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ABSTRACT

ON THE GENERATING GRAPHS OF THE SYMMETRIC AND
ALTERNATING GROUPS

Erdem, Fuat
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Giilin Ercan

Co-Supervisor : Dr. Attila Maréti

September 2018, [58| pages

Dixon showed that the probability that a random pair of elements in the symmetric
group S,, generates .S,, or the alternating group A, tends to 1 as n — oo. (A general-
ization of this result was given by Babai and Hayes.) The generating graph I'(G) of
a finite group G is defined to be the simple graph on the set of non-identity elements
of G with the property that two elements are connected by and edge if and only if
they generate (G. The purpose of this thesis is to study the graphs I'(.S,,) and T'(A4,,).
We prove that the graphs I'(.S,,) and I'(A,,) contain Hamiltonian cycles provided that
n > 107. This improves a recent result of Breuer, Guralnick, Lucchini, Maréti and
Nagy. Our result can be viewed as another step towards the conjecture of Breuer, Gu-
ralnick, Lucchini, Maréti and Nagy stating that for an arbitary finite group G of order
at least 4 the generating graph I'(G) contains a Hamiltonian cycle if and only if G/N
is cyclic for every non-trivial normal subgroup N of G. (This is a stronger form of an
older conjecture of Breuer, Guralnick and Kantor.) Our results may have applications
to dimensions of fixed point spaces of elements of a finite group G acting on a finite

dimensional vector space V' with Cy (G) = 0.



Keywords: generating graph, hamiltonian cycle, symmetric group, alternating group.
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0z

SIMETRIK VE ALTERNE GRUPLARIN URETICI GRAFLARI UZERINE

Erdem, Fuat
Doktora, Matematik Boliimii
Tez YOneticisi : Prof. Dr. Giilin Ercan

Ortak Tez Yoneticisi : Dr. Attila Mar6ti

Eyliil 2018 ,[58] sayfa

Dixon, simetrik grup S,,’den rastgele alinan bir permutasyon ikilisinin S’ ya da
alterne grup A,,’i iiretme olasiliginin n sonsuza giderken limitinin 1 oldugunu gos-
termistir. Sonlu bir G' grubunun tiretici grafi I'(G), kdgenoktalart G' grubunun birim
elemanindan farkli elemanlar1 olan ve herhangi farkli iki kdsenoktanin birbirine bir
kenar ile bagli olmalarinin bu iki kdsenoktanin GG grubunu iiretmesi kosuluna baglh
oldugu graf olarak tanimlanmaktadir. Bu tezde esas amag I'(.S,,) ve I'(A4,,) graflarim
calismaktir. Bu tezde I'(S,,) ve I'(4,,) graflarimin n > 107 kosulu alinda Hamilton
dongiiler icerdigini gosteriyoruz. Bu sonug, Breuer, Guralnick, Lucchini, Maréti and
Nagy’nin kisa bir siire 6nce elde ettikleri bir sonucunun iyilestirmesidir. Bu sonug
ayrica su saninin ispatlanmasina yonelik bir adim olarak goriilebilir: Mertebesi en az
4 olan her sonlu G grubu i¢in, G’nin tretici grafi olan I'(G)’nin bir Hamilton dongii
icermesi ancak ve ancak G grubunun birim gruptan farkli her bir N normal altgrubu
icin G/N grubunun devirli olmasiyla miimkiindiir. (Bu sani, Breuer, Guralnick and
Kantor’un daha 6nceki bir sanisinin daha giiclii bir halidir.) Elde ettigimiz sonucla-
rin, sonlu boyutlu bir V' vektor uzayma Cy (G) = 0 olacak sekilde etki eden sonlu bir

(G grubunun elemanlarinin sabit nokta uzaylarinin boyutlarina iligkin uygulamasinin
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olabilecegi muhtemel goriinmektedir.

Anahtar Kelimeler: iiretici graf, hamilton dongii, simetrik grup, alterne grup.
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CHAPTER 1

INTRODUCTION

1.1 Hamiltonian cycles in Cayley graphs

We say that a group G is generated by a subset X if the only subgroup of GG containing
X is (G itself. Generating sets play an important role in group theory and combina-
torics. One of the most important related construction is the (directed) Cayley graph.
This is the graph whose vertex set is G and two elements g and h are connected by a
directed edge (labelled by z) if ¢ = ha where x € X. The corresponding undirected
and unlabelled graph is called a Cayley graph. There are many interesting conjectures
on Cayley graphs. For example, a weaker form of a conjecture of Lovész, stated in
1969, states that in a finite and connected Cayley graph there always exists a Hamil-
tonian cycle. In 1996 Babai [3] published a conjecture sharply contradicting this
conjecture. In this thesis we will also consider Hamiltonian cycles but in a slightly

different setting.

1.2 Generation of symmetric groups

The other mathematical structure this thesis is concerned with is a finite group which
can be generated by 2 elements. Many interesting groups have this property. For
example, it is easy to see that the symmetric group S,, of degree n can be generated
by 2 elements. In 1882 Netto conjectured that almost all pairs of permutations in S,
generate S,, or the alternating group A,,. This conjecture was proved almost a cen-
tury later by Dixon [25]. Dixon considered the probability p(.S,,) that a random pair

of elements from the symmetric group S,, (with respect to the uniform distribution)
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generates either S, or the alternating group A,,. He proved that this probability tends
to 1 as n tends to infinity. More precisely, he proved that for sufficiently large n we
have 1—2/(Inlnn)* < p(S,). This estimate was improved by Bovey and Williamson
[7] to 1 — e~Vinn o p(S,,) for sufficiently large n. In 1980 a better lower bound of
the form 1 — n~'*°() was given by Bovey [8]. Then, proving a conjecture of Dixon,
Babai [2]] showed that p(S,,) = 1 — (1/n) + O(1/n?). Finally, Dixon [25] established

an even better asymptotic formula for p(S,,) namely

For an alternative proof of this asymptotic formula using [19] see [20]. The latter
two results depend on the Classification of Finite Simple Groups. Everything said
above about p(.S,,) is also true for the probability p(A,,) of a random pair of elements
of A, (with respect to the uniform distribution) that generates A,,. For an explicit,
asymptotically sharp lower and upper bound for p(A,,) and p(.S,) see [49] and [50].
The most recent result on the probability of generating the symmetric or alternating
groups is obtained by Virchow [58]. His proof does not depend on the Classification

of Finite Simple Groups.

1.3 The probability to generate a simple group

The alternating group A,, is a non-abelian simple group for n > 5. All non-abelian
finite simple groups can be generated by 2 elements. This was proved by Steinberg
[[54]] and Aschbacher and Guralnick [[1]]. Thus it makes sense to consider, for a non-
abelian finite simple group G, the probability p(G) that a random pair of elements
from G generate G. Dixon [26] conjectured that p(G) tends to 1 as the size of the

non-abelian finite simple group G tends to infinity.

Kantor and Lubotzky [37]] confirmed Dixon’s conjecture for classical (and small rank
exceptional) groups. Later the proof of Dixon’s conjecture was completed by Liebeck
and Shalev in [40], where the large rank exceptional groups of Lie type were dealt

with.



1.4 3/2-generated groups

Steinberg [|54]] introduced a stronger generation property for finite groups than that of
2-generation. A finite group G is said to be 3/2-generated if for every non-identity
element g in G there exists an b € G such that g and h generate GG; thatis, G = (g, h).
Steinberg conjectured that every non-abelian finite simple group is 3/2-generated.
This was proved by Guralnick and Kantor in [35]. In fact, there is a related more
general notion, the notion of spread. A group G is said to have spread £ if for any
non-identity elements ¢y, . .., gy there exists an element g € G such that (g, g;) = G
for every ¢ with 1 < 7 < k. In this language a group is 3/2-generated if and only if
it has spread 1. Later, Breuer, Guralnick, Kantor [10] proved that every non-abelian
finite simple group has spread 2. In the same paper they conjectured that every finite
group of spread 1 is also a group of spread 2. This conjecture has been reduced
by Guralnick [34] to the case of almost simple groups and work on such group was

carried out by Burness and Guest [16].

1.5 The notion of the generating graph

In another paper on the probability p(G) to generate a non-abelian finite simple group
G Liebeck and Shalev [41]] proved that

1_WIC:)<I)(G><1_WZG)

for some universal positive constants ¢; and co where m(G) denotes the minimal in-
dex of a proper subgroup in GG. (In case G is an alternating group, this was conjectured
earlier by Dixon and proved by Babai [2].) This result has an interesting corollary.

To state the result we need to introduce the notion of the generating graph.

Definition 1.5.1. Let G be a finite group that can be generated by 2 elements. The
generating graph ['(G) of G is the graph whose vertex set consists of the non-identity

elements of G and two vertices are connected by an edge if and only if they generate

G.

By a result of Turdn [57] in graph theory, there exists a positive universal constant ¢

such that whenever G is a non-abelian simple group the graph I'(G) contains a clique
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of size at least ¢ - m(G) (see [41, Corollary 1.7]). This was the first point when the
generating graph was (at least) implicitly defined (and used).

It is an easy observation that the clique number w(I'(G)) of the generating graph
['(G) of a finite group G is a lower bound for the minimal number o(G) of proper
subgroups of GG whose (set-theoretic) union is the whole group G. This invariant o(G)
has been much investigated in the literature. For example, Tomkinson [56] showed
that o(G) — 1 is always a prime power when G is a finite (non-cyclic) solvable group

and there is no group G (finite or infinite) such that o(G) = 7.

The name “generating graph” comes from the well-known notion of the commuting
graph. The commuting graph of a group G is the graph defined on the elements
of G in such a way that two elements are connected by an edge if and only if they
commute. This graph has much been investigated in group theory. Here we only
mention two papers which are in some sense related to the present thesis. Brown
[12[13]] investigated the minimal number of abelian subgroups of the symmetric group
S, whose union is S, in connection with the largest size of a clique in the commuting

graph of S5,,.

