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ABSTRACT

REDUCED ORDER MODELLING FOR MULTIPHYSICS PROBLEMS

Güler Eroğlu, Fatma

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Songul Kaya Merdan

December 2018, 117 pages

Proper orthogonal decomposition (POD), as one of the most commonly used tools to

generate reduced order models, has been utilized in many engineering and scientific

applications. The idea of POD consists of extracting the dominant features of a data

set, which are naturally assumed to represent Galerkin finite element solution of a

partial differential equation. In this way, POD reduces the complexity of systems.

Despite the widespread use of POD, it can perform quite poorly for turbulence flows.

Projection-based variational multiscale (VMS) method is one of the best approaches

that increase the numerical stability. The basic idea in VMS is adding artificial vis-

cosity only to smallest resolved scales instead of all resolved scales to eliminate small

scale oscillations. The usual finite element discretization sorting of scales is compli-

cated, but in POD, basis functions are sorted in descending order with respect to their

kinetic energy. Thus, the POD is suitable to the VMS methodology. First, we propose,

analyze and test a post-processing implementation of a projectionbased VMS method

with POD for the incompressible Navier–Stokes equations. We present a theoretical

analysis of the method, and give results for several numerical tests on benchmark

problems which both illustrate the theory and show the proposed method’s effective-
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ness. Second, we extend POD reduced order modeling to flows governed by double

diffusive convection, which models flow driven by two potentials with different rates

of diffusion. We present a stability and convergence analysis for it, and give results

for numerical tests. In the last part of the thesis, we present a VMS reduced order

model based on POD for the Darcy Brinkman equations. The proposed scheme uses

VMS type stabilization in POD. For the temporal discretization of the system, Crank

Nicholson is utilized. The numerical analysis for the VMS-POD is carried out and

numerical studies are performed to verify the theoretical findings.

Keywords: Proper orthogonal decomposition, reduced order models, projection-based

variational multiscale, post-processing, double-diffusive.
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ÖZ

ÇOKLU FİZİK PROBLEMLERİ İÇİN MERTEBE DÜŞÜREN
MODELLEMELER

Güler Eroğlu, Fatma

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Songul Kaya Merdan

Aralık 2018 , 117 sayfa

En yaygın kullanılan mertebe düşüren modellemelerden biri olan uygun dik ayrış-

tırma metodu (POD), birçok mühendislik ve bilimsel uygulamada kullanılmaktadır.

POD metodunun temeli bir kısmi diferansiyel denkleminin Galerkin sonlu eleman çö-

zümünü temsil eden veri kümesinden en çok kinetik enerjiye sahip olanlarını ortaya

çıkarmaktır. Bu şekilde POD, sistemlerin karmaşıklığını azaltır. POD metodu yaygın

olarak kullanılmasına rağmen, sayısal stabilizasyon olmaksızın oldukça zayıf bir şe-

kilde davranır. Projeksiyon tabanlı varyasyonel çoklu ölçek (VMS) yöntemi, verilen

sistemin sayısal kararlılığını artıran en iyi yaklaşımlardan biridir. VMS’deki temel fi-

kir, küçük ölçekli salınımları ortadan kaldırmak için tüm çözülmüş ölçekler yerine ya-

pay viskoziteyi sadece en küçük çözümlenmiş ölçeklere eklemektir. Sonlu elemanlar

discretizasyonunun ölçeklendirilmesi karmaşıktır, fakat POD’da, temel fonksiyonlar

kinetik enerjilerine göre azalan düzende sıralanmıştır. Bu yüzden POD metodu VMS

metodolojisi ile uyumludur.

Bu tezde ilk olarak, sıkıştırılamaz Navier-Stokes denklemleri için POD ile projeksi-

yon tabanlı VMS yönteminin bir işlem-sonrası uygulaması önerilmiş, analiz edilmiş
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ve test edilmiştir. İkinci olarak, uygun dik ayrıştırmalı metodu farklı çözünme oran-

larına sahip iki potansiyel tarafından modellenen çifte çözünümlü konveksiyon denk-

lemleri için genişletilmiştir. İndirgenmiş model için kararlılık ve yakınsaklık analiz-

leri sunulmuştur. Teorik sonuçları sayısal testlerle doğrulamak için bir ölçüt problemi

kullanılmıştır. Tezin son bölümünde, Darcy Brinkman denklemleri için POD’a dayalı

bir VMS indirgenmiş modeli sunulmuştur. Sistemin tamamen ayrıştırılmasında, za-

man değişkenleri için Crank Nicholson zaman ayrımı ve uzay değişkenleri için sonlu

elemanlar yöntemi kullanılmıştır. VMS-POD metodunun sayısal analizi gerçekleş-

tirilmiştir ve en uygun hata tahminleri kanıtlanmıştır. Son olarak, teorik bulguları

doğrulamak için sayısal çalışmalar yapılmıştır.

Anahtar Kelimeler: Uygun dik ayrıştırma, mertebe düşürme modellemeleri, projeksi-

yona dayalı çok ölçekli varyasyonel metot, işlem sonrası, çift difüzyon
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CHAPTER 1

INTRODUCTION

Nowadays, the capacities of computers used for numerical simulations of many engi-

neering and physics problems increase, as a consequence the amount of data produced

also increases. Therefore, millions of degrees of freedom are needed to analyse this

large amount of data. This causes a burden on the computational resources. Thus, ef-

ficient methods are required to approximate solutions. Utilizing reduced order models

(ROMs) is an efficient method for lowering the computational complexity in such set-

tings. The proper orthogonal decomposition (POD) approach has proven to be quite

successful for generating reduced order models that capture many dominant flow fea-

tures. POD reduces the complexity of systems, often by orders of magnitude, by

representing it with only its most energetic structures. Some examples for the ap-

plication of the POD consist of image processing in [80], optimization and control

theory in [52], inverse problem in [95], signal analysis in [1], data compression in

[2], random variables in [72], oceanography and meteorology in [76, 61, 25].

The soul of POD can be found equivalently in statistics, matrix theory, and signal

analysis. The equivalent names in these areas are Karhunen-Loéve decomposition,

singular systems analysis, principal component analysis, and singular value decompo-

sition, respectively. Although these methods were presented by Kosambi [49], Loéve

[59], Karhunen [46], Pougachev [75] and Obukhov [70], POD method was firstly in-

troduced by Lumley [60] in the context of turbulence. Recent studies show that it

is an efficient approach for Boussinesq equations [8, 83, 84], convection dominant

convection diffusion reaction equations [36], Navier Stokes equations [37], neutron

diffusion equations [85], and also for magnetohydrodynamics flow [78].

This thesis is concerned with the utilization of the POD-based reduced order modeling
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for the multiphysics problems. There are two major contributions of the thesis. The

first consists of developing a modular POD-based reduced order modeling along with

projection based stabilization for the Navier Stokes equations (NSE), (1.3.1). The

second includes studying POD for the Darcy-Brinkman equations, (1.3.15).

The NSE are one of the common multiphysics problem and derived from conserva-

tion of mass and conservation of momentum. These equations are used to model

many important phenomena, such as airflow around the airfoil [6, 43, 90], weather

forecasts [71, 88], flows in pipe [17, 81, 82], pollution analysis [15, 19], and blood

flow [58, 67, 74]. NSE is obtained by applying the laws of conservation to fluid

motion. These equations can be considered as generalizations of the famous Euler’s

equations that define the frictionless fluids and incompressible flows. In the 19th cen-

tury, Claude-Louis Navier introduced NSE by adding a Newton viscous term to the

motion equation, [68]. George Gabriel Stokes made the equation more credible by

developing the analysis of the NSE with a different description of the internal friction

in the fluids, [92].

Although NSE were introduced a century ago, their estimates and results have not

been fully understood. The difficulty comes from the nature of NSE. It is known that

due to the wide range of scales in many complex fluid flows, simulating these flows

by a direct numerical simulation (DNS) can be very expensive, and sometimes is even

infeasible from the Kolmogorov 1941 theory, it is known that a resolved DNS requires

O(Re9/4) mesh points [9], where Re is the Reynolds number in NSE. To make the

situation even more difficult, in the engineering design process, flow simulations must

be run many times, e.g. to perform parameter studies or for system control purposes,

which multiplies the DNS cost by at least several times.

NSE includes an important control parameter Re. It is given as a ratio of inertial

forces to viscous forces as

Re = UL
ν
, (1.0.1)

where ν = µ/ρ is the kinematic viscosity, µ is the dynamic viscosity, ρ is the density,

L is the characteristic length scale, and U is the characteristic velocity of the flow.

Viscous terms dominate inertial terms for low Re, in which laminar flow occurs.

For high Re, the convective term become dominant and flow behaviour becomes
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turbulent. One of the difficulties in solving the NSE is the instability caused by these

large changes in Re. When NSE is solved by the standard finite element method,

stabilization methods are used to obtain physically correct numerical approximations.

In the literature, there are different stabilization methods as residual based and projec-

tion based. In recent years, utilizing projections to make the system stable is getting

more common. One of the popular projection based stabilization method is varia-

tional multiscale (VMS) method. VMS was introduced in [35] in a variational set-

ting. Guermond [31] developed this idea by adding artificial diffusion which only

affects small scales. To recover the inconsistency caused by extra terms, Layton [55]

expanded the Guermode’s method by adding and then subtracting artificial viscosity

term. It (and its variants) has been studied extensively in the finite element frame-

works for NSE [40, 41] and convection-diffusion equations [42]. However, the sep-

aration of scales is the challenge in this method. The combining of VMS with the

POD method has been successful to solve this challenge. In POD, the hierarchy of

small and large scales is presented naturally. That is, basis functions are ordered with

respect to their kinetic energy content. Thus, the POD is particularly suitable to the

VMS methodology. Using VMS in POD was pioneered in [36, 37, 79, 21], and their

studies showed this could increase numerical accuracy for convection-dominated con-

vection–diffusion equations [36] and for NSE [37, 79, 21]. Furthermore, in [36, 37],

analyses were performed to show optimal error bounds (in terms of mesh width, time

step size, and eigenvalues and eigenvectors removed from the system)

Another multiphysics problem of interest is Darcy-Brinkman equations with double

diffusive convection. In this system the flow is driven by two potentials with different

diffusion rates. The detailed derivation of the system (1.3.15) can be found in [69].

The physical model uses the momentum forced by heat and mass transfer. In this

model, a Darcy term accounts for the porous boundary.

Double diffusive is of great important in many applications such as oceanography, ge-

ology, biology and chemical processes. In particular, when the oceanography sample

was examined, temperature and salt concentration gradients and diffusivity drive the

flow of salt water. It was seen that the temperature is distributed faster than the con-

centration (salinity). In fact, double diffusion convection in oceanography is a vertical
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operation, and there are two modes as salt fingers and diffusive. The salt fingers mode

of double diffusive were first noticed with pumping cold, less salty and dense water

with a tube from the deep of ocean to the its surface [93]. The cold water moved up-

wards and continued to rise, the opposite direction being similarly expressed. On the

other hand, diffusive convection has been observed that occurs when cold and fresh

water is above from saline and warmer water.

The physical mechanism of double diffusive effects was studied in several works,

e.g., [45, 91]. Due to the coupling between fluid flow, the heat and mass transfer

equations, different boundary layers are formed. As a result, Darcy-Brinkman equa-

tions are solved numerically by varying a variety of numerical techniques. Many

researchers were interested in solving numerically the scheme (1.3.15) by using the

finite volume method (FVM) [64, 4, 63] and the boundary element method (BEM)

[51, 50]. This model was also studied with finite element method (FEM) in different

flow configurations in a cavity [26] and in a porous medium [47, 48, 66].

Although tremendous development of computing power is available, solving Darcy

Brinkman equations accurately and efficiently remains a challenge for the computa-

tional fluid dynamics community. Furthermore, the use of full order methods lead

to large algebraic systems and high computational time. Hence the extension POD

methodology to Darcy-Brinkman equations with double diffusive convection is sig-

nificant.

In this system, heat transfer is expressed with Rayleigh number (Ra) which is defined

as

Ra = gβT (Tbottom − Ttop)L3

νγ
(1.0.2)

where g denotes gravitational acceleration vector, βT denotes thermal expansion co-

efficient, L denotes the vertical length, ν denotes kinematic viscosity, γ denotes ther-

mal diffusivity, Tbottom and Ttop denote the temperature in the bottom and in the top,

respectively. The magnitude of the Ra indicates whether the flow is laminar or tur-

bulent. For high Ra, the instability occurs due to the emergence of convection cells.

Thus, the behaviour of the flow becomes turbulent. In such a case, the VMS method

can be used to eliminate the oscillation and stabilize the convective terms.
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This thesis has three main objectives. As recent work with POD has shown that the

approach can work well on multiphysics flow problems, the first objective is to extend

the novel ideas of [56] to the POD setting for NSE. In particular, to create a VMS-

POD, stabilization is added as a completely decoupled second step in a time stepping

scheme for incompressible flow simulation. That is, at each step there is a two step

procedure at each time step: the first step evolves with a standard POD (i.e. unstabi-

lized Galerkin POD), and then the second step is a weighted POD projection that adds

(in a sense) extra viscosity to the lower POD modes. The method can thus be easily

incorporated into a standard (or legacy) Galerkin POD code, since the approach adds

an uncoupled and a separate postprocessing step. The second objective is to introduce

POD methodology for Darcy-Brinkman equations with double diffusive convection

and apply the post-processing VMS-POD idea only for the momentum equation in

this system. As the Ra number increases, the convection cells emerge and the insta-

bility occurs in the system. Thus, the third objection is to develop the POD method

by adding a coupled projection-based VMS method for Darcy-Brinkman system. In

addition, to obtain a fully linear system at each time level, the nonlinear terms are

treated with the extrapolated Crank Nicholson method.

1.1 Outline

To achieve these objectives, mathematical preliminaries and continuous variational

formulation of the NSE and the double diffusive Darcy-Brinkman system are pre-

sented in the next section. The remaining chapters are organized as follows.

Chapter 2 is devoted to a review of POD-based reduced-order modelling. First, the

essentials of the continuous and discrete POD are described in details. Then, the POD

spaces and POD Galerkin formulation of the incompressible NSE are introduced.

Note that, to derive a priori error estimation, an optimal approach of the true solutions

on the POD spaces are needed. In this thesis, for this purpose, the L2 projection of

each variable is utilized. Some error estimations of L2 projection to be used in the

error analysis are stated. Afterwards, the VMS method used to increase the effect of

the POD method is introduced. At the end of the section, POD preliminaries, POD

spaces and POD formulations of the double diffusion system are given similar to the
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NSE case.

Chapter 3 focuses on proposing, analyzing, and testing a post-processing implemen-

tation of VMS method with POD for the incompressible NSE. The projection-based

VMS stabilization is added as a separate post-processing step to the standard POD ap-

proximation, and since the stabilization step is completely decoupled, the method can

easily be incorporated into existing codes, and stabilization parameters can be tuned

independent from the time evolution step. A theoretical analysis of the method is pre-

sented with the backward Euler and BDF2 temporal discretization. Several numerical

experiments are performed on benchmark problems.

Chapter 4 extends the POD methodology to flows governed by the double-diffusive

convection, which models the flow driven by two potentials with different diffusion

rates. The stability and convergence analyses of the POD Galerkin formulation which

is given in Chapter 1 are performed with backward Euler temporal discretization.

Then, for high Rayleigh number, the POD method is combined with decoupled VMS

method similar to Chapter 3. Especially, artificial diffusion viscosity gets added to

the smaller R velocity modes in a post-processing step. The numerical analysis of the

VMS-POD formulation are given. The numerical tests on a benchmark problem are

illustrated to test the efficiency of the reduction model in this setting.

Chapter 5 presents stabilized POD formulation which is defined in Chapter 4 with

coupled VMS method for the Darcy Brinkman equations with double diffusive con-

vection. The system is equipped with a Crank Nicholson temporal discretization and a

finite element method for spacial discretization. The nonlinear terms are treated with

the extrapolated Crank Nicholson method, to get a fully linear system at each time

level. Numerical analysis of the VMS-POD formulation is presented. The analytical

results are verified with numerical experiments.

Finally, the thesis ends with conclusions of this dissertation and the discussion for

future research directions in Chapter 6.
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1.2 Mathematical Preliminaries and Notations

In this section, some mathematical notations and preliminaries which will be used

throughout this thesis are introduced.

1.2.1 Sobolev Spaces

We assume that Ω ⊂ Rd, d = {2,3} is a polygonal or polyhedral domain, with bound-

ary ∂Ω. Let g ∶ Ω → Rd be a function. Partial derivative of order ∣α∣ is defined

by

Dαg = ∂ ∣α∣g

∂x1
α1∂x2

α2⋯∂xnαd
(1.2.1)

where α = (α1, α2,⋯, αd) is a multi-index of non-negative integer numbers and its

length is defined by ∣α∣ = α1 + α2 +⋯ + αd.

Definition 1.2.1 Let g ∈ C(Ω), Then

supp(g) = {x ∶ g(x) ≠ 0} (1.2.2)

is the support of g. If supp(g) ⊂ Ω compact in Rd, g has compact support in Ω.

Definition 1.2.2 The space C∞
0 (Ω) is defined by

C∞
0 (Ω) = {g ∈ C∞(Ω) ∶ g has a compact support in Ω}. (1.2.3)

Definition 1.2.3 The Lebesgue spaces consists of functions that pth powers are inte-

grable and they are denoted by

Lp(Ω) = {g ∶ g is Lebesgue measurable function and∫
Ω

∣g(x)∣pdx <∞}. (1.2.4)

for all 1 ≤ p ≤∞.

The Lp(Ω)-norm is defined by

∥g∥Lp = (∫
Ω

∣g(x)∣pdx)
1/p

, 1 ≤ p <∞ (1.2.5)

∥g∥L∞ = ess sup
x∈Ω

∣g(x)∣, p =∞. (1.2.6)
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Specially, for p = 2, we get L2(Ω) which is a Hilbert space equipped with the follow-

ing inner product

(g, h) = ∫
Ω

g(x)h(x)dx, ∥g∥ =
√

(g, g). (1.2.7)

The zero-mean subspace of L2(Ω) is given by

L2
0(Ω) = {g ∈ L2(Ω) ∶ ∫

Ω

g dx = 0}. (1.2.8)

Definition 1.2.4 Sobolev spaces are defined as

Wm,p(Ω) = {g ∈ Lp(Ω) ∶Dαg ∈ Lp(Ω), ∀∣α∣ ≤m} (1.2.9)

for any m ∈ N, 1 ≤ p ≤∞.

The norms in Sobolev spaces are given as:

∥g∥Wm,p(Ω) = ( ∑
∣α∣≤k
∫
Ω

∥Dαg∥pLp)
1/p

, 1 ≤ p <∞ (1.2.10)

∥g∥Wm,∞(Ω) = ∑
∣α∣≤k
∫
Ω

ess sup
x∈Ω

∣Dαg∣, p =∞. (1.2.11)

Sobolev spaces are Banach spaces with these norms, e.g., see [23]. The interested

Sobolev spaces in this thesis are

● for m = 0, W 0,p(Ω) = Lp(Ω)

● for p = 2, Wm,2(Ω) =Hm(Ω) is Hilbert space equipped with the norm ∥ ⋅ ∥m.

● The closed subspace of H1(Ω) is our special interest,

H1
0(Ω) ∶= {v ∈ L2(Ω) ∶ ∇v ∈ L2(Ω), v = 0 on∂Ω}. (1.2.12)

We denote the dual space of H1
0(Ω) by H−1 with norm

∥f∥
−1 = sup

v∈X

∣(f, v)∣
∥∇v∥ .
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Definition 1.2.5 For all (scalar or vector valued) function v(x, t) ∈ Ω × (0, T ], the

following norms are used

∣∣v∣∣∞,p ∶= ess sup
0≤t≤T

∥v(⋅, t)∥p, ∣∣v∣∣m,p ∶= (∫
T

0
∥v(⋅, t)∥mp dt)

1/m

,

where T represents to end point. The following notations are utilized for discrete

norms

∣∣∣v∣∣∣∞,p ∶= max
0≤n≤M

∥vn∥p, ∣∣∣v∣∣∣m,p ∶= (∆t
M

∑
n=0

∥vn∥mp )
1/m

.

where ∆t is the time step, we denote variables at time tn = n∆t, ∀n = 0,1,2, ...,M

using superscripts, e.g. v(tn) = vn.

Definition 1.2.6 Let A ∈ Rm×n be a matrix. Then matrix 2−norm of A and A−1 is

given by

∥A∥2 ∶= max
x≠0

∥Ax∥2

∥x∥2

= ρmax, (1.2.13)

where ρmax is largest singular value of A.

Definition 1.2.7 (see [73]) Let F be a functional defined as F ∶ D → R, for any

manifold D representing functions f . Then for any function θ(x), the functional

derivative δF
δf is defined as

lim
α→0

F[f + αθ] −F[f]
α

= { d

dα
F[f + αθ]}

α=0
= ∫

δF
δf(x)θ(x)dx. (1.2.14)

1.2.2 Important Inequalities

Some useful mathematical inequalities and lemmas that are used in the numerical

analysis are given below.

Young’s inequality: Let α,β be non-negative finite numbers, then the following in-

equality holds

αβ ≤ ξ
p
αp + ξ

−
q
p

q
βq, (1.2.15)

for any ξ > 0, 1 < p, q <∞ and
1

p
+ 1

q
= 1.
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Ladyzhenskaya inequality [54] (2d): For any ∇f ∈ L2(Ω) and f ∈ L4(Ω) with

compact support, there is a constant C satisfying for Ω ⊆ R2

∥f∥L4 ≤ C
√

∥f∥∥∇f∥. (1.2.16)

Proof It is enough to prove the inequality (1.2.16) only for Ω = R2. From (1.2.5), we

get

∥f∥4
L4(R2)

= ∫
Ω

f 4 dx ≤
∞

∫
−∞

max
x1

f 2 dx2

∞

∫
−∞

max
x2

f 2 dx1. (1.2.17)

We also have that

max
xk

f 2(x1, x2) = 2

∞

∫
−∞

∣ffxk ∣dxk. (1.2.18)

Using (1.2.18), we get

∥f∥4
L4(R2)

≤ 4

∞

∫
−∞

∞

∫
−∞

∣ffx1 ∣dx1 dx2

∞

∫
−∞

∞

∫
−∞

∣ffx2 ∣dx1 dx2

≤ 4∫
Ω

f 2 dx∫
Ω

fx1fx2 dx. (1.2.19)

Applying Young’s inequality (1.2.15) to second factor of the right hand side of (1.2.19),

we get

∥f∥4
L4(R2)

≤ 2∫
Ω
f 2 dx∫

Ω
(f 2
x1 + f 2

x2)dx

≤ 2∫
Ω
f 2 dx∫

Ω
(∇f)2 dx. (1.2.20)

Taking the fourth root both of sides in (1.2.20) results in (1.2.16).

Sylvester’s determinant identity: Let A ∈ Rm×n and B ∈ Rn×m be matrices. Then

det(Im +AB) = det(In +BA), (1.2.21)

where Im, In are identity matrices with order m and n, respectively.

Proof Let C be a matrix as

C =
⎛
⎜
⎝
Im −A
B In

⎞
⎟
⎠
. (1.2.22)

10



Since Im, In be invertible matrices, then detC can be expressed as

det
⎛
⎜
⎝
Im −A
B In

⎞
⎟
⎠
= det(In)det(Im − (−A)I−1

n B) = det(Im +AB). (1.2.23)

Also, detC can be written as

det
⎛
⎜
⎝
Im −A
B In

⎞
⎟
⎠
= det(Im)det(In −BI−1

m (−A)) = det(In +BA). (1.2.24)

This gives us the stated result (1.2.21).

Lemma 1.2.8 (Discrete Gronwall) If αn, βn, γn, δn,K and c are nonnegative num-

bers for n ≥ 0 and

αn +K
M

∑
n=0

βn ≤K
M

∑
n=0

δnαn +K
M

∑
n=0

γn + c for M ≥ 1 (1.2.25)

then if ∆tdn < 1 for every n = 1,2, ...,M ,

αn +K
M

∑
n=0

βn ≤ exp(K
M

∑
n=0

δn
1 −∆tδn

)(K
M

∑
n=0

γn + c), for M ≥ 1. (1.2.26)

Proof For the proof, see reference [34].

Lemma 1.2.9 (Hölder inequality) For any f ∈ Lp(Ω) and g ∈ Lq(Ω)

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq , (1.2.27)

for all finite p, q ≥ 1 with
1

p
+ 1

q
= 1.

Proof For either ∥f∥Lp = 0 or ∥g∥Lq = 0, (1.2.27) is satisfied trivially. Otherwise,

letting ξ = 1, α = ∣f(x)∣
∥f∥p

and b = ∣g(x)∣
∥g∥q

in (1.2.15) gives

∣f(x)g(x)∣
∥f∥Lp∥g∥Lq

< ∣f(x)∣p
p∥f∥pLp

+ ∣g(x)∣q
q∥g∥qLq

. (1.2.28)

Integrating (1.2.28) over the domain Ω, we get

1

∥f∥Lp∥g∥Lq
∫
Ω

∣f(x)g(x)∣dx < 1

p∥f∥pLp
∫
Ω

∣f(x)∣p dx

+ 1

q∥g∥qLq
∫
Ω

∣g(x)∣q dx. (1.2.29)
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From the definition of Lebesgue integral (1.2.5), we have

1

∥f∥Lp∥g∥Lq
∫
Ω

∣f(x)g(x)∣dx < 1

p
+ 1

q
. (1.2.30)

Using 1
p + 1

q = 1 and multiplying ∥f∥Lp∥g∥Lq results in (1.2.27).

Lemma 1.2.10 (Cauchy-Schwarz inequality) Let f, g ∈ L2(Ω), then

∣(f, g)∣ ≤ ∥f∥∥g∥ (1.2.31)

holds.

