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Mathematics Department, Doğuş University
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ABSTRACT

ON THE GENERATING GRAPHS OF THE SYMMETRIC AND
ALTERNATING GROUPS

Erdem, Fuat
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Gülin Ercan

Co-Supervisor : Dr. Attila Maróti

September 2018, 58 pages

Dixon showed that the probability that a random pair of elements in the symmetric

group Sn generates Sn or the alternating group An tends to 1 as n→∞. (A general-

ization of this result was given by Babai and Hayes.) The generating graph Γ(G) of

a finite group G is defined to be the simple graph on the set of non-identity elements

of G with the property that two elements are connected by and edge if and only if

they generate G. The purpose of this thesis is to study the graphs Γ(Sn) and Γ(An).

We prove that the graphs Γ(Sn) and Γ(An) contain Hamiltonian cycles provided that

n ≥ 107. This improves a recent result of Breuer, Guralnick, Lucchini, Maróti and

Nagy. Our result can be viewed as another step towards the conjecture of Breuer, Gu-

ralnick, Lucchini, Maróti and Nagy stating that for an arbitary finite group G of order

at least 4 the generating graph Γ(G) contains a Hamiltonian cycle if and only if G/N

is cyclic for every non-trivial normal subgroup N of G. (This is a stronger form of an

older conjecture of Breuer, Guralnick and Kantor.) Our results may have applications

to dimensions of fixed point spaces of elements of a finite group G acting on a finite

dimensional vector space V with CV (G) = 0.
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ÖZ

SİMETRİK VE ALTERNE GRUPLARIN ÜRETİCİ GRAFLARI ÜZERİNE

Erdem, Fuat
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gülin Ercan

Ortak Tez Yöneticisi : Dr. Attila Maróti

Eylül 2018 , 58 sayfa

Dixon, simetrik grup Sn’den rastgele alınan bir permutasyon ikilisinin Sn’i ya da

alterne grup An’i üretme olasılığının n sonsuza giderken limitinin 1 olduğunu gös-

termiştir. Sonlu bir G grubunun üretici grafı Γ(G), köşenoktaları G grubunun birim

elemanından farklı elemanları olan ve herhangi farklı iki köşenoktanın birbirine bir

kenar ile bağlı olmalarının bu iki köşenoktanın G grubunu üretmesi koşuluna bağlı

olduğu graf olarak tanımlanmaktadır. Bu tezde esas amaç Γ(Sn) ve Γ(An) graflarını

çalışmaktır. Bu tezde Γ(Sn) ve Γ(An) graflarının n ≥ 107 koşulu altında Hamilton

döngüler içerdiğini gösteriyoruz. Bu sonuç, Breuer, Guralnick, Lucchini, Maróti and

Nagy’nin kısa bir süre önce elde ettikleri bir sonucunun iyileştirmesidir. Bu sonuç

ayrıca şu sanının ispatlanmasına yönelik bir adım olarak görülebilir: Mertebesi en az

4 olan her sonlu G grubu için, G’nin üretici grafı olan Γ(G)’nin bir Hamilton döngü

içermesi ancak ve ancak G grubunun birim gruptan farklı her bir N normal altgrubu

için G/N grubunun devirli olmasıyla mümkündür. (Bu sanı, Breuer, Guralnick and

Kantor’un daha önceki bir sanısının daha güçlü bir halidir.) Elde ettiğimiz sonuçla-

rın, sonlu boyutlu bir V vektör uzayına CV (G) = 0 olacak şekilde etki eden sonlu bir

G grubunun elemanlarının sabit nokta uzaylarının boyutlarına ilişkin uygulamasının
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olabileceği muhtemel görünmektedir.

Anahtar Kelimeler: üretici graf, hamilton döngü, simetrik grup, alterne grup.
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CHAPTER 1

INTRODUCTION

1.1 Hamiltonian cycles in Cayley graphs

We say that a groupG is generated by a subsetX if the only subgroup ofG containing

X is G itself. Generating sets play an important role in group theory and combina-

torics. One of the most important related construction is the (directed) Cayley graph.

This is the graph whose vertex set is G and two elements g and h are connected by a

directed edge (labelled by x) if g = hx where x ∈ X . The corresponding undirected

and unlabelled graph is called a Cayley graph. There are many interesting conjectures

on Cayley graphs. For example, a weaker form of a conjecture of Lovász, stated in

1969, states that in a finite and connected Cayley graph there always exists a Hamil-

tonian cycle. In 1996 Babai [3] published a conjecture sharply contradicting this

conjecture. In this thesis we will also consider Hamiltonian cycles but in a slightly

different setting.

1.2 Generation of symmetric groups

The other mathematical structure this thesis is concerned with is a finite group which

can be generated by 2 elements. Many interesting groups have this property. For

example, it is easy to see that the symmetric group Sn of degree n can be generated

by 2 elements. In 1882 Netto conjectured that almost all pairs of permutations in Sn

generate Sn or the alternating group An. This conjecture was proved almost a cen-

tury later by Dixon [25]. Dixon considered the probability p(Sn) that a random pair

of elements from the symmetric group Sn (with respect to the uniform distribution)
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generates either Sn or the alternating group An. He proved that this probability tends

to 1 as n tends to infinity. More precisely, he proved that for sufficiently large n we

have 1−2/(ln lnn)2 < p(Sn). This estimate was improved by Bovey and Williamson

[7] to 1 − e−
√

lnn < p(Sn) for sufficiently large n. In 1980 a better lower bound of

the form 1− n−1+o(1) was given by Bovey [8]. Then, proving a conjecture of Dixon,

Babai [2] showed that p(Sn) = 1− (1/n) +O(1/n2). Finally, Dixon [25] established

an even better asymptotic formula for p(Sn) namely

1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
+O(1/n7).

For an alternative proof of this asymptotic formula using [19] see [20]. The latter

two results depend on the Classification of Finite Simple Groups. Everything said

above about p(Sn) is also true for the probability p(An) of a random pair of elements

of An (with respect to the uniform distribution) that generates An. For an explicit,

asymptotically sharp lower and upper bound for p(An) and p(Sn) see [49] and [50].

The most recent result on the probability of generating the symmetric or alternating

groups is obtained by Virchow [58]. His proof does not depend on the Classification

of Finite Simple Groups.

1.3 The probability to generate a simple group

The alternating group An is a non-abelian simple group for n ≥ 5. All non-abelian

finite simple groups can be generated by 2 elements. This was proved by Steinberg

[54] and Aschbacher and Guralnick [1]. Thus it makes sense to consider, for a non-

abelian finite simple group G, the probability p(G) that a random pair of elements

from G generate G. Dixon [26] conjectured that p(G) tends to 1 as the size of the

non-abelian finite simple group G tends to infinity.

Kantor and Lubotzky [37] confirmed Dixon’s conjecture for classical (and small rank

exceptional) groups. Later the proof of Dixon’s conjecture was completed by Liebeck

and Shalev in [40], where the large rank exceptional groups of Lie type were dealt

with.
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1.4 3/2-generated groups

Steinberg [54] introduced a stronger generation property for finite groups than that of

2-generation. A finite group G is said to be 3/2-generated if for every non-identity

element g inG there exists an h ∈ G such that g and h generateG; that is,G = 〈g, h〉.
Steinberg conjectured that every non-abelian finite simple group is 3/2-generated.

This was proved by Guralnick and Kantor in [35]. In fact, there is a related more

general notion, the notion of spread. A group G is said to have spread k if for any

non-identity elements g1, . . . , gk there exists an element g ∈ G such that 〈g, gi〉 = G

for every i with 1 ≤ i ≤ k. In this language a group is 3/2-generated if and only if

it has spread 1. Later, Breuer, Guralnick, Kantor [10] proved that every non-abelian

finite simple group has spread 2. In the same paper they conjectured that every finite

group of spread 1 is also a group of spread 2. This conjecture has been reduced

by Guralnick [34] to the case of almost simple groups and work on such group was

carried out by Burness and Guest [16].

1.5 The notion of the generating graph

In another paper on the probability p(G) to generate a non-abelian finite simple group

G Liebeck and Shalev [41] proved that

1− c1

m(G)
< p(G) < 1− c2

m(G)

for some universal positive constants c1 and c2 where m(G) denotes the minimal in-

dex of a proper subgroup inG. (In caseG is an alternating group, this was conjectured

earlier by Dixon and proved by Babai [2].) This result has an interesting corollary.

To state the result we need to introduce the notion of the generating graph.

Definition 1.5.1. Let G be a finite group that can be generated by 2 elements. The

generating graph Γ(G) of G is the graph whose vertex set consists of the non-identity

elements of G and two vertices are connected by an edge if and only if they generate

G.

By a result of Turán [57] in graph theory, there exists a positive universal constant c

such that whenever G is a non-abelian simple group the graph Γ(G) contains a clique

3



of size at least c · m(G) (see [41, Corollary 1.7]). This was the first point when the

generating graph was (at least) implicitly defined (and used).

It is an easy observation that the clique number ω(Γ(G)) of the generating graph

Γ(G) of a finite group G is a lower bound for the minimal number σ(G) of proper

subgroups ofGwhose (set-theoretic) union is the whole groupG. This invariant σ(G)

has been much investigated in the literature. For example, Tomkinson [56] showed

that σ(G)− 1 is always a prime power when G is a finite (non-cyclic) solvable group

and there is no group G (finite or infinite) such that σ(G) = 7.

The name “generating graph” comes from the well-known notion of the commuting

graph. The commuting graph of a group G is the graph defined on the elements

of G in such a way that two elements are connected by an edge if and only if they

commute. This graph has much been investigated in group theory. Here we only

mention two papers which are in some sense related to the present thesis. Brown

[12,13] investigated the minimal number of abelian subgroups of the symmetric group

Sn whose union is Sn in connection with the largest size of a clique in the commuting

graph of Sn.

1.6 The study of generating graphs

The generating graph was investigated by Lucchini and Maróti in [44], [45], and [43].

For example, in [44], it is shown that for a nilpotent by nilpotent finite group G the

clique number of Γ(G) is equal to the chromatic number of Γ(G). It would be nice

to know whether this last statement holds for any solvable group G. In some sense

this would generalize the above mentioned result of Tomkinson on σ(G) when G is

solvable.

Let G be a finite group that can be generated by 2 elements. Obviously the Frattini

subgroup Φ(G) of G induces an empty subgraph in Γ(G). Let ∆(G) be the subgraph

of Γ(G) induced by all non-isolated vertices in Γ(G). A very interesting result of

Crestani and Lucchini [21] is that ∆(G) is a connected graph in case G is a solvable

group. In fact, Lucchini [42] established that for a solvable group G the diameter of

∆(G) is at most 3. The question arises: is ∆(G) a connected graph for an arbitrary
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finite group G, and if so, what can be said about its diameter?

This question has already been answered by Breuer, Guralnick and Kantor [10] in

caseG is a non-abelian finite simple group, since the spread of such aG is 2. Another

interesting case is whenG is a direct product of n copies of a non-abelian finite simple

group S. Such a group need not be 2-generated. Let δ = δ(S) be the largest integer n

such thatG = Sn can be generated by 2 elements. Crestani and Lucchini [22] showed

that ∆(Sδ) is a 1-transitive connected graph. They also proved that the diameter of

∆(Sδ) is at most 4δ if |S| is large enough. Later Burness and Crestani [15] showed

that diam(∆(S2)) = 2. This generalizes the previously mentioned result in [10].

