında zayıflaması ve uzaysal düzleşme nedeniyle kötü

konumlanmış bir doğaya sahiptir. Kötü konumlanma nedeniyle küçük matematiksel

model hataları veya ölçümler sırasında oluşan gürültüler çözümlerde kontrolsüz ha-

talara veya büyük salınımlara sebep olur. Bu kötü konumlanmanın bir çözümü, prob-

leme önsel bilgiler kullanılarak bazı deterministik veya istatiksel kısıtlamalar getir-

mek, yani düzenlileştirme uygulamaktır. Bu tezde çözüm yöntemleri olarak Tikhonov

düzenlileştirmesi, Bayes en büyük sonsal kestrim, Kalman filtre ve düzenlileştirilmiş

Kalman filtre uygulanmıştır. Kalman filtre yaklaşımının bir uzantısı olarak, ML ve

MAP kestirim yöntemleri kullanılarak Kalman filtre parametreleri bulunmuştur. Kal-

man filtre parametrelerini tahmin ederek, durum uzayının oluşturulması için gerekli

parametrelerin güçlü varsayımlar kullanılmadan nasıl bulunacağı konusundaki lite-

ratürde bulunan açık uçlu soruya yanıt vermeyi hedefledik. Elde ettiğimiz sonuçlar

vii



ortalama ilinti katsayısının 30 dB SNR ölçüm hatası altında MLIF için 0.99 - 0.66

ve MAPIF için 0.97 - 0.72 arasında değiştiğini gösterdi. Çalışmalarımız ML kesti-

rim yönteminin test verisi ile veri seti arasında güçlü benzerlik olduğu durumlarda

iyi çalıştığını fakat ML kestirim yönteminin aşırı uyum gösterme doğası nedeniyle

genelleştirilebilirlik için MAP kestirim yönetimini kullanmamızın daha iyi olacağını

gösterdi.

Anahtar Kelimeler: Tersine elektrokardiyografi, Elektrokardiyografik görüntüleme,

Kalman filtre, ML, MAP
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Thesis

Cardiovascular diseases have been the primary cause of death for the last 15 years. In

2015, there were approximately 15 million deaths due to ischaemic heart disease and

stroke [1]. Most of the time, these diseases are curable and deaths are avoidable if only

they were detected. Cardiac source distributions, depolarization and repolarization

times provide valuable information to detect and prevent the problems about the heart.

Today, in clinics, 12-lead ECG is the primary tool for the assessment of electrical ac-

tivity of the heart. 12-lead ECG is very efficient, quick and patient friendly method.

However, due to attenuation and smoothing within the body between the source and

measurement locations, 12-lead ECG can not detect the actual location of the infarc-

tion and associated arrhythmias. Furthermore, 12-lead ECG does not measure cellular

repolarization and depolarization directly, instead it measures cumulative change in

cell membrane potentials [2]. Hence, the details of the electrophysiology of the car-

diac cycle are lost. Another disadvantage of 12-lead ECG is that it does not provide

cardiac activity directly, usually clinicians interpret the results of electrocardiography

assuming that there is abnormality cardiac electrical field [3].

One alternative to 12-lead ECG is invasive electrocardiography. Invasive electro-

cardiography techniques may be used to increase the resolution but they are very

impractical in patient’s view point, so these methods are not preferable.

Another alternative approach to 12-lead ECG is electrocardiographic imaging (ECGI).

The problem of finding cardiac electrical activity from the body surface potential
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measurements is ill-posed. One way to combat this ill-posed nature of the problem

is to apply regularization. In the literature, there are different regularization methods

that were applied to the inverse electrocardiography problem. One method is Kalman

filter. Kalman filter is widely used to solve inverse electrocardiography problem in

literature. However, in the literature, there is an open question of how the param-

eters which are essential to use Kalman are found. In this study, we address this

question and propose different methods to handle this issue. To estimate the Kalman

filter parameters, we use maximum likelihood estimation and maximum a posteriori

estimation and propose a constitute way to use Kalman filter method.

1.2 Scope of the Thesis

In this thesis, inverse problem of electrocardiography is formulated mathematically

and six different solution approaches are applied to the problem. Spatial methods

Tikhonov regularization and Bayesian maximum a posteriori estimation, and spatio-

temporal method Kalman filter and smoother are used in this study. The parameters

that are essential to apply Kalman filter are found by using Maximum likelihood (ML)

and Maximum a posteriori (MAP) estimation. This study uses very few assumptions

to construct the state-space representation of the problem. The solution approaches

are compared with each other and, their robustness to measurement noise and geo-

metric errors is evaluated.

1.3 Organization of the Thesis

This thesis is divided into five chapters:

• Chapter 2 covers the heart anatomy and physiology, cardiac electrical activity

measurement techniques and the literature review on the forward and inverse

electrocardiography.

• Chapter 3 covers the problem definition, inverse problem solution methods and

parameter estimation techniques.
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• Chapter 4 covers the application of algorithms given in theory section, along

with the results and the discussions of these results.

• In Chapter 5, we conclude our work and give the future work.
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

In this chapter, heart anatomy, action potential generation and electrical activity of

the heart are discussed. Then, measurement techniques of cardiac electrical activity

are given. Finally, the literature survey on forward problem of electrocardiography

and inverse problem of electrocardiography is given.

2.1 Heart Anatomy

The term "heart" is originated from Greek word "kardia". The heart is a vital organ

which is located at mediastinum in thoracic cavity, between the lungs. The heart is

isolated from the other tissues by pericardium. The weight of the heart is approxi-

mately between 250-350 grams. Figure 2.1 shows the heart in detail.

There are four chambers in the heart, each side of the heart has one ventricle and

Figure 2.1: Anatomy of the heart [4]
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one atrium. The right atrium and the left atrium receive blood and forward it to the

right ventricle and the left ventricle [4]. The ventricles are working as pumps, they

pump blood to the lungs and the body. Blood circulation system consists of two

different circuits, namely pulmonary and systemic circuit. In the pulmonary circuit,

deoxygenated blood is transferred from the right ventricle to the lungs and blood gets

oxygen from the lungs. Then, oxygen rich blood is returned to the left atrium. In the

systemic circuit, oxygen rich blood is pumped from the left ventricle to the body. The

cells take oxygen and nutrients from the blood and the blood collects carbon dioxide

and waste products from the cells. After that, deoxygenated blood is returned to the

right atrium.

There are four layers in the heart wall as shown in Figure 2.2:

Figure 2.2: Layers of the heart [2]

• Pericardium: Pericardium or pericardial sac is the outer layer of the heart that

surrounds and isolates the heart from the tissues.

• Epicardium: Epicardium is just under the pericardium and in contact with the

surface of the heart. The electrical potentials on the epicardium are used as

the equivalent cardiac source distribution in inverse and forward problem of

electrocardiography.

• Myocardium: Myocardium is the middle layer of the heart. Myocardium is

made of cardiac muscle and the thickest layer in the heart. This layer is respon-

sible for pumping blood to the body.
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• Endocardium: Endocardium is the innermost layer of the heart and composed

of endothelial cells. This layer is very smooth and allows blood flow.

2.2 Action Potential Generation

Every cell has electrical potential across its membrane. This electrical potential is

maintained by ionic concentration difference between inside and outside of the mem-

brane. Most important ions that are contributing to establishment of the transmem-

brane potential are Na+, K+, Cl−, Ca++. The transmembrane potential, the poten-

tial difference across the cell membrane, is defined as:

Vm = Ve − Vi (2.1)

where Ve is extracellular potential and Vi is intracellular potential. In a typical cardiac

cell, the resting transmembrane potential is -90 mV.

Some cells in the body are called as excitable cells and these type of cells are able to

generate action potentials by changing their membrane permeability to certain ions.

As seen in Figure 2.3, there are five phases in the action potential:

• Phase 4 is the duration when the cell is at resting potential. The heart is in

diastole during this phase. When the cell is stimulated by an external stimulus,

phase 4 ends. Some cells are able to depolarize repeatedly without the need of

an external stimulus. These cells are called the pacemaker cells and located at

the sinoatrial (SA) node.

• Phase 0 is the depolarization phase. A suprathreshold stimulus depolarizes the

cell by activating the fast Na+ channels. Due to inflow of the sodium ions, the

transmembrane potential increases since the sodium ions are positively charged.

• Phase 1 is the duration when the fast Na+ channels are closed and due to the

outflow of some potassium and chloride ions, there is a small decrease in the

action potential.

• Phase 2 is called the plateau phase. In this phase, there is a balance between the

inflow of calcium ions and the outflow of the potassium ions. Hence, a constant

action potential is maintained in this region.
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• Phase 3 is the repolarization phase. In this phase, the fast calcium channels are

closed and there is an outward current due to the movement of potassium ions.

This outward current causes the action potential to decrease.

Figure 2.3: Action potential of a cardiac cell [4]

2.3 Electrical Activity of the Heart

In the heart, there are special cells that are adequate to generate their own electrical

impulse innately. In cardiac conduction system, the electrical impulse is triggered by

the cells who have the fastest inherent firing rate. The following parts of the heart

play role in the cardiac conduction system:

• The sinoatrial (SA) node

• The atrioventricular node

• Bundle of his

• The atrioventricular bundle branches

• The Purkinje cells

Cardiac rhythm is initialized by the sinoatrial (SA) node. SA node is composed of

myocardial cells and its location is in the right atrium posterior and superior walls.

The SA node is called as pacemaker of the heart. Electrical signal initialized by the
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SA node is transmitted to atriovenctricular node through internodal pathways. The SA

node and the atrioventricular node is connected by internodal pathways which consist

of three bands. Electrical signal’s travel time between the atriovenctricular node and

the SA node is approximately 50 milliseconds [4]. During this time, atria pump the

blood into the ventricles. Electrical signal continues travelling to the atrioventricular

bundle branches and the Purkinje fibres after passing bundle of His. By the help

of Purkinje fibres, the ventricles receive the electrical signal and contract. As the

ventricles contract, the blood goes to the lungs from the right ventricle. Meanwhile,

the left ventricle pumps the blood to the aorta and the blood is distributed to the rest

of the body.

2.4 Measurement of Cardiac Electrical Activity

2.4.1 Standard 12-Lead Electrocardiography (ECG)

In clinics, the electrical activity of the heart is measured by using the standard 12-lead

electrocardiography noninvasively. The output of the standard 12-lead electrocardio-

graphy is called electrocardiogram. As seen in Figure 2.4, there are three main parts

in an electrocardiogram:

• Depolarization in the atria is registered as P wave. Atrial abnormalities are

detected by observing duration, amplitude and frequency of the P wave. The

interval between the beginning of the upslope of the P wave and the beginning

of QRS complex is called PR interval. The duration of PR interval is approxi-

mately between 120 and 200 ms [5].

• QRS complex reflects the repolarization of atria and depolarization of ventri-

cles. The QRS complex is composed of Q wave, R wave and S wave. The first

negative deflection in the QRS complex is called the Q wave, the first positive

deflection is called the R wave and the second negative deflection is called the

S wave. The QRS complex has sharper form as compared to the P wave due to

the fast conduction velocity in bundle of His and the Purkinje cells. The change

in duration of the QRS complex may be indication of arrhythmias, ventricular

9



hypertrophy, or myocardial infarction.

• T wave reflects the ventricular repolarization. The duration between the begin-

ning of the QRS complex and the peak of the T wave is referred as absolute

refractory period. The duration between the peak of the T wave and the end of

the T wave is referred as relative refractory period. During the absolute refrac-

tory period, a new action potential cannot be elicited, whereas in the relative

refractory period, a new action potential can be elicited under certain condi-

tions.

Figure 2.4: The normal electrocardiogram [6]

The standard 12-lead ECG is a patient-friendly and well-established tool but due to

limited and fixed lead configuration, many abnormalities such as myocardial infarc-

tion, Wolff-Parkinson-White syndrome, left ventricular hypertrophy, and exercise-

induced ischemia cannot be detected accurately by using the 12-lead ECG [7]. Ab-

normalities in the anterior region of the heart can be detected by the 12-lead ECG

because of proximity of electrodes on the chest but other abnormalities such as de-

flection of ST segment during ischemia cannot be detected successfully. In fact, the

ECG provides the spatial superposition of many simultaneous events and some of

these events may cancel each other, hence the 12-lead ECG may not reflect the ex-

tend of physiological abnormalities [8]. One alternative approach to the 12-lead ECG
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is Body Surface Potential Mapping (BSPM).

2.4.2 Body Surface Potential Mapping (BSPM)

Body surface potential mapping (BSPM) is superior to the 12-lead ECG that acknowl-

edges the fact that cardiac electrical fields exist everywhere on the body surface. Un-

like the 12-lead ECG which relies on interpretation of waveform features including

amplitudes, durations, and shapes of the different electrograms, body surface poten-

tial mapping focuses on the magnitude, location, and movement of potential extrema

as well as the shape and dynamics of isopotential contours throughout the cardiac

cycle. BSPM requires 100 to 400 electrodes [9] to record the body surface poten-

tials from a wide region of torso. There are two major advantages of BSPM over the

12-lead ECG [10]:

• Acquisition of the potentials from the entire chest provides all the information

on the cardiac electric field available at the body surface.

• BSPM is more sensitive in detecting local electrical events.

One major problem with BSPM is that there is no standard lead configuration as

opposed to the 12-lead ECG. Hence, some inconsistencies can arise in different lead

configurations. Furthermore, the complexity of processing of the acquired data and

their analysis make BSPM impractical as compared to the 12-lead ECG.

BSPM provides high resolution as compared to the 12-lead ECG, however, to fully

assess the electrical potential distribution of the heart, we need epicardial potential

pattern [11]. Hence, the inverse problem of electrocardiography should be solved to

find the epicardial potential distribution.

2.5 Literature Survey on Forward Problem of Electrocardiography

The forward problem of electrocardiography refers to calculation of the body surface

potentials from the cardiac electrical activity. The cardiac electrical activity generates

time-varying potential signals on the body surface. The relation between the heart’s
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electrical activity and the body surface potentials is usually formulated by using the

bidomain theory under quasi-static approximation of Maxwell’s equations [12]. The

region Ω bounded by the epicardial surface Γe and the torso surface Γt is source free,

so we write the following Laplace’s equation:

∇ · (σ∇φ(r)) = 0 ∀r ∈ Ω, (2.2)

where r stands for the spatial coordinate, φ is the potential in the region Ω and σ is

the conductivity in the medium. Equation (2.2) is solved by assuming Neumann and

Dirichlet boundary conditions. These boundary conditions are given as follows [13]:

(σ · ∇φ) · ân = 0 on Γt, (2.3)

φ = φe on Γe,

φ = φt on Γt. (2.4)

Usually volume or surface methods, Boundary Element Method (BEM) and Finite

Element Method (FEM), are used to solve equation (2.2). To employ BEM or FEM,

geometric model of the heart and torso surfaces, and the conductivity distribution are

needed. Hence, there are two main steps in the forward problem:

• Geometric Model

• Numerical Solution

2.5.1 Geometric Model

As mentioned in the previous section, geometric model is required for the solution

of the forward problem. Geometric model includes the surfaces of the heart and the

body, the intermediate region between the heart and the body, and the conductivity

in the intermediate region. To construct the geometric model, we first need to ac-

quire individual-specific anatomical information. There are two methods for acquir-

ing anatomical information: MRI and CT [8]. This procedure is probably the most

major drawback of ECGI as compared to standard 12-lead ECG since usage of MRI

or CT increases the cost and the time. By discretization and segmentation of MRI
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or CT images, the anatomical structures of the heart and the torso are represented

by a group of nodes which form mesh of polygons (triangle meshes for the surfaces,

tetrahedra or hexahedra meshes for the volumes) [14, 15].

Organs that are included in the model are assumed to have piecewise homogeneous

conductivity. Conductivity of the organs in the intermediate region is usually found

by electrical impedance tomography (EIT) [16]. EIT imaging was used in vivo and

in vitro in the literature [17].

2.5.2 Numerical Solution

After obtaining patient-specific anatomical and conductivity information, Laplace’s

equation is solved in the source-free volume between the surfaces of the heart and the

body. FEM and BEM are widely used numerical solution techniques in the literature

to solve Laplace’s equation [18]. There are advantages and disadvantages of these

two methods:

• FEM method requires volume meshing, on the other hand, BEM method re-

quires only surface meshing [8]. For the same level of accuracy, BEM uses

a lesser number of nodes and elements (but a fully populated matrix), i.e., to

achieve comparable accuracy, FEM meshes would need more boundary divi-

sions than the equivalent BEM meshes. Hence, BEM requires less computer

time and storage [19].

• Since FEM method uses volume meshes, anisotropic conductivities can be han-

dled easily by the FEM method. BEM method is also capable of considering

anisotropic conductivities but the accuracy in FEM method is higher [20].

• BEM is suitable and more accurate for linear problems [19].

• The solution matrix resulting from the BEM formulation is unsymmetric and

fully populated with non-zero coefficients, whereas FEM solution matrices are

usually much larger but sparsely populated. This means that the entire BEM

solution matrix must be saved in the computer core memory. However, this is

not a serious disadvantage because to obtain the same level of accuracy as the
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FEM solution, BEM method needs only a relatively modest number of nodes

and elements [19].

In this thesis, we use BEM based on Barr et al.’s article [21] due to its advantages.

Solving equation (2.2) using BEM, the forward transfer matrix H is found. H matrix

determines the relation between the heart potentials and the body surface potentials.

On the other hand, mesh construction is not an easy task, especially when irregu-

lar surfaces are presented. To overcome the difficulties introduced by mesh based

methods, meshless methods are also used in the literature of ECGI. One of the mesh-

less methods is Method of Fundamental Solutions (MFS) [22]. In a study, Wang et

al. [23] compared MFS and BEM methods and concluded that they show similar per-

formances. Using meshless methods may be advantageous since their performances

are comparable to other traditional methods and they eliminate the requirement of

mesh construction.

2.5.3 Selection of the Number and Positions of Measuring Locations for Elec-

trocardiography

Optimum number of measuring electrodes and their positions on the torso are two

important subjects in the forward problem. Barr et al. [24] are among the first re-

searchers who focused on these two topics. Their intent was to select the most signal

information containing leads and reduce the number of the body surface measurement

leads. They used principal component analysis to find a coefficient matrix which is

made up of the eigenvectors and a generator matrix which represents the variations in

time of the surface voltages. To locate the best recording sites, they adopted a method

of iteratively varying the individual chosen surface positions. The study concluded

that for an acceptable level of reconstruction accuracy, a minimum of 24 properly

located recording positions were required.

Lux et al. [9] are another researchers who focused on the lead reduction. In [9], they

introduced the notion of an "information index" which provided a method to quan-

tify how well one measurement site correlated with the rest of the sites taking into

consideration signal variation. Information index formed the basis of their sequential
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selection algorithm. The sequential algorithm picks the lead with the highest informa-

tion index and takes this to form the first lead in the limited lead set. The information

index is then calculated for the remaining leads, and the best lead is again taken. The

process is repeated until some stopping criteria is reached. Lux et al. concluded that

using 20 to 30 leads out of 192 leads can provide the information content of the 192

lead-system.

2.6 Literature Survey on Inverse Problem of Electrocardiography Heart Source

Configurations

During the last two decades, inverse problem of electrocardiography or ECGI has

been a popular emerging topic among the researchers. There are different solution

approaches for solving the inverse problem of electrocardiography. Before giving the

literature survey on the algorithms that are used for ECGI, we will give the literature

summary on equivalent cardiac source models. The electrical sources in the heart

cannot be determined uniquely if the active region is not accessible [25] since the

electric field generated by these sources may be replaced by a double or single layer

on a closed surface enclosing entirely all of the sources [26].

In the literature, different equivalent cardiac source models such as single dipole,

multiple dipoles and multipole approach are used in inverse problem of electrocar-

diography. These representation types are very basic approximations of the cardiac

electrical activity and often fall short for representing the heart’s entire electrical ac-

tivity since according to a study by Hyttinen et al., there should be at least 678 dipole

sources in order to simulate the electrical activity of the heart by a relative mean

square error less than 1% [27]. Therefore, other source configurations such as trans-

membrane potentials, epicardial potentials and activation time based models are being

used widely.

2.6.1 Dipole, Multiple Dipole and Multipole Source Configuration

Dipole source configuration was first applied to electrocardiography by Einthoven et

al. [28]. In their research, Einthoven et al. represented equivalent source generator
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as a single dipole. Following Einthoven’s study, Yeh and Martinek [29] investigated

dipole source configuration in mathematical detail. In their article, Yeh and Martinek

assumed torso as prolate spheroid and cardiac source as dipole, then they found the

electrical potential on this prolate spheroid [29]. In some cases, using a single dipole

as an equivalent cardiac source generator is a good approximation [30–32]. However,

many researchers find this approach inadequate since in most cases, dipole source

presentation does not yield accurate results and cannot handle current singularities.

Another approach that has been used as equivalent source cardiac generator is mul-

tipole source configuration [33–36]. Multipole approach is used in order to take into

account the current singularities. Multipole expansion assumes that there are n mul-

tipole sources (dipole, quadrupole, etc.) at a fixed location.

Multiple dipoles are also used as equivalent cardiac generators [37–39]. In the multi-

ple dipole approach, the dipole sources are not necessarily at fixed locations.

2.6.2 Epicardial Potential Source Configuration

Dipole, multipole and multiple dipole approaches could be useful for solving the

forward problem of electrocardiography, since they provide unique body surface po-

tential distributions. However, in the inverse problem of electrocardiography, the

uniqueness of the inverse solution is not mathematically guaranteed [40].

Most of the researchers use epicardial potentials as equivalent source generator due

to its numerous advantages. This approach has an advantage over the other meth-

ods such as dipole, multipole and multiple dipole since the uniqueness of the inverse

solution is mathematically guaranteed [40] and Yamashita proved this fact in his re-

search [26]. According to Martin and Pilkington’s work [41], other than unique so-

lution advantage, epicardial source configuration provides two important advantages.

First advantage is that there is no need to make restrictive assumptions about the phys-

iologic nature of the cardiac sources, e.g., number of dipoles. Second advantage is

that the intracavity blood mass is included in the problem formulation as a result of

using epicardial source configuration. Hence, the most important inhomogeneity is

implicitly taken into account [41]. Other works related to epicardial source configu-
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ration are [21, 42–47].

2.6.3 Transmembrane Potential Source Configuration

Transmembrane potential (TMP), the potential difference between the intracellular

and extracellular space, is another type of representation that is being used for cardiac

source modelling. TMP source configuration is defined as a macroscopic quantity and

is the average potential over small volume of tissue including several cells. Although

transmembrane source configuration is not widely used as compared to epicardial

potential source configuration, it has been used by some researchers [48–50]. Formu-

lating the problem using TMPs results in a linear problem as shown in [50]. Reducing

the problem formulation to a linear problem is the main advantage of transmembrane

source configuration. Another advantage of TMP source configuration is that three

dimensional representation of cardiac sources by TMPs may provide a better under-

standing of the mechanisms of cardiac pathophysiology. However, as mentioned in

Messnarz et al., the solution is not unique and that’s why TMP source configuration

is not used widely [48].