Proof Substituting p = q = 2 in (1.2.27) gives the stated result (1.2.31).

Lemma 1.2.11 (Poincaré-Friedrichs’ Inequality [11]) Suppose Ω ⊂ F = {(x1, x2,⋯, xn) ∶
0 < xi < Cp}. Then

∥f∥ ≤ Cp∥∇f∥ (1.2.32)

holds for any f ∈H1
0 .

Proof To prove (1.2.32), it is sufficient to show f ∈ C∞
0 (Ω) since C∞

0 (Ω) is dense in

H1
0(Ω). One can write

f(x1, x2,⋯, xn) = f(x1, x2,⋯,0) +
xn

∫
0

∂f(x1, x2,⋯, α)
∂α

dα (1.2.33)

f ∈H1
0 and we set f = 0 on F ∖Ω. Applying (1.2.31) for (1.2.33), we get

∣f(x)∣ ≤ (
xn

∫
0

12 dα)1/2 ⋅ (
xn

∫
0

∣∇f(x1, x2,⋯, α)∣2 dα)1/2

≤ (Cp
Cp

∫
0

∣∇f(x1, x2,⋯, α)∣2 dα)
1/2

(1.2.34)

Integrating over the xn coordinates gives

xn

∫
0

∣f(x)∣dxn ≤ Cp(
Cp

∫
0

∣∇f(x)∣2 dxn)
1/2

(1.2.35)
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Integrating over the other coordinates gives

∫
F

∣f ∣dx ≤ Cp(∫
F

∣∇f ∣2 dx)
1/2

(1.2.36)

Lemma 1.2.12 The following inequalities satisfies,

∫
Ω

fgh ≤ ∥f∥Lp∥g∥Lq∥h∥Lr , (1.2.37)

where 1 ≤ p, q, r ≤∞ with
1

p
+ 1

q
+ 1

r
= 1.

Proof Applying (1.2.27) gives

∫
Ω

fgh ≤ (∫
Ω

fp)
1
p (∫

Ω

(gh)m)
1
m

, (1.2.38)

where
1

p
+ 1

m
= 1. Applying the (1.2.27) again for the second term of the right hand

side of (1.2.38), we have

∫
Ω

fgh ≤ (∫
Ω

fp)
1
p (∫

Ω

gmn)
1

mn (∫
Ω

hmr)
1

mr

. (1.2.39)

Substituting mn = q and mr = r in (1.2.39) results in (1.2.37) with
1

p
+ 1

q
+ 1

r
= 1.

Lemma 1.2.13 Let w(t,x) be a function and tn/2 = tn+1+tn

2 . Then for w,wt,wtt,wttt ∈
C0(0, τ,L2(Ω)) and ∀t∗ ∈ (t0, τ) following inequalies holds

∥w(tn+1) +w(tn)
∆t

∥ ≤ K∥wt(t∗)∥ (1.2.40)

∥w(tn+1) +w(tn)
2

−w(tn/2)∥ ≤ K∆t2∥wtt(t∗)∥ (1.2.41)

∥3w(tn)
2

− w(tn−1)
2

−w(tn/2)∥ ≤ K∆t2∥wtt(t∗)∥ (1.2.42)

∥w(tn+1) +w(tn)
∆t

−wt(tn/2)∥ ≤ K∆t2∥wttt(t∗)∥ (1.2.43)

for simplicity we use w(tn) instead of w(x, tn).

Proof This can be proved by using Taylor series expansion of w(x, t).
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1.3 Full Order Models of Navier Stokes and Darcy-Brinkman Equations

Finite element method (FEM) is successful in analyzing and solving differential equa-

tions. Complex geometries can be easily modelled in FEM. Also, the incorporation

of boundary conditions is easy. FEM can be applied in many fields such as chem-

ical engineering, acoustic wave, heat transfer, electromagnetic, electrostatics, mag-

netostatics, multiphysics, CFD, etc. In this section, we focus on the Galerkin FEM

discretization of two multiphysics equations:

● the incompressible Navier-Stokes equations (NSE)

● the Darcy-Brinkman equations with double diffusive convection

1.3.1 Galerkin FEM for the Navier Stokes Equations

First of all, we deal with the discretization of the time dependent incompressible

Navier-Stokes equations by the standard Galerkin FEM. The incompressible NSE on

a polyhedral domain Ω ⊂ Rd, d ∈ {2,3} with boundary ∂Ω is given as

ut − ν∆u + (u ⋅ ∇)u +∇p = f in Ω × (0, T ],
∇ ⋅ u = 0 in Ω × [0, T ],

u = 0 in ∂Ω × [0, T ],
u(x,0) = u0 in Ω,

∫
Ω

p dx = 0 in (0, T ],

(1.3.1)

where u(x, t) is the fluid velocity and p(x, t) the fluid pressure. The parameters in

(1.3.1) are the kinematic viscosity ν > 0, inversely proportional to Reynolds number

Re = O(ν−1), the prescribed body forces f(x, t) and the initial velocity field u0(x).

The term, (u ⋅ ∇)u is called the convection term, which describes the heat energy

transmitted by the bulk motion of particles in a fluid. The term, Re−1∆u is called

diffusion term that describes the random movement of particles in a fluid from a

highly concentrated region to a lowly concentrated region.

The continuous velocity and pressure spaces are denoted by X ∶= (H1
0(Ω))d, and
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Q ∶= L2
0(Ω), respectively, and the divergence free space

V ∶= {v ∈ X ∶ (∇ ⋅ v, q) = 0, ∀q ∈ Q}.

Multiplying (1.3.1) with test functions (v, q) ∈ (X,Q) and integrating over the do-

main Ω results in variational formulation as: Find u ∶ (0, T ]→X, p ∶ (0, T ]→ Q

(ut,v) + (ν∇u,∇v) + ((u ⋅ ∇)u,v) − (p,∇ ⋅ v) = (f ,v),
(q,∇ ⋅ u) = 0,

(1.3.2)

for all (v, q) ∈ (X,Q). For the nonlinear term in (1.3.2), we use the following vector

identity: For any u,v,w ∈ V

u ⋅ ∇v ⋅w = 1

2
∇ ⋅ (u∣v∣∣w∣) − 1

2
∣u∣∣v∣∇ ⋅w (1.3.3)

It is clear that (u ⋅ ∇v,v) = 0 from the (1.3.3), as u,v ∈ V i.e., then u ⋅ n = 0 on ∂Ω

and ∇ ⋅ v = 0. The convective term is defined as

b(u,v,w) = 1

2
((u ⋅ ∇)v,w) − 1

2
((u ⋅ ∇)w,v). (1.3.4)

The form of convective term (1.3.4) is the skew-symmetric and satisfies the following

properties.

Lemma 1.3.1 Let the trilinear form be defined by (1.3.4). Then it satisfies the fol-

lowing properties for constant C = C(Ω):

b(u,v,w) ≤ C
√

∥u∥∥∇u∥∥∇v∥∥∇w∥, (1.3.5)

b(u,v,w) ≤ C∥∇u∥∥∇v∥∥∇w∥, (1.3.6)

for all u,v,w ∈ X.

Proof Substituting p = r = 4 and q = 2 in (1.2.37) results in

(u ⋅ ∇v,w) ≤ C∥u∥L4∥∇v∥L2∥w∥L4 . (1.3.7)

Using (1.2.16) gives (1.3.5) and applying (1.2.32) gives (1.3.6).

Let Πh be an admissible triangulations of the domain Ω. For the discretization, a

conforming FEM is used for both velocity and pressure spaces (Xh,Qh) ⊂ (X,Q)
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satisfying the inf-sup condition (see [28, 32]): There is a constant β such that inde-

pendent of the mesh size h such that

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ ⋅ vh)
∣∣∇vh ∣∣ ∣∣ qh ∣∣

≥ β > 0. (1.3.8)

In this thesis, we use the Taylor-Hood element pair (Xh,Qh) = (P d
m, Pm−1) which

are defined as

Xh = {uh ∈ X ∶ uh∣K ∈ P d
m(K)}, (1.3.9)

Qh = {qh ∈ Q ∶ qh∣K ∈ Pm−1(K)}, (1.3.10)

for all K ∈ Πh. As noted in [29], for k ≥ 2, the element pair (1.3.9)-(1.3.10) satisfies

the inf-sup condition (1.3.8).

The finite element spaces have the same inner product and norm with (X,Q) and

generally, they are chosen as piecewise polynomials of degrees at most m and m − 1,

respectively. Additionally, we suppose that the spaces satisfy the following interpola-

tion estimates given in [39, 12]: For any u ∈ X ∩Hm+1(Ω) and p ∈ Q ∩Hm(Ω)

inf
vh∈Xh

(∥(u − vh)∥ + h∥∇(u − vh)∥) ≤ Chm+1∥u∥m+1, (1.3.11)

inf
qh∈Qh

∥p − qh∥ ≤ Chm∥p∥m. (1.3.12)

We denote the discretely divergence free space by

Vh = {vh ∈ Xh ∶ (∇ ⋅ vh, qh) = 0,∀qh ∈ Qh}. (1.3.13)

The inf-sup condition (1.3.8) implies that the space Vh is a closed subspace of Xh

and the formulation in Xh is equivalent to Vh, [39].

Thus, the Galerkin FEM approximation of (1.3.2) in Vh has the following form: Find

uh ∈ Vh satisfying

(uh,t,vh) + (ν∇uh,∇vh) + b(uh,uh,vh) = (f ,vh), (1.3.14)

for all vh ∈ Vh.

Picking a basis in Vh and expressed uh in terms of the basis, the equation (1.3.14)

turn into a nonlinear ordinary differential equation that depends on the time. Thus,

to obtain an approximate solution, the temporal discretization is required. We use

the backward Euler and the backward differentiation (BDF) formula to discretize the

equation (1.3.14) in time.
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1.3.2 Galerkin FEM for the Darcy-Brinkman Equations with Double Diffusive

Convection

Secondly, we now consider the Darcy-Brinkman equations with double diffusive con-

vection, in a confined porous enclosure Ω ⊂ Rd, d ∈ {2,3} with polygonal boundary

∂Ω. In dimensionless form, the system reads as:

ut − 2ν∇ ⋅Du + (u ⋅ ∇)u +Da−1u +∇p = (βTT + βCC)g in Ω × (0, τ],
∇ ⋅ u = 0 in Ω × (0, τ],

u = 0 in ∂Ω × (0, τ],
Tt + u ⋅ ∇T = γ∆T in Ω × (0, τ],
Ct + u ⋅ ∇C = Dc∆C in Ω × (0, τ],

T,C = 0 on ΓD,

∇T ⋅ n = ∇C ⋅ n = 0 on ΓN ,

u(x,0) = u0, in Ω,

T (x,0) = T0, C(x,0) = C0 in Ω.

(1.3.15)

Let ΓN be a regular open subset of the boundary and ΓD = ∂Ω ∖ ΓN . The functions

u(x, t), p(x, t), T (x, t), C(x, t) denote the fluid velocity, the pressure, the temper-

ature, and the concentration fields, respectively, and the initial velocity, temperature

and concentration fields are given by u0, T0, C0. The dimensionless parameters

are the Schmidt number Sc = ν/Dc, the Lewis number Le = Sc/Pr, the Darcy

number Da = k/H2, the buoyancy ratio N = (βC∆C)/(βT∆T ), Prandtl number

Pr = ν/γ, and the thermal and solutal Grashof numbers GrT = (gβT∆TH3)/ν3 and

GrC = (gβC∆CH3)/ν3, respectively. The parameters in (1.3.15) are the kinematic

viscosity ν > 0, the velocity deformation tensor Du = (∇u + ∇uT )/2, the Darcy

number Da, the thermal diffusivity γ > 0, the mass diffusivity Dc > 0, and the gravi-

tational acceleration vector g. The thermal and the solutal expansion coefficients are

βT and βC , respectively. HereH is the cavity height, k is the permeability, τ is the end

time interval and ∆T and ∆C are the temperature and the concentration differences,

respectively.

As in the NSE case, the continuous velocity and pressure spaces are given by

X ∶= (H1
0(Ω))d, Q ∶= L2

0(Ω).
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Similarly temperature and concentration spaces are given by

W ∶= {S ∈H1(Ω) ∶ S = 0 on ΓD},

Ψ ∶= {Φ ∈H1(Ω) ∶ Φ = 0 on ΓD}.

The variational formulation of (1.3.15) reads as follows: Find u ∶ (0, τ] → X, p ∶
(0, τ]→ Q, T ∶ [0, τ]→W and C ∶ [0, τ]→ Ψ satisfying

(ut,v) + 2ν(Du,Dv) + b1(u,u,v) − (p,∇ ⋅ v)

+(Da−1u,v) = βT (gT,v) + βC(gC,v), (1.3.16)

(∇ ⋅ u, q) = 0, (1.3.17)

(Tt, S) + b2(u, T, S) + γ(∇T,∇S) = 0, (1.3.18)

(Ct,Φ) + b3(u,C,Φ) +Dc(∇C,∇Φ) = 0, (1.3.19)

for all (v, q, S,Φ) ∈ (X,Q,W,Ψ), where

b1(u,v,w) ∶= 1

2
(((u ⋅ ∇)v,w) − ((u ⋅ ∇)w,v)) , (1.3.20)

b2(u, T, S) ∶= 1

2
(((u ⋅ ∇)T,S) − ((u ⋅ ∇)S,T )) , (1.3.21)

b3(u,C,Φ) ∶= 1

2
(((u ⋅ ∇)C,Φ) − ((u ⋅ ∇)Φ,C)) (1.3.22)

represent the skew-symmetric forms of the convective terms. These forms satisfy the

properties in Lemma 1.3.1.

In this part, we consider a conforming FEM for (1.3.16)-(1.3.19), with spaces Xh ⊂
X, Qh ⊂ Q, W h ⊂ W and Ψh ⊂ Ψ such that Πh is an admissible triangulations of

the domain Ω. We also assume that the pair (Xh,Qh) satisfies the discrete inf-sup

condition (1.3.8). It will also be assumed for simplicity that the finite element spaces

Xh, W h, Ψh are composed of piecewise polynomials of degree at most m and Qh

is composed of piecewise polynomials of degree at most m − 1. In addition, we as-

sume that the velocity and the pressure spaces satisfy the interpolation approximation

properties (1.3.11)-(1.3.12). Similarly, the temperature and the concentration spaces

satisfy the following interpolation estimates:

inf
Sh∈Wh

∥T − Sh∥ ≤ Khm+1∥T ∥m+1, (1.3.23)

inf
Φh∈Ψh

∥C −Φh∥ ≤ Khm+1∥C∥m+1, (1.3.24)

18



for T ∈ W ∩ Hm+1(Ω) and C ∈ Ψ ∩ Hm+1(Ω). The finite element formulation of

(1.3.16)-(1.3.19) is given as: Find (uh, Th,Ch) ∈ (Vh,W h,Ψh) satisfying

(uh,t,vh) + 2ν(Duh,Dvh) + b1(uh,uh,vh) + (Da−1uh,vh)

= βT (gTh,vh) + βC(gCh,vh), (1.3.25)

(Th,t, Sh) + b2(uh, Th, Sh) + γ(∇Th,∇Sh) = 0, (1.3.26)

(Ch,t,Φh) + b3(uh,Ch,Φh) +Dc(∇Ch,∇Φh) = 0, (1.3.27)

for all (vh, Sh,Φh) ∈ (Vh,W h,Ψh).

Choosing a basis in (Vh,W h,Ψh) and expressed (uh, Th,Ch) in terms of the ba-

sis, the equations (1.3.25)-(1.3.27) turn into a nonlinear ordinary differential equation

that depends on the time. Hence, to obtain an approximate solution, the temporal dis-

cretization is required. We use the backward Euler and the backward differentiation

(BDF) formula to discretize the equation (1.3.25)-(1.3.27) in time.

It is well known that if problems (1.3.1) and (1.3.15) are solved by using finite el-

ement methods (1.3.14) and (1.3.25)-(1.3.27) respectively, due to the complex be-

haviour of the fluid flow, the finite element solution may exhibit nonphysical oscilla-

tions [30, 65]. This causes a poor and inaccurate approach. The use of stabilization

techniques prevents the problems resulting from the dominance of the convection

term. Thus, to get an efficient, robust and accurate numerical approximation in this

thesis, a projection-based VMS method is implemented to the systems.
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CHAPTER 2

REDUCED ORDER MODELLING WITH POD

Simulating complex fluid flows by a direct numerical simulation (DNS) can be very

expensive, and sometimes is even infeasible due to the wide range of scales. In par-

ticular, in the engineering design process, flow simulations must be run many times,

e.g. to perform parameter studies or for system control purposes; this multiplies the

DNS cost by at least several times. In addition, using full order models such as fi-

nite volume method (FVM), finite difference method (FDM), finite element method

(FEM) cause to large algebraic systems and high computational times. The concept of

reduced order models was introduced as a way of lowering the computational com-

plexity in such settings. With the emergence of the ROM method, such as Krylov

subspace based methods, moment matching methods, proper orthogonal decomposi-

tion, balanced truncation, the computing time is reduced and more reliable solutions

are obtained.

The POD method is the most efficient technique in complex flows for lowering the

computational complexity. The basic idea of the POD is to get new basis functions

such that these basis functions cover the space and has lower dimension than the finite

element. The method aims to seek good representation of the snapshots and project

each one onto POD basis functions which are belong to an inner product space. In

this thesis, the POD basis is defined in the Hilbert space.

In the process of obtaining POD basis, we need an ensemble of data. As the exact

solution cannot be obtained in NSE type flows, the discrete solution is acquired by

recording hundreds of snapshots at a constant time interval. Then to derive optimal

POD basis, the obtained experimental data are analysed by revealing dominant struc-

tures and snapshots correlation data matrix is constructed. To decompose this matrix,
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the singular value decomposition is utilized and the POD method is established as a

constrained error minimization problem. Hence solving the minimization problem by

using Lagrange multiplier method yields the low dimensional POD basis. Using this

new optimal basis, the full order model is projected with the Galerkin projection onto

the low-dimensional subspace.

The performance of the POD method can be improved with the optimal choice of

the snapshot set. Since the POD basis contains as much information as the snapshots

contains, the success of the POD method depends on the selection of the snapshot

set. There are many successful methods that provide better selection of snapshots

such as the sequential proper orthogonal decomposition (SPOD), trust-region proper

orthogonal decomposition (TRPOD), the centroidal Voronoi tessellation (CVT), etc.

In SPOD, snapshots are selected in equally distributed in the space [44]. However,

TRPOD gives better results by using the trust region philosophy to select the snapshot

set [3, 24]. Another better choice of the snapshot set is developed by creating a special

Voronoi cluster of snapshots in CVT [13].

The POD performance also depends on POD modes number. As the number of POD

modes increases, more information is retained, but the computational cost increases.

To find optimal basis, one of the approaches is the principal interval decomposition

(PID) method. In PID, the dominant POD modes are extracted over the time subinter-

val [10]. Another method used for same purpose is the principal interaction patterns

(PIP) method in which the optimal POD modes are obtained by a nonlinear minimiza-

tion procedure [33]. However, in nonlinear problems, the optimality of POD modes

might not reduce the computational time of the approach sufficiently. For such prob-

lem, the efficiency of POD method is increased by using the empirical interpolation

method (EIM) [7] and discrete empirical interpolation method (DEIM) ([16, 52, 96]).

In this dissertation, the efficiency of POD method is increased by variational multi-

scale (VMS) method of [36, 37] which is based on locality of energy transfer. The

idea of the VMS method is to improve the approach by adding an artificial viscosity

term to only resolved small-scales.
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2.1 POD-ROM Preliminaries for NSE

In this section the essentials of POD are described in continuous and discrete setting.

2.1.1 POD in Continuous Setting

The aim of the POD is to find a low-dimensional ordered, orthonormal basis functions

{ψ1,ψ2, . . . ,ψr} by solving the minimization problem of

arg min
ψ1,...,ψr

∫
T

0
∥u(⋅, t) −

r

∑
i=1

ai(t)ψi(⋅)∥2 dt,

subject to (ψi,ψj) = δij, (2.1.1)

where δij denote Kronecker delta function, ai(t) denote time varying coefficients,

1 ≤ i, j ≤ r and r << d. The best approximation for u is given by
r

∑
i=1

(u(⋅, t),ψi(⋅))ψi(⋅) (2.1.2)

in Hilbert space theory. Hence the time varying coefficients are represented by

ai(t) = (u(⋅, t),ψi(⋅)) (2.1.3)

Inserting (2.1.2) in (2.1.1), the optimization problem becomes

arg min
ψ1,...,ψr

∫
T

0
∥u(⋅, t) −

r

∑
i=1

(u(⋅, t),ψi(⋅))ψi(⋅)∥2 dt,

subject to (ψi,ψj) = δij, (2.1.4)

Rearranging (2.1.4) by using properties of inner product gives

arg min
ψ1,...,ψr

∫
T

0
(u(⋅, t) −

r

∑
i=1

(u(⋅, t),ψi(⋅))ψi(⋅),u(⋅, t) −
r

∑
j=1

(u(⋅, t),ψj(⋅))ψj(⋅))dt

= arg min
ψ1,...,ψr

∫
T

0
((u(⋅, t),u(⋅, t)) − (u(⋅, t),

r

∑
j=1

(u(⋅, t),ψj(⋅))ψj(⋅))

−(
r

∑
i=1

(u(⋅, t),ψi(⋅))ψi(⋅),u(⋅, t))

+(
r

∑
i=1

(u(⋅, t),ψi(⋅))ψi(⋅),
r

∑
j=1

(u(⋅, t),ψj(⋅))ψj(⋅)))dt (2.1.5)

Using (ψi,ψj) = δij,1 ≤ i, j ≤ r gives

arg min
ψ1,...,ψr

∫
T

0
(∥u(⋅, t)∥2 −

r

∑
i=1

∣(u(⋅, t),ψi(⋅))∣2)dt (2.1.6)
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Since the first term is independent of POD basis functions, the problem (2.1.6) is

simplified as

arg max
ψ1,...,ψr

∫
T

0

r

∑
i=1

∣(u(⋅, t),ψi(⋅))∣2 dt

subject to (ψi,ψj) = δij,1 ≤ i, j ≤ r. (2.1.7)

To solve this optimization problem, Lagrange multiplier functional can be written as

F(ψ1,ψ2, . . . ,ψr;Θ) = ∫
T

0

r

∑
i=1

∣(u(⋅, t),ψi(⋅))∣2 −
r

∑
i=1

r

∑
j=1

λij((ψi,ψj) − δij),

where (Θ)ij = λij and Θ ∈ Rr×r, 1 ≤ i, j ≤ r,. The constraint problem is solved by

finding the values that make zero the derivative of F with respect to ψi and Λi i.e.,

∂F
∂ψi

= 0,
∂F
∂Λij

= 0, i, j = 1, . . . , r. (2.1.8)

Using the Gâteaux Derivative, the solution of the system (2.1.8) for any i = 1, . . . , r

becomes

∂F
∂ψi

= lim
α→0

∫
T

0 (u,ψi + αφ)(ψi + αφ,u) − (u,ψi)(ψi,u)dt

α

− lim
α→0

∑rj=1 λij((ψi + αφ,ψj) − (ψi,ψj))
α

− lim
α→0

∑rj=1 λji((ψj,ψi + αφ) − (ψj,ψi))
α

. (2.1.9)

Reorganizing (2.1.9), we get

∂F
∂ψi

= lim
α→0

∫
T

0 (u,ψi)(αφ,u) + (u, αφ)(ψi,u) + (u, αφ)(αφ,u)dt

α

− lim
α→0

∑rj=1 λij(αφ,ψj) + λji(ψj, αφ)
α

. (2.1.10)

Taking the limit gives

∂F
∂ψi

= 2∫
T

0
(u,ψi)(u,φ)dt −

r

∑
j=1

(λij + λji)(ψj,φ)

= (2∫
T

0
(u,ψi)udt −

r

∑
j=1

(λij + λji)ψj,φ) = 0. (2.1.11)

Hence we get

∫
T

0
(u,ψi)udt = 1

2

r

∑
j=1

(λij + λji)ψj ∀i = 1, . . . , r. (2.1.12)
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Note that the problem

∫
T

0
(u,ψi)udt =

r

∑
j=1

λiψj ∀i = 1, . . . , r. (2.1.13)

is equivalent to (2.1.12) where λi = λii, [27].

As the formulation ∫
T

0 (u,u) is proportional to kinetic energy, in the literature it is

thought to represent kinetic energy. Hence to obtain energy, we use the properties of

inner product as follows.

∫
T

0
(u,u)dt = ∫

T

0
(

r

∑
i=1

(u,ψi)ψi,
r

∑
j=1

(u,ψj)ψj)dt

=
r

∑
i=1

r

∑
j=1
∫

T

0
(u,ψi)(u,ψj)(ψi,ψj)dt

=
r

∑
i=1
∫

T

0
(u,ψi)(u,ψi)dt

=
r

∑
i=1

(∫
T

0
(u,ψi)udt,ψi). (2.1.14)

Inserting (2.1.13) in the (2.1.14) produce the energy as

∫
T

0
(u,u)dt =

r

∑
i=1

λi. (2.1.15)

Then the captured energy by POD modes is defined as

Eu =
∑rj=1 λj

∑Mj=1 λj
(2.1.16)

Thus the basis functions {ψi}ri=1 correspond to the first r largest eigenvalues, i.e., the

most energetic structures in the system.

