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ABSTRACT

MATHEMATICAL MODELING OF A SMALL-SCALE HELICOPTER AND
MRAC DESIGN WITH TIME BASED UNCERTAINTY
PARAMETRIZATIONS

Giirler, Mustafa
Master of Science, Aerospace Engineering
Supervisor: Assist. Prof. Dr. Ali Tirker Kutay

November 2018, 137 pages

In this thesis, nonlinear mathematical modeling of a small scale model helicopter is
presented. In addition, problems in uncertainty parametrization component of Model
Reference Adaptive Control (MRAC) is investigated and external uncertainty on the
system is parametrized using universal approximators such as Fourier Series and
Chebyshev Polynomials in time dependent form. Advantages of using times based

universal approximators in MRAC design of MIMO systems are presented.

Proposed controller is tested on the model helicopter using derived mathematical
model. Considering special capabilities of the model helicopters, hovering is the most
problematic case in terms of stability issues and pilot workload. Therefore,
simulations and case studies are performed at hover condition. Moreover, procedure
of the MRAC design for a multi input multi output (MIMO) system is given and
controller performance is evaluated with and without external disturbance. Adaptive
law design and uncertainty parametrization method are the key parts of MRAC design.
While the use of e-modification and projection operator in adaptive law improves the
controller performance and provide adaptive weights boundedness, proper uncertainty

parametrization method selection is important for estimating true adaptive weights..



Keywords: Helicopter Dynamics, Helicopter Modeling, Model Reference Adaptive

Control, Uncertainty Parametrization, Fourier Series, Chebyshev Polynomials
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0z

KUCUK BOYUTLU HELIKOPTERLER iCIN MATEMATIK MODEL
GELISTIiRME VE ZAMANA BAGLI BELIRSiZLiK PARAMETRIZE ETME
YONTEMI iLE MRAC TASARIMI

Giirler, Mustafa
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi
Tez Damgmant: Dr. Ogr. Uyesi Ali Tiirker Kutay

Kasim 2018, 137 sayfa

Bu tezde, kiiclik 6l¢ekli bir model helikopterin dogrusal olmayan matematiksel
modellemesi sunulmustur. Buna ek olarak, Model Referans Adaptif Kontrol’deki
(MRAC) belirsizlik parametrizasyon bilesenindeki sorunlar arastirilmistir ve dis
kaynakli belirsizlikler Fourier Serileri ve Chebyshev Polinomlar1 gibi evrensel
kestirimciler kullanilarak zamana bagli formda parametrize edilmistir. Zamana baglh
evrensel kestirimcilerin ¢ok girisli ve c¢ok cikish (MIMO) sistemler igin MRAC

tasariminda sagladig1 avantajlar sunulmustur.

Onerilen kontrolcii, tiiretilmis matematiksel modeli kullanarak model helikopter
tizerinde test edilmistir. Model helikopterlerin 6zel kabiliyetleri diisiiniildiigiinde,
havada asil1 kalma kosulu kararlilik ve pilot is yiikii agisindan en problemli durumdur.
Bu nedenle, simiilasyon ve yapilan analiz ¢aligsmalar1 havada asili kalma durumunda
gerceklestirilmistir. Ayrica, MIMO sistemler igin MRAC tasarim prosediirii
anlatilmistir ve kontrolcii performansi dis bozucular mevcutken ve mevcut degilken
degerlendirilmistir. Adaptif kontrol yasasi tasarimi ve belirsizlik parametrizasyon
yontemi MRAC tasarimin 6nemli pargalaridir. Adaptif kontrol yasasinda kullanilan e-

modifikasyon ve projeksiyon operatorii kontrolcii performansini gelistirip adaptif

vii



agirliklan kisitlarken, dogru adaptif agirliklart tahmin etmek i¢in uygun belirsizlik

parametrizasyon yontemi se¢imi onemlidir.

Anahtar Kelimeler: Helikopter Dinamigi, Helikopter Modelleme, Model Referans
Adaptif Kontrol, Belirsizlik Paremetrize Etme, Fourier Serileri, Chebyshev

Polinomlar1
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CHAPTER 1

INTRODUCTION

Helicopters are rotary wing aircrafts with different unique qualities that make them
special aerial vehicles. The main advantage of rotary wing aircrafts is to provide
lift force without the need of forward flight. This lift force ensure the helicopter
the ability of hover and vertical takeoff/landing which fixed wing aircrafts could not
perform. Due to these abilities, helicopters are preferred for low speed tasks such as
search and rescue, firefighting and transportation applications. Rather than full sized
helicopters, unmanned small scale helicopters are widely used for performing these
special tasks and their popularity have also been increasing as a new field of interest

in literature for the last three decades [[1]].

Since rotary wing aircraft dynamics is highly nonlinear and coupled, piloting is not an
easy task especially under some unstable flight conditions. Two basic flight conditions
exist for helicopters; hovering and forward flight. Hovering is the most challenging
case for a helicopter and pilot workload is high relative to forward flight condition. A
great number of studies have been done by designing different types of controller in

order to facilitate pilot tasks in hovering [46, 26| 24].

Since the development and production of the first helicopter, control systems have
become compulsory part of the design. Most of the control systems lean on mathe-
matical model of the systems and physical relations. Yet, in real world applications,
perfect models representing the real system exactly do not exist and all physical sys-
tems may not be modeled easily. Moreover, in aerospace applications, describing
system dynamics for all flight regime with one model is not possible and generally
expose a nonlinear and coupled mathematical model. Since plant dynamics is nonlin-

ear, control system needs to be nonlinear and robust to uncertainties. Robust control is



one of the most used approach for systems with uncertainties. In this approach, worst
case is considered and excessive inputs may occur in control process. In other words,
robust controllers are conservative by their nature and they may result in performance
degrade. However, adaptive controllers try to cancel out uncertainties online and they
generate required control input to overcome undesired effects on the system. Adap-
tive controllers can be classified into two main groups; direct and indirect. Direct
adaptive controllers try to adapt controller variables without trying to estimate un-
known parameters of the plant. Unlike direct adaptive controllers, indirect ones try to
estimate unknown system parameters to use them in estimating controller variables.
While indirect adaptive controllers provide long term learning, short term learning
exists and controller response is fast in direct adaptive controllers. In other words,
direct adaptive controllers focus on suppressing tracking error rather than estimating

uncertainty itself.

Model Reference Adaptive Controllers (MRAC) are the most commonly used direct
adaptive controllers in the latest years. Numerous subjects have been studied with
MRAC such as aerospace vehicles, automobiles, medical processes and robotics. The
goal of MRAC is to generate adaptive control law such that plant states track the
predefined reference model. In order to achieve this, MRAC requires three major
elements; reference model, uncertainty parametrization and weight update law. These
three elements affect the controller tracking performance and it will be focused on

uncertainty parametrization methods particularly in this thesis.

1.1 Literature Search

Unmanned helicopters are mostly used in surveillance and transportation applications
in past decades. High lift-to-weight ratios, capability of aerobatic maneuvers and ease
of piloting make such vehicles special relative to full-sized helicopters. These speci-
fications result in high angular rates and fast dynamics to perform special tasks. The
fastest and the most dominant motion for a miniature helicopter is flapping motion
and most of the moments are produced by the main rotor around the main rotor hub.
This relieves the use of higher fidelity mathematical models including secondary ef-

fects and dynamics generally used for full-sized helicopters in literature [12].
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There are two common techniques for obtaining a helicopter model used in literature.
These are system identification and simple physics and mathematical based modeling
methods. For the modeling of the small scale helicopters, system identification in
frequency domain was used in previously developed models. Mettler, Tischler and
Kanade developed a small scale helicopter model based on frequency domain system
identification and they verified the model with a time domain model [25]]. In addition,
Civita, Messner and Kanade presented a novel modeling technique based on global
optimization in frequency domain for Yamaha R-50 type autonomous helicopter [8]].
Although these frequency domain based models provide lower order linear models,
accuracy is not good when there is a feedback [21] which is mendatory for helicopters
as their open loop systems are mostly nonlinear. Although accuracy of high frequency
modes is satisfactory, low frequency modes lack of accuracy and need flight test data

which cannot be performed every case.

Other technique is physics and mathematical based modeling in literature [[6, 50, 51,
164 28, 139, 15]. Although a high number of mathematical models are developed in
literature, Chen and Heffley have played a key role behind the main idea of devel-
oping mathematical model for a helicopter. Even though Chen presented flapping
dynamics, non-teetering configurations, pitch-flap couplings and hinge restraints to
the literature, mathematical models were not accurate in all flight regimes due to
model assumptions [6]. Lastly, in 1986, Heffley and Mnich published a paper at
NASA Annes Research Center. They developed a mathematical model based simula-
tion model which can be used in all flight regimes with very low calculations, known

as minimum complexity model [16]].

Classical adaptive theory started with gain scheduling methods and self tuning con-
trol techniques. Gain scheduling is the control method where controller gains are
calculated for specific flight conditions and changed as flight regime changes. Exam-
ples of gain scheduling can be found in literature [27, 49, 3| 42]. Another technique
used in classical adaptive control is self tuning control. The main idea of self tuning
control is to identify system parameters using parameter identification and to find a
analytical relation with controller gains. Examples of such controller are presented in
[17, 4,122, 45].



Modern adaptive control theory can be classified as direct and indirect adaptive con-
trollers. Indirect adaptive controllers use an estimating algorithm to approximate
the uncertain system parameters and to use these parameters in estimating controller
gains. On the other hand, direct adaptive controllers use instantaneous tracking error
to directly estimate controller gains without requiring to estimate system parameters.
The most known and widely used direct adaptive control technique is Model Ref-
erence Adaptive Control (MRAC). Examples of MRAC can be found in literature
(54, 4,130, 152].

The main idea of MRAC is to make the plant states track the predefined and desired
reference model. MRAC can be considered as combination of three fundamental
elements. The first one is the reference model. It is the desired response and char-
acteristics that plant should follow. Although reference model can be selected as any
proper desired dynamics, it can also be designed by and control methods by using
open loop plant dynamics. The second element of MRAC is the weight update law.
It is based on Lyapunov Stability and first studies with Lyapunov based MRAC are
done in [44] and [3’/]]. There are some modifications applied on the weight update law
in literature. e-modification [29], o-modification [[15]], dead-zone modification [38]],
K-modification [[18], Kalman-modification [S35]], Q-modification [33]], multi-objective
control modification [31] and optimal control modification [33] are the some modifi-
cations presented in literature. Projection operator is another modification for ensur-
ing adaptive weights in a compact set [20]. The last fundamental element of MRAC
is uncertainty parametrization. The common way to parametrize the uncertainty is to
use basis functions in terms of system states for structured uncertainties. Wing-rock
motion [47] is widely studied subject in this manner and used in control literature
[23148]. Another frequently used method to parametrize uncertainty is to use uni-
versal appproximators. Neural networks using Radial Basis Functions or Sigmoidal
Functions are the most general technique used in literature [19, [7]. Fourier Series
Expansion and Chebyshev Polynomials are the other universal approximators used in
MRAC literature [[13| 34]. Fourier Series is separated from others in terms of using

time variable in uncertainty parametrization instead of system state variables.



1.2 Motivation

Motivation of this thesis is to develop a mathematical model for small scaled model
helicopters and gain insight and expertise on one of the most popular modern control
techniques. The goal of choosing a model helicopter as the plant is that helicopters
are highly nonlinear and coupled systems and unmanned rotary wing aircrafts have

become popular in industry especially for surveillance applications.

Nonlinearities and couplings in the nature of helicopter dynamics exposes to design a
nonlinear and MIMO controller. Popularity in the last decades, allowing the use of a
baseline controller with any techniques and simplicity in design put forward MRAC in
other modern nonlinear control techniques. Robustness to external disturbances and
unmodeled dynamics also encourage to use MRAC controller for model helicopters

even if we do not have a high fidelity mathematical model.

1.3 Contributions

Beside developing a mathematical model for a nonlinear helicopter model, another
goal of this thesis is to improve tracking performance of MRAC controllers by focus-
ing uncertainty parametrization component. Apart from Fourier Series, in literature,
all uncertainty parametrization methods are in terms of system states or outputs. Since
defining the uncertainty as state dependent may not be an easy task for nonlinear and
coupled high order MIMO systems, a necessity of time based universal approxima-
tors usage is appeared. Beside Fourier Series Expansion, Chebyshev Polynomials
are defined in terms of time by using trigonometric relations and these time based

uncertainty methods are used in MRAC uncertainty parametrization.

1.4 Thesis Outline

In this thesis, there are five chapters: Introduction, Mathematical Model Derivation,

Model Reference Adaptive Control, Results and Discussion and Conclusion.

The first chapter is introduction to the thesis which contains overview of the helicopter
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dynamics and control. Literature survey in helicopter mathematical modelling and
MRAC theory and applications are presented in this chapter. Lastly, thesis motivation

and structure are given.

Chapter 2] contains derivation of the nonlinear mathematical model. Sub-components
of the helicopter are mathematically modeled separately and combined to create a
built up model. Nonlinear helicopter model is analyzed by trying with a sample
model helicopter parameters. Considering control purpose, trimming, linearization
and model order reductions are also presented in this chapter. Lastly, model verifica-

tion is done by comparing results in literature and sub-component testing.

In Chapter |3, MIMO adaptive control design and modifications are presented. First,
MRAC components are described and all fundamental elements are formulated and
designed. Design part starts with the reference model to be tracked. After decided
reference model, standard MRAC formulation and MIMO design procedures are pre-
sented. In the following parts of this section, MRAC adaptive law modifications and

uncertainty parametrization methods are given.

Chapter [4] presents implementation of the controllers, designed controllers results on
the helicopter model, modifications on the controller design and discussions. First,
linear and nonlinear helicopter model responses with baseline controller are given
and reason for needing an adaptive controller is presented. After, modifications in
MRAC are applied to the controller and their results and effects are discussed con-
sidering tracking performance of reference model. Lastly, robustness of the proposed

controller is evaluated.

The last chapter is conclusion of the thesis. This chapter contains a thesis summary

and future work considerations.



CHAPTER 2

MATHEMATICAL MODEL DERIVATION

In this chapter, mathematical model derivation procedure for a helicopter is described.
The main aim of the deriving mathematical model is that it is required for designing
control laws. Stepwise refinement is the main method to be considered in model-
ing. In other words, it is started with describing general functions and then they are
broken down into more details until whole system is fully covered. In this manner,
firstly, reference frames used in derivation is determined. Then, starting with rigid
body and main rotor dynamics, all forces and moments acting on the helicopter is
defined. Blade Element Theory [40] is the main method used in main rotor dynam-
ics. Constant inflow is assumed and calculated according to Momentum Theory [16].

Other components are modeled based on basic aerodynamics facts.

After deriving all components, nonlinear simulation model is developed using math-
ematical model. After trimming and linearizing around hover condition, linear and

nonlinear models are ready for control design and simulation purposes.

2.1 Mathematical Model Overview and Structure

Mathematical model consists of some main blocks which are responsible for different
tasks from each other. These subblocks can be seen in Figure 2.1} This mathematical
model describes the motion from pilot inputs (uon, Ujars Ucoll> Upea) tO helicopter
attitudes and motions. It has four primary and one auxiliary blocks and detailed

explanations of them are given below:



Rotary Wing Dynamics: This block consists of main rotor and stabilizer bar
dynamics. It is responsible for deriving flapping dynamics which is the most
dominant motion for helicopter behaviour. Outputs of Rotary Wing Dynamics
block are used in determining forces and moments generated by the main ro-
tor. This block uses swash plate inputs and helicopter model states to compute

flapping angles (B, Bis, Bic) and main rotor inflow (V;).

Forces and Moments Generation: This block consists of five different sources
which create forces and moments. The first one is Main Rotor Forces and
Moments which calculates main rotor forces and moments at main rotor hub.
The second one is Tail Rotor Forces and Moments. Other force and moments
sources are Horizontal Stabilizer, Vertical Fin and Fuselage Drag. This block
uses flapping angles, swash plate inputs, pedal input (i), main rotor inflow
(vi) and helicopter model states to calculate all forces and moments generated

on the helicopter.

Forces and Moments Summation: This block basically transform all gener-
ated forces and moments of subparts of the helicopter to CG position. Then,
it sums all forces and moments in order to use them in Newtonian Mechan-
ics. This block uses main rotor, tail rotor, horizontal stabilizer, vertical fin and

fuselage forces and moments and calculates total force and total moment in BF .

Rigid Body Dynamics: This block consists of differential equations of six de-
gree of freedom dynamics. It uses total force and total moments at CG position
and calculates helicopter attitudes, translational velocities and rotational veloc-

ities in BF'.

Atmosphere Model: This block basically uses American National Standard
Guide to Reference and Standard Atmosphere Models [2] to calculate density
of the air as the altitude changes in flight.

Velocity and Position Transformation to EF: This block transforms body
velocities and positions to EF which can be used for earth velocity trim and

navigation purposes for future works.
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Figure 2.1: MATLAB-Simulink Blocks of the Mathematical Model

2.1.1 Model Assumptions

There are some assumptions which are considered during modeling of the helicopter
dynamics. These assumptions are mostly because of complexity and nonlinearity of

the helicopter dynamics. In order to work in a simulation environment and solve
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nonlinear differential equations, the following assumptions are made in modeling:

e Wind velocity are assumed as zero.

e Constant inflow speed on the blade is considered.
e Blades are not twisted.

e Earth is assumed flat and stationary.

e Helicopter mass is constant during simulations.

e Moment of inertias are constant.

e Non-diagonal terms in inertia matrix are zero due to plane of symmetry as-

sumption around xp-zp axis.
e The helicopter is considered as a rigid body.

e There is an enough engine power to keep main rotor rotating at a constant an-

gular velocity.
e CG location is constant during simulations.
e Main rotor blades are rotating in clockwise direction.

e Only flapping dynamics are considered in main rotor dynamics. Lead-lag and

feathering dynamics are ignored.

e Ground effect is not considered for low level flights.

2.1.2 Reference Frames

There will be two main and five auxiliary reference frames and notations to describe
the helicopter flight dynamics. The main reference frames are Body Fixed Reference
Frame and Earth Fixed Reference Frame. In order to facilitate helicopter dynamic
modeling, five auxiliary reference frames, Hub Fixed, Tail Rotor Fixed, Flapping
Hinge Fixed, Blade Fixed and Spatial, are defined. The orientation and center points

of each frame are shown in Figure [2.2]
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Figure 2.2: Orientation of Reference Frames [39]

2.1.2.1 Body Fixed Reference Frame

Considering equations of motion, it is necessary that a frame where inertia of the heli-
copter is constant. This frame is called by Body Fixed Reference Frame, abbreviated
by BF and its orientation is defined as a right handed coordinate system. Origin of
BF is fixed at the center of mass of the helicopter and it moves and rotates with the
helicopter. The basis vector of BF is expressed by (xp, yg, z). The xp axis points out
the nose of the helicopter from CG position. The yp axis points through the right side
seen from the back of the helicopter. The zp axis is perpendicular to both xp and yp

and it points through downward from the bottom of the helicopter.