2.6.4 Activation Time Based Source Configuration

As an alternative approach, myocardial activation time sequence is preferred by some

researchers [51–54]. Retrieving myocardial activation time sequence from the body

surface potentials has advantages over epicardial source configuration approach since

activation time based approach is directly related to physiological mechanism that

lies behind the heart depolarization and repolarization. However, the complexity of

the problem is increased with this approach since one needs to model the heart fully

rather than just the epicardial surface because myocardial activation times rather than

just epicardial potentials are being related to body surface potentials [53]. The major

drawback of activation time based source configuration as compared to TMP is that

in this method, the problem becomes nonlinear and the calculations are very complex

due to nonlinearity.
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2.7 Literature Survey on Inverse Problem of Electrocardiography Solution Al-

gorithms

Unfortunately, the coefficient matrix which relates the heart potentials and the body

surface potentials, so-called the forward transfer matrix, is ill-conditioned and rank-

deficient [55]. The inversion of the forward transfer matrix, i.e., solving the inverse

problem, is therefore ill-posed and straightforward inversion would lead to unphysi-

ological solutions. Consequently, more advance solution techniques, i.e., regulariza-

tion techniques, should be introduced to the problem. The underlying idea of regu-

larization is to impose constraints on the solution. Due to space-time nature of the

sources, regularization can be applied in both domains. In this section, we present the

techniques that have been used to solve the inverse electrocardiography problem.

2.7.1 Spatial Regularization Methods

In this section, we present deterministic approaches that have been used in the lit-

erature. There are many deterministic methods to deal with ill-posedness nature of

inverse electrocardiography. In general, these methods introduce some constraints to

regularize the problem. We organized these methods into three groups according to

their regularization techniques:

• Tikhonov regularization is a widely used technique in the literature [56–59].

Wang et al.’s [60] study is a good and recent example of Tikhonov regulariza-

tion. In their study, Wang et al. used ECG imaging and phase mapping to 3D

reconstruct re-entry circuit and its dynamics, which is important in ventricular

tachycardia (VT). In the analysis, Wang et al. used homogeneous volume con-

ductor as a torso model. As a heart model, they used the epicardial and endo-

cardial surfaces for both ventricles. In order to solve the inverse problem, they

used second-order Tikhonov regularization. To detect re-entry circuit structure,

they used phase mapping approach [61] and took Hilbert Transform of recon-

structed electrograms and found the phase map. When the phase crossed zero

from negative to positive, the depolarization wave front was found. Wang et al.

investigated three different VT re-entry circuits. They concluded that recon-
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struction of both epicardial and endocardial layers were essential in this study,

and phase mapping could reveal the regions of slow conduction.

• Iterative Methods: truncated singular value decomposition (TSVD) [55], mini-

mum residual method (MINRES) [62] and conjugate gradient [62]

• Non-quadratic Methods: total variation [63,64] One good example of total vari-

ation technique in the context of the inverse electrocardiography is the study

of Xu et al. [64]. Spatial gradient of cardiac intramural action potential is a

good indicator to differentiate viable and necrotic tissue. During ST region of

ECG cycle, spatial gradient of intramural action potential should be close to

zero. Therefore, observation of the gradient map provides information about

arrhythmogenic region [64]. Since the gradient of cardiac intramural action

potential carries important information, Xu et al. [64] used total variation mini-

mization technique to constrain the problem of the inverse electrocardiography.

In order to this, they included total variation function as a penalty term. Total

variation function was L1 norm of the gradient of intramural action potential.

To calculate total variation function, instead of using the gradient operator, Xu

et al. used numerical integration over N Gaussian quadrature points in the

myocardium region. After formulating total variation function, they adopted

Rodriguez and Wohlberg’s [65] iteratively re-weighted norm approach to solve

the optimization problem. Xu et al. compared their algorithm performance

with zero order and first order Tikhonov regularization and, in general, their

approach performed better in detecting cardiac infarct.

An important and open question in inverse ECG literature is whether to choose L1-

norm penalty function or L2-norm penalty function. In [59], Ghosh et al. pointed

out that using L1-norm better suited for localization of epicardial pacing sites. On

the other hand, Rahimi et al. [66] stated that these solution methods provide too focal

or too smooth solutions which often do not fulfil our purpose to find cardiac source

distribution. Hence, they proposed Lp norm regularization to find a balance between

focal and smooth solutions. In order to solve Lp norm regularization, Rahimi et al.

used p-order cones programming (p-OCP). They concluded that L1 norm performs

well when the cardiac source distribution is sparse and focal, and L2 norm performs
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well when the cardiac source distribution is more scattered. Lp norm regularization

performed better in the general sense since it is designed to fill the gap between the

L1 norm and L2 norm.

In another study, Coll-Font et al. [67] compared L1-norm solution and L2-norm so-

lution. In their article, Coll-Font et al. [67] combined spatial and temporal regular-

ization techniques. As the space regularization, they used L1-norm and L2-norm of

the gradient of the heart potentials for the penalty term. Coll-Font et al. combined

these two spatial regularization techniques with a temporal regularization technique

and compared them to each other. In order to regularize the heart potentials tempo-

rally, Coll-Font et al. used B-spline function [68]. B-spline function finds best knot

points and these points’ temporal mixing. Using the temporal mixing obtained be-

fore, they approximated the heart’s temporal sequence. In this study, Coll-Fontet al.

aimed to find the first activation area in the heart. Dataset for this study was obtained

from three patients who underwent cardiac surgery. During the surgery, the heart was

paced from different locations and the potentials were collected. To find the forward

transfer matrix, CT scans and BEM were used. Most of the cases, L2-norm regular-

ization showed better performance. However, when the initial pacing site is in the

right ventricle, L1-norm regularization showed better performance.

2.7.2 Spatio-Temporal Regularization Methods

Traditional regularization methods, or spatial regularization methods, ignore the tem-

poral aspect of the cardiac electrical activity and solve the problem at each time instant

separately. Spatio-temporal regularization methods take advantage of the temporal

dynamics of the system and solve the inverse problem of electrocardiography jointly

in space and time as in Coll-Font et al. [67]’s study. We organized these methods into

three groups:

1. Structural Constraints: The studies of Greensite, one of the pioneer researchers

in inverse electrocardiography literature, are the examples of this group [69,70].

In his article, Greensite [69] built a mathematical background and showed that

under the isotropy assumption, the temporal correlation could be included to
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the problem by a Kronecker product. In [70], Greensite continued his study and

investigated multivariate spatio-temporal linear inverse problem. By presenting

several assumptions on the covariance matrix, he was able to estimate temporal

correlation from the measurements and found the solution by using orthogonal

transformations.

Structural constraints method had been used by our research group. Onal et

al.’s study [71] was one example of this approach. In their study, Onal et

al. followed Greensite’s approach and applied a temporal whitening filter to

the original problem. By applying the temporal whitening filter, the problem

became temporally decorrelated and they solved this new problem by using

Tikhonov regularization and Bayesian maximum a posteriori approach. Then,

they transformed the results back to the original domain and the desired so-

lution was obtained. Onal et al. compared spatio-temporal approaches with

spatial approaches and concluded that the solutions improved when the tempo-

ral relations were taken into account.

2. Kalman Filter: Joly et al. [72] are among the first researchers who applied

Kalman filter to inverse problem of electrocardiography. They used state-space

approach for modelling the inverse electrocardiography problem and modelled

the state transition matrix as a constant times identity matrix where the con-

stant was calculated by the least-squares approach. The forward transfer matrix

was found by using FEM in their study. Using these parameters, they applied

Kalman filter to the problem.

The relation between the state variables was ignored in Joly et al.’s [72] study

and clearly, this assumption was not realistic. Based on Joly et al.’s study, El-

Jakl et al. [73] proposed another method and used maximum likelihood (ML)

method to estimate the state transition matrix, the measurement noise covari-

ance matrix and the process noise covariance matrix. They assumed the process

noise and the measurement noise are white noise. After the ML step, they ap-

plied Kalman filter to find epicardial potentials.

More recent studies on Kalman filter application in the inverse problem of elec-

trocardiography were conducted by Wang et al. [74, 75].

In [74], Wang et al. implemented an algorithm to:
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• Construct non-linear state transitions and a priori information using the

electrophysiological model that describes the spatio-temporal behavior of

TMP distributions,

• Estimate the 3D TMP distributions based on the abovementioned a priori

information and using Unscented Kalman filter (combines the advantages

of Kalman filter updates and Monte Carlo methods),

• Evaluate the performance of the proposed method for potential clinical

usability.

They used segmented medical images to obtain geometric models; fiber ori-

entations from a previous experimental study were registered onto the heart

geometry for modelling the cardiac anisotropy. Meshless BEM method was

used to solve the forward problem under the assumption of isotropic and ho-

mogeneous torso model. Two sets of data were used in this study:

• Simulated TMP potentials and the corresponding body surface potentials

(BSP): Two-variable reaction-diffusion model were used for simulating

TMPs. From these TMPs, BSPs are obtained by solving the forward prob-

lem,

• Data from a patient with myocardial ischemia.

They tested their algorithm based on robustness to different data error models,

robustness to reaction-diffusion model parameters, electrode misplacement, ge-

ometric modelling errors and ability to localize ectopic foci. Overall, Wang et

al.’s approach yielded better results in terms of estimated transmembrane po-

tentials when compared to zero order Tikhonov regularization and TSVD.

In [75], Wang et al. applied their framework, which was explained before

in [74], to post myocardial infarction patients to detect 3-D scar mass noninva-

sively. They asserted that their algorithm provided the infarct size, the extent of

the infarct and 3-D infarct geometry. Some of these information could not be

provided by the previous works done by [76, 77]. Wang et al. used unscented

Kalman filter with a feedback in order to find the parameters which determine

the size and the location of the infarct.

Another Kalman filter based approach was conducted by Schulze et al. [78].
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In their study, Schulze et al. first applied second order Tikhonov regulariza-

tion to the forward transfer matrix to deal with its ill-posedness nature. Then,

they modified Kalman filter equations to integrate pseudo-inverse of the for-

ward transfer matrix. They compared the real and the reconstructed epicardial

potentials by using Kalman filter and modified Kalman filter. Schulze et al.

concluded that modified Kalman filter approach yielded better results in terms

of correlation coefficients.

Kalman filter also had been used by our research group [79–82]. In [79], Aydin

et al. stated that in order to use Kalman filter, one needs to know the state tran-

sition matrix that models the time evolution of the epicardial potentials. They

proposed three different approaches to find the state transition matrix under the

assumption of epicardial potential at one lead is related to:

• Only the leads in its neighbourhood,

• The leads that are activated at around the same time,

• Both the leads with close activation times and its first order neighbours.

Aydin et al. used the modified Kalman filter equations suggested by Joly et al.

[72] and found the state transition matrix. They concluded that the assumption

of one lead is related to both the leads with close activation times and its first

order neighbours yielded better results.

Aydin et al. [80] continued their study and proposed another approach. In their

previous study [79], they used true epicardial potential distributions to estimate

the state transition matrix. In [80], they estimated the state transition matrix by

using epicardial potential distributions obtained from Tikhonov regularization

and Bayesian MAP estimation solutions. The results of this study showed that

the state transition matrix calculated by using Bayesian MAP approach yielded

better results.

In [82], Aydin et al. focused on reducing the effects of the geometric errors in

inverse electrocardiography problem. They followed Kaipio et al.’s approach

[83] and modelled the geometric errors as additive Gaussian noise and their

noise variance was added to the measurement noise variance. To estimate the

measurement noise variance and the process noise variance, Aydin et al. used
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two different algorithms:

• An algorithm based on residuals,

• Expectation maximization algorithm.

They concluded that the algorithm based on residuals produced better results.

Until now, we have given the literature review on regular Kalman filter. As men-

tioned before, if activation time sequence is used as the source configuration,

the relation between the sources and the body surface potentials is nonlinear.

Hence, to handle the nonlinearity, extended Kalman filter (EKF) must be used.

The following two studies are important in this regard:

In [84], Ghodrati et al. proposed a novel algorithm to noninvasively estimate

the epicardial activation wavefront curve employing the EKF. They modelled

the nonlinear relationship between the epicardial activation wavefront curve

and the BSPMs, and set up the state-space model by incorporating general

physiological knowledge, e.g., conduction velocity.

In [85], Liu et al. formulated the problem by using cardiac activation sequence.

Since the relation between the cardiac activation sequence and body surface

potentials is nonlinear, they used EKF. They handled ill-posedness nature of the

problem by introducing a cost-efficient regularization method in the EKF. The

EKF-based algorithm showed good performance in simulation under single-site

pacing and dual-site pacing with correlation coefficients between the estimated

activation sequences and true values 0.95 and 0.93, respectively.

3. Regularization Using Multiple Constraints: Brooks et al. [57] proposed a joint

regularization scheme which incorporated both spatial and temporal regular-

ization constraints (JTS), and a joint regularization scheme which incorporated

two different spatial regularization constraints. They compared these two regu-

larization schemes and concluded that JTS regularization yielded better results.

Regularization parameter selection is an important issue in regularization using

multiple constraints approach. In [86], Serinagaoglu et al. addressed this issue

and suggested a genetic algorithm based approach to select the regularization

parameter.
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4. Admissible Solution: This method was proposed by Ahmad et al. [87]. In their

study, Ahmad et al. used spatial constraints, temporal constraints and weighted

constraints together to regularize the problem. This method differs from regu-

larization using multiple constraints approach since no regularization parameter

is selected in this method, instead, regularization parameters are replaced with

direct bounds.

2.7.3 Bayesian Approach

Spatial and spatio-temporal methods are widely used to deal with the ill-posed na-

ture of the inverse problem of electrocardiography. In addition to these regularization

techniques, statistical approaches are also used effectively in the literature. Statistical

approaches enable the researchers to evaluate the performances of their algorithms

quantitatively since these approaches can provide more information such as error co-

variance [88].

Bayesian MAP algorithm is one of the most widely applied solution approaches

among the statistical algorithms. Bayesian based approaches have been applied to

inverse ECG problems as well as inverse EEG/MEG problems. In Bayesian MAP

method, as the name implies, the goal is trying to maximize the posterior probability

density function.

In the context of EEG/MEG studies, Schmidt et al. [89] is one of the researchers who

applied Bayesian inference approach to EEG/MEG problem. Schmidt et al. used

Markov Chain Monte Carlo (MCMC) to sample the a posteriori distribution given

measurement data and a priori information. Instead of giving a single best estimate,

they gave whole range of likely solutions as well as their reliability.

Another research conducted by Russell et al. [90] in the context of the inverse problem

of EEG/MEG is important. Russell et al. developed a framework in order to estimate

the error of imaging modality. To do this, first, they modelled the relation between

the brain sources and the scalp measurements as linear. By assumption of Gaussian

distribution for the prior and independent, identically distributed noise, they were

able to write the prior, and the likelihood using chi-square statistic. After finding the
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prior and the likelihood, it was easy to find the evidence by using Bayes’ formula.

They asserted that if different prior models are compared in the sense of explaining

the measurements, the best prior model is the one which maximizes the evidence. In

order to apply this idea, they set the gradient of the posterior to zero and found dipole

moment vector.

Bayesian MAP algorithm was first applied to the inverse problem of electrocardio-

graphy by Martin et al. [91]. They solved the inverse ECG problem by using the

framework developed for the optimum estimate of the epicardial potential vector by

Foster [92]. Martin et al. used epicardial potentials as source, assumed Gaussian

distribution with zero mean. Using an activation-time based formula which utilizes

the work done by Pilkington et al. [93], Martin et al. found the epicardial and torso

potentials.

Barr et al. [45] followed Martin et al.’s approach and imposed statistical constraints to

the inverse problem of electrocardiography. They used invasive epicardial potentials

that were collected from the heart directly and body surface potential measurements

assuming that the intervening volume conductor was homogeneous. They modelled

epicardial and noise covariances as a constant times identity matrix. Then, they used

the formula developed by Foster [92] and Strand et al. [94], which minimizes the

sum-squared error of the epicardial potentials, assuming Gaussian zero mean distri-

bution for epicardial potentials. Inspection of correlation coefficients and graphical

visualization between true and estimated epicardial distributions revealed that the re-

sults were not very good and this is somewhat expected due to constant covariance

matrices assumption.

van Oosterom [95] is another researcher who applied maximum a posteriori approach

to the inverse problem of electrocardiography. In his research, van Oosterom com-

pared different solution techniques with Bayesian MAP algorithm, namely zero-order

Tikhonov regularization, second-order Tikhonov regularization and TSVD. Starting

from uniform dipole layer (UDL), van Oosterom found epicardial potentials by us-

ing boundary element method (BEM). van Oosterom used epicardial potential source

configuration which has Gaussian distribution with zero mean similar to the work

conducted by Martin et al. [91]. Using the inverse method given by Dale et al. [96],
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van Oosterom proposed a MAP-based solution technique. Bayesian MAP algorithm

performed better compared to the other solution approaches in terms of correlation

coefficient between estimate epicardial potentials and true epicardial potentials. How-

ever, zero mean assumption may yield infeasible results and it is not realistic.

Another research that is important in the context of Bayesian MAP algorithm is con-

ducted by Serinagaoglu et al. [97]. Serinagaoglu et al. used a database that consists

of epicardial potentials collected from previous experiments and a set of catheter-

based electrical measurements, and modelled epicardial potentials as Gaussian. They

used BEM method to find the forward transfer matrix. Their intent to use invasive

but sparse potential measurements was to increase the resolution of the solution. As-

suming Gaussian distribution for epicardial potentials, they estimated epicardial po-

tentials based on Bayesian MAP technique [98]. Since, Serinagaoglu et al. assumed

zero mean Gaussian noise uncorrelated with the epicardial potentials, their Bayesian

MAP solution algorithm is equivalent to minimum mean square error (MMSE) esti-

mation. In this formulation, prior probability density function is an important factor

that directly affects the solution. In order to find prior probability density function,

Serinagaoglu et al. chose different epicardial potentials from the database in a manner

that the prior model maximizes the evidence and formed a hybrid epicardial potential

distribution.

In [88], Serinagaoglu et al. continued their previous research on Bayesian approach.

In their article, they compared different solution algorithms for different scenarios.

Tikhonov regularization and Bayesian MAP algorithms were used in their research.

Tikhonov regularization was tested by using only torso potentials, and using torso

potentials and sparse epicardial potentials that were collected by catheter-based mea-

surements. Bayesian MAP algorithm was tested by using the following information:

• Torso potentials and the prior information which was explained in [97],

• Torso potentials, the prior information and sparse epicardial potentials directly

collected from the heart,

and they concluded that combining different information yields better results.
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2.7.4 Modelling Error Studies

Modelling errors directly affect the solution of inverse electrocardiography. The ef-

fects of the modelling errors are studied widely in the literature [99].

Statistical approaches can also be used to analyse the effect of the geometric errors on

the solution. Heart-torso modelling is very important in solving the inverse problem

of electrocardiography and modelling errors directly affect the accuracy of the solu-

tion. Rahimi and Wang [100] worked on this topic and proposed a statistical approach

to evaluate electrophysiological imaging methods’ robustness to the variations in the

personalized heart-torso models. They used statistical shape modeling (SSM) [101]

and constructed a Gaussian random variable for the variation of personalized heart-

torso model. Since the relationship between the anatomical model and the inverse

problem solution was complex, thus could not be analytically formulated, they used

unscented transform to obtain the inverse problem solution statistics. Due to high

dimension of the solution, Monte Carlo analysis and similar approaches could not

be used because of their computational cost. In this study, two source configurations

were used, namely epicardial potentials and transmural action potentials. Two solu-

tion algorithms were used for these two source configurations: zero order Tikhonov

regularization was used for epicardial potentials and transmural electrophysiological

imaging (TEI) [74] was used for transmural action potentials. Rahimi et al. tested

their study with synthetic experiments and real data experiments. Before applying

their algorithms, they obtained a set of anatomical models. In synthetic experiments,

despite the differences between anatomical models, the reconstruction of epicardial

potentials showed similar patterns. Real data experiments confirmed the results of

synthetic experiments. Therefore, they concluded that the applied solution methods

have low sensitivity to anatomical model variations.

In another study, Burton et al. [102] investigated uncertainties in the forward and

inverse ECG problem. In the forward problem, the authors examined tissue conduc-

tivity uncertainty during repolarization phase in an ischemic heart. In the inverse

problem, they studied Tikhonov regularization control parameter effect on the recon-

structed activation times. For the forward problem part of this study, Burton et al.

determined a range of conductivity values of the heart and assumed uniform distribu-
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tion for the conductivity values. They used generalized polynomial chaos-stochastic

collocation methods (gPC-SC) to reduce the stochastic equations and found a finite

set of deterministic simulation parameters which govern the stochastic process. This

process enabled them to extract the mean and pdf of the solution. In the inverse prob-

lem part, they used Erem et al.’s approach [103]. Only the Tikhonov regularization

parameter was considered as the variable which brought uncertainty to the solution.

The spatial mean and standard deviation were found for different Tikhonov regular-

ization parameter values. Uncertainty of both the conductivities and the regularization

parameter were visualized.

Another important study was conducted by Zemzemi et al. [104]. Zemzemi et al.

examined the effect of the torso heterogeneities on inverse ECG solution. First, they

constructed the heart-torso model using CT scan images. Then, the forward prob-

lem was solved by using Laplace equation assuming that the conductivity in torso is

heterogeneous. After finding body surface potentials by using the result of forward

problem, they added some noise on the simulated body surface potentials and solved

the inverse problem by using zero order Tikhonov regularization algorithm. Zemzemi

et al. solved the same problem by assuming homogeneous conductivity and compared

the solution with heterogeneous case. In terms of correlation coefficient and relative

error metrics, the heterogeneous case outperformed the homogeneous case.

Inverse electrocardiography procedure often requires accurate patient specific thorax

model. Sometimes, getting accurate thorax model is not possible or in order to reduce

the negative effects of CT, it is desirable to decrease field of view of CT imaging. In

their study, Erem et al. [68] aimed to eliminate the need of an accurate model. They

used a spline-based method and this method was applied to body surface potentials for

the temporal regularization of the heart surface potentials. In order to find the knot

points of the heart potentials, Erem et al. used Tikhonov regularization combined

with transmural gradient regularization. Transmural gradient regularization was used

for finding regularization matrix parameter in Tikhonov regularization. In this study,

the authors estimated the location of the pacing site. In general, the results were

comparable to those which uses accurate throax models.