2.1.2 POD in Discrete Setting

Consider the finite number of the discrete solutions,

R1 = span{u(⋅, t1), . . . ,u(⋅, tM)}

at time ti = i∆t, i = 1, . . . ,M and let ∆t = T
M , where rank(R1) = d. In what follows,

these discrete solutions will be assumed to come from a DNS computed with a finite

element spatial discretization. For simplicity, we assume snapshots are calculated

using equidistant time steps.
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Let {ψ1,ψ2, . . . ,ψr} be the low-dimensional ordered POD basis functions to approx-

imate these time instances. Since snapshots are calculated as finite element solutions

of the system, the velocity and POD basis terms can be expressed in terms of nodal

basis {αs(x)}Ns=1 with αn(xm) = δnm as

u(⋅, tk) =
N

∑
s=1

u(xs, tk)αs, ψi(⋅) =
N

∑
s=1

ψi(xs)αs (2.1.17)

Then (2.1.13) becomes

M

∑
k=1

N

∑
s=1

(us,kαs,ψi(xs)αs)us,kαs = UUTBψi,s
Ð→α

= λiψi,s
Ð→α (2.1.18)

where us,k = u(xs, tk), Ð→α = {α1, . . . , αN}, ψi,s = (ψi(xs))Ns=1 denotes the coeffi-

cients vector of the POD basis with respect to the nodal basis {αs}Ns=1, the matrix

B = [αij]N×N with αij = (αi, αj) and the snapshots matrix U ∈ RN×M denotes

U =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

u1
1 u2

1 . . . uM1

u1
2 u2

2 . . . uM2

⋮ ⋮ ⋮ ⋮
u1
N u2

N . . . uMN

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(2.1.19)

where Uij = u(xi, tj) = uji . Hence, (2.1.18) turn into an eigenvalue problem as

UUTBψi,s = λiψi,s. (2.1.20)

Multiplying by B1/2, and using the symmetry property of B produces

B1/2UUTψi,s = B1/2UUTBT /2B1/2ψi,s

= λiB
1/2ψi,s. (2.1.21)

Notice that

B1/2UUTBT /2 = B1/2U(B1/2U)T (2.1.22)

is symmetric and positive semi-definite matrix. Hence all eigenvalues are nonnegative

real numbers and descending order, i.e. λ1 ≥ λ2 ≥ . . . λr.

Applying Sylvester’s determinant identity (1.2.21) gives characteristic of UUTB ∈
RM×M is same with UTBU ∈ RN×N ( see [57]). Solving the eigenvalue problem with
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the matrix UTBU is cheaper than the eigenvalue problem with the matrix UUTB, as

N <<M . Hence the matrix UTBU is used instead of UUTB in this method.

The matrix UTBU can be written as

UTBU = (B1/2U)T (B1/2U). (2.1.23)

Applying singular value decomposition method (SVD) for B1/2U gives

B1/2U = Y
⎛
⎜
⎝

Σ 0

0 0

⎞
⎟
⎠
W T . (2.1.24)

Thus, applying SVD for the matrix UTBU produces

UTBU = (B1/2U)T (B1/2U) =W
⎛
⎜
⎝
T 0

0 0

⎞
⎟
⎠
W T , (2.1.25)

where diag(T ) = {λ1, λ2, . . . , λr}. Thus, one gets

B1/2UUTBT /2W =W
⎛
⎜
⎝
T 0

0 0

⎞
⎟
⎠
. (2.1.26)

The eigenvalues of the matrix UTBU denote energy [57], corresponding POD basis

functions

ψl(⋅) =
1√
λl

M

∑
i=1

(φl)iu(⋅, ti), 1 ≤ l ≤ r, (2.1.27)

become most energetic structures in the system. Here (φl)i is the ith component of

the eigenvector φl of the snapshots correlation matrix.

Remark Since the energy is defined as 1
T

t0+T

∫
t0

∥u(⋅, t)∥2 dt =
d

∑
m=1

λm, (see [94]), the

relative error is given as

Er =

1
T

t0+T

∫
t0

∥u(⋅, t) −
r

∑
m=1

(u(⋅, t),ψm(⋅))ψm(⋅)∥2

1
T

t0+T

∫
t0

∥u(⋅, t)∥2 dt

=

d

∑
m=r+1

λm

d

∑
m=1

λm

. (2.1.28)

By the definition, the relative error is decreasing, i.e., 0 ≤ Er+1 ≤ Er ≤ 1.

The results of the following lemmas will be applied to bound the POD projection

error.
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Lemma 2.1.1 [53] The error estimation satisfies

1

M

N

∑
s=1

∥u(⋅, tk) −
r

∑
m=1

(u(⋅, tk),ψm(⋅))ψm(⋅)∥2 =
d

∑
m=r+1

λm. (2.1.29)

Proof Let A = {u(⋅, t1), . . . ,u(⋅, tM)} be a snapshot matrix and A satisfies

1

M
AATψm = λmψm. (2.1.30)

Then the error in POD projection with L2 norm can be obtained utilizing properties

of inner product, the definition of A and (2.1.30) as

1

M

M

∑
k=1

∥u(⋅, tk) −
r

∑
m=1

(u(⋅, tk),ψm(⋅))ψm(⋅)∥2

= 1

M

M

∑
k=1

∥
d

∑
m=r+1

(u(⋅, tk),ψm(⋅))ψm(⋅)∥2

= 1

M

M

∑
k=1

(
d

∑
m=r+1

(u(⋅, tk),ψm(⋅))ψm(⋅),
d

∑
n=r+1

(u(⋅, tk),ψn(⋅))ψn(⋅))

= 1

M

M

∑
k=1

d

∑
m=r+1

d

∑
n=r+1

(u(⋅, tk),ψm(⋅))(u(⋅, tk),ψn(⋅))(ψm(⋅),ψn(⋅))

=
d

∑
m=r+1

d

∑
n=r+1

( 1

M

M

∑
k=1

(u(⋅, tk),ψm(⋅))u(⋅, tk),ψn(⋅))(ψm(⋅),ψn(⋅))

=
d

∑
m=r+1

d

∑
n=r+1

( 1

M
AATψm(⋅),ψn(⋅))(ψm(⋅),ψn(⋅))

=
d

∑
m=r+1

d

∑
n=r+1

(λmψm,ψn(⋅))(ψm(⋅),ψn(⋅)) =
d

∑
m=r+1

λm. (2.1.31)

Let

Xr = span{ψ1,ψ2, . . . ,ψr}, (2.1.32)

be the POD-ROM space, then POD-Galerkin (POD-G) formulation of the NSE is :

Find ur ∈ Xr satisfying

(ur,t,ψ) + (ν∇ur,∇ψ) + b(ur,ur,ψ) = (f ,ψ), ∀ ψ ∈ Xr. (2.1.33)

Note that the POD-G solution of the NSE is constructed by writing,

u(x, t) ≈ ur(x, t) ∶=
r

∑
i=1

aj(t)ψj(x),
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where aj(t) are just point values of approximate solutions. To carry out the error

analysis, we state and prove the following error estimations. LetMu,r and Su,r denote

the POD mass matrix and stiffness matrix, respectively, with

(Mu,r)i,j = ∫
Ω
ψjψi dx

(Su,r)i,j = ∫
Ω
∇ψj ⋅ ∇ψj dx

Note that, since we use L2(Ω) to generate snapshots, Mu,r = Ir×r. Our analysis will

utilize the following POD inequality.

Lemma 2.1.2 [53] For all ur ∈ Xr, we have

∥∇ur∥ ≤ ∥Su,r∥
1
2
2 ∥ur∥, (2.1.34)

∥ur∥ ≤ ∥S−1
u,r∥

1
2
2 ∥∇ur∥, (2.1.35)

where ∥ ⋅ ∥2 denotes the matrix 2-norm.

Proof Let ur ∶= ∑rj=1(ur,ψj)ψj, and x = ((ur, ψ1), . . . (ur, ψr))
T

be a column vec-

tor. Then, from the definition of 2−norm (1.2.13), we get

∥∇ur∥2 = xTSu,rx ≤ ∥Su,r∥2x
Tx

≤ ∥Su,r∥2∥M−1
u,r∥2x

TMu,rx = ∥Su,r∥2∥M−1
u,r∥2∥ur∥2

The second inequality (2.1.35) is obtained analogously as

∥ur∥2 = xTMu,rx ≤ ∥Mu,r∥2x
Tx

≤ ∥Mu,r∥2∥S−1
u,r∥2x

TSu,rx = ∥Mu,r∥2∥S−1
u,r∥2∥∇ur∥2

The fact that Mu,r =M−1
u,r = Ir×r, gives stated result (2.1.34) and (2.1.35).

The finite element error estimate consists of the splitting the error into an approxima-

tion term and a finite element remainder term.

Lemma 2.1.3 [37] The error in POD projection for the snapshots uh(⋅, tk), k =
1, . . . ,M satisfies

1

M

M

∑
k=1

∥uh(⋅, tk) −
r

∑
m=1

(uh(⋅, tk),ψm(⋅))ψm(⋅)∥2
1 =

d

∑
m=r+1

∥ψm∥2
1λm. (2.1.36)
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Proof Let A = {uh(⋅, t1), . . . ,uh(⋅, tM)} be a snapshot matrix and the necessary op-

timality condition (2.1.30) holds for A. Note that, the approximate velocity function

uh can be expressed in terms of basis function as in (2.1.2). This yields

1

M

M

∑
k=1

∥uh(⋅, tk) −
r

∑
m=1

(uh(⋅, tk),ψm(⋅))ψm(⋅)∥2
1

= 1

M

M

∑
k=1

∥
d

∑
m=r+1

(uh(⋅, tk),ψm(⋅))ψm(⋅)∥2
1 (2.1.37)

Applying the properties of H1 norm and inner product gives

1

M

M

∑
k=1

∥uh(⋅, tk) −
r

∑
m=1

(uh(⋅, tk),ψm(⋅))ψm(⋅)∥2
1

= 1

M

M

∑
k=1

(
d

∑
m=r+1

(uh(⋅, tk),ψm(⋅))ψm(⋅),
d

∑
n=r+1

(uh(⋅, tk),ψn(⋅))ψn(⋅))
1

= 1

M

M

∑
k=1

d

∑
m=r+1

d

∑
n=r+1

(uh(⋅, tk),ψm(⋅))(uh(⋅, tk),ψn(⋅))(ψm(⋅),ψn(⋅))1

=
d

∑
m=r+1

d

∑
n=r+1

( 1

M

M

∑
k=1

(uh(⋅, tk),ψm(⋅))uh(⋅, tk),ψn(⋅))(ψm(⋅),ψn(⋅))1

Utilizing the definition of A, (2.1.30) and the fact that (ψm(⋅),ψn(⋅)) = δm,n, for

1 ≤m,n ≤ d produces

1

M

M

∑
k=1

∥uh(⋅, tk) −
r

∑
m=1

(uh(⋅, tk),ψm(⋅))ψm(⋅)∥2
1

=
d

∑
m=r+1

d

∑
n=r+1

( 1

M
AATψm(⋅),ψn(⋅))(ψm(⋅),ψn(⋅))1

=
d

∑
m=r+1

d

∑
n=r+1

(λmψm,ψn(⋅))(ψm(⋅),ψn(⋅))1

=
d

∑
m=r+1

∥ψm∥2
1λm. (2.1.38)

To decompose the error term we use the L2 projection of u, which fulfills certain

interpolation estimates. Lemma 2.1.4 estimates the error between the snapshots and

their L2 projection into Xr. Let Pu,r denote a projection operator Pu,r ∶ L2 →Xr that

satisfies

(u − Pu,ru,ψr) = 0, ∀ψr ∈ Xr. (2.1.39)
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Lemma 2.1.4 For un the true NSE solution at time tn, and u ∈ L∞(0, k;Hm+1(Ω)),

the difference un − Pu,run satisfies

1

M

M

∑
n=1

∥un − Pu,run∥2 ≤ C(h2m+2∣∣∣u∣∣∣22,m+1 +
d

∑
i=r+1

λi), (2.1.40)

1

M

M

∑
n=1

∥∇(un − Pu,run)∥2 ≤ C((h2m + ∥Su,r∥2h
2m+2)∣∣∣u∣∣∣22,m+1 + ε2

u), (2.1.41)

where εu =
√

d

∑
i=r+1

∥ψi∥2
1λi.

Proof Using the definition of L2 projection and (2.1.39), we have

∥un − Pu,run∥2 = (un − Pu,run,un − Pu,run)

= (un − Pu,run,un − vnr ), ∀vnr ∈Xr.

Applying the Cauchy-Schwarz inequality produces

∥un − Pu,run∥ ≤ ∥un − vnr ∥

Decomposing un − vnr = (un − unh) + (unh − vnr ), we obtain

∥un − Pu,run∥ ≤ ∥un − unh∥ + ∥unh − vnr ∥.

Letting vnr = Pu,runh and summing over the time steps gives

1

M

M

∑
n=1

∥un − Pu,run∥2 ≤ 1

M

M

∑
n=1

(∥un − unh∥ + ∥unh − Pu,runh∥)2

Note that estimation for ∥un−unh∥ is similarly obtained by using interpolation estimate

as it is shown in [77]:

1

M

M

∑
n=1

∥un − unh∥2 ≤ Ch2m+2 1

M

M

∑
n=1

∥un∥2
m+1 (2.1.42)

Picking Pu,runh =
r

∑
i=1

(unh,ψi)ψi and using (2.1.29), we get

1

M

M

∑
n=1

∥unh − Pu,runh∥2 =
d

∑
i=r+1

λi. (2.1.43)

Finally, using (2.1.42) and (2.1.43), leads to the following estimation:

1

M

M

∑
n=1

∥un − Pu,run∥2 ≤ C(h2m+2 1

M

M

∑
n=1

∥un∥2
m+1 +

d

∑
i=r+1

λi).
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Similarly, we get the following bounds by using Lemma 2.1.2, and Lemma 2.1.3,

1

M

M

∑
n=1

∥∇(un − Pu,run)∥2 ≤ 1

M

M

∑
n=1

(∥∇(un − unh)∥ + ∥∇(unh − Pu,runh)∥

+ ∥∇(Pu,runh − Pu,run)∥)
2

≤ C(h2m 1

M

M

∑
n=1

∥un∥2
m+1 +

d

∑
i=r+1

∥ψi∥2
1λi + ∥Su,r∥2

1

M

M

∑
n=1

∥Pu,runh − Pu,run∥2)

≤ C(h2m 1

M

M

∑
n=1

∥un∥2
m+1 +

d

∑
i=r+1

∥ψi∥2
1λi + ∥Su,r∥2

1

M

M

∑
n=1

∥unh − un∥2)

≤ C(h2m 1

M

M

∑
n=1

∥un∥2
m+1 +

d

∑
i=r+1

∥ψi∥2
1λi + ∥Su,r∥2h

2m+2 1

M

M

∑
n=1

∥un∥2
m+1).

Assumption 2.1.1 We also assume that,

∥un − Pu,run∥2 ≤ C(h2m+2 +
d

∑
i=r+1

λi) and (2.1.44)

∥∇(un − Pu,run)∥2 ≤ C(h2m + ∥Su,r∥2h
2m+2 +

d

∑
i=r+1

∥ψi∥2
1λi). (2.1.45)

are satisfied.

We note that Assumption 2.1.1 is very common in error analysis for POD type meth-

ods [37, 97]. Basically, it assumes that the estimations in Lemma 2.1.4 are similarly

valid in a single term.

2.1.3 Projection-Based VMS Formulation for POD

In turbulence simulation, the eddy viscosity concept is commonly used. The VMS

method is one of the most popular eddy viscosity model. In the VMS method, vari-

ational projections are used instead of filters and small scale modelling is performed

by preserving consistency. Therefore, many difficulties arising from inhomogeneous,

non-commutative, or complex filters are removed. VMS aims to model unresolved

scales by adding an artificial viscosity to only resolved small-scales. Hence, the os-

cillations in small scales can be removed. As this stabilization method is acting only

on the small modes they do not pollute the large scale components of the approxima-

tions. In this respect, one can formulate the POD setting in the VMS framework by
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choosing the appropriate finite element spaces and adding to projection in the POD

formulation, (see [37, 36] for details).

The method that we propose in the next chapter adds one uncoupled modular projec-

tion step for the VMS eddy viscosity. In the VMS-POD setting, the eddy viscosity

model is introduced only to the small resolved POD modes {ψR+1,ψR+2, . . . ,ψr}
with R < r. R represents the number of POD modes used in the projection operator,

which is required for VMS-setting. In the projection-based VMS method, besides

the standard finite element spaces representing all resolved scales an additional large

resolved scale is needed. For VMS-POD setting, the following spaces are used for

R < r:

Xr = XR ⊕XS (2.1.46)

XR = span{ψ1,ψ2, . . . ,ψR}, (2.1.47)

XS = span{ψR+1,ψR+2, . . . ,ψr}, (2.1.48)

LR = ∇XR ∶= span{∇ψ1,∇ψ2, . . . ,∇ψR}. (2.1.49)

Note that from the construction, we have XR ⊂ Xr ⊂ Xh ⊂ X. Since POD basis

functions are sorted in descending order with respect to their kinetic energy, we can

consider the space XR as large resolved scale i.e. basis functions corresponding to

low energy and the space XS as small resolved scale, with R < r. The L2 orthogonal

projection PR ∶ L2 → LR will be needed in the VMS formulation, and is defined by

(u − PRu,vR) = 0, ∀vR ∈ LR. (2.1.50)

and the initial condition ur(⋅,0) is given by orthogonal projection of u0 on Xr,

ur(⋅,0) = u0
r ∶=

r

∑
i=1

(u0,ψj)ψj(x). (2.1.51)

The projection of ur onto XR are denoted as uRr , it represents large resolved scale

and the projection of ur onto XS are denoted as uSr , it represents small resolved scale.

They are defined as

uRr =
R

∑
i=1

aiψi, uSr =
r

∑
i=R+1

aiψi. (2.1.52)

Note that ur = uRr + uSr . The coefficient of the artificial viscosity term is denoted

by νT . It can be chosen element-wise constant or nonconstant even nonlinear. In the
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case of nonlinear νT , more complex mathematical theory is required due to the strong

monotonicity, see [87].

2.2 Double Diffusive POD-ROM Preliminaries

In this section the essentials of POD-ROM are described for double diffusive system.

The notations, and the POD-ROM spaces (2.1.32) for velocity equation are the same

with NSE case. Similarly, consider a finite number of the instances for the tempera-

ture and the concentration, respectively,

R2 = span{T (⋅, t1), . . . , T (⋅, tM)}, (2.2.1)

R3 = span{C(⋅, t1), . . . ,C(⋅, tM)}, (2.2.2)

at times ti = i∆tj , i = 1, . . . ,M and let ∆tj = τ
M , where rank(Rj) = dj , j = 1,2,3.

In what follows, these time instances will be assumed to come from a DNS com-

puted with a finite element spatial discretization. The goal of the POD is to find low

dimensional bases {φ1, φ2, . . . , φr2} and {η1, η2, . . . , ηr3} approximating the R2 and

R3, respectively, by solving the minimization problems of the form

min
1

M

M

∑
k=1

∥T (⋅, tk) −
r2

∑
i=1

(T (⋅, tk), φi(⋅))φi(⋅)∥2, (2.2.3)

min
1

M

M

∑
k=1

∥C(⋅, tk) −
r3

∑
i=1

(C(⋅, tk), ηi(⋅))ηi(⋅)∥2, (2.2.4)

such that (φi, φj) = (ηi, ηj) = δij , 1 ≤ i, j ≤ rj and rj << dj , ∀j = 2,3. The solution of

the problem (2.2.3)-(2.2.4) is obtained by using the method of snapshots [89]. Then

solutions become

φl(⋅) = 1
√
µl

M

∑
i=1

(Sl)iT (⋅, ti), 1 ≤ l ≤ r2, (2.2.5)

ηl(⋅) = 1
√
γl

M

∑
i=1

(Φl)iC(⋅, ti), 1 ≤ l ≤ r3, (2.2.6)

where (Sl)i and (Φl)i are the ith components of the eigenvectors Sl, Φl corresponding

to µl, ξl, which are the eigenvalues of the snapshots correlation matrices. We note

that all eigenvalues are sorted in descending order. Thus, the basis functions {φi}r2i=1

and {ηi}r3i=1 correspond to the first r2 and r3 largest eigenvalues, respectively. For

simplicity, we will denote POD-ROM spaces using just r instead of r1, r2 and r3.
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However, in the analysis, we are careful to distinguish that these parameters can be

chosen independently.

Let W r and Ψr be the POD-ROM spaces spanned by POD basis functions:

W r = span{φ1, φ2, . . . , φr2}, (2.2.7)

Ψr = span{η1, η2, . . . , ηr3}. (2.2.8)

Note that by construction W r ⊂W h ⊂W and Ψr ⊂ Ψh ⊂ Ψ.

Let the POD mass and stiffness matrices for the temperature and the concentration

are respectively given by

(MT,r)i,j = ∫
Ω

φjφi, (ST,r)i,j = ∫
Ω

∇φj ⋅ ∇φi,

(MC,r)i,j = ∫
Ω

ηjηi, (SC,r)i,j = ∫
Ω

∇ηj ⋅ ∇ηi.
(2.2.9)

Note that Mu,r = MT,r = MC,r = Ir×r since the eigenvectors are created to be L2

orthogonal, see [37].

After these preliminaries, we can now state the POD-Galerkin (POD-G) formulation

of the Darcy-Brinkman double diffusive system. Given

g ∈ L2(0, k;H−1(Ω)) and u0 ∈ (L2(Ω))d, T0,C0 ∈ L2(Ω). (2.2.10)

Find (ur, Tr,Cr) ∈ (Xr,W r,Ψr) satisfying

(ur,t,vr) + 2ν(Dur,Dvr) + b1(ur,ur,vr)

+(Da−1ur,vr) = βT (gTr,vr) + βC(gCr,vr), (2.2.11)

(Tr,t, Sr) + b2(ur, Tr, Sr) + γ(∇Tr,∇Sr) = 0, (2.2.12)

(Cr,t,Φr) + b3(ur,Cr,Φr) +Dc(∇Cr,∇Φr) = 0, (2.2.13)

for all (vr, Sr,Φr) ∈ (Xr,W r,Ψr).

In order to prove an error estimate for the error between the true solution and the

POD solution of the double diffusive Darcy-Brinkman system, we first recall the main

estimates for projections. For the error assessment, we use the L2 projections of Tr

and Cr, respectively. The L2 projection operators PT,r ∶ L2 →W r, PC,r ∶ L2 → Ψr are
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defined by

(T − PT,rT,φr) = 0 ∀φr ∈W r,

(C − PC,rC,ηr) = 0 ∀ηr ∈ Ψr.
(2.2.14)

We now state the L2 projection error estimates. For a detailed derivation of these

estimations, the reader is referred to [21, 37].

Lemma 2.2.1 Let T ∈ L∞(0, k;Hm+1(Ω)) and C ∈ L∞(0, k;Hm+1(Ω)) be fulfilled.

For any (T n,Cn) ∈ (W,Ψ) and their L2 projections PT,rT n = T̃ n, and PC,rCn = C̃n

in (W r,Ψr) at time tn, the following inequalities are provided

1

M

M

∑
n=0

∥T n − T̃ n∥2 ≤ K(h2m+2 1

M

M

∑
n=0

∥T n∥2
m+1 +

d

∑
i=r2+1

µi), (2.2.15)

1

M

M

∑
n=0

∥Cn − C̃n∥2 ≤ K(h2m+2 1

M

M

∑
n=0

∥Cn∥2
m+1 +

d

∑
i=r3+1

ξi), (2.2.16)

1

M

M

∑
n=0

∥∇(T n − T̃ n)∥2 ≤ K((h2m + ∥ST,r∥2h
2m+2)∣∣∣T ∣∣∣22,m+1 + ε2

T),(2.2.17)

1

M

M

∑
n=0

∥∇(Cn − C̃n)∥2 ≤ K((h2m + ∥SC,r∥2h
2m+2)∣∣∣C ∣∣∣22,m+1 + ε2

C),(2.2.18)

where ST,r, SC,r are the POD stiffness matrices and

εT =
¿
ÁÁÀ d

∑
i=r2+1

∥φi∥2
1µi, εC =

¿
ÁÁÀ d

∑
i=r3+1

∥ηi∥2
1ξi (2.2.19)

denote POD contributions for the temperature and the concentration, respectively.

Proof It can be proved similar to (2.1.4).

The following assumptions are needed for the analysis to follow.

Assumption 2.2.1 We assume that the following estimations are also satisfied.

∥T n − T̃ n∥2 ≤ K(h2m+2 1

M

M

∑
n=0

∥T n∥2
m+1 +

d

∑
i=r2+1

µi), (2.2.20)

∥Cn − C̃n∥2 ≤ K(h2m+2 1

M

M

∑
n=0

∥Cn∥2
m+1 +

d

∑
i=r3+1

ξi), (2.2.21)

∥∇(T n − T̃ n)∥2 ≤ K((h2m + ∥ST,r∥2h
2m+2) 1

M

M

∑
n=0

∥T n∥2
m+1 + ε2

T),(2.2.22)

∥∇(Cn − C̃n)∥2 ≤ K((h2m + ∥SC,r∥2h
2m+2) 1

M

M

∑
n=0

∥Cn∥2
m+1 + ε2

C).(2.2.23)

36



Basically, it assumes that similar estimations as above are valid in Lemma 2.2.1 for

the single terms of the temperature and the concentration, respectively. While from

experience this is expected to hold in general, it is possible that some diabolical coun-

terexamples could be created. However, even in such a diabolical case worst case, the

estimates would hold but with an M−1 on the right hand side.
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CHAPTER 3

A MODULAR REGULARIZED VARIATIONAL MULTISCALE PROPER

ORTHOGONAL DECOMPOSITION FOR NAVIER-STOKES EQUATIONS

This chapter describes a post-processing implementation of a projection based VMS

method with POD for the incompressible NSE given by (1.3.1). First, the standard

POD solutions of NSE are obtained. Second, the projection-based VMS stabilization

is added as a separate post-processing step to the standard POD approximation. The

post-processing implementation gives us some advantages. One of these, incorpora-

tion of the method into existing codes is getting easier. Another one is stabilization

parameters can be set independent from the time step. In the stabilization step, the

artificial diffusion terms are added, then subtracted to recover inconsistency similar

to [55]. Hence the artificial diffusion terms act only on fluctuations.