There are some further investigations in [22] on the clique number of ∆(Sδ). For

example, for S = A5 we have δ = 19 and diam(∆((A5)19)) = 4.

1.7 A conjecture on the spread of finite groups

Breuer, Guralnick, Kantor proposed the following conjecture [10, Conjecture 1.8].

Conjecture 1.7.1 (Breuer, Guralnick, Kantor). A finite group G has spread 1 (or

equivalently is 3/2-generated) if and only if G/N is cyclic for every non-trivial nor-

mal subgroup N of G.

Note that one direction of this conjecture is trivial, since if G is a finite group with a

non-trivial normal subgroup N of G with the property that G/N is non-cyclic, then

for any non-identity element n of N and any element g ∈ G we have 〈n, g〉 < G.

Conjecture 1.7.1 has been reduced by Guralnick [34] to the case of almost simple

groups G and work on almost simple groups has been carried out by Burness and

Guest in [16]. In the language of generating graphs the conjecture states that Γ(G)

has a unique isolated vertex if and only if G/N is cyclic for every non-trivial normal

subgroup N of G.
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1.8 Hamiltonian cycles in generating graphs

In this thesis we consider the following stronger conjecture [11, Conjecture 1.6] than

Conjecture 1.7.1.

Conjecture 1.8.1 (Breuer, Guralnick, Lucchini, Maróti, Nagy). Let G be a finite

group of order at least 4. There is a Hamiltonian cycle in the generating graph Γ(G)

of G if and only if G/N is cyclic for every non-trivial normal subgroup N of G.

This conjecture is known to be true for solvable groups [11, Proposition 1.1], for

sufficiently large non-abelian simple groups [11, Theorem 1.2], for sufficiently large

symmetric groups [11, Theorem 1.3], for certain wreath products [11, Theorem 1.4],

for all almost simple groups whose socle is a sporadic simple group [11, Theorem

1.5], and for some small groups including all non-abelian simple groups of orders at

most 107 (see [11, Section 8]).

1.9 The main theorem

One purpose of this thesis was to study Conjecture 1.8.1 for alternating and symmetric

groups. In the work of Breuer, Guralnick, Lucchini, Maróti, Nagy [11] no explicit

bound was given for the degree n of an alternating group An and a symmetric group

Sn such that Γ(An) and Γ(Sn) are Hamiltonian. In fact only the existence of such a

bound was established with no information at all on its possible size.

In this thesis we prove the following.

Theorem 1.9.1 (The main theorem). The generating graphs Γ(Sn) and Γ(An) are

Hamiltonian for n ≥ 107.

Note that the generating graph of Sn and of An is known to be Hamiltonian for inte-

gers n with 5 ≤ n ≤ 13. This was established by computer calculations in [9].

The proof of Theorem 1.9.1 has two parts. The first part is group theoretic and uses

deep results on generation properties of alternating and symmetric groups. A main
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tool is a result of Babai and Hayes [4] which in turn depends on a complicated the-

orem of Łuczak and Pyber [47]. One of the difficulties of our proof was to replace

the full power of [47] with a more direct argument. We relied on basic properties of

fixed point ratios, a subject much investigated in recent years. The proof of Theo-

rem 1.9.1 relies on a structure theorem for primitive permutation groups, called the

O’Nan–Scott theorem. We apply a bound on the orders of primitive permutation

groups G ≤ Sn and a bound on the number of conjugacy classes of primitive permu-

tation groups in Sn and An. As a by-product of these investigations we obtain explicit

bounds in the paper by Babai and Hayes [4], and we believe that these bounds could

be applied in future works. The second part of the proof uses results from graph the-

ory. In general if the list of vertex degrees of a finite simple graph is given, then a lot

of information can be deduced about the graph. For example, in certain cases, it can

be decided whether the graph contains a Hamiltonian cycle or not.

1.10 An application to fixed point spaces

Let F be an arbitrary field and G a finite group. Let V be a finite dimensional FG-

module. Assume that no non-zero vector in V is fixed by all elements of G. In other

words, assume that CV (G) = 0. For an element g in G denote the fixed point space

of g acting on V by CV (g). This is a subspace of V . Let the F -dimension of CV (g)

be denoted by dim(CV (g)).

In group theory it was important to establish a bound on the average dimension of

fixed point spaces of elements of a finite group acting on a vector space. For this

purpose set avgdim(G, V ) = (1/|G|)
∑

g∈G dim(CV (g)). In his 1966 PhD thesis

Neumann [51] conjectured that if V is a non-trivial irreducible FG-module, then

avgdim(G, V ) ≤ (1/2)dim(V ). This was eventually proved by Guralnick and Maróti

in [36].

Neumann [51] showed that if V is a non-trivial irreducible FG-module for a field F

and a finite solvable group G then there exists an element g of G with dim(CV (g)) ≤
(7/18)dim(V ). In fact, Neumann conjectured that for any finite groupG there should

exist g ∈ G such that dim(CV (g)) ≤ (1/3)dim(V ). This was eventually proved by

7



Guralnick and Malle in [33].

Assume that G is a finite group with the property that Γ(G) contains a Hamiltonian

cycle. By [11, Proposition 1.7], we have

1

|G| − 1

∑
16=g

dim(CV (g)) ≤ 1

2
dim(V ),

which is slightly weaker than the above-mentioned result of Guralnick and Maróti

[36]. However, by the same argument, it follows that there are at least (|G| − 1)/2 el-

ements in G with fixed point space of dimension at most dim(V )/2. In particular, for

sufficiently large non-abelian finite simple groups G there are at least |G|/2 elements

g of G with the property that dim(CV (g)) ≤ (1/2)dim(V ).

1.11 On recent results

Finally we mention two more recent papers on the generating graph of a finite group.

Lucchini, Maróti, Roney-Dougal [46] investigated the extent to which the generating

graph Γ(G) determines the isomorphism type ofG provided that Γ(G) has no isolated

vertex. For example, if S is a sufficiently large non-abelian finite group and G is a

finite group with Γ(G) ∼= Γ(S), then G ∼= S. The same conclusion holds in case S

is a sufficiently large symmetric group. Recently, Cameron, Lucchini, Roney-Dougal

[17] investigated a new graph defined on a d-generated finite group G where d is any

fixed integer, not necessarily 2. As an application of their results they described the

automorphism groups of those generating graphs Γ(G) which are connected.
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CHAPTER 2

PERMUTATION GROUPS

2.1 Permutations

Let Ω be a set. Then the bijections from Ω to itself form a group under composition of

maps. This group is called the symmetric group on Ω and is denoted Sym (Ω). The

set Ω is called the permutation domain. It is easy to see that Sym (Ω) ∼= Sym (Σ)

whenever Ω and Σ are sets having the same cardinality. Throughout the thesis Ω will

be finite. When Ω has size n, we will take Ω = {1, 2, . . . , n} unless explicitly stated

otherwise and denote the resulting symmetric group by Sn.

An element of the symmetric group is called a permutation and a subgroup of the

symmetric group is called a permutation group. A permutation g ∈ Sn fixes an

element a ∈ Ω if g maps a to itself, i.e., g(a) = a. A cycle of length k (or simply

a k-cycle) is a permutation which permutes k elements cyclically and fixes all the

other elements. More precisely, a permutation g ∈ Sn is a k-cycle if g(ai) = ai+1 for

1 ≤ i < k, g(ak) = a1, and g(aj) = aj for k < j ≤ n, where the ar are the elements

of Ω. In this case g is written as (a1, a2, . . . , ak). Two cycles are said to be disjoint

if they have no element in common. Any permutation can be written as a product of

disjoint cycles and this writing is unique up to an ordering of the cycles and the cyclic

ordering of the elements within each cycle. This is called the cycle decomposition

of the permutation. The cycles appearing in the decomposition will be referred to as

the cycles of the permutation. (In fact, the cycles of a permutation are essentially its

orbits in the natural action of the symmetric group.) We will often omit 1-cycles in

the cycle decomposition unless no confusion arises as to which permutation group

we are working in. For example, the permutation in S6 sending 1 to 2, 2 to 1, 3
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to 4, 4 to 5, 5 to 3, and 6 to itself can be written as (1, 2)(3, 4, 5)(6) (or simply as

(1, 2)(3, 4, 5)). The same permutation can also be written as (4, 5, 3)(6)(2, 1) (or

simply as (4, 5, 3)(2, 1)). A permutation is said to have cycle type (1k1 , 2k2 , . . . , nkn)

if its cycle decomposition consists of ki distinct i-cycles for each i = 1, . . . , n. Here

we omit iki if ki = 0, and simply write i in place of iki if ki = 1. For example, the

permutation above has cycle type (1, 2, 3).

A 2-cycle is called a transposition. Under this terminology any cycle (hence any

permutation) can be written as a product of transpositions: for example, the identity

permutation (the only 1-cycle) can be written as (1, 2)(1, 2) and for any integer k ≥ 2

we have (a1, a2, . . . , ak) = (a1, a2) · · · (a1, ak−1)(a1, ak). There are various ways of

expressing a permutation as a product of transpositions (for example, we can include

in the product the identity element (1, 2)(1, 2) as many times as we want), however,

if a permutation is written as a product of transpositions in two different ways, then

either the number of transpositions in both cases is even or it is odd in both cases.

A permutation is called even if it can be written as a product of an even number of

transpositions and odd if it can be written as a product of an odd number of transposi-

tions. It follows that a permutation must be either even or odd. The even permutations

clearly form a subgroup of the symmetric group. This group is called the alternating

group and is denoted An. The map from Sn to the group {1,−1} defined by sending

an even permutation to 1 and an odd permutation to −1 is a well-defined homomor-

phism and An arises as the kernel of this homomorphism. In particular, |Sn : An| = 2

and An E Sn.

2.2 Group actions

Let G be a group and let Ω be a set. An action of G on Ω is a map ϕ from Ω × G to

Ω with the following properties:

(i) ϕ(a, 1G) = a for all a ∈ Ω;

(ii) ϕ(ϕ(a, g), h) = ϕ(a, gh) for all a ∈ Ω and all g, h ∈ G.
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For simplicity, we suppress the name of the map and write ag in place of ϕ(a, g).

Given an action of G on Ω we can define a group homomorphism from G to Sym(Ω)

by setting the image of g ∈ G to be the permutation sending a to ag, and this homo-

morphism is uniquely determined by the given action. Conversely, given any group

homomorphism φ : G → Sym(Ω) we can define an action of G on Ω by defining

ag := φ(g)(a). The homomorphism φ is called the permutation representation of

G corresponding to the action. Therefore, there is a bijection between the set of group

homomorphisms from G to Sym(Ω) and the set of actions of G on Ω. In view of this

identification, the actions of G on Ω are essentially the group homomorphisms from

G to Sym(Ω).

For a subset S ⊆ Ω and a subset H ⊆ G, we write SH = {sh | s ∈ S, h ∈ H}.