1.6 The study of generating graphs

The generating graph was investigated by Lucchini and Maréti in [44], [45]], and [43]].
For example, in [44], it is shown that for a nilpotent by nilpotent finite group G the
clique number of I'(G) is equal to the chromatic number of ['(G). It would be nice
to know whether this last statement holds for any solvable group GG. In some sense
this would generalize the above mentioned result of Tomkinson on ¢(G) when G is

solvable.

Let GG be a finite group that can be generated by 2 elements. Obviously the Frattini
subgroup ®(G) of GG induces an empty subgraph in ['(G). Let A(G) be the subgraph
of I'(G) induced by all non-isolated vertices in I'(G). A very interesting result of
Crestani and Lucchini [21] is that A(G) is a connected graph in case G is a solvable
group. In fact, Lucchini [42] established that for a solvable group G the diameter of
A(G) is at most 3. The question arises: is A(G) a connected graph for an arbitrary

4



finite group G, and if so, what can be said about its diameter?

This question has already been answered by Breuer, Guralnick and Kantor [10] in
case (5 is a non-abelian finite simple group, since the spread of such a GG is 2. Another
interesting case is when G is a direct product of n copies of a non-abelian finite simple
group S. Such a group need not be 2-generated. Let & = 0(.5) be the largest integer n
such that G = S™ can be generated by 2 elements. Crestani and Lucchini [22]] showed
that A(S°) is a 1-transitive connected graph. They also proved that the diameter of
A(S°) is at most 46 if |S] is large enough. Later Burness and Crestani [[15] showed
that diam(A(S?)) = 2. This generalizes the previously mentioned result in [10].
There are some further investigations in [22] on the clique number of A(S?). For

example, for S = A5 we have 6 = 19 and diam(A((A45)"?)) = 4.

1.7 A conjecture on the spread of finite groups

Breuer, Guralnick, Kantor proposed the following conjecture [10, Conjecture 1.8].

Conjecture 1.7.1 (Breuer, Guralnick, Kantor). A finite group G has spread 1 (or
equivalently is 3/2-generated) if and only if G /N is cyclic for every non-trivial nor-
mal subgroup N of G.

Note that one direction of this conjecture is trivial, since if G is a finite group with a
non-trivial normal subgroup N of G with the property that G /N is non-cyclic, then
for any non-identity element n of NV and any element ¢ € G we have (n,g) < G.
Conjecture [I.7.1] has been reduced by Guralnick [34] to the case of almost simple
groups G and work on almost simple groups has been carried out by Burness and
Guest in [16]. In the language of generating graphs the conjecture states that I'(G)
has a unique isolated vertex if and only if G/N is cyclic for every non-trivial normal

subgroup N of G.



1.8 Hamiltonian cycles in generating graphs

In this thesis we consider the following stronger conjecture [|11, Conjecture 1.6] than

Conjecture [I.7.1]

Conjecture 1.8.1 (Breuer, Guralnick, Lucchini, Maréti, Nagy). Let G be a finite
group of order at least 4. There is a Hamiltonian cycle in the generating graph I'(G)

of G if and only if G /N is cyclic for every non-trivial normal subgroup N of G.

This conjecture is known to be true for solvable groups [11, Proposition 1.1], for
sufficiently large non-abelian simple groups [11, Theorem 1.2], for sufficiently large
symmetric groups [ 11, Theorem 1.3], for certain wreath products [11, Theorem 1.4],
for all almost simple groups whose socle is a sporadic simple group [11, Theorem
1.5], and for some small groups including all non-abelian simple groups of orders at

most 107 (see [11} Section 8]).

1.9 The main theorem

One purpose of this thesis was to study Conjecture[I.8.T|for alternating and symmetric
groups. In the work of Breuer, Guralnick, Lucchini, Mard6ti, Nagy [11]] no explicit
bound was given for the degree n of an alternating group A,, and a symmetric group
Sy, such that I'(A,,) and T'(.S,,) are Hamiltonian. In fact only the existence of such a

bound was established with no information at all on its possible size.

In this thesis we prove the following.

Theorem 1.9.1 (The main theorem). The generating graphs I'(S,,) and I'(A,,) are
Hamiltonian for n > 107.

Note that the generating graph of S, and of A,, is known to be Hamiltonian for inte-

gers n with 5 < n < 13. This was established by computer calculations in [9]].

The proof of Theorem [[.9.T has two parts. The first part is group theoretic and uses

deep results on generation properties of alternating and symmetric groups. A main
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tool is a result of Babai and Hayes [4] which in turn depends on a complicated the-
orem of Luczak and Pyber [47]. One of the difficulties of our proof was to replace
the full power of [47]] with a more direct argument. We relied on basic properties of
fixed point ratios, a subject much investigated in recent years. The proof of Theo-
rem [1.9.T] relies on a structure theorem for primitive permutation groups, called the
O’Nan-Scott theorem. We apply a bound on the orders of primitive permutation
groups G < S, and a bound on the number of conjugacy classes of primitive permu-
tation groups in S,, and A,,. As a by-product of these investigations we obtain explicit
bounds in the paper by Babai and Hayes [4], and we believe that these bounds could
be applied in future works. The second part of the proof uses results from graph the-
ory. In general if the list of vertex degrees of a finite simple graph is given, then a lot
of information can be deduced about the graph. For example, in certain cases, it can

be decided whether the graph contains a Hamiltonian cycle or not.

1.10 An application to fixed point spaces

Let /' be an arbitrary field and G a finite group. Let V' be a finite dimensional F'G-
module. Assume that no non-zero vector in V' is fixed by all elements of GG. In other
words, assume that Cy/(G) = 0. For an element ¢ in G denote the fixed point space
of g acting on V by Cy(g). This is a subspace of V. Let the F'-dimension of Cy (g)
be denoted by dim(Cy (g)).

In group theory it was important to establish a bound on the average dimension of
fixed point spaces of elements of a finite group acting on a vector space. For this
purpose set avgdim(G, V) = (1/[G]) 3 dim(Cy(g)). In his 1966 PhD thesis
Neumann [51]] conjectured that if V' is a non-trivial irreducible F'G-module, then
avgdim(G, V') < (1/2)dim (V). This was eventually proved by Guralnick and Mardti
in [36].

Neumann [51]] showed that if V' is a non-trivial irreducible /'G-module for a field F'
and a finite solvable group G then there exists an element g of G with dim(Cy (g)) <
(7/18)dim (V). In fact, Neumann conjectured that for any finite group G there should
exist g € G such that dim(Cy (g)) < (1/3)dim(V’). This was eventually proved by

7



Guralnick and Malle in [33]].

Assume that G is a finite group with the property that I'(G) contains a Hamiltonian
cycle. By [11}, Proposition 1.7], we have

et > dm(Ci(s) < Sdim(V),

which is slightly weaker than the above-mentioned result of Guralnick and Maréti
[36]. However, by the same argument, it follows that there are at least (|G| —1)/2 el-
ements in G with fixed point space of dimension at most dim(V) /2. In particular, for
sufficiently large non-abelian finite simple groups G there are at least |G|/2 elements

g of G with the property that dim(Cy(g)) < (1/2)dim(V).

1.11 On recent results

Finally we mention two more recent papers on the generating graph of a finite group.
Lucchini, Maréti, Roney-Dougal [46] investigated the extent to which the generating
graph I'(G) determines the isomorphism type of G provided that I'(G) has no isolated
vertex. For example, if S is a sufficiently large non-abelian finite group and G is a
finite group with I'(G) = I'(S), then G = S. The same conclusion holds in case S
is a sufficiently large symmetric group. Recently, Cameron, Lucchini, Roney-Dougal
[17] investigated a new graph defined on a d-generated finite group G' where d is any
fixed integer, not necessarily 2. As an application of their results they described the

automorphism groups of those generating graphs I'(G) which are connected.



CHAPTER 2

PERMUTATION GROUPS

2.1 Permutations

Let (2 be a set. Then the bijections from (2 to itself form a group under composition of
maps. This group is called the symmetric group on (2 and is denoted Sym (2). The
set 2 is called the permutation domain. It is easy to see that Sym (2) = Sym (X)
whenever €2 and Y are sets having the same cardinality. Throughout the thesis §2 will
be finite. When (2 has size n, we will take 2 = {1,2,... n} unless explicitly stated

otherwise and denote the resulting symmetric group by S,,.

An element of the symmetric group is called a permutation and a subgroup of the
symmetric group is called a permutation group. A permutation g € S, fixes an
element a € Q2 if g maps a to itself, i.e., g(a) = a. A cycle of length % (or simply
a k-cycle) is a permutation which permutes £ elements cyclically and fixes all the
other elements. More precisely, a permutation g € S, is a k-cycle if g(a;) = a;.; for
1 <i<k,g(ar) = a1, and g(a;) = a; for k < j < n, where the a, are the elements
of Q. In this case g is written as (ay, as, . .., ax). Two cycles are said to be disjoint
if they have no element in common. Any permutation can be written as a product of
disjoint cycles and this writing is unique up to an ordering of the cycles and the cyclic
ordering of the elements within each cycle. This is called the cycle decomposition
of the permutation. The cycles appearing in the decomposition will be referred to as
the cycles of the permutation. (In fact, the cycles of a permutation are essentially its
orbits in the natural action of the symmetric group.) We will often omit 1-cycles in
the cycle decomposition unless no confusion arises as to which permutation group

we are working in. For example, the permutation in S¢ sending 1 to 2, 2 to 1, 3

9



to 4, 4to 5, 5 to 3, and 6 to itself can be written as (1,2)(3,4,5)(6) (or simply as
(1,2)(3,4,5)). The same permutation can also be written as (4, 5,3)(6)(2,1) (or
simply as (4,5, 3)(2, 1)). A permutation is said to have cycle type (15,2~ ... nkn)
if its cycle decomposition consists of k; distinct ¢-cycles for each ¢ = 1,...,n. Here
we omit i* if k; = 0, and simply write 4 in place of i if k; = 1. For example, the

permutation above has cycle type (1,2, 3).