This chapter is structed as follows. Section 3.1 presents the post-processing VMS-

POD method for the NSE based on backward Euler and BDF2 time discretizations. In

this section, the stability and the convergence analyzes of the method for the backward

Euler discretization are performed. In addition, the stability analysis of VMS-POD

with BDF2 is established. Section 3.2 includes several numerical tests on benchmark

problems which show the effectiveness of the proposed method.

3.1 Numerical Analysis of Post-Processed VMS-POD Schemes

In this section, the considered algorithm introduces a projection based VMS method

as a post processing step. For simplicity, in Section 3.1.1 and Section 3.1.2, we

analyze the backward Euler temporal discretization. In Section 3.1.3, extension to

BDF2 time stepping is considered.
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In that analysis that follows, we denote variables at time tn = n∆t, n = 0,1,2, . . . ,M,T ∶=
M∆t using superscripts, e.g. fn ∶= f(tn). The two step VMS-POD scheme equipped

with backward Euler time stepping reads as follows:

Algorithm 3.1.1 Let f ∈ L2(0, T ;H−1(Ω)) and u0
r = w0

r be given with L2 projection

of u0 in Xr. Given unr ∈ Xr compute un+1
r by applying the following two steps:

Step 1. Calculate wn+1
r ∈ Xr satisfying ∀ψ ∈ Xr,

(wn+1
r − unr

∆t
,ψ) + b(wn+1

r ,wn+1
r ,ψ) + ν(∇wn+1

r ,∇ψ) = (fn+1,ψ). (3.1.1)

Step 2. Post-process wn+1
r by applying projection PR to obtain un+1

r ∈ Xr, ∀ψ ∈ Xr:

(wn+1
r − un+1

r

∆t
,ψ) = (νT (I − PR)∇

(wn+1
r + un+1

r )
2

, (I − PR)∇ψ), (3.1.2)

In our analysis, we assume that the eddy viscosity coefficient νT is known bounded,

positive and element-wise constant. The results can be extended in the case νT is non-

constant even nonlinear. The consideration of a nonlinear νT requires more complex

mathematical theory due to the strong monotonicity, see [87].

We note that Step 1 is the standard Galerkin POD method, and Step 2 is completely

decoupled VMS stabilization step. The projection in Step 2 is not a filter but con-

structed to recover VMS eddy viscosity term as in [56].

Note that if we let ψ = (w
n+1
r +un+1

r )

2 in (3.1.2), the numerical dissipation induced from

Step 2 is immediately seen to be

∥wn+1
r ∥2 = ∥un+1

r ∥2 + 2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

. (3.1.3)

3.1.1 Stability of Algorithm 3.1.1

We now prove stability of Algorithm 3.1.1.

Lemma 3.1.1 The post-processed-VMS-POD approximation is unconditionally sta-
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ble in the following sense: for any ∆t > 0,

∥uMr ∥2 +
M−1

∑
n=0

[2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

+ ∥wn+1
r − unr ∥2

+ν∆t∥∇wn+1
r ∥2] ≤ ∥u0

r∥2 + ν−1∣∣∣f ∣∣∣22,−1.

Proof Letting ψ = wn+1
r in (3.1.1) and using the polarization identity yields

1

2∆t
∥wn+1

r ∥2 − 1

2∆t
∥unr ∥2 + 1

2∆t
∥wn+1

r − unr ∥2 + ν∥∇wn+1
r ∥2 = (fn+1,wn+1

r ).(3.1.4)

Substitute (3.1.3) in (3.1.4) and multiply both sides by 2∆t, which provides

∥un+1
r ∥2 − ∥unr ∥2 + 2νT∆t∥(I − PR)∇

(wn+1
r + un+1

r )
2

∥
2

+ ∥wn+1
r − unr ∥2

+2ν∆t∥∇wn+1
r ∥2 = 2∆t(fn+1,wn+1

r ). (3.1.5)

Bounding the forcing term in the usual way, and then summing over the time steps

gives the stated result.

The result of Lemma 3.1.1 also establishes the stability of wM
r .

Corollary 3.1.2 (Stability of wM
r )

∥wM
r ∥2 + 2νT∆t

M−2

∑
n=0

∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

+
M−1

∑
n=0

[∥wn+1
r − unr ∥2

+ν∆t∥∇wn+1
r ∥2] ≤ ∥u0

r∥2 + ν−1∣∣∣f ∣∣∣22,−1 (3.1.6)

Proof Expand the summation in Lemma 3.1.1 for n =M − 1 and use (3.1.3).

3.1.2 A Priori Error Estimation

In this section, we present the error analysis of the true solution of NSE and VMS-

POD approximation (3.1.1)-(3.1.2). The optimal asymptotic error estimation requires

the following regularity assumptions for the true solution:

u ∈ L∞(0, T ;Hm+1(Ω)) p ∈ L∞(0, T ;Hm(Ω)) utt ∈ L2(0, T ;H1(Ω))

f ∈ L2(0, T ;H−1(Ω)) (3.1.7)
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Theorem 3.1.3 Suppose (3.1.7) holds and unr and wn
r given by Algorithm 3.1.1. For

sufficiently small ∆t, i.e. ∆t ≤ [Cν−3∥∇u∥4
∞,0]−1 we have the following estimation:

∥uM − uMr ∥2 +
M−1

∑
n=0

[1

4
∆tνT ∥(I − PR)∇(un+1 − (un+1

r +wn+1
r )/2)∥2

+ν∆t∥∇(un+1 −wn+1
r )∥2] ≤ C[h2m+2∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

λj

+ν((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1∣∣∣∇u∣∣∣22,0((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+νT((h2m + (∥SR∥2 + ∥Sr∥2)h2m+2)∣∣∣u∣∣∣22,m+1

+
d

∑
j=R+1

∥ψj∥2
1λj +

d

∑
j=r+1

∥ψj∥2
1λj) + ν−2(∥u0

r∥2 + ν−1∣∣∣f ∣∣∣22,−1)

×((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1h2m∣∣∣p∣∣∣22,m + ν−1(∆t)2∥utt∥2
L2(0,T ;H1(Ω))]

where C is independent from ∆t, h, ν and νT .

Remark Under the assumptions of Theorem 3.1.3 and the finite element spaces

(Xh,Qh) with piecewise polynomials of degreem andm−1, respectively. We obtain

the following asymptotic error estimation:

∥uM − uMr ∥2 +
M−1

∑
n=0

[1

4
∆tνT ∥(I − PR)∇(un+1 − (un+1

r +wn+1
r )/2)∥2

+ν∆t∥∇(un+1 −wn+1
r )∥2] ≤ C(h2m + (∆t)2 + (1 + ∥SR∥2 + ∥Sr∥2)h2m+2

+
d

∑
j=R+1

∥ψj∥2
1λj +

d

∑
j=r+1

(1 + ∥ψj∥2
1)λj)

Proof We begin the proof by deriving error equations. From (1.3.2), we have that

true solution (u, p) at time level t = tn+1 satisfies, for ψr ∈ Xr,

(un+1 − un

∆t
,ψr) + ν(∇un+1,∇ψr) + b(un+1,un+1,ψr)

−(pn+1,∇ ⋅ψr) +E(u,ψr) = (f(tn+1),ψr), (3.1.8)
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where

E(u,ψ) = (un+1
t − un+1 − un

∆t
,ψ).

We define the following notations:

ηn ∶= un − Un, φnr ∶= wn
r − Un, θnr ∶= unr − Un, enr = un − unr , εnr ∶= un −wn

r ,

where Un is L2 projection of un in Xr.

Subtracting (3.1.1) from (3.1.8) yields

(ε
n+1
r − enr

∆t
,ψr) + ν(∇εn+1

r ,∇ψr) + b(un+1,un+1,ψr)

−b(wn+1
r ,wn+1

r ,ψr) − (pn+1,∇ ⋅ψr) +E(u,ψr) = 0. (3.1.9)

Substitute εnr = ηn−φnr and enr = ηn−θnr withψ = φn+1
r in the last equation we obtain

(φ
n+1
r − θnr

∆t
,φn+1

r ) + ν∥∇φn+1
r ∥2 = (η

n+1 − ηn
∆t

,φn+1
r ) + ν(∇ηn+1,∇φn+1

r )

+[b(un+1,un+1,φn+1
r ) − b(wn+1

r ,wn+1
r ,φn+1

r )] − (pn+1,∇ ⋅φn+1
r ) +E(u,φn+1

r ).

From the definition ofL2 projection (2.1.39), we note that (ηn,φn+1
r ) = 0 and (ηn+1,φn+1

r ) =
0. Using this along with the polarization identity and that φn+1

r ∈ Xr ⊂ Vh, we obtain

the bound

1

2∆t
(∥φn+1

r ∥2 − ∥θnr ∥2) + ν∥∇φn+1
r ∥2 ≤ ∣ν(∇ηn+1,∇φn+1

r )∣

+∣b(un+1,un+1,φn+1
r ) − b(wn+1

r ,wn+1
r ,φn+1

r )∣

+∣(pn+1 − qh,∇ ⋅φn+1
r )∣ + ∣E(u,φn+1

r )∣ (3.1.10)

The first term on the right hand side of (3.1.10), and the pressure term, can be bounded

using Cauchy-Schwarz and Young’s inequalities,

∣ν(∇ηn+1,∇φn+1
r )∣ ≤ Cν∥∇ηn+1∥2 + ν

12
∥∇φn+1

r ∥2 (3.1.11)

∣(pn+1 − qh,∇ ⋅φn+1
r )∣ ≤ C

ν
∥pn+1 − qh∥2 + ν

12
∥∇φn+1

r ∥2. (3.1.12)

43



For the nonlinear terms, first add and subtract terms to get

b(un+1,un+1,φn+1
r ) − b(wn+1

r ,wn+1
r ,φn+1

r )

= b(un+1,un+1,φn+1
r ) − b(wn+1

r ,un+1,φn+1
r ) + b(wn+1

r ,un+1,φn+1
r )

−b(wn+1
r ,wn+1

r ,φn+1
r )

= b(εn+1
r ,un+1,φn+1

r ) + b(wn+1
r ,εn+1

r ,φn+1
r )

= b(ηn+1,un+1,φn+1
r ) − b(φn+1

r ,un+1,φn+1
r )

+b(wn+1
r ,ηn+1,φn+1

r ). (3.1.13)

Now using Lemma 1.3.1, Young’s and Poincaré’s inequalities, the terms in (3.1.13)

are estimated as follows:

∣b(ηn+1,un+1,φn+1
r )∣ ≤ C

√
∥ηn+1∥∥∇ηn+1∥∥∇un+1∥∥∇φn+1

r ∥

≤ C

ν
∥ηn+1∥∥∇ηn+1∥∥∇un+1∥2 + ν

12
∥∇φn+1

r ∥2,

∣b(φn+1
r ,un+1,φn+1

r )∣ ≤ C
√

∥φn+1
r ∥∥∇φn+1

r ∥∥∇un+1∥∥∇φn+1
r ∥

≤ C

ν3
∥φn+1

r ∥2∥∇un+1∥4 + ν

12
∥∇φn+1

r ∥2,

∣b(wn+1
r ,ηn+1,φn+1

r )∣ ≤ C
√

∥wn+1
r ∥∥∇wn+1

r ∥∥∇ηn+1∥∥∇φn+1
r ∥

≤ C

ν
∥wn+1

r ∥∥∇wn+1
r ∥∥∇ηn+1∥2 + ν

12
∥∇φn+1

r ∥2.

The consistency error in (3.1.10) is estimated by

∣E(u,φn+1
r )∣ ≤ C

ν
∥un+1

t − un+1 − un

∆t
∥2 + ν

12
∥∇φn+1

r ∥2 (3.1.14)

Collecting all bounds for the right hand side terms of (3.1.10) and multiplying both

sides by 2∆t gives

(∥φn+1
r ∥2 − ∥θnr ∥2) + ν∆t∥∇φn+1

r ∥2 ≤ Cν∆t∥∇ηn+1∥2 + C∆t

ν
∥ηn+1∥∥∇ηn+1∥∥∇un+1∥2

+C∆t

ν3
∥φn+1

r ∥2∥∇un+1∥4 + C∆t

ν
∥wn+1

r ∥∥∇wn+1
r ∥∥∇ηn+1∥2 + C∆t

ν
∥pn+1 − qh∥2

+C∆t

ν
∥un+1

t − un+1 − un

∆t
∥2. (3.1.15)

We next get a bound for ∥φn+1
r ∥2. Write (3.1.2) by adding and subtracting the true

solution projection Un+1 on both sides to get

(φ
n+1
r − θn+1

r

∆t
,ψ) = (νT (I − PR)∇

(φn+1
r + θn+1

r + 2Un+1)
2

, (I − PR)∇ψ), (3.1.16)
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and then choose ψ = (φ
n+1
r +θn+1r )

2 in (3.1.16) to obtain

∥φn+1
r ∥2 = ∥θn+1

r ∥2 + 1

2
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2

+∆t(νT (I − PR)∇Un+1, (I − PR)∇(φn+1
r + θn+1

r )). (3.1.17)

Noting Un+1 = un+1 − ηn+1 and inserting (3.1.17) into (3.1.15) results into

∥θn+1
r ∥2 − ∥θnr ∥2 + 1

2
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2 + ν∆t∥∇φn+1

r ∥2

≤ Cν∆t∥∇ηn+1∥2 + C∆t

ν
∥ηn+1∥∥∇ηn+1∥∥∇un+1∥2

+C∆t

ν3
∥∇un+1∥4[∥θn+1

r ∥2 + 1

2
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2

+∆t(νT (I − PR)∇(un+1 − ηn+1), (I − PR)∇(φn+1
r + θn+1

r ))]

+∆t(νT (I − PR)∇(ηn+1 − un+1), (I − PR)∇(φn+1
r + θn+1

r ))

+C∆t

ν
∥wn+1

r ∥∥∇wn+1
r ∥∥∇ηn+1∥2 + C∆t

ν
∥pn+1 − qh∥2

+C∆t

ν
∥un+1

t − un+1 − un

∆t
∥2 (3.1.18)

Assume now ∆t ≤ 1

8C
[ ∥∇u∥4

ν3 ]
−1

. Then, we can bound the remaining right hand terms

of (3.1.18) as follows :

C(∆t)2

ν3
νT ∥∇un+1∥4∥(I − PR)∇(φn+1

r + θn+1
r )∥2 ≤ 1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2.

Similarly, using the preceding bound and Young’s inequality we get

C(∆t)2

ν3
∥∇un+1∥4∣(νT (I − PR)∇(un+1 − ηn+1), (I − PR)∇(φn+1

r + θn+1
r ))∣

≤ C∆t∣(νT (I − PR)∇(un+1 − ηn+1), (I − PR)∇(φn+1
r + θn+1

r ))∣

≤ C∆tνT ∥(I − PR)∇(un+1 − ηn+1)∥2

+1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2, (3.1.19)

and

∆t(νT (I − PR)∇(ηn+1 − un+1), (I − PR)∇(φn+1
r + θn+1

r ))

≤ C∆tνT ∥(I − PR)∇(ηn+1 − un+1)∥2

+1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2. (3.1.20)

Substitute the bounds (3.1.19)-(3.1.20) into (3.1.18) and sum from n = 0 to M − 1.
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This gives

∥θMr ∥2 +
M−1

∑
n=0

[1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2 + ν∆t∥∇φn+1

r ∥2]

≤ ∥θ0
r∥2 +C

M−1

∑
n=0

[ν∆t∥∇ηn+1∥2 + ∆t

ν
∥∇un+1∥2∥∇ηn+1∥2

+∆tνT ∥(I − PR)∇(un+1 − ηn+1)∥2 + ∆t

ν
∥wn+1

r ∥∥∇wn+1
r ∥∥∇ηn+1∥2

+∆t

ν
∥pn+1 − qh∥2 + ∆t

ν
∥un+1

t − un+1 − un

∆t
∥2]

+C∆t

ν3

M−1

∑
n=0

∥∇un+1∥4∥θn+1
r ∥2 (3.1.21)

Note that since u0
r = U0, the first right hand side term in (3.1.21) vanishes. The second

right hand side term is majorized using Lemma 2.1.4, as

ν∆t
M−1

∑
n=0

∥∇ηn+1∥2 ≤ Cν((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj),(3.1.22)

Third term is bounded by using Assumption (2.1.1) as follows,

∆t

ν

M−1

∑
n=0

∥∇ηn+1∥2∥∇un+1∥2

≤ ∆t

ν

M−1

∑
n=0

∥∇un+1∥2((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

≤ ν−1∣∣∣∇u∣∣∣22,0((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj) (3.1.23)

To bound the fourth term, one can proceed as follows. Using ∥(I − PR)∇ηn+1∥ ≤
∥∇ηn+1∥ along with Lemma 2.1.4 leads to

∆tνT
M−1

∑
n=0

∥(I − PR)∇(un+1 − ηn+1)∥2

≤ ∆tνT
M−1

∑
n=0

∥(I − PR)∇un+1∥2 +∆tνT
M−1

∑
n=0

∥(I − PR)∇ηn+1∥2)

≤ ∆tνT
M−1

∑
n=0

(∥∇un+1 − PR∇un+1∥2 +∆tνT
M−1

∑
n=0

∥∇ηn+1∥2
(3.1.24)

For the first term on the right-hand side of (3.1.24), we use (2.1.49) to find that

∆tνT
M−1

∑
n=0

∥∇un+1 − PR∇un+1∥2 ≤ CνT
1

M

M−1

∑
n=0

inf
vR∈Xr

∥∇un+1 −∇vn+1
R ∥2

≤ CνT
1

M

M−1

∑
n=0

∥∇un+1 −∇Un+1
R ∥2 (3.1.25)
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where UR is the large scale representation of the projection. Now using Lemma 2.1.4,

the final estimation for (3.1.24) becomes

∆tνT
M−1

∑
n=0

∥(I − PR)∇(un+1 − ηn+1)∥2 (3.1.26)

≤ CνT((h2m + (∥SR∥2 + ∥Sr∥2)h2m+2)∣∣∣u∣∣∣22,m+1

+
d

∑
j=R+1

∥ψj∥2
1λj +

d

∑
j=r+1

∥ψj∥2
1λj).

Corollary 3.1.2, the stability of wr and Assumption (2.1.1) provide an estimation for

the fifth term in the right-hand side of (3.1.21):

∆t

ν

M−1

∑
n=0

∥wn+1
r ∥∥∇wn+1

r ∥∥∇ηn+1∥2

≤ C
∆t

ν

M−1

∑
n=0

∥∇wn+1
r ∥2∥∇ηn+1∥2

≤ Cν−2(∥u0
r∥2 + ν−1∣∣∣f ∣∣∣22,−1)((h2m + ∥Sr∥2h

2m+2)∣∣∣u∣∣∣22,m+1

+
d

∑
j=r+1

∥ψj∥2
1λj). (3.1.27)

The estimation of sixth term in the right hand side of (3.1.21) uses approximation

property (1.3.12) to find

∆t

ν

M−1

∑
n=0

∥pn+1 − qh∥2 ≤ C
ν
h2m∣∣∣p∣∣∣22,m. (3.1.28)

Finally, for the last term in the right hand side of (3.1.21), Taylor series expansion

with remainder in integral form is used along with Cauchy Schwarz and the triangle

inequality to obtain

∆t

ν

M−1

∑
n=0

∥un+1
t − un+1 − un

∆t
∥2 ≤ Cν−1(∆t)2∥utt∥2

L2(0,T ;H1(Ω)). (3.1.29)
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Collecting all the bounds (3.1.22)-(3.1.29) for (3.1.21) yields

∥θMr ∥2 +
M−1

∑
n=0

[1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2 + ν∆t∥∇φn+1

r ∥2]

≤ C[ν((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1∣∣∣∇u∣∣∣22,0((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+νT((h2m + (∥SR∥2 + ∥Sr∥2)h2m+2)∣∣∣u∣∣∣22,m+1

+
d

∑
j=R+1

∥ψj∥2
1λj +

d

∑
j=r+1

∥ψj∥2
1λj) + ν−2(∥u0

r∥2 + ν−1∣∣∣f ∣∣∣22,−1)

×((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1h2m∣∣∣p∣∣∣22,m + ν−1(∆t)2∥utt∥2
L2(0,T ;H1(Ω)) +

C∆t

ν3

M−1

∑
n=0

∣∣∣∇u∣∣∣4∞,0∥θn+1
r ∥2]

Again using the assumption that ∆t ≤ 1
8C [ν−3∣∣∣∇u∣∣∣4∞,0]

−1

allows us to apply the

discrete Gronwall inequality, which yields

∥θMr ∥2 +
M−1

∑
n=0

[1

2
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )/2∥2 + ν∆t∥∇φn+1

r ∥2]

≤ C[ν((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1∣∣∣∇u∣∣∣22,0((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+νT((h2m + (∥SR∥2 + ∥Sr∥2)h2m+2)∣∣∣u∣∣∣22,m+1

+
d

∑
j=R+1

∥ψj∥2
1λj +

d

∑
j=r+1

∥ψj∥2
1λj) + ν−2(∥u0

r∥2 + ν−1∣∣∣f ∣∣∣22,−1)

×((h2m + ∥Sr∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1h2m∣∣∣p∣∣∣22,m + ν−1(∆t)2∥utt∥2
L2(0,T ;H1(Ω))].

Finally, the triangle inequality is applied to produce the stated result.

3.1.3 Extension to Second Order Time Stepping

We now consider an extension of Algorithm 3.1.1 to BDF2 time stepping.
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Algorithm 3.1.2 Let f ∈ L2(0, T ;H−1(Ω)) and initial conditions u0
r and u−1

r be given

in Xr. Then for n=0,1,2,...

Step 1. Calculate wn+1
r ∈ Xr satisfying ∀ψ ∈ Xr,

(3wn+1
r − 4unr + un−1

r

2∆t
,ψ) + b(wn+1

r ,wn+1
r ,ψ) + ν(∇wn+1

r ,∇ψ)

= (fn+1,ψ) (3.1.30)

Step 2. Post-process wn+1
r to obtain un+1

r ∈ Xr satisfying ∀ψ ∈ Xr,

(wn+1
r − un+1

r

∆t
,ψ) = (νT (I − PR)∇

(wn+1
r + un+1

r )
2

, (I − PR)∇ψ). (3.1.31)

We note the post-processing step is exactly the same as in the backward Euler case.

Also as in the case of the backward Euler method above, without Step 2, Algorithm

3.1.2 reduces to the classical POD-G formulation for the NSE, although now using

BDF2 time stepping.

We now prove stability of Algorithm 3.1.2. A convergence result can be obtained

by combining the ideas of Algorithm 3.1.1’s convergence proof with the stability

proof below. Such a proof is thus long and technical, but produces the expected

result (i.e. same convergence as Algorithm 3.1.1, but second order in ∆t instead of

first order). This expected second order temporal convergence is illustrated in the

numerical experiments section below.

Lemma 3.1.4 The post-processed VMS-POD approximation is stable for the eddy

viscosity term νT < 4ν in the following sense:

∥uM+1
r ∥2 + ∥2uM+1

r − uMr ∥2 + 2νT∆t∥(I − PR)∇
(wM+1

r + uM+1
r )

2
∥

2

+νT∆t

2
∥∇wM+1

r ∥2 +
M

∑
n=1

∥wn+1
r − 2unr + un−1

r ∥2 + (4ν − νT )
∆t

2

M−1

∑
n=1

∥∇wn+1
r ∥2

≤ ∥u1
r∥2 + ∥2u1

r + u0
r∥2 + νT∆t

2
∥∇u1

r∥2 + 2ν−1∣∣∣f ∣∣∣22,−1.

Proof Note that if we letψ = (w
n+1
r +un+1

r )

2 in Step 2, the numerical dissipation induced

from Step 2 is given by

∥wn+1
r ∥2 = ∥un+1

r ∥2 + 2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

. (3.1.32)
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Letting ψ = wn+1
r in (3.1.30) and using the identity

a(3a − 4b + c) = 1

2
((a2 − b2) + (2a − b)2 − (2b − c)2 + (a − 2b + c)2)

yields
1

4∆t
∥wn+1

r ∥2 − 1

4∆t
∥unr ∥2 + 1

4∆t
(∥2wn+1

r − unr ∥2 − ∥2unr − un−1
r ∥2)

+ 1

4∆t
∥wn+1

r − 2unr + un−1
r ∥2 + ν∥∇wn+1

r ∥2 = (fn+1,wn+1
r ). (3.1.33)

Substitute (3.1.32) in (3.1.33), multiply both sides by 4∆t, add ∥2un+1
r −unr ∥2 to both

sides, and then apply the Cauchy-Schwarz inequality to get

∥un+1
r ∥2 − ∥unr ∥2 + 2νT∆t∥∥(I − PR)∇

(wn+1
r + un+1

r )
2

∥
2

+(∥2wn+1
r − un+1

r ∥2 − ∥2un+1
r − unr ∥2) + (∥2un+1

r − unr ∥2 − ∥2unr − un−1
r ∥2)

+∥wn+1
r − 2unr + un−1

r ∥2 + 2ν∆t∥∇wn+1
r ∥2

≤ Cν−1∆t∥fn+1∥2
−1. (3.1.34)

We now consider the term ∥2wn+1
r − unr ∥2 − ∥2un+1

r − unr ∥2 in (3.1.34) . By using the

properties of L2 inner product, the equality (3.1.32) and rearranging terms gives

∥2wn+1
r − unr ∥2 − ∥2un+1

r − unr ∥2

= (2wn+1
r − unr ,2wn+1

r − unr ) − (2un+1
r − unr ,2un+1

r − unr )

= 8(wn+1
r − un+1

r ,−unr
2

) + 4(∥wn+1
r ∥2 − ∥un+1

r ∥2)

= 8νT∆t((I − PR)∇
(wn+1

r + un+1
r )

2
, (I − PR)∇(−unr

2
))

+8νT∆t((I − PR)∇
(wn+1

r + un+1
r )

2
, (I − PR)∇

(wn+1
r + un+1

r )
2

)

= 8νT∆t((I − PR)∇
(wn+1

r + un+1
r )

2
, (I − PR)∇

(wn+1
r + un+1

r − unr )
2

= 8νT∆t∥(I − PR)∇
(wn+1

r + un+1
r − unr )

2
∥2

−8νT∆t((I − PR)∇(−unr
2

), (I − PR)∇
(wn+1

r + un+1
r − unr )

2
). (3.1.35)

Inserting (3.1.35) in (3.1.34) and applying Cauchy-Schwarz and Young’s inequalities

gives

∥un+1
r ∥2 − ∥unr ∥2 + ∥2un+1

r − unr ∥2 − ∥2unr − un−1
r ∥2

+2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

+ ∥wn+1
r − 2unr + un−1

r ∥2 + 2ν∆t∥∇wn+1
r ∥2

≤ Cν−1∆t∥fn+1∥2
−1 + 2νT∆t∥(I − PR)∇(unr

2
)∥2.
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Adding and subtracting terms for the last term in the previous inequality with the use

of ∥I − PR∥ ≤ 1, we get

∥un+1
r ∥2 − ∥unr ∥2 + ∥2un+1

r − unr ∥2 − ∥2unr − un−1
r ∥2

+2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

+ ∥wn+1
r − 2unr + un−1

r ∥2 + 2ν∆t∥∇wn+1
r ∥2

≤ Cν−1∆t∥fn+1∥2
−1 + 2νT∆t∥(I − PR)∇(wn

r + unr
2

)∥
2

+ νT∆t

2
∥(I − PR)∇wn

r ∥2

≤ Cν−1∆t∥fn+1∥2
−1 + 2νT∆t∥(I − PR)∇(wn

r + unr
2

)∥
2

+ νT∆t

2
∥∇wn

r ∥2.