Definition 2.2.1. Let G be a group acting on a set Ω and let S ⊆ Ω be a subset.

(i) For a ∈ Ω, the set aG = {ag | g ∈ G} is called the orbit (more precisely, the

G-orbit) containing a.

(ii) The set {g ∈ G | sg = s for all s ∈ S} is called the pointwise stabilizer of S in

G and is denoted StabG(S) or G(S). If S = {a} for some a ∈ Ω then we simply

write Ga in place of G(S).

(iii) The set {g ∈ G | Sg = S} is called the setwise stabilizer of S in G and is

denoted StabG({S}) or G{S}.

(iv) S is called G-invariant if SG = S or equivalently G = StabG({S}).

(v) For g ∈ G, the set {s ∈ S | sg = s} is called the fixed point subset of g in S

and is denoted fixS(g).

Proposition 2.2.2 ([27, pp. 8, 13, 24]). Let G be a group acting on a set Ω. Then the

following hold.

(i) The distinct orbits form a partition of the underlying set Ω.

(ii) G-invariant subsets of Ω are exactly the unions of some G-orbits.

(iii) G(S) and G{S} are subgroups of G for any subset S ⊆ Ω.
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(iv) If a, b ∈ Ω such that a = bg for some g ∈ G, then Ga = g−1Gbg.

(v) (The orbit-stabilizer property) |aG| = |G : Ga| for any a ∈ Ω.

(vi) (Orbit Counting Lemma) The number of distinct orbits of the action of G on Ω

is (1/|G|) ·
∑

g∈G | fixΩ(g)|.

Corollary 2.2.3. Let G be a group and let g ∈ G. Then |gG| = |G : CG(g)|.

We say that G is transitive on Ω (or G acts transitively on Ω) if there is only one

orbit, i.e., for any a, b ∈ Ω there exists g ∈ G such that ag = b. The group G is

called intransitive if it is not transitive. We say that G is faithful if the kernel of

the permutation representation corresponding to the action is trivial, i.e., the identity

element is the only element fixing all a ∈ Ω.

2.3 Wreath products

Let H and K be groups, and let K act on a set of size n. Set B := H × . . . × H

(n factors). We define the wreath product of H by K to be the semidirect product

B oK where the action of K on B is given by permuting the components:

(h1, . . . , hn)k = (h1k , . . . , hnk)

for all (h1, . . . , hn) ∈ B and k ∈ K.

This group is denoted by H oK, and the subgroup B is called the base group of the

wreath product. Clearly, |H oK| = |H|n|K| provided that both H and K are finite.

2.4 Conjugacy classes and centralizers in Sn and An

In this section we investigate the conjugacy classes and centralizers in the symmetric

and alternating groups.

Given groups G1, G2, . . . , Gn we denote their direct product by
∏n

i=1Gi. Also, we

denote the cyclic group of order n by Cn.
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Proposition 2.4.1 ([59, p. 16]). (Centralizer of a permutation in Sn) Let g be a

permutation of type (1k1 , 2k2 , . . . , nkn). Then CSn(g) ∼=
∏n

i=1 Ci o Ski , where the

action of the wreath product is given by permuting the subscripts in the direct product

of ki copies of the group Ci. In particular, |CSn(g)| =
∏n

i=1 i
kiki!.

Proposition 2.4.2 ([59, p. 16]). (Conjugacy classes in Sn) Two permutations in Sn

are conjugate if and only if they have the same cycle type.

Since all permutations having the same cycle type form a single conjugacy class,

the number of permutations in Sn having cycle type (1k1 , 2k2 , . . . , nkn) is equal to

n!/
∏n

i=1 i
kiki! by Corollary 2.2.3.

Let G be a group and A ⊆ G be a subset. Then for g ∈ G we denote by gA the set of

conjugates of g by the elements of A, i.e., gA = {a−1ga | a ∈ A}.

Proposition 2.4.3 ([59, pp. 16–17]). (Conjugacy classes in An) Let g ∈ An. Then

the following hold.

(i) gSn = gAn if g has a cycle of even length or two cycles of equal odd length.

(ii) gSn = gAn t gSn\An if all cycles of g have distinct odd lengths.

It follows from Corollary 2.2.3 that in case (i) of the above proposition we have

|CSn(g) : CAn(g)| = 2, and in case (ii) we have CSn(g) = CAn(g).

The following result provides a tool for determining the cycle type of an integer power

of a permutation.

Proposition 2.4.4. Let g be a k-cycle. Let m ∈ Z and d = gcd(m, k). Then gm is a

product of d disjoint cycles of length k/d.

2.5 Primitive permutation groups

Let G be a group acting on a set Ω. Then G also acts on the set of all partitions of Ω

in the obvious way. This naturally leads to the following. A partition {Ωi | i ∈ I}
of Ω is called a block system if it is preserved under the action of G, i.e., {Ωi | i ∈
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I} = {Ωg
i | i ∈ I} for all g ∈ G. The elements of the partition are called blocks. The

partition consisting of the singletons and the partition consisting of the set Ω itself

are preserved under any group action and hence are called the trivial block systems.

Any other partition is called a system of imprimitivity for G. The group G is called

imprimitive if it has a non-trivial system of imprimitivity, and is called primitive

otherwise. The orbits of an intransitive group clearly form a block system, and hence

any intransitive group acting faithfully on a set is imprimitive.

It is known that every normal subgroup of a primitive permutation group G is transi-

tive.

A minimal normal subgroup of a finite group G is a non-trivial normal subgroup of

G which does not properly contain any other non-trivial normal subgroup of G. The

socle soc(G) of G is defined to be the subgroup generated by all the minimal normal

subgroups of G. It turns out that a primitive permutation group G has at most two

minimal normal subgroups.

LetG andH be two groups acting on the sets Ω and Σ, respectively. Then we say that

the action of G on Ω is isomorphic to the action of H on Σ if there exist a bijection

f : Ω −→ Σ and a group isomorphism φ : G −→ H such that f(αg) = f(α)φ(g) for

all α ∈ Ω and all g ∈ G.

A transitive action of a group G is isomorphic to the right multiplication action on the

set of right cosets of a subgroup H of G (here H can be taken as the stabilizer of a

point). Furthermore, the actions on the sets of cosets of two subgroups H and K are

isomorphic if and only if H and K are conjugate in G.

It follows that determining all the transitive actions of G is the same as determining

the conjugacy classes of subgroups of G.

Proposition 2.5.1 ([27, Corollary 1.5A]). Let G be a group acting transitively on a

set Ω of size at least 2. Then G is primitive if and only if one (and hence every since

all point stabilizers are conjugate) point stabilizer is a maximal subgroup of G.

It follows that determining the primitive actions of G is the same as determining the

conjugacy classes of maximal subgroups ofG. The O’Nan–Scott Theorem shows that
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many cases of this problem can be reduced to investigating almost simple groups G.

For the definition of a group of diagonal type, of product action and more information

on the O’Nan–Scott Theorem see [27, Chapter 4].

Theorem 2.5.2 ([27, Theorem 4.1A]). (O’Nan–Scott Theorem) Let G be a finite

primitive group of degree n. Let H be the socle of G. Then either

1. H is a regular elementary abelian p-group for some prime p, n = pm := |H|,
and G is isomorphic to a subgroup of the affine group AGLm(p); or

2. H is isomorphic to a direct power Tm of a non-abelian simple group T and

one of the following holds:

(a) m = 1 and G is isomorphic to a subgroup of Aut(T );

(b) m ≥ 2 and G is a group of diagonal type with n = |T |m−1;

(c) m ≥ 2 and for some proper divisor d of m and some primitive group

U with a socle isomorphic to T d, G is isomorphic to a subgroup of the

wreath product U o Sym(m/d) with the product action, and n = lm/d

where l is the degree of U ;

(d) m ≥ 6, H is regular, and n = |T |m.

2.6 Maximal subgroups of Sn and An

Let G ≤ Sn be an intransitive subgroup. Let Ω be the permutation domain. Then

G has an orbit O of size less than n. Note that G is a subgroup of the subgroup

Sym (O) × Sym (Ω \ O) which is the setwise stabilizer of the set O in Sn. Also,

it turns out that the subgroup Sym (O) × Sym (Ω \ O) is an intransitive maximal

subgroup of Sn exactly when |O| 6= n/2.

Let G ≤ Sn be a transitive imprimitive subgroup. Then G preserves a system of b

blocks each of size a for some integers a, b with a > 1, b > 1. Then G is a subgroup

of the subgroup Sa o Sb which consists of all elements in Sn preserving this block

system. Also, it turns out that the group Sa o Sb is a transitive imprimitive maximal

subgroup of Sn.
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Thus we have the following.

Proposition 2.6.1. Let G be a maximal subgroup of Sn. Then one of the following

holds.

(i) G = Sa × Sb with n = a+ b and a 6= b (intransitive case).

(ii) G = Sa o Sb with n = ab, a > 1, b > 1 (transitive imprimitive case).

(iii) G is primitive.

Conversely, the groups in cases (i) and (ii) are maximal in Sn.

The following is a similar result for the alternating groups.

Theorem 2.6.2 ([38]). LetG be a maximal subgroup ofAn. Then one of the following

holds.

(i) G = (Sa × Sb) ∩ An with n = a+ b and a 6= b (intransitive case).

(ii) G = (Sa o Sb) ∩ An with n = ab, a > 1, b > 1 (transitive imprimitive case).

(iii) G is primitive.

Conversely, the groups in cases (i) and (ii) are maximal in An for n 6= 8.

We note that Liebeck, Praeger and Saxl [38] determined the types of primitive maxi-

mal subgroups of Sn and An, however, it is not easy to deal with the primitive maxi-

mal subgroups of Sn and An. For the purposes of this thesis we will not use the full

power of their result.
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CHAPTER 3

BOUNDING VERTEX DEGREES

Our main purpose in this chapter is to give strong lower bounds on vertex degrees

in the generating graphs of Sn and An. The results obtained in this chapter will be

used in Chapter 4 to prove that the generating graphs of Sn and An are Hamiltonian

provided that n ≥ 107.

3.1 The result of Babai and Hayes

In 1969, Dixon [25] proved that the probability that a random pair of permutations

from the symmetric group Sn generates the alternating group An or Sn tends to 1 as

n tends to infinity. This result was a highlight of asymptotic group theory period and

has many applications. Another way to state his result is the following. Let {En} be

a sequence of events. It is said that En holds with high probability if the limit of the

probability of the events En is 1. In this language Dixon’s result states that with high

probability a random pair of permutations from Sn generates either An or Sn.

A generalization of Dixon’s result was obtained by Babai and Hayes [4]. The purpose

of this subsection is to state their result. Let G be any given permutation group of

degree n. Assume that there are o(n) points that are fixed by all elements of G (by

o(n) we mean any function f(x) such that f(n)/n tends to 0 as n tends to infinity).

Let σ ∈ Sn be chosen at random. The main result of Babai and Hayes [4, Theorem 1]

is that with high probability G and σ generate An or Sn. For the purpose of this thesis

we state the before-mentioned result in a different language (see [4, Remark 2]).