In [103], Erem et al. continued their study and proposed an algorithm to evaluate

29



parameter sensitivity and model inaccuracy in the inverse ECG problem. The algo-

rithm utilized nonconvex, nonlinear least squares optimization. Source distribution

was presented by transmembrane potentials. Transmembrane potential was modelled

as unit step function u(t− τn) where τn denotes the activation time. Since nonlinear

least square optimization algorithms require differentiable objective functions, Erem

et al. introduced some constraints to the problem, which formulated the abrupt tran-

sition from 0 to 1 at the time τn and replaced it with a smooth transition, so that they

could apply the optimization algorithm. Since the problem was nonconvex, Erem et

al. replaced the problem with a convex one and solved the problem by using alternat-

ing directions method of multipliers (ADMM) method. In order to test the robustness

of the algorithm, they used fast route algorithm (FSA). In the FSA algorithm, some

initial foci and related wavefront propagation patterns were estimated, and the body

surface potential distribution was found. Then, the correlation between real body sur-

face potentials and estimated body surface potential distribution was found. Erem et

al. were aware of approximating the nonconvex problem by a convex one violates

the problem and could be yielding infeasible solutions. However, they stated that one

can always find waveforms, in the nearest feasible neighbor region, similar to those

found by using convex optimization. The solution algorithms were applied to real

data collected from two healthy male subjects and simulation data using the software

ECGSim [105]. Overall, Erem et al. concluded that their proposed method was fairly

robust.

2.7.5 Multiple Measurements Studies

In inverse problem of electrocardiography, often, multiple body surface measure-

ments are available. However, which measurement should be used for the best re-

sults is still an important question. In the literature, two standard approaches are

being used. One method takes the all measurements one by one and finds the inverse

solution for each measurement, then finds ensemble average of the solutions. The

second method finds ensemble average of the measurements and solves the inverse

problem. These two approaches assume that the measurements are independent re-

alizations of the system, however this is not true since the measurement noises are

correlated. Coll-Font et al. [106, 107] tried to answer that question. Coll-Font et al.

30



proposed two solution algorithms: pre-averaging method and probabilistic inverse. In

pre-averaging method, they proposed an algorithm that uses B-spline method using

pseudo-time and knot points as parameters. The difference between the measurement

and B-spline model was minimized and Coll-Font et al. applied Tikhonov regular-

ization to this model. In the probabilistic part, close inspection of the measurement

distribution revealed that the measurement data could be represented as Laplacian dis-

tribution. Using zero mean Gaussian distribution for the prior probability, they found

the MAP estimate of the posterior probability distribution by applying alternative di-

rections method of multipliers (ADMM) method. Since the dataset was very limited

and proposed probabilistic models were simple, Coll-Font et al. could not reach any

conclusion on which algorithm is better.

In another research, Dallet et al. [108] proposed multi-lead signal averaging algo-

rithm to make use of multiple beats. They aimed to eliminate errors due to faulty

measurements when single beat is used. In multi-lead signal averaging algorithm,

they selected a set of beats and applied reduced-rank principal component analysis

(PCA) to the selected beats. Then, they applied spatial averaging on the PCA-filtered

beats. Correlation coefficient and root mean square were found between a reference

ECG signal and selected beats to choose the most representative beats from the se-

lected set. After finding the most representative beats, they computed average of the

beat set.

2.7.6 Other Approaches

In the literature, there are other important solutions methods that are applied to the

inverse problem of electrocardiography. One of them is a method that is called "Hi-

erarchical Multiple-Model Bayesian Approach" applied by Rahimi et al. [109, 110].

In their study, Rahimi et al. investigated the inverse problem of electrocardiography

using hierarchical multiple-model Bayesian inference. According to Bayes’ formula,

the posterior pdf is proportional to the prior pdf multiplied by the likelihood pdf. The

prior pdf was modelled as p-generalized Gaussian distribution. In order to establish

an adaptive approach, they modelled p as a random variable with uniform distribution

between 1 and 2 meaning that if p is 1 then the prior pdf is Laplacian or if p is 2
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then the prior pdf is Gaussian. On the other hand, the likelihood pdf was assumed to

be Gaussian random variable with zero mean. In this formulation, there were three

hyperparameters, namely the noise variance, p value and the source prior variance.

The source prior variance and the noise variance were assumed to be uniform random

variable and they control the regularization contribution of the source and the data

fitting respectively. In order to do a full Bayesian analysis, Rahimi et al. found the

posterior pdf by using slice sampling Markov Chain Monte Carlo method [111]. They

sampled three hyperparameters and found the joint posterior over three hyperparam-

eters. This approach is very advantageous over the fixed model approaches where the

noise variance, p value and the source prior variance are fixed. While Rahimi et al.’s

approach is very flexible to different source distributions, fixed model approaches are

only suitable for specific cases.

Another important approach is Variational Bayes method. This method was applied

by Xu et al. [112]. In this study, Xu et al. used variational Bayesian (VB) method for

intramural action potential imaging of 3D infarcts. According to Xu et al., Variational

Bayes method provides flexible regularization parameters and therefore eliminates

disadvantages of fixed regularization parameters. First, they introduced two new pa-

rameters to the system, namely inverse variance of the measurement noise and inverse

variance of the prior both having Gamma distribution. They formulated the likelihood

pdf as Gaussian and derived the pdf as a function of inverse variance of the measure-

ment noise. Furthermore, they formulated the conditional prior model, conditioned

on inverse variance of the prior, which resulted in normalized exponential function of

inverse variance of the prior multiplied by total variation function where total vari-

ation function was found by numerical integration. After finalizing the formulation,

they combined all the pdfs, namely the conditional likelihood pdf, the conditional

prior pdf, inverse variance of the measurement noise pdf and inverse variance of the

prior pdf, to find the joint probability density function of a hyperparameter (variable

consists of inverse variance of the measurement noise, inverse variance of the prior

and the prior) and the measurement data. The posterior distribution of the hyperpa-

rameter involved intractable integral. To overcome this issue, they used minimization

of Kullback-Leibler (KL) divergence technique. By using KL divergence, they found

the mean and covariance for the posterior distribution of the source. They compared
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their approach with total variation regularization and first order Tikhonov regular-

ization. Phantom and human data were used to test the methods. Two following

metrics are used to evaluation: correlation coefficient between true and reconstructed

action potentials, dice coefficient between true and reconstructed ischemic regions.

In the experiments, VB method outperformed first order Tikhonov regularization but

its performance was comparable to total variation regularization.

Machine learning algorithms are also used in the literature. There are two important

studies by Zemzemi et al. [113, 114] on this topic. In [113], they used Reproduc-

ing Kernel Hilbert Space (RKHS) method, a machine learning algorithm, to solve

inverse ECG problem. They used different pairs of heart potentials and body surface

potentials to train their algorithm and found a function that represents the relation

between the heart potentials and the body surface potentials. The forward problem

was solved by using monodomain model due to its simplicity. The electromagnetic

equations were solved by using finite element method (FEM). After finding the func-

tion that maps the heart potentials to the body surface potentials, Zemzemi et al.

tried to reconstruct the heart potentials by using the body surface potentials which

were not in the training data set. Stimuli localization error was about 0.5 cm and

activation time error was around 6 ms. Zemzemi et al. stated that rich training set

improves the reconstruction accuracy. Zemzemi et al. [114] continued their study

and proposed the following algorithms: Tikhonov regularization, statistical repro-

ducing kernel Hilbert space (RKHS) [113], least square algorithm regularized with

RKHS, least square algorithm regularized with the nearest solution selected from a

database. The results with using these four algorithms were compared. The data set

that was used for training the algorithm was taken from 400 simulation cases which

have different stimulation points. In terms of potential amplitude, regularization of

RKHS method improved the performance of the classical RKHS algorithm. Further-

more, Zemzemi et al. observed that nearest solution method yielded shifted potential

waveform and Tikhonov regularization yielded over-smoothed solutions. In terms of

activation times, the regularized RKHS and the classical RKHS provided accurate lo-

cation of ectopic stimuli. However, due to the shift in nearest solution algorithm and

over-smoothed waveform in Tikhonov regularization, these approaches did not give

accurate results.
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2.8 Novelty of The Presented Work

In experimental and simulation studies of non-invasive electrocardiographic imag-

ing, as mentioned in section 2.7.5, multiple measurements of the body surface and

epicardial potentials are available. However, the best way to utilize all available mea-

surements still remains an open question in the current inverse electrocardiography

literature. Furthermore, in the state-space approaches of the inverse electrocardiog-

raphy, there is an open question of how the state transition matrix and the covariance

matrices are found. Joly et al. [72] attempted to model the state transition matrix as a

constant times the identity matrix and this approach is a poor approximation since it

ignores the relation between the state variables. Based on Joly et al.’s study, El-Jakl

et al. [73] proposed another method to find the state transition matrix by using max-

imum likelihood estimation. However, El-Jakl’s study also assumed the covariance

matrices as a constant times the identity matrix and lacks of providing information on

how the multiple measurements was used. Aydin et al. also tried to find an answer to

the above-mentioned questions in a series of publications [79–82]. In these studies,

Aydin et al. modified Joly et al.’s approach [72] to find the state transition matrix.

They assumed epicardial potential at one lead is related only the leads in its neigh-

bourhood or the leads that are activated at around the same time, while finding the

state transition matrix. Hence, in their study, it is important how the neighbourhood

leads are defined. Furthermore, any errors that are made during the calculation of

activation times may yield incorrect state transition matrix.

In this thesis, we propose two new methods which incorporate the multiple measure-

ments by using maximum likelihood and maximum a posteriori estimation. Our ap-

proach provides a general way to construct the state-space formulation of the inverse

electrocardiography by using very few assumptions.
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CHAPTER 3

THEORY

In this section, first, we introduce the problem definition and formulate the relation

between body surface potentials and epicardial potentials. Then, we discuss inverse

problem solution algorithms used in this study in detail.

3.1 Problem Definition and State-Space Formulation of the Problem

Cardiac electrical activity can be observed noninvasively by measuring the body sur-

face potentials. The relation between body surface potentials and cardiac electri-

cal activity is linear if epicardial potentials are used as the equivalent cardiac source

model. Due to this linear relation and other benefits that are explained in section 2.6.2,

we used epicardial source configuration in this study. The relation between epicardial

potentials and body surface potentials, and the relation between epicardial potentials

at different times can be defined mathematically in state-space form as follows:

yk = Hxk + vk

xk+1 = Fxk + wk (3.1)

where

• xk ∈ RM denotes M dimensional epicardial state vector at time k

• yk ∈ RD denotes D dimensional body surface potential vector at time k

• F ∈ RMxM is state transition matrix

• H ∈ RDxM is forward transfer matrix
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• wk ∼ N (wk; 0, Q) is uncorrelated with the state, Gaussian process noise with

zero mean and covariance matrix QMxM

• vk ∼ N (vk; 0, R) is uncorrelated with the state, Gaussian measurement noise

with zero mean and covariance matrix RDxM

• x1 ∼ N (x̄,Σ) is the initial epicardial potential state

The forward transfer matrix H is found by the procedure given in section 2.5.2. H

is an ill-conditioned matrix, meaning that the condition number of H is very large.

Small measurement disturbances cause unbounded errors in the epicardial potential

distributions due to the high condition number ofH . Hence, solving for the epicardial

potentials requires regularization [115].

3.2 Inverse Problem Solution Methods

In this section, we explain the inverse problem solution methods. We use both spatial

and spatio-temporal methods in this thesis. Spatial methods include Tikhonov regu-

larization and Bayesian maximum a posteriori techniques. Spatio-temporal methods

include Kalman filter and regularized Kalman filter approaches. In general, the spatio-

temporal methods perform better than the spatial methods since, as Oster et al. [116]

pointed out, the temporal correlation between the epicardial potentials should also be

used to get accurate results.

3.2.1 Tikhonov Regularization

Tikhonov regularization is the most widely used regularization method for the so-

lution of ill-posed inverse problems. Tikhonov regularization was named after the

publication of Tikhonov and Arsenin [56]. Since the forward transfer matrix is not

directly invertible and the problem is ill-posed, Tikhonov regularization is used for

stabilizing the solution. In general, the solution of the inverse problem is found by

minimizing a cost function as follows:

x̂ = argmin
x

(||Hx− y||2
2 + λ2||Lx||2

2) (3.2)
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where λ is the regularization parameter and L is the regularization matrix.

The regularization parameter λ controls the contributions of residual error and solu-

tion norm. Selection of the regularization parameter is very important because too

small λ values cannot eliminate the instability, too large λ values over-smooth the

solution and add unnecessary residual error while stabilizing the system [117]. The

system diverge from the real solution when too much unnecessary residual error is

added. Hence, there is a trade-off between instability and over-smoothing.

After minimization of equation (3.2), the solution is given as follows:

x̂ = (HTH + λ2LTL)−1HTy (3.3)

To find the optimal value of λ, we use the L-curve method [117]. In this method, we

plot ||Hx− y||2 vs ||x||2 in log-log scale by varying λ parameter. This plot usually

has an L-shape, hence the name L-curve method, and we select the point correspond-

ing to the corner of this curve. The value of λ parameter at this point is the optimal one

because it satisfies the minimum norm solution and minimum error properties [118].

The only unknown left in equation (3.3) is the regularization matrix L. Zero order

Tikhonov regularization uses the identity matrix I as the regularization matrix, first

order Tikhonov regularization uses the surface gradient matrixG as the regularization

matrix and second order Tikhonov regularization uses the surface Laplacian operator

L̃ as the regularization matrix. In this study, we used zero order Tikhonov regulariza-

tion.

Tikhonov regularization works like a filter. It filters out small singular values of the

forward transfer matrix. To see this effect, we apply singular value decomposition

(SVD) to the forward transfer matrix and replace H matrix by its decomposed repre-

sentation in equation (3.3):

H = USV T (3.4)

where S = (s1, s2, . . . , sD) is the singular value matrix which is a diagonal matrix

consisting of singular values, U is the left eigenvector and V is the right eigenvector

of H . Replacing H with equation (3.4) yields:

x̂ =
n∑
i=1

s2
i

s2
i + λ2︸ ︷︷ ︸
g(si,λ)

UT
i y

si
Vi (3.5)

By inspecting equation (3.5), it can be concluded that g(si, λ) ≈ 1 for large singular

values and g(si, λ) ≈ 0 for small singular values. Therefore, Tikhonov regularization
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damps the effects of division by the small singular values. However, large singular

values still affect the solution.

3.2.2 Kalman Filter and Smoother

Kalman filter is an optimal estimator which is used for estimating the unobserved

states of a system by using the observed data. Kalman filter’s optimality is due to its

minimizing the mean square error of the estimated states when the noise is Gaussian

property. Kalman filter is a well known method and being used in many applica-

tions such as tracking, signal processing, navigation and many more. Kalman filter

based techniques were applied to inverse problem of electrocardiography by a few re-

searchers [73, 82, 119, 120]. Before giving discrete Kalman filter and smoother steps,

predicted estimate and the covariance of the estimation error of xk|k−1 and xk|k are

given as follows:

x̂k|k−1 = E[xk|y1, y2, . . . , yk−1] (3.6)

Pk|k−1 = E[(xk − xk|k−1)(xk − xk|k−1)T ] (3.7)

Pk|k = E[(xk − xk|k)(xk − xk|k)T ] (3.8)

Discrete Kalman filter and smoother steps are as follows (Detailed discussion can be

found in [121]):

Step 1. Initialization

For k=1, initialize xk and Pk

• x̂1|1 = E[x1] = x̄

• P1|1 = E[(x1 − x̂1|1)(x1 − x̂1|1)T ] = Σ

Step 2. Forward Recursion: Filtering

For k=2, ..., T do

• x̂k|k−1 = Fx̂k−1|k−1 −→ State Time Update

• Pk|k−1 = FPk−1|k−1F
T +Q −→ State Covariance Time Update
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• Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 −→ Kalman Gain

• x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) −→ State Measurement Update

• Pk|k = (I −KkH)Pk|k−1 −→ State Covariance Measurement Update

After giving Kalman filter steps, our next step is Kalman smoother. In this study, we

use Rauch-Tung-Striebel Smoother (RTS) [122]. RTS is very convenient approach

for linear Gaussian models, as in our model.

RTS steps are given as follows (Detailed discussion can be found in [123]):

Step 3. Backward Recursion: Smoothing

For k=T-1, ...., 1 do

• Pk+1|k = FPk|kF
T +Q

• Gk = Pk|kF
T (Pk+1|k)

−1

• x̂k|T = x̂k|k +Gk[x̂k+1|T − Fx̂k|k]

3.2.3 Regularized Kalman Filter and Smoother

As mentioned before, the forward transfer matrix H has high condition number (in

our case, the condition number of H is cond(H) ≈ 7.4173x1012) and is an ill-

conditioned matrix. Ill-conditioned nature of the forward transfer matrix may cause

instability in ECGI solutions. For stable solutions, H matrix needs to be regular-

ized. In this section, we use Schulze et al.’s [78] approach and modify Kalman filter

equations that are used in MLIF and MAPIF algorithms to improve these algorithms’

performances. In their article, Schulze et al. apply second order Tikhonov regular-

ization to the forward transfer matrix and find second order Tikhonov pseudo-inverse

of the forward transfer matrix. Then, they modify Kalman gain and Kalman filter

measurement update equations to integrate Tikhonov regularization.

We begin with rewriting general Tikhonov regularization solution equation (3.3):

x̂ = (HTH + λ2LTL)−1HT︸ ︷︷ ︸
H†

y (3.9)
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where H† is called second order Tikhonov pseudo-inverse of H and L is surface

Laplacian operator. We find the regularization parameter λ by using L-curve method.

Next, we replace Kalman gain K with K̃kH
−1 in Kalman gain equation Kk =

Pk|k−1H
T (HPk|k−1H

T +R)−1:

K̃kH
−1 = Pk|k−1H

T (HPk|k−1H
T +R)−1 (3.10)

where K̃ is the new Kalman gain. K̃ can be derived as follows:

K̃k = Pk|k−1H
T (HPk|k−1H

T +R)−1H

= Pk|k−1H
T (H−1HPk|k−1H

T +H−1R)−1

= Pk|k−1H
T (Pk|k−1H

T +H−1R)−1

= Pk|k−1(Pk|k−1H
T (HT )−1 +H−1R(HT )−1)−1

= Pk|k−1(Pk|k−1 +H−1R(H−1)T )−1

= Pk|k−1(Pk|k−1 +H†R(H†)T )−1 (3.11)

Similarly, we replace Kk with K̃kH
−1 in the state measurement update and state

covariance measurement update equations:

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1)

= x̂k|k−1 + K̃kH
−1(yk −Hx̂k|k−1)

= x̂k|k−1 + K̃kH
†yk − K̃kx̂k|k−1 (3.12)

Pk|k = (I −KkH)Pk|k−1

= Pk|k−1 − K̃kH
−1HPk|k−1

= Pk|k−1 − K̃kPk|k−1 (3.13)

We now have modified Kalman filter equations in terms of K̃ and H†.

Modified Kalman Filter Equations
x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T +Q

K̃k = Pk|k−1(Pk|k−1 +H†R(H†)T )−1

x̂k|k = x̂k|k−1 + K̃kH
†yk − K̃kx̂k|k−1

Pk|k = Pk|k−1 − K̃kPk|k−1
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In order to use Kalman filter and smoother, and regularized Kalman filter and smoother,

the state-space parameters F,Q,R and, the initial state’s mean and covariance x̂,Σ

are needed. These parameters are found by using by using parameter estimation tech-

niques.

3.2.4 Bayesian Maximum a Posteriori (BMAP)

In equation (3.1), we stated state-space formulation of the problem. Considering all

states together, we rewrite the relation between the body surface potential measure-

ments and epicardial potentials as follows:

y = Hx+ v (3.14)

Bayes’ theorem states that posterior pdf of x given y can be found by using the fol-

lowing equation:

p(x | y)︸ ︷︷ ︸
Posterior pdf

=

Likelihood︷ ︸︸ ︷
p(y | x)

Prior pdf︷︸︸︷
p(x)∫

x

p(y | x)P (x)dx︸ ︷︷ ︸
Evidence

(3.15)

Bayesian MAP estimation technique maximizes the posterior pdf of x given y. By

maximizing the posterior pdf, we find the most probable value of x given observed

data y. Maximization of the posterior pdf is given by the following equation:

x̂ = argmax
x

p(x | y) = argmax
x

p(y | x)p(x)

p(y)
(3.16)

Since p(y) is just a scaling factor and does not depend on x, equation (3.16) simplifies

to:

x̂ = argmax
x

p(y | x)p(x) (3.17)

or equivalently:

x̂ = argmax
x

[ln p(y | x) + ln p(x)] (3.18)

From the previous section, we know that:

• p(y|x) , N (y;Hx,R)

• p(x) , N (x; x̄,Σ)
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where x̂ = E[xk] and Σ = E[(xk − x̂k)(xk − x̂k)T ] ∀ k.

To maximize equation (3.18), we take the derivative of that equation and find the root

by setting the derivative equal to zero. After doing the necessary calculations, the

details are given in Appendix C, x̂ is found as follows:

x̂ =

(
HTR−1H + Σ−1

)−1(
HTR−1y + Σ−1x̄

)
(3.19)

In order to use Bayesian maximum a posteriori technique, the state-space parameter

R and, the state’s mean and covariance x̂,Σ are needed. These parameters are found

by using the training set data and the standard deviation of the measurement noise, as

shown in section 3.4.4.

3.2.5 Relation Between BMAP and Tikhonov Regularization

We observe that Bayesian MAP method is equivalent to Tikhonov regularization un-

der the following assumptions:

• R = β2I

• Σ = γ2I

• x̄ = 0

Rewriting the equation (3.19) by replacing R,Σ and x̂ yields:

x̂ =
( 1

β2
HTH +

1

γ2
I
)−1( 1

β2
HTy

)
(3.20)

x̂ =
(β2

β2

1

β2
HTH +

β2

β2

1

γ2
I
)−1( 1

β2
HTy

)
x̂ =

(
HTH +

β2

γ2
I
)−1

HTy (3.21)

Comparing equation (3.21) with (3.3), we conclude that the regularization parameter

λ is equal to β
γ

. By this way, the regularization parameter is found without using

L-curve method.
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3.3 Parameter Estimation Techniques

In the state-space formulation of the problem, there are five unknown parameters,

namely, x̄,Σ, F,Q,R. These parameters need to be estimated in order to apply in-

verse electrocardiography algorithms in the previous sections. In this thesis, Max-

imum Likelihood (ML) Estimation and Maximum a Posteriori (MAP) Estimation

methods are used to estimate the unknown parameters.