Summing over the time step n = 1,⋯,M gives

∥uM+1
r ∥2 + ∥2uM+1

r − uMr ∥2 + 2νT∆t∥(I − PR)∇
(wM+1

r + uM+1
r )

2
∥

2

+
M

∑
n=1

∥wn+1
r − 2unr + un−1

r ∥2 + νT∆t

2
∥∇wM+1

r ∥2 + (4ν − νT )
∆t

2

M−1

∑
n=1

∥∇wn+1
r ∥2

≤ ∥u1
r∥2 + ∥2u1

r + u0
r∥2 + νT∆t

2
∥∇w1

r∥2 + 2νT∆t∥(I − PR)∇
(w1

r + u1
r)

2
∥

2

+2ν−1∣∣∣f ∣∣∣22,−1

With the assumption w0
r = w1

r = 0 and ∥I − PR∥ < 1, we obtain the stated result.

3.2 Numerical Studies

This section gives results for two numerical experiments. In all cases we use Algo-

rithm 3.1.2, i.e. the scheme with second order time stepping. Our first test considers

the predicted convergence rates of the previous section, with respect to varying R and

∆t. For the second test, we compare accuracy of the proposed VMS-POD scheme

compared with the usual Galerkin POD method (i.e. unstabilized POD, computed

by eliminating the post-processing step of the VMS-POD) in 2D channel flow past a

cylinder.

In this study, we use the test problem of 2D channel flow past a cylinder. Here,

the domain is a 2.2 × 0.41 rectangle with a circle radius = 0.05 centred at (0.2,0.2)
(see figure 3.1). The test problem uses no slip boundary conditions for the walls and
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Figure 3.1: The channel flow around a cylinder domain

cylinder, and the time dependent inflow and outflow profiles are given by

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
y(0.41 − y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The kinematic viscosity ν = 10−3, and there is no forcing (f = 0). The POD is

created as described in section 2, by taking snapshots from an extrapolated BDF2-

finite element DNS simulation using Taylor-Hood elements, after a periodic-in-time

solution is reached (a more detailed description of the set up is given in [14]). The

tests with the cylinder problem use the projection of the T = 7 DNS solution as the

initial condition, and run for 10 time units.

3.2.1 Numerical test 1: Convergence in R and ∆t

We now test the predicted convergence rates of the previous section. This is a partic-

ularly difficult task for this problem, as the parameters are the spatial mesh width h,

time step ∆t, POD cutoff r, and VMS cutoff R. We assume the spatial mesh width

is sufficiently small so that this error source is negligible. Our particular interest here

is the scaling of the error with the VMS cutoff R and with time step ∆t. In order to

see convergence with respect to a particular parameter, it must be part of the domi-

nant error source. Hence, in our tests, different parameter choices are made to see the

various scalings.

To test the scaling of the error with R, we fix

∆t = 0.002, νT = 0.0003
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and perform the computations for varying R and r. The error estimates depend on R

by means of

ε =
¿
ÁÁÀ d

∑
j=R+1

∥ϕj∥2
1λj

and ∥SR∥2. We investigate the scaling with ε. For sufficiently large R, ∥SR∥2 become

sufficiently large so that it becomes a dominant error source. Results for this test are

shown in Table 3.1, and we observe the expected convergence rate of approximately

1/2 in the L2(0, T ;H1(Ω)) norm, and seemingly a higher rate in L∞(0, T ;L2(Ω)).

We see that the velocity error decreases when R increases, which means that stabi-

lizing fewer modes with VMS produces results closer to DNS solutions. However,

for larger R, we see a deterioration of the rate, and by R = 11 when r = 12, the error

increases (which is expected, due to increase in ∥SR∥2 with R).

Table 3.1: Convergence of the VMS-POD with BDF2 for varying R

r R ε ∆ t ∥u − ur∥L∞(L2(Ω)) rate ∥∇(u − ur)∥L2(H1(Ω)) rate

20 3 18.1674 0.002 0.0310 - 1.3550 -

20 7 4.7608 0.002 0.0029 1.76 0.4377 0.84

20 11 1.2920 0.002 0.0013 0.61 0.1633 0.75

20 15 0.3703 0.002 2.80e-04 1.22 0.0738 0.63

20 19 0.1183 0.002 2.63e-04 0.06 0.0728 0.01

16 3 18.1674 0.002 0.0280 - 1.3192 -

16 7 4.7608 0.002 0.0041 1.43 0.4502 0.80

16 11 1.2920 0.002 0.0017 0.67 0.2289 0.52

16 15 0.3703 0.002 0.0010 0.42 0.2228 0.02

12 3 18.1674 0.002 0.0294 - 1.4059 -

12 7 4.7608 0.002 0.0075 1.02 0.7039 0.52

12 11 1.2920 0.002 0.0089 -0.13 0.7580 -0.05

To test the scaling with respect to ∆t, we evaluate the error in POD solution for

r = 8, 14, 20 and varying R and ∆t. Here, the case r = R means that no mode is
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stabilized with VMS. Hence, this situation is described as POD in Table 3.2. In this

test, we also aim to compare POD and VMS methods in terms of convergence rates

and process time, which are given in Table 3.2.

We observe that the rates are consistent with second order BDF2 in Table 3.2. Fur-

thermore, as seen in Table 3.2, VMS method improves the convergence rates. In

particular, when r = 8, the convergence rate in POD is not close to 2, whereas VMS

method increases the rate to 2 if one chooses R = 5.

3.2.2 Numerical test 2: Error Comparison of VMS-POD Versus POD-G for 2D

Channel Flow Past a Cylinder

We now consider error comparison of the VMS-POD again the standard POD-G

method. The statistics of interest are the maximal drag and the maximal lift coef-

ficients at the cylinder. The reference intervals are given for cdmax and clmax in [86],

crefdmax ∈ [3.22,3.24], creflmax ∈ [0.98,1.02] (3.2.1)

and recent computations of [14], as well as our DNS that created the snapshots, are in

agreement with these numbers, as seen in Table 3.3. We compute with r = 8 modes,

and find that the POD method is not good, and in particular we observe in Figure 3.2

that the energy is growing (seemingly) linearly with time. But at T = 10, a significant

increase in energy has occurred, leading to very inaccurate lift and drag predictions

as well.

Plots of each time evolution of the energy, drag and lift match the DNS results of

[38] and [86]. The VMS-POD does a much better job with prediction of energy, lift

and drag, however. Shown in Figure 3.2 is the energy, lift and drag with R = 5.

We first remark that in Algorithm 1 and Algorithm 2, the parameter νT is obtained

by minimizing the difference between energy of DNS and energy of VMS-POD at

final time T = 10 by using bisection method. Based on these ideas, we compute the

optimal choice of νT = 0.0003 to within ± 0.000005. We note that with POD, such a

parameter optimization is quite cheap. Hence this is an excellent example of how the

post-processing step of VMS-POD can remove the nonphysical energy growth that

occurs with POD-G, and provide good reduced order solutions.
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Table 3.2: Convergence Rates with respect to ∆t

r R ∆t ∥u − ur∥L∞(L2(Ω)) rate

8 5 0.32 0.434386

8 5 0.16 0.358107 0.279

8 5 0.08 0.126142 1.505

8 5 0.04 0.029191 2.111

8 POD 0.32 0.434369 -

8 POD 0.16 0.360112 0.270

8 POD 0.08 0.153357 1.232

8 POD 0.04 0.053046 1.532

14 9 0.32 0.434345 -

14 9 0.16 0.358689 0.276

14 9 0.08 0.129811 1.466

14 9 0.04 0.023926 2.440

14 POD 0.32 0.434346 -

14 POD 0.16 0.358686 0.276

14 POD 0.08 0.129705 1.468

14 POD 0.04 0.027324 2.247

20 10 0.32 0.483072 -

20 10 0.16 0.379032 0.350

20 10 0.08 0.133079 1.510

20 10 0.04 0.023843 2.480

20 POD 0.32 0.493442 -

20 POD 0.16 0.381596 0.370

20 POD 0.08 0.133928 1.511

20 POD 0.04 0.025196 2.410
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Table 3.3: The maximal lift and the maximal drag coefficient for varying R

R cdmax clmax energy

3 3.2343 1.0162 0.5484

5 3.2249 1.0086 0.5484

7 3.2376 1.0180 0.5490

9 3.2288 1.0072 0.5486

11 3.2298 1.0105 0.5486

Figure 3.2: Energy, lift and drag for DNS, POD and VMS-POD.
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CHAPTER 4

POD-ROM FOR THE DARCY-BRINKMAN EQUATIONS WITH

DOUBLE-DIFFUSIVE CONVECTION

This chapter studies reduced order modelling based on POD approach for Darcy-

Brinkman with double diffusive convection. As it is described in Chapter 1, the sim-

ulation of Navier Stokes type systems leads to large algebraic system and requires

high computational time. Therefore, combining heat and mass transport equations

to NSE make the situation worse. Hence the numerical studies in double diffusive

system become very important. For high Ra numbers, the numerical experiments

suggest a stabilization method for POD solution of Darcy-Brinkman equation. Based

on our experience in Chapter 3, we support the POD method with post-process VMS

method.

This chapter consists of three sections. Section 4.1 presents the discretization of

the double diffusive Darcy-Brinkman system (1.3.15) based on POD method. The

numerical analysis of the POD-G formulation including stability and a priori error

estimation of (4.1.1)-(4.1.3) is also given in Section 4.1. Section 4.2 is devoted to

the numerical analysis of VMS-POD extension of the double diffusive system. The

analytical results and the comparison of the methods in Section 4.1 and the Section

4.2 are illustrated with several numerical experiments in Section 4.3.

4.1 Numerical Analysis of Double Diffusive Darcy-Brinkman System with POD

This section is devoted to a derivation of the a priori error estimation of (4.1.1)-(4.1.3).

The presentation mainly follows an approach developed by Rannacher and Heywood

[34]. Recall that in Chapter 2, the POD-G formulation of the Darcy-Brinkman double
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diffusive system is given by (2.2.11)-(2.2.13). For simulations, we must equip the

system (2.2.11)-(2.2.13) with a temporal discretization and a finite element method

for a spatial discretization described in Section 1.3. For simplicity, we consider a

backward Euler temporal discretization for our analysis in the next section. The fully

discrete backward Euler POD-ROM is given at time tn = n∆t, n = 0,1,2, . . . ,M and

τ =M∆t, by

(un+1
r − unr

∆t
,vr) + 2ν(Dun+1

r ,Dvr) + b1(un+1
r ,un+1

r ,vr)

+(Da−1un+1
r ,vr) = βT (gT n+1

r ,vr) + βC(gCn+1
r ,vr), (4.1.1)

(T
n+1
r − T nr

∆t
, Sr) + b2(un+1

r , T n+1
r , Sr) + γ(∇T n+1

r ,∇Sr) = 0, (4.1.2)

(C
n+1
r −Cn

r

∆t
,Φr) + b3(un+1

r ,Cn+1
r ,Φr) +Dc(∇Cn+1

r ,∇Φr) = 0, (4.1.3)

for all (vr, Sr,Φr) ∈ (Xr,Wr,Ψr). The goal of the POD is to find low dimensional

bases for velocity, temperature, concentration by solving the minimization problems.

The solution of the problem is obtained by using the method of snapshots. We note

that all eigenvalues are sorted in descending order. Thus, the basis functions {ψi}r1i=1,

{φi}r2i=1 and {ηi}r3i=1 correspond to the first r1, r2 and r3 largest eigenvalues {λi}r1i=1,

{µi}r2i=1, {ξi}r3i=1 of the velocity, the temperature, the concentration, respectively. For

simplicity, we will denote POD-ROM spaces using just r instead of r1, r2 and r3.

However, in the analysis, we are careful to distinguish that these parameters can be

chosen independently.

In the numerical experiments, we use second order time discretization, namely BDF2

method as follows.

(3un+1
r − 4unr + un−1

r

2∆t
,vr) + 2ν(Dun+1

r ,Dvr) + b1(un+1
r ,un+1

r ,vr)

+(Da−1un+1
r ,vr) = βT (gT n+1

r ,vr) + βC(gCn+1
r ,vr), (4.1.4)

(3T n+1
r − 4T nr + T n−1

r

2∆t
, Sr) + b2(un+1

r , T n+1
r , Sr) + γ(∇T n+1

r ,∇Sr) = 0, (4.1.5)

(3Cn+1
r − 4Cn

r +Cn−1
r

2∆t
,Φr) + b3(un+1

r ,Cn+1
r ,Φr) +Dc(∇Cn+1

r ,∇Φr) = 0. (4.1.6)

We remark that, although we analyze only the backward Euler method, the results are

extendable to with the usual technical details. For the error assessment, we use the

L2 projections of ur, Tr and Cr, respectively. The L2 projection operators Pu,r ∶ L2 →
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Xr, PT,r ∶ L2 → Wr, PC,r ∶ L2 → Ψr are defined by (2.1.39) and (2.2.14). We first

prove the stability of the solutions of (4.1.1)-(4.1.3).

Lemma 4.1.1 (Stability) The POD-ROM approximation (4.1.1)-(4.1.3) is uncondi-

tionally stable in the following sense: for any ∆t > 0,

∥uMr ∥2 +
M−1

∑
n=0

(∥un+1
r − unr ∥2 + 2ν∆t∥Dun+1

r ∥2 +Da−1∆t∥un+1
r ∥2)

≤ ∥u0∥2 +C∗∥g∥2
∞(β2

Tγ
−1∥T0∥2 + β2

CD
−1
c ∥C0∥2), (4.1.7)

∥TMr ∥2 +
M−1

∑
n=0

2∆tγ∥∇T nr ∥2 ≤ ∥T0∥2, (4.1.8)

∥CM
r ∥2 +

M−1

∑
n=0

2∆tDc∥∇Cn
r ∥2 ≤ ∥C0∥2, (4.1.9)

where C∗ = min{ν−1,Da}.

Proof Choosing Sr = T n+1
r in (4.1.2) and using skew symmetry property, we have

(T
n+1
r − T nr

∆t
, T n+1

r ) + γ(∇T n+1
r ,∇T n+1

r ) = 0, (4.1.10)

and multiplying both sides with ∆t yields

∥T n+1
r ∥2 + γ∆t∥∇T nr ∥2 = (T nr , T n+1

r ). (4.1.11)

Applying Cauchy-Schwarz and Young’s inequality gives

∥T n+1
r ∥2 + 2γ∆t∥∇T nr ∥2 ≤ ∥T nr ∥2, (4.1.12)

and finally summing over the time steps produces the stability result (4.1.8). In a

similar manner, setting Φr = Cn+1
r in (4.1.3) yields (4.1.9). Letting vr = un+1

r in

(4.1.1), we get

(un+1
r − unr

∆t
,un+1

r ) + 2ν(Dun+1
r ,Dun+1

r ) + (Da−1un+1
r ,un+1

r )

= βT (gT n+1
r ,un+1

r ) + βC(gCn+1
r ,un+1

r ). (4.1.13)

Using the Cauchy-Schwarz, Young’s, Poincaré’s inequality, polarization identity (a−
b, a) = 1

2
(∥a∥2 − ∥b∥2 + ∥a − b∥2) gives

1

2∆t
∥un+1

r ∥2 + 1

2∆t
∥un+1

r − unr ∥2 + ν∥Dun+1
r ∥2 + Da

−1

2
∥un+1

r ∥2

≤ 1

2∆t
∥unr ∥2 +K∥g∥2

∞(ν−1β2
T ∥∇T nr ∥2 +Daβ2

C∥∇Cn
r ∥2). (4.1.14)
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Multiplying 2∆t and summing over the time steps n = 0, . . . ,M − 1 and using (4.1.8)

and (4.1.9) gives

∥uMr ∥2 +
M−1

∑
n=0

(∥un+1
r − unr ∥2 + 2ν∆t∥Dun+1

r ∥2 +Da−1∆t∥un+1
r ∥2)

≤ ∥u0∥2 +K∥g∥2
∞(ν−1β2

Tγ
−1∥T0∥2 +Daβ2

CD
−1
c ∥C0∥2). (4.1.15)

The result follows from (4.1.15) by taking minimum of ν−1 and Da.

The optimal asymptotic error estimation requires the following regularity assump-

tions for the true solution:

u ∈ L∞(0, k;Hm+1(Ω)), T, C ∈ L∞(0, k;Hm+1(Ω)),

utt ∈ L2(0, k;H1(Ω)), Ttt, Ctt ∈ L2(0, k;H1(Ω)),

p ∈ L∞(0, k;Hm(Ω)). (4.1.16)

Theorem 4.1.2 (Error Estimation) Suppose regularity assumptions (4.1.16) and As-

sumption 2.2.1 holds. Then for the sufficiently small ∆t, i.e.

∆t ≤ min{(ν−3∣∣∣Du∣∣∣4∞,0 + ν−1γ−2∣∣∣∇T ∣∣∣4∞,0
+ν−1Dc

−2∣∣∣∇C ∣∣∣4∞,0)−1, (ν−1β2
T ∥g∥2

∞)−1, (ν−1β2
C∥g∥2

∞)−1}. (4.1.17)

the error satisfies

∥uM − uMr ∥2 + ∥TM − TMr ∥2 + ∥CM −CM
r ∥2

≤ K(1 + h2m + (∆t)2 + (1 + ∥Su,r∥2 + ∥ST,r∥2 + ∥SC,r∥2)h2m+2

+ε2
u + ε2

T + ε2
C +

d

∑
i=r1+1

λi +
d

∑
i=r2+1

µi +
d

∑
i=r3+1

ξi). (4.1.18)

Remark A similar result to (4.1.18) is expected for the BDF2 case, but with the

∆t2 replaced with ∆t4, following the same general steps and using the usual BDF2

analysis tools and regularity assumptions.

Proof Subtracting from (1.3.16), (1.3.18), (1.3.19) to (4.1.1),(4.1.2),(4.1.3) at time
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tn+1, respectively we have

(un+1
t − un+1

r − unr
∆t

,vr) + 2ν(D(un+1 − un+1
r ),Dvr) + b1(un+1,un+1,vr)

−b1(un+1
r ,un+1

r ,vr) + (Da−1(u − un+1
r ),vr) − (pn+1,∇ ⋅ vr)

= βT (g(T − T n+1
r ),vr) + βC(g(C −Cn+1

r ),vr), (4.1.19)

(T n+1
t − T

n+1
r − T nr

∆t
, Sr) + b2(un+1, T n+1, Sr) − b2(un+1

r , T n+1
r , Sr)

+γ(∇(T n+1 − T n+1
r ),∇Sr) = 0, (4.1.20)

(Cn+1
t − C

n+1
r −Cn

r

∆t
,Φr) + b3(un+1,Cn+1,Φr) − b3(un+1

r ,Cn+1
r ,Φr)

+Dc(∇(Cn+1 −Cn+1
r ),∇Φr) = 0.(4.1.21)

Define

un+1 − un+1
r = (un+1 − ũn+1) − (un+1

r − ũn+1) = ηn+1
u −φn+1

u,r ,

T n+1 − T n+1
r = (T n+1 − T̃ n+1) − (T n+1

r − T̃ n+1) = ηn+1
T − φn+1

T,r ,

Cn+1 −Cn+1
r = (Cn+1 − C̃n+1) − (Cn+1

r − C̃n+1) = ηn+1
C − φn+1

C,r ,

(4.1.22)

where (ũn+1, T̃ n+1, C̃n+1) are L2 projections of (un+1, T n+1,Cn+1) in (Xr,Wr,Ψr)
at time tn+1. We rewrite the temperature equation (4.1.20) as

(T
n+1 − T n

∆t
− T

n+1
r − T nr

∆t
, Sr) + b2(un+1, T n+1, Sr) − b2(un+1

r , T n+1
r , Sr)

+(T n+1
t − T

n+1 − T n
∆t

, Sr) + γ(∇(T n+1 − T n+1
r ),∇Sr) = 0. (4.1.23)

Using (4.1.22) and letting Sr = φn+1
T,r in (4.1.23) gives

(
φn+1
T,r − φnT,r

∆t
, φn+1

T,r ) + γ(∇φn+1
T,r ,∇φn+1

T,r ) = (η
n+1
T − ηnT

∆t
, φn+1

T,r )

+γ(∇ηn+1
T ,∇φn+1

T,r ) + b2(un+1, T n+1, φn+1
T,r )

−b2(un+1
r , T n+1

r , φn+1
T,r ) + (T n+1

t − T
n+1 − T n

∆t
, φn+1

T,r ). (4.1.24)

Adding and subtracting terms to the nonlinear terms in (4.1.24) leads to

b2(un+1, T n+1, φn+1
T,r ) − b2(un+1

r , T n+1
r , φn+1

T,r ) = b2(ηun+1, T n+1, φn+1
T,r )

−b2(φn+1
u,r , T

n+1, φn+1
T,r ) + b2(un+1

r , ηT
n+1, φn+1

T,r ) − b2(un+1
r , φn+1

T,r , φ
n+1
T,r ).