A 2-cycle is called a transposition. Under this terminology any cycle (hence any
permutation) can be written as a product of transpositions: for example, the identity
permutation (the only 1-cycle) can be written as (1, 2)(1, 2) and for any integer k > 2
we have (a1, as,...,ar) = (a1,a9) - - (a1, ax_1)(a1, ai). There are various ways of
expressing a permutation as a product of transpositions (for example, we can include
in the product the identity element (1,2)(1,2) as many times as we want), however,
if a permutation is written as a product of transpositions in two different ways, then
either the number of transpositions in both cases is even or it is odd in both cases.
A permutation is called even if it can be written as a product of an even number of
transpositions and odd if it can be written as a product of an odd number of transposi-
tions. It follows that a permutation must be either even or odd. The even permutations
clearly form a subgroup of the symmetric group. This group is called the alternating
group and is denoted A,,. The map from S, to the group {1, —1} defined by sending
an even permutation to 1 and an odd permutation to —1 is a well-defined homomor-

Sp i Anl =2

phism and A,, arises as the kernel of this homomorphism. In particular,

and A4, < .5,,.

2.2 Group actions

Let G be a group and let €2 be a set. An action of GG on €2 is a map ¢ from §2 x G to
Q) with the following properties:

(i) ¢(a,1g) = aforall a € §2;

(i) ¢(p(a,g),h) =p(a,gh)foralla € Qandall g,h € G.

10



For simplicity, we suppress the name of the map and write af in place of ¢(a, g).
Given an action of G on 2 we can define a group homomorphism from G to Sym(?)
by setting the image of g € G to be the permutation sending a to a?, and this homo-
morphism is uniquely determined by the given action. Conversely, given any group
homomorphism ¢ : G — Sym(f2) we can define an action of G on (2 by defining
a? := ¢(g)(a). The homomorphism ¢ is called the permutation representation of
G corresponding to the action. Therefore, there is a bijection between the set of group
homomorphisms from G to Sym(£2) and the set of actions of G on €2. In view of this

identification, the actions of GG on {2 are essentially the group homomorphisms from

G to Sym(£2).
For a subset S C 2 and a subset H C G, we write S¥ = {s" | s € S, h € H}.
Definition 2.2.1. Let GG be a group acting on a set {2 and let S C (2 be a subset.
(i) For a € €, the set a® = {a? | g € G} is called the orbit (more precisely, the
G-orbit) containing a.

(ii) Theset{g € G | s¥ = sforall s € S} is called the pointwise stabilizer of S in
G and is denoted Stabg (.S) or G(gy. If S = {a} for some a € 2 then we simply

write G, in place of G g).

(iii) The set {g € G | S9 = S} is called the setwise stabilizer of S in G and is
denoted Stabg({S}) or Gys;.

(iv) S is called G-invariant if S¢ = S or equivalently G = Stabg({S}).

(v) For g € G, the set {s € S | s9 = s} is called the fixed point subset of g in S
and is denoted fixg(g).

Proposition 2.2.2 ([27, pp. 8, 13, 24]). Let G be a group acting on a set §). Then the
following hold.
(i) The distinct orbits form a partition of the underlying set ).
(i) G-invariant subsets of () are exactly the unions of some G-orbits.
(i) G5y and G sy are subgroups of G for any subset S C ().
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(iv) Ifa,b € Q such that a = V9 for some g € G, then G, = g~ Gyg.
(V) (The orbit-stabilizer property) |a”| = |G : G,| for any a € QL.

(vi) (Orbit Counting Lemma) The number of distinct orbits of the action of G on ()

is (1/1G1) - 2oge [ fixalg)]-

Corollary 2.2.3. Let G be a group and let g € G. Then |g%| = |G : Ca(g)|.

We say that G is transitive on 2 (or GG acts transitively on () if there is only one
orbit, i.e., for any a,b € () there exists g € G such that a¢ = b. The group G is
called intransitive if it is not transitive. We say that G is faithful if the kernel of
the permutation representation corresponding to the action is trivial, i.e., the identity

element is the only element fixing all a € (2.

2.3 Wreath products

Let H and K be groups, and let K act on a set of size n. Set B := H X ... x H
(n factors). We define the wreath product of 4 by K to be the semidirect product

B x K where the action of K on B is given by permuting the components:
(hiy. . ha)® = (b, ..o k)
forall (hy,...,h,) € Band k € K.

This group is denoted by [ ¢ K, and the subgroup B is called the base group of the

wreath product. Clearly, |H { K| = |H|"| K| provided that both H and K are finite.

2.4 Conjugacy classes and centralizers in S, and A,

In this section we investigate the conjugacy classes and centralizers in the symmetric

and alternating groups.

Given groups Gy, Gy, ..., G, we denote their direct product by [["_, G;. Also, we
denote the cyclic group of order n by C,,.
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Proposition 2.4.1 ([59, p. 16]). (Centralizer of a permutation in S,) Let g be a
permutation of type (1%1,2% ... n™). Then Cs,(9) = T[], Ci 1 Sk, where the
action of the wreath product is given by permuting the subscripts in the direct product

Cs, (9)‘ = H?:l Zklkl'

of k; copies of the group C;. In particular,

Proposition 2.4.2 ([59, p. 16]). (Conjugacy classes in S,) Two permutations in S,

are conjugate if and only if they have the same cycle type.

Since all permutations having the same cycle type form a single conjugacy class,

the number of permutations in S, having cycle type (1%1,2%2 ... n*") is equal to

n!/ [T, *'k;! by Corollary

Let G be a group and A C G be a subset. Then for g € G we denote by ¢g* the set of
conjugates of g by the elements of 4, i.e., g¢* = {a'ga | a € A}.

Proposition 2.4.3 ([59, pp. 16-17]). (Conjugacy classes in A,) Let g € A,,. Then
the following hold.

() ¢°* = g™ if g has a cycle of even length or two cycles of equal odd length.

Sn\An

(i) ¢ =gt Uyg if all cycles of g have distinct odd lengths.

It follows from Corollary [2.2.3] that in case (i) of the above proposition we have
|Cs,(g) : Ca,(g9)] =2, and in case (ii) we have Cy, (g) = Ca,(9).

The following result provides a tool for determining the cycle type of an integer power

of a permutation.

Proposition 2.4.4. Let g be a k-cycle. Let m € Z and d = ged(m, k). Then g™ is a
product of d disjoint cycles of length k /d.

2.5 Primitive permutation groups

Let GG be a group acting on a set €2. Then G also acts on the set of all partitions of (2
in the obvious way. This naturally leads to the following. A partition {€); | i € I}

of (2 is called a block system if it is preserved under the action of G, i.e., {Q; | i €
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I} ={QY | i € I}forall g € G. The elements of the partition are called blocks. The
partition consisting of the singletons and the partition consisting of the set € itself
are preserved under any group action and hence are called the trivial block systems.
Any other partition is called a system of imprimitivity for G. The group G is called
imprimitive if it has a non-trivial system of imprimitivity, and is called primitive
otherwise. The orbits of an intransitive group clearly form a block system, and hence

any intransitive group acting faithfully on a set is imprimitive.

It is known that every normal subgroup of a primitive permutation group G is transi-

tive.

A minimal normal subgroup of a finite group G is a non-trivial normal subgroup of
G which does not properly contain any other non-trivial normal subgroup of GG. The
socle soc((G) of G is defined to be the subgroup generated by all the minimal normal
subgroups of G. It turns out that a primitive permutation group GG has at most two

minimal normal subgroups.

Let G and H be two groups acting on the sets €2 and ¥, respectively. Then we say that
the action of GG on 2 is isomorphic to the action of H on X if there exist a bijection
f : Q — ¥ and a group isomorphism ¢ : G — H such that f(af) = f(a)?9 for
alla € Qandall g € G.

A transitive action of a group (' is isomorphic to the right multiplication action on the
set of right cosets of a subgroup H of G (here H can be taken as the stabilizer of a
point). Furthermore, the actions on the sets of cosets of two subgroups H and K are

isomorphic if and only if H and K are conjugate in G.

It follows that determining all the transitive actions of G is the same as determining

the conjugacy classes of subgroups of G.

Proposition 2.5.1 ([27), Corollary 1.5A]). Let G be a group acting transitively on a
set Q) of size at least 2. Then G is primitive if and only if one (and hence every since

all point stabilizers are conjugate) point stabilizer is a maximal subgroup of G.

It follows that determining the primitive actions of GG is the same as determining the

conjugacy classes of maximal subgroups of GG. The O’Nan—Scott Theorem shows that
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many cases of this problem can be reduced to investigating almost simple groups G.
For the definition of a group of diagonal type, of product action and more information

on the O’Nan—Scott Theorem see [27, Chapter 4].

Theorem 2.5.2 ([27, Theorem 4.1A]). (O’Nan-Scott Theorem) Let G be a finite
primitive group of degree n. Let H be the socle of G. Then either

1. H is a regular elementary abelian p-group for some prime p, n = p™ := |H

’

and G is isomorphic to a subgroup of the affine group AGL,,(p); or

2. H is isomorphic to a direct power T™ of a non-abelian simple group T' and

one of the following holds:

(a) m =1 and G is isomorphic to a subgroup of Aut(T);

m—1.

(b) m > 2 and G is a group of diagonal type withn = |T ;

(c) m > 2 and for some proper divisor d of m and some primitive group
U with a socle isomorphic to T? G is isomorphic to a subgroup of the
wreath product U ! Sym(m/d) with the product action, and n = [™/?

where [ is the degree of U;

(d) m > 6, H is regular, and n = |T|™.

2.6 Maximal subgroups of S,, and A,

Let G < S, be an intransitive subgroup. Let {2 be the permutation domain. Then
G has an orbit O of size less than n. Note that G is a subgroup of the subgroup
Sym (O) x Sym (£2\ O) which is the setwise stabilizer of the set O in S,. Also,
it turns out that the subgroup Sym (OQ) x Sym (£2\ O) is an intransitive maximal

subgroup of S, exactly when |O| # n/2.

Let G < S, be a transitive imprimitive subgroup. Then G preserves a system of b
blocks each of size a for some integers a,b with @ > 1, b > 1. Then G is a subgroup
of the subgroup S, ! S, which consists of all elements in S,, preserving this block
system. Also, it turns out that the group S, ! Sy, is a transitive imprimitive maximal

subgroup of .5,,.
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Thus we have the following.

Proposition 2.6.1. Let G be a maximal subgroup of S,. Then one of the following
holds.