3.3.1 Maximum Likelihood Estimation

Parameter estimation problems are usually solved by maximum likelihood estimation.

Parameter estimation based on ML method was used extensively in speech signal

processing literature [124–127]. In the literature of inverse electrocardiography, ML

method was used by El-Jakl et al. [73]. El-Jakl et al. used maximum likelihood

estimation to estimate the state transition matrix, the process and the measurement

covariance matrices.

Maximum likelihood estimation finds the best estimate of unknown parameter set

Θ = {x̄,Σ, F,Q,R} value which maximizes the joint likelihood function so that the

observed data is the most probable.

We start by selecting L experiments from epicardial potential database and simu-

late body surface potentials for each experiment. Then, we compose a training set

with epicardial potentials X = {x`1:T}L`=1 and simulated body surface potentials Y =

{y`1:T}L`=1. Mathematically, we find the the value of the parameter set as follows:

Θ̂ = argmax
Θ

p(X, Y | Θ)︸ ︷︷ ︸
Π(Θ)

(3.22)

where Π(Θ) is the joint likelihood function. It is usually easier to work with natural

logarithm, since there is no difference between maximization of likelihood function

and log-likelihood function, the equation (3.22) can be rewritten as follows:

Θ̂ = argmax
Θ

lnΠ(Θ) (3.23)

where

Π(Θ) =
L∏

` =1

p(x`1:T , y`1:T |Θ) (3.24)
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under the assumption of independent experiments. Assuming first Markov property

[128], Π(Θ) is written as follows:

Π(Θ) =
L∏
`=1

(
p(x`1|Θ)

T∏
k=1

p(y`k|x`k,Θ)
T∏
k=2

p(x`k|x`k−1,Θ)

)
(3.25)

We take the natural logarithm of Π(Θ) and plug the parameter set components into

equation (3.25):

ln
(

Π(Θ)
)

=
L∑
`=1

ln p(x`1|Θ) +
L∑
`=1

T∑
k=1

ln p(y`k|x`k,Θ) +
L∑
`=1

T∑
k=2

ln p(x`k|x`k−1,Θ)

=
L∑
`=1

ln p(x`1|x̄,Σ) +
L∑
`=1

T∑
k=1

ln p(y`k|x`k, R) +
L∑
`=1

T∑
k=2

ln p(x`k|x`k−1, F,Q)

(3.26)

where

• p(x`1|x̄,Σ) ∼ N (x`1; x̄,Σ)

• p(y`k|x`k, R) ∼ N (y`k;Hx
`
k, R)

• p(x`k|x`k−1, F,Q) ∼ N (x`k;Fx
`
k−1, Q)

To find the parameter set components {x̄,Σ, F,Q,R}, keeping in the mind that the

log-likelihood function is concave function of x̄, Σ−1, F , Q−1 and R−1, i.e., the prob-

lem is convex, [129], we take derivative of ln(Π(Θ)) with respect to each component

and obtain the roots by equating it to zero. Detailed discussion on how we find the

parameter set components is given in Appendix A.

We summarize the results below:
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Summary of ML Approach Based Estimated Parameters

ˆ̄x =
1

L

L∑
`=1

x`1

Σ̂ =
1

L

L∑
`=1

(x`1 − x̄)(x`1 − x̄)T

R̂ =
1

LT

L∑
`=1

T∑
k=1

(y`k −Hx`k)(y`k −Hx`k)T

F̂ =

[
L∑
`=1

T∑
k=2

x`k(x
`
k−1)T

]
·

[
L∑
`=1

T∑
k=2

x`k−1(x`k−1)T

]−1

Q̂ =
1

L(T − 1)

L∑
`=1

T∑
k=2

(x`k − Fx`k−1)(x`k − Fx`k−1)T

3.3.2 Maximum a Posteriori Estimation

ML estimation over-fits the training set data and this causes poor performance when

the test data and the training set data come from different physiological models [127].

Therefore, instead of ML, we propose MAP based parameter estimation algorithm to

estimate the parameter set Θ = {x̄,Σ, F,Q,R} in this section.

We begin with writing Bayes’ general formula:

p(Θ | X, Y ) =
p(X, Y | Θ)p(Θ)

p(X, Y )
(3.27)

where X and Y are epicardial potentials and body surface potentials respectively,

which were defined in section 3.3.1. In MAP inference step, we find the estimated

value of the parameter set Θ̂ which maximizes the posterior pdf p(Θ | X, Y ). Math-

ematically, the estimated value of the parameter set is given as follows:

Θ̂ = argmax
Θ

p(X, Y | Θ)p(Θ) (3.28)

where we dropped the term p(X, Y ) since it does not depend on Θ. Equation (3.28)

is equivalent to the following equation:

Θ̂ = argmax
Θ

[ln p(X, Y | Θ)︸ ︷︷ ︸
Π(Θ)

+ln p(Θ)] (3.29)

45



where Π(Θ) was defined in equation (3.25).

In this study, we divide the parameter set into two subsets Θ = {Θ1,Θ2} where

Θ1 = {x̄,Σ, R} and Θ2 = {F,Q}. If we assume Θ1 and Θ2 are independent, the

prior pdf is written as follows:

p(Θ) = p(Θ1)p(Θ2) (3.30)

This work assumes p(Θ1) as non-informative prior. Under this assumption, equation

(3.29) can be written as follows:

Θ̂ = argmax
Θ

[ln Π(Θ) + ln p(F,Q)] (3.31)

To proceed further, we need to choose the joint prior distribution p(F,Q) or equiv-

alently p(F |Q) and p(Q) since p(F,Q) = p(F |Q)p(Q). In this study, we work

with conjugate prior distributions since when conjugate prior distributions are used,

it is easy to derive posterior in closed form analytically [130]. The prior distribution

p(F |Q) is assumed to be matrix normal distribution and given as follows:

p(F | Q) ∼ N (F ; ζ,Φ⊗Q) (3.32)

p(F | Q) = (2π)−
M2

2 |Φ|−
M
2 |Q|−

M
2 exp

(
− 1

2
tr
[
Φ−1(F − ζ)TQ−1(F − ζ)

])

∝ |Φ|−
M
2 |Q|−

M
2 exp

(
− 1

2
tr
[
Φ−1(F − ζ)TQ−1(F − ζ)

])
(3.33)

where ⊗ is Kronecker product operator, ζ is mean matrix, Φ and Q are left and right

covariance matrices respectively. Assuming zero mean matrix, equation (3.33) re-

duces to:

p(F | Q) ∝ |Φ|−
M
2 |Q|−

M
2 exp

(
− 1

2
tr
[
Φ−1F TQ−1F

])
(3.34)

The prior distribution p(Q) is assumed to be inverse Wishart distribution and given as

follows:

p(Q) ∼ W−1(Q; Ψ, v) (3.35)

p(Q) ∝ |Q|−
v+M+1

2 exp

(
−1

2
tr
[
Q−1Ψ

])
(See [130] for full distribution, page 110)

(3.36)
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where Ψ is scale matrix and v is degrees of freedom.

Putting p(F |Q) and p(Q) together, we find p(F,Q) as follows:

p(F,Q) ∝ |Φ|−
M
2 |Q|−

v+2M+1
2 exp

(
− 1

2
tr
[
Φ−1F TQ−1F +Q−1Ψ

])
(3.37)

Note that we omitted the constants in the full distributions of both p(F |Q) and p(Q)

since the constants have no significance in the solution.

After finding the joint prior distribution, we get back the posterior distribution maxi-

mization. Replacing p(F,Q) with the result above in equation (3.29) yields:

Θ̂ = argmax
Θ

[ln Π(Θ) + ln p(F,Q)]

= argmax
Θ

[
ln Π(Θ)− M

2
ln|Φ|+ v + 2M + 1

2
ln|Q−1| − 1

2
tr
(
Φ−1F TQ−1F +Q−1Ψ

)]
(3.38)

As we mentioned before, we take Θ1 = {x̄,Σ, R} as non-informative prior, therefore

the estimated values ˆ̄x, Σ̂ and R̂ are the same as in ML estimation. So, we only need

to derive F̂ and Q̂ formulas. To do this, keeping in the mind that equation (3.29)

is concave function of x̄, Σ−1, F , Q−1 and R−1, i.e., the problem is convex, [129],

we take the derivative of equation (3.38) with respect to F and Q and then set the

derivatives equal to zero.

Detailed discussion on how we find the sub-parameter set Θ2 = {F,Q} components

is given in Appendix B.
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We summarize the results below:

Summary of MAP Approach Based Estimated Parameters

ˆ̄x =
1

L

L∑
`=1

x`1

Σ̂ =
1

L

L∑
`=1

(x`1 − x̄)(x`1 − x̄)T

R̂ =
1

LT

L∑
`=1

T∑
k=1

(y`k −Hx`k)(y`k −Hx`k)T

F̂ =
[ L∑
`=1

T∑
k=2

x`k(x
`
k−1)T

][ L∑
`=1

T∑
k=2

(
x`k−1(x`k−1)T

)
+ Φ−1

]−1

Φ−1 = α
L∑
`=1

T∑
k=2

x`k−1(x`k−1)T

Q̂ =

∑L
`=1

∑T
k=2(x`k − Fx`k−1)(x`k − Fx`k−1)T +

(
F TΦ−1F + ΨT

)
L(T − 1) + (v + 2M + 1)

Ψ =
1

v
I

v = L(T − 1)

3.4 Application of the Algorithms to The Problem

In section, the details of the algorithms that are used in this study are given.

3.4.1 Tikhonov Regularization

1: Load test beat→ x`=1

2: Find the measurement matrix→ y = Hx`=1 + n

3: Perform singular value decomposition of H → [U,S,V] = svd(A)

4: Find λ by using L-curve method

5: x̂ = Tikhonov(U, S, V, y, λ)→ Tikhonov 0 (See Section 3.2.1 for how to calcu-

late Tikhonov function)

Algorithm 1: Tikhonov Regularization Algorithm
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3.4.2 Maximum Likelihood Inference & Filtering (MLIF) and Maximum a

Posteriori Inference & Filtering (MAPIF)

1: Load test beat→ x`=1

2: y = Hx`=1 + n

3: for ` = 2, 3, ...L (Include ` = 1 for Scenario 1)

Find x̂,Σ, F, R,Q using formulas that are provided in section 3.3.1→MLIF

Find x̂,Σ, F, R,Q using formulas that are provided in section 3.3.2→MAPIF

4: Apply Kalman Filter and Smoother (details are given in section 3.2.2)→ x̂

Algorithm 2: MLIF and MAPIF Algorithms

3.4.3 Regularized Maximum Likelihood Inference & Filtering (RMLIF) and

Regularized Maximum a Posteriori Inference & Filtering (RMAPIF)

1: Load test beat→ x`=1

2: y = Hx`=1 + n

3: for ` = 2, 3, ...L (Include ` = 1 for Scenario 1)

Find x̂,Σ, F, R,Q using formulas that are provided in section 3.3.1→ RMLIF

Find x̂,Σ, F, R,Q using formulas that are provided in section 3.3.2→ RMAPIF

4: Apply Regularized Kalman Filter and Smoother (details are given in section

3.2.3)→ x̂

Algorithm 3: RMLIF and RMAPIF Algorithms
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3.4.4 Bayesian Maximum a Posteriori (BMAP)

1: Load test beat→ x`=1

2: Compose training set → xtrain = [x`=2 x`=3 ... x`=L] (We used Serina-

gaoglu et al.’s [97] approach to make use of multiple measurements)

3: Find the measurement matrix→ y = Hx`=1 + n

4: Find the mean and the covariance matrix of xtrain→ x̄ = mean(xtrain) ,

Σ = cov(xtrain)

5: Find the covariance matrix of added noise→ R = σ2
nI

6: x̂ = BayesianMAP(H,Σ, x̄, y, R)

(See Section 3.2.4 for how to calculate BayesianMAP function)

Algorithm 4: Bayesian MAP Algorithm
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CHAPTER 4

RESULTS

In this chapter, we investigate the performances of our proposed algorithms. To do

this, first, we explain the dataset used for testing the algorithms in this study. Then,

we compare the performances of the algorithms by using the dataset.

4.1 Test Data

In this study, University of Utah Nora Eccles Harrison Cardiovascular Research and

Training Institute’s (CVRTI) epicardial potential database was used [131]. Epicardial

potentials were recorded from dog hearts by conducting experiments. To mimic the

real physiological situation, the dog’s heart was perfused with another dog’s circu-

latory system and placed within a torso shaped tank filled with electrolytic solution

(500 Ω · cm) in the correct anatomical position [132]. Nylon sock electrode with

silver wires was placed onto the heart to measure epicardial potentials. Total number

of measurement locations on the heart was 490, and the sampling rate was 1000 sam-

ples/sec. In the experiments, the heart was paced from different locations. We first

classified the experiments with respect to their initial stimulation points. To do this,

we examined the experiments and determined their stimulation points on the heart

by using Map3d software [133]. We divided the heart’s anterior, posterior and lateral

surfaces into 4 regions (see Figure 4.2). Then, we chose the experiments whose stimu-

lation points fall into these regions. The total number of chosen experiments was 28.
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Figure 4.1: Experimental setup of epicardial potential data acquisition system [134]

(a) The heart’s anterior view segmentation (b) The heart’s posterior view segmentation

(c) The heart’s lateral view segmentation

Figure 4.2: The heart segmentation
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(a) The torso’s front view seg-

mentation

(b) The torso’s back view seg-

mentation

Figure 4.3: The torso segmentation

We gave a number to each region (Figure 4.2) starting from left to right and top to

bottom. We used experiments from Posterior 1, Posterior 2, Posterior 3 and Posterior

4 regions. We used only the QRS intervals of the selected experiments.

We did not have access to the measured body surface potentials, therefore we calcu-

lated them by simulation in this study. To find the body surface potentials, first, the

forward problem should be solved. We solved equation (2.2) by employing Dirichlet

(equation (2.4)) and Neumann (equation (2.3)) boundary conditions. In order to solve

equation (2.2), we used Green’s second identity under the assumption of no current

sources exist between the heart and torso surfaces. The resulting integral equation was

then discretized by representing the heart and the body surfaces in triangularized form

(see Figures 4.2 and 4.3). By utilizing BEM, the discretized equations were solved

and the forward transfer matrix was found [21]. In the forward problem solution, the

region between the heart and the torso was assumed to be piecewise homogeneous,

i.e., the lungs were included in the geometry.

To find the body surface potentials, we multiplied the epicardial potentials by the

forward transfer matrix and then added independent, identically distributed Gaussian

noise (30 dB SNR unless stated otherwise). The epicardial potentials were collected

from 490 measurement points on the heart surface as shown in Figure 4.4.

The forward transfer matrix used in our study provides electrical potentials at 192

points on the body surface, i.e., the forward matrix size is 192 by 490. Using 192
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measurement points is enough to represent nearly all signal information on the body

surface as stated in section 2.5.3. The forward transfer matrix translates the epicardial

potentials to the body surface potentials with electrode locations as shown in Figure

4.5.

The steps for finding the body surface potentials can be summarized as follows:

1. The heart and the torso geometries, i.e., triangle meshes, were available in this

study.

2. Using these geometries, a BEM solver was used to generate the forward transfer

matrix.

3. The epicardial potentials were multiplied by the forward transfer matrix and

independent, identically distributed Gaussian noise is added to the result. These

noisy potentials represent simulated body surface potentials.

Figure 4.4: The location of 490 nodes on the heart surface

(a) Front view (b) Back view

Figure 4.5: 192 lead-set configuration
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4.2 Comparison Methods

We use quantitative methods and visualization to assess the performances of the pro-
posed algorithms in this study. Quantitative methods consist of correlation coefficient
(CC) and relative difference measurement star (RDMS). CC and RDMS are defined
as follows:

CCx,x̂(k) =
M
∑M

j=1 xk(j)x̂k(j)
(∑M

j=1 xk(j)
)(∑M

j=1 x̂k(j)
)

√[
M
∑M

j=1 x
2
k(j)−

(∑M
j=1 xk(j)

)2][
M
∑M

j=1 x̂
2
k(j)−

(∑M
j=1 x̂k(j)

)2] (4.1)

RDMSx,x̂(k) =

∥∥∥∥ x̂k
‖x̂k‖

− xk
‖xk‖

∥∥∥∥ (4.2)

where ‖ · ‖ is the L2 norm, M is the number of epicardial nodes, x̂k is the estimated

epicardial potential state vector and xk is the real epicardial potential state vector at

time k.

As it can be deduced by intuition, higher CC and lower RDMS values between the es-

timated epicardial potentials x̂ and the real epicardial potentials x are the indications

of better results. In this study, CC and RDMS values were calculated at each time

instant, and the average and the standard deviation of CC and RDMS values were

calculated over the time interval. These results will be compared with each other in

the following sections.

We also want to assess the algorithms’ performances in terms of the localization error

of the initial stimulation. The localization error is the Euclidean distance between

the earliest activation time location of the estimated epicardial potentials and the real

epicardial potentials. To do this, we compare the activation times of estimated and

real epicardial potentials. In order to find the activation times, there are two meth-

ods: temporal-only method and spatio-temporal method [135]. The temporal-only

method defines the activation time moment as the moment of steepest voltage downs-

lope (maximum derivative of potential −dV/dt) during the QRS region [135]. In the

spatio-temporal method proposed by Erem et al. [136], the propagation pattern rep-

resented by the temporal activation times on the surface of the heart is smoothed by

using second order Tikhonov regularization. Since the spatio-temporal based method

works better in noisy electrograms, we used Erem et al.’s approach in this thesis. Be-

sides comparing the activation time distributions, CC value of activation times is also

calculated. Activation time vectors yield single CC value.
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These quantitative comparison methods, CC, RDMS and localization error, are good

but not enough since they do not provide any information on the propagation patterns

of activation wave-fronts. These patterns can only be investigated visually, so we use

Map3d software for inspection the propagation patterns visually [133]. Epicardial

potential distributions are displayed on the heart’s 3D geometry as equipotential map

in Map3d. We compare the heart’s activated regions and potential wave-front transi-

tions of true and estimated epicardial potentials at different time instants visually by

using Map3d. Furthermore, activation time isochrones are also displayed by using

Map3d to visualize which region of the heart activated first.

4.3 Comparison Scenarios

To fully assess the performances of the algorithms used in this study, we proposed

different scenarios. In all the scenarios, we composed different training sets for each

scenario. By using the training set data, we found the unknown parameters in the

state-space representation. Then, the estimated epicardial potentials were found by

using Tikhonov 0, MLIF, RMLIF, MAPIF, RMAPIF and BMAP algorithms.

The training sets were constructed as follows:

• Scenario 1:

– In scenario 1, the beat we used for simulating the measurements (i.e., the

test beat) and the training set beats came from the same experiment (the

same dog heart). The test beat was included in the training set.

• Scenario 2: Leave-One-Beat-Out Protocol [97]

– In scenario 2, we used the same training set as in scenario 1, but excluded

the test beat.

• Scenario 3: Leave-One-Experiment-Out Protocol [97]

– In scenario 3, the test beat came from a different experiment (i.e., a differ-

ent dog heart) than the experiments from which we obtained the training

set beats.
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For all the scenarios, 100 Monte Carlo runs were used to obtain the results. The

average of all these 100 simulations was taken in each case.

Tikhonov 0 is applied independent of these scenarios and does not use the training

set data. It uses only the test beat and the results are the same in each scenario. For

the sake of completeness, we include the same results for each scenario in Tikhonov

regularization.

4.4 Comparison of the Performances Under Moderate Noise Conditions

In this section, we investigate the performances of the proposed algorithms. The

body surface potentials were simulated by using 30 dB SNR measurement noise. No

geometric error was assumed in this section.

4.4.1 Quantitative Evaluation of Electrograms

CC and RDMS plots for all time instants are shown in Figure 4.7 and Figure 4.8.

Mean and standard deviation of CC values, and mean and standard deviations of

RDMS values are shown in Tables 4.1 and 4.2. Figure 4.6 is the bar chart representa-

tion of Tables 4.1 and 4.2.

Scenario 1 Scenario 2 Scenario 3

Tikhonov 0.60±0.28 0.60±0.28 0.60±0.28

MLIF 0.99±0.02 0.88±0.10 0.66±0.23

RMLIF 0.99±0.02 0.88±0.11 0.68±0.21

MAPIF 0.97±0.03 0.91±0.12 0.72±0.19

RMAPIF 0.91±0.09 0.89±0.12 0.72±0.20

BMAP 0.82±0.18 0.79±0.19 0.64±0.26

Table 4.1: Mean and standard deviation of CC values for scenario 1, scenario 2 and

scenario 3
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Scenario 1 Scenario 2 Scenario 3

Tikhonov 0.55±0.11 0.55±0.11 0.55±0.11

MLIF 0.11±0.05 0.31±0.06 0.58±0.19

RMLIF 0.09±0.04 0.30±0.06 0.56±0.15

MAPIF 0.17±0.06 0.24±0.07 0.49±0.07

RMAPIF 0.26±0.05 0.28±0.07 0.49±0.07

BMAP 0.35±0.10 0.38±0.11 0.53±0.09

Table 4.2: Mean and standard deviation of RDMS values for scenario 1, scenario 2

and scenario 3

Based on Table 4.1 and Table 4.2, and Figure 4.6, the following observations are

made:

• Both MLIF and RMLIF methods’ performances are degraded by approximately

33% when the training set is changed from scenario 1 to scenario 3.

• MAPIF and RMAPIF methods’ performances are degraded by approximately

25% and 20%, respectively, when the training set is changed from scenario 1 to

scenario 3.

• BMAP method’s performance is degraded by approximately 22% when the

training set is changed from scenario 1 to scenario 3.
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(a) Mean CC vs solution algorithms chart

(b) Mean RDMS vs solution algorithms chart

Figure 4.6: Mean CC and mean RDMS vs solution algorithms charts
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(a) CC vs time plot for scenario 1 under 30 dB SNR

(b) CC vs time plot for scenario 2 under 30 dB SNR

(c) CC vs time plot for scenario 3 under 30 dB SNR

Figure 4.7: CC vs time plots
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(a) RDMS vs time plot for scenario 1 under 30 dB SNR

(b) RDMS vs time plot for scenario 2 under 30 dB SNR

(c) RDMS vs time plot for scenario 3 under 30 dB SNR

Figure 4.8: RDMS vs time plots
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In scenario 1, based on the CC and RDMS plots in Figure 4.7a and Figure 4.8a, the

following observations are made:

• RMLIF and MLIF algorithms show almost the same performances, whereas

RMLIF’s performance is slightly better.

• Until 20 ms, MAPIF algorithm’s performance is higher than RMAPIF algo-

rithm. After 20 ms, MAPIF and RMAPIF algorithms’ performances are close

to each other.