11



2.1.2.2 Earth Fixed Reference Frame

In order to use Newtonian mechanics and develop equations of motions, a non-
rotating and non-accelerating frame is needed. This frame is called as Inertial Co-
ordinate Frame. With the assumptions of that Earth is flat and stationary and the
speed of the helicopter is not high, Earth Fixed Coordinate Frame, abbreviated by
EF, is taken as Inertial Coordinate Frame [43]. Origin of EF is located arbitrarily
on the Earth surface with fixed orientation. The basis vector of EF is expressed by
(xe,YE,zE). The xg axis points out North direction. The yg axis points out East direc-
tion. The zg axis is perpendicular to both xz and yg and it points through downward

to the center of the Earth.

2.1.2.3 Hub Fixed Reference Frame

In order to express main rotor forces and moments, Hub Fixed Reference Frame,
abbreviated by HF, is defined as an auxiliary reference frame. Origin of HF is located
at the top of the main rotor hub. The basis vector of HF is expressed by (xg,yH,2H)-

The orientation of HF is same with BF.

2.1.2.4 Tail Rotor Fixed Reference Frame

In order to express tail rotor forces and moments, Tail Rotor Fixed Reference Frame,
abbreviated by T'F, is defined as the second auxiliary reference frame. Origin of TF
is located at the top of the tail rotor hub and its orientation is same with BF'. The basis

vector of TF is expressed by (x7,y7,27)-

2.1.2.5 Spatial Reference Frame

The third auxiliary reference frame is Spatial Reference Frame, abbreviated by SF,
used in transformation of forces and moments from BF to a non-rotating reference
frame. Origin of SF is same with BF, which is center of the mass of the helicopter,

and same orientation with EF. The basis vector of SF is expressed by (xs,ys, Zs).
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2.1.2.6 Flapping Hinge Fixed Reference Frame

The forth auxiliary reference frame is Flapping Fixed Reference Frame, abbreviated
by FF, origin of the FF is fixed at the flapping hinge and it rotates with the main

rotor rotation. The basis vector of F'F is expressed by (xg,Vr,zF).

2.1.2.7 Blade Fixed Reference Frame
The last auxiliary reference frame is Blade Fixed Reference Frame, abbreviated by

BFF, origin of the BFF is fixed at the main rotor blade and it rotates with main rotor

flapping. The basis vector of BFF is expressed by (xp;, s, 251)-

2.2 Rigid Body Dynamics

According to Newtonian mechanics, time derivatives of linear and angular momen-

tum are equal to the external forces and moments of the body, respectively [36].

Y Fo = L (1) = Lmin)
% = (Hy) = (1) |
B= " T V8

2.2.1 Euler Angles and Rotation Matrix

In order to define vectors between BF and SF, a transformation matrix should be
defined in terms of attitude of the helicopter. Euler angles ® = [(g]T are used to
represent helicopter attitude. Therefore, SF' should be rotated arounclly its z axis by vy,
y axis by 0, and x axis by ¢ respectively to reach the identical coordinate system with

BF.
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Figure [2.3] shows that rotations around z-y-x axis, respectively. As a mathematical

fact, any new reference frame can be obtained by rotating any coordinate frame one-

by-one around each axis.

First rotating SF" around its z axis by y,

X] = X5COS Y + ygsin

Y1 = —Xssin Y + ygcos ¥

71 = 2§
In matrix form,
X cosy siny Of |xg XS
yi| = |—siny cosy 0| |ys| =R(¥) |ys

Then, rotating the new coordinates system around y axis by 0,
Xy =Xx1€0860 —z1sin 6
Y2=M5
7p =Xx1¢c0860 +z1cos O

In matrix form,

X2 cos@ 0 —sinB| |x X1
=] 0 1 0 yi| =Ry(0) |y
o) sin@ 0 cos@ 21 4
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Finally, rotating the last coordinate system around x axis by ¢,

X3 =X
y3 = y2c0860 + 7, 8in O (2.6)

73 = —ypsinO 42z, cos 0

In matrix form,

X3 1 0 0 X2 X2
y3| =10 cosg sing | [y2| =R(®) |y (2.7)
Z3 0 —sing cos¢| |22 22

X X3 Xs Xs
ya| = |y3| =Rx(9)Ry(O)R(Y) |ys| =Rsp(®) |ys (2.8)
<B <3 <S zs
where
cos O cos ¢ cos O sin y —sin 6

Rsp(0) = |sin¢sin@cosy —cos¢siny sin¢sin@siny +cospcosy sin¢cos

cos@Psin@cos¢ +sin@siny cosPsinBsiny —singcosy cos ¢ cosO
(2.9)

Since the transformation matrix is orthogonal, the inverse of it is equals to its trans-

pose, that is:

cosOcosy sin¢sinOcosy —cos@siny cos @ sinb cos Y+ sin ¢ sin Y
Rps(6) = | cosOsiny sin ¢ sin O sin Y cos ¢ sin @ sin Y — sin ¢ cos Y

—sin 6@ sin¢ cos 0 cos ¢ cos O
(2.10)

2.2.2 Transformation of Reference Frames

In this part, transformation of the reference frames described in Section[2.1.2]between
each other is presented. These transformation matrices will be helpful in mathemati-

cal model derivation.
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2.2.2.1 Transformation of Earth Frame to Body Frame

In Equation [2.9] the relation between SF and BF is shown. Since the orientation of
SF and EF are same as stated in Section [2.1.2.5] transformation matrix in Equation

2.9|can be used for transformation of EF to BF,

cosOcosy cos 0 sin Y —sin6
Rep(®) = |sin¢sin@cosy —cos¢siny  sin¢sin@siny +cos@cosy singcos O

cosPsinfcos¢ +sin@siny cosPsinOsiny —singcosy cos P cosO
(2.11)

2.2.2.2 Transformation from Body Frame to Hub Frame

As described in Section [2.1.2.3] hub axis is fixed and has exactly the same orientation

with BF. In matrix form,

XH XB 1 0 Of |xg
yu| =Rpu(®) |yg| =10 1 Of |ys (2.12)
ZH ZB 0 0 1| |zp

2.2.2.3 Transformation from Hub Frame to Flapping Hinge Frame

FF is obtained by rotating HF about its z axis amount of y degrees.

XF XH
yr | =R (W) |ym
F ZIH

cosy siny 0| |xy

= | —siny cosy 0| |yy (2.13)
0 0 1| |zu
XH
=Rur(0) |yu
ZH
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2.2.2.4 Transformation from Flapping Hinge Frame to Blade Fixed Frame

BF'F is obtained by rotating F'F about its y axis amount of  degrees.

XBI XF
YBI| — Ry(ﬁ ) YF
ZBI IF

cosfp 0 —sinf| |xr
=] 0 1 0 VE (2.14)
sinB 0 cosfB | |zr
XF
=Rrpi(B) |yr

IF

2.2.3 Euler Rates

There is another transformation matrix which will be required in defining the relation

of angular velocities with Euler angle rates. It is important to notice that while Euler

. [e7"
angle rates (G) = {9} > are the rates of change of the Euler angles with respect to
v

T
SF, angular velocity ((T)B = [51;] ) is the helicopter body angular velocity vector.

The equation expressing the relation between 6 and  is written by kinematics [43],

p ¢ 0 0
= |q| = |0| +Ru(®) | 6| +R(®)R,(6) | 0 | = Cps(®)O (2.15)
r 0 0 4
where,
1 0 —sin@
Cps(®)= [0 cos¢ sin¢.cosO (2.16)
0 —sing cos¢.cosf
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By inverting the transformation matrix, Euler rates are defined in terms of body an-

gular velocities:
0= CE; (@) B

0 p (2.17)
6| =Csg(®) | g
74 r
where,
cos® sin¢.sin@ cos@.sinf
Csp(®) = Cyg (©) = : 0 cosg.cos® —sing.cosB (2.18)

~ cos@
0 sin ¢ cos ¢
Finally, rotation matrix Rgp(®) in Equation will be used for mapping Earth
position vector and rotation matrix Csp(®) in Equation will be used for mapping

angular velocities from BF to SF.

2.2.4 Translational Accelerations

Using Equation [2.1]and assuming helicopter mass is constant with time [36],

Y Fp= E<mhvé) = thVé (2.19)

where Y Fp = [ﬁx ﬁy ﬁZ]T are total external forces of three axis generated by the
helicopter components. my, is the mass of the helicopter. \73 = [Up Vg vT/B]T are
translational body velocities of the three axis with respect to inertial frame. This
velocity is written as,

Vi=Vp+ o x 7 (2.20)

T

where @} = [p g r]! are angular velocities of three axis and 74 is the helicopter

body position vector. Taking derivative of Equation [2.20]

d = = N -
EVé =V + COII; X Vé (2.21)
Then,
SR N £ SN
ZFB— (thB) =my VB+wBXVB
dt
R (2.22)
= VB —_ wB X VB
my
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After writing cross product in matrix notation,

iip . 0 —r g Up

X ) F

V= |vg| = Zm—hB —|r 0 —p| |V (2.23)
Wwp —q p 0| |ws

Finally, translational accelerations are derived as,

= ZF;C —

Up = +Vpr —wpgq
my

. yE

b =D e (2.24)
my

Wp = LE +1iipg — Vpp
mp

2.2.5 Rotational Accelerations

Using Equation [2.1][36],

\ _i"]_i_’B 1 ryl 2.25
ZMB_ HB_dtHB+a)BXHB ( . )
Where ¥ Mp = [Mx My MZ]T are total external moments of three axis generated by
the helicopter components and Hp is the angular momentum vector about center of

gravity position of the helicopter and it is defined as,
Hp =13 (2.26)

Where [ is the inertia matrix of the helicopter,

Ly Iy I,
I=|—-1y Ly -—I, (2.27)
_sz _Izy Izz

For a symmetric aircraft, xz plane is assumed as plane of symmetry and inertia matrix

can be taken as,

Ixx O Ixz
I=| 0 I, 0 (2.28)
~Le 0 L

Taking derivative of angular momentum equation in Equation [2.25] with respect to

BF,

d -y d d g
dt 8

1B+ 1. 2.29
FTRCA P (2.29)
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Since change in inertia vector with time is assumed as zero,

d

—I=0
J dt (2.30)
—)B 2
—Hp =10
dr B ?
Ly 0 _Ixz p p Lix 0 _Ixz p
:>ZMB: 0 I, 0 gl +t|q| x| 0 L, 0 q
L, 0 L.||F r e 0 Iy | |7
- (2.31)
M, Lixp — Lgi — q(Ixp — Ipe7) — Lyyqr
= My = | hyq+ p(lexp — L) + 1(lap — Lizr)
_MZ Izzf—lzxp—Q(Ixxp_Ixzr) +Iyypq
Then, the rotational accelerations are derived as,
P Mx + L+ q(Ixp — L;1) +1yqr
I)CX
4= Mo = Plep = Ler) = r(liap = Lur) (2.32)
Lyy
i M +1xp+q(Lp — L;r) — Liypq
[ZZ

Finally, all rigid body dynamics equations are obtained. There are nine unknowns
and six differential equations described in Equation and Equation In or-
der to solve these nonlinear equations, three more equations are essential and they
come from kinematic relation in Equation After deriving all equations, ¥ F =
[F, F, F)7 and YMp = [M, M, M,|" are needed to be calculated to solve rigid

body dynamics equations.

2.3 Rotary Wing Dynamics

In this section, main rotor and stabilizer bar dynamics are described. As mentioned
in model assumptions in Section [2.1.1] only flapping motion is considered in deriving
equations. Flapping of the rotary wing is the most important dynamics for a helicopter
[6]. It is primary source of lift force and it does not only keep the helicopter in air, but
also it decides direction of the helicopter. Since it is a very complex physical structure,

most of the model assumptions are made in defining and deriving this dynamics.
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2.3.1 Main Rotor Flapping Dynamics

In order to describe main rotor flapping dynamics, it is necessary to determine the
source of this dynamics. Therefore, pitch angle of each blade is defined. Pitch angle
of blades are controlled by swash plate with harmonically varying angles. Only first

order harmonics are considered [41]]. That is,

) e+r
Ob1 = Ocott + Blar €O Y — Bjon Sin Y + Oy —p— — K Bpi (2.33)

where,

0y, is the pitch angle of the blade,

6..; 1s the collective pitch angle,

0., 1s the longitudinal pitch angle,

0,4 1s the lateral pitch angle,

y is the angular position of the blade,

6y, is the blade twist angle,

e is the distance from flapping hinge to the main rotor hub,
r 1s the distance from flapping hinge to a blade element,

R is the main rotor radius,

K; is the cross-coupling between the flapping angle and the pitch angle,
By is the flapping angle of the main rotor blade.

In Equation [2.33] it is seen that 6,,; are not multiplied with any term related with
the blade position. This means that collective pitch angle of blades are equal at any
azimuth angle y. Moreover, according to model assumptions in Section [2.1.1] blade

twist angle and flapping-pitch angle cross coupling are zero. Then,
01 = Oco11 + 014: COS YW — 0y, SIN Y (2.34)

After defining the source of the flapping dynamics, the resulting motion is need to be
defined. Since pitch angle of the blades are defined as a harmonic function, resulting
flapping motion are also be defined harmonically. Considering ideal phase shift (90°),

flapping motion is defined as [36],

Bri = Po — Biccos Y + PBigsiny (2.35)
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In order to determine signs in Equation [2.35] corresponding flapping motion is con-
sidered after 90° phase shift from the swash plate input is given. The main principle

is that maximum flapping occurs 90° after maximum pitch is given.

After determining inputs and results of flapping motion, aerodynamic forces and mo-
ments on a blade are considered in order to derive flapping dynamics equations. For
this purpose, Blade Element Method is widely used in literature [40]. This method
basically presents examining forces and moments on a small element of a blade, then

calculating total forces and moments by integration along blade length.

Figure 2.4: Cross section of the helicopter main rotor blades

In Figure a small blade element dr is shown. By using basic aerodynamics [36],
corresponding lift force dL is calculated. e is the hinge offset in the same unit with

R, and calculated by multiplying hinge offset percent with main rotor radius length.

First step of blade element method is to calculate lift and drag force on a small el-
ement. Figure illustrates the blade cross section and corresponding dL and dD
forces acting on the blade. Resulting air velocity U, is perpendicular to dL and is

parallel to dD.
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Figure 2.5: Cross section of the helicopter main rotor blades

The increment of lift force dL on a small element dr is described by basic aerody-
namics [36],

dL — g 2C, cdr (2.36)

where,

p is the density of the air

U, is the air velocity

Cy is the blade lift coefficient

¢ 1s the cord length of the blade

Blade lift coefficient C;, can be assumed as it has a constant lift curve slope Cy,, then

Equation [2.36] becomes,
P

dL = EUbZCLaacdr (2.37)

Considering local inflow angle ¢; very small, it is assumed that |U;| >> |U,|.

o = 0y — 0,
U
= O —tan ' (7) (2.38)
t
U
~ Oy — L
bl Ut



U= UG (2.39)
~ U;

Then, lift force acting on a small blade element dL is described,
U
dL="u2c, (6, — “2)edr (2.40)
2 U;

Drag force acting on a small element dD is derived by same procedure,

cngWQwr (2.41)

where Cy is the blade drag coefficient.

In Equations[2.40|and [2.41] there are two unknowns which need to be defined. These
are horizontal and vertical blade velocities. Primary source of horizontal blade veloc-
ity is the main rotor rotation speed. Other source that contributes to U; is translational
velocities of the helicopter. On the other hand, primary source of vertical blade ve-
locity is main rotor inflow. Other contributors are helicopter translational velocities,
helicopter rotational velocities and main rotor flapping rates. Considering all contri-

butions to horizontal and vertical velocity of the blade, these velocities can be defined
[3].
Uy = Qur(e+rcosB) +upsiny —vgcos y
U, = —wpcos B+ usin B cos y +vsin B sin y + v;cos  + Br (2.42)
+ (e+rcosB)(psiny —gcosy)
Assuming small angle assumption to flapping angle 8 (sinf3 =~ 8 and cosf3 ~ 1),
Equation [2.42] becomes,
U = Qur(e+r)+ugsiny —vgcosy
U, = —wp+uBcosy+vBsiny +v; + Br (2.43)
+(e+r)(psiny —gcosy)
Now, each unknown term in Equations [2.40] and [2.41] is defined . This means that
forces acting on a blade can be calculated by simple integration over the blade. Mov-
ing on to torques acting on the blades, it can be said that resulting torque needs to be

equal to aerodynamic torque generated dominantly by lift force on the blade for equi-

librium. Resulting torque is defined by Euler equations of rotation which is based on
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total moment of all external forces about a fixed point is equal to time rate of change

in total angular momentum [[14].

ZMaem = (?cgmbl X Zihinge) +ﬁ0bl + a)bl X FIOM +Msp (244)

In Equation there are some new terms need to be defined,

e y;: Rotational velocity at blade
® dpinge: Translational acceleration at flapping hinge point

e M;), is the restraint torque due to spring at flapping hinge.

e Hy,,: Angular momentum around hinge center

In order to define these unknown terms, transformation matrices are frequently used.

Starting to define angular velocities at BF, HF and FF,

P
@ = | g (2.45)
r
@y = Ry (©) dp (2.46)
B = Ryp(©)dy (2.47)
0 0
@y = Repi(B)Br + | B | +Rep(B) | 0 (2.43)
0 Qr

0 0
Note that main rotor rotation ( [ 0 ] ) is defined in FF and flapping rate ( [ B] ) is
mr 0
defined in BFF.

Next, translational acceleration of the hinge point is defined with general planar mo-
tion [14],

ABlyee = RFBI [Ez’Fh,.,,ge + OF X é+ OF X (BF % z)] (2.49)
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where dp,,,, = 0 because it is the translational acceleration of flapping hinge fixed
€mr] . . .
reference frame relative to itself. € = [ 8 } is the hinge offset vector fixed at flapping

hinge in FF.

= 0 . . . . . .
Next, Mgy, = [Kxﬁ ] is the restraint torque and its source is the virtual spring at the
‘ 0

flapping hinge. It always generates torque against flapping motion.

The last term needs to be defined ﬁob; = [ @y, is the angular momentum of the blade

with respect to flapping hinge point. Therefore, I?Iobl =1 a’bl-

After determining all unknown terms in total moment equation in Equation[2.44] total
lift force and aerodynamics moment can be calculated by using lift force acting on a
small blade element [36]],

Rmr*e p 2 Up
ZMaem = /l”dL = / —U[ CLa(le - —)C}’d}’ (250)
0 2 U,

In Equation [2.50} all terms are previously defined. Inserting [2.50]into total moment
equation in Equation [2.44] total flapping dynamics equation is obtained. That is,

/ORW e gUtcha(ebl - UU[:)C“” - [<?C'gmbl X Gpinge) +ﬁobl + @y x Ho,, +Msp] =0

(2.51)
It should be noticed that pitch angle and flapping angle of the blades are defined as a
first order harmonic function. This results in using harmonic balancing [41] to solve
Equation In order to do this, all sine, cosine and constant terms are separated

from each other and equated to zero.