(1) G=S5, x Sywithn = a+ band a # b (intransitive case).
(i) G = S, 1Sy, withn = ab, a > 1, b > 1 (transitive imprimitive case).

(iii) G is primitive.

Conversely, the groups in cases (i) and (ii) are maximal in S,,.

The following is a similar result for the alternating groups.
Theorem 2.6.2 ([38]). Let G be a maximal subgroup of A,,. Then one of the following
holds.

(i) G = (S, x Sp) N A, withn = a + band a # b (intransitive case).

(i) G = (S, 1Sy) N A, withn = ab, a > 1, b > 1 (transitive imprimitive case).

(iii) G is primitive.

Conversely, the groups in cases (i) and (ii) are maximal in A,, for n # 8.

We note that Liebeck, Praeger and Saxl [38]] determined the types of primitive maxi-
mal subgroups of S,, and A,,, however, it is not easy to deal with the primitive maxi-
mal subgroups of S,, and A,,. For the purposes of this thesis we will not use the full

power of their result.
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CHAPTER 3

BOUNDING VERTEX DEGREES

Our main purpose in this chapter is to give strong lower bounds on vertex degrees
in the generating graphs of S,, and A,. The results obtained in this chapter will be
used in Chapter [4] to prove that the generating graphs of .S,, and A,, are Hamiltonian
provided that n > 107.

3.1 The result of Babai and Hayes

In 1969, Dixon [25] proved that the probability that a random pair of permutations
from the symmetric group .S,, generates the alternating group A,, or .S,, tends to 1 as
n tends to infinity. This result was a highlight of asymptotic group theory period and
has many applications. Another way to state his result is the following. Let { £, } be
a sequence of events. It is said that F,, holds with high probability if the limit of the
probability of the events F, is 1. In this language Dixon’s result states that with high

probability a random pair of permutations from S,, generates either A,, or S,,.

A generalization of Dixon’s result was obtained by Babai and Hayes [4]. The purpose
of this subsection is to state their result. Let G be any given permutation group of
degree n. Assume that there are o(n) points that are fixed by all elements of G (by
o(n) we mean any function f(z) such that f(n)/n tends to 0 as n tends to infinity).
Let 0 € S, be chosen at random. The main result of Babai and Hayes [4, Theorem 1]
is that with high probability GG and o generate A,, or S,,. For the purpose of this thesis

we state the before-mentioned result in a different language (see [4, Remark 2]).

Theorem 3.1.1 (Babai, Hayes, 2006). For every € > 0 there exists 6 > 0 and an

integer ng > 0 such that for every integer n > ng if G < S, has fewer than én fixed
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points then the probability that G and a random permutation in S,, generate A,, or

S, is at least 1 — e.

In this thesis we will need an explicit version of this result.

3.2 The result of Luczak and Pyber

The proof of Theorem [3.1.1] depends on a result of Luczak and Pyber [47]]. Let o €
S, be a random permutation. Then with high probability o does not belong to any

transitive subgroup of .S,, other than A,, or S,,. We state this in the following form.

Theorem 3.2.1 (Luczak, Pyber, 1993). Let M be the set of transitive subgroups of
Sy apart from A,,. Then || J,;c s M|/|Sn| — 0 as n tends to infinity.

This theorem has many applications apart from Theorem [3.1.1] For an account of

these applications see [29, p.3].

Let us denote the proportion in the statement of Theorem by T'(n). The method

of Luczak and Pyber can be used to show that 7'(n) = O(n~¢) for some small ¢ > 0.

Denote by P(n) the proportion of elements in S,, which belong to a primitive (max-
imal) subgroup of S, not containing A,,. The fact that P(n) tends to 0 as n tends to
infinity is due to Bovey [8]. Recently this result has been improved by Diaconis, Ful-
man and Guralnick in [23, Theorem 7.6]. This states that P(n) = O(n~%3+%) for any
« > 0. They conjectured that P(n) < O(n~!'). Eberhard, Ford and Koukoulopoulos
[29] proved that P(n) = n~'*+°(),

Let I(n) be the proportion of elements in .S,, which belong to a (maximal) transitive
imprimitive subgroup of S,,. The most recent upper bound for /(n) can be found in
[29, Theorem 1.2]. We do not state this here. We note that this is also an asymptotic

estimate.

Notice that 7'(n) = P(n) + I(n). Eberhard, Ford and Green [28] showed that if n is

an even integer greater than 2 then 7'(n) > en~(Inn)~*/2 for some constant ¢ > 0.
Let X and Y be two real-valued functions. We mean by X < Y that | X| < ¢|Y| for
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some constant c. We also write X < Y to mean that ¢; Y| < | X| < ¢|Y| for some

constants c, co > 0.

The following result of Eberhard, Ford and Green provides an asymptotic estimate

for T'(n).

Theorem 3.2.2 (Eberhard, Ford, Green [28]). Let T'(n) be the proportion of m € S,
contained in a transitive subgroup other than S, or A,, and let p be the smallest

prime factor of n. Then
( _5 (1 )73/2 .
n—02loen ifp=2,

n—dg(logn)*:"/2 lfp — 37

n—1+1/(-1) lf5 <p<l,

\n—H—o(l) ifp — 00,

where

(m—1)/logm
Om :/ (logt)dt
1

m—1 N (m—1)log(m —1) (m —1)loglogm

—1—
logm logm logm

Note that all the above results are asymptotic. In this thesis we will avoid the use of
such estimates since we aim for an explicit bound on the degree of a symmetric and

alternating group whose generating graph contains a Hamiltonian cycle.

3.3 Fixed point ratios

Let GG be a finite group acting on a finite set (2. For a subset S C G we denote
by fix(S) the set of elements in 2 that are fixed by all elements of S. The ratio
| fixa(g)|/]€?] is called the fixed point ratio of the element g.

In this thesis we will use the following lemma, which is a slight generalization of a
lemma of Liebeck and Saxl on the proportion of fixed points in a transitive action

[39, Lemma 2.5].
Lemma 3.3.1. Let G be a group acting transitively on a finite set ). Let H = G,
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w € Q. Let S C G be a subset and set S¢ = {s9 | s € S,g € G}. Then we have the
following.

|fixa(S9)| _ [S9N H]
I N

)

G

fi H
| fixa(g)] _ |9 | foratlg e G.

N P

Proof. We apply a double-counting argument. Let 7' = {(§,z) | 8 € Q,z € S9N
Gp}. Note that for any 31, f; € 2, we have G, = (G, )? for some g € G. Thus the
map SY N Gp, — SY N G, defined by h +— h9 is a well defined bijection, and so
|S¢ N Gg,| =|S% N Gg,|. Thus we have

IT| =) [S9NGsl =) [S9NH| =[S H|. 3.1)
BeQ BeEQ

On the other hand we have fix(S%) C fixq(z) for any z € S and hence

T =" |fixa(x)| > [ - [fixa(S9)]. (3.2)

x€SC

Part (i) follows by comparing (3.1)) and (3.2). Note that in the case S = {g} for some
g € G, each |fixg(x)| in (3.2) can be replaced by | fixq(g)| since conjugate elements

have the same number of fixed points. Thus in this case we have

T =" [fixa(g)| = |9 - [ fixa(g)]. (3.3)
z€gC
Part (ii) follows now by comparing (3.1)) and (3.3). 0

Fixed point ratios for finite groups have been a subject of interest in group theory.
Applications of this invariant can be found in the papers of Frohardt and Magaard

[30L31], Gluck and Magaard [32], Guralnick and Kantor [35]], and Burness [14].

3.4 Basic observations

Let G be one of S,, or A,,, and let I be the generating graph of G, thatis, I' = I'(G).
Let 1 # g € G. Denote by d(g,I") the degree of the vertex g of I'. By the definition

of a generating graph, the vertex ¢ is adjacent to a vertex A in the graph I" if and only
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if (g, h) = G. Note that this condition is equivalent to & not being contained in any

maximal subgroup of G that contains g. Therefore, we have

d(g,T) = {h € G\ {1} | (g9,h) = G}|

=c\ U M|,

MeM(g)

where M(g) is the set of maximal subgroups of G which contain g.

For the purposes of this thesis, we need lower bounds on vertex degrees in I'(G).
Thus we are mainly interested in bounding from above the probability that a random
permutation in G is contained in a maximal subgroup that contains g, that is, bounding

from above the ratio

‘UMeM(g)M’
G| ’

where M(g) is the set of maximal subgroups of G which contain g.

(3.4)

The following result indicates that most permutations have a relatively small number

of fixed points.

Proposition 3.4.1 (see [4, Section 2]). Let k be a positive integer. Then the proportion

of permutations in S,, with at least k fixed points is at most 1/k!.

Proof. Let J be the collection of k-element subsets of the permutation domain. Note
that [J] = (}). Also, for A € J, we have | Stabg, (4)| = (n — k)!. Therefore, the

proportion of permutations with at least k fixed points is given by

| Uaey Stabs, (4)] < Z | Stabg,, (A)] _ (n) ‘ (n—k)! 1

1S |S,] k n! kl

Aed
[

The next proposition implies that if g € S, has f fixed points then the probability
that a random permutation and g generate .S,, is at most 1 — f/(2n). This means that
if g has a relatively large number of fixed points then we cannot expect a strong lower

bound on this probability and hence on the degree of the vertex g of I'(.S,,).

Proposition 3.4.2 ([4, Proposition 3]). Let H < S,, be a permutation group having
f fixed points. Then the probability that the group generated by H and a random

permutation has a fixed point is at least f/(2n).
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In this thesis we will not make an explicit reference to Proposition [3.4.2] however, we
include it for interest and context as well as for a justification for imposing the bound
of \/n on the number of fixed points of ¢ in Sections|3.63.8

In the light of Propositions [3.4.1]and [3.4.2] in Sections [3.6H3.8 we assume that ¢ has
at most 1/n fixed points and study the ratio in (3.4)) in the cases where M is primitive,
intransitive and transitive imprimitive (see Theorems[3.6.5][3.7.6|and [3.8.3). Together

these prove:

Theorem 3.4.3. For n > 106, if g € S, has at most \/n fixed points, then the

probability that a random permutation and g do not generate A,, or S,, is at most

1 16.2 1

\/ﬁ+ n

In Section[4.3|the bound in Theorem 3.4.3| will be used together with a corresponding
but weaker bound for elements with more than /n fixed points (see Theorems
and4.3.7) to establish the Hamiltonicity of I'(A,,) and I'(S,,) for n > 107.