Theorem 3.1.1 (Babai, Hayes, 2006). For every ε > 0 there exists δ > 0 and an

integer n0 > 0 such that for every integer n ≥ n0 if G ≤ Sn has fewer than δn fixed
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points then the probability that G and a random permutation in Sn generate An or

Sn is at least 1− ε.

In this thesis we will need an explicit version of this result.

3.2 The result of Łuczak and Pyber

The proof of Theorem 3.1.1 depends on a result of Łuczak and Pyber [47]. Let σ ∈
Sn be a random permutation. Then with high probability σ does not belong to any

transitive subgroup of Sn other than An or Sn. We state this in the following form.

Theorem 3.2.1 (Łuczak, Pyber, 1993). LetM be the set of transitive subgroups of

Sn apart from An. Then |
⋃
M∈MM |/|Sn| → 0 as n tends to infinity.

This theorem has many applications apart from Theorem 3.1.1. For an account of

these applications see [29, p.3].

Let us denote the proportion in the statement of Theorem 3.2.1 by T (n). The method

of Łuczak and Pyber can be used to show that T (n) = O(n−c) for some small c > 0.

Denote by P (n) the proportion of elements in Sn which belong to a primitive (max-

imal) subgroup of Sn not containing An. The fact that P (n) tends to 0 as n tends to

infinity is due to Bovey [8]. Recently this result has been improved by Diaconis, Ful-

man and Guralnick in [23, Theorem 7.6]. This states that P (n) = O(n−2/3+α) for any

α > 0. They conjectured that P (n) ≤ O(n−1). Eberhard, Ford and Koukoulopoulos

[29] proved that P (n) = n−1+o(1).

Let I(n) be the proportion of elements in Sn which belong to a (maximal) transitive

imprimitive subgroup of Sn. The most recent upper bound for I(n) can be found in

[29, Theorem 1.2]. We do not state this here. We note that this is also an asymptotic

estimate.

Notice that T (n) = P (n) + I(n). Eberhard, Ford and Green [28] showed that if n is

an even integer greater than 2 then T (n) ≥ cn−δ(lnn)−3/2 for some constant c > 0.

Let X and Y be two real-valued functions. We mean by X � Y that |X| ≤ c|Y | for
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some constant c. We also write X � Y to mean that c1|Y | ≤ |X| ≤ c2|Y | for some

constants c1, c2 > 0.

The following result of Eberhard, Ford and Green provides an asymptotic estimate

for T (n).

Theorem 3.2.2 (Eberhard, Ford, Green [28]). Let T (n) be the proportion of π ∈ Sn
contained in a transitive subgroup other than Sn or An, and let p be the smallest

prime factor of n. Then

T (n) �



n−δ2(logn)−3/2
if p = 2,

n−δ3(logn)−3/2
if p = 3,

n−1+1/(p−1) if 5 ≤ p� 1,

n−1+o(1) if p→∞,

where

δm =

∫ (m−1)/ logm

1

(log t)dt

= 1− m− 1

logm
+

(m− 1) log(m− 1)

logm
− (m− 1) log logm

logm
.

Note that all the above results are asymptotic. In this thesis we will avoid the use of

such estimates since we aim for an explicit bound on the degree of a symmetric and

alternating group whose generating graph contains a Hamiltonian cycle.

3.3 Fixed point ratios

Let G be a finite group acting on a finite set Ω. For a subset S ⊆ G we denote

by fixΩ(S) the set of elements in Ω that are fixed by all elements of S. The ratio

| fixΩ(g)|/|Ω| is called the fixed point ratio of the element g.

In this thesis we will use the following lemma, which is a slight generalization of a

lemma of Liebeck and Saxl on the proportion of fixed points in a transitive action

[39, Lemma 2.5].

Lemma 3.3.1. Let G be a group acting transitively on a finite set Ω. Let H = Gω,
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ω ∈ Ω. Let S ⊆ G be a subset and set SG = {sg | s ∈ S, g ∈ G}. Then we have the

following.

(i)
| fixΩ(SG)|
|Ω|

≤ |S
G ∩H|
|SG|

.

(ii)
| fixΩ(g)|
|Ω|

=
|gG ∩H|
|gG|

for all g ∈ G.

Proof. We apply a double-counting argument. Let T = {(β, x) | β ∈ Ω, x ∈ SG ∩
Gβ}. Note that for any β1, β2 ∈ Ω, we have Gβ2 = (Gβ1)g for some g ∈ G. Thus the

map SG ∩ Gβ1 −→ SG ∩ Gβ2 defined by h 7→ hg is a well defined bijection, and so

|SG ∩Gβ1| = |SG ∩Gβ2|. Thus we have

|T | =
∑
β∈Ω

|SG ∩Gβ| =
∑
β∈Ω

|SG ∩H| = |Ω| · |SG ∩H|. (3.1)

On the other hand we have fixΩ(SG) ⊆ fixΩ(x) for any x ∈ SG and hence

|T | =
∑
x∈SG

| fixΩ(x)| ≥ |SG| · | fixΩ(SG)|. (3.2)

Part (i) follows by comparing (3.1) and (3.2). Note that in the case S = {g} for some

g ∈ G, each | fixΩ(x)| in (3.2) can be replaced by | fixΩ(g)| since conjugate elements

have the same number of fixed points. Thus in this case we have

|T | =
∑
x∈gG
| fixΩ(g)| = |gG| · | fixΩ(g)|. (3.3)

Part (ii) follows now by comparing (3.1) and (3.3).

Fixed point ratios for finite groups have been a subject of interest in group theory.

Applications of this invariant can be found in the papers of Frohardt and Magaard

[30, 31], Gluck and Magaard [32], Guralnick and Kantor [35], and Burness [14].

3.4 Basic observations

Let G be one of Sn or An, and let Γ be the generating graph of G, that is, Γ = Γ(G).

Let 1 6= g ∈ G. Denote by d(g,Γ) the degree of the vertex g of Γ. By the definition

of a generating graph, the vertex g is adjacent to a vertex h in the graph Γ if and only
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if 〈g, h〉 = G. Note that this condition is equivalent to h not being contained in any

maximal subgroup of G that contains g. Therefore, we have

d(g,Γ) = |{h ∈ G \ {1} | 〈g, h〉 = G}|

=

∣∣∣∣∣∣G \
⋃

M∈M(g)

M

∣∣∣∣∣∣ ,
whereM(g) is the set of maximal subgroups of G which contain g.

For the purposes of this thesis, we need lower bounds on vertex degrees in Γ(G).

Thus we are mainly interested in bounding from above the probability that a random

permutation inG is contained in a maximal subgroup that contains g, that is, bounding

from above the ratio ∣∣∣⋃M∈M(g) M
∣∣∣

|G|
, (3.4)

whereM(g) is the set of maximal subgroups of G which contain g.

The following result indicates that most permutations have a relatively small number

of fixed points.

Proposition 3.4.1 (see [4, Section 2]). Let k be a positive integer. Then the proportion

of permutations in Sn with at least k fixed points is at most 1/k!.

Proof. Let I be the collection of k-element subsets of the permutation domain. Note

that |I| =
(
n
k

)
. Also, for A ∈ I, we have | StabSn(A)| = (n − k)!. Therefore, the

proportion of permutations with at least k fixed points is given by
|
⋃
A∈I StabSn(A)|
|Sn|

≤
∑
A∈I

| StabSn(A)|
|Sn|

=

(
n

k

)
· (n− k)!

n!
=

1

k!
.

The next proposition implies that if g ∈ Sn has f fixed points then the probability

that a random permutation and g generate Sn is at most 1− f/(2n). This means that

if g has a relatively large number of fixed points then we cannot expect a strong lower

bound on this probability and hence on the degree of the vertex g of Γ(Sn).

Proposition 3.4.2 ([4, Proposition 3]). Let H ≤ Sn be a permutation group having

f fixed points. Then the probability that the group generated by H and a random

permutation has a fixed point is at least f/(2n).
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In this thesis we will not make an explicit reference to Proposition 3.4.2, however, we

include it for interest and context as well as for a justification for imposing the bound

of
√
n on the number of fixed points of g in Sections 3.6–3.8.

In the light of Propositions 3.4.1 and 3.4.2, in Sections 3.6–3.8 we assume that g has

at most
√
n fixed points and study the ratio in (3.4) in the cases where M is primitive,

intransitive and transitive imprimitive (see Theorems 3.6.5, 3.7.6 and 3.8.5). Together

these prove:

Theorem 3.4.3. For n ≥ 106, if g ∈ Sn has at most
√
n fixed points, then the

probability that a random permutation and g do not generate An or Sn is at most

1√
n

+
16.2

n
+

1

n2
.

In Section 4.3 the bound in Theorem 3.4.3 will be used together with a corresponding

but weaker bound for elements with more than
√
n fixed points (see Theorems 4.3.3

and 4.3.7) to establish the Hamiltonicity of Γ(An) and Γ(Sn) for n ≥ 107.

3.5 Basic results

We begin by introducing a notion of projection of permutations onto a subset of the

permutation domain (see [4]). This notion will be useful to make a reduction to the

fixed-point-free case in Section 3.7.

Definition 3.5.1. Let T ⊆ Ω be a subset. We define the projection map prT :

Sym(Ω) → Sym(T ) by setting prT (σ) = σT for σ ∈ Sym(Ω), where σT is de-

fined as follows. For i ∈ T , let iσT = iσ
k where k is the smallest positive integer with

iσ
k ∈ T .

We next state a special case of Stirling’s formula.

Theorem 3.5.2 (Stirling’s bound [5, p. 216]). For every positive integer n,

√
2πn ·

(n
e

)n
≤ n! ≤ e

√
n ·
(n
e

)n
.

In some cases we will need weaker bounds that are easier to apply.
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Proposition 3.5.3. Let n be a positive integer. Then the following hold.

(i) n! ≤ (n/2)n for n ≥ 6.

(ii) n! ≥ (n/3)n.

Proposition 3.5.4. For every positive integers n and k with 1 ≤ k ≤ n, we have(n
k

)k
≤
(
n

k

)
≤ nk

k!
<
(n · e

k

)k
.

We note that Propositions 3.5.3 and 3.5.4 can be easily proven by induction.

Proposition 3.5.5. Let a, b, c, d be non-negative integers. Then the following hold.

(i)
(
a
b

)
≤
(
c
d

)
if a ≤ c and b ≤ d ≤ c/2.

(ii)
(
a
b

)(
c
d

)
≤
(
a+c
b+d

)
.

Proof. Note that the statements are trivially true if a < b or c < d. The statements

are also true if a = 0 or c = 0. Thus we may assume that a ≥ b, c ≥ d, a 6= 0,

c 6= 0. Note that
(
a
b

)
≤
(
c
b

)
≤
(
c
d

)
, and hence (i) follows. For (ii), let S = S1 ∪ S2

where S1 = {1, . . . , a} and S2 = {a+ 1, . . . , a+ c}. Then,
(
a+c
b+d

)
is the number of all

(b+d)-element subsets of S whereas
(
a
b

)(
c
d

)
is the number of (b+d)-element subsets

of S that contain b elements from S1 and d elements from S2.