Note that b2(un+1
r , φn+1

T,r , φ
n+1
T,r ) = 0. In addition, from the definition of L2 projection

(2.1.39) and (2.2.14), the first term in the right hand side of (4.1.24) vanishes. Using
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Cauchy-Schwarz and Young’s inequalities, we obtain

1

2∆t
∥φn+1

T,r ∥2 − 1

2∆t
∥φnT,r∥2 + γ∥∇φn+1

T,r ∥2 = γ(∇ηT n+1,∇φn+1
T,r )

+b2(ηun+1, T n+1, φn+1
T,r ) − b2(φn+1

u,r , T
n+1, φn+1

T,r )

+b2(un+1
r , ηT

n+1, φn+1
T,r ) + (T n+1

t − T
n+1 − T n

∆t
, φn+1

T,r ). (4.1.25)

Next, we bound the first term in the right hand side of (4.1.25), by using Cauchy

Schwarz, Young’s and Poincaré’s inequalities:

γ(∇ηT n+1,∇φn+1
T,r ) ≤ Kγ∥∇ηT n+1∥2 + γ

10
∥∇φn+1

T,r ∥2. (4.1.26)

To bound the nonlinear terms we use Lemma 1.3.1 and Young’s inequality,

b2(ηun+1, T n+1, φn+1
T,r ) ≤ Kγ−1∥∇ηun+1∥2∥∇T n+1∥2 + γ

10
∥∇φn+1

T,r ∥2,(4.1.27)

b2(φn+1
u,r , T

n+1, φn+1
T,r ) ≤ Kν−1γ−2∥φn+1

u,r ∥2∥∇T n+1∥4 + ν
2
∥Dφn+1

u,r ∥2

+ γ
10

∥∇φn+1
T,r ∥2, (4.1.28)

b2(un+1
r , ηT

n+1, φn+1
T,r ) ≤ Kγ−1∥∇un+1

r ∥2∥∇ηT n+1∥2 + γ

10
∥∇φn+1

T,r ∥2. (4.1.29)

For the last term in the right hand side of (4.1.25), we apply Cauchy Schwarz, Poincaré’s

and Young’s inequalities along with the Taylor’s remainder formula as

(T n+1
t − T

n+1 − T n
∆t

, φn+1
T,r ) ≤ Kγ−1∥T n+1

t − T
n+1 − T n

∆t
∥2 + γ

10
∥∇φn+1

T,r ∥2

≤ Kγ−1 1

(∆t)2
∥∫

tn+1

tn
(t − tn)Ttt dt∥2 + γ

10
∥∇φn+1

T,r ∥2

≤ Kγ−1∆t∥Ttt∥2
L2(tn,tn+1;H1(Ω)) +

γ

10
∥∇φn+1

T,r ∥2.(4.1.30)

Inserting (4.1.26)-(4.1.30) in (4.1.25), multiplying by 2∆t and summing over the time

steps produces

∥φMT,r∥2 + γ∆t
M−1

∑
n=0

∥∇φn+1
T,r ∥2 ≤ ∥φ0

T,r∥2 +K∆t(γ
M−1

∑
n=0

∥∇ηT n+1∥2

+γ−1
M−1

∑
n=0

∥∇ηun+1∥2∥∇T n+1∥2 + ν−1γ−2
M−1

∑
n=0

∥φn+1
u,r ∥2∥∇T n+1∥4

+γ−1
M−1

∑
n=0

∥∇un+1
r ∥2∥∇ηT n+1∥2 + ν

2

M−1

∑
n=0

∥Dφn+1
u,r ∥2

+γ−1∆t∥Ttt∥2
L2(0,τ ;H1(Ω))). (4.1.31)
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By using Lemma 2.1.4, Lemma 2.2.1, Lemma 4.1.1, Assumption 2.2.1 and regularity

assumptions in (4.1.31) results in

∥φMT,r∥2 + γ∆t
M−1

∑
n=0

∥∇φn+1
T,r ∥2 ≤ ∥φ0

T,r∥2 +K(h2m + (∥Su,r∥2

+∥ST,r∥2)h2m+2 + ε2
u + ε2

T + ν−1γ−2∣∣∣∇T ∣∣∣4∞,0∆t
M−1

∑
n=0

∥φn+1
u,r ∥2

+ν∆t

2

M−1

∑
n=0

∥Dφn+1
u,r ∥2 + (∆t)2). (4.1.32)

Similarly, the error estimation for the concentration is given by

∥φMC,r∥2 +Dc∆t
M−1

∑
n=0

∥∇φn+1
C,r ∥2 ≤ ∥φ0

C,r∥2 +K(h2m + (∥Su,r∥2

+∥SC,r∥2)h2m+2 + ε2
u + ε2

C + ν−1Dc
−2∣∣∣∇C ∣∣∣4∞,0∆t

M−1

∑
n=0

∥φn+1
u,r ∥2

+ν∆t

2

M−1

∑
n=0

∥Dφn+1
u,r ∥2 + (∆t)2). (4.1.33)

By using similar arguments as above, letting vr = φn+1
u,r in (4.1.19), the velocity error

equation becomes

(
φn+1
u,r −φnu,r

∆t
,φn+1

u,r ) + 2ν(Dφn+1
u,r ,Dφ

n+1
u,r ) + (Da−1φn+1

u,r ,φ
n+1
u,r )

= −βT (g(T − T n+1
r ),φn+1

u,r ) − βC(g(C −Cn+1
r ),φn+1

u,r ) + (η
n+1
u − ηnu

∆t
,φn+1

u,r )

+2ν(Dηun+1,Dφn+1
u,r ) + (Da−1ηu

n+1,φn+1
u,r ) + b1(ηun+1,un+1,φn+1

u,r )

−b1(φn+1
u,r ,u

n+1,φn+1
u,r ) + b1(un+1

r ,ηu
n+1,φn+1

u,r ) − (pn+1,∇ ⋅φn+1
u,r )

+(un+1
t − un+1 − un

∆t
,φn+1

u,r ). (4.1.34)

Apply the polarization identity to get

1

2∆t
∥φn+1

u,r ∥2 − 1

2∆t
∥φnu,r∥2 + 1

2∆t
∥φn+1

u,r −φnu,r∥2 + 2ν∥Dφn+1
u,r ∥2 +Da−1∥φn+1

u,r ∥2

≤ ∣βT (g(T − T n+1
r ),φn+1

u,r )∣ + ∣βC(g(C −Cn+1
r ),φn+1

u,r )∣ + ∣(η
n+1
u − ηnu

∆t
,φn+1

u,r )∣

+2ν∣(Dηun+1,Dφn+1
u,r )∣ +Da−1∣(ηun+1,φn+1

u,r )∣ + ∣b1(ηun+1,un+1,φn+1
u,r )∣

+∣b1(φn+1
u,r ,u

n+1,φn+1
u,r )∣ + ∣b1(un+1

r ,ηu
n+1,φn+1

u,r )∣ + ∣(pn+1 − qh,∇ ⋅φn+1
u,r )∣

+∣(un+1
t − un+1 − un

∆t
,φn+1

u,r )∣. (4.1.35)

Note that (η
n+1
u − ηnu

∆t
,φn+1

u,r ) = 0 due to the definition of the L2 projection. Each of
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the terms in (4.1.35) can be bounded in manner similar to what is done above

∣βT (g(T − T n+1
r ),φn+1

u,r )∣ ≤ Kν−1β2
T ∥g∥2

∞(∥ηn+1
T ∥2 + ∥φn+1

T,r ∥2)

+ν
8
∥Dφn+1

u,r ∥2, (4.1.36)

∣βC(g(C −Cn+1
r ),φn+1

u,r )∣ ≤ Kν−1β2
C∥g∥2

∞(∥ηn+1
C ∥2 + ∥φn+1

C,r ∥2)

+ν
8
∥Dφn+1

u,r ∥2, (4.1.37)

ν∣(Dηn+1
u ,Dφn+1

u,r )∣ ≤ Kν∥Dηn+1
u ∥2 + ν

8
∥Dφn+1

u,r ∥2, (4.1.38)

Da−1∣(ηn+1
u ,φn+1

u,r )∣ ≤ KDa−1∥ηn+1
u ∥2 + Da

−1

2
∥φn+1

u,r ∥2, (4.1.39)

∣(pn+1 − qh,∇ ⋅φn+1
u,r )∣ ≤ Kν−1 ∥pn+1 − qh∥

2 + ν
8
∥Dφn+1

u,r ∥2
, (4.1.40)

∣(un+1
t − un+1 − un

∆t
,φn+1

u,r )∣ ≤ Kν−1∥un+1
t − un+1 − un

∆t
∥2

+ν
8
∥Dφn+1

u,r ∥2
. (4.1.41)

The nonlinear terms are bounded by

b1(ηn+1
u ,un+1,φn+1

u,r ) ≤ Kν−1∥Dηn+1
u ∥2∥Dun+1∥2 + ν

8
∥Dφn+1

u,r ∥2, (4.1.42)

b1(φn+1
u,r ,u

n+1,φn+1
u,r ) ≤ Kν−3∥φn+1

u,r ∥2∥Dun+1∥4 + ν
8
∥Dφn+1

u,r ∥2, (4.1.43)

b1(un+1
r ,ηn+1

u ,φn+1
u,r ) ≤ Kν−1∥Dun+1

r ∥2∥Dηn+1
u ∥2 + ν

8
∥Dφn+1

u,r ∥2. (4.1.44)

We now insert (4.1.36)-(4.1.44) into (4.1.35) and use regularity assumptions (2.2.10)

to get

1

2∆t
∥φn+1

u,r ∥2 − 1

2∆t
∥φnu,r∥2 + 1

2∆t
∥φn+1

u,r −φnu,r∥2 + ν∥Dφn+1
u,r ∥2 + Da

−1

2
∥φn+1

u,r ∥2

≤ K(ν−1∥g∥2
∞(β2

T ∥φn+1
T,r ∥2 + β2

C∥φn+1
C,r ∥2) + ν−3∥Dun+1∥4∥φn+1

u,r ∥2

+∥ηn+1
T ∥2 + ∥ηn+1

C ∥2 + ∥Dηun+1∥2(1 + ∥Dun+1∥2 + ∥Dun+1
r ∥2)

+∥ηun+1∥2 + ∥pn+1 − qh∥2 + ∥un+1
t − un+1 − un

∆t
∥2). (4.1.45)

Dropping the third term in the left hand side of (4.1.45) and summing over the time
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steps and multiplying by 2∆t gives

∥φMu,r∥2 +∆t
M−1

∑
n=0

(2ν∥Dφn+1
u,r ∥2 +Da−1∥φn+1

u,r ∥2)

≤ ∥φ0
u,r∥2 +K∆t(ν−1∥g∥2

∞

M−1

∑
n=0

(β2
T ∥φn+1

T,r ∥2 + β2
C∥φn+1

C,r ∥2) + ν−3
M−1

∑
n=0

∥Dun+1∥4∥φn+1
u,r ∥2

+
M−1

∑
n=0

(∥ηn+1
T ∥2 + ∥ηn+1

C ∥2) +
M−1

∑
n=0

(∥Dηun+1∥2(1 + ∥Dun+1∥2 + ∥Dun+1
r ∥2))

+
M−1

∑
n=0

∥ηun+1∥2 +
M−1

∑
n=0

∥pn+1 − qh∥2 +
M−1

∑
n=0

∥un+1
t − un+1 − un

∆t
∥2). (4.1.46)

Using Lemma 2.1.4, Lemma 2.2.1, Lemma 4.1.1, Assumption 2.1.1 in (4.1.46) and

applying regularity assumptions leads to

∥φMu,r∥2 +∆t
M−1

∑
n=0

(2ν∥Dφn+1
u,r ∥2 +Da−1∥φn+1

u,r ∥2)

≤ ∥u0
r − ũ0∥2 +K

⎛
⎝
ν−1β2

T ∥g∥2
∞∆t

M−1

∑
n=0

∥φn+1
T,r ∥2 + ν−1β2

C∥g∥2
∞∆t

M−1

∑
n=0

∥φn+1
C,r ∥2

+h2m +∆t2 + h2m+2(1 + ∥Su,r∥2) +
d

∑
i=r1+1

λi +
d

∑
i=r2+1

µi +
d

∑
i=r3+1

ξi + ε2
u

+ν−3∣∣∣Du∣∣∣2∞,0∆t
M−1

∑
n=0

∥φn+1
u,r ∥2

⎞
⎠
. (4.1.47)

Finally, we add (4.1.32), (4.1.33) and (4.1.47) to get

∥φMu,r∥2 + ∥φMT,r∥2 + ∥φMC,r∥2 +
M−1

∑
n=0

(ν∆t∥Dφn+1
u,r ∥2 +Da−1∆t∥φn+1

u,r ∥2)

+γ∆t
M−1

∑
n=0

∥∇φn+1
T,r ∥2 +Dc∆t

M−1

∑
n=0

∥∇φn+1
C,r ∥2 ≤ ∥u0

r − ũ0∥2 + ∥T 0
r − T̃ 0∥2

+∥C0
r − C̃0∥2 +K

⎛
⎝
ν−1β2

T ∥g∥2
∞∆t

M−1

∑
n=0

∥φn+1
T,r ∥2 + ν−1β2

C∥g∥2
∞∆t

M−1

∑
n=0

∥φn+1
C,r ∥2

+(ν−3∣∣∣Du∣∣∣2∞,0 + ν−1γ−2∣∣∣∇T ∣∣∣4∞,0 + ν−1Dc
−2∣∣∣∇C ∣∣∣4∞,0)∆t

M−1

∑
n=0

∥φn+1
u,r ∥2

+h2m + (∆t)2 + h2m+2(1 + ∥Su,r∥2 + ∥ST,r∥2 + ∥SC,r∥2)

+
d

∑
i=r1+1

λi +
d

∑
i=r2+1

µi +
d

∑
i=r3+1

ξi + ε2
u + ε2

T + ε2
C

⎞
⎠
.

Application of the discrete Gronwall Lemma (1.2.8) requires an assumption on the

time step size (4.1.17). The final error estimation can be obtained by using the as-

sumption (u0
r, T

0
r ,C

0
r ) = (ũ0, T̃ 0, C̃0), the triangle inequality, Assumption 2.1.1 and

Assumption 2.2.1.
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4.2 Numerical Analysis of Post-Processed VMS-POD Schemes for Double Dif-

fusive Darcy-Brinkman system

In this section, the POD method is combined with VMS method similar to Chapter

3. VMS aims to model unresolved scales by adding an artificial viscosity to only

resolved small-scales, as noted in Chapter 1. We consider adding the decoupled VMS-

ROM stabilization from [21], where in effect additional viscosity gets added to the

smaller R velocity modes in a post-processing step. Specifically, we post-process

un+1
r by solving the algorithm:

Algorithm 4.2.1 The post-processing VMS-POD approximation for double diffusive

system (1.3.15) given as:

Step 1: Find (wn+1
r , T n+1

r ,Cn+1
r ) ∈ (Xr,Wr,Ψr) satisfying

(wn+1
r − unr

∆t
,vr) + 2ν(Dwn+1

r ,Dvr) + b1(wn+1
r ,wn+1

r ,vr)

+(Da−1wn+1
r ,vr) = βT (gT n+1

r ,vr) + βC(gCn+1
r ,vr), (4.2.1)

(T
n+1
r − T nr

∆t
, Sr) + b2(wn+1

r , T n+1
r , Sr) + γ(∇T n+1

r ,∇Sr) = 0, (4.2.2)

(C
n+1
r −Cn

r

∆t
,Φr) + b3(wn+1

r ,Cn+1
r ,Φr) +Dc(∇Cn+1

r ,∇Φr) = 0, (4.2.3)

for all (vr, Sr,Φr) ∈ (Xr,Wr,Ψr).

Step 2: Find un+1
r ∈ Xr, ∀vr ∈ Xr:

(wn+1
r − un+1

r

∆t
,vr) = (νT (I − PR)∇

(un+1
r +wn+1

r )
2

, (I − PR)∇vr), (4.2.4)

where PR is the L2 projection into XR, which is the subset of Xr that is the span of

the first R (< r) velocity modes.

This section states two important results; the stability and convergence of the algo-

rithm (4.2.1)-(4.2.4).

Lemma 4.2.1 (Stability) The post-processed VMS-POD approximation (4.2.1)-(4.2.4)
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is unconditionally stable in the following sense: for any ∆t > 0,

∥uMr ∥2 +
M−1

∑
n=0

[2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

+∥wn+1
r − unr ∥2 + 2ν∆t∥Dwn+1

r ∥2 +Da−1∆t∥wn+1
r ∥2]

≤ ∥u0∥2 +C∗∥g∥2
∞(β2

Tγ
−1∥T0∥2 + β2

CD
−1
c ∥C0∥2). (4.2.5)

∥TMr ∥2 +
M−1

∑
n=0

2∆tγ∥∇T nr ∥2 ≤ ∥T0∥2, (4.2.6)

∥CM
r ∥2 +

M−1

∑
n=0

2∆tDc∥∇Cn
r ∥2 ≤ ∥C0∥2, (4.2.7)

where C∗ = min{ν−1,Da}.

Proof Letting Sr = T n+1
r in (4.2.2) and using skew symmetry property and applying

Cauchy-Schwarz and Young’s inequality produces

∥T n+1
r ∥2 + 2γ∆t∥∇T nr ∥2 ≤ ∥T nr ∥2, (4.2.8)

and finally summing over the time steps yields the stability result (4.2.6). In a similar

manner, setting Φr = Cn+1
r in (4.2.3) yields (4.2.7). Finally, choosing vr = wn+1

r in

(4.2.1), using the polarization identity, and multiply both sides by 2∆t yields

∥wn+1
r ∥2 − ∥unr ∥2 + ∥wn+1

r − unr ∥2 + 4ν∆t∥Dwn+1
r ∥2 + 2Da−1∆t∥wn+1

r ∥2

= 2∆tβT (gT n+1
r ,wn+1

r ) + 2∆tβC(gCn+1
r ,wn+1

r ). (4.2.9)

Note that if we let vr = (w
n+1
r +un+1

r )

2 in (4.2.4), we have

∥wn+1
r ∥2 = ∥un+1

r ∥2 + 2νT∆t∥(I − PR)∇
(wn+1

r + un+1
r )

2
∥

2

. (4.2.10)

Insert (4.2.10) in (4.2.9), and apply Cauchy-Schwarz, Young’s inequality and Poincaré’s

inequality, which provides

∥un+1
r ∥2 − ∥unr ∥2 + 2νT∆t∥(I − PR)∇

(wn+1
r + un+1

r )
2

∥
2

+∥wn+1
r − unr ∥2 + 2ν∆t∥Dwn+1

r ∥2 +Da−1∆t∥wn+1
r ∥2

≤ C∗∥g∥2
∞(β2

T∆t∥∇T n+1
r ∥2 + β2

C∆t∥∇Cn+1
r ∥2) (4.2.11)

where C∗ = min{ν−1,Da−1}. Summing over the time steps yields the stated result

(4.2.5).
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The optimal asymptotic error estimation is given as follows with its proof.

Theorem 4.2.2 (Error Estimation) Suppose regularity assumptions (4.1.16) holds.

Then for the sufficiently small ∆t, the error satisfies

∥uM − uMr ∥2 + ∥TM − TMr ∥2 + ∥CM −CM
r ∥2

≤ K(1 + h2m + (∆t)2 + (1 + ∥Su,r∥2

+∥Su,R∥2 + ∥ST,r∥2 + ∥SC,r∥2)h2m+2

+
d

∑
i=r1+1

(∥ψi∥2
1 + 1)λi +

d

∑
i=r2+1

(∥φi∥2
1 + 1)µi

+
d

∑
i=r3+1

(∥ηi∥2
1 + 1)ξi +

d

∑
i=R+1

∥ψi∥2
1λi). (4.2.12)

Proof We begin the proof by deriving error equations, subtracting from (1.3.16),

(1.3.18), (1.3.19) to (4.2.1), (4.2.2), (4.2.3) at time tn+1, respectively we have

(un+1
t − wn+1

r − unr
∆t

,vr) + 2ν(D(un+1 −wn+1
r ),Dvr) + b1(un+1,un+1,vr)

−b1(wn+1
r ,wn+1

r ,vr) + (Da−1(u −wn+1
r ),vr) − (pn+1,∇ ⋅ vr)

= βT (g(T − T n+1
r ),vr) + βC(g(C −Cn+1

r ),vr),(4.2.13)

(T n+1
t − T

n+1
r − T nr

∆t
, Sr) + b2(un+1, T n+1, Sr) − b2(un+1

r , T n+1
r , Sr)

+γ(∇(T n+1 − T n+1
r ),∇Sr) = 0,(4.2.14)

(Cn+1
t − C

n+1
r −Cn

r

∆t
,Φr) + b3(un+1,Cn+1,Φr) − b3(un+1

r ,Cn+1
r ,Φr)

+Dc(∇(Cn+1 −Cn+1
r ),∇Φr) = 0.(4.2.15)

The notations that are used in the proof are defined as

ηnu ∶= un − Un, φnu,r ∶= wn
r − Un, θnu,r ∶= unr − Un,

enu,r = un − unr , εnu,r ∶= un −wn
r ,

ηn+1
T = T n+1 − T̃ , φn+1

T,r ∶= T n+1
r − T̃ n+1,

ηn+1
C = ηn+1

C , φn+1
C,r ∶= Cn+1

r − C̃n+1

where (Un, T̃ n+1, C̃n+1) are L2 projections of (un+1, T n+1,Cn+1) in (Xr,Wr,Ψr) at

time tn+1.
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Letting Sr = T n+1
r in (4.2.14), and reorganizing it similarly (4.1.31), we get

∥φMT,r∥2 + γ∆t
M−1

∑
n=0

∥∇φn+1
T,r ∥2 ≤ ∥φ0

T,r∥2 +K∆t(γ
M−1

∑
n=0

∥∇ηT n+1∥2

+γ−1
M−1

∑
n=0

∥∇ηun+1∥2∥∇T n+1∥2 + ν−1γ−2
M−1

∑
n=0

∥φn+1
u,r ∥2∥∇T n+1∥4

+γ−1
M−1

∑
n=0

∥∇un+1
r ∥2∥∇ηT n+1∥2 + ν

2

M−1

∑
n=0

∥Dφn+1
u,r ∥2

+γ−1∆t∥Ttt∥2
L2(0,τ ;H1(Ω))). (4.2.16)

By using Lemma 2.1.4, Lemma 2.2.1, Lemma 4.1.1, Assumption 2.2.1 and regularity

assumptions in (4.2.16) results in

∥φMT,r∥2 + γ∆t
M−1

∑
n=0

∥∇φn+1
T,r ∥2 ≤ ∥φ0

T,r∥2 +K(h2m + (∥Su,r∥2

+∥ST,r∥2)h2m+2 + ε2
u + ε2

T + ν−1γ−2∣∣∣∇T ∣∣∣4∞,0∆t
M−1

∑
n=0

∥φn+1
u,r ∥2

+ν∆t

2

M−1

∑
n=0

∥Dφn+1
u,r ∥2 + (∆t)2). (4.2.17)

Similarly, the error estimation for the concentration is given by

∥φMC,r∥2 +Dc∆t
M−1

∑
n=0

∥∇φn+1
C,r ∥2 ≤ ∥φ0

C,r∥2 +K(h2m + (∥Su,r∥2

+∥SC,r∥2)h2m+2 + ε2
u + ε2

C + ν−1Dc
−2∣∣∣∇C ∣∣∣4∞,0∆t

M−1

∑
n=0

∥φn+1
u,r ∥2

+ν∆t

2

M−1

∑
n=0

∥Dφn+1
u,r ∥2 + (∆t)2). (4.2.18)

In a similar manner, setting vr = φn+1
u,r in the (4.2.13), we have

(
φn+1

u,r − θnu,r
∆t

,φn+1
u,r ) + 2ν∥Dφn+1

u,r ∥2 +Da−1∥φn+1
u,r ∥2

= (η
n+1
u − ηnu

∆t
,φn+1

u,r ) + 2ν(Dηn+1
u ,Dφn+1

u,r )

+[b(un+1,un+1,φn+1
u,r ) − b(wn+1

r ,wn+1
r ,φn+1

u,r )] + (Da−1ηn+1
u ,φn+1

u,r )

−(pn+1,∇ ⋅φn+1
u,r ) + (un+1

t − un+1 − un

∆t
,φn+1

u,r )

+βT (g(T n+1 − T n+1
r ),φn+1

u,r ) + βC(g(Cn+1 −Cn+1
r ),φn+1

u,r ). (4.2.19)

Note that, we get (ηnu,φn+1
u,r ) = 0 and (ηn+1

u ,φn+1
u,r ) = 0 using the L2 projection

(2.1.50). Using this along with the polarization identity and that φn+1
u,r ∈ Xr ⊂ Vh,
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and inserting all bounds (3.1.11)-(3.1.14) and (4.1.36)-(4.1.37) for the right hand side

terms of (4.2.19) and multiplying both sides by 2∆t gives

(∥φn+1
u,r ∥2 − ∥θnu,r∥2) + ν∆t∥∇φn+1

u,r ∥2 +Da−1∥φn+1
u,r ∥2 ≤K(ν∆t∥∇ηn+1

u ∥2

+ν−1∆t∥ηn+1
u ∥∥∇ηn+1

u ∥∥∇un+1∥2 +Da−1∥ηn+1
u ∥2 + ∆t

ν3
∥φn+1

u,r ∥2∥∇un+1∥4

+ν−1∆t∥wn+1
r ∥∥∇wn+1

r ∥∥∇ηn+1
u ∥2 + ν−1∆t∥pn+1 − qh∥2 + ν−1∆t∥un+1

t − un+1 − un

∆t
∥2

+ν−1β2
T ∥g∥2

∞(∥ηn+1
T ∥2 + ∥φn+1

T,r ∥2) + ν−1β2
C∥g∥2

∞(∥ηn+1
C ∥2 + ∥φn+1

C,r ∥2)). (4.2.20)

To get a bound for ∥φn+1
r ∥2, write (4.2.4) by adding and subtracting the true solution

projection Un+1 on both sides and we have

(
φn+1

u,r − θn+1
u,r

∆t
,ψ) = (νT (I − PR)∇

(φn+1
u,r + θn+1

u,r + 2Un+1)
2

, (I − PR)∇ψ), (4.2.21)

and then choosing ψ =
(φn+1

u,r + θn+1
u,r )

2
in (4.2.21), we get

∥φn+1
u,r ∥2 = ∥θn+1

u,r ∥2 + 1

2
∆tνT ∥(I − PR)∇(φn+1

u,r + θn+1
u,r )∥2

+∆t(νT (I − PR)∇Un+1, (I − PR)∇(φn+1
u,r + θn+1

u,r )). (4.2.22)

Noting Un+1 = un+1 − ηn+1
u and inserting (4.2.22) into (4.2.20) results into

∥θn+1
u,r ∥2 − ∥θnu,r∥2 + 1

2
∆tνT ∥(I − PR)∇(φn+1

u,r + θn+1
u,r )∥2 + ν∆t∥∇φn+1

u,r ∥2

+Da−1∥φn+1
u,r ∥2

≤ Cν∆t∥∇ηn+1
u ∥2 + C∆t

ν
∥ηn+1

u ∥∥∇ηn+1
u ∥∥∇un+1∥2

+C∆t

ν3
∥∇un+1∥4[∥θn+1

u,r ∥2 + 1

2
∆tνT ∥(I − PR)∇(φn+1

u,r + θn+1
u,r )∥2

+∆t(νT (I − PR)∇(un+1 − ηn+1
u ), (I − PR)∇(φn+1

u,r + θn+1
u,r ))]

+∆t(νT (I − PR)∇(ηn+1
u − un+1), (I − PR)∇(φn+1

u,r + θn+1
u,r ))

+C∆t

ν
∥wn+1

r ∥∥∇wn+1
r ∥∥∇ηn+1

u ∥2 + C∆t

ν
∥pn+1 − qh∥2

+C∆t

ν
∥un+1

t − un+1 − un

∆t
∥2 + ν−1β2

T ∥g∥2
∞(∥ηn+1

T ∥2 + ∥φn+1
T,r ∥2)

+ν−1β2
C∥g∥2

∞(∥ηn+1
C ∥2 + ∥φn+1

C,r ∥2)). (4.2.23)

Assume now ∆t ≤ 1

8C
[ ∥∇u∥4

ν3 ]
−1

. Substitute the bounds (3.1.19)-(3.1.20) into (4.2.23)
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and sum from n = 0 to M − 1. This gives

∥θMr ∥2 +
M−1

∑
n=0

[1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2 + ν∆t∥∇φn+1

r ∥2 +Da−1∥φn+1
u,r ∥2]