3.5 Basic results

We begin by introducing a notion of projection of permutations onto a subset of the
permutation domain (see [4]). This notion will be useful to make a reduction to the

fixed-point-free case in Section [3.7]

Definition 3.5.1. Let 7 C () be a subset. We define the projection map pr; :
Sym(2) — Sym(7T) by setting pry(c) = or for o € Sym({2), where o7 is de-
fined as follows. Fori € T, let " = i°" where k is the smallest positive integer with

it eT.

We next state a special case of Stirling’s formula.

Theorem 3.5.2 (Stirling’s bound [5, p. 216]). For every positive integer n,

2mn - (ﬁ>n <n!<eyn- (Z)

(&

n

In some cases we will need weaker bounds that are easier to apply.
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Proposition 3.5.3. Let n be a positive integer. Then the following hold.

i) n! < (n/2)" forn > 6.
(i) n! > (n/3)™
Proposition 3.5.4. For every positive integers n and k with 1 < k < n, we have
n\* n nk n-e\k
(0= ()<<
k k k! k

We note that Propositions [3.5.3|and [3.5.4] can be easily proven by induction.

Proposition 3.5.5. Let a, b, ¢, d be non-negative integers. Then the following hold.

@) (‘;) < (fl) ifa<candb<d<c/2
i) (5) () < (o)

Proof. Note that the statements are trivially true if @ < b or ¢ < d. The statements
are also true if a« = 0 or ¢ = 0. Thus we may assume that a > b, ¢ > d, a # 0,
¢ # 0. Note that (‘Z) < (g) < (2), and hence (i) follows. For (ii), let S = S; U Sy
where S; = {1,...,a} and So = {a+1,...,a+c}. Then, (;9) is the number of all

b+d
(b+ d)-element subsets of S whereas () () is the number of (b+ d)-element subsets
of S that contain b elements from S; and d elements from Ss. ]

3.6 The primitive case

Let G = S, and let ¢ € G be a permutation with at most y/n fixed points. In this
section we consider the probability that a random permutation in GG is contained in a
primitive maximal subgroup of GG containing g. More precisely, we consider the ratio

in (3.4) in the case M is primitive.

In order to prove the main result of this section we will need upper bounds on the
order of the centralizer of g in (G, on the order of a primitive permutation group, and

on the number of conjugacy classes of primitive maximal subgroups of G.

First, we obtain an upper bound on the order of the centralizer of g in G. We first

consider the case where g 1s fixed-point-free.
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Lemma 3.6.1. Let g € S,, be a fixed-point-free permutation. Then we have

(Cs,(9)] <22 - [n/2)! forn #3.

Proof. Let g have cycle type (k]"*, k52, ..., k™). Write g = ¢g192 - - - g where the g;
are the products of the m; disjoint k;-cycles in the cycle decomposition of g. Let €2 be
the permutation domain and let (2; C () be the set of elements that appear in a cycle
of g;. Put G = S,, and G; = Sym(€);) forall i = 1,2,...,r. Then viewing G; as a

subgroup of G and g; as an element of G;, we have

= HCGi<gi)'

Note that ;| = m;k;andn = Q] = >0 || = >°1_, m;k;. Itis sufficient to show
that

mzsz Lmzkl

Ca,(gi)] < 2! J!

since then it will follow that

Calg ‘<H< myh ) kJ)SQL;J.LgJ!,

So we may in fact assume that g is a product of b disjoint cycles of length a. Since
Cal(g) C Cg(g") for every integer 4, raising g to a suitable power we may further
assume that g is of prime order, i.e. a is a prime. Now we have n = ab and |C(g)| =

abb!. Thus we need to show
a’bl < 2171 L%bj!. (3.5)

Note that a® < 2l9/20 < 2lab/2) for ¢ # 3,5, and b! < |ab/2|!. Therefore (3.5) is

satisfied for a # 3,5. We now treat the remaining cases.
a = 3 :1f b = 2k for some k > 1, then we have

a’d! = 3%F(2k)! < 23F2F(2k)! < 2% (3k)! = 21982} | ab/2)!.
If b = 2k + 1 for some k > 1 then we have

abbl = 32 (2k + 1) < 2% (k4 1)F(2k + 1)! = 2371 (2k + 2)F (2k + 1)!
< 233k +1)!
= 2Lt gp /21,
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a =5 :1f b = 1 then (3.5) is trivially satisfied. Suppose then that b > 1. We have
2lab/2) b /2|1 = 2156/2) [ 5b /2|1 > 225(2b)! > 2%0%h! = (4b)°b! > 5bb! = abb!. The

proof is complete. 0

We next consider the general case where ¢ has at most /n fixed points.

Lemma 3.6.2. Let g € S,, be a permutation with at most \/n fixed points. Then we

have

Cs,(9)] <202 - [n/2]! forn #3.

Proof. Put G = S,, and let 2 be the permutation domain. Also let 2; = fixg (g),
Oy = Q\ Qy, and let G; = Sym(€;), Go = Sym(€2s). Denote by f the number of
fixed points of g, that is, f = |€;]. Viewing the subgroups GG; and GG, as subgroups
of G, we have

OG(Q) = OG1 (gﬂl) X OG2 (992)7

where gq, is as in Definition[3.5.1] Note that gq, is the identity permutation on §2; and

s0 |Cq, (9a,)| = f!. Note also that gq, is fixed-point-free on {25, and so by Lemma
3.6.1, we have |Cg,(gq,)| < 2L=N/21 .| (n — f£)/2]!. Thus it follows that

|CG(g)| = |OG1(QQ1>| ’ |OG2<992)| < f' ’ 2L(n—f)/2j ) L(TL - f)/2J‘

Set ¢, = r!-2l»=)/2] .| (n — r)/2]!. We claim that ¢, > ¢, for any non-negative
r < y/n — 2. By cancelling common factors we see that this holds if and only if
2|(n—=7)/2] > (r+2)(r+1). Clearly, [(n —r)/2] > (n —r — 1)/2, and hence
it is enough to show that n — r — 1 > (r 4+ 2)(r 4+ 1). This is true for /n — 2 > r.
Therefore the claim is established. Also, it is trivial to see that ¢y > c¢;, and so it
follows that ¢y > ¢, for any non-negative integer » < y/n. Lemma completes
the proof of the lemma. [

The following result provides upper bounds on the numbers of conjugacy classes of
primitive maximal subgroups of S,, and of A,,, and appears in a paper of Mar6ti and

Tamburini [49, Lemma 4.1], the proof of which depends on work of Stringer [55].

Theorem 3.6.3 ([49, Lemma 4.1]). Let G be one of S,, or A,, and let r(G) be the
number of conjugacy classes of primitive maximal subgroups of G other than A,

Then the following hold.
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(i) r(G) < n3o82m* for n > 1000.

(i) 7(G) < 36 for 23 < n < 1000.

We next state a result of Mardti that gives an upper bound on the orders of primitive

permutation groups.

Theorem 3.6.4 ([48,, Corollary 1.1]). Let G < S, be a primitive permutation group
not containing A,. Then |G| < 50nv™,

We are now in a position to prove the main result of this section. We divide the proof
into two parts, where in the first part the proof is purely group theoretic and in the

second part GAP calculations are mainly used.

Theorem 3.6.5. Let g € S, be a permutation with at most \/n fixed points. Let p be
the probability that a random permutation in S,, is contained in a primitive maximal

subgroup of S, that contains g and does not contain A,,. Then we have

1
p< — forn=>2T.
n

Proof. Put G = S,,. Let X be the set of primitive maximal subgroups of GG other than
A,,. Consider the conjugation action of G on 3. Note that H € fixy(g) if and only if
g € Ng(H) = H. Let Oy, ..., Oy be the orbits of this action. Pick H; € O; for each
1. We have

p— Waenes I Unetotn H1_ g~ [Vnncino,0 51 _ 5 lfixe,(0)1
g el [ g

i=1 i=1

k

_ N ixo:(9)|
-2 O

i=1
where the last equality follows from the orbit-stabilizer property (Theorem [2.2.2((v))
since |O;| = |G : Stabg(H;)| = |G : Ng(H;)| = |G : H;|. Thus it is enough to show
that

| fixo,(g)| _ 1 .
X San foralle=1,..., k.

Now fix an arbitrary orbit O and fix H € O. Note that the action of ¢ is transitive
on O, and the subgroup H is a point stabilizer, namely Stabg (H) = Ng(H) = H.
Thus by Lemma [3.3.1], we have

| fixo(g)l _ g% N H]
0 19|
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Note also that |¢¢| = |G : Cz(g)| by Corollary Thus we have

[fixo(a)| _ 19N H| - [Calg)| _ |H|-|Calg)] _ 50mV™ - 2/21 - (|n/2])
19 |G| I (C{ B n! ’
where the last inequality follows from Lemma and Theorem Thus it

suffices to show that

50nﬁ-2ln:!J (ln/2))! - k}ﬂ 3.6)
provided that n. > 27. By Stirling’s bound (Theorem , we have /27n- (n/e)" <
nland (|n/2])! <e-+/n/2-(n/(2))"2. Thus it is enough to show that

50nV? - 272 e \/n/2 - (n/(2e))? < 1
V2 - (n/e)n = kn?’

or equivalently,

(e/\/7) - 25mV" 2k < (n/e)V?. (3.7)

Also, by Theorem we have k& < 36 for n < 1000, and k& < n3(os: ") for
n > 1000. Using these we see that (3.7) holds for n > 27. This completes the
proof. ]

By the help of GAP we can improve the bound on n in Theorem [3.6.5]

Theorem 3.6.6. Let G be one of S, or A, and let g € G be a permutation with at
most \/n fixed points. Let p be the probability that a random permutation in G is
contained in a primitive maximal subgroup of G that contains g and is different from

A,.. Then we have

1
p<— forn=>15.
n

Proof. The result already holds for n > 27 by Theorem [3.6.5] We now show that the
result also holds for 15 < n < 26. In the proof of Theorem [3.6.5] the bounds on |H |
and k there were not strong enough to show that (3.6)) holds for 15 < n < 26. To this
purpose, we show that (3.6) holds when the factor of 50nv" is replaced by |H| using
the GAP program below. We first explain how the program works.