3.6 The primitive case

Let G = Sn and let g ∈ G be a permutation with at most
√
n fixed points. In this

section we consider the probability that a random permutation in G is contained in a

primitive maximal subgroup of G containing g. More precisely, we consider the ratio

in (3.4) in the case M is primitive.

In order to prove the main result of this section we will need upper bounds on the

order of the centralizer of g in G, on the order of a primitive permutation group, and

on the number of conjugacy classes of primitive maximal subgroups of G.

First, we obtain an upper bound on the order of the centralizer of g in G. We first

consider the case where g is fixed-point-free.
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Lemma 3.6.1. Let g ∈ Sn be a fixed-point-free permutation. Then we have

|CSn(g)| ≤ 2bn/2c · bn/2c! for n 6= 3.

Proof. Let g have cycle type (km1
1 , km2

2 , . . . , kmr
r ). Write g = g1g2 · · · gr where the gi

are the products of the mi disjoint ki-cycles in the cycle decomposition of g. Let Ω be

the permutation domain and let Ωi ⊆ Ω be the set of elements that appear in a cycle

of gi. Put G = Sn and Gi = Sym(Ωi) for all i = 1, 2, . . . , r. Then viewing Gi as a

subgroup of G and gi as an element of Gi, we have

CG(g) =
r∏
i=1

CGi
(gi).

Note that |Ωi| = miki and n = |Ω| =
∑r

i=1 |Ωi| =
∑r

i=1 miki. It is sufficient to show

that

|CGi
(gi)| ≤ 2b

miki
2
c · bmiki

2
c!

since then it will follow that

|CG(g)| ≤
r∏
i=1

(
2b

miki
2
c · bmiki

2
c!
)
≤ 2b

n
2
c · bn

2
c!.

So we may in fact assume that g is a product of b disjoint cycles of length a. Since

CG(g) ⊆ CG(gi) for every integer i, raising g to a suitable power we may further

assume that g is of prime order, i.e. a is a prime. Now we have n = ab and |CG(g)| =
abb!. Thus we need to show

abb! ≤ 2b
ab
2
c · bab

2
c!. (3.5)

Note that ab ≤ 2ba/2cb ≤ 2bab/2c for a 6= 3, 5, and b! ≤ bab/2c!. Therefore (3.5) is

satisfied for a 6= 3, 5. We now treat the remaining cases.

a = 3 : If b = 2k for some k ≥ 1, then we have

abb! = 32k(2k)! ≤ 23k2k(2k)! ≤ 23k(3k)! = 2bab/2cbab/2c!.

If b = 2k + 1 for some k ≥ 1 then we have

abb! = 32k+1(2k + 1)! ≤ 24k+1(k + 1)k(2k + 1)! = 23k+1(2k + 2)k(2k + 1)!

≤ 23k+1(3k + 1)!

= 2bab/2cbab/2c!.
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a = 5 : If b = 1 then (3.5) is trivially satisfied. Suppose then that b > 1. We have

2bab/2cbab/2c! = 2b5b/2cb5b/2c! ≥ 22b(2b)! ≥ 22bbbb! = (4b)bb! ≥ 5bb! = abb!. The

proof is complete.

We next consider the general case where g has at most
√
n fixed points.

Lemma 3.6.2. Let g ∈ Sn be a permutation with at most
√
n fixed points. Then we

have

|CSn(g)| ≤ 2bn/2c · bn/2c! for n 6= 3.

Proof. Put G = Sn and let Ω be the permutation domain. Also let Ω1 = fixΩ (g),

Ω2 = Ω \ Ω1, and let G1 = Sym(Ω1), G2 = Sym(Ω2). Denote by f the number of

fixed points of g, that is, f = |Ω1|. Viewing the subgroups G1 and G2 as subgroups

of G, we have

CG(g) ∼= CG1(gΩ1)× CG2(gΩ2),

where gΩi
is as in Definition 3.5.1. Note that gΩ1 is the identity permutation on Ω1 and

so |CG1(gΩ1)| = f !. Note also that gΩ2 is fixed-point-free on Ω2, and so by Lemma

3.6.1, we have |CG2(gΩ2)| ≤ 2b(n−f)/2c · b(n− f)/2c!. Thus it follows that

|CG(g)| = |CG1(gΩ1)| · |CG2(gΩ2)| ≤ f ! · 2b(n−f)/2c · b(n− f)/2c!.

Set cr = r! · 2b(n−r)/2c · b(n − r)/2c!. We claim that cr ≥ cr+2 for any non-negative

r ≤
√
n − 2. By cancelling common factors we see that this holds if and only if

2b(n − r)/2c ≥ (r + 2)(r + 1). Clearly, b(n − r)/2c ≥ (n − r − 1)/2, and hence

it is enough to show that n − r − 1 ≥ (r + 2)(r + 1). This is true for
√
n − 2 ≥ r.

Therefore the claim is established. Also, it is trivial to see that c0 ≥ c1, and so it

follows that c0 ≥ cr for any non-negative integer r ≤
√
n. Lemma 3.6.1 completes

the proof of the lemma.

The following result provides upper bounds on the numbers of conjugacy classes of

primitive maximal subgroups of Sn and of An, and appears in a paper of Maróti and

Tamburini [49, Lemma 4.1], the proof of which depends on work of Stringer [55].

Theorem 3.6.3 ([49, Lemma 4.1]). Let G be one of Sn or An and let r(G) be the

number of conjugacy classes of primitive maximal subgroups of G other than An.

Then the following hold.
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(i) r(G) ≤ n3(log2 n)2
for n ≥ 1000.

(ii) r(G) ≤ 36 for 23 ≤ n < 1000.

We next state a result of Maróti that gives an upper bound on the orders of primitive

permutation groups.

Theorem 3.6.4 ([48, Corollary 1.1]). Let G < Sn be a primitive permutation group

not containing An. Then |G| < 50n
√
n.

We are now in a position to prove the main result of this section. We divide the proof

into two parts, where in the first part the proof is purely group theoretic and in the

second part GAP calculations are mainly used.

Theorem 3.6.5. Let g ∈ Sn be a permutation with at most
√
n fixed points. Let p be

the probability that a random permutation in Sn is contained in a primitive maximal

subgroup of Sn that contains g and does not contain An. Then we have

p ≤ 1

n2
for n ≥ 27.

Proof. Put G = Sn. Let Σ be the set of primitive maximal subgroups of G other than

An. Consider the conjugation action of G on Σ. Note that H ∈ fixΣ(g) if and only if

g ∈ NG(H) = H . Let O1, . . . ,Ok be the orbits of this action. Pick Hi ∈ Oi for each

i. We have

p =
|
⋃
g∈H∈Σ H|
|G|

=
|
⋃
H∈fixΣ(g) H|
|G|

≤
k∑
i=1

|
⋃
H∈fixOi

(g) H|
|G|

≤
k∑
i=1

| fixOi
(g)||Hi|
|G|

=
k∑
i=1

| fixOi
(g)|

|Oi|
,

where the last equality follows from the orbit-stabilizer property (Theorem 2.2.2(v))

since |Oi| = |G : StabG(Hi)| = |G : NG(Hi)| = |G : Hi|. Thus it is enough to show

that
| fixOi

(g)|
|Oi|

≤ 1

kn2
for all i = 1, . . . , k.

Now fix an arbitrary orbit O and fix H ∈ O. Note that the action of G is transitive

on O, and the subgroup H is a point stabilizer, namely StabG (H) = NG(H) = H .

Thus by Lemma 3.3.1, we have

| fixO(g)|
|O|

=
|gG ∩H|
|gG|

.
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Note also that |gG| = |G : CG(g)| by Corollary 2.2.3. Thus we have

| fixO(g)|
|O|

=
|gG ∩H| · |CG(g)|

|G|
≤ |H| · |CG(g)|

|G|
≤ 50n

√
n · 2bn/2c · (bn/2c)!

n!
,

where the last inequality follows from Lemma 3.6.2 and Theorem 3.6.4. Thus it

suffices to show that
50n

√
n · 2bn/2c · (bn/2c)!

n!
≤ 1

kn2
(3.6)

provided that n ≥ 27. By Stirling’s bound (Theorem 3.5.2), we have
√

2πn·(n/e)n ≤
n! and (bn/2c)! ≤ e ·

√
n/2 · (n/(2e))n/2. Thus it is enough to show that

50n
√
n · 2n/2 · e ·

√
n/2 · (n/(2e))n/2√

2πn · (n/e)n
≤ 1

kn2
,

or equivalently,

(e/
√
π) · 25n

√
n+2 · k ≤ (n/e)n/2. (3.7)

Also, by Theorem 3.6.3 we have k ≤ 36 for n < 1000, and k ≤ n3(log2 n)2 for

n ≥ 1000. Using these we see that (3.7) holds for n ≥ 27. This completes the

proof.

By the help of GAP we can improve the bound on n in Theorem 3.6.5.

Theorem 3.6.6. Let G be one of Sn or An and let g ∈ G be a permutation with at

most
√
n fixed points. Let p be the probability that a random permutation in G is

contained in a primitive maximal subgroup of G that contains g and is different from

An. Then we have

p ≤ 1

n2
for n ≥ 15.

Proof. The result already holds for n ≥ 27 by Theorem 3.6.5. We now show that the

result also holds for 15 ≤ n ≤ 26. In the proof of Theorem 3.6.5, the bounds on |H|
and k there were not strong enough to show that (3.6) holds for 15 ≤ n ≤ 26. To this

purpose, we show that (3.6) holds when the factor of 50n
√
n is replaced by |H| using

the GAP program below. We first explain how the program works.

The function nr() calculates the exact number of conjugacy classes of primitive

maximal subgroups of Sn other than An.
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The function max() calculates the maximal size of a primitive subgroup of Sn other

than An.

The function check() checks (3.6) for the exact value of k and the largest value of

|H|; and returns TRUE if (3.6) is satisfied and returns FALSE otherwise.

Finally, the program prints TRUE if check() returns TRUE for all 15 ≤ n ≤ 26,

and prints FALSE otherwise.

nr:=function(n)

local a, l, m, s;

s:=SymmetricGroup(n);

a:=AlternatingGroup(n);

l:=MaximalSubgroupClassReps(s);

m:=Number(l, x->IsPrimitive(x,[1..n]) and

not IsSubset(x,a));

return(m);

end;

max:= function(n)

local a,l;

a:=AlternatingGroup(n);

l:=AllPrimitiveGroups(DegreeOperation, n,

x->IsSubset(x,a), false);

if l=[] then

return(0);

else

return(Maximum(List(l, x->Size(x))));

fi;

end;

check:=function(n)

if Factorial(n) >=
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nr(n)*max(n)*(n^2)*(2^(Int(n/2)))*Factorial(Int(n/2))

then

return(true);

else

return(false);

fi;

end;

Print(ForAll([15..26], check));

3.7 The intransitive case

Let G = Sn and let g ∈ G be a permutation with at most
√
n fixed points. In this

section we consider the probability that a random permutation in G is contained in

an intransitive maximal subgroup of G containing g. More precisely, we consider the

ratio in (3.4) in the case M is intransitive.

In fact, in this section, we consider the more general situation where g is replaced by

an arbitrary subgroup H with at most
√
n fixed points. We obtain our desired result

by setting H = 〈g〉.