Finally second order flapping equations are derived as Bo, BI s and Blc- Po is the solu-
tion of constant terms in Equation B, is the solution of sine terms in Equation
Lastly, Bi. is the solution of cosine terms in Equation Implicit solutions

of second order flapping angles equations can be seen in Appendix

2.3.2 Main Rotor Inflow

Main rotor inflow is the most important parameter affecting thrust generation by the
main rotor. For the induced velocity calculation, momentum theory with a recur-

sive solution is used and main rotor inflow is assumed constant over blade. Thrust
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generated by the main rotor is described as [16],

p erRerLa N CRmr

Tmr = (Wb - V,’) 4 (2.52)

2 Py Jor o P 2.53
Vi = (_3)+(2pA )—3 (2.53)

where,
2 3

Wp = Wy + ggermr(ecoll + Z@w) (254)
Wy =w-+ (ﬁlc + is)”B - ﬁlsVB (255)
P2 = ulzg + Vlzg + w,(wy —2v;) (2.56)
Apr = TIR%, (2.57)

where p is the air density, €,,, is the main rotor angular velocity, Cy,, is the lift curve
slope, R, is the main rotor radius, N is the number of blades, c is the chord length,
wp 1s the main rotor blade velocity, w, is main rotor disc velocity and and v; is the

induced velocity.

2.3.3 Stabilizer Bar Flapping Dynamics

In order to describe stabilizer bar flapping dynamics, its function and use of pur-
pose are necessary to be defined. Basically, stabilizer bar acts like a rate feedback
controller in pitch and roll axes to decrease bandwidth and weights of cyclic control
inputs. Stabilizer bar does not have a coning angle, it only flaps in lateral and longi-
tudinal directions. Similar procedure with main rotor flapping derivation is applied
for stabilizer bar flapping dynamics. It uses longitudinal and lateral swash plate input
(391,

O5p = Oy, cOSY — By, siNY (2.58)

And stabilizer bar flapping is defines as[39],
Bsb = —ﬁlcstOSll/JrﬁlssbSi”‘I/ (259)
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Horizontal and vertical velocities on the stabilizer bar paddle and angle between them

1s written as[39],

U, = Qpyr +ugsinyy —vgcos Y (2.60)

Up,, = —Wp + up Py, cos W + vpP, sin W +vi + Bypr + r(psiny —geos y)  (2.61)

U

o = Oy, —tan~ (=L

sb an (Ut)
Upsb

~ —_——
~ Usb

U[sb

(2.62)

After using the whole procedure and applying harmonic balancing [41], first order
stabilizer bar flapping equations are derived implicitly. Blcsb and Bl s, €quations can

be found in Appendix

Stabilizer bar flapping and swash plate inputs are mixed and fed to the main rotor.
This mixing relation is the mechanical links connecting swash plate, stabilizer bar

and main rotor. Bell-Hiller gains are used to define this relation [39].

Glat = Ky eswla, + Ksbﬁlsxb
elon = Ksw eswlo,, - Ksbﬁlcsb (263)

6coll = Gsww”

2.4 Forces and Moments

In this section, forces and moments acting on the helicopter body are described. Pri-
mary sources of the forces are main rotor and tail rotor. The most important torque
contribution of main rotor is drag torque around zz due to main rotor rotation. The
main role of tail rotor is to create anti-torque to main rotor drag torque. Fuselage,
horizontal tail and vertical fin also generate a force on the helicopter body; however,
these forces are small relative to main rotor and tail rotor. Stabilizer bar is assumed

as it does not create a significant force on the helicopter.
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2.4.1 Forces and Moments Generation

In order to understand helicopter motion, forces and moments generated by the com-
ponents of helicopter model should be derived particularly. These forces can be de-
rived at different reference frames. It will be transformed into BF in Forces and

Moment Summation in Section [2.4.2)

2.4.1.1 Main Rotor Forces and Moments

Main rotor generates forces and moments in three axis in HF. These forces and

moments are Fy, , F, ., F, and M, , M, and M.

Xmr> = Ymr> © Zmr Xmr> Zmr*

In order to define these forces,
blade element theory is again used. Lift and drag force on the blade are the main
sources of main rotor forces and moments. They can be seen in Figure[2.5] According
to Figure [2.5]and small angle assumption to ¢, forces at zero azimuth are defined as
(411,

dFy, = —dLsino; —dDcos
(2.64)
~ —(dLa;+dD)
drF, = —dLcos o+ dDsin ¢;
(2.65)
~ —dL
dFy, =dF,, sinf3
we (2.66)
~ —dLf
dFy,, —dLp
= dFp = |dF,, | = | —(dLo;+dD) (2.67)
dF. —dL

<BI

In order to write main rotor forces in HF, transformation matrices are used. The

angle between BFF and HF is (180 + y) degrees.

cos(180°+y) sin(180°+y) 0
dFy = R;(180° + y)dFp = | —sin(180° + y) cos(180°+y) 0| dFg  (2.68)
0 0 1
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= dFy, = —dF, cosy +dF,, siny =dLB cosy — (dLa;+dD)siny

= dF,, = —dF.

XBI

siny — dFy, cosy =dLBsiny + (dLoy +dD)cosy  (2.69)

= dF,, = dF,, = —dL

Then, infinitesimal main rotor forces in HF are integrated over blade length, that is
from O to (R, — ¢). Since forces are changing with azimuth angle v, average main
rotor forces are found by integrating along azimuth angle from O to 27, multiplying

with number of main rotor blades and by dividing 27 [36].

Nmr 2% pRy—e
Hpyy = / / dFy, drdy (2.70)
2r Jo Jo
Nmr 2% rRyur—e 571
Yo = /0 /0 dF,, drdy @.71)
Nmr 2% rRu—e
Ty = 271_/0 /() dFZHd}’dl[/ (2.72)

Finally, main rotor forces in HF is derived.

=

mr
Fory = | Yr (2.73)
Tmr

Same procedure is applied for deriving main rotor moments. It should be noted that

moments are taken around flapping hinge point [36].

Nmr 2w pRyr—e
M, = Onr= E/O /0 (e+r)dFy,dy (2.74)
Npr 2% rRy—e
M, =M, = - / / —(esiny)dF., dy +K,Bsinydy  (2.75)
H mr 2 0 0

Nmr 2w rRur—e
My, =My, =3 [ [T (ecosy)dF, dy+ KBeosydy 276

It is seen that while F

51 F,,, force is the source of

force generates M,,, and M, , F,,

main rotor drag torque Q. Note that K is the flapping hinge spring constant and

KB is the its contribution, known as restraint torque.
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After inserting Equation [2.38] final main rotor force and moments equations in HF

in Equations are derived.

Hur| [ S [3% ¢ dLP cos w — (dL(By — 32) +dD)sin ydrdy
Fory = | Your | = | B2z J57 Jofmr = ALB siny + (dL(8y — 72) +dD) cos ydrd ys
Ty B [ Jomr=¢ —dLdrdy
277)
M, R o [fomr e [dL(e siny) + KB sin l//] dy
My, = |M,, | = ]g";tf 02” ({‘)’”’*e [ —dLecos y + K3 cos l[/] dy (2.78)
Onr| | N 37 I —(e-4 1) [dL(8ys — )+ D]y

2.4.1.2 Tail Rotor Forces and Moments

In derivation of tail rotor forces and moments, it is assumed that tail rotor only gen-
erates thrust force in yr axis and tail rotor drag force is neglected. Unlike main rotor,
tail rotor does not have longitudinal and lateral inputs. Collective pedal input 6;, gen-
erates tail thrust force 7;,. In order to derive tail rotor thrust, momentum theory with
a recursive solution is used like main rotor inflow. Tail rotor does not generate any

torque on center of 7F. Thrust generated by the tail rotor is described as [[16]],

QR Cr, NipcirR
T, — (Wb”, _— Pa2rriyy L:,r trCtriier (279)
~D ~2
o _ iy Ty Vi (2.80)
vltr \/( 2 ) +(2PA”) 2
where,
2 3
Wp,, = Wy, + §-Q'trRtr(9tr + Zelw,,) (2.81)
Wy, = —V+TRy;p — PRy (2.82)
{)Izr = M% + (WB + qRXTR>2 + Wry, (Wrtr - 2Vl'tr) (283)
Ay = TR (2.84)

31



where p is the air density, €, is the tail rotor angular velocity, Cp, is the tail rotor
lift curve slope, R;, is the tail rotor radius, N;, is the number of blades of tail rotor, c;,
is the chord length of the tail rotor, wy, 1s the tail rotor blade velocity, w,,, is tail rotor

disc velocity and and v;, is the induced velocity of the tail rotor.

Final tail rotor force equations are described.

0
E‘rB = ErT = | =T (285)
0

2.4.1.3 Fuselage Forces and Moments

Fuselage creates drag forces defined in all axes in BF. These forces are assumed at
CM; therefore, they do not create any significant moment on CG position. Fuselage
forces are described using quadratic drag function [36]],
—3Puplus|CaAfus,
FfusB = —%pVB|VB|CdyAquy (2.86)
—1pwg|wa|CyA fus,
Where Cy,, Cdy and Cg, are drag coefficients and Ay, A fus, and Apys_ are the equiv-

alent flat plate areas in the related axis.

2.4.1.4 Empennage Forces and Moments

The last components which generate forces and moments on the helicopter body are
horizontal stabilizer and vertical fin. The main intended purpose of vertical fin is
to create extra anti-torque when the helicopter is in forward flight and air is flow-
ing across the lifting surface. On the other hand, horizontal tail is used for holding
fuselage flat in forward flight. Drag force on both vertical fin and horizontal stabi-
lizer can be neglected, since they are relatively small and thin components. Lift force

generated by vertical fin and horizontal stabilizer are defined as [36],

Fxlm O
Figy = |F,, | = 0 (2.87)
FZ;Ly - % pup | Uup |CL0%S OpsAps
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Fy, 0
By = R, | = —%pu3|uB|CLan O A, g (2.88)
Fryy 0

Where Cp,, and CLan are lift curve slopes of horizontal tail and vertical fin, respec-
tively. Apg and A, ¢ are the horizontal stabilizer and vertical fin areas. Angle of attack

of these components are defines as [36],

oy,s = arctan(wy,/up)

(2.89)
o, ¢ = arctan(v, ¢ /up)
Velocities passing over the lifting surfaces are defined as,
Wps = W+ gR s
’ . (2.90)
Vyf =VB— rRfo
Moving on torques generated by empennage forces,
Mxhs FZhSRth - FthRth
MhSB = Myhs = FthRZhs - f?Zthxhs (291)
Mzhs Fy hs Rxhs - Fxthy hs
Mxvf Ev’fRyvf - Fyvava
M, g, = My, | = | Fx, Ry —Fr Ry, (2.92)
M, Fy, Ry = Fr Ry
Where Ry, , Ry, , R, , Ry, . Ry, " and R, ; are the distances of horizontal stabilizer and

vertical fin to CG in xp, yp and zp axis.

2.4.2 Forces and Moments Summation

After deriving forces and moments generated by the components, the last step is to
transform them to BF in order to use in Rigid Body Dynamics in Section [2.2] First,

total moment around CG due to main rotor and tail rotor are defined.

MmrB = MmrH + Ryr X FmrH (2.93)
MtrB = RTR X EFH
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Beside these forces generated in Section [2.4.1] gravitational force is defined in SF

and always act in zg direction. Transforming all forces and moments to BF/,

0
Fp —RSB|: g ] +RHBFmrH +Er3 +FfusB+FhsB+va3 (2 94)

B = MmrB ‘l’MtrB +MhsB +va3
Then, using Equation[2.93]in Equation[2.94] final moment equation in BF are derived.

Rer thr
Where Ryr = |:RYmr] and Ryp = [Ry,,] are the distances of main rotor and tail rotor

Zmr itr

to CG position, respectively.

2.5 Analysis of Mathematical Model

In this part, mathematical model of the helicopter is implemented and analysed. Af-
ter deriving necessary dynamics, these equations need to be related with each other.

Looking at the structure by considering inputs and outputs of each subparts,

B
Ueolr SWcoll QCOH e — ’5)
Uon ACTUATOR Oy, STABILIZER BAR B1on | MAINROTOR F
Wat DYNAMICS Osvore DYNAMICS O1ar DYNAMICS e
ped stpm Hped J MmrH —
e,
TAILROTOR
MODEL INPUTS . F,,
DYNAMICS B
S ——
MODEL OUTPUTS ~ MODEL STATES — FUSELAGE
& FhsB -
HORIZONTAL
8 . | STABILIZER Frysp=
up g &
vEl R VERTICAL FIN Fypp =
Wi v DYNAMICS
f Wp Fg
COORDINATE l
[ TRANSFORMATION e PODY FORCE AND
; DYNAMICS MOMENT .
0 g SUMMATION
) II) B ;/ \—)

Figure 2.6: Model Inputs, States and Outputs

Considering full mathematical model, there are four inputs, fifteen states and twelve

outputs. States are translational body velocities, rotational velocities, Euler Angles,
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main rotor flapping angles and flapping rates. Outputs are translational body veloci-

ties, rotational velocities, Euler angles and translational Earth velocities.

- T
U= |Ucoll Ulon Ulat Uped
- .. .17
x=[up ya ws p g r 9 6w By Bis Bie Bo Bis Bicl (2:95)
- T
y:uByBWqur¢ell/MEVEWEi|

After constructing the helicopter mathematical model, a sample helicopter model
need to be selected. This helicopter should be a small-sized model helicopter be-
cause of the assumptions in Section [2.1.1] Having a hinge offset and a stabilizer bar
are other important properties for the sample helicopter selection. After searching
literature, R-50 helicopter is found appropriate to be tested with the mathematical

model derived. R-50 helicopter parameters can be found in Appendix [B| [28]].

Using sample helicopter parameters and defining trim condition, trimming process of
the nonlinear mathematical model is done. Then, in order to obtain linear system and
design a linear controller, nonlinear model is linearized around specified equilibrium
point. Finally, linear model order is reduced considering the least effective states for

the helicopter behavior.

2.5.1 Trimming and Linearization of the Mathematical Model
2.5.1.1 Trimming Process

Trim point is defined as a condition where all resultant forces and moments around
center of gravity position of the helicopter are zero. Any force acting a position
different than c.g. produces moments on the aircraft and it is desired that rotation
should be zero at trim condition. Trimming is an important job because there will be
residual forces and moments which ruin the exact nonlinear character if working with

random point rather than trim point.
ZF:ZM:O (2.96)

In addition, mathematically, trim point is the point where all state derivatives equal

to zero [335]]. For trimming of nonlinear helicopter model, MATLAB Linear Analysis
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Tool is used for its reliability, simplicity and accuracy. The sample helicopter param-
eters is substituted into mathematical model equations and trim input and state values
is obtained at specified trim conditions. Trim condition is decided to be hover at 100

ft altitude.
Xtrim = f(xlrima ulrimat) =0 (2.97)

Constraints for the trim condition are decided as follows,

uB:VB:WB:p:q:}":U:O
(2.98)
h =100t

where U is the airspeed and £ is the altitude of the helicopter.
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Result of the trimming process is,

| ug,,, [m/s| | 0

VByyim /5] 0

wg, . [m/s] 0

Dirim|rad /s 0

Grrim|rad /s] 0

Ferim|rad [ s] 0
Grrim|rad] 0.003516
61 rim|rad) —0.000112

eon,, [rad)|  [0.106516] Virim|rad] 0
Uion,y; [1ad] 0.00019 Bic,,. [rad) 0.00011
N s rad) || 00035 |1 ™ (B, [rad]| | 0001204
| Uped,,,lrad]| | 0.02312 Bo[rad)] 0.037341
Bis[rad)] 0.00013
Bic[rad] 0.001236

Bo[rad] 0

Bls[rad] 0

ﬁlc[rad] 0

X[m] 0

Y [m] 0
Zlm | | 3048
(2.99)

2.5.1.2 Linearization Process

Linearization process is made according to small perturbation theory. Writing states

and input variables as a perturbation value addition to trim value [33],

X = Xprim + Ax
(2.100)
U= Usrim + Au
where Ax and Au are perturbation values. Then,
X = f((Xerim + Ax), (Ugrim + Aut) 1) (2.101)
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For more compact form of the linearized system after neglecting second and higher

order terms,

x(t) = f(x,u,t)
Xtrim + A% (1) = f((Xerim + Ax(2)), (Urrim + Au(t)),1)

af af
= f (Xtrim Utrim, 1) + ox z(t)zzt@m(t) X Ax(r) + o ict(t)zl)izr{m(t) X Au(r)
(2.102)
Combining Equation and Equation [2.102]
: af af
Ax(t) = 5 x(t)ixt”?n(t) X Ax(t) + 5 x(,)ixtr{m(,) X Au(r) (2.103)

Finally, nonlinear system is linearized and state-space representation of the linear

system is defined as,

Ax(t) = A(t)Ax(t) +B(t)Au(t) (2.104)

af af
where A(r) = a—{; () =xim(r) A0 B(2) = a—{t

X()=Xtrim (1)
u(t):utrim (t) u

(t)=trrim(t)
A(t) and B(t) are the Jacobian Linearized matrices of the nonlinear system around
specified trim condition. In order to obtain A(r) and B(r), MATLAB Linear Analysis

Tool is used.

2.5.2 Order Reduction of Linearized Mathematical Model

After linearization, the next step to do with the model is the order reduction. For
controller design purpose, lower order linear model is appropriate unless discarded
model states do not affect the system characteristics. Eigenvalue analysis of the full
order linear system and reduced order linear systems are required to make sure that
general behavior of the systems are the same. There are two main types of model
reduction: Truncation and Matched DC gain methods. For truncation method, states
considered as to be eliminated are directly removed on the system matrix of the linear
system since they are ineffective in system dynamics manner. Matched DC gain
method is a model reduction method considering the effects of the eliminated states

on remaining states of the system. In this method, time derivatives of the eliminated
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states are taken as zero. First, consider a state vector to be partitioned to x; and x;.

X A A X B
I _ [4An 12 1 n 1 y (2.105)

%) Axi Axn| X B>
After taking the time derivative of x, as zero, reduced system dynamics are described

as follows.

i1 = [A11 —ApAy Asi]xi + [Bi —ApAy) Balu (2.106)

By looking the states of the full linear model, flapping angles and flapping rates are the
states which are needed to be eliminated with Matched DC Gain method since they
are faster dynamics than helicopter rigid body dynamics but they affect the general
behavior at the least. Earth positions states are the eliminated states by truncation

method. They do not have a role on system dynamics.

Consequently, there are three different models; nonlinear model, full order linear
model at hover condition and reduced order linear model at hover condition. Eigen-
value comparison of reduced order model and the linear model of R-50 type helicopter
in literature [28] are compared and can be found in Appendix [C| As the last step of
modeling part, different models obtained by linearization and model order reduction

are tested by commanding step inputs of 1° to all channels. Comparison of the models

is given in Figure
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Figure 2.7: Comparison of Nonlinear Model, Full Order Linear Model and Reduced

Order Linear Model Response

As seen in Figure [2.7] all models have similar response. Difference between linear

model and nonlinear model is because of the getting far away the trim point of the

linear model and this is expected result. Finally, it can be concluded that reduced

order linear model can be used in controller design.
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CHAPTER 3

MODEL REFERENCE ADAPTIVE CONTROL

In this chapter, MRAC design procedures are given for an uncertain MIMO system.
The purpose of MRAC is to make the uncertain plant track the desired reference
model [4]. Reference model design, deciding uncertainty parametrization method
and weight update law are the main steps in controller design. Reference model is
the desired system response and the plant should follow it in spite of uncertainties.
Uncertainty parametrization is the component that is used to define and cancel out un-
certainties. Lastly, weight update law is the estimation algorithm of controller gains
required for adaptive control. For the nonadaptive baseline controller, any control
method can be selected. Uncertain plant, reference model, baseline and MRAC con-

troller are the total system to be considered and design scheme is given in Figure 3.1}

Reference t Reference X f{t
Command r( ) Model re; Reference
Model
States
Xrer(1)
u(t) Uncertain x(t) *®
Total Plant Zlnfermin
ant
f‘mr;ol States Error |
e Signal 1
H
1
1
1
i
1
1
i
B Baseline T 'y :
u (t u —— !
Controller b’( Baseline v Adaptive | @ MRA‘C-“"-X-(!)._____ e(n) |
—x(t) Controller controller | | TTTmees ———— ]
Input Input

Figure 3.1: Augmentation of MRAC controller to baseline controller
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3.1 Reference Model Design

The first part of designing MRAC controller is to decide the reference model to be
tracked. This process can also be called as baseline controller design. The main prop-
erty of this controller is that to make the actual system follow the reference model
without any uncertainty and disturbance effects. This implies that there should not be
any transient and steady state error between the reference model and closed loop dy-
namics with baseline controller. Another property of the baseline controller is having
a feasible design and appropriate to be tested on the nonlinear mathematical model.
Considering the baseline controller design specifications, Linear Quadratic Optimal
Conroller with an Integrator is decided to be suitable for baseline controller design.