• Between 25 ms and 50 ms, BMAP algorithm’s performance is very close to

RMAPIF algorithm. However, out of 25-50 ms interval, it has second worst

performance.

• Tikhonov 0 algorithm has the worst performance among all the solution algo-

rithms.

In scenario 2, based on the CC and RDMS plots in Figure 4.7b and Figure 4.8b, the

following observations are made:

• Until 40 ms, MAPIF and RMAPIF algorithms show almost the same perfor-

mances, but after 40 ms MAPIF algorithm outperforms RMAPIF and the other

algorithms until 75 ms.

• RMLIF and MLIF algorithms show almost the same performances, whereas

RMLIF’s performance is slightly better.

• Between 30 ms and 50 ms, BMAP algorithm’s performance is very close to

the other algorithms. However, out of 30-50 ms interval, it has second worst

performance.

• Tikhonov 0 algorithm has the worst performance among all the solution algo-

rithms.

In scenario 3, based on the CC and RDMS plots in Figure 4.7c and Figure 4.8c , the

following observations are made:
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• Until 60 ms, ML and MAP based algorithms show similar performances. After

60 ms, the performances of MLIF and RMLIF are degraded rapidly.

• Until 40 ms, BMAP algorithm’s performance is low. After 40 ms, BMAP

shows similar performance with MAPIF and RMAPIF algorithms.

• Except the interval between 45 ms and 65 ms, Tikhonov 0 algorithm has the

worst performance among all the solution algorithms.

• In general, MAPIF and RMAPIF algorithms outperform the other algorithms.

4.4.2 Isopotential Epicardial Maps

True and reconstructed epicardial distributions on the heart surface, viewed from pos-

terior region, for scenario 1, scenario 2 and scenario 3 are shown in Figures 4.9 - 4.11.

Based on Figures 4.9 - 4.11, the following observations are made:

• Tikhonov 0 introduces smoothing effect to the solution and this can be seen in

Figures 4.9b - 4.11b.

• ML based algorithms over-fit the training set data, hence MLIF and RMLIF are

more sensitive to the training set data as compared to MAP based algorithms.

As can be seen in Figure 4.11c and Figure 4.11d, the wave-fronts are more

distracted as compared to MAP based algorithms when the training set data is

not good.

• MAP based algorithms MAPIF and RMAPIF are less sensitive to the training

set data as compared to ML based algorithms.

• BMAP is directly related to the training set data, hence it is more sensitive to

the training set data as compared to ML and MAP based algorithms.
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(a) True (b) Tikhonov 0 (CC = 0.73) (c) MLIF (CC = 0.99)

(d) RMLIF (CC = 0.99) (e) MAPIF (CC = 0.98) (f) RMAPIF (CC = 0.96)

(g) BMAP (CC = 0.97) (h) Legend

Figure 4.9: Real and estimated epicardial distributions for scenario 1 under 30 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.73) (c) MLIF (CC = 0.94)

(d) RMLIF (CC = 0.94) (e) MAPIF (CC = 0.97) (f) RMAPIF (CC = 0.96)

(g) BMAP (CC = 0.96) (h) Legend

Figure 4.10: Real and estimated epicardial distributions for scenario 2 under 30 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.74) (c) MLIF (CC = 0.86)

(d) RMLIF (CC = 0.87) (e) MAPIF (CC = 0.88) (f) RMAPIF (CC = 0.88)

(g) BMAP (CC = 0.84) (h) Legend

Figure 4.11: Real and estimated epicardial distributions for scenario 3 under 30 dB

SNR at t = 35 ms
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4.4.3 Activation Time Isochrone Maps

Activation time distributions are shown in Figures 4.13 - 4.15. Table 4.3 shows cor-

relation coefficients of activation times for different scenarios and Figure 4.12 is bar

chart representation of Table 4.3. In terms of activation times, there is no significant

difference between the proposed algorithms and all of the proposed algorithms are

robust to the training set changes.

Method Scenario 1 Scenario 2 Scenario 3

Tikhonov 0.98 0.98 0.99

MLIF 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99

BMAP 0.99 0.99 0.99

Table 4.3: Correlation coefficients of activation times for scenario 1, scenario 2 and

scenario 3 under 30 dB SNR measurement noise

Figure 4.12: Correlation coefficients of activation times vs solution algorithms chart
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(a) True (b) Tikhonov 0 (CC=0.98) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.13: Real and estimated activation time distributions for scenario 1 under 30

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.98) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.14: Real and estimated activation time distributions for scenario 2 under 30

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.99) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.15: Real and estimated activation time distributions for scenario 3 under 30

dB SNR
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4.4.4 Localization Error Comparison

Table 4.4 shows localization errors for scenario 1, scenario 2 and scenario 3 under 30

dB SNR measurement noise, and Figure 4.16 is bar chart representation of Table 4.4.

Method Scenario 1 Scenario 2 Scenario 3

Tikhonov 14.04 14.79 14.04

MLIF 0 4.86 14.04

RMLIF 0 0 14.04

MAPIF 0 4.86 4.86

RMAPIF 0 4.86 4.86

BMAP 4.86 14.04 4.86

Table 4.4: Localization errors (mm) for different scenarios under 30 dB SNR mea-

surement noise

Based on Table 4.4, the following observations are made:

• In scenario 1, ML and MAP based spatio-temporal methods perform well and

find the exact location of the origin of the beat.

• In scenario 2, due to exclusion of the test beat, localization errors increase.

• In scenario 3, MAP based algorithms show better performances as compared to

other algorithms since ML based algorithms suffer from over-fitting.

Figure 4.16: LE (mm) vs solution algorithms chart
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4.4.5 Discussion of the Results

In terms of the estimated parameters, F and Q estimates are different in MAP based

and ML based algorithms. When we inspect the F and Q estimates, there is a slight

difference between FML and FMAP estimates, which does not have significant effect

on the estimated state values. The notable difference between MAP based and ML

based algorithms is the difference betweenQML andQMAP estimates. QMAP is much

higher than QML. Kalman gain increases with Q and when the Kalman gain is high,

the estimated value of the next state mostly depends on the measurements.

4.4.5.1 Discussion of Scenario 1 Results

Scenario 1’s training set includes the test beat. In addition to this, the training set

experiments and the test beat come from the same physiological model. In light of

these two settings, we expect high state estimate confidence in scenario 1. There-

fore, in order to get accurate results, the Kalman gain should be small, meaning that

the state estimate should mostly depend on the current state, not the measurements.

Since MAPIF algorithm provides high Kalman gain, this causes poor performance as

compared to MLIF algorithm. So, we can conclude that MAPIF algorithm adds un-

necessary regularization to Q matrix and this is the main reason why MLIF algorithm

outperforms MAPIF algorithm in scenario 1.

To understand the performances of the regularized forms of MLIF and MAPIF al-

gorithms, we inspect the modified Kalman gains in these algorithms. The modified

Kalman gain in RMLIF algorithm is lower than the Kalman gain in MLIF algorithm,

on the other hand, there is a slight difference between RMAPIF and MAPIF algo-

rithms’ Kalman gains. Since the emphasis on the measurements should be less to

get accurate results, i.e., small Kalman gain, clearly RMLIF is expected to be per-

form better than MLIF which conforms with our results. In order to understand why

RMAPIF algorithm yields poor results as compared to MAPIF algorithm, consider

the modified measurement update equation:

x̂k|k = x̂k|k−1 + K̃kH
†yk − K̃kx̂k|k−1 (4.3)

Since the decrease introduced by RMAPIF algorithm in the modified Kalman gain
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cannot compensate the term H†yk, RMAPIF algorithm puts more emphasis on the

measurements and this yields lower performance as compared to MAPIF algorithm.

Above-mentioned algorithms take into account both temporal and spatial correlations.

However, BMAP and Tikhonov 0 algorithms assume no temporal correlation between

the epicardial potentials and take into account only spatial correlations. This assump-

tion is not true since there are also temporal correlations between the epicardial po-

tentials [137]. Hence, BMAP and Tikhonov 0 algorithms show poor performances as

compared to other algorithms.

Localization error results are similar to CC and RDMS results. The methods which

take into consideration both temporal and spatial correlations show better perfor-

mances in terms of localization error, as expected.

4.4.5.2 Discussion of Scenario 2 Results

The correlation coefficient between the initial state estimate and the real initial state

in scenario 2 is 0.4083. In scenario 1, this coefficient was 0.6429. Comparison of

these two correlation coefficients shows us that we have less confidence in the state

estimates in scenario 2 as compared to scenario 1. Therefore, we anticipate that a

slightly higher Kalman gain will yield better results since our state estimate confi-

dence is low. MAPIF algorithm provides slightly higher Kalman gain as compared to

MLIF algorithm due to higher state covariance P and this clearly improves the corre-

lation coefficient between the estimated and the real epicardial potentials. Hence, we

can conclude that adding some regularization to the state covariance has boosted the

performance.

We have asserted that higher Kalman gains yield better results but using too high

Kalman gain will not result in accurate results since very high gains put unneces-

sary emphasis on the measurements. To evaluate the performance difference be-

tween MAPIF and RMAPIF algorithms, again, we consider the modified measure-

ment update equation. The term K̃kH
† in equation (4.3) adjusts the contribution of

the measurement. We observe a small Kalman gain difference between MAPIF and

RMAPIF algorithms. Since H† term is already a high valued term, RMAPIF al-
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gorithm puts much higher unnecessary emphasis on the measurements than MAPIF

algorithm. Therefore, MAPIF outperforms RMAPIF algorithm. We also want to

compare MLIF and RMLIF algorithms’ performances. By following the same logic,

we inspect MLIF algorithm’s Kalman gain and RMILF algorithm’s modified Kalman

gain. RMLIF’s modified Kalman gain is much smaller than MLIF’s Kalman gain, ap-

proximately in the order of 10−2. This modified gain compensates high valued term

H†, hence RMLIF algorithm provides minor improvement to the results as compared

to MLIF algorithm.

As we mentioned before, since BMAP and Tikhonov 0 algorithms assume no tem-

poral correlation between the epicardial potentials, these two algorithms show poor

performances compared to the other algorithms.

4.4.5.3 Discussion of Scenario 3 Results

In scenario 3, the training set experiments and the test beat comes from different

physiological models. Due to this fact, the correlation coefficient between the initial

estimated state and the real initial state is very low. This means that we have very low

confidence in the state estimates, hence we predict that the emphasis on the measure-

ments should be high to get accurate results. Maximum likelihood based estimation

methods usually over-fit the training set data and this causes degraded test-set perfor-

mance [127,138]. Ozbek and Demirekler’s statement [127] conforms with our results

and MLIF’s performance is degraded in scenario 3. RMLIF algorithm performs better

than MLIF algorithm due to its larger Kalman gain, as expected. MAPIF algorithm

has the second best performance due its higher Kalman gain as compared to MLIF

algorithm’s Kalman gain.

In general, the algorithms show poor performances at the final time intervals. The

reason for this can be lower RMS signal at these intervals due to small amplitudes of

the epicardial signals.
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4.5 Effects of The Measurement Noise

In this section, we evaluate the robustness of our proposed algorithms under different

measurement noise levels. In the simulations, there is no geometric error and three

different measurement noise levels are used: 10 dB, 15 dB and 30 dB SNR. The

proposed algorithms’ performances are compared in terms of CC, RDMS, activation

times and localization errors.

4.5.1 Quantitative Evaluation of Electrograms

Mean and standard deviation of CC values, and mean and standard deviation of

RDMS values are shown in Table 4.5 and Table 4.6, respectively. Figures 4.17a -

4.18c are bar chart representations of Tables 4.5 and 4.6. Detailed CC and RDMS

plots are given in Appendix D for convenience.

Tikhonov 0 MLIF RMLIF MAPIF RMAPIF BMAP

Sc
en

ar
io

1 10 dB 0.37±0.31 0.98±0.02 0.92±0.08 0.92±0.06 0.89±0.10 0.78±0.27

15 dB 0.46±0.32 0.99±0.02 0.95±0.04 0.93±0.05 0.90±0.10 0.81±0.22

30 dB 0.60±0.28 0.99±0.02 0.99±0.02 0.97±0.03 0.91±0.09 0.82±0.18

Sc
en

ar
io

2 10 dB 0.37±0.31 0.88±0.11 0.88±0.11 0.87±0.14 0.87±0.14 0.77±0.26

15 dB 0.46±0.32 0.88±0.11 0.88±0.11 0.89±0.12 0.88±0.13 0.80±0.22

30 dB 0.60±0.28 0.88±0.10 0.88±0.11 0.91±0.12 0.89±0.12 0.79±0.19

Sc
en

ar
io

3 10 dB 0.37±0.31 0.53±0.30 0.55±0.28 0.60±0.28 0.63±0.24 0.53±0.29

15 dB 0.45±0.32 0.56±0.29 0.59±0.27 0.63±0.27 0.66±0.23 0.58±0.26

30 dB 0.60±0.28 0.66±0.23 0.68±0.21 0.72±0.19 0.72±0.20 0.64±0.26

Table 4.5: Mean and standard deviation of CC values under 10 dB, 15 dB and 30 dB

SNR measurement noises
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Tikhonov 0 MLIF RMLIF MAPIF RMAPIF BMAP
Sc

en
ar

io
1 10 dB 0.71±0.18 0.10±0.06 0.27±0.05 0.28±0.08 0.29±0.07 0.37±0.12

15 dB 0.66±0.17 0.10±0.05 0.20±0.05 0.25±0.07 0.27±0.07 0.35±0.12

30 dB 0.55±0.11 0.11±0.05 0.09±0.04 0.17±0.06 0.26±0.05 0.35±0.10

Sc
en

ar
io

2 10 dB 0.71±0.18 0.31±0.06 0.30±0.06 0.30±0.08 0.30±0.08 0.38±0.12

15 dB 0.66±0.17 0.31±0.06 0.30±0.06 0.29±0.07 0.29±0.07 0.36±0.12

30 dB 0.55±0.11 0.31±0.06 0.30±0.06 0.24±0.07 0.28±0.07 0.38±0.11

Sc
en

ar
io

3 10 dB 0.71±0.18 0.68±0.22 0.67±0.18 0.56±0.10 0.57±0.09 0.61±0.13

15 dB 0.66±0.17 0.66±0.22 0.64±0.20 0.54±0.09 0.54±0.08 0.57±0.11

30 dB 0.55±0.11 0.58±0.19 0.56±0.15 0.49±0.07 0.49±0.17 0.53±0.09

Table 4.6: Mean and standard deviation of RDMS values under 10 dB, 15 dB and 30

dB SNR measurement noises

Based on Table 4.5 and Table 4.6, the following observations are made when the

measurement noise is increased from 30 dB to 10 dB SNR:

• Tikhonov 0’s mean correlation coefficient decreases by approximately 38%,

• BMAP’s mean correlation coefficient decreases by approximately 4%, 2% and

17%,

• MLIF’s mean correlation coefficient decreases by approximately 1%, 0% and

19%,

• RMLIF’s mean correlation coefficient decreases by approximately 7%, 0% and

19%,

• MAPIF’s mean correlation coefficient decreases by approximately 5%, 4% and

16%,

• RMAPIF’s mean correlation coefficient decreases by approximately 2%, 2%

and 12%,

in scenario 1, scenario 2 and scenario 3, respectively.
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(a) Mean CC vs solution algorithms chart for scenario 1

(b) Mean CC vs solution algorithms chart for scenario 2

(c) Mean CC vs solution algorithms chart for scenario 3

Figure 4.17: Mean CC vs solution algorithms charts
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(a) Mean RDMS vs solution algorithms chart for scenario 1

(b) Mean RDMS vs solution algorithms chart for scenario 2

(c) Mean RDMS vs solution algorithms chart for scenario 3

Figure 4.18: Mean RDMS vs solution algorithms charts
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4.5.2 Isopotential Epicardial Maps

True and reconstructed epicardial distributions on the heart surface, viewed from pos-

terior region, under different measurement noises for scenario 1, scenario 2 and sce-

nario 3 are shown in Figures 4.19 - 4.24. We have already given the isopotential

epicardial maps for 30 dB SNR case in section 4.4.2, hence we do not repeat these

results in here.

Based on Figures 4.19 - 4.24, the following observations are made:

• Tikhonov 0 is the most affected method, its CC value drops by approximately

%50, when the measurement noise is increased from 30 dB SNR to 10 dB SNR.

Tikhonov 0’s smoothing effect can be seen in isopotential epicardial maps.

• In scenario 1 and scenario 2, the training set data and the test beat come from

the same physiological model. Hence, the reconstructed epicardial distributions

are more similar to true epicardial distribution. In scenario 3, since the training

set data and the test data come from different physiological models, the results

are not as good as other scenarios.

• As seen in Figures 4.23 and 4.24, the reconstruction accuracies of MAPIF and

RMAPIF are higher than the other algorithms in scenario 3. This result is

expected since MAP based approaches do not suffer from the over-fitting.

• As can be seen in isopotential maps, spatio-temporal approaches, MLIF, RM-

LIF, MAPIF and RMAPIF, enhance the reconstruction accuracy and more ro-

bust to the measurement noise.
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(a) True (b) Tikhonov 0 (CC = 0.38) (c) MLIF (CC = 0.99)

(d) RMLIF (CC = 0.96) (e) MAPIF (CC = 0.96) (f) RMAPIF (CC = 0.96)

(g) BMAP (CC = 0.95) (h) Legend

Figure 4.19: Real and estimated epicardial distributions for scenario 1 under 10 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.52) (c) MLIF (CC = 0.99)

(d) RMLIF (CC = 0.98) (e) MAPIF (CC = 0.97) (f) RMAPIF (CC = 0.97)

(g) BMAP (CC = 0.97) (h) Legend

Figure 4.20: Real and estimated epicardial distributions for scenario 1 under 15 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.38) (c) MLIF (CC = 0.94)

(d) RMLIF (CC = 0.94) (e) MAPIF (CC = 0.96) (f) RMAPIF (CC = 0.96)

(g) BMAP (CC = 0.94) (h) Legend

Figure 4.21: Real and estimated epicardial distributions for scenario 2 under 10 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.51) (c) MLIF (CC = 0.94)

(d) RMLIF (CC = 0.94) (e) MAPIF (CC = 0.96) (f) RMAPIF (CC = 0.96)

(g) BMAP (CC = 0.97) (h) Legend

Figure 4.22: Real and estimated epicardial distributions for scenario 2 under 15 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.38) (c) MLIF (CC = 0.77)

(d) RMLIF (CC = 0.77) (e) MAPIF (CC = 0.83) (f) RMAPIF (CC = 0.83)

(g) BMAP (CC = 0.73) (h) Legend

Figure 4.23: Real and estimated epicardial distributions for scenario 3 under 10 dB

SNR at t = 35 ms
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(a) True (b) Tikhonov 0 (CC = 0.52) (c) MLIF (CC = 0.80)

(d) RMLIF (CC = 0.81) (e) MAPIF (CC = 0.85) (f) RMAPIF (CC = 0.86)

(g) BMAP (CC = 0.78) (h) Legend

Figure 4.24: Real and estimated epicardial distributions for scenario 3 under 15 dB

SNR at t = 35 ms
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4.5.3 Activation Time Isochrone Maps

Activation time distributions are shown in Figures 4.26 - 4.31. Table 4.7 shows cor-

relation coefficients of activation times for different measurement noise levels and

Figure 4.25 is bar chart representation of Table 4.7. In terms of activation times, there

is no significant difference between the proposed algorithms and all of the proposed

algorithms are robust to the measurement noise changes.

Tikhonov 0 MLIF RMLIF MAPIF RMAPIF BMAP

Sc
en

ar
io

1 10 dB 0.96 0.99 0.99 0.99 0.99 0.99

15 dB 0.95 0.99 0.99 0.99 0.99 0.99

30 dB 0.98 0.99 0.99 0.99 0.99 0.99

Sc
en

ar
io

2 10 dB 0.96 0.99 0.99 0.99 0.99 0.99

15 dB 0.95 0.99 0.99 0.99 0.99 0.99

30 dB 0.98 0.99 0.99 0.99 0.99 0.99

Sc
en

ar
io

3 10 dB 0.96 0.99 0.98 0.99 0.99 0.97

15 dB 0.95 0.99 0.99 0.99 0.99 0.98

30 dB 0.99 0.99 0.99 0.99 0.99 0.99

Table 4.7: Correlation coefficients of activation times for scenario 1, scenario 2 and

scenario 3 under 10 dB, 15 dB and 30 dB SNR measurement noises
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(a) Correlation coefficients of activation times vs solution algorithms chart for scenario 1

(b) Correlation coefficients of activation times vs solution algorithms chart for scenario 2

(c) Correlation coefficients of activation times vs solution algorithms chart for scenario 3

Figure 4.25: Correlation coefficients of activation times vs solution algorithms chart
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(a) True (b) Tikhonov 0 (CC=0.96) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.26: Real and estimated activation time distributions for scenario 1 under 10

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.95) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.27: Real and estimated activation time distributions for scenario 1 under 15

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.96) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.28: Real and estimated activation time distributions for scenario 2 under 10

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.95) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.99) (h) Legend

Figure 4.29: Real and estimated activation time distributions for scenario 2 under 15

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.96) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.98) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.97) (h) Legend

Figure 4.30: Real and estimated activation time distributions for scenario 3 under 10

dB SNR
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(a) True (b) Tikhonov 0 (CC=0.95) (c) MLIF (CC=0.99)

(d) RMLIF (CC=0.99) (e) MAPIF (CC=0.99) (f) RMAPIF (CC=0.99)

(g) BMAP (CC=0.98) (h) Legend

Figure 4.31: Real and estimated activation time distributions for scenario 3 under 15

dB SNR
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4.5.4 Localization Error Comparison

Table 4.8 shows localization errors under different measurement noise levels and Fig-

ure 4.32 is bar chart representation of Table 4.8.

Tikhonov 0 MLIF RMLIF MAPIF RMAPIF BMAP

Sc
en

ar
io

1 10 dB 19.2 0 4.86 4.86 4.86 4.86

15 dB 18.70 0 4.86 4.86 4.86 4.86

30 dB 14.04 0 0 0 0 4.86

Sc
en

ar
io

2 10 dB 18.70 4.86 4.86 4.86 4.86 10.43

15 dB 18.70 4.86 4.86 4.86 4.86 4.86

30 dB 14.79 4.86 0 4.86 4.86 14.04

Sc
en

ar
io

3 10 dB 19.12 14.79 18.34 4.93 4.86 12.73

15 dB 18.70 18.34 18.34 10.43 10.43 4.93

30 dB 14.04 14.04 14.04 4.86 4.86 4.86

Table 4.8: Localization errors (mm) under 10 dB, 15 dB and 30 dB SNR measurement

noises

Based on Table 4.8, the following observations are made:

• ML based and MAP based algorithms show similar performances in scenario 1

and scenario 2.