We first obtain a result in the case where H is fixed-point-free and then consider the

more general case.

Lemma 3.7.1. Let H ≤ Sn be a fixed-point-free permutation group. Let p be the

probability that H and a random permutation generate an intransitive group. Then

we have

p ≤ 11.9

n
for n ≥ 83.

Proof. Put G = Sn and let Ω be the permutation domain. If H is transitive then there

is nothing to prove. Thus we may assume that H is intransitive. Let A be the set of

H-invariant subsets of Ω of size at most n/2. Note that for g ∈ G,
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〈g,H〉 is intransitive ⇐⇒
there is a proper 〈g,H〉-invariant subset of Ω ⇐⇒

there is a proper subset of Ω that is both g-invariant and H-invariant ⇐⇒
there is a proper subset of Ω

that is both a union of g-orbits and a union of H-orbits ⇐⇒
g ∈ StabG({T}) for some T ∈ A.

We may therefore assume that each H-orbit has size 2 or 3. Suppose then that there

are k orbits of size 2 and l orbits of size 3 of H so that n = 2k + 3l. Now,

p =
|
⋃
T∈A StabG({T})|

|G|
≤
∑
T∈A

| StabG({T})|
|G|

=
∑
T∈A

|T |! · (n− |T |)!
n!

=
∑
T∈A

1(
n
|T |

)
=

bn/2c∑
t=2

∑
0≤r≤k
0≤s≤l
t=2r+3s

(
k
r

)(
l
s

)(
n
t

) . (3.8)

Note that k + l ≤ n/2, and we have r + s ≤ t/2 and t ≤ n/2 in (3.8). Thus, by

Proposition 3.5.5, we have(
k

r

)(
l

s

)
≤
(
k + l

r + s

)
≤
(
bn/2c
bt/2c

)
=

√(
bn/2c
bt/2c

)2

≤

√(
n

t

)
.

Also, it is easy to see that the number of pairs (r, s) of non-negative integers with

t = 2r + 3s is at most t/6 + 1 ≤ n/12 + 1. We now have

p ≤
bn/2c∑
t=2

∑
0≤r≤k
0≤s≤l
t=2r+3s

1√(
n
t

)
≤

5∑
t=2

1√(
n
t

) +

bn/2c∑
t=6

( n
12

+ 1
)
· 1√(

n
t

)
≤

5∑
t=2

1√
(n
t
)t

+
(n

2
− 5
)
·
( n

12
+ 1
)
· 1√

(n
6
)6

=
2

n
+

(
3

n

)3/2

+

(
4

n

)2

+

(
5

n

)5/2

+
9(n2 + 2n− 120)

n3

≤ 11.9

n
,

where the last inequality holds since n ≥ 83.
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As in Section 3.6, we use projections on to subsets in order to deal with the general

case. We require the following two observations from [4].

Lemma 3.7.2 ([4, Observation 11]). Let T ⊆ Ω. Then the projection map prT :

Sym(Ω)→ Sym(T ) is uniform, that is,

| pr−1
T (g)| = |Ω|!

|T |!

for all g ∈ Sym(T ).

Lemma 3.7.3 ([4, Observation 12]). Let g ∈ Sym(Ω) and let T ⊆ Ω. Let G ≤
Sym(T ) where Sym(T ) is considered as a subgroup of Sym(Ω). Then the orbits of

the subgroup of Sym(T ) generated by G and gT are exactly the intersection of T with

those orbits of the subgroup of Sym(Ω) generated by G and g which have non-empty

intersection with T .

We are now ready to prove the general case.

Lemma 3.7.4. Let H ≤ Sn be a permutation group with at most
√
n fixed points. Let

p be the probability thatH and a random permutation generate an intransitive group.

Then we have

p ≤ 1√
n

+
15.2

n
for n ≥ 104.

Proof. Put G = Sn and let Ω be the permutation domain. Also, set F = fixΩ(H) and

R = Ω \F . Let g ∈ G. Note that the group 〈g,H〉 is intransitive if and only if not all

elements of R are in the same 〈g,H〉-orbit or there is a g-invariant subset of F , i.e.,

g ∈ StabG({A}) for some A ⊆ F . Let p1 be the probability that there is a g-invariant

subset of F , and let p2 be the probability that not all elements of R are in the same

〈g,H〉-orbit. By the union bound, we have p ≤ p1 + p2. Let f = |F | so that f ≤
√
n.
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Now,

p1 =
|
⋃
A⊆F StabG({A})|

|G|
≤
∑
A⊆F

| StabG({A})|
|G|

=

f∑
i=1

∑
A⊆F
|A|=i

| StabG({A})|
|G|

=

f∑
i=1

(
f

i

)
· i!(n− i)!

n!

=

f∑
i=1

f(f − 1) · · · (f − i+ 1)

n(n− 1) · · · (n− i+ 1)

≤
f∑
i=1

(
f

n

)i
≤ f

n
+

(
f

n

)2

+ (f − 2)

(
f

n

)3

≤ 1√
n

+
1

n
+

√
n− 2

n3/2

≤ 1√
n

+
2

n
.

Now set HR = {hR : h ∈ H}, where hR is as in Definition 3.5.1. Then,

p2 =
|{g ∈ G : not all elements of R are in the same 〈g,H〉-orbit}|

|G|

=
|{g ∈ G : 〈gR, HR〉 is intransitive on R }|

|G|

=
(|Ω|!/|R|!)|{g ∈ Sym(R) : 〈g,HR〉 is intransitive on R }|

|Ω|!

=
|{g ∈ Sym(R) : 〈g,HR〉 is not transitive on R }|

|R|!

≤ 11.9

n− f

≤ 11.9

n−
√
n
,

where the second equality follows from Lemma 3.7.3, the third equality follows from

Lemma 3.7.2, and the first inequality follows from Lemma 3.7.1 since HR is fixed-

point-free on R and |R| = n− f ≥ n−
√
n ≥ 83. Thus we have

p ≤ p1 + p2 ≤
1√
n

+
2

n
+

11.9

n−
√
n
≤ 1√

n
+

15.2

n
,

where the last inequality holds since n ≥ 104.

We need an elementary lemma to prove the main results of this section.
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Lemma 3.7.5. Let H ≤ Sn be a permutation group. Let p1 be the probability that a

random permutation is contained in an intransitive maximal subgroup of Sn contain-

ing H . Let p2 be the probability that H and a random permutation in Sn generate an

intransitive subgroup. Then we have p1 ≤ p2.

Proof. Let M be an intransitive maximal subgroup of Sn containing H . Then for

any g ∈ M , 〈H, g〉 ≤ M . Since 〈H, g〉 is contained in the intransitive subgroup

M , it must be intransitive. Conversely, let g ∈ Sn be a permutation such that the

group 〈H, g〉 is intransitive. Then this group is contained in an intransitive maximal

subgroup of Sn by the first paragraph of Section 2.6, and clearly contains H and g.

The result now follows.

We now state and prove the main results of this section.

Theorem 3.7.6. Let g ∈ Sn be a permutation with at most
√
n fixed points. Let p

be the probability that a random permutation is contained in an intransitive maximal

subgroup of Sn containing g. Then we have

p ≤ 1√
n

+
26

n
for n ≥ 496.

Proof. The proof follows from Lemmas 3.7.4 and 3.7.5 by setting H = 〈g〉.

3.8 The transitive imprimitive case

Let G = Sn and let g ∈ G be a permutation with at most
√
n fixed points. In this

section we consider the probability that a random permutation in G is contained in

a transitive imprimitive maximal subgroup of G containing g. More precisely, we

consider the ratio in (3.4) in the case M is transitive imprimitive.

First, we give an easy combinatorial fact.

Lemma 3.8.1. Let Ω be a set with n elements. Let n = ab, where a, b ∈ Z+. Then

the number of partitions of Ω into b subsets of size a is

n!

(a!)b · b!
.
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Note that the transitive imprimitive maximal subgroups of Sn containing g correspond

to g-invariant partitions of the permutation domain into subsets of equal size greater

than 1. Thus we are really interested in bounding the proportion of such g-invariant

partitions.

We first state and prove the result in the case where the blocks have size at least 3 and

then consider the remaining cases in another lemma.

Lemma 3.8.2. Let g ∈ Sn be a permutation with at most
√
n fixed points. Let S be

the set of partitions of the permutation domain into b blocks of size a, where a > 2

and b > 1. Let p be the proportion of g-invariant partitions in S. Then we have

p ≤ 1

2n3/2
for n ≥ 57.

Proof. Let Ω be the permutation domain and let c1, . . . , cr be a subset of Ω containing

exactly one element from each cycle of g. Denote by f the number of fixed points

of g so that f ≤
√
n. Consider an arbitrary but fixed partition in S and label its

blocks from 1 to b. We call such a partition a labelled partition. It is easy to see that

a g-invariant labelled partition is uniquely determined by the placement of elements

c1, . . . , cr in its blocks and the induced action of g on the set of its blocks. The number

of ways of distributing the elements c1, . . . , cr into the blocks is at most br. Therefore,

the number of g-invariant labelled partitions is at most brb!. Since there are b! ways of

labelling the blocks of a given partition in S, it follows that the number of g-invariant

partitions in S is at most br. Note also that |S| = n!/(a!bb!) by Lemma 3.8.1. Using

Stirling’s bound (Theorem 3.5.2), we have

p ≤ br

n!/((a!)b · b!)
=
br · (a!)b · b!

n!
≤ br · (e

√
a(a/e)a)b · e

√
b(b/e)b√

2πn(n/e)n

=
e · ab/2√

2πn · bn−r−b−1/2
.

Thus it suffices to show that

e · ab/2√
2πn · bn−r−b−1/2

≤ 1

2n3/2
(3.9)

for n ≥ 57. Note that n = ab and so (3.9) holds if and only if

e
√

2/π · nb/2+1 ≤ bn−r−b/2−1/2. (3.10)
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Taking logarithms of both sides of (3.10), we see that (3.9) holds if and only if

1 + ln(
√

2/π) + (b/2 + 1) ln(n) + (b/2) ln(b) ≤ (n− r − 1/2) ln(b). (3.11)

Note that r, the number of cycles of g, is maximum when all cycles of g are of length

1 or 2. Thus it follows that r ≤ f + (n−f)/2 ≤ (n+
√
n)/2. Therefore, it is enough

to show that

1 + ln(
√

2/π)

ln(b)
+

(
b

2
+ 1

)
· ln(n)

ln(b)
+
b

2
≤ n−

√
n− 1

2
. (3.12)

(3.12) trivially holds for b = 2, n ≥ 31 and also for b = 3, n ≥ 26. Also holding n

fixed, the left-hand side of (3.12) is an increasing function of b on [4,∞]. Note that

b ≤ n/3 by assumption, and hence for b ≥ 4 the inequality (3.12) is implied by

1 + ln(
√

2/π)

ln(n/3)
+
(n

6
+ 1
)
· ln(n)

ln(n/3)
+
n

6
≤ n−

√
n− 1

2
,

which holds if and only if n ≥ 57. This completes the proof. This completes the

proof.

We need the following lemma.