First, consider a plant defined by [11],

Xp(t) = Apxp(1) + Bpu(r)

yp(t) = Cpxp(t)

3.1

Where x,(t) € R" is the plant state vector, u(¢) € R™ is the control input signal, y,(¢)
is the plant output vector. A, € R"»*"», B, € R"»*" and C,, € R"»"» are the system,

input and output matrices of the plant, respectively.

The main aim of the controller is to find a control input signal such that the regu-
lated plant output tracks the reference input command. The error between the plant

regulated output and the reference input command is defined by,

ey(t) = (1) = r(t) = Cprp (1) — (1) (3.2)

In order to write it in a state space form, integral of output error is defined [11].

eyilt) = /0 t (1)~ r(m))dr = &) (3.3)

s

Combining both equations, augmented system dynamics with output error can be

represented with [[11],

ey(t) Omxm Cp eyi<t> n Omxm () 4+ —Lnxm

xp(t) Onp><m Ap xp(t) B Onpxm (3.4)

3= (O Gy (1)
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yields the extended open loop dynamics in the form of,
(3.5)

(1)

where x(1) = [2; (;)] € R™"™ is the extended system state vector and corresponding

state space matrices are defined by,

0 C 0 —1,
A— mxm p B— mxm 7 Bref= mxm 7 C— [Omxm Cp]
On,,xm Ap Bp 0n,,><m
(3.6)
Define the control input by LQR control law,
u(t) = —Kigx(t) 3.7)
Where K, = Rl_quTqur and P, is the solution of the associated Riccati Equation,
AT Pigr+ PrgrA — PigeBR; | B" Py + Q1 = 0 (3.8)

Where Oy, and R, are the LQR controller state and input weight matrices, respec-

tively.
Inserting Equation [3.7]to Equation
%(t) = (A= BKyg) x(t) + Bresr(t) (3.9)

This final form of the closed loop system is defined as a reference model to be fol-

lowed by the actual system.
Xref (1) = ArefXref(t) + Brefr(t) (3.10)
Then, matching condition is defined [[11],
Aref =A—BKjy, (3.11)

This completes the baseline controller design. Considering closed loop system per-
formance and stability, reference model is designed by selecting appropriate weight

matrices.
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3.2 Model Reference Adaptive Control Design with Integral Action

The next part is to decide the controller structure and control law in order to keep the
actual system tracks the reference model. Reference model is selected to be linear and
without any uncertainty; therefore, the designed controller should need to cancel out
uncertainties. Since these uncertainties on the system can be varying and mostly non-
linear, proposed controller is required to be also nonlinear. Model Reference Adap-
tive Control is considered as a suitable controller design technique for these purposes.
The main idea of the controller is that while keeping baseline controller provides a
reasonable tracking performance and stability, MRAC augmented controller structure

gives the controller extra capability in uncertainty suppression manner.

First, consider an uncertain plant dynamics [[11],
xp(t) :Apxp(t) +BpA(”(t) +f(x))

¥p = Cpiplt)

(3.12)

Where x, € R" is the plant state vector, u € R™ is the control input signal, r(¢) €
R™ is the external bounded command signal, y) is the regulated plant output vector.
A, € R B, € R and C, € R"»*"r are the system, input and output matrices
of the plant, respectively. A € R™™ is the constant diagonal matrix which defines
modeling errors or failures known as control effectiveness. Applying same approach

with Section [3.1] augmented system dynamics is obtained.
X(t) = Ax(t) + BA(u(t) + £(x)) + Bresr(t)
y = Cx(r)

(3.13)

Where x(f) € R" is the augmented state vector, u(t) € R™ is the control input signal,
r(t) € R™ is the external bounded command signal, y(¢) is the output vector. A € R™",
B € R™ and C € R™ are the system, input and output matrices of the augmented

system, respectively.

According to LQR control law described in Equation baseline controller is se-
lected [[L1]].

ey(t)

(1) = ~Kigx(t) = ~Kige | 10| = —KE2 = Kprple)  G19)
where Kj,, = [[1((]’) } is the baseline controller gain.
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Assumption 1: f(x) : R* — R™ is the matched uncertainty and each component of

f(x) can be represented in terms of locally Lipschitz continuous basis functions.

fl0)=WTB(x) (3.15)

Where W € R"™"" is the constant ideal weight matrix with unknown coefficients and

B(x) € R™ is the vector of basis functions.

The controller objective is to design state feedback adaptive law to make the system
tracks the predefined reference model in Equation [3.16] when there are parametric

uncertainties A and f(x).
Xref = ArefXref(t) + Bresr(t)

(3.16)
Yref = Crefxref(t)

Where x,.r € R" is the reference model state vector, y, s is the reference model output
vector. Ayr € R™, By € R™™ and C,,y € R are the system, input and output

matrices of the reference model, respectively.

Assumption 2: Model matching condition is satisfied. There exists K € R™" satis-

fying Equation @ to given reference Hurwitz A, matrix .
Inserting model matching condition and Equation [3.16into Equation[3.13]
X(t) = Apesx(t) + BKigyx +BA (u(t) + WT B(x)) + Byesr(t) (3.17)
In order to satisfy controller tracking objective, define a control signal such that,
u(t) = upi(t) + ttaa (t) = —Kigrx(t) + taa(t) (3.18)
Then, closed loop system dynamics equation becomes,
X(t) = Arepx(t) + BA((Lyxm — A DY (1) + ugq (1) + W' B (x)) + Bregr(t)  (3.19)
Alternatively, Equation [3.19|can be written in more compact form,
%(t) = Apesx(t) + BA(W* B*(x) + ttgq) + Bresr(t) (3.20)

where
W= (b — A" W7

(3.21)



Since augmented system needs to be same dynamics with the reference model, adap-

tive component should be selected as [11],

ttaa(t) = —W*' B* (upi (1), (1)) (3.22)

Where W* € R"™*" is the unknown adaptive weight with unknown coefficients and

B* € R™ is the augmented vector of basis functions.

Inserting [3.22]into[3.20]

X(1) = Apepx(t) + BA(W" B (x) = W*' B (upi (1), (1)) + Begr(t)

N (3.23)
— Arefx<t) +BAWﬁ*(ubl(t)ax(t)) +Brefr(t)
where W = W* — W* is the weight estimation error.
Defining a state tracking error and its time derivative,
e(t)=x(t)—x 4
( ) ( ) ref( ) (324)

Substituting closed loop system dynamics and reference model dynamics in Equation
[3.23]and Equation [3.16]into[3.24]
6([) == (Arefx<t) +BAWﬁ*(ubl(t)ax(t)> +Brefr(t)) - (Arefxref(t) +Brefr(t))

= Apere(t) + BAW B (up (1), (1))
(3.25)

Then, in order to derive adaptive law and ensure that the closed loop stability, choose

a Lyapunov function candidate such that,
Ve(t),W)=el Pe+1tr(WIT'WA) (3.26)

The Lyapunov function candidate is selected as a radially unbounded one in quadratic
form. I'=T7 > 0 is the adaptive learning rate and P € R™" is the symmetric positive

definite solution of the Lyapunov equation,
ArefP+PAref =-0 (3.27)

Also note that there exists unique P € R™" for every Q € R™" since A,y is Hurwitz.

Taking time derivative of Equation [3.26]along trajectories of Equation [3.25|[11]],
V(e(t),W) = —e’ Qe —2¢" PBAWT B* + 2tr(WTT'W*A) (3.28)
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Using vector trace identity (ATB = tr(BAT)), Equation [3.28becomes,

V(e(t),W) = —e” Qe+ 2tr(WT (T "W* — ﬁ*eTPB)A> (3.29)

In order to satisfy that Lyapunov stability condition V (e(t),W) = —e! Qe <= 0, adap-
tive weight update law is selected in the form [4],

W* =TB*’PB (3.30)

which completes the proof of uniform ultimate boundedness of (e(t) , W).

Consequently, Equation [3.30]is the well known classical adaptive control law and it
guarantees that state tracking error e(¢) — 0 as t — oo. In addition, since Lyapunov
candidate function is radially unbounded, the closed loop state tracking error dynam-

ics are globally asymptotically stable. Similarly, output tracking error is defined,

ey(t) = y(t) = yrep (t) = C(x(t) = xpe (1)) = Ce(t)

= lh_}rgey(t) = tlgroloCe(t) =0

(3.31)

This concludes that for any bounded reference command, output of the closed loop

system tracks the output of reference model, that is ey () — 0 as t — oo.

Substituting Equation |3.21|into Equation |3.30|and defining I" = [Orb’ 01’1’”"] ,

nbxm X

K I’ 0 u
Zbl _ bl nxm bl eTPB (3.32)

w Onyxm I, B(x)
where Ky, = (Inym — A_l) and K,

Upl

is the estimation of K,,,,.

Arranging Equation [3.32] final form of the adaptive law is obtained [11].

k“bl = FblubleTPB
. (3.33)
W =T.B(x)e’ PB
Rewriting control law of the MRAC with integral connection,
u(t) = up(t) +ugqq(t
(1) = upi (t) + uaa (t) 3.34)

= —Kpx(1) + Ky () + W B (x)
Equation [3.34] is the total control law of the closed loop system including baseline
control input of LQR with integrator and augmented control input of MRAC con-
troller. Kj; is the optimal controller gain calculated by LQR method and Ky and W
are the adaptive weights required to be estimated by adaptive laws in Equation [3.33]

Initial values of the adaptive weights can be chosen arbitrarily.
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3.3 MRAC Modifications

In Section [3.2] classical adaptive control law is derived for the augmented system. It
is assumed that there is not any external disturbance and uncertainty on the system
can be linearly parametrized. When there exists bounded external disturbances on the

system, augmented system dynamics is written as [[11],

x(1) = Ax(t) + BA(u(r) + £ (x)) + Bregr(t) + £ (1)

(3.35)
y = Cx(r)
where ((¢) is the bounded external disturbances such that,
”C(I)H < Cmam where Cmax >0 (3.36)
State error dynamics is updated as,
é(t) = A,efe(t) +BAWB*(ubl(t),x(t)) + C(I) (3.37)

Choosing the same Lyapunov function candidate in Equation [3.26] and taking time

derivative of it,

V(e(t),W)=e Pe+1r(WIT'WA) (3.38)

V(e(r),W) = —e" Qe+20r(WT (D7'W* — B*e" PB)A) +2¢7 P 1) (3.39)
Assuming classical adaptive law in Equation @] holds,
V(e(t),W) = —eTQe+ 2eTPC(t) < —/lQmin He||2 —|—2He|]/lpmw\_§max (3.40)
yields,

V(e(t),W) < 0 in the outside of the set [11]],

T A‘Pmax

Ro={ (e(0), W) : |le]| < 27 Gy = e} (3.41)
State error dynamics e(?) trajectories are in the compact set Qg in Ry, however, Qg
is unbounded since there is no limitation in estimating adaptive parameters. In other
words, W is not restricted in any region. Thus, V(e(t),W) can be positive inside
the compact set . This makes adaptive parameter diverges and unbounded even

if state error norm remains bounded. Consequently, classical adaptive law losses its
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robustness with £ (7). This problem is known as parameter drift in the literature.
In order to keep robustness, some modifications can be done in the controller and

adaptive law design.

3.3.1 Adaptive Weight Update Law Modifications

Weight update law is one of the most significant part in model reference adaptive
controller design. In order to improve performance and robustness of the system with
classical adaptive control law in Equation [3.30, some modifications are presented as
solution. In adaptive control literature, while sigma-modification, e-modification and
dead-zone modification are the modifications by adding extra damping term to the
classical adaptive law, projection operator is the modification with a special mathe-

matical operator.

3.3.1.1 Projection Operator

Projection operator aims restricting adaptive weight in a predefined bounded and con-
vex set. This idea is required for sustaining robustness to parametric and nonparamet-

ric uncertainties.

Defining two convex sets

Winax }
vi+e (3.42)
Q = {W ER": f(W) < 1} - {W ER": W], SW,W}

Qo ={WeRr": fw) <0} ={wer:|w|,<

Note that Q¢ C Q1. Then, projection operator is defined by [20],

_IVAW(VEW)T T
Proj(v.y) — y— e if f(W) >0 and yTVf(W) >0 .

V, otherwise

where y € R" and I" € R™ is a constant symmetric positive definite matrix and

Vf(W) — 2(1+80)W.

& Wr%ux

Projection operator ensures that all adaptive weights remain in a compact set for all
t > 0. Adaptive law with projection operator is defined by,

A

W* = Proj(W*,T'B*e’ PB) (3.44)
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3.3.1.2 Dead-Zone Modification

The main idea of dead-zone modification, first proposed by Peterson and Narendra
[38]], is to disable adaptation process when state tracking error norm becomes smaller
relative to predefined error norm in order to maintain robustness. Adaptive law with
dead-zone modification is described by,
. [B*e’PB, if ||| > eo
W* = (3.45)
0, if flef <0
Although dead-zone modification provides uniform ultimate boundedness of W , it
has some drawbacks in design and performance. One of them is the requirement
of having information of the upper error norm bound so that e is properly selected
considering upper bounds of e(t). The second drawback is chattering problem around
|le|| = 0. Although uniform ultimate boundedness is achieved, asymptotic stability is
not proved at ||e]| = 0. Chattering problem can be solved by using smooth dead-zone
modification first presented by Slotine and Coetsee [10]. Adaptive law with smooth

dead-zone modification is described by,

W* =TB*u(|lell)e” PB (3.46)

. )
where |le|| = max(0,min(1, |(|T[6):§))

3.3.1.3 Sigma Modification

The main objective of sigma modification first proposed by Ioannou and Kokotovic
[15]], is to add extra damping to adaptive law. This damping term tries to decrease
adaptive weights when they become large. Adaptive law with sigma modification is
described by,

W* =TB*e’ PB—ToW* (3.47)

Where o > 0 is the modification term which increases damping of the adaptive law.
Although sigma modification does not require the knowledge of upper bounds of error
norm, extra damping term can be overconservative and costly in controller design
especially when error norm is around zero. This is the most known disadvantage of

sigma modification.
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3.3.1.4 e-Modification

Another method to overcome with drawbacks of sigma modification is using e-modification
in adaptive law. The main idea behind e-modification, firstly presented by Narendra
and Annaswamy [29], is replacing constant damping term with a linear combination
of the error. This solves the problem of undesired effects around ||e|| = 0. Adaptive

law with e-modification is described by,
W* =TB*e" PB—Tulle” PB|W* (3.48)

Where u > 0 is the modification term which increases damping of the adaptive law

in terms of state tracking error norm.

3.4 Uncertainty Parametrization Methods

Another important part of the model reference adaptive controller design is uncer-
tainty parametrization. In order to parametrize unstructured uncertainties, universal
approximators can be used. The main idea behind using them in MRAC design is
that every uncertain function can be represented with a universal approximator. Sig-
moid Functions are one of the most used functions in adaptive control problems [32].
Although they are not common as Sigmoid Functions, Fourier Series Expansion and

Chebyshev Orthogonal Polynomials are used in literature [13,134]].

f(x)=WIB(x,1)+¢ (3.49)

Where f(x,t) is the regression vector of the uncertainty parametrization method, W

is the corresponding adaptive weights and € is the approximation error.

Regression vectors depend on the uncertainty parametrization methods described in
the following part of this section. Three different basis functions are considered as a
regression vector. There are some advantages and disadvantages of each basis func-

tion and each one is described and evaluated.
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3.4.1 Sigmoid Functions

Sigmoid functions are specific kind of mathematical functions in the form of S-
shaped. Equilibrium point is ;(0) = 0 and sigmoid functions are defined in the range
of —1 < Bi(x,t) <1 for x € (—oo,00). Main advantage of sigmoid functions are that
they are bounded, monotonic and differentiable at every x(¢). Detailed information
about sigmoid functions can be found in [9]]. Regression vector of Sigmoid Functions

are formed as,

1
ﬁl(xvt)
B —| P Z(T’I) (3.50)
ﬁn—l(xat)
i B (1) ]

Where i = 1,2,...,n and B;(x,t) = L:::EZ; Note that function length 7 is the only

one design parameters for Sigmoid Functions.

3.4.2 Fourier Series Transform

Fourier Series is a combination of trigonometric and periodic functions. Thus, when
the uncertainty on the system is periodic and unknown, these special form of series
can be advantageous to use. There are two parameters of Fourier series; series length
and period. Fourier Series length is the parameter to be selected by designer and
period should be at least three times higher than simulation time. Proof of using

Fourier Series in MRAC can be found in [13]]. Regression vector of Fourier Series
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Transform are formed as,

ﬁ(x7t) =

1
Ber (x1)
Bea(x,1)
Ben(x,1)
Bt (x,1)
B2 (x. 1)

_BSN(xvt)_

(3.51)

where i = 1,2,....N , Bei(x,t) = cos(izT”t) and Bi(x,1) = sin(izT”t). Series length N

and series period T are the design parameters for Fourier Series Transform.

3.4.3 Chebyshev Polynomials

Another universal approximators to parametrize uncertainty is Chebyshev Polyno-

mials. The main properties of Chebyshev Polynomials are being orthogonal in the

interval of x(¢) € (—1,1) with respect to weight function w(x) = 1/v/1 — x2. Restrict-

ing x(t) to required interval is done by simple trigonometric transform, x = cos(t)

where t stands for time. Then, it can be said that Chebyshev polynomials length is

the only parameter to be decided in design. Proof of using Chebyshev Polynomials

in MRAC can be found in [34]. Regression vector of Chebyshev Polynomials are

formed as,

ﬁ(x7t) =

TN,I(X,I)
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To(x,l)
Tl(x,t)

| TN()C,Z‘) i

(3.52)



where

T()(x,t) 1

T; (x,t)

X

Ti1(x,1) = 2xT;(x,1) — Ti—1 (x,1)
where i = 1,2,...,n. Only the series length N is the design parameters for using

Chebyshev Polynomials.