• In scenario 3, MAP based algorithms outperform the other algorithms.

• Tikhonov 0 is the most sensitive algorithm to the measurement noise among the

proposed algorithms. Also, it has the worst performance in terms of localization

error.

• In general, ML based algorithms MLIF and RMLIF are more robust to mea-

surement noise changes.

• Some inconsistencies are observed in some cases, e.g., in scenario 2, BMAP

algorithm’s localization error in 30 dB SNR case is higher than in 15 dB SNR

case. If the reconstructed wave-fronts are very sparse at the initial time frames,

this situation may cause wrong localization error results, as in BMAP algo-

rithm’s case.
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(a) LE (mm) vs solution algorithms chart for scenario 1

(b) LE (mm) vs solution algorithms chart for scenario 2

(c) LE (mm) vs solution algorithms chart for scenario 3

Figure 4.32: LE (mm) vs solution algorithms chart
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4.5.5 Discussion of the Results

In this section, we investigate the sensitivity of the proposed algorithms to different

measurement noise levels. In this thesis, three different measurement noise levels are

used: 10 dB, 15 dB and 30 dB SNR.

Suppose the Kalman filter is designed with Q ≥ 0 and R > 0 but the actual noise co-

variances are Q0 and R0. In this case, the Kalman filter’s minimum variance estimate

property is violated [139]. Hence, instead of Kalman filter’s classical equations, we

use Kalman filter’s general equations as follows [140, 141]:

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KkRK
T
k (4.4)

Pk|k−1 = FPk−1|k−1F
T +Q (4.5)

Substituting equation (4.5) into equation (4.4), we find the state covariance formula

as:

Pk|k = (I−KkH)FPk−1|k−1F
T (I−KkH)T + (I−KkH)Q(I−KkH)T +KkRK

T
k

(4.6)

The performance of the filter is evaluated by calculating tr(Pk|k) [142]. In this case,

we want to see the effect of R, hence we write Pk|k as a function of R and drop k

subscript for the convenience:

P (R) , P (r11, r12, r13, ..., rMM) (4.7)

If there is a perturbation in R, we write P (R) as P (R + ∆). Using the matrix form

of Taylor expansion which is given by Turnbull [143], we get:

tr(P (R + ∆)) = tr(P (R)) +
∂

∂R
tr(P (R))∆ +

∂2

∂R2
tr(P (R))

∆2

2
+ H . O . T

(4.8)

Under the assumption of small deviations from R, we neglect the second and higher

order terms. Carrying out the derivation in the above equation, we obtain:
∂

∂R
tr(P (R)) =

∂

∂R
tr((I −KkH)FPk−1|k−1F

T (I −KkH)T

+ (I −KkH)Q(I −KkH)T +KkRK
T
k )

(4.9)

= KT
k Kk (4.10)
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Note that we did not carry out derivation for the first and second terms in equation

(4.6) since they are not explicit functions of R. In this section, we are investigating

the effects of changing R and assumed that the Kalman gain is already computed.

Hence, we do not carry out any derivations due the Kalman gain’s dependency on R,

since we do not want to do any corrections on the filter [142].

In light of the discussion above, we can conclude that the value of KT
k Kk determines

the Kalman filter sensitivity to parameter R and higher Kalman gains cause more

deviations in the state estimates.

In ML based algorithms, the Kalman gains are lower than the gains in MAP based

algorithms. Hence, the sensitivity to the measurement noise is lower and the robust-

ness to the measurement noise is higher in MLIF and RMLIF algorithms. Due to their

higher Kalman gains as compared to the gains in ML based algorithms, MAP based

algorithms MAPIF and RMAPIF have higher sensitivity and lower robustness to the

measurement noise.

Overall, we observe that Tikhonov 0 and BMAP algorithms have the highest sensi-

tivity to the measurement noise. The reason behind that is these two methods are

spatial methods and they ignore the temporal correlations. BMAP is more robust as

compared to Tikhonov 0 since BMAP uses statistical prior information on epicardial

potential distribution. ML and MAP based algorithms are more robust than Tikhonov

0 and BMAP algorithms since they are spatio-temporal methods.

4.6 Effects of Geometric Errors

The forward model in inverse electrocardiography is usually obtained by first seg-

menting medical images to obtain organ boundaries, then using numerical solution

techniques such as BEM, FEM, or a combination of both to solve the forward ECG

problem. However, errors in the segmentation of medical images, discretization er-

rors introduced by numerical solvers, errors introduced by ignoring the movement of

the heart, and errors in the conductivity values generate geometric errors, which in

turn cause estimation errors in the inverse ECG solutions. In this section, we focus

on wrong determination of heart’s position. This situation is usually caused by the
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movement of the heart.

4.6.1 Geometric Shift Error

In this section, we investigate the effects of faulty determination of the heart’s loca-

tion. To do this, we solve the forward problem by using the correct forward transfer

matrix. In the inverse problem solutions, the position of the heart mesh is changed

and the forward transfer matrix is found by using the faulty mesh. The heart is shifted

in x, y and z directions by -15 mm to +15 mm from its original position. In the

simulation of the body surface potentials, 30 dB SNR measurement noise is used.

4.6.1.1 Shift Error in the x Direction

Quantitative Evaluation of Electrograms

Tables 4.9 - 4.11 show the mean and standard deviation of CC values, and Tables 4.12

- 4.14 show mean and standard deviation of RDMS values for scenario 1, scenario 2

and scenario 3, respectively, when there is a shift in x direction by -15 mm to +15

mm from original position of the heart location. Figures 4.33a - 4.34c are bar chart

representations of Tables 4.9 - 4.14.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.55±0.24 0.59±0.26 0.60±0.27 0.60±0.28 0.58±0.27 0.55±0.27 0.51±0.26

MLIF 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02

RMLIF 0.99±0.02 0.98±0.02 0.99±0.01 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02

MAPIF 0.97±0.04 0.97±0.04 0.97±0.04 0.97±0.03 0.96±0.04 0.96±0.04 0.96±0.05

RMAPIF 0.90±0.10 0.90±0.10 0.91±0.10 0.91±0.09 0.91±0.09 0.90±0.10 0.91±0.10

BMAP 0.74±0.21 0.77±0.21 0.80±0.20 0.82±0.18 0.83±0.14 0.81±0.13 0.78±0.15

Table 4.9: Scenario 1: Mean and standard deviation of CC values for -15 mm to +15

mm shift in x direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.55±0.24 0.59±0.26 0.60±0.27 0.60±0.28 0.58±0.27 0.55±0.27 0.51±0.26

MLIF 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.11 0.88±0.11 0.88±0.11

RMLIF 0.88±0.11 0.89±0.11 0.89±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11

MAPIF 0.90±0.14 0.90±0.14 0.90±0.14 0.91±0.12 0.91±0.10 0.90±0.11 0.90±0.11

RMAPIF 0.88±0.14 0.87±0.14 0.88±0.13 0.89±0.12 0.89±0.12 0.88±0.13 0.89±0.12

BMAP 0.72±0.23 0.75±0.22 0.77±0.22 0.79±0.19 0.79±0.16 0.78±0.15 0.74±0.15

Table 4.10: Scenario 2: Mean and standard deviation of CC values for -15 mm to +15

mm shift in x direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.55±0.24 0.59±0.26 0.60±0.27 0.60±0.28 0.58±0.27 0.55±0.27 0.51±0.26

MLIF 0.55±0.25 0.60±0.24 0.63±0.23 0.66±0.23 0.65±0.22 0.65±0.22 0.64±0.22

RMLIF 0.58±0.25 0.63±0.22 0.67±0.21 0.68±0.21 0.66±0.21 0.65±0.21 0.64±0.22

MAPIF 0.63±0.23 0.66±0.22 0.69±0.21 0.72±0.19 0.71±0.18 0.70±0.18 0.68±0.18

RMAPIF 0.64±0.22 0.67±0.21 0.70±0.21 0.72±0.20 0.70±0.19 0.70±0.17 0.68±0.20

BMAP 0.61±0.24 0.64±0.26 0.65±0.26 0.64±0.26 0.62±0.24 0.59±0.23 0.55±0.22

Table 4.11: Scenario 3: Mean and standard deviation of CC values for -15 mm to +15

mm shift in x direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.62±0.12 0.57±0.11 0.55±0.11 0.55±0.11 0.58±0.11 0.60±0.11 0.64±0.12

MLIF 0.10±0.05 0.10±0.05 0.10±0.05 0.11±0.05 0.10±0.05 0.10±0.05 0.10±0.05

RMLIF 0.11±0.04 0.11±0.04 0.09±0.04 0.09±0.04 0.09±0.04 0.09±0.05 0.09±0.05

MAPIF 0.16±0.06 0.16±0.06 0.16±0.06 0.17±0.06 0.18±0.06 0.18±0.06 0.19±0.07

RMAPIF 0.28±0.07 0.27±0.07 0.27±0.06 0.26±0.05 0.27±0.06 0.28±0.07 0.25±0.07

BMAP 0.45±0.15 0.41±0.14 0.38±0.12 0.35±0.10 0.37±0.11 0.40±0.13 0.44±0.17

Table 4.12: Scenario 1: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in x direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.62±0.12 0.57±0.11 0.55±0.11 0.55±0.11 0.58±0.11 0.60±0.11 0.64±0.12

MLIF 0.31±0.06 0.31±0.06 0.30±0.06 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06

RMLIF 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.31±0.06

MAPIF 0.24±0.07 0.24±0.07 0.24±0.07 0.24±0.07 0.24±0.07 0.24±0.07 0.25±0.07

RMAPIF 0.28±0.08 0.29±0.08 0.28±0.07 0.28±0.07 0.28±0.08 0.29±0.08 0.28±0.07

BMAP 0.47±0.16 0.43±0.14 0.41±0.13 0.38±0.11 0.40±0.11 0.43±0.13 0.48±0.17

Table 4.13: Scenario 2: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in x direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.62±0.12 0.57±0.11 0.55±0.11 0.55±0.11 0.58±0.11 0.60±0.11 0.64±0.12

MLIF 0.70±0.20 0.66±0.19 0.62±0.19 0.58±0.19 0.58±0.18 0.59±0.17 0.60±0.18

RMLIF 0.66±0.18 0.61±0.16 0.57±0.15 0.56±0.15 0.57±0.15 0.58±0.15 0.59±0.16

MAPIF 0.57±0.09 0.53±0.08 0.50±0.07 0.49±0.07 0.50±0.08 0.51±0.09 0.52±0.10

RMAPIF 0.57±0.09 0.53±0.08 0.50±0.07 0.49±0.07 0.49±0.08 0.50±0.09 0.52±0.10

BMAP 0.59±0.11 0.54±0.10 0.53±0.10 0.53±0.09 0.57±0.10 0.60±0.12 0.64±0.14

Table 4.14: Scenario 3: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in x direction

Based on Table 4.9 and Table 4.10, the following observations are made for scenario

1 and scenario 2 when there is 15 mm shift:

• Tikhonov 0’s correlation coefficient decreases by approximately 8%.

• BMAP’s correlation coefficient decreases by approximately 8%.

• There is no significant change in the correlation coefficient of MLIF, RMLIF,

MAPIF and RMAPIF.

Based on Table 4.11, the following observations are made for scenario 3 when there

is 15 mm shift:

• Tikhonov 0’s correlation coefficient decreases by approximately 8%.

• BMAP’s correlation coefficient decreases by approximately 14%.

• MLIF’s correlation coefficient decreases by approximately 16%.

• RMLIF’s correlation coefficient decreases by approximately 14%.

• MAPIF’s correlation coefficient decreases by approximately 12%.

• RMAPIF’s correlation coefficient decreases by approximately 11%.
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(a) Shift in x direction: Mean CC vs solution algorithms chart for scenario 1

(b) Shift in x direction: Mean CC vs solution algorithms chart for scenario 2

(c) Shift in x direction: Mean CC vs solution algorithms chart for scenario 3

Figure 4.33: Shift in x direction: Mean CC vs solution algorithms charts
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(a) Shift in x direction: Mean RDMS vs solution algorithms chart for scenario 1

(b) Shift in x direction: Mean RDMS vs solution algorithms chart for scenario 2

(c) Shift in x direction: Mean RDMS vs solution algorithms chart for scenario 3

Figure 4.34: Shift in x direction: Mean RDMS vs solution algorithms charts
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Activation Times

Tables 4.15 - 4.17 show correlation coefficients of activation times for scenario 1,

scenario 2 and scenario 3, respectively, when there is a shift in x direction by -15 mm

to +15 mm from original position of the heart location. Figures 4.35a - 4.35c are bar

chart representations of Tables 4.15 - 4.17.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.98 0.99 0.99 0.99 0.98 0.98 0.98

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Table 4.15: Scenario 1: Correlation coefficients of activation times for -15 mm to +15

mm shift in x direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.98 0.99 0.99 0.99 0.98 0.98 0.98

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.96 0.98 0.99 0.99 0.99 0.99 0.99

Table 4.16: Scenario 2: Correlation coefficients of activation times for -15 mm to +15

mm shift in x direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.98 0.99 0.99 0.99 0.98 0.98 0.98

MLIF 0.98 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.98 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.97 0.98 0.98 0.99 0.99 0.99 0.99

RMAPIF 0.97 0.98 0.99 0.99 0.99 0.99 0.99

BMAP 0.96 0.98 0.99 0.99 0.99 0.98 0.98

Table 4.17: Scenario 3: Correlation coefficients of activation times for -15 mm to +15

mm shift in x direction
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(a) Correlation coefficients of activation times vs solution algorithms chart for scenario

1

(b) Correlation coefficients of activation times vs solution algorithms chart for scenario

2

(c) Correlation coefficients of activation times vs solution algorithms chart for scenario

3

Figure 4.35: Correlation coefficients of activation times vs solution algorithms chart
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As seen in Tables 4.15 - 4.17, there is no significant difference between the algorithms

and all the algorithms are very robust to the shift error in terms of activation times.

Localization Error

Tables 4.18 - 4.20 show localization errors for scenario 1, scenario 2 and scenario 3,

respectively, when there is a shift in x direction by -15 mm to +15 mm from original

position of the heart location. Figures 4.36a - 4.36c are bar chart representations of

Tables 4.18 - 4.20.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 7.03 10.43 10.43 14.04 14.04 14.04 9.44

MLIF 0 0 0 0 0 0 0

RMLIF 0 0 0 0 0 0 0

MAPIF 0 0 0 0 0 0 4.86

RMAPIF 0 0 0 0 4.86 4.86 4.86

BMAP 12.42 4.93 4.86 4.86 14.04 14.04 14.04

Table 4.18: Scenario 1: Localization errors (mm) for -15 mm to 15 mm shift in x

direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 7.03 10.43 14.79 14.79 14.04 14.04 9.44

MLIF 4.86 4.86 4.86 4.86 4.86 4.86 4.86

RMLIF 4.86 4.86 4.86 0 4.86 4.86 4.86

MAPIF 0 0 0 4.86 4.86 4.86 4.86

RMAPIF 4.80 4.80 0 4.86 4.86 4.86 0

BMAP 12.42 16.03 14.79 14.04 18.34 14.04 18.34

Table 4.19: Scenario 2: Localization errors (mm) for -15 mm to 15 mm shift in x

direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 7.03 10.43 10.43 14.04 14.04 14.04 9.44

MLIF 7.95 14.79 10.43 14.04 4.86 9.44 9.44

RMLIF 14.79 14.79 14.79 14.04 4.86 9.44 9.44

MAPIF 7.95 4.93 4.93 4.86 4.86 4.86 4.86

RMAPIF 4.93 4.93 4.93 4.86 4.86 4.86 4.86

BMAP 13.96 4.93 4.93 4.86 4.86 9.44 9.44

Table 4.20: Scenario 3: Localization errors (mm) for -15 mm to 15 mm shift in x

direction

Based on Tables 4.18 - 4.20, the following observations are made:

• In scenario 1 and scenario 2, ML and MAP based spatio-temporal algorithms

perform well and find the origin of the beat within a range of 4.86 mm.

• In scenario 3, ML and MAP based spatio-temporal algorithms find the origin

of the beat within a range of 14.79 mm.

• In scenario 3, since the training set and the test beat come from different phys-

iological models, localization errors are larger.

• Tikhonov 0 provides very sparse wave-fronts at the initial time frames, hence

the algorithm that is used to find localization errors [136] does not perform

well. Therefore, we see some inconsistencies in the results.

• Spatio-temporal approaches are more robust to the shift error in terms of lo-

calization error. When the training set and the test beat are similar, ML based

spatio-temporal algorithms MLIF and RMLIF perform well. On the other hand,

when the training set and the test beat are not similar, e.g., when they come from

different physiological models as in scenario 3, MAP based spatio-temporal al-

gorithms MAPIF and RMAPIF perform better.
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(a) Shift in x direction: LE (mm) vs solution algorithms chart for scenario 1

(b) Shift in x direction: LE (mm) vs solution algorithms chart for scenario 2

(c) Shift in x direction: LE (mm) vs solution algorithms chart for scenario 3

Figure 4.36: Shift in x direction: LE (mm) vs solution algorithms charts
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4.6.1.2 Shift Error in the y Direction

Quantitative Evaluation of Electrograms

Tables 4.21 - 4.23 show mean and standard deviation of CC values, and Tables 4.24

- 4.26 show mean and standard deviation of RDMS values for scenario 1, scenario

2 and scenario 3, respectively, when there is a shift in y direction by -15 mm to +15

mm from original position of the heart location. Figures 4.37a - 4.38c are bar chart

representations of Tables 4.21 - 4.26.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.52±0.27 0.57±0.27 0.59±0.28 0.60±0.28 0.59±0.27 0.57±0.26 0.53±0.24

MLIF 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02

RMLIF 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02

MAPIF 0.95±0.05 0.96±0.04 0.96±0.04 0.97±0.03 0.96±0.04 0.96±0.04 0.96±0.04

RMAPIF 0.88±0.13 0.89±0.12 0.90±0.11 0.91±0.09 0.90±0.10 0.89±0.10 0.88±0.10

BMAP 0.74±0.20 0.78±0.18 0.81±0.17 0.82±0.18 0.80±0.18 0.75±0.18 0.69±0.18

Table 4.21: Scenario 1: Mean and standard deviation of CC values for -15 mm to +15

mm shift in y direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.52±0.27 0.57±0.27 0.59±0.28 0.60±0.28 0.59±0.27 0.57±0.26 0.53±0.24

MLIF 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10

RMLIF 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11

MAPIF 0.88±0.18 0.88±0.17 0.89±0.14 0.91±0.12 0.91±0.12 0.91±0.11 0.91±0.11

RMAPIF 0.86±0.16 0.87±0.16 0.88±0.14 0.89±0.12 0.88±0.13 0.89±0.12 0.88±0.13

BMAP 0.70±0.22 0.74±0.21 0.77±0.20 0.79±0.19 0.77±0.20 0.73±0.20 0.66±0.19

Table 4.22: Scenario 2: Mean and standard deviation of CC values for -15 mm to +15

mm shift in y direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.52±0.27 0.57±0.27 0.59±0.28 0.60±0.28 0.59±0.27 0.57±0.26 0.53±0.24

MLIF 0.64±0.21 0.65±0.22 0.66±0.22 0.66±0.23 0.61±0.24 0.57±0.25 0.54±0.25

RMLIF 0.62±0.22 0.67±0.20 0.68±0.20 0.68±0.21 0.62±0.24 0.58±0.26 0.56±0.26

MAPIF 0.68±0.19 0.70±0.18 0.70±0.18 0.72±0.19 0.69±0.20 0.67±0.21 0.64±0.23

RMAPIF 0.66±0.21 0.70±0.18 0.72±0.18 0.72±0.20 0.68±0.22 0.68±0.20 0.66±0.21

BMAP 0.58±0.24 0.62±0.24 0.63±0.25 0.64±0.26 0.63±0.26 0.60±0.25 0.55±0.24

Table 4.23: Scenario 3: Mean and standard deviation of CC values for -15 mm to +15

mm shift in y direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.63±0.13 0.59±0.11 0.56±0.11 0.55±0.11 0.57±0.11 0.59±0.11 0.64±0.11

MLIF 0.10±0.05 0.10±0.05 0.10±0.05 0.11±0.05 0.10±0.05 0.10±0.05 0.10±0.05

RMLIF 0.10±0.05 0.09±0.05 0.09±0.05 0.09±0.04 0.11±0.04 0.09±0.04 0.09±0.05

MAPIF 0.21±0.07 0.20±0.06 0.19±0.06 0.17±0.06 0.17±0.06 0.17±0.06 0.18±0.06

RMAPIF 0.29±0.08 0.28±0.07 0.28±0.07 0.26±0.05 0.28±0.07 0.29±0.08 0.30±0.09

BMAP 0.45±0.21 0.40±0.19 0.37±0.15 0.35±0.10 0.39±0.09 0.45±0.10 0.53±0.12

Table 4.24: Scenario 1: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in y direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.63±0.13 0.59±0.11 0.56±0.11 0.55±0.11 0.57±0.11 0.60±0.11 0.64±0.11

MLIF 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.07 0.31±0.07

RMLIF 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06

MAPIF 0.27±0.08 0.27±0.08 0.26±0.08 0.24±0.07 0.24±0.07 0.24±0.07 0.24±0.07

RMAPIF 0.31±0.08 0.30±0.08 0.29±0.07 0.28±0.07 0.28±0.07 0.28±0.08 0.29±0.09

BMAP 0.49±0.22 0.43±0.18 0.40±0.15 0.38±0.11 0.42±0.09 0.48±0.10 0.55±0.12

Table 4.25: Scenario 2: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in y direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.63±0.13 0.59±0.11 0.56±0.11 0.55±0.11 0.57±0.11 0.59±0.11 0.64±0.11

MLIF 0.59±0.17 0.58±0.17 0.57±0.16 0.58±0.19 0.63±0.20 0.66±0.20 0.69±0.21

RMLIF 0.60±0.16 0.57±0.15 0.55±0.15 0.56±0.15 0.60±0.17 0.64±0.18 0.65±0.18

MAPIF 0.52±0.09 0.51±0.08 0.50±0.07 0.49±0.07 0.51±0.08 0.53±0.09 0.55±0.10

RMAPIF 0.54±0.09 0.50±0.07 0.49±0.07 0.49±0.07 0.52±0.08 0.52±0.09 0.54±0.10

BMAP 0.60±0.14 0.57±0.11 0.55±0.10 0.53±0.09 0.55±0.10 0.59±0.10 0.64±0.11

Table 4.26: Scenario 3: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in y direction

Based on Table 4.21 and Table 4.22, the following observations are made for scenario

1 and scenario 2 when there is 15 mm shift:

• Tikhonov 0’s correlation coefficient decreases by approximately 13%.