Lemma 3.8.3. Let g ∈ Sym(Σ) be a fixed-point-free permutation all of whose cycles

are of the same size. Denote by n(g,Σ) the number of g-invariant partitions of Σ into

blocks of size 2. Then n(g,Σ) is maximal when the cycles of g are of size 2.

Proof. Let x ∈ Sym(Σ) be a fixed-point-free involution and let h ∈ Sym(Σ) be a

fixed-point-free permutation all of whose cycles are of the same size. We need to

show that n(h,Σ) ≤ n(x,Σ). We may assume by raising h to a suitable power that

h is fixed-point-free of order a prime p. If p = 2, there is nothing to prove. If p > 2,

then we have |Σ| = 2pk for some integer k (note that we may assume Σ has even size

since otherwise there is nothing to prove). This means that there are pk cycles of x,

each of length 2. Suppose first that k is even. The number of x-invariant partitions of

Σ into blocks of size 2 where no block is fixed is equal to

(pk)!

(2!)pk/2 · (pk/2)!
· 2pk/2 =

(pk)!

(pk/2)!
.

This follows since each such partition can be obtained by breaking the pk cycles into

groups each consisting of two cycles and for each group forming a partition that is
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left invariant by these cycles. In particular, we have n(x,Σ) ≥ (pk)!/(pk/2)!. On

the other hand, h is a permutation having 2k cycles, each of length p > 2, and so an

h-invariant partition can have no block fixed. Arguing as above and noting that there

are p distinct ways of forming a partition out of two cycles of length p that is also left

invariant by these cycles (distribute the elements in one cycle into p empty blocks and

then there are p distinct ways of distributing the elements in the other cycle into the

blocks), we see that

n(h,Σ) =
(2k)!

(2!)k · k!
· pk.

Assuming pk ≥ 8, that is, (p, k) 6= (3, 2), we have

n(x,Σ) ≥ (pk)!

(pk/2)!
≥
(
pk

2

)pk/2
≥
(
pk

2

)3k/2

≥ (pk)k ≥ n(h,Σ).

Also for (p, k) = (3, 2), we have n(x,Σ) ≥ 6!/3! = 120 ≥ 27 = n(h,Σ). Thus, the

result holds for even k. Suppose now that k is odd. Arguing similarly as before, the

number of x-invariant partitions with exactly one block fixed is equal to(
pk

1

)
· (pk − 1)!

(2!)(pk−1)/2 · ((pk − 1)/2)!
· 2(pk−1)/2 =

(pk)!

((pk − 1)/2)!
.

In particular, we have n(x,Σ) ≥ (pk)!/((pk − 1)/2)!. Also, as before, n(h,Σ) =

(2k)!/((2!)kk!) ·pk. Assuming pk ≥ 8, that is, (p, k) /∈ {(3, 1), (5, 1), (7, 1)} we have

n(x,Σ) ≥ (pk)!

((pk − 1)/2)!
≥
(
pk + 1

2

)(pk+1)/2

≥
(
pk

2

)pk/2
≥
(
pk

2

)3k/2

≥ (pk)k

≥ n(h,Σ).

Note that n(h,Σ) ≤ n(x,Σ) trivially holds for (p, k) ∈ {(3, 1), (5, 1), (7, 1)}. Thus,

the result also holds for odd k. The proof is complete.

We now state and prove our result in the general case.

Lemma 3.8.4. Let g ∈ Sn be a permutation with at most
√
n fixed points. Let S be

the set of partitions of the permutation domain into b blocks of size a, where a > 1

and b > 1. Let p be the proportion of g-invariant partitions in S. Then we have

p ≤ 1

2n3/2
for n ≥ 106.
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Proof. By Lemma 3.8.2 we may assume that a = 2. Note that, in this case, a set of

blocks cyclically permuted by g is permuted either by one cycle of even length or by

two cycles of equal length. Write g = gi1gi2 · · · gik where 1 ≤ i1 < i2 < . . . < ik ≤ n

and gij is the product of cycles of length ij in the cycle decomposition of g. Let Ωj be

the subset of Ω consisting of the elements in the cycles of gij so that Ω =
⊔k
j=1 Ωj .

Note that if g is to fix a partition, the number of cycles of length ij must be even for ij

odd. Thus we may assume that |Ωj| is even for all j. Now, viewing gij as an element

of Sym(Ωj), a g-invariant partition of Ω can be regarded as a union of gij -invariant

partitions of Ωj , for j = 1, . . . , k. We now set some notation. For a set Σ and a

permutation h ∈ Sym(Σ), denote by n(h,Σ) the number of h-invariant partitions of

Σ into blocks of size 2. Thus we have

n(g,Ω) =
k∏
j=1

n(gij ,Ωj).

Fix some ij ≥ 2, and set h = gij , Σ = Ωj . Let x ∈ Sym(Σ) be a fixed-point-free

involution. By Lemma 3.8.3 we have n(h,Σ) ≤ n(x,Σ). We may therefore assume

that g is an involution. Let c be the number of 2-cycles of g so that n = f + 2c.

Arguing as above, we have n(g,Ω) = n(g1,Ω1) · n(g2,Ω2). Clearly,

n(g1,Ω1) =
f !

(2!)f/2 · (f/2)!
≤
(
f

2

)f/2
.

The number of g2-invariant partitions of Ω2 into blocks of size 2 with exactly i blocks

fixed is

ci =


(
c

i

)
· (c− i)!

(2!)(c−i)/2 · ((c− i)/2)!
· 2(c−i)/2 if i− c ≡ 0 (mod 2),

0 if i− c ≡ 1 (mod 2).

=


c!

i! · ((c− i)/2)!
if i− c ≡ 0 (mod 2),

0 if i− c ≡ 1 (mod 2).

Note that ci ≤ c! for each i. Thus,

n(g2,Ω2) =
c∑
i=0

ci ≤ c · c!.

Note also that |S| = n!/((2!)n/2 · (n/2)!) ≥ (n/4)n/2. Using Stirling’s bound (Theo-
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rem 3.5.2), we have

p =
n(g,Ω)

|S|
=
n(g1,Ω1) · n(g2,Ω2)

|S|
≤ (f/2)f/2 · c · c!

(n/4)n/2

= c · c! ·
(

2f

n

)f/2
·
(

4

n

)c
≤ c · e

√
c ·
(

2f

n

)f/2
·
(

4c

en

)c
.

Note that f ≤
√
n and (n−

√
n)/2 ≤ c ≤ n/2. Thus we have

p ≤ e ·
(n

2

)3/2

·
(

2

e

)n−
√
n

2

≤ 1

2n3/2
,

where the last inequality holds for n ≥ 106. The proof is complete.

We now state and prove the main results of this section.

Theorem 3.8.5. Let g ∈ Sn be a permutation with at most
√
n fixed points. Let p

be the probability that a random permutation is contained in a transitive imprimitive

maximal subgroup of Sn containing g.

p ≤ 1

n
for n ≥ 106.

Proof. Let Σ be the collection of transitive imprimitive maximal subgroups of Sn

containing g. For a, b > 1 with ab = n, let Σa,b ⊆ Σ be the set of members of Σ that

leave invariant a (unique) partition of the permutation domain into b blocks of size a

so that Σ =
⊔
a,b>1
n=ab

Σa,b. By Theorem 3.8.4, we have

|Σa,b| ≤
1

2n3/2
· n!

a!bb!
.

Also, for M ∈ Σa,b, we have |M | = a!bb!. Thus,

p =
|
⋃
M∈Σ M |
|Sn|

≤
∑
M∈Σ

|M |
|Sn|

=
∑
a,b>1
n=ab

∑
M∈Σa,b

|M |
|Sn|

=
∑
a,b>1
n=ab

|Σa,b| ·
a!bb!

|Sn|
≤
∑
a,b>1
n=ab

1

2n3/2

≤ 1

n
,

where the last inequality holds because the number of positive divisors of n is clearly

at most 2
√
n.
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3.9 Main results

We put together the results we have obtained so far to state and prove the main results

of this chapter that will be used in Chapter 4 to prove the main theorem of the thesis

(Theorem 1.9.1).

Theorem 3.9.1. Let g ∈ Sn be a permutation with at most
√
n fixed points. Let p be

the probability that g and a random permutation generate Sn. Then for n ≥ 106, we

have

p ≥


1
2
−
(

1√
n

+ 16.2
n

+ 1
n2

)
if g ∈ An,

1−
(

1√
n

+ 16.2
n

+ 1
n2

)
if g ∈ Sn \ An.

Proof. Note that

p =
|{x ∈ Sn : 〈g, x〉 = Sn}|

|Sn|
.

If g ∈ Sn \ An then we have

p =
|{x ∈ Sn : 〈g, x〉 ≥ An}|

|Sn|
.

If g ∈ An then we have

p ≥ |{x ∈ Sn : 〈g, x〉 ≥ An}| − n!/2

|Sn|
=
|{x ∈ Sn : 〈g, x〉 ≥ An}|

|Sn|
− 1

2
.

The result now follows from Theorem 3.4.3.

Theorem 3.9.2. Let g ∈ An be a permutation with at most
√
n fixed points. Let p be

the probability that g and a random permutation generate An. Then we have

p ≥ 1− 2 ·
(

1√
n

+
16.2

n
+

1

n2

)
for n ≥ 106.

Proof. Note that

p =
|{x ∈ An : 〈g, x〉 = An}|

|An|
≥ |{x ∈ Sn : 〈g, x〉 ≥ An}| − n!/2

|An|

= 2 · |{x ∈ Sn : 〈g, x〉 ≥ An}|
|Sn|

− 1.

The result now follows from Theorem 3.4.3.
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CHAPTER 4

HAMILTONIAN CYCLES IN GENERATING GRAPHS

In this chapter we use the results obtained in Chapter 3 to prove that the generating

graphs of Sn and An are Hamiltonian provided that n ≥ 107.

4.1 Graphs

In this section we introduce some basic terminology in graph theory.

A graph Γ is a finite, non-empty set V = V (Γ) together with a set E = E(Γ) of

2-element subsets of distinct elements of V . The set V is called the vertex set and

the set E is called the edge set. Elements of V are called vertices and the members

of E are called edges.

If e = {u, v} is an edge in Γ, then u and v are said to be adjacent, and u (or v) and e

are said to be incident. We denote the edge {u, v} simply by uv or vu.

The degree d(Γ, v) of a vertex v in Γ is the number of edges of Γ incident with v.

A graph ∆ is a subgraph of the graph Γ if V (∆) ⊆ V (Γ) and E(∆) ⊆ E(Γ).

Let U ⊆ V (Γ). Then the subgraph of Γ induced by U is the graph having U as its

vertex set and whose edge set consists of those edges of Γ that are incident with two

elements of U .

The graph Γ is called bipartite if the vertex set V (Γ) can be partitioned into two

subsets V1 and V2 such that every edge of Γ is incident with a vertex from V1 and a

vertex from V2.

41



The graph Γ is called complete if every pair of its vertices are adjacent.

A cycle in Γ is a finite sequence v1, v2, . . . , vn, v1 (n ≥ 3) of adjacent vertices with

vi 6= vj for i 6= j.