This completes the describing methodology of the controller design. Deciding design
parameters, tuning controller weights and other controller design and implementation

parts will be given in Chapter 4]
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Implementation of the Controllers

In Section [2.5] mathematical model inputs, states and outputs are described. Consid-
ering whole system, nonlinear helicopter model is implemented on Matlab/Simulink
environment. There is also a need of a linear model for model reference adaptive
control design since reference model is going to be a linear one. For ease of control
design purpose, reference model outputs are selected as only translational velocities,
angular velocities and Euler Angles. Therefore, open loop helicopter model needs
to be reduced according to reference model states and outputs. Reduced order linear
model described in Equation [2.106]is used for this purpose. Reduced order system
has four inputs, nine states and four outputs. Firstly, Linear Quadratic Controller with
an Integral action (LQI Controller) is designed for reduced order linear model. Then,
open loop system is controlled with LQI controller and it is shown that matching con-
dition in Equation (3.11]is hold and reduced order linear model and reference model
have exactly same response. However, when there is an external disturbance of the
system, this type of controller does not provide a reasonable tracking performance to
reference model. Next, LQI controller is implemented to nonlinear helicopter model
and it is seen that response with the external disturbance is same with the linear one.
Because external disturbances may be mostly nonlinear and helicopter mathematical
model is also nonlinear, there is a need of nonlinear controller which can overcome
nonlinear disturbances. When there is not a disturbance on the system, designed
controller should not play a big role on the system since LQI controller is already de-
signed as a baseline/nominal controller. Considering these control design purposes,

Model Reference Adaptive Controller seems suitable for both linear and nonlinear
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systems. After deciding the control design method, the next step is implementation
of the controller to linear and nonlinear helicopter models. The main difference of
them is initial condition. While initial condition of the linear model is always zero
for both inputs and states, nonlinear model inputs and states initial conditions are de-
fined by trimming results described in Section [2.5.1] The other difference is the rate
limiting functions at the inputs of the helicopter. These rate limiters have 8 deg/s
cut-off frequency. The next step is analyzing LQI-MRAC controller on the nonlinear
helicopter model. When there is not any external disturbance on the system, adaptive
controller contribution to the helicopter inputs is inconsiderable and source of this
input is the numerical errors during order reduction to obtain reduced order model,
linearization error and numerical errors by the solver which is Runge-Kutta 4th Order
Method. In addition to these uncertainties on the system, the helicopter model is dis-
turbed externally. In the first MRAC design attempt, Sigmoid Functions are used in
the uncertainty parametrization and classical MRAC adaptive law without any mod-
ification is used. Although tracking performance is not unacceptable as much as the
system only with baseline controller, there are some performance related problems
especially in transient part of the response of MRAC augmented LQI controller. Fi-
nally, it is decided that some modifications are implemented to the MRAC controller

and their effects are analyzed on the nonlinear helicopter model.

4.2 Results

In this part, main design tasks and their results are presented. These are reference
model design, LQI and MRAC controllers design, modifications on MRAC controller
and further studies with modified MRAC, respectively.

4.2.1 Reference Model

Reference model is designed such that there will not be any transient and steady state
error between the closed loop system with baseline controller and reference model
to be followed. Baseline controller method is selected to be LQR Controller with an

integrator (LQI). Outputs to be followed is chosen as to be pitch angle, roll angle,
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vertical velocity and yaw angle of the helicopter. LQI weight matrices are tuned as:
7500 00 0 000000 0 0 0 7
0 5000 0 000 0 0O O O O
0 05 0 0000O0O0OO0O O O
0 0 05000000 000 0 0 O
0 0000000000 0 0 190 0
Qr=10 000 00300000 0 0 [, Ryg=1000x[3s5 9
0 0000001000 0 0 0 006 001
0 00 O 0000100 O O O ’
0O 00 O 000 O0OO10 0O O O
0 00 O 000 OO OS500 0 O
0 00 O 000 OO O O 500 0
L 0O 00 O 000 OO O O O 10004
4.1)
Reference model is designed such that,
Xref(t) :Arefxref(t) +Brefr(t) (4.2)

Main criteria in tuning controller weight matrices are settling time, steady state error
and controller effort. Using matching condition, reference model is designed with an

appropriate tracking performance. Step response of the reference model is shown in

Figure d.1]
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Figure 4.1: Reference Model Response to Step Command
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4.2.2 LQI and MRAC Controllers

In this section, LQI and MRAC controllers are designed and compared. First, LQI
controller is implemented to the open loop linear and nonlinear helicopter models.
After ensuring that there are not any transient and steady state error between reference
model and closed loop systems, MRAC controller is designed and implemented. For
the basis function in uncertainty parametrization component, Sigmoid Functions are
used since it is the most commonly used one in the literature. Then, step responses
of systems with these controllers are plotted and compared. MRAC parameters are

chosen and tuned as,

T = diag(0.5,0.5,0.05,1,0,0,0.1, 100, 100, 100, 1000, 1000, 100)
0 = diag(10,10,10,10,0.1,0.1,0.01,0,01,0.01,0.1,0.05,0.05,0.1)  (4.3)

B =[1 Biler) Baler) . B(er) Bolun)]’

where B;(x,t) = :j—::g; andi=1,2,....,9.

4.2.2.1 Without External Disturbance

In the absence of external disturbance and noise on the system, it is expected that
both controllers show almost same behavior on the linear system. The reason is that
MRAC controller does not create a significant adaptive inputs to the system when
there is not any uncertainty on the system. However, for nonlinear case, there can be
internal uncertainties on the system caused by linearization, trimming and numerical
calculations during simulation. For this case, MRAC create adaptive inputs to the
system in order to keep tracking the reference model. Linear model step responses
under different controllers are shown in Figure f.2] without any external disturbance

and noise to the system.
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Figure 4.2: Linear Model Response with LQI and LQI-MRAC to Step Command

On the hand, executing same procedure for the nonlinear system,
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Figure 4.3: Nonlinear Model Response with LQI and LQI-MRAC to Step Command

As seen in Figure {.2] and Figure 4.3 MRAC augmented LQI controller counter-
acts the trimming, linearization and numerical errors and keeps tracking the reference
model with zero steady state error. For the nonlinear system, LQI controller could
not make steady state error zero in 20 seconds. Adaptive inputs that MRAC con-
troller creates are effective in this manner and these adaptive inputs can be seen and

compared with linear case in the following figure.
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For the following simulation results, only nonlinear model responses will be shown
since nonlinear model is more challenging than linear model in terms of uncertainties

and responses to external disturbances.

4.2.2.2 With External Disturbance

In the presence of external disturbance on the system, adaptive controller is more
effective. In addition to linearization and trimming errors, high amount of uncertainty
is applied to the inputs and it is expected that controller retains the helicopter in
reference model response. Three types of external disturbance are considered. The
first one is constant disturbance. This type of uncertainty may be a crosswind. The
second one is sinusoidal disturbance and turbulence can be an example for this. The

last one is random external disturbance selected as a high order nonlinear function.
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Constant External Disturbance: First, constant external disturbance is applied to
the system. Projection operator and e-modification is used in MRAC controller and

modification terms effects are shown in the same plot. Response of the helicopter is

as follows:
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Figure 4.8: LQI-MRAC Controller Response with Constant Dist. to Step Command
with and without Adaptive Law Modifications

Uncertainty exists on the system at the beginning of the simulation. As seen in Figure
4.8] LQI-MRAC controller removes the effect of uncertainty at the end of the simula-
tion and keeps tracking the reference model. Although there are some oscillations in
transient region, proposed controller successfully removes steady state error. In order
to examine the effectiveness of the controller, uncertainty amount is kept high and
this is the reason for the error in transient region. Modification term effects are seen

in steady state region and they decrease control effort and overshoot.
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Figure 4.9: Inputs of LQI-MRAC Controller with Constant Dist. to Step Command

In Figure .9] different types of inputs acting on the helicopter are shown. It can be

clearly seen that adaptive inputs are against to the disturbance on the relevant channel.
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Adaptive Weights
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Time(s)

Figure 4.10: Adaptive Weights of LQI-MRAC with Constant Disturbance

In the figure [4.10] adaptive weights are shown. Adaptive controller finds appropriate
weighs to cancel out the effect of the uncertainty. This is an extra profit because
classical adaptive law does not guarantee that adaptive weight converges and equals
to actual weights. Since actual weights are not known actually, converged weight

values are assumed to be actual weights on the system.

Sinusoidal External Disturbance: Second disturbance example is sinusoidal type.
Helicopter response is shown below when sinusoidal type of uncertainty is applied to

system,
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Figure 4.11: LQI-MRAC Controller Response with Sinusoidal Dist. to Step

Command

Again, there exists external uncertainty from the beginning of the simulation. Al-
though modification terms on adaptive law provides better tracking performance espe-
cially in transient region, it is seen that adaptive controller performance is not enough
to track the reference model because of the oscillatory responses in the steady state
region. Apart from yaw channel, tracking performance is reasonable. Next, inputs of

the helicopter is shown in Figure 4.12]
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Figure 4.12: Inputs of LQI-MRAC Controller with Sinusoidal Dist. to Step

Command

Adaptive control inputs are almost same magnitude with the disturbance in the neg-

ative direction. Adaptive controller could not remove all uncertainty effects on espe-

cially yaw channel and this result affects the reference model tracking.

Adaptive Weights
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Figure 4.13: Adaptive Weights of LQI-MRAC with Sinusoidal Disturbance

67



In Figure {.13] adaptive weights are shown when sinusoidal disturbance acts on the
helicopter. Unlike constant disturbance, adaptive weights are not converged but they
are bounded. It is clearly seen that while projection operator provides upper bounds to
adaptive weights norm and keeps them smaller, e-modification provides better track-

ing performance relative to classical MRAC adaptive law.

Random External Disturbance: Lastly, random nonlinear function is added to the

system as an external disturbance. Response of the model helicopter is shown in
Figure 4.14]
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Figure 4.14: LQI-MRAC Controller Response with Random Dist. Step Command

It is seen that steady state error is zero between the system with LQI-MRAC con-
troller and reference model apart from yaw angle tracking. There is some oscillatory

response again when random external disturbance is applied to the system input chan-
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nels. Inputs and adaptive weights of the system are shown in the following figure.
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Figure 4.15: Inputs of LQI-MRAC Controller with Random Dist. to Step Command

Again, it seen that adaptive control inputs are opposed to the disturbance and adaptive
weights are not converged. At the beginning of the simulation, adaptive controller
shows an aggressive behavior to counteract the external disturbance. This creates
undesired high frequency oscillations. Zero steady state error in pitch angle, roll
angle and vertical velocity tracking performance can also be seen from that adaptive
inputs and disturbances on the relative channel are at same magnitude with opposite

sign.
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Figure 4.16: Adaptive Weights of LQI-MRAC with Random External Disturbance

In Figure .16 adaptive weights are shown when random external disturbance acts

on the helicopter. Again, adaptive weights are not converged but they are bounded.

4.2.3 Modification of Uncertainty Parametrization in MRAC Controller

In this part, it will be focused on uncertainty parametrization methods of MRAC con-
troller. First, Fourier Series is implemented and effects on the tracking performance
is evaluated under three different external disturbance conditions. Then, Chebyshev
Polynomials are replaced with Fourier Series and uncertainty parametrization perfor-
mance is evaluated. Finally, Chebyshev Polynomials are defined in terms of time
by using trigonometric relations and overall performance of time based uncertainty

parametrization methods are shown.
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4.2.3.1 Fourier Series Expansion

First, Fourier Series are written to be used in uncertainty parametrization,

1
BCI (xvt)
BCZ(x7t)

B(x,t) = | Ben(x,t) | Beilx,t) = cos(iz%rt), Bei(x,t) = sin(iz%rt) 4.4)

le (x7 )
ﬁsZ(x7t)

BSN<x>t)

wherei=1,2,...,N

~

Considering Fourier Series approximation accuracy and simulation speed, series length
and period are selected and tuned as N = 10 and T = 200s. Then, adaptive control

input is written as in Equation4.5]

taa(t) = W* B*(x,1)

. up (1) 4.5)
B*(x1) =
B(x.1)
Then, basis function and adaptive law parameters are decided as,
1
cos(%t}
cos(22%t)
ﬁ(xat) = COS(IOZZT%t) s Trourier = 0.1121 (4.6)
sin(%t)
sin(Z%t)
: 2n
sin(10555¢)

After deciding MRAC parameters, same external disturbance types are applied to
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the system controlled with Fourier Series Based MRAC. Projection operator and e-

modification is still hold in the weight update law.

Constant External Disturbance: First, constant external disturbance is applied to

the system. Response of the helicopter is as follows:
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Figure 4.17: Fourier Series Based LQI-MRAC Controller Response with Constant
Dist. Step Command
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Again, uncertainty exists on the system at the beginning of the simulation. As seen in

Figure [d.17], LQI-MRAC controller removes the effect of uncertainty at the end of the

simulation and keeps tracking the reference model. It can be clearly said that Fourier

Series performs better tracking performance in all axis when there is a constant un-

certainty on the system.
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Figure 4.18: Inputs of Fourier Series Based LQI-MRAC Controller with Constant

Dist. to Step Command

In Figure[4.18] nominal controller inputs, total inputs, adaptive inputs and disturbance

acting on the helicopter are shown. It can be clearly seen that adaptive inputs are

generated in order to cancel out constant disturbance. Moving on to adaptive weights,
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Figure 4.19: Adaptive Weights of Fourier Series Based LQI-MRAC with Constant

External Disturbance

Unlike using Sigmoid functions in uncertainty parametrization, use of Fourier Series
does not converge adaptive weights as in Figure 4.19] Since basis function elements
Bi are periodic and sinusoidal functions, adaptive weights are also in similar structure
to cancel out constant uncertainty on the system. Simulation length is kept longer to

see the periodic behaviour of the adaptive weights.

Sinusoidal External Disturbance: Second, sinusoidal type uncertainty is applied

to the system. Response of the helicopter is as follows:
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Figure 4.20: Fourier Series Based LQI-MRAC Controller Response with Constant
Dist. Step Command

According to Figure [4.20] it is seen that system tracking performance to the refer-
ence model is improved especially in transient region when sinusoidal disturbance
acts on the system. Oscillatory response is decreased significantly especially in yaw
angle tracking relative to use of Sigmoid Functions in uncertainty parametrization. In

addition, inputs of the helicopter is shown in Figure 4.21]
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Figure 4.21: Inputs of Fourier Series Based LQI-MRAC Controller with Sinusoidal
Dist. to Step Command

The improvement of MRAC controller and success of the uncertainty parametrization
can be noticed by Figure d.21] Unlike Sigmoid functions, use of Fourier series does
not create high frequency oscillatory adaptive inputs and these inputs are almost same

magnitude with opposite direction.
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Figure 4.22: Adaptive Weights of Fourier Series Based LQI-MRAC with Sinusoidal

External Disturbance

Figure[4.22]represents adaptive weights in MRAC where the uncertainty is parametrized
with Fourier Series. By nature of Fourier Series, it is bounded and sinusoidal structure

and this 1s also valid for adaptive weights of Fourier Series.

Random External Disturbance: Lastly, random nonlinear disturbance is imple-
mented to the system as uncertainty. In addition to this, Gaussian type white noise is
added to investigate that MRAC controller still works. Response of the helicopter is
shown in Figure [4.23]
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Figure 4.23: Fourier Series Based LQI-MRAC Controller Response with Random
Dist. Step Command

According to Figure 4.23] it is seen that system tracking performance is very similar
with the sinusoidal disturbance case. Again, oscillatory response is decreased signifi-
cantly. It can be said that use of Fourier Series in uncertainty parametrization handles
with the predefined random type uncertainties. Moreover, inputs of the helicopter is

shown in Figure [4.24]
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Figure 4.24: Inputs of Fourier Series Based LQI-MRAC Controller with Sinusoidal
Dist. to Step Command

When inputs are examined in Figure [4.24] it is seen that adaptive inputs play an
important role in suppressing the disturbance. They are in opposite directions and
close in magnitude and the use of Fourier Series inhibits high frequency inputs as in

the use of Sigmoid Functions.

Figure {.25| represents the adaptive weight created by MRAC controller where un-
certainty is parametrized with Fourier Series. Again, bounded and sinusoidal type

adaptive weights are obtained due to the structure of Fourier Series.
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Figure 4.25: Adaptive Weights of Fourier Series Based LQI-MRAC with Random

External Disturbance

4.2.3.2 Chebyshev Polynomials

Secondly, Chebyshev Polynomials are used in MRAC controller to parametrize un-
certainties,

[ To(x,r) |
Ty (x,t)
Bx.1) = 5 , Tier (1) = 20T(x,1) — Tioy (x,1) 4.7)
Ty—1(x,t)
| Tn(x,t) |

It is predefined that Ty (x,7) =1, Tj(x,t)=x and i=1,2,...,N. And, itis required
that |7,,(x,7)| <1 andx € [—1,1] for x € N for orthogonality property.

The only one design parameter used Chebyshev Polynomials in uncertainty parametriza-

tion is polynomials length N. For simulation speed and performance, length is chosen
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as N = 5. Rewriting adaptive control input as in Equation4.§]

4.8)
* Up] (
ﬁ (ublax(t)) -
B(x,1)
Then, basis function and adaptive law parameters are decided as,
_TO (x N )—
Tl (X ) ! )
B(x,t) = : s Uchebyshev = 0.51¢ 4.9)
14 (X o1 )
750,

Implementation of Chebyshev Polynomials into adaptive law is same with the Fourier
Series Expansion. After it is implemented in MRAC, controller is tested under same
types of disturbances. Projection operator and e-modification is kept in controller

design.

State Based Chebyshev Polynomials

In order to satisfy orthogonality property and use Chebyshev polynomials as a uni-
versal approximators, all state values need to be limited within the range of [-1,1].
System states used in controller design are output error integrals, translational ve-
locities, rotational velocities and Euler angles. Since rotational velocities and Euler
angles are in radians, their absolute values are always less than one in all flight con-
dition for all simulations. Translational velocities may be greater than one; however,

it may be limited between the required range by a simple unit conversion to mile/s.

Unfortunately, there is one more problem in using Chebyshev Polynomials in MRAC
for MIMO systems. Because the polynomials are in term of system states and there
are thirteen system states, basis function is going to be very large. This does not seem

reasonable for simulation speed. If basis function is written in terms of system states
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using Chebyshev Polynomials,

Toxy (x,1)
Toxz(x,1)

Tox, (x,1)
Tix(x,1)
Tle(x,l‘)

Plt) = Tix,(x,1)

Tyxi(x,1)

TNXZ(xvt)

Tan(x>t)

where n = 13 and N = 5.

(4.10)

Consequently, augmented basis function is a column matrix with 82 elements (4 for

up; and 78 for B(x,1)) and there will be 4 x 82 elements in the adaptive weight matrix

considering four input channel of the helicopter model. This implies that numerical

calculations to estimate adaptive weights are not easy and simulation performance is

not going to be as desired.