• BMAP’s correlation coefficient decreases by approximately 16%.

• There is no significant change in the correlation coefficient of MLIF, RMLIF,

MAPIF and RMAPIF.

Based on Table 4.23, the following observations are made for scenario 3 when there

is 15 mm shift:

• Tikhonov 0’s correlation coefficient decreases by approximately 13%.

• BMAP’s correlation coefficient decreases by approximately 14%.

• MLIF’s correlation coefficient decreases by approximately 18%.

• RMLIF’s correlation coefficient decreases by approximately 17%.

• MAPIF’s correlation coefficient decreases by approximately 11%.

• RMAPIF’s correlation coefficient decreases by approximately 8%.
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(a) Shift in y direction: Mean CC vs solution algorithms chart for scenario 1

(b) Shift in y direction: Mean CC vs solution algorithms chart for scenario 2

(c) Shift in y direction: Mean CC vs solution algorithms chart for scenario 3

Figure 4.37: Shift in y direction: Mean CC vs solution algorithms charts
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(a) Shift in y direction: Mean RDMS vs solution algorithms chart for scenario 1

(b) Shift in y direction: Mean RDMS vs solution algorithms chart for scenario 2

(c) Shift in y direction: Mean RDMS vs solution algorithms chart for scenario 3

Figure 4.38: Shift in x direction: Mean RDMS vs solution algorithms charts
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Activation Times

Tables 4.27 - 4.29 show correlation coefficients of activation times for scenario 1,

scenario 2 and scenario 3, respectively, when there is a shift in y direction by -15 mm

to +15 mm from original position of the heart location. Figures 4.39a - 4.39c are bar

chart representations of Tables 4.27 - 4.29.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.99 0.99 0.99 0.99 0.99 0.99 0.95

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.98 0.99 0.99 0.99 0.99

BMAP 0.98 0.98 0.94 0.99 0.99 0.94 0.86

Table 4.27: Scenario 1: Correlation coefficients of activation times for -15 mm to +15

mm shift in y direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.99 0.99 0.99 0.99 0.99 0.99 0.95

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.98 0.98 0.99 0.99 0.98 0.94 0.84

Table 4.28: Scenario 2: Correlation coefficients of activation times for -15 mm to +15

mm shift in y direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.99 0.99 0.99 0.99 0.99 0.99 0.95

MLIF 0.99 0.99 0.99 0.99 0.99 0.98 0.97

RMLIF 0.99 0.99 0.99 0.99 0.99 0.98 0.96

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.99 0.99 0.99 0.99 0.99 0.99 0.98

Table 4.29: Scenario 3: Correlation coefficients of activation times for -15 mm to +15

mm shift in y direction
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(a) Correlation coefficients of activation times vs solution algorithms chart for scenario

1

(b) Correlation coefficients of activation times vs solution algorithms chart for scenario

2

(c) Correlation coefficients of activation times vs solution algorithms chart for scenario

3

Figure 4.39: Correlation coefficients of activation times vs solution algorithms chart
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As seen in Table 4.27 - 4.29, there is approximately 4% decrease in correlation co-

efficients of activation times in scenario 1, scenario 2 and scenario 3 for Tikhonov

0. Furthermore, there is approximately 13% and 15% decrease in correlation coeffi-

cients of activation times in scenario 1 and scenario 2 for BMAP, respectively. On the

other hand, there is no significant change in other algorithms.

Localization Error

Tables 4.30 - 4.32 show localization errors for scenario 1, scenario 2 and scenario 3,

respectively, when there is a shift in y direction by -15 mm to +15 mm from original

position of the heart location. Figures 4.40a - 4.40c are bar chart representations of

Tables 4.30 - 4.32.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 4.86 4.86 4.86 14.04 14.04 14.04 15.07

MLIF 0 0 0 0 0 0 0

RMLIF 0 0 0 0 0 0 0

MAPIF 0 0 0 0 0 4.86 0

RMAPIF 4.86 4.86 0 0 4.86 4.86 4.86

BMAP 4.86 4.93 4.86 4.86 15.07 21.37 31.16

Table 4.30: Scenario 1: Localization errors (mm) for -15 mm to 15 mm shift in y

direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 4.86 4.86 4.86 14.79 14.04 14.04 15.07

MLIF 4.86 4.86 4.86 4.86 4.86 4.86 4.86

RMLIF 4.86 4.86 4.86 0 0 0 4.86

MAPIF 0 4.86 4.86 4.86 4.86 4.86 4.86

RMAPIF 4.86 4.86 4.86 4.86 0 0 0

BMAP 4.86 4.93 10.43 14.04 15.07 21.37 31.16

Table 4.31: Scenario 2: Localization errors (mm) for -15 mm to 15 mm shift in y

direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 4.86 4.86 4.86 14.04 14.04 14.04 15.07

MLIF 14.79 10.43 10.43 14.04 9.44 15.07 15.07

RMLIF 10.43 10.43 10.43 14.04 7.13 15.07 15.07

MAPIF 10.43 10.43 10.43 4.86 4.86 9.44 4.09

RMAPIF 10.43 10.43 10.43 4.86 4.86 9.44 4.09

BMAP 10.43 10.43 4.86 4.86 4.86 4.86 15.07

Table 4.32: Scenario 3: Localization errors (mm) for -15 mm to 15 mm shift in y

direction

Based on Tables 4.30 - 4.32, the following observations are made:

• In scenario 1 and scenario 2, ML and MAP based spatio-temporal algorithms

find the origin of the beat within a range of 4.86 mm.

• In scenario 3, ML and MAP based spatio-temporal algorithms find the origin

of the beat within a range of 15.07 mm.

• In scenario 3, since the training set and the test beat come from different phys-

iological models, localization errors are larger. Also in this scenario, due to

different physiological models, most of the algorithms provide sparse wave-

fronts at the initial frames. Therefore, some inconsistencies are observed in

localization errors since sparser wave-fronts may yield incorrect results.

• Tikhonov 0 provides very sparse wave-fronts at the initial time frames, hence

the algorithm that is used to find localization errors [136] does not perform

well. Therefore, we see some inconsistencies in the results.

• Spatio-temporal approaches are more robust to the shift error in terms of local-

ization error as in section 4.6.1.1.
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(a) Shift in y direction: LE (mm) vs solution algorithms chart for scenario 1

(b) Shift in y direction: LE (mm) vs solution algorithms chart for scenario 2

(c) Shift in y direction: LE (mm) vs solution algorithms chart for scenario 3

Figure 4.40: Shift in y direction: LE (mm) vs solution algorithms charts
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4.6.1.3 Shift Error in the z Direction

Quantitative Evaluation of Electrograms

Tables 4.33 - 4.35 show mean and standard deviation of CC values, and Tables 4.36

- 4.14 show mean and standard deviation of RDMS values for scenario 1, scenario 2

and scenario 3, respectively, when there is a shift in z direction by -15 mm to +15 mm

from original position of the heart location.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.55±0.26 0.58±0.27 0.59±0.28 0.60±0.28 0.59±0.27 0.57±0.27 0.55±0.26

MLIF 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02

RMLIF 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.02 0.99±0.02 0.99±0.02 0.99±0.02

MAPIF 0.96±0.03 0.97±0.03 0.97±0.03 0.97±0.03 0.96±0.04 0.96±0.04 0.96±0.04

RMAPIF 0.90±0.10 0.90±0.10 0.91±0.10 0.91±0.09 0.91±0.10 0.91±0.10 0.91±0.10

BMAP 0.82±0.14 0.83±0.16 0.83±0.17 0.82±0.18 0.79±0.20 0.76±0.20 0.72±0.22

Table 4.33: Scenario 1: Mean and standard deviation of CC values for -15 mm to +15

mm shift in z direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.55±0.26 0.58±0.27 0.59±0.27 0.60±0.28 0.59±0.27 0.58±0.27 0.55±0.26

MLIF 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10 0.88±0.10

RMLIF 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11 0.88±0.11

MAPIF 0.90±0.12 0.90±0.13 0.90±0.13 0.91±0.12 0.90±0.13 0.91±0.12 0.90±0.12

RMAPIF 0.88±0.13 0.88±0.13 0.88±0.13 0.89±0.12 0.89±0.13 0.89±0.13 0.90±0.12

BMAP 0.77±0.19 0.79±0.20 0.80±0.20 0.79±0.19 0.76±0.20 0.74±0.21 0.70±0.22

Table 4.34: Scenario 2: Mean and standard deviation of CC values for -15 mm to +15

mm shift in z direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.55±0.26 0.58±0.27 0.59±0.27 0.60±0.28 0.59±0.27 0.58±0.27 0.55±0.26

MLIF 0.65±0.23 0.65±0.24 0.66±0.24 0.66±0.23 0.65±0.22 0.64±0.22 0.63±0.21

RMLIF 0.65±0.23 0.65±0.23 0.66±0.23 0.68±0.21 0.67±0.20 0.63±0.22 0.64±0.20

MAPIF 0.71±0.18 0.71±0.19 0.71±0.19 0.72±0.19 0.70±0.19 0.69±0.20 0.67±0.21

RMAPIF 0.71±0.19 0.71±0.19 0.70±0.20 0.72±0.20 0.71±0.19 0.68±0.21 0.69±0.19

BMAP 0.62±0.24 0.64±0.25 0.65±0.25 0.64±0.26 0.63±0.25 0.60±0.25 0.57±0.24

Table 4.35: Scenario 3: Mean and standard deviation of CC values for -15 mm to +15

mm shift in z direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.61±0.11 0.58±0.11 0.56±0.11 0.55±0.11 0.56±0.11 0.58±0.10 0.61±0.11

MLIF 0.10±0.05 0.10±0.05 0.10±0.05 0.11±0.05 0.10±0.05 0.10±0.05 0.10±0.05

RMLIF 0.10±0.04 0.09±0.04 0.09±0.04 0.09±0.04 0.09±0.05 0.10±0.04 0.09±0.04

MAPIF 0.18±0.05 0.18±0.05 0.18±0.05 0.17±0.06 0.17±0.06 0.17±0.07 0.18±0.07

RMAPIF 0.28±0.06 0.28±0.06 0.27±0.05 0.26±0.05 0.26±0.06 0.26±0.07 0.24±0.07

BMAP 0.38±0.10 0.35±0.09 0.34±0.09 0.35±0.10 0.39±0.12 0.43±0.14 0.47±0.16

Table 4.36: Scenario 1: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in z direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.60±0.11 0.58±0.11 0.56±0.11 0.55±0.11 0.56±0.11 0.58±0.10 0.61±0.11

MLIF 0.31±0.07 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06

RMLIF 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06

MAPIF 0.25±0.06 0.25±0.06 0.25±0.06 0.24±0.07 0.24±0.08 0.24±0.07 0.24±0.08

RMAPIF 0.29±0.07 0.29±0.06 0.29±0.06 0.28±0.07 0.28±0.07 0.27±0.07 0.26±0.08

BMAP 0.42±0.11 0.39±0.10 0.37±0.10 0.38±0.11 0.42±0.13 0.46±0.15 0.50±0.18

Table 4.37: Scenario 2: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in z direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.61±0.11 0.58±0.11 0.56±0.11 0.55±0.11 0.56±0.11 0.58±0.10 0.61±0.11

MLIF 0.59±0.18 0.58±0.19 0.57±0.19 0.58±0.19 0.59±0.19 0.60±0.19 0.62±0.20

RMLIF 0.56±0.15 0.57±0.17 0.56±0.16 0.56±0.15 0.57±0.15 0.61±0.17 0.61±0.17

MAPIF 0.49±0.08 0.49±0.07 0.49±0.07 0.49±0.07 0.50±0.08 0.51±0.08 0.52±0.09

RMAPIF 0.49±0.08 0.49±0.07 0.49±0.07 0.49±0.07 0.50±0.08 0.51±0.09 0.51±0.09

BMAP 0.57±0.11 0.54±0.10 0.53±0.09 0.53±0.09 0.56±0.10 0.58±0.10 0.62±0.11

Table 4.38: Scenario 3: Mean and standard deviation of RDMS values for -15 mm to

+15 mm shift in z direction
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(a) Shift in z direction: Mean CC vs solution algorithms chart for scenario 1

(b) Shift in z direction: Mean CC vs solution algorithms chart for scenario 2

(c) Shift in z direction: Mean CC vs solution algorithms chart for scenario 3

Figure 4.41: Shift in z direction: Mean CC vs solution algorithms charts
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(a) Shift in z direction: Mean RDMS vs solution algorithms chart for scenario 1

(b) Shift in z direction: Mean RDMS vs solution algorithms chart for scenario 2

(c) Shift in z direction: Mean RDMS vs solution algorithms chart for scenario 3

Figure 4.42: Shift in z direction: Mean RDMS vs solution algorithms charts

Based on Table 4.33 and Table 4.34, the following observations are made for scenario
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1 and scenario 2 when there is 15 mm shift:

• Tikhonov 0’s correlation coefficient decreases by approximately 8%.

• BMAP’s correlation coefficient decreases by approximately 12%.

• There is no significant change in the correlation coefficient of MLIF, RMLIF,

MAPIF and RMAPIF.

Based on Table 4.35, the following observations are made for scenario 3 when there

is 15 mm shift:

• Tikhonov 0’s correlation coefficient decreases by approximately 8%.

• BMAP’s correlation coefficient decreases by approximately 10%.

• MLIF’s correlation coefficient decreases by approximately 4%.

• RMLIF’s correlation coefficient decreases by approximately 5%.

• MAPIF’s correlation coefficient decreases by approximately 6%.

• RMAPIF’s correlation coefficient decreases by approximately 4%.

Activation Times

Tables 4.39 - 4.41 show correlation coefficients of activation times for scenario 1,

scenario 2 and scenario 3, respectively, when there is a shift in z direction by -15 mm

to +15 mm from original position of the heart location. Figures 4.43a - 4.43c are bar

chart representations of Tables 4.39 - 4.41.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.99 0.99 0.99 0.99 0.98 0.98 0.96

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.98 0.99 0.99 0.99 0.99 0.99 0.98

Table 4.39: Scenario 1: Correlation coefficients of activation times for -15 mm to +15

mm shift in z direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.99 0.99 0.99 0.99 0.98 0.98 0.96

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.98 0.99 0.99 0.99 0.99 0.99 0.97

Table 4.40: Scenario 2: Correlation coefficients of activation times for -15 mm to +15

mm shift in z direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 0.99 0.99 0.99 0.99 0.98 0.98 0.97

MLIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMLIF 0.98 0.99 0.99 0.99 0.99 0.99 0.99

MAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

RMAPIF 0.99 0.99 0.99 0.99 0.99 0.99 0.99

BMAP 0.99 0.99 0.99 0.99 0.99 0.98 0.98

Table 4.41: Scenario 3: Correlation coefficients of activation times for -15 mm to +15

mm shift in z direction

As seen in Tables 4.39 - 4.41, there is no significant difference between the algorithms

and all the algorithms are very robust to the shift error in terms of activation times.
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(a) Correlation coefficients of activation times vs solution algorithms chart for scenario

1

(b) Correlation coefficients of activation times vs solution algorithms chart for scenario

2

(c) Correlation coefficients of activation times vs solution algorithms chart for scenario

3

Figure 4.43: Correlation coefficients of activation times vs solution algorithms chart
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Localization Error

Tables 4.42 - 4.44 show localization errors for scenario 1, scenario 2 and scenario 3,

respectively, when there is a shift in z direction by -15 mm to +15 mm from original

position of the heart location. Figures 4.44a - 4.44c are bar chart representations of

Tables 4.42 - 4.44.

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 14.04 14.04 14.04 14.04 14.04 15.07 10.96

MLIF 0 0 0 0 0 0 0

RMLIF 0 0 0 0 0 0 0

MAPIF 4.86 4.86 4.86 0 4.86 4.86 4.86

RMAPIF 4.86 4.86 4.86 0 0 4.86 4.86

BMAP 10.43 4.86 4.86 4.86 18.34 16.98 16.98

Table 4.42: Scenario 1: Localization errors (mm) for -15 mm to 15 mm shift in z

direction

-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 14.04 14.04 14.0 14.79 14.04 15.07 10.96

MLIF 4.86 4.86 4.86 4.86 4.86 4.86 4.86

RMLIF 4.86 4.86 0 0 0 0 4.86

MAPIF 4.86 4.86 4.86 4.86 4.86 4.86 4.86

RMAPIF 0 4.86 4.86 4.86 4.86 4.86 4.86

BMAP 4.86 4.86 4.86 14.04 15.07 18.34 10.96

Table 4.43: Scenario 2: Localization errors (mm) for -15 mm to 15 mm shift in z

direction
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-15 mm -10 mm -6 mm No Shift +6 mm +10 mm +15 mm

Tikhonov 0 14.04 14.04 14.79 14.04 14.04 9.44 10.96

MLIF 14.04 14.04 14.04 14.04 9.44 4.86 4.09

RMLIF 14.04 9.44 9.44 14.04 14.04 4.86 9.44

MAPIF 10.43 10.43 4.86 4.86 4.86 4.86 4.86

RMAPIF 10.43 10.43 4.86 4.86 4.86 4.86 4.86

BMAP 10.43 4.86 4.86 4.86 4.86 4.86 9.44

Table 4.44: Scenario 3: Localization errors (mm) for -15 mm to 15 mm shift in z

direction

Based on Tables 4.42 - 4.44, the following observations are made:

• In scenario 1 and scenario 2, ML and MAP based spatio-temporal algorithms

find the origin of the beat within a range of 4.86 mm.

• In scenario 3, ML and MAP based spatio-temporal algorithms find the origin

of the beat within a range of 14.04 mm.

• In scenario 3, due to sparse wave-fronts at the initial frames, some inconsisten-

cies are observed in localization errors.

• Spatio-temporal approaches are more robust to the shift error in terms of local-

ization error as in section 4.6.1.1 and 4.6.1.2.
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(a) Shift in z direction: LE (mm) vs solution algorithms chart for scenario 1

(b) Shift in z direction: LE (mm) vs solution algorithms chart for scenario 2

(c) Shift in z direction: LE (mm) vs solution algorithms chart for scenario 3

Figure 4.44: Shift in z direction: LE (mm) vs solution algorithms charts
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4.6.1.4 Discussion of the Results

To investigate the sensitivity of the proposed algorithms to erroneous forward transfer

matrix H , we follow the same procedure as in section 4.5.5. We start by rewriting the

state covariance equation (4.6):

Pk|k = (I−KkH)FPk−1|k−1F
T (I−KkH)T + (I−KkH)Q(I−KkH)T +KkRK

T
k

(4.11)

The sensitivity of the Kalman filter is related to tr(Pk|k) [142] and when there is a

perturbation in H , using Turnbull’s matrix form of Taylor expansion [143], the trace

of the state covariance is found as follows:

tr(P (H+δ)) = tr(P (H))+
∂

∂H
tr(P (H))δ+

∂2

∂H2
tr(P (H))

δ2

2
+H . O . T (4.12)

Under the assumption of small deviations from H , we neglect the second and higher

order terms. For convenience, we take the derivative of each term on the right hand

side in equation (4.6) separately and add them up:
∂

∂H
tr
(

(I −KkH)FPk−1|k−1F
T (I −KkH)T

)
=

∂

∂H
tr
(

(FPk−1|k−1F
T −KkHFPk−1|k−1F

T )(I −HTKT
k )
)

=
∂

∂H
tr
(
FPk−1|k−1F

T −KkHFPk−1|k−1F
T − FPk−1|k−1F

THTKT
k

+KkHFPk−1|k−1F
THTKT

k

)
= −KT

k FP
T
k−1|k−1F

T −KT
k FPk−1|k−1F

T +KT
k KkHFP

T
k−1|k−1F

T

+KT
k KkHFPk−1|k−1F

T

= −2KT
k FPk−1|k−1F

T + 2KT
k KkHFPk−1|k−1F

T (4.13)

∂

∂H
tr
(

(I −KkH)Q(I −KkH)T
)

=
∂

∂H
tr
(

(Q−KkHQ)(I −HTKT
k )
)

=
∂

∂H
tr
(
Q−KkHQ−QHTKT

k +KkHQH
TKT

k

)
= −KT

k Q
T −KT

k Q+KT
k KkHQ

T +KT
k KkHQ

= −2KT
k Q+ 2KT

k KkHQ (4.14)

Overall, we obtained:
∂

∂H
tr(Pk|k) = −2KT

k FPk−1|k−1F
T + 2KT

k KkHFPk−1|k−1F
T − 2KT

k Q

+ 2KT
k KkHQ (4.15)
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In light of the discussion above, we can conclude that the value of equation (4.15)

determines the Kalman filter sensitivity to parameter H .

In general, for scenario 1 and scenario 2, ML based algorithms MLIF, RMLIF and

MAP based algorithms MAPIF, RMAPIF are very robust to erroneous H matrix. The

reason behind this can be seen by examining the sensitivity equation:

tr(P (H + δ)) = tr(P (H)) + (−2KT
k FPk−1|k−1F

T + 2KT
k KkHFPk−1|k−1F

T − 2KT
k Q+ 2KT

k KkHQ)δ

(4.16)

The second term on the right hand side of the above equation determines the sensitiv-

ity, as mentioned before. The Kalman gain is low in scenario 1 and scenario 2, and

the value of the sensitivity equation goes to zero. Therefore, we expect zero or very

low sensitivity to erroneous H matrix and this expectation conforms with the results.

In scenario 3, the Kalman gain is higher as compared to other scenarios. Hence, the

sensitivity of ML and MAP based algorithms are higher in scenario 3.

Tikhonov 0 and BMAP algorithms are the most suffering algorithms from the geomet-

ric shift errors whereas BMAP algorithm is more robust than Tikhonov 0 algorithm

since it uses statistical prior information on epicardial potential distribution. The rea-

son behind the poor performances of these two algorithms is due to the fact that these

two algorithms do not use temporal correlations.

In terms of the sensitivity, some of the proposed methods are more sensitive to the

shift errors in different directions. This may caused by electrode positions on the

heart and the body.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

In this study, the inverse electrocardiography problem was solved by using spatial and

spatio-temporal techniques. The following methods were used in this thesis:

• Spatial methods: Zero order Tikhonov regularization and Bayesian maximum

a posteriori estimation.

• Spatio-temporal methods: Kalman filter and regularized Kalman filter. For pa-

rameter estimation in these methods, ML and MAP methods were adopted,

yielding four different solution approaches: Maximum Likelihood Inference &

Filtering, Regularized Maximum Likelihood Inference & Filtering, Maximum

a Posteriori Inference & Filtering and Regularized Maximum a Posteriori In-

ference & Filtering.