The graph Γ is said to be Hamiltonian if it has a cycle that contains each of its

vertices. Such a cycle is called a Hamiltonian cycle.

4.2 Hamiltonian cycles in graphs

We note that a Hamiltonian cycle is named after Sir William Rowan Hamilton, who

devised a puzzle in which such a path along the polyhedron edges of a dodecahedron

was sought (this is the Icosian game). The problem of establishing the existence of

a Hamiltonian cycle in a graph has been investigated in the literature with respect to

several parameters. For the purposes of this thesis we need results that depend on

the vertex degrees. Roughly speaking, a graph contains a Hamiltonian cycle if it has

“enough” edges.

Theorem 4.2.1 (Dirac, 1952 [24]). A simple graph with n ≥ 3 vertices is Hamilto-

nian if the degree of each vertex is at least n/2.

The next result is due to Ore and can be viewed as a generalization of Dirac’s result.

Theorem 4.2.2 (Ore, 1960 [52]). A simple graph with n ≥ 3 vertices is Hamiltonian

if the sum of vertex degrees of every pair of distinct non-adjacent vertices is at least

n.

In 1962 Pósa gave a more general result.

Definition 4.2.3. Let Γ be a graph with n vertices and vertex degrees d1 ≤ d2 ≤
. . . ≤ dn. Then Γ satisfies Pósa’s criterion if dk ≥ k + 1 for all positive integers k

with k < n/2.

Theorem 4.2.4 (Pósa, 1962 [53]). A graph is Hamiltonian if it satisfies Pósa’s crite-

rion.

We note that Theorems 4.2.1 and 4.2.2 can be derived from Theorem 4.2.4.
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Yet another result in this direction was given by Chvátal.

Definition 4.2.5. Let Γ be a graph with n ≥ 3 vertices and vertex degrees d1 ≤
d2 ≤ . . . ≤ dn. Then Γ satisfies Chvátal’s criterion if dn−i ≥ n − i whenever

di ≤ i < n/2.

Theorem 4.2.6 (Chvátal, 1972 [18]). A graph is Hamiltonian if it satisfies Chvátal’s

criterion.

The best vertex degree characterization of Hamiltonian graphs is due to Bondy and

Chvátal.

Definition 4.2.7. Let Γ be a graph with n vertices. The closure cl(Γ) of Γ is the graph

(with the same vertex set) constructed from Γ by adding for all non-adjacent pairs of

vertices u and v with d(Γ, u) + d(Γ, v) ≥ n the new edge uv.

Theorem 4.2.8 (Bondy, Chvátal, 1972 [6]). A graph is Hamiltonian if and only if its

closure is Hamiltonian.

4.3 Proof of the main theorem

In this section we prove the main theorem of the thesis (Theorem 1.9.1).

We first prove our result in the case of symmetric groups and then turn our attention

to alternating groups.

Before we consider the two cases, we introduce some notation and make an observa-

tion that will be used in both cases.

Notation 4.3.1. Let A1(n) and A2(n) be the sets of permutations in Sn \An and An,

respectively, with less than
√
n fixed points. Set B1(n) = (Sn \ An) \ A1(n) and

B2(n) = An \ (A2(n) ∪ {1}).

Lemma 4.3.2. For i = 1, 2, we have

|Bi(n)| ≤ n!

2(d
√
ne)!

.
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Proof. Bi(n) is the set of permutations in Sn \ An and An, respectively, with at least

d
√
ne fixed points. Note that the number of d

√
ne-element subsets of the permutation

domain is
(

n
d
√
ne

)
, and the number of permutations in Sn \ An and in An fixing all

elements in each such subset is (n− d
√
ne)!/2. Therefore, by union bound, we have

|Bi(n)| ≤
(

n

d
√
ne

)
· (n− d

√
ne)!

2
=

n!

2(d
√
ne)!

for i = 1, 2.

4.3.1 Symmetric groups

In this subsection we show that the generating graphs of symmetric groups of degree

at least 107 satisfies Chvátal’s criterion and hence are Hamiltonian.

We need a result of Breuer, Guralnick, Lucchini, Maróti and Nagy concerning mini-

mal vertex degrees in a certain subgraph of Γ(Sn).

Theorem 4.3.3 ([11, Theorem 6.1]). Let Γb(Sn) be the bipartite subgraph of Γ(Sn)

obtained by throwing away edges between elements in Sn \An. Then for n > 15, the

degree of every vertex in Γb(Sn) is at least n!/n3.

We also set some notation.

Notation 4.3.4. For a graph Γ, we set cl(1)(Γ) = cl(Γ) and inductively set cl(i)(Γ) =

cl(cl(i−1)(Γ)) for every positive integer i ≥ 2. The graph cl(i)(Γ) is called the i-th

closure of the graph Γ.

In the next lemma we investigate adjacency in the graph cl(3) (Γ(Sn)).

Lemma 4.3.5. Let n ≥ 107 be an integer. The set Sn \ An induces a complete

subgraph in the graph cl(3) (Γ(Sn)). Furthermore, every vertex inA1(n) is adjacent to

every other vertex and every vertex inB1(n) is adjacent to at least (n!/2)−1+(n!/n3)

other vertices in the graph cl(3) (Γ(Sn)).

Proof. Set Γ0 = Γ(Sn). Since 1/
√
n + 16.2/n + 1/n2 ≤ 1/4 for n ≥ 107, by

Theorem 3.9.1, for u ∈ A1(n) we have

d(Γ0, u) ≥
(

1−
(

1√
n

+
16.2

n
+

1

n2

))
· n! ≥ 3

4
n!,
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and for v ∈ A2(n) we have

d(Γ0, v) ≥ 1

4
n!.

We now show that in the graph Γ1 = cl(Γ(Sn)) the set A1(n) induces a complete

subgraph and every vertex in A1(n) is adjacent to every vertex in A2(n).

The first claim holds since for any u, v ∈ A1(n) we have

d(Γ0, u) + d(Γ0, v) ≥ (3/2)n! > n!− 1.

Also, the latter claim holds since for u ∈ A1(n) and v ∈ A2(n), we have

d(Γ0, u) + d(Γ0, v) ≥ n! > n!− 1.

Now we show that in the graph Γ2 = cl(2) (Γ(Sn)) every vertex in A1(n) is adjacent

to every other vertex in the graph. Let u ∈ A1(n) and v ∈ B1(n) ∪ B2(n). Then

by what we have shown above, in the graph Γ1, u is adjacent to every other vertex in

A1(n) ∪ A2(n). Also, by Theorem 4.3.3, d(Γ1, v) ≥ n!/n3. Thus, by Lemma 4.3.2,

we have

d(Γ1, u) + d(Γ1, v) ≥ (n!− 2− |B1(n) ∪B2(n)|) +
n!

n3

≥
(
n!− 2− n!

(d
√
ne)!

)
+
n!

n3

≥ n!− 1.

We next show that in the graph Γ3 = cl(3) (Γ(Sn)) every vertex in B1(n) is adjacent

to every other vertex in B1(n). Let u, v ∈ B1(n). By Theorem 4.3.3 and Lemma

4.3.2, we have

d(Γ2, u) + d(Γ2, v) ≥ 2

(
|A1(n)|+ n!

n3

)
= 2

(
n!

2
− |B1(n)|+ n!

n3

)
≥ 2

(
n!

2
− n!

(d
√
ne)!

+
n!

n3

)
≥ n!− 1.

It follows from what we have shown above and from Theorem 4.3.3 that every vertex

in B1(n) is adjacent to at least (n!/2) − 1 + (n!/n3) other vertices in the graph Γ3.

The proof is complete.

We are now ready to prove the main theorem of the thesis (Theorem 1.9.1) in the case

of symmetric groups.
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Theorem 4.3.6. The graph cl(3) (Γ(Sn)) satisfies Chvátal’s criterion for n ≥ 107.

Proof. Set Γ = cl(3) (Γ(Sn)). Let d1 ≤ d2 ≤ . . . ≤ dn!−1 be the vertex degrees of the

graph Γ. Let k be a positive integer with k < (n!− 1)/2. It is sufficient to show that

dn!−1−k ≥ n!− 1− k. (4.1)

By Lemma 4.3.5, every vertex in A1(n) has largest possible degree, namely, n! − 2.

Therefore, (4.1) holds for k < |A1(n)|. Thus we may assume that k ≥ |A1(n)|. By

Lemma 4.3.2, we have

k ≥ |A1(n)| = |Sn \ An| − |B1(n)| ≥ n!

2
− n!

2(d
√
ne)!

.

But then by Lemma 4.3.5, we have

dn!−1−k ≥
n!

2
− 1 +

n!

n3
≥ n!

2
− 1 +

n!

2(d
√
ne)!

≥ n!− 1− k.

The proof is complete.

Proof of Theorem 1.9.1 in the case of symmetric groups. By Theorem 4.3.6 the graph

cl(3) (Γ(Sn)) satisfies Chvátal’s criterion. Thus by Theorem 4.2.6 the graph cl(3) (Γ(Sn))

is Hamiltonian. Then by three applications of Theorem 4.2.8 we have that Γ(Sn) is

Hamiltonian for n ≥ 107.

4.3.2 Alternating groups

In this subsection we show that the generating graphs of alternating groups of degree

at least 107 satisfy Pósa’s criterion and hence are Hamiltonian.

We need a result of Breuer, Guralnick, Lucchini, Maróti, Nagy on the minimal vertex

degrees in Γ(An).

Theorem 4.3.7 ([11, Theorem 5.3]). Let n ≥ 8. Then the degree of every vertex in

Γ(An) is at least n!/(10n3).

Theorem 4.3.8. The graph Γ(An) satisfies Pósa’s criterion for n ≥ 107.
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Proof. Let A(n) be the set of permutations in An with less than
√
n fixed points and

let B(n) = An \ A(n). Then by Lemma 4.3.2,

|B(n)| ≤ n!

2(d
√
ne)!

.

Let d1 ≤ d2 ≤ . . . ≤ dn!/2−1 be the vertex degrees in the graph Γ(An). Let k <

(n!/2− 1)/2. We need to show dk ≥ k + 1. If there exists i ≤ k such that di is equal

to the vertex degree of a permutation in A(n), then by Theorem 3.9.2 we have

dk ≥ di ≥
(

1− 2 ·
(

1√
n

+
16.2

n
+

1

n2

))
· n!

2
≥ n!

4
≥ k + 1,

where the third inequality holds since 1/
√
n + 16.2/n + 1/n2 ≤ 1/4. Thus we may

assume that di is the vertex degree of a permutation in B(n) for each i ≤ k. But then

k ≤ |B(n)| and hence by Theorem 4.3.7 we have

dk ≥
n!

10n3
≥ n!

2(d
√
ne)!

+ 1 ≥ |B(n)|+ 1 ≥ k + 1,

where the second inequality holds since n ≥ 101. This completes the proof.

We are now ready to prove the main theorem of the thesis (Theorem 1.9.1) in the case

of alternating groups.

Proof of Theorem 1.9.1 in the case of alternating groups. The graph Γ(An) satisfies

Pósa’s criterion by Theorem 4.3.8 and hence Γ(An) is Hamiltonian for n ≥ 107 by

Theorem 4.2.4.
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