As done for all MRAC design and modifications up to this point, three types of dis-

turbance are applied to the system. However, MRAC controller could not find ap-

propriate weights to remove the uncertainty effect. Simulation result for the constant

disturbance case is shown as an example.
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Figure 4.26: State Dependent Chebyshev Polynomials Based LQI-MRAC Controller

Response with Constant Dist. to Step Command

83



N

o
@

)

=l
= g
> 3
5 o2
g 2

5
@ a
5 g
E £
= o
2 s
5 3
9 g
3 £-05
3 at ]
2 LQLRAC NONLINEAR 2
3 |dlist ., g
5 LQURAC NONLINEAR S a4
g% ="My 13
= Qi MRAC NONLINEAR| s
H Il K =2d0n
8} LQI-MRAC-NONLINEAR] S 15 LQI-MRAC-NONLINEAR
g o | dist,

on
€ b 1o LQUURAC NONLINEAR
s S _nom
= 2 on
o s QUMRAC-NONLINEAR|
- 1 =" o1.urac-nonLNEAR
15 . . . . . . 25 . . . . . . .
0 05 1 15 2 25 3 35 05 1 15 2 25 3 35

Time(s)

(a) Lateral Cyclic Inputs

6\_/\, "‘VA 1

Time(s)

(b) Longitudinal Cyclic Inputs

®
T

o
T

=
T

ad ed
Pe9 grumacnonLNEAR

|dist
DEdLQ\

nom
ped
LOIMRAC NONLINEAR

P29 o1mrAC-NONLINEAR

LQI-MRAC Controller Collective Inputs (deg)
N =)
%
&
7
| |
LQI-MRAC Controller Pedal Collective Inputs (deg)

24 /B
0 \l/\ !
ad,
coll
| QuuRAC NONLINEAR L i
a4 |\ —dist B 2
coll
LQuRACNONLINEAR
—nom
<ol
s armracnonmeas| | | F -4l 4
-COHLQ\VMRAC—NONLINEAR
8 I I I | | | 5 . . . . . . .
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
Time(s) Time(s)

(c) Collective Inputs

(d) Pedal Collective Inputs

Figure 4.27: Inputs of State Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Constant Dist. to Step Command

As seen in Figure 4.26] and Figure adaptive element in MRAC could not found
appropriate weights and could not create adaptive inputs to cancel out uncertainty on

the system. After about four seconds, simulation is stopped.

When defining Chebyshev Polynomials in system state based, uncertainty is tried to
be parametrized with system states one by one. That is, coupled terms are not consid-
ered. For example, generated adaptive input by State Based Chebyshev Polynomials
MRAC is in the form of:

Ry upn (1) +W B (x,1)

[A“blezt % [ubl(t)]zm * [W] e [B(x’t)]ﬁixl
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A

= [taa(t)]j 1 = Kuy, () X i (2, )
+W T()Xl(.x t)+W;:2T()X2(X7l)+"'+W;:HT()X”(X,T)

+ j7n+1 Tixy(x,1)+ ijfn+2T1x2(x,t) + ot WﬁznTlxn(x,t)

+W 5,H_1TNx1(x t) +W 5n+2TNX2(x t)+-- —I—W 6nT6xn(x 1)

where j =1,2,3,4, n=13 and

(4.12)

fori=1,2,...,13.

With this form, multiplication of different states are not taken into account. Therefore,
uncertainty is not parametrized successfully and MRAC controller does not create

appropriate adaptive input.

Time Based Chebyshev Polynomials
Parametrizing uncertainty with Chebyshev Polynomials are not straightforward and
successful with system states. Alternatively, defining Chebyshev Polynomials in time

only could be a solution for this complexity of use. By trigonometric relation,

cos(0) =

cos(¢) =cos ¢

cos(29) =2cos? ¢ — 1 wis
cos(39) = 4cos’ g —3cos ¢

cos(4¢) = 8cos* ¢ —8cos? 9 + 1

cos(5¢) = 16cos’ ¢ —20cos> ¢ 4+ 5cos ¢
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Selecting ¢ =t and T,, = cos(nt),

To=1
Ty = cos(t)
T =2cos*(1) — 1
(4.14)
T3 = 4cos>(t) —3cos(t)
Ty = 8cos*(t) —8cos?(t) + 1

Ts = 16cos’ (1) — 20cos>(¢) + 5cos(t)

Finally, equations in Equation #.14] are in the form of Chebyshev Polynomials. Note
that orthogonality property of Chebyshev Polynomials still hold. That s, |T,,(x,t)| <=
1 andx € [—1,1] forx € N.

Figure 4.28: Chebyshev Polynomials (1% Kind)

Figure shows first six members of 1% kind Chebyshev polynomials. It is clearly
seen that orthogonal property is kept.

After defining time dependent Chebyshev Polynomials, same simulation procedures

are done in order to analyze the effect of modification.

Constant and Sinusoidal External Disturbance: As done in other modifications,

first, constant external disturbance is applied to the system. Since time based Cheby-
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shev Polynomials are in trigonometric form, helicopter response is compared with the

case that Fourier Series is used in uncertainty parametrization.
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Figure 4.29: Time Dependent Chebyshev Polynomials and Fourier Based
LQI-MRAC Controller Response with Constant Dist. to Step Command
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Figure 4.30: Inputs of Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Constant Dist. to Step Command

Inputs of the Time Dependent Chebyshev Polynomials Based LQI-MRAC Controller
and response to step command are given in Figure .29 and Figure #.30] It is clearly
seen that both systems show similar behavior and tracking performance. Although
they converge to reference model successfully after # = 1s, system with Chebyshev
Polynomials exhibit less amplitude oscillations before ¢ = 1s. Adaptive input in the

form of,

[Mad(t)]4xl = Ruyups (1) + W B x.1) (4.15)

]4x4 % {”“Lm * [WT] e {ﬁ (x’t)}@cl

[taa ()] = Kuy (Js2) X i (5 ) + Wia To(t) + Wi Ty (1) + -+ WiT5(r)  (4.16)
where j =1,2,3,4.

Adaptive weight matrix is formed with 4% 10 elements for all input channels of the

helicopter. Since there is not unique form for basis function elements, that is Ty, 77,
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T, ..., Ts are in different form from each other, adaptive weights are not in a special

form like Fourier Series.

Another difference between Fourier Series and Chebyshev Polynomials are MRAC
design parameters. While Fourier Series need an appropriate period to parametrize
uncertainty successfully, Chebyshev Polynomials do not need period as a parameter.
In order to compare both approximators for different series period, sinusoidal type on

disturbance is given to the system.
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Figure 4.31: Comparison of Time Dependent Chebyshev Polynomials and Fourier

Based LQI-MRAC Controller Response with Sinusoidal Dist. and Different Periods

In Figure 4.31] use of Time Dependent Chebyshev Polynomials and Fourier Series
in MRAC uncertainty parametrization is compared under sinusoidal external distur-
bance case. Although, system with Chebyshev Polynomials are not affected by pe-
riod, simulations are repeated under different periods to show period effect in Fourier
Series Approximation. As seen in especially Figure [4.3Ta) and Figure 4.31b] Fourier

Series are not effective with low periods like 7 = 10s or T = 20s. Using Fourier Series
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Approximation with high period length such as 7 = 100s or 7' = 500s, both universal
approximation methods show almost same tracking and uncertainty parametrization
performance. For collective channel, uncertainty is canceled out successfully and
system does almost perfect following of reference model with independent of period.
Lastly, for yaw channel, oscillatory response still exists and both approximator could

not remove all of the sinusoidal uncertainty.

Random External Disturbance: Finally, random disturbance is applied to the sys-
tem with Time Based Chebyshev Polynomials LQI-MRAC controller. Since con-
troller successfully tracks the reference model with these conditions, Gaussian type
white noise is added to system input channels. Response of the helicopter is shown

in Figure 4.32
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Figure 4.32: Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller Response with Random Dist. Step Command

It is basically seen that reference model is tracked under random external disturbance

with the help of Time Dependent Chebyshev Polynomials Based LQI-MRAC con-

troller. Parametrizing uncertainty in time based approximates the uncertainty suc-

C

essfully and this can be seen in Figure 4.33|for without noise case.

91



—ad

hat
LQumac NonLNERR
|dist,
lat
LQrmAcNoNLINEAR

LQI-MRAC Controller Lateral Cyclic Inputs (deg)

-

0.8

0.6

0.4

0.2

-0.2

04

-0.6

LQI-MRAC Controller Longitudinal Cyclic Inputs (deg)

_ad
hon
LQLMRAC NONLINEAR
—di

ist,
fon
Lol MRAC NONLINEAR

o
lat, m\on
=12t o1 rAC-NONLINEAR| =19" o1 mrac NONLINEAR]
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time(s) Time(s)
(a) Lateral Cyclic Inputs (b) Longitudinal Cyclic Inputs
7 25 T
—_ —ad
s 13 P, Quasmac NoNLINEAR
= 2 Ped, QrRAC NONLINEAR
g 2
2 sl i _nom
gs g P29, 0r e NonLNEAR
E; —ad, 2 15 [=Pe9, grracnoNLEAR
o 4 LQIMRACNONLNEAR |- &
2 | dist,, 2
3 N, g1 Mrac NoNLINEAR 3 |
= 3fF —nom__, n =
o LormRAC-NONLINEAR | |-
0 g
2ot = orurac nonuearl | &
5 5
H s
O 1| 1
2 e 3
<
—~—
g oty 19
= @
[e3 >
24k S5
g
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time(s) Time(s)

(c) Collective Inputs

(d) Pedal Collective Inputs

Figure 4.33: Inputs of Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Random Dist. to Step Command

Lastly, Figure [4.34] shows adaptive weights of MRAC controller where Time Based
Chebyshev Polynomials are used in uncertainty parametrization. Again, e-modification,
Projection Operator and sinusoidal structure of polynomials guarantees that adaptive

inputs are bounded.
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Figure 4.34: Adaptive Weights of Time Dependent Chebyshev Polynomials Based
LQI-MRAC with Random External Disturbance

4.2.4 Case Studies

In this section, for random external disturbance case, which is the most complex form
in three disturbance types, is applied to the system and more complex flight tasks
are commanded to the helicopter. Effect of adaptive controller is also shown in plots

obtained by simulations and compared with the non-adaptive case.

4.2.4.1 Sequential Step Commands

In this part, different sequential step commands is given to all channels and response
of the helicopter is investigated. Projection operator, e-modification are used in adap-
tive law in MRAC. Time dependent Chebyshev Polynomials is chosen as the uncer-
tainty parametrization method because of its simplicity of design and good tracking

performance.

Outputs of the helicopter model is shown in the following figures when random ex-

ternal uncertainty exists on all input channels.
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Figure 4.35: Sequential Step Command Tracking Comparison of LQI and
LQI-MRAC with Random Dist.

In Figure [4.35] blue line represents the response of the helicopter when adaptive con-
troller is not active on the system, that is only Linear Quadratic Regulator with Inte-
gral exists. Although LQI controller do not track reference model shown by magenta
color and are not robust to external disturbances, adding MRAC controller to LQI
baseline controller solves the tracking problem. MRAC controller adapts the distur-
bance and cancel out its effect within about five seconds after new step is commanded

to the system. By looking closer to Figure {.35]
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Next, inputs given to the helicopter to track the reference model are shown.
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Figure 4.37: Inputs of Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Random Dist. to Step Command

MRAC controller performance can be seen better in input plots Figure #.37] Adap-
tive inputs generated by MRAC controller are almost in same magnitude with the
disturbance on the system in opposite direction. This implies that closed loop system
acts like that there is not any external disturbance on the system and nonlinear model

outputs track the reference model with baseline controller.

By the nature of Chebyshev Polynomials, it is known that they are bounded in [-1,1].
Thus, adaptive weights calculated by using Chebyshev Polynomials in uncertainty

parametrization needs to be bounded. They are plotted and shown in Figure [4.38]
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Figure 4.38: Adaptive Weights of LQI-MRAC with Random External Disturbance

Since different commands are given to the helicopter one after another, helicopter

model states need to be showed as well as helicopter model outputs.
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Figure 4.39: Helicopter States when Sequential Step is Commanded with
LQI-MRAC and Random Dist.

In Figure 4.39] reduced order helicopter model states are shown. Note that helicopter
initial trim point is hovering condition where all translational and rotational velocities
are zero. After, reference Euler angles are commanded in pitch, roll and yaw axis.
Vertical velocity is commanded in collective axis. Consequently, helicopter velocity
is increasing and decreasing in all axis. Since moment of inertia of the relevant axis is
small relative to other axis, roll channel has some oscillatory response while tracking
reference model. After ten seconds of the simulation, it can be said that helicopter
is in forward flight and its speed reaches to 8-10 m/s in 50s. It should be noted that
getting far away from the initial condition brings extra uncertainties on the system

since reference model and baseline controller is designed considering hovering case.
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4.2.4.2 Robustness Analysis

In this section, robustness of the proposed controller is analyzed. Since sample he-
licopter is chosen a model helicopter, its parameter may not be known exactly. For
example, although helicopter mass is assumed constant, it may be increased with
payloads and decreased by remove of the some equipment on the helicopter. Its aero-
dynamics parameters may differ from the values assumed in model parameters. To
make sure that designed controller still works with altering physical and aerodynamic
parameters of the helicopter, robustness of the helicopter in tracking of the reference
model is investigated by changing mass, inertia and some aerodynamics parameters

of the helicopter.

Mass and Inertia Differences Firstly, mass and second moment of inertias of all
axis are changed in order to examine controller performance. It should be noted that
classical adaptive theory defined in Chapter 3 does not guarantee the stability of the
system when uncertainty exist on the system matrix. That is, uncertainty cannot be
removed completely by the input channel. However, these parameters are the most
varying parameters considering the mathematical model and the model helicopter
in real world applications. Therefore, it is preferred that the controller still shows
reasonable performance and does not create a catastrophic problem. Reference model

tracking performance are presented in Figure 4.40H4.43]
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with Random External Dist.

As seen in Figure[4.40H4.43] mass and inertias are changed up to +15%. It can be said

that system uncertainties caused by mass and inertia differences do not create a big
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problem and tracking of the system is kept with small errors. It also seems that high
frequency oscillations start especially in the collective channel when the difference is
around £10% — £15%. By a close look to first five seconds after simulation start in

order to investigate the adaptation process clearly,
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Next, total inputs acting on the four different input channels are shown in Figure
4.4514.48]
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Figure 4.45: Lateral Cyclic Inputs
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By looking total inputs, it can be said that there will not be a serious problem up to
%10 percent mass and inertia difference between measured and model parameters.

The problem for 10+ % is seen in especially collective input in Figure 4.47]

Aerodynamics Parameter Differences:  Secondly, aerodynamics parameters vari-
ation is examined. Lift curve slope and main rotor rotation speed are the selected
parameters to be changed. Reference model tracking performance are presented in
Figure 4.49H4.52]
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Figure 4.49: Effect of Main Rotor RPM and Lift Curve Slope Change in Roll Angle

Tracking Performance with Random External Dist.
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As seen in Figure[d.49H4.52] lift curve slope and main rotor rotation speed are changed
up to =10%. Again, aerodynamics parameters does not affect the closed loop system
significantly in tracking of reference model manner. It also seems that high frequency
oscillations start especially in the collective channel when the difference is around
+10% — +15%. By a close look to first five seconds after simulation start in order to

investigate the adaptation process clearly,
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Figure 4.53: Effect of Mass and Inertia Change of LQI-MRAC with Random
External Dist. (0-5s)

As seen in Figure 4.53] in collective channel, system is more sensitive to decrease in

selected aerodynamics parameters than increase in these parameters. That is, although

tracking performance are not changed significantly when the parameters are increase

by 10%, oscillation in first part of the adaptation affects the tracking reference model.
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Next, total inputs acting on the four different input channels are shown in Figure

4.54H4.57
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By looking total inputs, it can be said that there will not be a serious problem up
to 10% percent selected aerodynamic parameters difference between measured and
model parameters. The chattering problem for £10 4 % is seen in especially collec-

tive input in Figure 4.56

4.3 Discussions

In this section, LQI and MRAC controllers are implemented on the nonlinear he-
licopter model. Response of the helicopter, model inputs and adaptive weight are
shown and compared under three different types of disturbance in input channels.
As the first step of the design and implementation part, reference model is chosen.
Considering ideal conditions, that is there is not any uncertainty on the system, ideal
response of the helicopter is chosen by LQI controller and the ideal response is plot-
ted in Figure[d.1] Since internal and external uncertainties are not considered in LQI
design for the open loop linear helicopter model, it is expected that reference model
has exactly the same response with the closed loop helicopter model with the base-
line LQI controller (See Figure #.2). Unlike linear case, some uncertainties exist in
the nonlinear helicopter model such as mathematical calculation errors during lin-
earization and model order reduction. Therefore, response of the nonlinear helicopter
model with LQI controller are not exactly same with the reference model. Secondly,
MRAC controller is designed and implemented to cancel out the internal uncertain-
ties on the system. Consequently, it is provided that closed loop nonlinear helicopter
model with baseline LQI controller and MRAC follows the reference model without
any transient and steady state error (See Figure[d.3). MRAC controller is designed by
using reduced order linear model and reference model and it is testes on both linear
and nonlinear helicopter models. In order to realize the effect of MRAC controller,
it is a good way to show adaptive inputs of the closed loop systems. In Figure 4.4] it
is clearly seen that adaptive inputs are commanded to the nonlinear helicopter model
by MRAC controller against the internal uncertainties. Unlike nonlinear case, there
is not any uncertainty on the linear helicopter model and adaptive inputs are zero in
all input channels as expected (See Figure f.4). Thirdly, disturbance rejection per-

formance of MRAC augmented LQI controller is analyzed. In this manner, three
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different types of disturbance are applied to the input channels (See Figure 4.5H4.7).
Response of the nonlinear helicopter models are plotted and tracking performances,
oscillations in inputs and boundedness of adaptive weights are evaluated. In the first
MRAC design and implementation, projection operator and e-modification are used
as modification and sigmoid functions are used in uncertainty parametrization. To
examine the effectiveness of modifications, response of the helicopter is plotted with
and without MRAC modifications (See Figure and Figure d.TT)). It is seen that
modifications in adaptive law decreases the transient error in tracking the reference
model and bounds the adaptive weights. However, tracking performance is still not as
desired and the need of modification on uncertainty parametrization arises. Fourthly,
Fourier Series are implemented on the uncertainty parametrization element in MRAC
controller. In design process, it is noticed that series period and length are effective
especially in tracking the reference model. Tuning period and series length, nonlinear
helicopter response is plotted and it is seen that a remarkable tracking improvement
occurs and high frequency input problems in first MRAC design attempt with sigmoid
functions are solved (See Figure [4.18] 4.21] and 4.24)). Fifthly, Chebyshev Polynomi-

als are used in the uncertainty parametrization of MRAC. The only one effective de-
sign parameter is polynomials length. After tuning polynomials length, simulations
are performed with the nonlinear helicopter model controller by MRAC augmented
LQI controller. Simulation is stopped about in 5s. Chebyshev Polynomials do not
succeed in approximating the uncertainty on the system and the response of the he-
licopter diverges as seen in Figure #.26|and [4.27] After analyzing the approximation
method and the unknown numbers to be calculated, it is concluded that 4x82 ele-
ments are almost impossible to calculate considering the simulation and calculations
performance (See Equation f.TTH4.12)). Sixthly, a modification on the Chebyshev
Polynomials is considered. Although the original polynomials are in terms of system
states, they are converted to time based polynomials as in Equation .14 by keeping
the orthogonal property of the Chebyshev Polynomials. Modified version of polyno-
mials only depend of time and the unknown numbers to be calculated are less than the
original one. Then, nonlinear helicopter model response is plotted in Figure [#.29)and
M.32] It is seen that tracking performance is very close to Fourier Series and they are
shown in the same plot as in Figure[4.29] It is concluded that using larger series period

in Fourier Series approximates the response to Time Based Chebyshev Polynomials
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(See Figure {.3T)). This completes the design and implementation process. As the
last step of the design and implementation part, it is decided that using Time Based
Chebyshev Polynomials and Fourier Series in uncertainty parametrization with ap-
propriate design parameters do not differ from each other. However, considering the
ease of design and less design parameter encourage to use Chebyshev Polynomials.
Moreover, e-modification and projection operator are still effective in decreasing the
transient tracking error and boundedness of the adaptive weights. Lastly, some case
studies are done to examine the controller performance better. First, sequential step
commands are given to the system and it is expected that the nonlinear helicopter
model tracks the predefined reference model. Response of the helicopter model is
given in Figure [4.35] and it is compared with the non-adaptive case to see the effect
of MRAC controller better. Next, robustness analysis is done. Although proposed
controller scheme and technique are not assertive with system uncertainties, it is won-
dered that whether system uncertainties create a catastrophic results or not. The effect
of the difference in mass and inertia of real values and model parameters are aimed.
Tracking performance and total inputs commanded to the nonlinear helicopter model
is analyzed and plotted in Figure 4.40H4.48] Then, difference in main rotor rotation
speed and lift curve slope of real values and model parameters are analyzed. Again,
tracking performance and total inputs commanded to the nonlinear helicopter model
is analyzed and plotted in Figure Consequently, it is concluded that up
to about 10%-15% difference with ideal values of main rotor rotation speed and lift
curve slope, helicopter tracking performance and total inputs commanded to the non-

linear helicopter model is reasonable.
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CHAPTER 5

CONCLUSION

In this thesis, derivation of the nonlinear mathematical model for a small scale heli-
copter is presented. All equations used in modeling are written in terms of helicopter
parameters; however, derived mathematical model is appropriate for small size heli-
copters satisfying assumptions stated in Section [2.1.1] After constructing the nonlin-
ear helicopter model, it is linearized around hover condition at 100 ft and order of the

linear model is reduced for controller design purpose.