The function nr () calculates the exact number of conjugacy classes of primitive

maximal subgroups of S,, other than A,,.
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The function max () calculates the maximal size of a primitive subgroup of .S,, other

than A,,.

The function check () checks (3.6) for the exact value of k and the largest value of

|H|; and returns TRUE if (3.6) is satisfied and returns FALSE otherwise.

Finally, the program prints TRUE if check () returns TRUE for all 15 < n < 26,

and prints FALSE otherwise.

nr:=function (n)

local a, 1, m, s;

s:=SymmetricGroup (n);
a:=AlternatingGroup (n) ;
1:=MaximalSubgroupClassReps (s);
m:=Number (1, x->IsPrimitive(x,[1l..n]) and
not IsSubset(x,a));

return (m) ;

end;

max:= function (n)

local a,l1;

a:=AlternatingGroup (n) ;
1:=Al1PrimitiveGroups (DegreeOperation, n,
x—>IsSubset (x,a), false);

if 1=[] then

return(0);

else

return (Maximum (List (1, x->Size(x))));

fi;

end;

check:=function (n)

if Factorial (n) >=
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nr (n) *max (n) *x (n*2) * (2~ (Int (n/2))) *xFactorial (Int (n/2))
then

return (true);

else

return (false);

£fi;

end;

Print (ForAll([15..26], check));

3.7 The intransitive case

Let G = S, and let g € G be a permutation with at most /n fixed points. In this
section we consider the probability that a random permutation in G is contained in
an intransitive maximal subgroup of GG containing g. More precisely, we consider the

ratio in (3.4) in the case M is intransitive.

In fact, in this section, we consider the more general situation where ¢ is replaced by
an arbitrary subgroup H with at most 1/ fixed points. We obtain our desired result

by setting H = (g).

We first obtain a result in the case where H is fixed-point-free and then consider the

more general case.

Lemma 3.7.1. Let H < S,, be a fixed-point-free permutation group. Let p be the
probability that H and a random permutation generate an intransitive group. Then
we have
p < E forn > 83.
n
Proof. Put G = S, and let {2 be the permutation domain. If H is transitive then there
is nothing to prove. Thus we may assume that H is intransitive. Let A be the set of

H-invariant subsets of € of size at most n/2. Note that for g € G,
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(g, H) is intransitive <=
there is a proper (g, H)-invariant subset of () <=
there is a proper subset of (2 that is both g-invariant and H-invariant <=
there is a proper subset of 2
that is both a union of g-orbits and a union of H-orbits <=
g € Stabg({T'}) for some 7" € A.

We may therefore assume that each /7-orbit has size 2 or 3. Suppose then that there
are k orbits of size 2 and [ orbits of size 3 of H so that n = 2k + 3[. Now,

 [UgeaStaba({T))] _ < IStabe({TH] <= ITIL- (n — [T))!
BT D D P

TeA
TeA ITl)
[n/2]

=y > (8. (3.8)

t=2 0<r<k
0<s<l
t=2r+3s

TeA

Note that k + [ < n/2, and we have r + s < t/2 and t < n/2 in (3.8). Thus, by
Proposition [3.5.5] we have

()= ()= () -y ) =)

Also, it is easy to see that the number of pairs (7, s) of non-negative integers with

t=2r+3sisatmostt/6+ 1 <n/12+ 1. We now have

]
(]

< L (5-5) (5 +1) !
TS VE) N2 12 V()
2 3\ /4\?  /5\**  9(n2+2n—120)
=—+ |- +1-) +1| = + 3
n n n n n
11.9
S )
n
where the last inequality holds since n > 83. [
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As in Section [3.6] we use projections on to subsets in order to deal with the general

case. We require the following two observations from [4]].

Lemma 3.7.2 ([4, Observation 11]). Let T' C €). Then the projection map prp :
Sym(2) — Sym(T") is uniform, that is,

2!

-1 e

forall g € Sym(T).

Lemma 3.7.3 ([4, Observation 12]). Let g € Sym(Q2) and let T C ). Let G <
Sym(T") where Sym(T) is considered as a subgroup of Sym(S2). Then the orbits of
the subgroup of Sym(T') generated by G and gr are exactly the intersection of T with
those orbits of the subgroup of Sym(SQ) generated by G and g which have non-empty

intersection with T.

We are now ready to prove the general case.

Lemma 3.7.4. Let H < S,, be a permutation group with at most \/n fixed points. Let
p be the probability that H and a random permutation generate an intransitive group.

Then we have

1 15.2

Proof. Put G = S, and let € be the permutation domain. Also, set /' = fixq(H) and
R =Q\ F. Let g € G. Note that the group (g, H) is intransitive if and only if not all
elements of R are in the same (g, H )-orbit or there is a g-invariant subset of F, i.e.,
g € Stabg({A}) forsome A C F'. Let p; be the probability that there is a g-invariant
subset of F', and let p, be the probability that not all elements of 1 are in the same
(g, H)-orbit. By the union bound, we have p < p; + py. Let f = |F| so that f < \/n.
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Now,

| Uscr Staba({A})] Stabe({A ! Stabe({A
. " < 3 [tabelf))] _ g~ 5~ [Stabe{AD)

ACF |G’ i=1 ACF |G’
|A|=i
-5 ()
f
NS (it D)
;n(n—l) (n—i+1)
f i
f
<2 (%)
2 3
L))
1 1 Jn-2
§%+E+ YD
1 2
< —+—.
non

Now set Hg = {hr : h € H}, where hg, is as in Definition 3.5.1| Then,

[{g € G : not all elements of R are in the same (g, H )-orbit}|

P2 =
|G
_ Hyg € G : (gr, Hg) is intransitive on R }|
|G

(1921 /IRN{g € Sym(R) : (g, Hg) is intransitive on R }|
N Q!
~ Hg € Sym(R) : (g, Hg) is not transitive on R }|
N | B!

11.9
<
S =7

11.9
< 7
“n—+n’

where the second equality follows from Lemma([3.7.3] the third equality follows from

Lemma [3.7.2] and the first inequality follows from Lemma [3.7.1] since Hp, is fixed-

point-free on R and |R| = n — f > n — y/n > 83. Thus we have
pSpl—i-pQSL—i-z—i- 11.9 < 1 15.2

vinon =y T i o0

where the last inequality holds since n > 104. [

We need an elementary lemma to prove the main results of this section.
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Lemma 3.7.5. Let H < S,, be a permutation group. Let p, be the probability that a
random permutation is contained in an intransitive maximal subgroup of S, contain-
ing H. Let py be the probability that H and a random permutation in S,, generate an

intransitive subgroup. Then we have p; < po.

Proof. Let M be an intransitive maximal subgroup of .S,, containing . Then for
any g € M, (H,g) < M. Since (H,g) is contained in the intransitive subgroup
M, it must be intransitive. Conversely, let ¢ € S,, be a permutation such that the
group (H, g) is intransitive. Then this group is contained in an intransitive maximal
subgroup of S,, by the first paragraph of Section [2.6] and clearly contains H and g.

The result now follows. O]

We now state and prove the main results of this section.

Theorem 3.7.6. Let g € S, be a permutation with at most \/n fixed points. Let p
be the probability that a random permutation is contained in an intransitive maximal

subgroup of S,, containing g. Then we have

1 26
p< —+ — forn > 496.
n

Jn

Proof. The proof follows from Lemmas [3.7.4|and [3.7.5| by setting H = (g). O

3.8 The transitive imprimitive case

Let G = S, and let ¢ € G be a permutation with at most y/n fixed points. In this
section we consider the probability that a random permutation in G is contained in
a transitive imprimitive maximal subgroup of GG containing g. More precisely, we

consider the ratio in (3.4) in the case M is transitive imprimitive.
First, we give an easy combinatorial fact.

Lemma 3.8.1. Let Q) be a set with n elements. Let n = ab, where a,b € Z". Then

the number of partitions of ) into b subsets of size a is

n!

() bl
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Note that the transitive imprimitive maximal subgroups of .S,, containing g correspond
to g-invariant partitions of the permutation domain into subsets of equal size greater
than 1. Thus we are really interested in bounding the proportion of such g-invariant

partitions.

We first state and prove the result in the case where the blocks have size at least 3 and

then consider the remaining cases in another lemma.

Lemma 3.8.2. Let g € S,, be a permutation with at most \/n fixed points. Let S be
the set of partitions of the permutation domain into b blocks of size a, where a > 2

and b > 1. Let p be the proportion of g-invariant partitions in S. Then we have

p < # forn > 57.