The proposed methods were compared with each other by using different training

sets. Three different training sets were used in this study:

• Training Set 1 (Scenario 1): The test beat and the training set originate from the

same physiological models, and the test beat was included in the training set.

• Training Set 2 (Scenario 2): The test beat and the training set originate from

the same physiological models, and the test beat was excluded from the training

set.

• Training Set 3 (Scenario 3): The test beat and the training set originate from
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different physiological models, meaning that they are from different dog exper-

iments.

We evaluated the performances of the proposed methods under different measurement

noise levels and when a geometric error was presented to the system.

Under moderate noise conditions (30 dB SNR), in scenario 1 and scenario 2, ML

based algorithms outperformed the other algorithms due to their low process noise

covariance matrix and a good training set. In scenario 3, ML based algorithms’ per-

formances were degraded due to the over-fitting nature of the ML estimation and

MAP based algorithms outperformed the other algorithms due to their high process

noise covariances.

Next, sensitivity of the methods to increasing measurement noise levels was evalu-

ated. Three measurement noise levels were used to test the noise robustness: 10 dB,

15 dB and 30 dB SNR. The sensitivity was related to the Kalman gain and deter-

mined by equation (4.9). According to equation (4.9), higher Kalman gains increase

the sensitivity to the measurement noise, i.e. the robustness decreases with increasing

Kalman gain. ML based algorithms had low Kalman gains due to their low process

noise covariance matrix, hence, ML based algorithms had low sensitivity to the mea-

surement noise. MAP based algorithms’ Kalman gains were higher than ML based

algorithms, therefore, their robustness to the measurement were low.

The sensitivity of the methods to the geometric errors was also evaluated in this study.

To simulate the geometric errors, the location of the heart was shifted by -15 mm

to +15 mm in x, y and z directions. The sensitivity to the geometric errors was

determined by equation (4.15). In scenario 1 and scenario 2, the value of equation

(4.15) was close to zero, hence ML and MAP based algorithms were very robust to

the geometric shift errors. On the other hand, in scenario 3, since the Kalman gains

were higher due to bad training set, the algorithms were less robust to the geometric

shift errors.

In general, spatio-temporal methods outperformed spatial methods and enhanced the

reconstruction accuracy. Comparison of spatio-temporal methods showed that when

the training set data and the test beat were similar, finding Kalman filter’s parameters
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with maximum likelihood estimation yielded better results. However, due to over-

fitting, if the training set data and the test beat were not similar, i.e., if they came from

different physiological models, the performance of maximum likelihood estimation

was degraded. In such situations, maximum a posteriori estimation can be used to

overcome the over-fitting issue [138].

5.2 Limitations of the Study

There are number of limitations in this study. These limitations can be listed as fol-

lows:

• Since the body surface measurements were not available in this study, we worked

with the simulated data.

• The torso geometry used in this study was simple and only the lungs were

included in the medium between the heart and the body.

• The training set used in this study was limited. Also, the training set experi-

ments and their QRS complexes were selected manually.

5.3 Future Works

The following topics can be considered as the future work:

• In this study, we worked with simulated body surface potentials. Working with

real body surface potential measurements can show the feasibility of our ap-

proaches in clinic applications.

• We worked with closed form solutions in this study. Other solution approaches

such as Markov Chain Monte Carlo (MCMC) or Variational Bayes (VB) can

also be used.
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[44] B. Milan Horáček and John C. Clements. The inverse problem of electro-

cardiography: A solution in terms of single- end double-layer sources on the

epicardial surface. Mathematical Biosciences, 144(2):119–154, 1997.

[45] R C Barr and M S Spach. Inverse calculation of QRS-T epicardial potentials

from body surface potential distributions for normal and ectopic beats in the

intact dog. Circ. Res., 42(5):661–675, 1978.

[46] BM Horácek, CJ Penney, and John C. Clements. The Inverse Problem of Elec-

trocardiography in Terms of Epicardial Potentials and their Gradients. In Com-

puters in Cardiology, pages 197–200, 1999.

[47] Fred Greensite and Geertjan Huiskamp. An improved method for estimating

epicardial potentials from the body surface. IEEE Transactions on Biomedical

Engineering, 45(1):98–104, 1998.

[48] Bernd Messnarz, Bernhard Tilg, Robert Modre, Gerald Fischer, and Friedrich

Hanser. A New Spatiotemporal Regularization Approach for Reconstruction

139



of Cardiac Transmembrane Potential Patterns. IEEE Transactions on Biomed-

ical Engineering, 51(2):273–281, 2004.

[49] Bin He, Guanglin Li, and Xin Zhang. Noninvasive imaging of cardiac trans-

membrane potentials within three-dimensional myocardium by means of a re-

alistic geometry anisotropic heart model. IEEE Transactions on Biomedical

Engineering, 50(10):1190–1202, 2003.

[50] D Potyagaylo, W H W Schulze, and O Dössel. A new method for choosing the

regularization parameter in the transmembrane potential based inverse problem

of ECG. Computing in Cardiology, pages 29–32, 2012.

[51] G Huiskamp and A van Oosterom. The depolarization sequence of the human

heart surface computed from measured body surface potentials. IEEE Trans-

actions on Biomedical Engineering, 35(12):1047–1058, dec 1988.

[52] Geertjan Huiskamp and Fred Greensite. A new method for myocardial activa-

tion imaging. IEEE Transactions on Biomedical Engineering, 44(6):433–446,

1997.

[53] A. J. Pullan, L. K. Cheng, M. P. Nash, C. P. Bradley, and D. J. Paterson. Nonin-

vasive electrical imaging of the heart: Theory and model development. Annals

of Biomedical Engineering, 29(10):817–836, 2001.

[54] Jan J M Cuppen and Adriaan Van Oosterom. Model Studies with the Inversely

Calculated Isochrones of Ventricular Depolarization. IEEE Transactions on

Biomedical Engineering, BME-31(10):652–659, 1984.

[55] Per Christian Hansen. Rank-Deficient and Discrete III-Posed Problems.: Nu-

merical Aspects of Linear Inversion, volume 4. 1997.

[56] A N Tikhonov and V I A Arsenin. Solutions of Ill-Posed Problems. Halsted,

1977.

[57] Dana H. Brooks and G. F. Ahmad. Inverse electrocardiography by simulta-

neous imposition of multiple constraints. IEEE Transactions on Biomedical

Engineering, 46(1):3–18, 1999.

140



[58] Piero Colli Franzone, B Taccardi, and C Viganotti. An approach to inverse

calculation of epicardial potentials from body surface maps. Advances in car-

diology, 21:50–54, 1978.

[59] Subham Ghosh and Yoram Rudy. Application of L1-norm regularization to

epicardial potential solution of the inverse electrocardiography problem. An-

nals of Biomedical Engineering, 37(5):902–912, 2009.

[60] Linwei Wang, Omar A. Gharbia, B. Milan Horáček, and John L. Sapp. Nonin-
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APPENDIX A

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION DERIVATION

Estimation of x̄:

∂

∂x̄

L∑
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ln p(x`1|x̄,Σ)

=
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0

+
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2
(x`1 − x̄)TΣ−1(x`1 − x̄)

)
(A.1)

Petersen and Pedersen [144] (see equation (86) in their work) stated that when W is

a symmetric matrix, we have the following property:

∂

∂s
(x− s)TW (x− s) = −2W (x− s) (A.2)

Since the covariance matrix Σ is symmetric, by using Petersen and Pedersen’s state-

ment, we have:
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·
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=
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Σ−1(x`1 − x̄) = 0 (A.3)
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ˆ̄x =
1

L

L∑
`=1

x`1 (A.4)

Estimation of Σ:

Taking the derivative with respect to Σ is equivalent to taking the derivative with re-

spect to Σ−1 [145]. Therefore, we proceed with using Σ−1 as the derivative argument.

∂

∂Σ−1

L∑
`=1

ln p(x`1|x̄,Σ)

=
∂

∂Σ−1

L∑
`=1

ln

[
1

(2π)M/2|Σ|1/2
· exp

(
− 1

2
(x`1 − x̄)TΣ−1(x`1 − x̄)

)]

=
∂

∂Σ−1

L∑
`=1

−M
2
ln 2π − 1

2
ln |Σ| − 1

2
(x`1 − x̄)TΣ−1(x`1 − x̄)

=
L∑
`=1

∂

∂Σ−1

(
− M

2
ln 2π

)
︸ ︷︷ ︸

0

+
∂

∂Σ−1

(1

2
ln |Σ−1|

)

+
∂

∂Σ−1

(
− 1

2
(x`1 − x̄)TΣ−1(x`1 − x̄)︸ ︷︷ ︸

tr
(

Σ−1(x`1 − x̄)(x`1 − x̄)T
)
)

(A.5)

According to Petersen and Pedersen’s [144] work (see equation (100) in their work)

we have the following property:

∂

∂X
tr(XA) = AT (A.6)

Using this property and keeping in the mind that Σ is symmetric:

∂

∂Σ−1

L∑
`=1

ln p(x`1|x̄,Σ) =
L∑
`=1

1

2

∂

∂Σ−1
ln |Σ−1| − 1

2

∂

∂Σ−1
tr
(

(x`1 − x̄)TΣ−1(x`1 − x̄)
)

=
L∑
`=1

(1

2
Σ− 1

2
(x`1 − x̄)(x`1 − x̄)T

)
= 0 (A.7)

Finally, we have:

L · Σ =
L∑
`=1

(x`1 − x̄)(x`1 − x̄)T (A.8)

Σ̂ =
1

L

L∑
`=1

(x`1 − x̄)(x`1 − x̄)T (A.9)
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Estimation of R:

∂

∂R−1

L∑
`=1

T∑
k=1

ln p(y`k|x`k, R) =
∂

∂R−1

L∑
`=1

T∑
k=1

ln

[
1

(2π)D/2|R|1/2
· exp

(
− 1

2
(y`k −Hx`k)TR−1(y`k −Hx`k)

)]
=

∂

∂R−1

L∑
`=1

T∑
k=1

−D
2
ln 2π − 1

2
ln |R| − 1

2
(y`k −Hx`k)TR−1(y`k −Hx`k)

=
L∑
`=1

T∑
k=1

∂

∂R−1

(
− D

2
ln 2π

)
︸ ︷︷ ︸

0

+
∂

∂R−1

(
− 1

2
ln |R|

)

+
∂

∂R−1

(
− 1

2
(y`k −Hx`k)TR−1(y`k −Hx`k)

)
(A.10)

By using the same approach we used while finding Σ̂, we simplify equation (A.10) as

follows:

∂

∂R−1

L∑
`=1

T∑
k=1

ln p(y`k|x`k, R) =

(
L∑
`=1

T∑
k=1

1

2
R− 1

2
(y`k −Hx`k)(y`k −Hx`k)T

)
= 0 (A.11)

L∑
`=1

T∑
k=1

R︸ ︷︷ ︸
LTR

=
L∑
`=1

T∑
k=1

(y`k −Hx`k)(y`k −Hx`k)T (A.12)

R̂ =
1

LT

L∑
`=1

T∑
k=1

(y`k −Hx`k)(y`k −Hx`k)T (A.13)
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Estimation of F :

∂

∂F

L∑
`=1

T∑
k=2

ln p(x`k|x`k−1, F,Q) =
∂

∂F

L∑
`=1

T∑
k=2

ln

[
1

(2π)M/2|Q|1/2
· exp

(
− 1

2
(x`k − Fx`k−1)TQ−1(x`k − Fx`k−1)

)]
=

∂

∂F

L∑
`=1

T∑
k=2

−M
2
ln 2π − 1

2
ln |Q| − 1

2
(x`k − Fx`k−1)TQ−1(x`k − Fx`k−1)

=
L∑
`=1

T∑
k=2

∂

∂F

(
− M

2
ln 2π

)
︸ ︷︷ ︸

0

+
∂

∂F

(
− 1

2
ln |Q|

)
︸ ︷︷ ︸

0

+
∂

∂F

(
− 1

2
(x`k − Fx`k−1)TQ−1(x`k − Fx`k−1)

)
(A.14)

Again, utilizing Petersen and Pedersen’s [144] work (see property number 88):

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT (A.15)

We have:
L∑
`=1

T∑
k=2

−1

2
· −2Q−1(x`k − Fx`k−1)(x`k−1)T = 0 (A.16)

L∑
`=1

T∑
k=2

Q−1x`k(x
`
k−1)T =

L∑
`=1

T∑
k=2

Q−1Fx`k−1(x`k−1)T (A.17)

Cancelling Q−1 terms out yields:

F̂ =

[
L∑
`=1

T∑
k=2

x`k(x
`
k−1)T

]
·

[
L∑
`=1

T∑
k=2

x`k−1(x`k−1)T

]−1

(A.18)
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Estimation of Q:

∂

∂Q−1

L∑
`=1

T∑
k=2

ln p(x`k|x`k−1, F,Q) =
∂

∂Q−1

L∑
`=1

T∑
k=2

ln

[
1

(2π)M/2|Q|1/2
· exp

(
− 1

2
(x`k − Fx`k−1)TQ−1(x`k − Fx`k−1)

)]
=

∂

∂Q−1

L∑
`=1

T∑
k=2

−M
2
ln 2π − 1

2
ln |Q| − 1

2
(x`k − Fx`k−1)TQ−1(x`k − Fx`k−1)

=
L∑
`=1

T∑
k=2

∂

∂Q−1

(
− M

2
ln 2π

)
︸ ︷︷ ︸

0

+
∂

∂Q−1

(
− 1

2
ln |Q|

)

+
∂

∂Q−1

(
− 1

2
(x`k − Fx`k−1)TQ−1(x`k − Fx`k−1)

)
(A.19)

Again, by utilizing the approach that is used for finding Σ̂, equation (A.19) simplifies

to the following equation:

∂

∂Q−1

L∑
`=1

T∑
k=2

ln p(x`k|x`k−1, F,Q) =

(
L∑
`=1

T∑
k=2

1

2
Q− 1

2
(x`k − Fx`k−1)(x`k − Fx`k−1)T

)
= 0 (A.20)

L∑
`=1

T∑
k=2

Q︸ ︷︷ ︸
L(T-1)Q

=
L∑
`=1

T∑
k=2

(x`k − Fx`k−1)(x`k − Fx`k−1)T (A.21)

Q̂ =
1

L(T − 1)

L∑
`=1

T∑
k=2

(x`k − Fx`k−1)(x`k − Fx`k−1)T (A.22)
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APPENDIX B

MAXIMUM A POSTERIORI PARAMETER ESTIMATION DERIVATION

Estimation of F :

∂

∂F

(
ln Π(Θ) + ln p(F,Q)

)
=

∂

∂F

(
ln Π(Θ)

)
+

∂

∂F

(
− M

2
ln |Φ|

)
︸ ︷︷ ︸

0

+
∂

∂F

(v + 2M + 1

2
ln |Q−1|

)
︸ ︷︷ ︸

0

+
∂

∂F

(
− 1

2
tr
[
Φ−1F TQ−1F +Q−1Ψ

])
(B.1)

We have already found ∂
∂F

(
ln Π(Θ)

)
term in equation (A.16). To find the derivative

of the last term in equation (B.1), we use the following property [146] (see section

6.2.1 in [146]):

∂

∂θ
tr
[
A(θ − θ0)TB(θ − θ0)

]
= 2B(θ − θ0)A (For symmetric A and B matrices)

(B.2)

Using above-mentioned statements, we take the derivative and equate it to zero as

follows provided that Φ and Q are symmetric matrices which we will show shortly:

∂

∂F

(
ln Π(Θ) + ln p(F,Q)

)
=

L∑
`=1

T∑
k=2

Q−1x`k(x
`
k−1)T −

L∑
`=1

T∑
k=2

Q−1Fx`k−1(x`k−1)T

− 1

2
2Q−1FΦ−1 (B.3)

0 =
L∑
`=1

T∑
k=2

Q−1x`k(x
`
k−1)T −

L∑
`=1

T∑
k=2

Q−1Fx`k−1(x`k−1)T − 1

2
2Q−1FΦ−1

= Q−1

L∑
`=1

T∑
k=2

x`k(x
`
k−1)T −Q−1F

[
L∑
`=1

T∑
k=2

(
x`k−1(x`k−1)T

)
+ Φ−1

]
(B.4)

F̂ =
[ L∑
`=1

T∑
k=2

x`k(x
`
k−1)T

][ L∑
`=1

T∑
k=2

(
x`k−1(x`k−1)T

)
+ Φ−1

]−1

(B.5)
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Estimation of Q:

∂

∂Q−1

(
ln Π(Θ) + ln p(F,Q)

)
=

∂

∂Q−1

(
ln Π(Θ)

)
+

∂

∂Q−1

(
− M

2
ln |Φ|

)
︸ ︷︷ ︸

0

+
∂

∂Q−1

(v + 2M + 1

2
ln |Q−1|

)
+

∂

∂Q−1

(
− 1

2
tr
[
Φ−1F TQ−1F +Q−1Ψ

])
(B.6)

We have already found ∂
∂Q−1

(
ln Π(Θ)

)
term in equation (A.20). To find the derivative

of the last term in equation (B.6), we use the following properties [144]:

tr(AB) = tr(BA) (B.7)

∂

∂X
tr(XA) = AT (B.8)

tr
(

Φ−1F T︸ ︷︷ ︸
A

Q−1F︸ ︷︷ ︸
B

+Q−1Ψ
)

= tr(Q−1FΦ−1F T ) + tr(Q−1Ψ) (B.9)

∂

∂Q−1

[
tr(Q−1FΦ−1F T ) + tr(Q−1Ψ)

]
= F TΦ−1F + ΨT (B.10)

In the light of the discussion above, we take the derivative and equate it to zero as

follows:

∂

∂Q−1

(
ln Π(Θ) + ln p(F,Q)

)
=

L∑
`=1

T∑
k=2

[1

2
Q− 1

2
(x`k − Fx`k−1)(x`k − Fx`k−1)T

]
+
v + 2M + 1

2
Q− 1

2
(F TΦ−1F + ΨT ) (B.11)

0 = L(T − 1)Q−
L∑
`=1

T∑
k=2

(x`k − Fx`k−1)(x`k − Fx`k−1)T

+ (v + 2M + 1)Q− (F TΦ−1F + ΨT ) (B.12)

Q̂ =

∑L
`=1

∑T
k=2(x`k − Fx`k−1)(x`k − Fx`k−1)T +

(
F TΦ−1F + ΨT

)
L(T − 1) + (v + 2M + 1)

(B.13)

We now have found F̂ and Q̂ but there are unknowns in these formulas. These un-

knowns are degrees of freedom v, scale matrix Ψ and left covariance matrix Φ. Those

three prior distribution parameters should be estimated.
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In our work, we choose the inverse of left covariance matrix Φ and the scale matrix

Ψ as follows:

Φ−1 = α

L∑
`=1

T∑
k=2

x`k−1(x`k−1)T (B.14)

Ψ =
1

v
I (B.15)

where the parameter α is estimated by trial and error. In this work, we use α = 0.1 .

Degrees of freedom v is the number of independent observations and in our case

equals to:

v = L(T − 1) (B.16)
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APPENDIX C

BAYESIAN MAXIMUM A POSTERIORI ESTIMATION DERIVATION

x̂ = argmax
x

[ln p(y | x)︸ ︷︷ ︸
Part 1

+ ln p(x)︸ ︷︷ ︸
Part 2

] (C.1)

Taking the derivative of Part 1 yields:

∂

∂x
ln p(y|x) =

∂

∂x
ln

[
1

(2π)D/2|R|1/2
· exp

(
− 1

2
(y −Hx)TR−1(y −Hx)

)]
=

∂

∂x

(
−D

2
ln 2π − 1

2
ln |R|︸ ︷︷ ︸

0

−1

2
(y −Hx)TR−1(y −Hx)

)

(C.2)

Using Petersen and Pedersen’s [144] study (see equation (84) in their work), provided

that R is symmetric, we find the result as:

∂

∂s
(x− As)TW (x− As) = −2ATW (x− As) (C.3)

∂

∂x

(
− 1

2
(y −Hx)TR−1(y −Hx)

)
= −1

2
· −2HTR−1(y −Hx)

= HTR−1(y −Hx) (C.4)

Taking the derivative of Part 2 yields:

∂

∂x
ln p(x) =

∂

∂x
ln

[
1

(2π)M/2|Σ|1/2
· exp

(
− 1

2
(x− x̄)TΣ−1(x− x̄)

)]
=

∂

∂x

(
−M

2
ln 2π − 1

2
ln |Σ|︸ ︷︷ ︸

0

−1

2
(x− x̄)TΣ−1(x− x̄)

)

(C.5)
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Again, using Petersen and Pedersen’s [144] study (see equation (87) in their work),

provided that Σ is symmetric, we find the result as:

∂

∂x
(x− As)TW (x− As) = 2W (x− As) (C.6)

∂

∂x

(
− 1

2
(x− x̄)TΣ−1(x− x̄)

)
= −1

2
· 2Σ−1(x− x̄)

= −Σ−1(x− x̄) (C.7)

Finally, we add Part 1 and Part 2 and set the result equal to zero to find x̂:

HTR−1(y −Hx)− Σ−1(x− x̄) = 0 (C.8)

HTR−1y + Σ−1x̄ =
(
HTR−1H + Σ−1

)
x (C.9)

x̂ =

(
HTR−1H + Σ−1

)−1(
HTR−1y + Σ−1x̄

)
(C.10)
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APPENDIX D

CC AND RDMS PLOTS

(a) Correlation coefficient vs time plot for scenario 1 under 10 dB SNR

(b) Correlation coefficient vs time plot for scenario 1 under 15 dB SNR

Figure D.1: Correlation coefficient vs time plots for scenario 1
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(a) Correlation coefficient vs time plot for scenario 2 under 10 dB SNR

(b) Correlation coefficient vs time plot for scenario 2 under 15 dB SNR

Figure D.2: Correlation coefficient vs time plots for scenario 2
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(a) Correlation coefficient vs time plot for scenario 3 under 10 dB SNR

(b) Correlation coefficient vs time plot for scenario 3 under 15 dB SNR

Figure D.3: Correlation coefficient vs time plots for scenario 3
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(a) RDMS vs time plot for scenario 1 under 10 dB SNR

(b) RDMS vs time plot for scenario 1 under 15 dB SNR

Figure D.4: RDMS vs time plots for scenario 1
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(a) RDMS vs time plot for scenario 2 under 10 dB SNR

(b) RDMS vs time plot for scenario 2 under 15 dB SNR

Figure D.5: RDMS vs time plots for scenario 2
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(a) RDMS vs time plot for scenario 3 under 10 dB SNR

(b) RDMS vs time plot for scenario 3 under 15 dB SNR

Figure D.6: RDMS vs time plots for scenario 3
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