Design and modifications of the model reference adaptive control is the other fo-
cus of this thesis. First, classical MRAC controller for a MIMO system is designed.
Reference model is designed with optimal tracking control by LQR method. Clas-
sical MRAC controller is designed without any modifications and Sigmoid Func-
tions are used in its uncertainty parametrization component. Baseline LQR controller
and MRAC controller tracking performance is examined under different types of dis-
turbances given to all input channels of the helicopter along the simulation. From
the simulations, it is verified that non-adaptive baseline controller could not succeed
tracking of the reference model with existence of external disturbances on the sys-
tem. Classical MRAC performs satisfactory tracking performance and it cancels out
the external disturbances; however, it is considered that transient response is not good
enough and some oscillations exist in the inputs. Using e-modification and projection

operator provides better performance and adaptive law is modified accordingly.

After modifying adaptive law, some modifications are considered on the other key
element of MRAC, uncertainty parametrization. Since the helicopter system and
designed classical MRAC controller are both MIMO systems, estimating all adap-

tive weights are not straightforward. Sigmoid Functions require state information of
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the helicopter and this may be problematic when state number of the MIMO sys-
tem is high. At this point, use of time based universal approximators in uncertainty
parametrization is proposed. Previously, Fourier Series and Chebyshev Polynomials
have been used in wing-rock problem [[[13],[34]]. Both approximators are tried to
estimate and suppress the uncertainty on the system. While use of Fourier Series
performs better transient response and tracking performance than classical MRAC
controller, state dependent Chebyshev Polynomials could not estimate the adaptive
weights and cause the helicopter response diverges. The source of the problem is
again related with the high number of system states and it is proposed to write Cheby-
shev Polynomials with only time dependent instead of state dependent. Use of time
based Chebyshev Polynomials in uncertainty parametrization provides the best per-
formance in terms of reference model tracking and low frequency control input com-
mand. Finally, classical MRAC controller is formed to the final configuration in such
a manner that e-modification and projection operator are used in its adaptive weight
update law and uncertainty is parametrized with time based Chebyshev Polynomials
written in the form of Equation As the last step, case studies are performed for

observing the tracking performance of the MRAC controller in the proposed structure.

5.1 Findings

e Generic mathematical model for model helicopters is derived and implicit equa-
tions are given in terms of helicopter parameters. This provides that presented
mathematical model can be used for different helicopters satisfying the given

assumptions.

e From the simulations performed, it is deduced that the system is more sensitive
in roll channel than other channels. This is probably because of the low moment
of inertia in the relevant axis. This problem may not be seen with the choice of

more robust sample helicopter in roll channel.

e In the controller design and implementation process, control channels are not
separated from each other. That is, multidimensional controller gains and weight
matrices are used in the design. Adaptive weights calculation does not seem

easy with this controller structure, however, it provides the ease of design and
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better coupling effects suppression.

e Adaptive law modifications like o-modification and e-modification improves
the adaptation process and tracking performance, however, they are not effec-
tive as using them in less complex systems such as wing-rock problem. For

more complex systems, uncertainty parametrization plays the key role.

e It may be concluded that using time based Chebyshev Polynomials in uncer-
tainty parametrization provides better tracking performance than using Fourier
Series. However, this is related with the tuning of controller gains and learning
rates. The only one advantage of using Chebyshev Polynomials is that it re-
quires less design parameter than using Fourier Series. The common property
of the both universal approximators is parametrizing uncertainty on the system

using time data instead of states of the system.

5.2 Future Search and Recommendations

Future works of this thesis can include the verification of the presented mathematical
model with using flight test data. Detailed comparison of the Fourier Series and
Chebyshev Polynomials can be performed in terms of adaptation property. Baseline
controller can be substituted with a robust controller to handle system uncertainties.
Moreover, experimental verification of the proposed controller structure may be the
main focus of the future works and robustness of the controller can be examined under

real world limitations like input delays of the selected hardwares.
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APPENDIX A

EQUATIONS OF THE MAIN ROTOR DYNAMICS

Main Rotor Flappings:

Bo = — (24K, Bo+ 241y, BoQ, — 121y, Bop® — 121, Bog” + 241y, Bor

+ 481y, BoQumrr — 241y, PoP1cQmrp + 241, Bo P15 2mrq — 241, BoPicpr

+ 241y, BoPisqr + 24X co PoemrmpQh,, + 12X cq Boemrmpp? + 12X cq Boemrmpg®

+24X ., Boemrmpr? + 3anrClamr Bocmerrp + 2R,3mClamr Bl sCmrPU

+ 2R,3;1rClamr Blccmrpv -G, Bocmrefnerrp + 2R,3anlamr CmrPPU

+4R),Cro, ConrQunrPVi — 4R, Cro, CoirQnrPw + 2R3, Cl Cinr PV

— 2Clam,B1sCmre;3an” — 2C1amrﬁlccmre,3mpv + Clamr cmref’n,ppu + 2Clamr cmref’n,erpvi
=20, Crnr€;y QP -+ Cly,, Cnres qPV— 3an,C1amr cmrQ2,p60—3R2,C oy Cr P Oou’
— 3R,%1rClamr CmrP Opv? — Cly,, cmreirﬂ,zn,p 60— 3C, . cmre%"p Bpu® —3C Lo cmre,%wp 612
+ 48X BoemrpQpmyr — SREanlam, Bocmrem,erp +6RwrCy,,. Blscmre,zn,pu

- 6R%nrclam,B1scmremrpu +6RnCy,, BicCmreZ,pv — 6R2,C,, BicCmremrpv

— 3R%1,Clamrcmremr ppu— 6R%1,Clamr CmremrQmrP Vi + 6R,2n,Clamr CmremrQmrP W

— 3R%1,Clamr CmrémrqPVv ~+ 6Rerlam, CmrémrP Oou? + 6Rerlam, CmrémrP Hpv>

+ 4R§anlamr CrQmrP O15u — 3Cy,, ﬁlccmrefnerrpu + 4R317Clamr CnrQmrP O1cv

+3Cy,, B sCmr€oy QP+ 2C1amrcmre,3n,erp O15u+2GC, Conrs QuurP 016V
+6R2,Cl,. PoCmred, QP + 4R, Cli, Cnremr2,p 00 — 6R2,Cr ConrmrQmrp O151
—6R2,Cl, CnremrQmrP 016V +O6RmCry, BieCmren Qmrptt —3R2,Cro, BieCremrSmrpu
— 6Rer1amrﬁ1scmre%1errpv + 3R%1rClamrﬁlscmremrﬁmrpv)/(24Ibmr)

Bis = — (48K B1s+961, B1cQumr — 961, Qrg—481, qr—361, PBisq> +481, Bigr?
+ 481, BEQurq + 361, BEQumrq + 481y, Biqr+ 361, Biqr+ 961, Bi1sQumr

— 96X gy Qunrq — 48X gl mrmpqr + 48Xcgﬁlsemrmb9,2,lr + 36Xcg[31semrmbp2
+48Xo Brsemrmyr? +6Ry, Ciy, BrsCmrQunrp +8R3,Cry,. Bocmrpu
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+ 6R31rclam, CmrQmrpp —2C, . Bl scmreﬁwﬁmrp — 8Clamr Bocmre?n,p u+ 12R,%1rC Iy CrPUVi

— IZR%”CZOCW CmrPuw~+2Cy,, Conr €y Qomr PP + 126, Crnr€2, PUV; — 12¢, | Conr€l, PUW
+6R},Cro Brecmr PP +ORM,Clo cnrR2,0015—2C1,  PreCmren Q2P +IRE,Cry, Curp Oy 51>
+2Cy,, cmreﬁwﬂ,%”p 015+9C,,,,. cmre,zn,p 015u>+ 96X ¢ B1s€mrmpQumrr — 24R,Ci,, ConremrPUV
+ 24RnCy,,, CiremrPUW + 12R%1rClamrﬁlccmre,%WQ%Wp — 16R,3n,Clamr Blscmrem,Qm,p
+24RC1,,  Pocmred, Pt —24R2,Cro. PocmremrPu— 8R3,Clo. ConremrSunrPP

+ SR%rClamr BoCmrmrpv + 9R,2anlamr Biscmrpuv — 18Ry Cy,, Cinremrp 0, ,u>

— 16R,3an1amr CmrQmrPp Oou +4Cy, Bocmres, Qurpv + 9, Biscmrel, puv

—8Ci,, Cmr€ay QP Bou — 16R3,Cl, Brocmremr Q2,0 + 12R%,Cro.  BisCmre2, QP

— 8R,3anlamrcmremrQ%1,p 015+ 24R%1rC1amr CmremrQmrP Ot — 18R Cy,  BrsCrremrPuv
—12R;,Cp.. BoCmremrmrPv) [ (481byy)

Pre = —(48KBic — 961y, BisQuur + 961, Qnrp+481,,, pr—361y,, Bicp® +481,, Bicr”

— 481y, BEQurp — 361y, BEQunrp — 481y, BE pr— 361, BE.pr+ 961, BieQurr

+ 96X g€ mpQyrp + 48X cgemrmp pr+ 48Xcgﬁlcemrm;,§zfn, + 36Xcgﬁlcemrmbq2

+48X,, Bicemmyr*+6R: C loyr B1cherrP + SRirClamr Bocmrpv +6R* C oy Cmr Lmrq P

— 2Clamrﬁlccm,eﬁw§2m,p — SClam, Bocmregwpv + 12R%1rclam, CmrPVVi — 12R%1,Clamr CmrPVW
+2C1,, Cor€mQmrqP +12C1,  Cmrep, Pvvi—12C1, CuremPvw—6Rp,Cro. BisCimrQm, P
+6R;,Cro. CnrQm,PO1c+2C1,  BisCmren QP +9RE,Clo CnrP 01V +2C1,  Cinrep, QPO
+9C,, . cmre,zn, P06, V4 96X ¢ B1cemrmpQmrr —24R 1, C logy Crtr€mrPVVi+24Rn Cpy ConyemrP VW
—12R%,C1,, BrsCmre?, Q2,0 — 16R3,Cro BieCmremrmep + 28R Cr, Pocmre2,pv

— 24R;%1rcla,,,, BoCmremrPv — SR;,CZOW CoremrmrqP — 8anrClamr BoCmrmrpu

— 9R,%1,Clamrﬁlccmrpuv — 18R Cy,,, CmremrP 01V — 4Gy, Bocmres, Qmrpu

— 16R,3n,Clamr Cmr&mrp Opv — 9Clamrﬁlccmre,%1rpuv —-8C,,,. cmrefn,erp Opv

+16R3,Cro. BrsCmremr Q2,0 +12R2,Cr. Biecmren, Qmrp —8R3,Cro, Cnremr2,p 01

+ 24R%1,Clamr CmremrQmrP 00V + 18Ry, Cr, BreCrmremrpuv+ 12R2 C oy, BOCHr€mrQumrput) / (481bpyy )

Main Rotor Forces:

Tonr = (NawrCiy,, CnrP (Rmr — emr) (3R P15t — 660v* — 4R2, Q2,0 — 4e2, Q2,60 — 660u>
+ 3Rmr[31€v + 3R ypu + 6R, Vi — 6R 1 Qpyw + 3R y0.qv — 3B1semru — 3B|Cem,v

+ ey pu+ 665, vi — 6 QW +3€1rqv + 4R,%1rﬁonr — 2[306%1,9,,” + 6RO U
— 6B1cemrCmrtt + O6R Q01 v + 6 B sy + 6€1r Qunr O1 51t + 6€10r Qi 01V

- 4RmremrQ,%1r 6y — 2RmrBOemeri’))/24
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Hyr = (NrCmr (Rinr — emr) (24Cy,, emrpvi —24C,  emrpw+72Cy,  Bovvi

—72Cy,, Povw —24C;, Oouv;+24C;, Oouw+16R2,Ci, PoPis+ 16R2,Cy, Pop
+16Cy,,,, BoBisen, —8Cu,, Boen,p+48Ci,, BoPisv +24C,,, Pobicv> —24Cy,, Bic6ov
— 24C Ry Quprtt+24R 0, Cp, Brsvi— 28R Cr,,  Brow—24C sy Quuytt+ 24R,,Cr,, i
—24RyCy, pw—24C;, Prsemrvi+24C;, Bisemw —8R%,Cr, BoPisQ2,

+8R;,.Cu,, B0, 01— 16R;,Cr,, 1o, 00 +4C,,, BoPisen e +8Ci,, Boen, 5,01
—4Cy, Pi1ce2, Q2,00 —32RuCl,. PoBisemr — 8RmrCry, Boemrp — 3RmrCl, BicPisu

— 3R Cl,,,, BrsPreut+36R i Ciy, BoPov+15RmrCiyy, BieBiev+21RurCyy,, BrsPBisv

= 3R Cy,, Brepu+36Ry Cry BreQurvi+ 21RnCr,, Brspv — 3RmrCy,, Brsqu
—36RnrCiy, BreQumw + 15RuCy Bregqv — 12RneCy,,, BoBot + 3RnrCryy, BrcOrct
+9RCr, PrsOrstt+3Cy, BreBisemru~+3Cr,, BisBicemrit+3RmCy, PreOiy

+ 3R Cly, PrsO1cv —36C, BoPoemv —15C;, BiePicemrv —21C, BisBisemrv
+9RmC,, pOIsU+ 12RnCry Qi O15vi — 3Cy,, Brcemrptt + 3R, Cy, pOycv
+3RnC,, 01Ut — 12R1 Cryy Q015w — 12Cy,  BrcemrQmpvi+21Cy,, Bisemrpy
—3Cy,, Bisemrqu+3RmCy, q015v+12C1, BieemrQmrw +15Cy, Bicemrqv

—48Cy, PoBrcuv+12Cy, PoemrOou —3Cy,, PBicemrOrctt —9C;, PisemrOsu

—3C,, Prcemr61v—3Ci, PrsemrO1cv+9Ci, emrpOrsu-+12C,, enmrQumrO15vi

+3Cy,,, emrPO1cv+3Cy, emrqO1cu—12Cy,  emrQurb1sw+3Cy, enrq015v+24Cy, BoOysuv
—24C;, BisOouv+8R2,Cr, BoPicQumr +24R2,Cr. BicPoQmr +8R2,Cr, BoQmrq
+8R2,Clo. PoQunr01s—8R2,Cl, PrsQumr0—12RCr, BEQumrtt—12R Cry, BE Qi
— 4Gy, BoPicez Qmr+12C;, BrePoe2, Qmr—8R2,Cro, QuurpO0+8Cy, Boel,Qmrg
—4C,, Poe2, Q015 +4C1, Pise?, Q60— 12C1, BiemrQmet—6C,, BLemrQmrut
—6C,, BiemrQmr—8Cy, €2, QurpO0+4RnrCr,, BoPrsemrQay+8RmCr, Poemra,01c
— 4R Cy,, BreemrQ2,.00 — 4RmrCry, BoBicemrSmr — 36RmrCr, BicPoemrmr
+8Run,Cr,,,, Bo€mrQmrq + 12RnrCoy, BreBrsQumrv — 4RmrCiy,, BoemrQmr B

+ 4R Cyy,, BrsemrQmr60 — 8RmiCl,, €mrQmrp00 + 12RrCiy,, B1eQunrO151t
—36RCr,, BoQRumrB0v +24R i Cr, B1eQurO1cv + 12R 0, Cr, P15y O15v

—6Cy,, BrcemrQmrO15u+6Cy,  BisemrQmrOicu—36C;,  BoemrLmrOov

+18Cy,, Bicemrlmr01cv +18Cy,  BrsemrLmr615v)) /96

Yiur = = (NonrConrP (Rinr — €mr ) (24Cy,, €mrqw —24Cy,  emrqvi+T12Cy, Pouvi—72C;,  Bouw
+24C;, Oovv;—24C;, Ogvw—16R%,Cy, BoPic— 16R2,Cr, Pog—16Cy, PoPices,
+ 8ClamrBOe%1rq — 48Clamr ﬁoﬁlcuz + 24Clamr ﬁo@lsuz — 24Clam,_[31‘¥90u2
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+ 24C Ry Qv — 28R, Cry Previ+ 28R Cryy Brew +24C € Qv

—24RCp,, qVi+24RuCr, qw+24C, Preemvi—24Cy, PBreemw+8R2,Cr, BoPicQs,
+8R2,Cp, B0, 01— 16R2,Cp,  B13Q2,00—4C,, PoPicen, Py +8C, Boen,Qm, 01

—4Cy, PBise2, Q2,00 +32RuCr,, PoBicemr +8RmrCr, Poemrq +36RuCr,, BoPou
+21RuC,,, BrePrctt+ 15RmCiy, BrsPrisit — 3R Cry,, BrePisv — 3RmCiy, BrsPrcv

+ 15RuCy,, Brspu+36RyCry,  BrsQumivi — 3RurCi, Prepv +21RnCy, Brequ

—36RurCi,, BisQumw — 3R Cryy, Bisqv — 3RmrCry,, B1eO1sit — 3R Cyy,, BrsOrctt

—36Cy, BoBoemrt —21Cy, BiePrcemru— 15Cy, BisPisem+ 12RnCp,, Pobov

—9RuCl, P1c01cv—3RmCr, PrsO15v+3C,, BrePisemv+3Cy, BrsPicemsv—3RmCr,, pOicu
—12RyCp,, Quur010vi+15Cy,  Bisemrpt — 3R Cr,, pO1sV — 3Ry Cr, qO15u

+12R, Croy Quur 01w — 12C1,, BrseimrQumrvi — 3Ch,, Preemrpy +21C,  Brcemrqu

—9RwCiy,,, 4O1V+12Cr,,, Bisemrmw —3Ci,,,, Brsemrqv+48Ci,, BoPrsuv+3Cy,, BicemrO1su
+3Cy, BisemrO1cu—12C;, Poemr00v+9Ci, PicemOicv+3Cy, BisemOiv—3Ci, emrpOicu
— 112G, emrQmr01cvi—3Cy, emrpOisv —3C,  emrqOisu+12C;,  emrQmrOicw