Proof. Let () be the permutation domain and let ¢y, . . . , ¢, be a subset of {2 containing
exactly one element from each cycle of g. Denote by f the number of fixed points
of g so that f < y/n. Consider an arbitrary but fixed partition in S and label its
blocks from 1 to b. We call such a partition a labelled partition. It is easy to see that
a g-invariant labelled partition is uniquely determined by the placement of elements
c1, ..., ¢ inits blocks and the induced action of g on the set of its blocks. The number
of ways of distributing the elements c, . . ., ¢, into the blocks is at most b". Therefore,
the number of g-invariant labelled partitions is at most b"b!. Since there are b! ways of
labelling the blocks of a given partition in S, it follows that the number of g-invariant
partitions in S is at most b”. Note also that |S| = n!/(a!’b!) by Lemma[3.8.1} Using
Stirling’s bound (Theorem [3.5.2)), we have

b’ b (a!)®- 0! < b - (ey/a(a/e)®)? - ev/b(b/e)"

P= (- b)) ST Varn(njo)

b/2

€-a

T V2rn - b1

Thus it suffices to show that

. qb’? 1
S < (3.9)
\/ 27 - hr—r—b—1/2 on3/2
for n > 57. Note that n = ab and so (3.9) holds if and only if
e /2/71' . nb/2+1 S bn_T_b/2_1/2. (310)
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Taking logarithms of both sides of (3.10), we see that (3.9) holds if and only if

1+1In(\/2/7) 4+ (b/2+ 1) In(n) + (b/2) In(b) < (n —r —1/2)In(b).  (3.11)

Note that r, the number of cycles of g, is maximum when all cycles of g are of length
1 or 2. Thus it follows that r < f+ (n— f)/2 < (n+ /n)/2. Therefore, it is enough
to show that

1+ln(\/2/_77)+(9+1)‘ln(n)+é<n—\/ﬁ—1‘ (3.12)

In(b) 2 In(b) 2~ 2
(3.12)) trivially holds for b = 2, n > 31 and also for b = 3, n > 26. Also holding n
fixed, the left-hand side of is an increasing function of b on [4, oc]. Note that
b < n/3 by assumption, and hence for b > 4 the inequality (3.12) is implied by

1+ In(y/2/7) n In(n) n _n—yn-1
e TG B e s

6
which holds if and only if n > 57. This completes the proof. This completes the

"In(n/3) 6 2
proof. ]

We need the following lemma.

Lemma 3.8.3. Let g € Sym(X) be a fixed-point-free permutation all of whose cycles
are of the same size. Denote by n(g, X)) the number of g-invariant partitions of ¥. into

blocks of size 2. Then n(g, ) is maximal when the cycles of g are of size 2.

Proof. Let x € Sym(X) be a fixed-point-free involution and let h € Sym(X) be a
fixed-point-free permutation all of whose cycles are of the same size. We need to
show that n(h,Y) < n(z,¥). We may assume by raising & to a suitable power that
h is fixed-point-free of order a prime p. If p = 2, there is nothing to prove. If p > 2,
then we have |X| = 2pk for some integer & (note that we may assume X has even size
since otherwise there is nothing to prove). This means that there are pk cycles of x,
each of length 2. Suppose first that £ is even. The number of z-invariant partitions of

>’ into blocks of size 2 where no block is fixed is equal to

(pk)! Copky2 __(PK)!

(21)P+72 - (pk/2)! (Pk/2)!

This follows since each such partition can be obtained by breaking the pk cycles into

groups each consisting of two cycles and for each group forming a partition that is
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left invariant by these cycles. In particular, we have n(x,>) > (pk)!/(pk/2)!. On
the other hand, h is a permutation having 2k cycles, each of length p > 2, and so an
h-invariant partition can have no block fixed. Arguing as above and noting that there
are p distinct ways of forming a partition out of two cycles of length p that is also left
invariant by these cycles (distribute the elements in one cycle into p empty blocks and
then there are p distinct ways of distributing the elements in the other cycle into the
blocks), we see that '

Assuming pk > 8, that is, (p, k) # (3, 2), we have

pk/2 3k/2
ez iz () 2(5) 20tz

Also for (p, k) = (3,2), we have n(x,X) > 6!/3! = 120 > 27 = n(h, X). Thus, the

n(h,X) =

result holds for even k. Suppose now that k is odd. Arguing similarly as before, the

number of z-invariant partitions with exactly one block fixed is equal to

(pk> , (pk —1)! o(ph-1)/2 _ (pk)!
1) @Rk — 1)/2)] P
In particular, we have n(x,>) > (pk)!/((pk — 1)/2)!. Also, as before, n(h,>) =

(2K)!1/((2)%K!) - p*. Assuming pk > 8, thatis, (p, k) & {(3,1),(5,1),(7,1)} we have

n(z, %) > % > <pl<:2+ 1)<Pk+1)/2 § (%k)Pk/Q § (%{;)3’“/2

(pk)*
>n(h,X).

v

Note that n(h,>) < n(z, X) trivially holds for (p, k) € {(3,1),(5,1),(7,1)}. Thus,
the result also holds for odd k. The proof is complete. [

We now state and prove our result in the general case.

Lemma 3.84. Let g € S,, be a permutation with at most \/n fixed points. Let S be
the set of partitions of the permutation domain into b blocks of size a, where a > 1

and b > 1. Let p be the proportion of g-invariant partitions in S. Then we have

p < forn > 106.

2n3/2
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Proof. By Lemma [3.8.2] we may assume that a = 2. Note that, in this case, a set of
blocks cyclically permuted by ¢ is permuted either by one cycle of even length or by
two cycles of equal length. Write g = g;, 94, - - - g5, Where 1 < 7; < iy < ... <4 <n
and g;; is the product of cycles of length #; in the cycle decomposition of g. Let (2; be
the subset of (2 consisting of the elements in the cycles of g;, so that () = |_|f:1 Q,.
Note that if g is to fix a partition, the number of cycles of length ¢; must be even for i;
odd. Thus we may assume that |€2;| is even for all j. Now, viewing g;, as an element
of Sym(§2;), a g-invariant partition of 2 can be regarded as a union of g; -invariant
partitions of (2, for 5 = 1,..., k. We now set some notation. For a set > and a
permutation » € Sym(X), denote by n(h, ¥) the number of h-invariant partitions of
Y} into blocks of size 2. Thus we have

k

n(g,Q) = H n(gi,, ;).

j=1

Fix some i; > 2, and set h = g;;, 2 = Q;. Let x € Sym(X) be a fixed-point-free
involution. By Lemma we have n(h,Y) < n(z,X). We may therefore assume
that ¢ is an involution. Let ¢ be the number of 2-cycles of g so that n = f + 2c.

Arguing as above, we have n(g, Q) = n(g1, 1) - n(gz, Q2). Clearly,

! AN
- (/2 = (5) ‘

The number of g,-invariant partitions of 2, into blocks of size 2 with exactly ¢ blocks

n(.gla Ql) =

fixed is
((c (c—1)! » o
: - .2(0 i)/2 fi—c= d2
¢ = (z) 2N 072 (e —i)/2)! ifi—c=0 (mod2),
(0 ifi—c=1 (mod 2).
[— ifi—c=0 (mod 2
i e=—nyay Fime=0 (med2)
L0 ifi—c=1 (mod 2).

Note that ¢; < ¢! for each i. Thus,

C

n(ge, Q) = Zci <c-cl
=0

Note also that |S| = n!/((2))"/? - (n/2)!) > (n/4)™2. Using Stirling’s bound (Theo-
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rem[3.5.2), we have

Cn(g,Q)  nlg, ) nlge, Q) _ (F/2)/7% ¢
PETS T 5] SN CYITE

(Qf)f/Q (4>C

=c-cl- | = =

n n
2\ [4c\°
n en

Note that f < y/n and (n — \/n)/2 < ¢ < n/2. Thus we have

neym
< n\ 3/2 2 2 < 1
p—e'(§) e = 932’

where the last inequality holds for n > 106. The proof is complete. [l

We now state and prove the main results of this section.

Theorem 3.8.5. Let g € S, be a permutation with at most \/n fixed points. Let p
be the probability that a random permutation is contained in a transitive imprimitive

maximal subgroup of S,, containing g.

p < forn > 106.

SRS

Proof. Let % be the collection of transitive imprimitive maximal subgroups of .5,
containing g. For a,b > 1 with ab = n, let ¥, C X be the set of members of ¥ that

leave invariant a (unique) partition of the permutation domain into b blocks of size a

so that ¥ = | |51 24 - By Theorem[3.8.4, we have

n=ab

1 n!
[Ya| = om3/2  qlbbl’

Also, for M € 3, ;, we have | M| = a!®b!. Thus,

| Unses M| | M| | M| al’b! 1
= Mwen B N~ (e B N SH il g
P= T S sl T X g el g s ) o

a,b>1 MeX, p a,b>1 a,b>1
n=ab n=ab n=ab
1
S )
n

where the last inequality holds because the number of positive divisors of n is clearly

at most 24/n. O
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3.9 Main results

We put together the results we have obtained so far to state and prove the main results

of this chapter that will be used in Chapter [ to prove the main theorem of the thesis

(Theorem [1.9.1).

Theorem 3.9.1. Let g € S, be a permutation with at most \/n fixed points. Let p be
the probability that g and a random permutation generate S,,. Then for n > 106, we

have

Proof. Note that

If g € S, \ A, then we have

_ ‘{I € Sy : <gvx> > An}|
|Sh

If g € A, then we have

p> {z €S, :{g,z) > A} —n!/2 _ {z €8u:{g.2) > A} 1
- |5l |l 2

The result now follows from Theorem [3.4.31 O

Theorem 3.9.2. Let g € A,, be a permutation with at most \/n fixed points. Let p be
the probability that g and a random permutation generate A,,. Then we have
1 16.2 1

p21—2-<——|———|—— forn > 106.
vnoooon n?

Proof. Note that
{z € An:{g,2) = An}| _ [{z € Sn:{g,7) > An}| —nl/2

| Ay | Ayl
. ersn: (g,x> ZAnH
=9. — 1.
| S
The result now follows from Theorem 3.4.3] ]
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CHAPTER 4

HAMILTONIAN CYCLES IN GENERATING GRAPHS

In this chapter we use the results obtained in Chapter [3|to prove that the generating

graphs of S,, and A,, are Hamiltonian provided that n > 107.

4.1 Graphs

In this section we introduce some basic terminology in graph theory.

A graph T is a finite, non-empty set V' = V(I") together with a set £ = E(I") of
2-element subsets of distinct elements of V. The set V is called the vertex set and
the set I is called the edge set. Elements of 1/ are called vertices and the members

of F are called edges.

If e = {u, v} is an edge in T, then u and v are said to be adjacent, and u (or v) and e

are said to be incident. We denote the edge {u, v} simply by uv or vu.
The degree d(I', v) of a vertex v in I is the number of edges of I incident with v.
A graph A is a subgraph of the graph I"if V/(A) C V(") and E(A) C E(T).

Let U C V(T'). Then the subgraph of I" induced by U is the graph having U as its
vertex set and whose edge set consists of those edges of I' that are incident with two

elements of U.

The graph I is called bipartite if the vertex set V' (I') can be partitioned into two
subsets V; and V5 such that every edge of I' is incident with a vertex from V; and a

vertex from V5.
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The graph I' is called complete if every pair of its vertices are adjacent.