≤ ∥θ0
r∥2 +C

M−1

∑
n=0

[ν∆t∥∇ηn+1
u ∥2 + ∆t

ν
∥∇un+1∥2∥∇ηn+1

u ∥2

+∆tνT ∥(I − PR)∇(un+1 − ηn+1
u )∥2 + ∆t

ν
∥wn+1

r ∥∥∇wn+1
r ∥∥∇ηn+1

bu ∥2

+∆t

ν
∥pn+1 − qh∥2 + ∆t

ν
∥un+1

t − un+1 − un

∆t
∥2 + ν−1β2

T ∥g∥2
∞(∥ηn+1

T ∥2 + ∥φn+1
T,r ∥2)

+ν−1β2
C∥g∥2

∞(∥ηn+1
C ∥2 + ∥φn+1

C,r ∥2)] + C∆t

ν3

M−1

∑
n=0

∥∇un+1∥4∥θn+1
r ∥2. (4.2.24)

Collecting all the bounds (3.1.22)-(3.1.29) for (4.2.24) and using Lemma 2.1.4, Lemma

2.2.1, Lemma 3.1.1, Assumption 2.2.1 in (4.1.46) and applying regularity assump-

tions leads to

∥θMr ∥2 +
M−1

∑
n=0

[1

8
∆tνT ∥(I − PR)∇(φn+1

r + θn+1
r )∥2 + ν∆t∥∇φn+1

r ∥2

+Da−1∥φn+1
u,r ∥2] ≤K[ν((h2m + ∥Su,r∥2h

2m+2)∣∣∣u∣∣∣22,m+1 +
d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1∣∣∣∇u∣∣∣22,0((h2m + ∥Su,r∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+νT((h2m + (∥Su,R∥2 + ∥Su,r∥2)h2m+2)∣∣∣u∣∣∣22,m+1

+
d

∑
j=R+1

∥ψj∥2
1λj +

d

∑
j=r+1

∥ψj∥2
1λj) + ν−2(∥u0

r∥2 + ν−1∣∣∣f ∣∣∣22,−1)

×((h2m + ∥Su,r∥2h
2m+2)∣∣∣u∣∣∣22,m+1 +

d

∑
j=r+1

∥ψj∥2
1λj)

+ν−1h2m∣∣∣p∣∣∣22,m + ν−1(∆t)2∥utt∥2
L2(0,T ;H1(Ω))

+ν−1β2
T ∥g∥2

∞(h2m+2∣∣∣T ∣∣∣22,m+1 +
d

∑
i=r2+1

µi)

+ν−1β2
C∥g∥2

∞(h2m+2∣∣∣C ∣∣∣22,m+1 +
d

∑
i=r3+1

ξi)]

+Kν−1β2
T ∥g∥2

∞∆t
M−1

∑
n=0

∥φn+1
T,r ∥2 +Kν−1β2

C∥g∥2
∞∆t

M−1

∑
n=0

∥φn+1
C,r ∥2

+K∆t

ν3

M−1

∑
n=0

∣∣∣∇u∣∣∣4∞,0∥θn+1
r ∥2 (4.2.25)

Applying Gronwall inequality for sufficiently small time step,

∆t ≤ min{(Kν−1(ν−2 + γ−2 +Dc
−2))−1, (Kν−1β2

T )−1, (Kν−1β2
C)−1} (4.2.26)
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and adding (4.2.17) and (4.2.18) to (4.2.25) we have

∥φMu,r∥2 + ∥φMT,r∥2 + ∥φMC,r∥2 +
M−1

∑
n=0

(ν∆t∥Dφn+1
u,r ∥2 +Da−1∆t∥φn+1

u,r ∥2)

+γ∆t
M−1

∑
n=0

∥∇φn+1
T,r ∥2 +Dc∆t

M−1

∑
n=0

∥∇φn+1
C,r ∥2

≤ ∥u0
r − ũ0∥2 + ∥T 0

r − T̃ 0∥2 + ∥C0
r − C̃0∥2 +K

⎛
⎝
ν−1β2

T ∥g∥2
∞∆t

M−1

∑
n=0

∥φn+1
T,r ∥2

+ν−1β2
C∥g∥2

∞∆t
M−1

∑
n=0

∥φn+1
C,r ∥2 + (ν−3∣∣∣Du∣∣∣2∞,0 + ν−1γ−2∣∣∣∇T ∣∣∣4∞,0

+ν−1Dc
−2∣∣∣∇C ∣∣∣4∞,0)∆t

M−1

∑
n=0

∥φn+1
u,r ∥2

+h2m + (∆t)2 + h2m+2(1 + ∥Su,r∥2 + ∥ST,r∥2 + ∥SC,r∥2)

+
d

∑
i=r1+1

λi +
d

∑
i=r2+1

µi +
d

∑
i=r3+1

ξi + ε2
u + ε2

T + ε2
C

⎞
⎠
.

4.3 Numerical Studies

In this section we present results of numerical tests using the POD-ROM studied

above. Here we use (4.1.4)-(4.1.6), which is the BDF2 temporal discretization with

POD-ROM.

4.3.1 Problem Description

For our numerical tests, we consider a test problem from [18, 62]. The domain Ω is

the rectangular box [0,1] × [0,2], the time domain is from t = 0 to t = 1, and we

consider the boundary conditions

u = 0 on ∂Ω,

T = 0, C = 0 for x = 0,

T = 1, C = 1 for x = 1.

∇T ⋅ n = 0, ∇C ⋅ n = 0 for y = 0, y = 2,

72



We run tests using Lewis number Le = 2, Prandtl number Pr = 1, and buoyancy

ratio N = 0.8, and test the method with different Rayleigh numbers: Ra = 104, 105

and 106. We consider the case of Darcy number Da = ∞, which corresponds to

no porosity. We take kinematic viscosity ν = 1, βT = −Ra
Pr

, βC = Ra ⋅N
Pr

, g = e2,

γ = 1

Pr
, Dc =

1

Le ⋅ Pr . The initial conditions are u0 = T0 = C0 = 0.

Figure 4.1: The eigenvalues for the velocity, temperature and concentration for dif-

ferent Ra

The fine mesh solution used to create the snapshots for each Ra was computed using

a BDF2 finite element scheme, using a time step of ∆t = 0.00025, and with a 30 ×
60 uniform triangulation that was further refined near the boundary. This provided

a total of 59,255 degrees of freedom with Taylor-Hood velocity-pressure elements,

and continuous quadratic elements used for the transported quantities. Solutions at

each time step (i.e. snapshots) were saved, and following the procedure described

above (see e.g. [14] for a more detailed description), the matrices of snapshots were
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decomposed into the eigenvalues and eigenmodes.

Plots of the eigenvalues of the snapshot matrices for the different Ra simulations are

shown in Figure 4.1, and we see a fairly rapid decay for Ra = 104, a slower decay

for Ra = 105, but for Ra = 106 we observe that even the 50th largest mode has

a corresponding eigenvalue that is only three orders of magnitude smaller than the

largest one.

4.3.2 Convergence Rates with Respect to ∆t and the POD-ROM cutoff

The dominant error source in a POD-ROM typically comes from the basis truncation.

The convergence rates in the velocity, the temperature and the concentration are given

in Table 4.1. To scaling this test, we fix T = 0.1, Ra = 106.

Table 4.1: Convergence rates of velocity, temperature and concentration for varying

∆t.

r ∆t ∥∇(u − ur)∥L2(H1) rate ∥∇(T − Tr)∥L2(H1) rate ∥∇(C −Cr)∥L2(H1) rate

10 2.5e-04 6.7080e+02 - 0.6141 - 0.8925 -

10 1.25e-04 3.9079e+02 0.78 0.3444 0.83 0.4662 0.94

10 6.25e-05 2.5724e+02 0.60 0.2222 0.63 0.2896 0.69

10 3.125e-05 1.3594e+02 0.92 0.1235 0.85 0.1483 0.97

10 1.5625e-05 46.7776 1.54 0.0455 1.44 0.0529 1.49

10 7.8125e-06 14.8303 1.66 0.0195 1.22 0.0212 1.32

20 2.5e-04 5.3497e+02 - 0.4975 - 0.7248 -

20 1.25e-04 3.3729e+02 0.67 0.3132 0.67 0.4428 0.71

20 6.25e-05 2.0351e+02 0.73 0.1772 0.82 0.2289 0.95

20 3.125e-05 1.1922e+02 0.77 0.1027 0.79 0.1277 0.84

20 1.5625e-05 48.6892 1.29 0.0498 1.04 0.0531 1.27

20 7.8125e-06 10.6756 2.19 0.0147 1.76 0.0173 1.62

We observe that as the number of POD basis r increases, the error in the velocity,

the temperature and the concentration decreases, that is, more modes used for POD

gives more accurate solutions. In addition, we note that the convergence rates in ve-

locity error for varying ∆t are consistent with second order for r = 20. In a similar
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manner, as r increases, the convergence rates in temperature and concentration in-

crease, however, they are not close enough to second order even for high r in Table

4.1. Our analysis predicts that temporal and spatial error are negligible compared to

the POD truncation errors, εu, εT , εC . Thus, we only pay attention convergence rates

for varying R, which are evaluated in Table 4.2, Table 4.3, and Table 4.4.

Table 4.2: Convergence of velocity for varying r.

r εu ∥∇(u − ur)∥L2(H1) rate

3 35.646 0.5215 -

5 13.524 0.2254 0.87

7 6.4511 0.1087 0.99

9 3.2584 0.0697 0.65

11 1.8444 0.0408 0.94

13 0.9870 0.0286 0.57

Table 4.3: Convergence of temperature for varying r.

r εT ∥∇(T − Tr)∥L2(H1) rate

3 2.0381 0.0501 -

5 0.5569 0.0211 0.67

7 0.2836 0.0122 0.81

9 0.1364 0.0068 0.79

11 0.0553 0.0048 0.39

13 0.0255 0.0040 0.23

The error contributions of the velocity, temperature, concentration defined by (2.2.19).

In the analysis error (in L2(0, T ;H1(Ω)) norm) will scale like O(ε1/2
u + ε1/2

T + ε1/2
C )

when temporal and spatial error are negligible. In Table 4.2, Table 4.3 and Table 4.4,

we compute errors for Ra = 104 using ∆t = 0.000015625, T = 0.01, and varying r

(fixing r1 = r2 = r3 = r). Here we take the solution of the fine mesh BDF2 finite el-

ement scheme as the true solution, calculate εu, εT , εC for each r, and display these
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Table 4.4: Convergence of concentration for varying r.

r εC ∥∇(C −Cr)∥L2(H1) rate

3 2.1881 0.0706 -

5 0.8746 0.0283 1.00

7 0.4369 0.0168 0.75

9 0.2646 0.0113 0.79

11 0.1244 0.0080 0.46

13 0.0541 0.0053 0.50

quantities and the scaling of the error with respect to them in the tables. Note that,

the rates in the tables consistent with the 0.5 rate as expected by analysis.

4.3.3 Captured Energy with Respect to the Different POD-ROM cutoff

In this test, to create POD basis, 4000 snapshots are used in the time interval [0,

1]. The correlation matrix are constructed using snapshots. Captured energy for the

velocity (Eu), temperature (ET ), concentration (EC) can be defined as

Eu =
∑rj=1 λj

∑Mj=1 λj
× 100, ET = ∑

r
j=1 µj

∑Mj=1 µj
× 100, EC = ∑

r
j=1 ξj

∑Mj=1 ξj
× 100.

The percent of captured energy with respect to the different POD modes number for

the velocity, temperature and concentration are shown in Table 4.5, Table 4.6 and

Table 4.7, respectively.

When we select POD modes number r = 12 for Ra = 104 and r = 20 for Ra = 105,

99.999% of the total energy is captured. On the other hand, for Ra = 106, and it

would take many more modes than this to capture a sufficiently large portion of the

system energy; hence for this test it was necessary to use a stabilization to get good

numerical results.
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Table 4.5: Percent of captured energy for the velocity, temperature and concentration

with Ra = 104 varying r

r Eu ET EC

4 99.7151 99.9782 99.9809

6 99.9608 99.9987 99.9963

8 99.9911 99.9997 99.9990

10 99.9979 99.9999 99.9997

12 99.9994 99.9999 99.9999

Table 4.6: Percent of captured energy for the velocity, temperature and concentration

with Ra = 105 varying r

r Eu ET EC

8 99.8173 99.8942 99.9304

12 99.9781 99.9845 99.9852

16 99.9939 99.9966 99.9955

20 99.9985 99.9992 99.9985

24 99.9995 99.9997 99.9994

Table 4.7: Percent of captured energy for the velocity, temperature and concentration

with Ra = 106 varying r

r Eu ET EC

8 93.0866 97.6547 97.4737

16 97.4949 99.1031 98.9494

24 98.9831 99.5758 99.4581

32 99.4980 99.7838 99.6876

40 99.7096 99.8793 99.8065
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4.3.4 POD Performance for Different Ra

We consider now the ability of the POD for Ra = 104, Ra = 105, and Ra = 106. The

computation times for full order solutions, POD basis functions and POD solutions

for varying Ra are presented in Table 4.8. The following speed-up factor can be used

as a measurement for the computational efficiency of the POD over DNS

Speed-up = Process time in DNS
Process time in POD

.

The computed speed-up values are listed in Table 4.8. For this test, we fix T = 0.01,

∆t = 0.00025, and r = 7.

Table 4.8: CPU times (in seconds) for DNS, POD basis and POD, and speed-up of

POD for different Ra

Ra DNS POD basis POD Speed-up

104 1186.973710 869.562297 62.812477 18.89

105 1285.602149 967.813853 66.644541 19.29

106 966.318515 860.485202 135.498313 7.13

We see that the reduced order model is significantly faster than the full order model for

Ra = 104 and Ra = 105, however, the efficiency of POD slightly drops for Ra = 106.

Note that, the computational cost decreases remarkably for all Ra.

In the next test, we aim to show the decreasing behaviour of L2 and H1 errors for

varying Ra. Hence, we calculate the errors at each time step and plot them versus

time. We choose r = 20 for Ra = 104 and Ra = 105, r = 40 for Ra = 106.

The variations of L2 error and H1 error with respect to time are shown for Ra = 104

and Ra = 105 in Figure 4.2 and Figure 4.3, respectively. As seen in Figure 4.2 and

Figure 4.3, the L2 errors and the H1 errors become close to zero as the time increase.

It gives that our solution matches DNS for Ra = 104 and Ra = 105. We also observe

the error plots for Ra = 105 to be significantly larger than for Ra = 104, so it is no

surprise, as Ra increases, more modes are needed to obtain a good solution.
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Figure 4.2: The L2 error in the velocity, temperature and concentration for Ra = 104

and Ra = 105.

We also check the ability of the POD for Ra = 104 by comparing with DNS solution

in Figure 4.4. First column indicate the DNS solution, second column indicate the

POD solution. We observe no visual difference in the t = 0.5 solutions. We note that

POD solutions matches the DNS solution qualitatively quite well. We consider also

the same numerical test with Ra = 105 in the Figure 4.5. We obtain same results.

POD solution matches well with DNS solution.

For a final test, we consider the same test but with higher Rayleigh number, Ra = 106.

Here, even with 40 modes, the POD-ROM is unable to give a good solution (see

Figure 4.6 and Figure 4.7), which is expected since Figure 4.1 shows a very slow

decay of the eigenvalues of the snapshot matrix. We use Algorithm 4.2.1 which is

obtained adding the decoupled VMS-ROM stabilization, then the effect of additional

viscosity is added to the smaller R velocity modes in a post-processing step. After

running several tests to optimize parameters R and νT , we found that R = 20, νT = 1

is a near optimal choice that gives a much better solution than the unstabilized POD-
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Figure 4.3: The H1 error in the velocity, temperature and concentration for Ra = 104

and Ra = 105.

ROM, see Figure 4.6 and Figure 4.7. We note that no stabilization was added to the

transport equations in these results.
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DNS POD

Figure 4.4: Shown above are Ra = 104 solution plots for the simulations using DNS

and POD using 8 modes at t = 0.5.
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DNS POD

Figure 4.5: Shown above are Ra = 105 solution plots for the simulations using DNS

and POD using 10 modes at t = 0.5.
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Figure 4.6: The L2 error in the velocity, temperature and concentration for Ra = 106.

Figure 4.7: TheH1 error in the velocity, temperature and concentration forRa = 106.
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CHAPTER 5

THE EXTRAPOLATED CRANK NICHOLSON VMS-POD METHOD FOR

DARCY BRINKMAN EQUATIONS

In this chapter, we extend [22] with VMS-POD methodology for the Darcy Brinkman

system. The scheme obtains POD solutions with a projection based VMS stabiliza-

tion introduced in [40, 55] for the fluid velocity, temperature and concentration. The

finite element method is considered for space variables and Crank Nicholson time

discretization method for time variables. In addition, to obtain a fully linear system at

each time level, the nonlinear terms are treated with the extrapolated Crank Nicholson

method of Baker’s [5].

This chapter is arranged as follows. In Section 2, the full order model for Darcy

Brinkman system is introduced. A review of POD and VMS methods are given in

Section 3. Section 4 is devoted to the numerical analysis of the VMS-POD formula-

tion. In Section 5, analytical results are verified with numerical experiments.

5.1 Preliminaries

In this section, some preliminaries are given about VMS-POD setting for Darcy-

Brinkman with double diffusive convection. The artificial diffusions are added to the

smaller R1, R2, R3 velocity, temperature, concentration modes affecting only small

scales. Therefore, the following spaces are used for VMS-POD setting

XR = span{ψk}R1

k=1, LR,u = ∇XR ∶= {∇ψk}R1

k=1,

WR = span{φk}R2

k=1, LR,T = ∇WR ∶= {∇φk}R2

k=1,

ΨR = span{ηk}R3

k=1, LR,C = ∇ΨR ∶= {∇ηk}R3

k=1.
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with R1 < r1, R2 < r2 and R3 < r3. Here R1, R2 and R3 denote the POD modes num-

bers for each fluid variables used in the projections for VMS method. The following

relations between finite element spaces and POD spaces are provided by construction,

XR ⊂ Xr ⊂ Vh ⊂ X, WR ⊂Wr ⊂Wh ⊂W, and ΨR ⊂ Ψr ⊂ Ψh ⊂ Ψ.

In the VMS formulation, we will use the L2 projection operator

Pu,R ∶ L2 → LR,u, PT,R ∶ L2 → LR,T , PC,R ∶ L2 → LR,C

which are defined as

(u − Pu,Ru,vR) = 0, (T − PT,RT,SR) = 0, (C − PC,RC, ζR) = 0, (5.1.1)

for all (vR, SR, ζR) ∈ (LR,u,LR,T ,LR,C). Therefore, VMS-POD formulation of the

(1.3.15) with a Crank Nicholson temporal discretization becomes: Find ur ∶ [0, τ] →
Xr, Tr ∶ [0, τ]→Wr, Cr ∶ [0, τ]→ Ψr for every (vr, Sr,Φr), ∈ (Xr,Wr,Ψr)

(un+1
r − unr

∆t
,vr) + 2ν(Du

n/2
r ,Dvr) + b1(X (unr ),u

n/2
r ,vr)

+α1((I − Pu,R)Du
n/2
r , (I − Pu,R)Dvr) +Da−1(un/2r ,vr)

= βT (gT n/2r ,vr) + βC(gCn/2
r ,vr), (5.1.2)

(T
n+1
r − T nr

∆t
, Sr) + γ(∇T n/2r ,∇Sr) + b2(X (unr ), T

n/2
r , Sr)

+α2((I − PT,R)∇T n/2r , (I − PT,R)∇Sr) = 0, (5.1.3)

(C
n+1
r −Cn

r

∆t
, ςr) +Dc(∇Cn/2

r ,∇ςr) + b3(X (unr ),C
n/2
r , ςr)

+α3((I − PC,R)∇Cn/2
r , (I − PC,R)∇ςr) = 0. (5.1.4)

where Pu,R, PT,R and PC,R are the L2 projection into (XR,WR,ΨR) and

X (unr ) =
3

2
unr −

1

2
un−1
r , u

n/2
r = un+1

r + unr
2

, T
n/2
r = T

n+1
r + T nr

2
, C

n/2
r = C

n+1
r +Cn

r

2
.

Note that in algorithm (5.1.2)-(5.1.4), the linear extrapolation of the velocity, temper-

ature and concentration are used, [20]. Thus, the solution of the system requires one

linear system per time.
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5.2 Numerical analysis of VMS-POD double diffusive Darcy Brinkman scheme

In this section, we present the stability analysis and convergence result for the solu-

tions of (5.1.2)-(5.1.4).

Lemma 5.2.1 The VMS-POD approximation (5.1.2)-(5.1.4) is unconditionally stable

in the following sense: for any ∆t > 0

∥uMr ∥ + 4ν∆t
M−1

∑
n=0

∥Du
n/2
r ∥2 + 2Da−1∆t

M−1

∑
n=0

∥un/2r ∥2

+2α1∆t
M−1

∑
n=0

∥(I − Pu,R)Du
n/2
r ∥2

≤ ∥u0
r∥2 +K∥g∥2

∞(β2
Tν

−1γ−1∥T 0
r ∥2 + β2

CDaD
−1
c ∥C0

r ∥2) (5.2.1)

∥TMr ∥2 + 2γ∆t
M−1

∑
n=0

∥∇T n/2r ∥ + 2α2∆t
M−1

∑
n=0

∥(I − PT,R)∇T n/2r ∥2

≤ ∥T 0
r ∥2 (5.2.2)

∥CM
r ∥2 + 2Dc∆t

M−1

∑
n=0

∥∇Cn/2
r ∥ + 2α3∆t

M−1

∑
n=0

∥(I − PC,R)∇Cn/2
r ∥2

≤ ∥C0
r ∥2 (5.2.3)

Proof Letting Sr = T n/2r = T n+1
r + T nr

2
in (5.1.3), and using the skew symmetry, we

get b2(X (unr ), T
n/2
r , T

n/2
r ) = 0. Then (5.1.3) becomes

∥T n+1
r ∥2 + 2γ∆t∥∇T n/2r ∥ + 2α2∆t∥(I − PT,R)∇T n/2r ∥2 = ∥T nr ∥2. (5.2.4)

Summing over the time steps n = 0, . . . ,M − 1 yields

∥TMr ∥2 + 2γ∆t
M−1

∑
n=0

∥∇T n/2r ∥ + 2α2∆t
M−1

∑
n=0

∥(I − PT,R)∇T n/2r ∥2 ≤ ∥T 0
r ∥2. (5.2.5)

Similarly, setting ςr = Cn/2
r in (5.1.4) and summing over the time steps produces

∥CM
r ∥2 + 2Dc∆t

M−1

∑
n=0

∥∇Cn/2
r ∥ + 2α3∆t

M−1

∑
n=0

∥(I − PC,R)∇Cn/2
r ∥2 ≤ ∥C0

r ∥2. (5.2.6)

Choosing vr = u
n/2
r and using b1(X (unr ),u

n/2
r ,u

n/2
r ) = 0 in (5.1.2) gives

∥un+1
r ∥ + 4ν∆t∥Du

n/2
r ∥2 + 2α1∆t∥(I − Pu,R)Du

n/2
r ∥2 + 2Da−1∆t∥un/2r ∥2

= ∥unr ∥2 + 2βT∆t(gT n/2r ,u
n/2
r ) + 2βC∆t(gCn/2

r ,u
n/2
r ). (5.2.7)
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Applying Cauchy-Schwarz inequality and Young’s inequality yields

∥un+1
r ∥ + 4ν∆t∥Du

n/2
r ∥2 + 2α1∆t∥(I − Pu,R)Du

n/2
r ∥2 + 2Da−1∆t∥un/2r ∥2

≤ ∥unr ∥2 +K∥g∥2
∞(β2

Tν
−1∆t∥∇T n/2r ∥ + β2

CDa∆t∥∇Cn/2
r ∥2) (5.2.8)

Summing over the time steps n = 0, . . . ,M − 1 gives

∥uMr ∥ + 4ν∆t
M−1

∑
n=0

∥Du
n/2
r ∥2 + 2α1∆t

M−1

∑
n=0

∥(I − Pu,R)Du
n/2
r ∥2

+2Da−1∆t
M−1

∑
n=0

∥un/2r ∥2

≤ ∥u0
r∥2 +K∥g∥2

∞(β2
Tν

−1∆t
M−1

∑
n=0

∥∇T n/2r ∥ + β2
CDa∆t

M−1

∑
n=0

∥∇Cn/2
r ∥2)(5.2.9)

Inserting (5.2.4) and (5.2.6) in (5.2.8) gives the stated result (5.2.1).

Hence the method is stable without any time step restriction. The next question is:

how fast approximate solutions converge to true solutions. To answer this question,

we now consider the error analysis of VMS-POD.