—9C,, emrqB1cv+24C;, Bobicuv —24C,, BicBouv+8R%,Cr, BoPisQmr

+24R2 C,. 15 PoQmr+8R2,Cro BoQunrp —8R%,Cry, BoQunr01c+8R%,Cry, BreQmr6o
—4Cy, PoBise2, Qur+12C1,  BisPoe2, Qe+ 12RuCry BEQmrv+12R 0 Crpy BEQumv
+8Ci,, Boez Qo+ 8R2,Cro Quirg0+4Cy, Poez, QnrOic —A4C1, Breed, Qmr6o

+12C,, ﬁgem,erv + 6Clamrﬁ12C€merrV + 6Clamrﬁlzsemr9mrv + 8C1amrefnerrq90

— 4R Cr,,, BoBicemrQ, + 8RumCiyy, Boemrn, 015 — 4RmrCi,,. Brsemr 2,60

— 4R Cr, BoBrsemrQmr — 36Rm:Cl, BrsBoemrmr + 8RmrCiy, BoemrQmrp

— 12R,Cl,,,, BieBisQurtt+4RnrCiyy, BoCmrPmrO1c — 4RmsCiyy. Brc€mrQmrB0

+8RmCly, €mrPmrq80 — 36RmrCry, BoQunrO0u + 12RCry BreQumO1cut

+24RmCloy BrsQumrOrstt+ 12R Croy BrsQumr01cv — 36C1,  BoemrmrOou

+18Cy,, BrcemrmrO1cu +18C,  BisemrLmrO15u

+6Ci,, BicemrQmrb1sv —6C,  BisemrQmrbicv))/96

Main Rotor Moments:

Oumr = (NonrCmr (Rnr — €mr) (12R3,Cr,,. B — 12C4R3, Q2 +6R3,C, BEA+6R3,C, B
—12C4€3,Q2,+6R3,Cp,, p*+6R3,Cl,. 6> +4C,, Bien, +2C,, BLes, +2C1,, Bie,
+6Cy, enp*+6Cy, e,q> — 12C Ryut* — 12C Rppv* — 12C empu* — 12C €1r1°
+24R,C, V7 +24R 0 Cr,, W+ 24C, €nvi +24C), emw? — 48Ry Cl, viw

+6R3,Cr,, BLOZ, +6RS,C, BEQR, —48C,, emviw+2C,, PBi.e,Qm,
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201, BRGR, + 123, Ciyy Brop+ 1283,Ciy Breq +32R2,Ci, vy
—32R3,Cu,,,, Bow — 4Cy,,,, Brsen,p —4C,,, Bicen,q — 16C1,,, Boes,vi

+16C;, Poek,w—12C Ryye2, Q2 — 12C4R% ey Q2% + 4R C1, PRl
—20R, Clyp, Bems + 2RusCyy, PR3 — 10RE,Clyp B + 2R Crop, PR,

- IOR%rClam,.B lzsemr +6RnCl, D+ 6Rr2anlamr emrP” + 6RnCl,,, emrd’
+6R2,Ci,. emrq* + 12RCpy, Bu* +9RmrCpy, Biou* + 3R C,, BLou?

+12R,Ciy, B3v? + 3R Ciy,, BEV? + IR Cryy, BEV 412G, Biemtt®

+9Ci,,, B2 emru® +3C, . BZemru®+12C . Béemv?+3C, . BZ.emv? + 9, B emrv?
+6R;,Ciy,,, B1cQ5,015—6R3, Crp,. Bis 5,01 —2Cy,, , Breen5,015+2C,,, Bisen, 2,01
—16R,,Cy,, Boemrvi + 16R,,,C,, Boemw — 24R i Cy,, Breuvi+24Rn,C,  Breuw
+24R Cr,, Prsvvi—24R,,Cp, Brovw+2Ry Cr,, Bioer 2 — 10R,Cr BlmrQ,,
+2RwCy,,, Biienm R, —10R: Cr BEemrQp,+ 12Rn,Cy, O15uvi — 12Rn,Cr, O5uw
—24GC;,  Bicemruvi+12Ry,Cy, 0100V +24Cy,  Bieemrw — 12R,Cy, 0100w
+24Cy, Bisemrvvi —24C, Bisemrvw +12C, e O15uvi — 12Cp, ey O15uw
+12C;, emrB1cvvi—12C;, emrO1cvw+12R3,Cr. BiePisQumr— 12R3,Cro. BrsPicQmr
— 4Ry Cy,,, Brset,p — AR, Cro,. Brsemrp — 4RmrCy,, Breeh,q —4R2,Cr, Bicemrq
—16R2,Cy,, PoPrcu— 16R2,Ci, BicPou+ 16R2,Cr, BoPisv+ 16R2,Cr,  BisPov
+12R3,Croy. BieQmrp — 12R3,Clyy. BrsQumrq — 12R3,Cr,,. BoQimro

+6R3,Cro BreQurOic+6R3,Cr, BrsQunrO15+4C1,, BiePises, Qmr—A4C1, BisPices, Qmr
+16R2,C1, Popv—16R%,Cr,. Boqu—3RmC, BicOisut* — 3R Cy, BisOrcu?
+8R2,C,. Pobrsu — 8R%,Cr, PrsOou+8Cy, PoPiced,u+8Cy, BicPoen,u

+ 3R Cry, BrcO1sV? + 3R Cpy, 15610V +8R2,Cr,, PoOicv —8R2,Cr, PicOov
—8Cy,, BoBisez,v —8Ci, BisPoek,v+6R3,Cr QurpOis—4C, Bices, Qumrp

+ 6R;3nrclam, Qnrq61c+4C,, ﬁlse?nrgmrq +4C,,. B()e?nrgmr 6o

—2C1,, Prees, Qurbic —2C;,, Brses, Qmr61s — 8R%,Cp,  pOou— 16R2,Cr, Qe Oovi

+ 16R%1,Clamr£2mr Bow + 16C;,, BoeZ,.pv — 16C;,, Boe2,.qu—8R2,.C oy 400V

—3Cy,, BreemrOist® —3Cy, BrsemrOrcu® —4Cy, Poed, O15u+4C, Pised, Oou

+3Cy,,, Bicemr 01,12 + 3Cy,, Bisemr 0.V — 4Cy, Boe%nr&cv + 4Clam,Blce%1r Opv
+6Cy, €3, QurpOis+6Cy, €3, Qumrqbic—8C, en,pOou—16C;, em, QurBovi
+16C, €2, Q00w —8Cy, €2,400v+4RnCly, BrePrse2, Qmr —4RmCry PrsPice, Qomr
- ZOR%anlamrﬁlcﬁlsemerr + ZOR,anCzam,_ﬁlsﬁlcemerr — 4R nrCly, Bre€yQmrp
—4R2,Cro. BicemrQmrp +4RmrCry Bisen Qumrq + 4R, Cro BrsemrQmrq
+16R2,Cr,. BoBisQmrtt+ 16R2,Cro. BoP1cQunrv + 4RmrCy,, Poez, QunrBo

129



+4R2,Cro. BoemrQmr00 — 2Ry Clyy PBree, Q01 —2R2,Cr PrcemrQmOic

—2RuCr, Prse2, Qmr01s — 2R2,Clo BrsemrQmrO1s + 6RmCl, €2, Qunr PO

+6R2,Cro. ey QuurpOis+ 6RmCry, €myQnrqOic + 6RE,Cly  emrQmrqic

—8R3,Cry,, BoQunr 011 —8Cy,,, BoPisepyQmrt+8Ry,Cryy. BoQunrO15v—8Ciy,, BoBicen Qmv
—8Cy, Poek, Qumrbicu+12C;, Picez, Qumrou+8Cy, Poez, Qumrb15v—12C1, Pisen, Qmrbov
— 2R Ci, Brc€ny Q2,015+ 2R Cr, Brsem Q0,01 — 2R2,Cr. BreemrQ2,615

+2R2,Cro BroemrQ2, 010+ 8RurCr,, BoBicemrtt+ 8RumCry BrePoemrit

—8RnrC,, BoBisemrv—8RmrCy, BisBoemrv+16RuCr, Boemrpv—16Ru:Ci, Boemrqu

— 12RuCr,, BrePrsutv—4RrCl,  PoemrOisti+4RuCro PisemrO0ut— 4R Cry PoemrO1cv
+4RnCy,,, | BicemrBov — 8RmrC,, emrpOou — 16Rn C,  €rQmyBovi

+ 16R,Cr,, Sy O0W — 8RyrCiy, €mrqO0v — 6RyrC, B0y

+6RurCy,, P1sO1suv —12C;,  BicPisemrtty — 6Cy, PicemrOrcuv

+6Cy,, BisemrO1suv — 8RuyCr, BoBrsemrmrtt — 8RurCiy, BoBicemrmrv

—8RurCi,, BomrQmrOrctt + 12R i, Cr, BicemrQmrOott 48R Ci,, Bo€mrLmrO15v
—12Ry,Cy,, B1semrQmrbov))/96

M, = —(Nmr(Ryur — €mr) (3Clamrﬁlccm,em,pv2 — ZCZamrﬁlscmreier,p — 3Clamr[310cm,emrpu2
—6Cy, Bocmrefnrpu —24KB15s+4C,, cmrefnerrpp +9C,, CmremrP 01,u*+ 3Cy,, CmremrP 0,12
-2Cy,. BicCmres, Q2. p + 4Gy, Cmres Q2 PO+ 12Cy,, CremrPuvi—12Cy,  Cremrpuw
+6RnC,, BocmremrPu+ 6Ci,,, BisCmremrPuv+6Cy, Cremrp O1cuv — 2R Cy,, Blscmre,znrﬁm,p
+ 4R3nrclamrﬁlscmremrgmrp + 4R, Cy,, Cinr€ay QmrPP + 4RI%1rCl(xm,- Cmremr&mr PP

+6Cy,, . BoCmre2, Qumpv — 12G,,, Conr€2y QurP Ot — 2R Cy,,, . BicCmre, Q2 p

+4R2,Cro. BreCmremrQmP +4RmrCly, Conrem QP O1s+4Ro, Cro,  Conrenrn,p 01

+6RnCry, BoCmremrQmrPV — 12RnrC,, ConremrQmrP Oott)) /48

My, = —(Nur(Rinr — emr) (24K 10 — 2Cla,n,Blchr€g1errP - 3Clam,ﬁ1scmr€mrp u?

+3Cy,, BisCmremrP V2 — 6Cy,, . Bocmrei,pv +4Cy, cmre?ﬂerrqp +3C,, CmremrP 61 ou?
+9Ci,,, CnrémrP 0,V + 2Gy, Biscmre), Q2. p+ 4Gy, Cmres Q2 PO+ 12Cy,,  CnremrPVVi
— 12Clamr CmrémrPVW 6Rerlamrﬁocmrem,pv — 6Clam, BicCmremrpuv+ 6C1amr CmremrP O15uv
— 2R Cy,, | Bncmre,%ﬂerp + 4R,2anlaW['310cmremerrp + 4R C,, cmre,anerqp

+ 4R%1rclam, CmremrQmrqp — 6Cy,, Bocmre2, Qumrpu — 12Clamrcmre,2nerrp Oov

+ ZRWClam,. BlscmreirQanrp - 4R;2nrclam, .Blscmremrgirp + 4Rmrclam, cmrerznrﬂirp B¢
+4R%,Cro. CoremrQ, P 01— O6RmCro, BoCmremrQmrPut—12RrCry,  ConremrQmrp Bov)) /48
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Stabilizer Bar Flappings:

Blssb = — (256Ib2s,, Qurp + REbClzasb Cbemrpp2 + R?Clz% Cbemrpp2

+ R?hclz%b BieycpQomp” + R sz%b Biewc P + R?bclzasb o, Q02015

FRICE 302,020, ~ IRGRICE, Pre, 3, 00,0% —2RYRICE 3,02,0%6),

+ 1615, R3,Ci,, s, €200 — 1605, R} Ci, B, €620, — 1605, RG,Cl, ¢, B1c
+ 161, RICi,,, 0P O1c = 2RYRICE. €3, Qnrpp?) [ (Qur(2560;, + RY,C, e
CORGRICE pP+RICE, Eyp?)

Bic,, = — (2568, Qg + R, CP, QP +RICT, ¢, Qurap® =R, Pus, 50,7
~RSCE i, 3, Q2,07 + RYCE 302, 0701+ RICE, 3,02,0%61,

+2RYRICT, s, QP — 2RYRICT ¢, 00,07 010+ 1604, R5,Ciy, By, v 20,

— 1615, RICy,, Bic,,csv QP + 1605, RY,Cr, v Q0,0 015 — 1615, RIC, 5,001
—2RGRICT ¢ Qurap?)/(256Quly, + QiR Cr, c,p® = 2QuRGRIC], <3P
+QuRCr, c3P?)
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APPENDIX B

R-50 MODEL HELICOPTER PARAMETERS

Table B.1: R50 Model Helicopter Parameters [28]]

Symbol Value Unit Definition
Main Rotor Parameters
my, 0.3 kg Main rotor blade mass
Ry 1.5392 m Main rotor blade radius
lognr 6 1/rad Main rotor lift curve slope
Cmr 0.1079 m Main rotor mean blade chord
emr 0.030785 m Main rotor hinge offset
I, 0.86754 kg Main rotor blade flapping inertia
about flapping hinge
Qr 91.106 rad/s Main rotor angular velocity
Oy 0 deg Main rotor blade twist angle
i 0 deg Main rotor shaft tilt angle
Nor 2 - Number of main rotor blades
Cq 0.010 - Main rotor blade drag coefficient
O 0.044626 - Main rotor solidity
Amr 7.4432 m? Main rotor disk area
M, 3.3483 Nm Main rotor flapping hinge moment
Ky 0.2 - Swashplate linkage gain
K 0 deg 03 angle
Cr 0.00226 - Main rotor thrust coefficient
Xeg 0.77 m Main rotor blade c.g. location
K 0 N/rad Main rotor spring constant
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Table B.1 continued from previous page

Symbol Value Unit Definition
Loading Parameters
Ly 1.9887 kg.m2 Helicopter moment of inertia in X axis
Ly 6.2051 kg.m? Helicopter moment of inertia in y axis
I, 5.9751 kg.m? Helicopter moment of inertia in z axis
I, 0 kg.m? Helicopter product of inertia in xz axis
my, 44.384 kg Helicopter mass
Tail Rotor Parameters
Ry, 0.26 m Tail rotor blade radius
log, 3 1/rad Tail rotor lift curve slope
Qi 565.49 rad/s Tail rotor angular velocity
Orw,, 0 deg Tail rotor blade twist
N;r 2 - Number of tail rotor blades
Cir 0.04444 m Tail rotor mean blade chord
Oir 0.10881 - Tail rotor solidity
Ayr 0.21236 m? Tail rotor disk area
Stabilizer Bar Parameters
Distance from the top center
Ry 0.56501 m of the rotor hub to the end
of the stabilizer bar blades
Csh 0.099974 m Stabilizer bar mean chord
Lgp 0.15 m Stabilizer bar blade length
Distance from the top center
Rgp, 0.41501 m of the rotor hub to the beginning
of the stabilizer bar blades
AR 1.5 - Stabilizer bar aspect ratio
la, 2.6931 1/rad Stabilizer bar lift curve slope
I, 0.061907 kg Stabilizer bar blade flapping
inertia about flapping hinge
Ky, 0.8 - Stabilizer bar linkage gain
Ngp 2 - Number of stabilizer bar blades
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Table B.1 continued from previous page

Symbol Value Unit Definition
Geometric Parameters
Distance from c.g. point to
Ry, 0 m
main rotor hub in xp axis
Distance from c.g. point to
Rymr 0 m
main rotor hub in yg axis
Distance from c.g. point to
e -0.56124 m
main rotor hub in zp axis
Distance from c.g. point to
Ry, -1.8418 m
tail rotor in xp axis
Distance from c.g. point to
Rytr 0 m
tail rotor in yp axis
Distance from c.g. point to
R, -0.14468 m
tail rotor in zp axis
Distance from c.g. point to
Ry, -1.8418 m
horizontal stabilizer in xp axis
Distance from c.g. point to
Ryhs 0 m
horizontal stabilizer in yp axis
Distance from c.g. point to
R, 0 m
horizontal stabilizer in zp axis
Distance from c.g. point to
Ry, -1.8418 m
vertical stabilizer in xp axis
Distance from c.g. point to
Ry, 0 m
' vertical stabilizer in yp axis
Distance from c.g. point to
R, 0 m
vertical stabilizer in zp axis
Fuselage Parameters
5 Fuselage flat plate
Afys, 0.21572 m
drag area along xp axis
5 Fuselage flat plate
Ajfus, 0.7292 m
drag area along yp axis
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Table B.1 continued from previous page

Symbol Value Unit Definition
Fuselage flat plate
Apus 0.64661 | se TP
' drag area along zp axis
Fuselage flat plate
Ca, 0.01 - e P
drag coefficient along xp axis
Fuselage flat plate
o 0.01 i setatp
' drag coefficient along yp axis
Fuselage flat plate
Ca. 0.01 i se TP
' drag coefficient along zp axis
Empennage Parameters
la. 3 1/rad Horizontal stabilizer lift curve slope
G, . 3 1/rad Vertical stabilizer lift curve slope
Aps 0.075 m? Area of horizontal stabilizer
Ayy 0.0375 m? Area of vertical stabilizer
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Designed Model

APPENDIX C

MODEL ANALYSIS

Model from literature

Re

Im

Damping

Im

Freq. Damping Freq. Mode
0.03585 | 0.49642 | _0.0720 0.4977 0.0309 0.7663 -0.0402 0.7669 Lateral Oscillati
ateral Oscillation
‘ 0.03585 -0.49642 -0.0720 0.4977 0.0309 -0.7663 -0.0402 0.7669
-0.0181 0.3465 0.0522 0.3470 -0.0043 0.6423 0.0067 0.6423 o .
Longitudinal Oscillation
‘ -0.0181 -0.3465 0.0522 0.3470 -0.0043 -0.6423 0.0067 0.6423
-0.65688 0 1 0.6569 -0.6838 0 1 0.6838 Heave
‘ -2.0707 0 1 2.0707 -1.9241 0 1 1.9241 Yaw
-4.456 2.8063 0.8462 5.2660 -4.0211 7.7222 0.4619 8.7064 o -
Longitudinal Stabilizer Bar
‘ -4.456 -2.8063 0.8462 5.2660 -4.0211 -7.7222 0.4619 8.7064
-13.582 8.0636 0.8599 15.7953 -10.011 15.3329 0.5467 18.3116 .
Lateral Stabilizer Bar
‘ -13.582 -8.0636 0.8599 15.7953 -10.011 -15.3329 0.5467 18.3116
-68.579 27.34 0.9289 73.8279
‘ -68.579 -27.34 0.9289 73.8279
-65.857 63.307 0.7209 91.3505 .
Flapping
‘ -65.857 -63.307 0.7209 91.3505
-65.324 125.012 0.4631 141.0504
‘ -65.324 -125.012 0.4631 141.0504
0 0 0 - Yaw

Figure C.1: Comparison of eigenvalues [2§]]
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