A cycle in I' is a finite sequence vy, vs, ..., V,,v1 (n > 3) of adjacent vertices with

vi#vj fOI”l#]

The graph I' is said to be Hamiltonian if it has a cycle that contains each of its

vertices. Such a cycle is called a Hamiltonian cycle.

4.2 Hamiltonian cycles in graphs

We note that a Hamiltonian cycle is named after Sir William Rowan Hamilton, who
devised a puzzle in which such a path along the polyhedron edges of a dodecahedron
was sought (this is the Icosian game). The problem of establishing the existence of
a Hamiltonian cycle in a graph has been investigated in the literature with respect to
several parameters. For the purposes of this thesis we need results that depend on
the vertex degrees. Roughly speaking, a graph contains a Hamiltonian cycle if it has

“enough” edges.

Theorem 4.2.1 (Dirac, 1952 [24]). A simple graph with n > 3 vertices is Hamilto-

nian if the degree of each vertex is at least n /2.

The next result is due to Ore and can be viewed as a generalization of Dirac’s result.

Theorem 4.2.2 (Ore, 1960 [52]). A simple graph with n > 3 vertices is Hamiltonian
if the sum of vertex degrees of every pair of distinct non-adjacent vertices is at least

n.

In 1962 Pdsa gave a more general result.

Definition 4.2.3. Let I be a graph with n vertices and vertex degrees d; < dy <
... < d,. Then I satisfies Pdsa’s criterion if d;, > k + 1 for all positive integers k

with k < n/2.

Theorem 4.2.4 (Pésa, 1962 [53]]). A graph is Hamiltonian if it satisfies Posa’s crite-

rion.

We note that Theorems and[4.2.2] can be derived from Theorem
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Yet another result in this direction was given by Chvatal.

Definition 4.2.5. Let I' be a graph with n > 3 vertices and vertex degrees d; <
dy < ... < d,. Then I satisfies Chvatal’s criterion if d,,_; > n — ¢ whenever

Theorem 4.2.6 (Chvétal, 1972 [18]). A graph is Hamiltonian if it satisfies Chvdtal’s

criterion.

The best vertex degree characterization of Hamiltonian graphs is due to Bondy and

Chvatal.

Definition 4.2.7. Let I" be a graph with n vertices. The closure cl(I") of I' is the graph
(with the same vertex set) constructed from I' by adding for all non-adjacent pairs of

vertices u and v with d(I", u) + d(I", v) > n the new edge uv.

Theorem 4.2.8 (Bondy, Chvatal, 1972 [6]). A graph is Hamiltonian if and only if its

closure is Hamiltonian.

4.3 Proof of the main theorem

In this section we prove the main theorem of the thesis (Theorem [I.9.1]).

We first prove our result in the case of symmetric groups and then turn our attention

to alternating groups.

Before we consider the two cases, we introduce some notation and make an observa-

tion that will be used in both cases.

Notation 4.3.1. Let A;(n) and Ay(n) be the sets of permutations in S,, \ A,, and 4,,,
respectively, with less than \/n fixed points. Set Bi(n) = (S, \ 4,) \ 4i(n) and
By(n) = An \ (As(n) U {1}).

Lemma 4.3.2. Fori = 1,2, we have



Proof. B;(n) is the set of permutations in S,, \ A, and A,, respectively, with at least
[v/n] fixed points. Note that the number of [/n]-element subsets of the permutation
domain is ([\;Lm), and the number of permutations in S,, \ A4, and in A, fixing all

elements in each such subset is (n — [y/n])! /2. Therefore, by union bound, we have
no\  (n=[vn]) n!
i) < () - R
[v/n] (Tvn])!
for: =1,2. [

4.3.1 Symmetric groups

In this subsection we show that the generating graphs of symmetric groups of degree

at least 107 satisfies Chvatal’s criterion and hence are Hamiltonian.

We need a result of Breuer, Guralnick, Lucchini, Maré6ti and Nagy concerning mini-

mal vertex degrees in a certain subgraph of I'(.S,,).

Theorem 4.3.3 ([11, Theorem 6.1]). Let I',(S,,) be the bipartite subgraph of T'(S,,)
obtained by throwing away edges between elements in S,, \ A,,. Then for n > 15, the

degree of every vertex in T'y(S,,) is at least n! /n®.

We also set some notation.

Notation 4.3.4. For a graph T, we set cI"(I") = ¢I(T") and inductively set c1”)(I") =
cl(cl“=(T)) for every positive integer ¢ > 2. The graph cl(T") is called the i-th
closure of the graph I'.

In the next lemma we investigate adjacency in the graph c1® (I'(S,,)).

Lemma 4.3.5. Let n > 107 be an integer. The set S, \ A, induces a complete
subgraph in the graph c1® (T'(S,,)). Furthermore, every vertex in A,(n) is adjacent to
every other vertex and every vertex in By(n) is adjacent to at least (n!/2)—1+(n!/n?)

other vertices in the graph c1® (T'(S,)).

Proof. Set 'y = I'(S,). Since 1/y/n + 16.2/n + 1/n* < 1/4 for n > 107, by
Theorem 3.9.1] for u € A;(n) we have

1 16.2 1 3
dTow) > (1= (== + =24 2 ) ) o> 2
(07U)_( (\/ﬁjL n +”2)> T

44



and for v € Ay(n) we have

1
d(To,v) > ynl.

We now show that in the graph I'; = cl(I'(S,,)) the set A;(n) induces a complete

subgraph and every vertex in A;(n) is adjacent to every vertex in Ay (n).

The first claim holds since for any u, v € A;(n) we have
d(Lo,u) +d(Tp,v) > (3/2)n! > n! — 1.
Also, the latter claim holds since for v € A;(n) and v € Ay(n), we have
d(To,u) + d(Tp,v) > n! >nl—1.

Now we show that in the graph I’y = c1®® (I'(S,,)) every vertex in A;(n) is adjacent
to every other vertex in the graph. Let u € A;(n) and v € B;(n) U By(n). Then

by what we have shown above, in the graph I'y, u is adjacent to every other vertex in
Ai(n) U Ay(n). Also, by Theorem[4.3.3] d(T'y,v) > n!/n?. Thus, by Lemmal4.3.2]

we have
AT, 0) + d(T3,0) 2 (=2 = [Bin) U By(n)]) + 5
n! n!
> (nt=2- ) + o
>nl—1.

We next show that in the graph 'y = cl® (I'(S,,)) every vertex in By (n) is adjacent
to every other vertex in By(n). Let u,v € B;(n). By Theorem and Lemma
4.3.2] we have

d(T, u) + d(Ta,v) > 2 <\A1(n)] + Z—;) =2 (%‘ — [Bi(n)| + %)
>nl— 1.

It follows from what we have shown above and from Theorem [4.3.3|that every vertex
in B;(n) is adjacent to at least (n!/2) — 1 + (n!/n3) other vertices in the graph I's.
The proof is complete. 0

We are now ready to prove the main theorem of the thesis (Theorem[I.9.1)) in the case

of symmetric groups.
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Theorem 4.3.6. The graph c1'® (I'(S,,)) satisfies Chvdtal’s criterion for n > 107.

Proof. SetT' = cl® (I'(Sy)). Let dy < dy < ... < dp_ be the vertex degrees of the

graph I'. Let k be a positive integer with & < (n! — 1)/2. It is sufficient to show that
dn!—l—k Z n!l—1-—k. (41)

By Lemma every vertex in A;(n) has largest possible degree, namely, n! — 2.
Therefore, (4.1)) holds for k < |A;(n)|. Thus we may assume that & > |A;(n)|. By
Lemma we have

n! n!
k= [Al(n)] = [Sn \ An| = |Bi(n)| = 5 — 5=
2 2([vnl])!
But then by Lemma.3.5] we have
n! n! _ n! n!
dy1p> e 142> 0 ™ Sk
SR W e T T =
The proof is complete. ]

Proof of Theorem in the case of symmetric groups. By Theorem[.3.6/the graph
cl®) (I'(S,,)) satisfies Chvtal’s criterion. Thus by Theoremthe graph cI® (I'(S,,))
is Hamiltonian. Then by three applications of Theorem we have that I'(.S,,) is

Hamiltonian for n > 107. O

4.3.2 Alternating groups

In this subsection we show that the generating graphs of alternating groups of degree

at least 107 satisfy Pdsa’s criterion and hence are Hamiltonian.

We need a result of Breuer, Guralnick, Lucchini, Mar6ti, Nagy on the minimal vertex

degrees in I'(A,,).

Theorem 4.3.7 ([11, Theorem 5.3]). Let n > 8. Then the degree of every vertex in
['(A,) is at least n!/(10n3).

Theorem 4.3.8. The graph I'(A,,) satisfies Pésa’s criterion for n > 107.
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Proof. Let A(n) be the set of permutations in A,, with less than /n fixed points and
let B(n) = A, \ A(n). Then by Lemma4.3.2]

Letd; < dy < ... < dyuys—1 be the vertex degrees in the graph I'(4,,). Let k <
(n!/2 —1)/2. We need to show dj, > k + 1. If there exists ¢ < k such that d; is equal
to the vertex degree of a permutation in A(n), then by Theorem we have

1 16.2 1 !

I n
de>di>(1-2 (—+ -2+ )) - =>—">k+1,
o () B 2
where the third inequality holds since 1/y/n + 16.2/n + 1/n* < 1/4. Thus we may
assume that d; is the vertex degree of a permutation in B(n) for each i < k. But then
k < |B(n)| and hence by Theorem we have

n!
dy > > 1>|B 1>k+1
F=T0n8 < 2 1z B+ 1z k41,

n!
([vnl)

where the second inequality holds since n > 101. This completes the proof. [l

We are now ready to prove the main theorem of the thesis (Theorem[I.9.T)) in the case

of alternating groups.

Proof of Theorem[1.9.1in the case of alternating groups. The graph I'(A,,) satisfies
Pésa’s criterion by Theorem and hence I'(A,,) is Hamiltonian for n > 107 by
Theorem 4.2.41 O
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