Theorem 5.2.2 (Error Estimation) Suppose regularity assumptions u, T,C ∈ L∞(0, τ ;Hm+1),

p ∈ L∞(0, τ ;Hm) holds. Then for the sufficiently small ∆t, the error satisfies

∥uM − uMr ∥2 + ∥TM − TMr ∥2 + ∥CM −CM
r ∥2

≤ K(1 + h2m + (∆t)4 + (1 + ∥Su,r∥2 + ∥Su,R∥2

+∥ST,r∥2 + ∥ST,R∥2 + ∥SC,r∥2 + ∥SC,R∥2)h2m+2

+
d

∑
i=r1+1

(∥ψi∥2
1 + 1)λi +

d

∑
i=r2+1

(∥φi∥2
1 + 1)µi +

d

∑
i=r3+1

(∥ηi∥2
1 + 1)ξi

+
d

∑
i=R1+1

∥ψi∥2
1λi +

d

∑
i=R2+1

∥φi∥2
1µi +

d

∑
i=R3+1

∥ηi∥2
1ξi). (5.2.10)

Proof We begin the proof by deriving error equations, subtracting from (1.3.16),

(1.3.18), (1.3.19) to (5.1.2), (5.1.3), (5.1.4) at time tn/2, respectively we have

(u
n/2
t − un+1

r − unr
∆t

,vr) + 2ν(D(un/2 − u
n/2
r ),Dvr) + b1(un/2,un/2,vr)

−b1(X (unr ),u
n/2
r ,vr) + (Da−1(un/2 − u

n/2
r ),vr) − (pn+1,∇ ⋅ vr)

+α1((I − Pu,R)D(un/2 − u
n/2
r ), (I − Pu,R)Dvr)
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= βT (g(T n/2 − T n/2r ),vr) + βC(g(Cn/2 −Cn/2
r ),vr)

+α1((I − Pu,R)Dun/2, (I − Pu,R)Dvr), (5.2.11)

(T n/2t − T
n+1
r − T nr

∆t
, Sr) + γ(∇(T n/2 − T n/2r ),∇Sr) + b2(un/2, T n/2, Sr)

−b2(X (unr ), T
n/2
r , Sr) + α2((I − PT,R)∇(T n/2 − T n/2r ), (I − PT,R)∇Sr)

= α2((I − PT,R)∇T n/2, (I − PT,R)∇Sr), (5.2.12)

(Cn/2
t − C

n+1
r −Cn

r

∆t
,Φr) +Dc(∇(Cn/2 −Cn/2

r ),∇Φr) + b3(un/2,Cn/2,Φr)

−b3(X (unr ),C
n/2
r ,Φr) + α3((I − PC,R)∇(Cn/2 −Cn/2

r ), (I − PC,R)∇ςr)

= α3((I − PC,R)∇Cn/2, (I − PC,R)∇ςr). (5.2.13)

for all (vr, Sr,Φr) ∈ (Xr,Wr,Ψr). We use the following notations for the decompo-

sition of the errors.

ηnu ∶= un − ũn, φnu,r ∶= unr − ũn,

ηnT = T n − T̃ n, φnT,r ∶= T nr − T̃ n,
ηnC = Cn − C̃n, φnC,r ∶= Cn

r − C̃n

(5.2.14)

Hence the errors can be denoted by

enu,r = ηnu −φnu,r, enT,r ∶= ηnT − φnT,r, enC,r ∶= ηnC − φnC,r (5.2.15)

where ũn, T̃ n, C̃n are L2 projections of un, T n, Cn in Xr, Wr, Ψr at time tn, respec-

tively.

We first derive the error estimation for the temperature. To do that, the error equation

for the temperature is rewritten as

(T (tn+1) − T (tn)
∆t

− T
n+1
r − T nr

∆t
, Sr) + γ(∇(T (tn/2) − T n/2r ),∇Sr)

+b2(u(tn/2), T (tn/2), Sr) − b2(X (unr ), T
n/2
r , Sr)

+α2((I − PT,R)∇(T (tn/2) − T n/2r ), (I − PT,R)∇Sr)

+(Tt(tn/2) −
T (tn+1) − T (tn)

∆t
, Sr)

= α2((I − PT,R)∇T (tn/2), (I − PT,R)∇Sr), (5.2.16)

Adding and subtracting

γ(∇(T (tn+1) + T (tn)
∆t

),∇Sr) + α2((I − PT,R)∇(T (tn+1) + T (tn)
∆t

), (I − PT,R)∇Sr)
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terms in (5.2.16) and utilizing (5.2.14) and setting Sr = φn/2T,r in (5.2.16) gives

(
φn+1
T,r − φnT,r

∆t
, φn+1

T,r ) + γ∥∇φ
n/2
T,r ∥2 + α2∥(I − PT,R)∇φn/2T,r ∥2

≤ ∣(η
n+1
T − ηnT

∆t
, φn+1

T,r )∣ + γ∣(∇η
n/2
T ,∇φn/2T,r )∣

+γ∣(∇(T (tn+1) + T (tn)
∆t

− T (tn/2)),∇φn/2T,r )∣2

+∣b2(u(tn/2), T (tn/2), φn/2T,r ) − b2(X (unr ), T
n/2
r , φ

n/2
T,r )∣

+α2∣((I − PT,R)∇ηn/2T , (I − PT,R)∇φn/2T,r)∣

+∣(T (tn+1) − T (tn)
∆t

− Tt(tn/2)), φn/2T,r )∣

+α2∣((I − PT,R)∇T (tn/2), (I − PT,R)∇Sr)∣

+α2∣((I − PT,R)∇(T (tn+1) + T (tn)
∆t

− T (tn/2)), (I − PT,R)∇Sr)∣.(5.2.17)

Using the fact that (ηn+1
T , φn+1

T,r ) = 0, and (ηnT , φn+1
T,r ) = 0 from the definition of L2

projection in (5.2.17), we get

1

2∆t
∥φn+1

T,r ∥2 + γ∥∇φn/2T,r ∥2 + α2∥(I − PT,R)∇φn/2T,r ∥2

≤ 1

2∆t
∥φnT,r∥ + γ∣(∇η

n/2
T ,∇φn/2T,r )∣ + γ∣(∇(T (tn+1) + T (tn)

∆t
− T (tn/2)),∇φn/2T,r )∣2

+∣b2(u(tn/2), T (tn/2), φn/2T,r ) − b2(X (unr ), T
n/2
r , φ

n/2
T,r )∣

+α2∣((I − PT,R)∇ηn/2T , (I − PT,R)∇φn/2T,r)∣

+α2∣((I − PT,R)∇T (tn/2), (I − PT,R)∇φn/2T,r)∣

+α2∣((I − PT,R)∇(T (tn+1) + T (tn)
∆t

− T (tn/2)), (I − PT,R)∇φn/2T,r)∣

+∣(T (tn+1) − T (tn)
∆t

− Tt(tn/2)), φn/2T,r )∣. (5.2.18)

Adding and subtracting terms

b2(u(tn/2) +X (unr ) +X (u(tn)), T (tn+1) + T (tn)
2

, φ
n/2
T,r )

to the nonlinear terms in (5.2.18) leads to

b2(u(tn/2), T (tn/2), φn/2T,r ) − b2(X (unr ), T
n/2
r , φ

n/2
T,r )

= b2(X (unr ), ηT n/2, φ
n/2
T,r ) − b2(X (unr ), φ

n/2
T,r , φ

n/2
T,r )

+b2(X (enu,r),
T (tn+1) + T (tn)

2
, φ

n/2
T,r )

90



+b2(u(tn/2), T (tn+1) + T (tn)
2

− Tn/2, φn/2T,r )

+b2(u(tn/2) −X (u(tn)), T (tn+1) + T (tn)
2

, φ
n/2
T,r )

+b2(u(tn/2), T (tn/2) − T (tn+1) + T (tn)
2

, φ
n/2
T,r )

Note that b2(un/2, φn+1
T,r , φ

n+1
T,r ) = 0. Using Cauchy-Schwarz and Young’s inequalities,

we obtain

1

2∆t
∥φn+1

T,r ∥2 + γ∥∇φn/2T,r ∥2 + α2∥(I − PT,R)∇φn/2T,r ∥2 ≤ 1

2∆t
∥φnT,r∥2

+γ∣(∇ηT n/2,∇φn/2T,r )∣ + γ∣(∇(T (tn+1) + T (tn)
∆t

− T (tn/2)),∇φn/2T,r )∣2

+∣b2(X (unr ), ηT n/2, φ
n/2
T,r )∣ + ∣b2(X (enu,r),

T (tn+1) + T (tn)
2

, φ
n/2
T,r )∣

+∣b2(u(tn/2), T (tn+1) + T (tn)
2

− Tn/2, φn/2T,r )∣

+∣b2(u(tn/2) −X (u(tn)), T (tn+1) + T (tn)
2

, φ
n/2
T,r )∣

+∣b2(u(tn/2), T (tn/2) − T (tn+1) + T (tn)
2

, φ
n/2
T,r )∣

+α2∣((I − PT,R)∇ηn/2T , (I − PT,R)∇φn/2T,r)∣

+α2∣((I − PT,R)∇T (tn/2), (I − PT,R)∇φn/2T,r)∣

+α2∣((I − PT,R)∇(T (tn+1) + T (tn)
∆t

− T (tn/2)), (I − PT,R)∇φn/2T,r)∣

+∣(T (tn+1) − T (tn)
∆t

− Tt(tn/2), φn/2T,r )∣. (5.2.19)

Next, we bound the second and third term in the right hand side of (5.2.19), by using

Lemma 1.2.13, Cauchy Schwarz, Young’s and Poincaré’s inequalities:

γ∣(∇ηT n/2,∇φn/2T,r )∣ ≤ Kγ∥∇ηT n/2∥2 + γ
6
∥∇φn/2T,r ∥2. (5.2.20)

γ∣(∇(T (tn+1) + T (tn)
∆t

− T (tn/2)),∇φn/2T,r )∣2 ≤ Kγ∆t4∥∇Ttt(t∗)∥2

+γ
6
∥∇φn/2T,r ∥2 (5.2.21)

The first nonlinear term right hand side of (5.2.19) can be rearranged adding and

subtracting the term b2(X (u(tn)), ηT n/2, φn/2T,r ) as

b2(X (unr ), ηT n/2, φ
n/2
T,r ) ≤ ∣b2(X (ηnu), ηT n/2, φ

n/2
T,r )∣ + ∣b2(X (φu,r), ηT n/2, φn/2T,r )∣

+∣b2(X (u(tn)), ηT n/2, φn/2T,r )∣ (5.2.22)
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To bound this nonlinear terms in the right hand side of (5.2.22), we use Lemma 1.3.1

and Young’s inequality

∣b2(X (ηnu), ηT n/2, φ
n/2
T,r )∣ ≤ Kγ−1(∥Dηnu∥2 + ∥Dηn−1

u ∥2)∥∇ηn/2T ∥2

+γ
6
∥∇φn/2T,r ∥2

∣b2(X (φu,r), ηT n/2, φn/2T,r )∣ ≤ Kγ−1h−1(∥φnu,r∥2 + ∥φn−1
u,r ∥2)∥∇ηn/2T ∥2

+γ
6
∥∇φn/2T,r ∥2

∣b2(X (u(tn)), ηT n/2, φn/2T,r )∣ ≤ Kγ−1(∥Du(tn)∥2 + ∥Du(tn−1)∥2)∥∇ηn/2T ∥2

+γ
6
∥∇φn/2T,r ∥2

Using similar techniques for the other nonlinear terms in the right hand side of (5.2.19),

we get

∣b2(X (enu),
T (tn+1) + T (tn)

2
, φ

n/2
T,r )∣

≤ Kγ−1(∥Dηnu∥2 + ∥Dηn−1
u ∥2 + h−1(∥φnu,r∥2 + ∥φn−1

u,r )∥2)∥∇(T (tn+1) + T (tn)
2

)∥2

+γ
6
∥∇(φn/2T,r )∥2

∣b2(u(tn/2), T (tn+1) + T (tn)
2

− T (tn/2), φn/2T,r )∣

≤ Kγ−1∆t4∥D(u(tn/2))∥2∥∇Ttt(t∗)∥2 + γ
6
∥∇φn/2T,r ∥2

∣b2(X (u(tn)) − u(tn/2), T (tn+1) + T (tn)
2

, φ
n/2
T,r )∣

≤ Kγ−1∥∇(X (u(tn)) − u(tn/2))∥2∥∇(T (tn+1) + T (tn)
2

)∥2 + γ
6
∥∇φn/2T,r ∥2

∣b2(u(tn/2), T (tn+1) + T (tn)
2

− T (tn/2), φn/2T,r )∣

≤ Kγ−1∆t4∥∇u(tn/2)∥2∥∇Ttt(t∗)∥2 + γ
6
∥∇φn/2T,r ∥2 (5.2.23)

The ninth, tenth, eleventh terms in (5.2.19) are bounded by using the fact that ∥(I −
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PT,R)∇w∥2 ≤ ∥∇w∥2

α2∣((I − PT,R)∇(T (tn+1) + T (tn)
∆t

− T (tn/2)), (I − PT,R)∇φn/2T,r)∣

+α2∣((I − PT,R)∇ηn/2T , (I − PT,R)∇φn/2T,r)∣

+α2∣((I − PT,R)∇T n/2, (I − PT,R)∇φn/2T,r)∣

≤ α2∥∇ηn/2T ∥2 + α2∥(I − PT,R)∇T n/2∥2 + α2∆t4∥(I − PT,R)∇Ttt∥2

+α2

2
∥(I − PT,R)∇φn/2T,r ∥2 (5.2.24)

For the last term in the right hand side of (5.2.19), we apply Cauchy Schwarz, Poincaré’s,

Young’s inequalities and Lemma 1.2.13 as

(T (tn+1) − T (tn)
∆t

− Tt(tn/2), φn/2T,r ) ≤ Kγ−1∆t4∥Tttt(t∗)∥2 + γ
6
∥∇φn/2T,r ∥2.(5.2.25)

Inserting (5.2.20)-(5.2.25) in (5.2.19), multiplying by 2∆t and summing over the time

steps produces

∥φMT,r∥2 + γ∆t
M−1

∑
n=0

∥∇φn/2T,r ∥2 + α2∆t
M−1

∑
n=0

∥(I − PT,R)∇φn/2T,r ∥2 ≤ ∥φ0
T,r∥2

+K∆t((γ + α2)
M−1

∑
n=0

∥∇ηT n/2∥2 + γ−1h−1
M−1

∑
n=0

(∥φnu,r∥2 + ∥φn−1
u,r ∥2)∥∇ηn/2T ∥2

+γ−1
M−1

∑
n=0

(1 + ∥Dηnu∥2 + ∥Dηn−1
u ∥2)∥∇ηn/2T ∥2 + γ−1(∥Dηnu∥2 + ∥Dηn−1

u ∥2

+h−1(∥φnu,r∥2 + ∥φn−1
u,r )∥2) +∆t4((γ + γ−1∥D(u(tn/2))∥2)∥∇Ttt(t∗)∥2

+γ−1∥Tttt(t∗)∥2 + α2∥(I − PT,R)∇Ttt(t∗)∥2) + α2∥(I − PT,R)∇T (tn/2)∥2).(5.2.26)

By using Lemma 2.1.4, Lemma 5.2.1, Assumption 2.2.1 and regularity assumptions

in (5.2.26) results in

∥φMT,r∥2 + γ∆t
M−1

∑
n=0

∥∇φn/2T,r ∥2 + α2∆t
M−1

∑
n=0

∥(I − PT,R)∇φn/2T,r ∥2

≤ ∥φ0
T,r∥2 +K(h2m + (∥ST,r∥2 + ∥ST,R∥2)h2m+2 + ε2

T,r + ε2
T,R

+(1 + h2m + ∥Su,r∥2h
2m+2 + ε2

u,r)(h2m + ∥ST,r∥2h
2m+2 + ε2

T,r)

+(∆t)4 + γ−1h−1
M−1

∑
n=0

(∥φnu,r∥2 + ∥φn−1
u,r ∥2)∥∇ηn/2T ∥2). (5.2.27)
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Similarly, the error estimation for the concentration is given by

∥φMC,r∥2 +Dc∆t
M−1

∑
n=0

∥∇φn/2C,r∥2 + α3∆t
M−1

∑
n=0

∥(I − PC,R)∇φn/2C,r∥2

≤ ∥φ0
C,r∥2 +K(h2m + (∥SC,r∥2 + ∥SC,R∥2)h2m+2 + ε2

C,r + ε2
C,R

+(1 + h2m + ∥Su,r∥2h
2m+2 + ε2

u,r)(h2m + ∥SC,r∥2h
2m+2 + ε2

C,r)

+(∆t)4 +D−1
c h

−1
M−1

∑
n=0

(∥φnu,r∥2 + ∥φn−1
u,r ∥2)∥∇ηn/2C ∥2). (5.2.28)

To obtain an estimation for the velocity we use similar arguments as above. Thus, in

a similar manner, for the velocity we add and subtract

2ν(D(u(tn+1) + u(tn)
2

),Dvr) + (Da−1(u(tn+1) + u(tn)
2

),vr)

−(p(t
n+1) + p(tn)

2
,∇ ⋅ vr)

+α1((I − Pu,R)D(u(tn+1) + u(tn)
2

), (I − Pu,R)Dvr)

−βT (g(
T (tn+1) + T (tn)

2
),vr) − βC(g(

C(tn+1) +C(tn)
2

),vr)

b1(u(tn/2) +X (urn) +X (u(tn)), u(tn+1) + u(tn)
2

,vr)

to (5.2.11) and letting vr = φn/2u,r in (5.1.2), and applying the polarization identity to

get

1

2∆t
∥φn+1

u,r ∥2 − 1

2∆t
∥φnu,r∥2 + 1

2∆t
∥φn+1

u,r −φnu,r∥2 + 2ν∥Dφn/2u,r ∥2

+α1∥(I − Pu,R)Dφn/2u,r ∥2 +Da−1∥φn/2u,r ∥2

≤ ∣βT (g(ηn/2T ),φn/2u,r )∣ + ∣βC(g(ηn/2C ),φn/2u,r )∣ + ∣βT (g(φn/2T,r ),φ
n/2
u,r )∣

+∣βC(g(φn/2C,r),φ
n/2
u,r )∣ + ∣βT (g(

T (tn+1) + T (tn)
2

− T n/2),φn/2u,r )∣

+∣βC(g(
C(tn+1) +C(tn)

2
−Cn/2),φn/2u,r )∣ + ∣(η

n+1
u − ηnu

∆t
,φn/2u,r )∣

+2ν∣(Dηu
n/2,Dφn/2u,r )∣ + 2ν∣(D(u(tn+1) + u(tn)

2
) −Du(tn/2),Dφn/2u,r )∣

+Da−1∣(ηu
n/2,φn/2u,r )∣ +Da−1∣((u(tn+1) + u(tn)

2
) − u(tn/2),φn/2u,r )∣

+α1∣((I − Pu,R)∇ηn/2u , (I − Pu,R)Dφn/2u,r )∣

+α1∣((I − Pu,R)Du(tn/2), (I − Pu,R)Dφn/2u,r )∣
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+α1∣((I − Pu,R)D(u(tn+1) + u(tn)
2

− u(tn/2), (I − Pu,R)Dφn/2u,r )∣

+∣b1(X (unr ), ηun/2, φ
n/2
u,r )∣ + ∣b1((X (ηnu),

u(tn+1) + u(tn)
2

, φ
n/2
u,r )∣

+∣b1((X (φnu,r),
u(tn+1) + u(tn)

2
, φ

n/2
u,r )∣

+∣b1(u(tn/2), u(tn+1) + u(tn)
2

− u(tn/2), φn/2u,r )∣

+∣b1((X (u(tn)) − u(tn/2), u(tn+1) + u(tn)
2

, φ
n/2
u,r )∣

+∣(p(t
n+1) + p(tn)

2
− p(tn/2),∇ ⋅φn/2u,r )∣

+∣(p(t
n+1) + p(tn)

2
− qh,∇ ⋅φn/2u,r )∣ + ∣(un+1 − un

∆t
− un+1

t ,φn/2u,r )∣. (5.2.29)

Note that (η
n+1
u − ηnu

∆t
,φn/2u,r) = 0 due to the definition of the L2 projection. Each of

the terms in (5.2.29) can be bounded in a similar manner. Thus, one gets

∣βT (g(ηn/2T ),φn/2u,r )∣ + ∣βC(g(ηn/2C ),φn/2u,r )∣ + ∣βT (g(φn/2T,r ),φ
n/2
u,r )∣

+∣βC(g(φn/2C,r),φ
n/2
u,r )∣ + ∣βT (g(

T (tn+1) + T (tn)
2

− T (tn/2)),φn/2u,r )∣

+∣βC(g(
C(tn+1) +C(tn)

2
−C(tn/2)),φn/2u,r )∣

≤ Kν−1∥g∥2
∞(β2

T (∥η
n/2
T ∥2 + ∥φn/2T,r ∥2 +∆t4∥Ttt(⋅, t̃)∥2)

+β2
C(∥η

n/2
C ∥2 + ∥φn/2C,r∥2 +∆t4∥Ctt(t∗)∥2)) + ν

10
∥Dφn/2u,r ∥2, (5.2.30)

2ν∣(Dηn/2u ,Dφn/2u,r )∣ + 2ν∣(D(u(tn+1) + u(tn)
2

) −Du(tn/2),Dφn/2u,r )∣

≤ Kν(∥Dηn/2u ∥2 +∆t4∥Dutt(⋅, t̃)∥2) + ν

10
∥Dφn/2u,r ∥2, (5.2.31)

Da−1∣(ηn/2u ,φn/2u,r )∣ +Da−1∣((u(tn+1) + u(tn)
2

) − u(tn/2),φn/2u,r )∣

≤ KDa−1(∥ηn/2u ∥2 +∆t4∥utt(t∗)∥2) + Da
−1

2
∥φn/2u,r ∥2, (5.2.32)

∣(p(t
n+1) + p(tn)

2
− p(tn/2),∇ ⋅φn/2u,r )∣ + ∣(p(t

n+1) + p(tn)
2

− qh,∇ ⋅φn/2u,r )∣

≤ Kν−1(∆t4 ∥ptt(t∗)∥2 + ∥p(t
n+1) + p(tn)

2
− qh∥

2

) + ν

10
∥Dφn/2u,r ∥

2
,(5.2.33)
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∣(un+1
t − un+1 − un

∆t
,φn/2u,r )∣ ≤Kν−1∆t4∥uttt(t∗)∥2 + ν

10
∥Dφn/2u,r ∥

2
, (5.2.34)

α1∣((I − Pu,R)D(u(tn+1) + u(tn)
2

− u(tn/2)), (I − Pu,R)Dφn/2u,r )∣

+α1∣((I − Pu,R)∇ηn/2u , (I − Pu,R)Dφn/2u,r )∣

+α1∣((I − Pu,R)Du(tn/2), (I − Pu,R)Dφn/2u,r )∣

≤ Kα1(∆t4∥(I − Pu,R)Dutt(t∗)∥2 + ∥∇ηn/2u ∥2 + ∥(I − Pu,R)Du(tn/2)∥2)

+α1

2
∥(I − Pu,R)Dφn/2u,r ∥2. (5.2.35)

The first nonlinear terms are organized as

∣b1(X (unr ), ηun/2, φ
n/2
u,r )∣ ≤ ∣b1(X (u(tn)), ηun/2, φn/2u,r )∣

+∣b1(X (ηnu), ηun/2, φ
n/2
u,r )∣ + ∣b1(X (φnu,r), ηun/2, φ

n/2
u,r )∣ (5.2.36)

The nonlinear terms in (5.2.36) are bounded as before:

∣b1(X (u(tn)), ηun/2, φn/2u,r )∣

≤ Kν−1(∥Du(tn)∥2 + ∥Du(tn−1)∥2)∥Dηun/2∥2 + ν

10
∥Dφn/2u,r ∥2

∣b1(X (ηnu), ηun/2, φ
n/2
u,r )∣

≤ Kν−1(∥Dηnu∥2 + ∥Dηn−1
u ∥2)∥Dηun/2∥2 + ν

10
∥Dφn/2u,r ∥2

∣b1(X (φnu,r), ηun/2, φ
n/2
u,r )∣

≤ Kν−1h−1(∥φnu,r∥2 + ∥φn−1
u,r )∥2)∥Dηun/2∥2 + ν

10
∥Dφn/2u,r ∥2

Similarly, the other nonlinear terms can be bounded as

∣b1((X (ηnu),
u(tn+1) + u(tn)

2
, φ

n/2
u,r )∣ + ∣b1((X (φnu,r),

u(tn+1) + u(tn)
2

, φ
n/2
u,r )∣

≤ Kν−1(∥Dηnu∥2 + ∥Dηn−1
u ∥2 + h−1(∥φnu,r∥2 + ∥φn−1

u,r ∥2))∥D(u(tn+1) + u(tn)
2

)∥2

+ ν
10

∥Dφn/2u,r ∥2

∣b1(u(tn/2), u(tn+1) + u(tn)
2

− u(tn/2), φn/2u,r )∣

≤ Kν−1∆t4∥Du(tn/2)∥2∥Dutt(t∗)∥2 + ν

10
∥Dφn/2u,r ∥2

b1((X (u(tn)) − u(tn/2), u(tn+1) + u(tn)
2

, φ
n/2
u,r )∣

≤ Kν−1∥D(X (u(tn)) − u(tn/2))∥2∥D(u(tn+1) + u(tn)
2

)∥2 + ν

10
∥Dφn/2u,r ∥2.(5.2.37)
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We now insert (5.2.30)-(5.2.37) into (5.2.29) and use regularity assumptions to get

1

2∆t
∥φn+1

u,r ∥2 − 1

2∆t
∥φnu,r∥2 + 1

2∆t
∥φn+1

u,r −φnu,r∥2

+ν∥Dφn/2u,r ∥2 + Da
−1

2
∥φn/2u,r ∥2 + α1

2
∥(I − Pu,R)Dφn/2u,r ∥2

≤ K(ν−1∥g∥2
∞(β2

T ∥φ
n/2
T,r ∥2 + β2

C∥φ
n/2
C,r∥2) + ∥ηn/2T ∥2 + ∥ηn/2C ∥2

+∥ηu
n/2∥2 + ∥Dηu

n/2∥2(1 + ∥Dηnu∥2 + ∥Dηn−1
u ∥2)

+ν−1h−1(∥Dηu
n/2∥2 + ∥D(u(tn+1) + u(tn)

2
)∥2)(∥φnu,r∥2 + ∥φn−1

u,r ∥2)

+α1∥(I − Pu,R)Du(tn/2)∥2 + ∥p(t
n+1) + p(tn)

2
− qh∥2

+ν−1∥g∥2
∞∆t4(β2

T ∥Ttt(⋅, t̃)∥2 + β2
C∥Ctt(t∗)∥2)

+(ν + ν−1∥Du(tn/2)∥2)∆t4∥Dutt(⋅, t̃)∥2 +Da−1∆t4∥utt(t∗)∥2

+ν−1∆t4 ∥ptt(t∗)∥2 + ν−1∆t4∥uttt(t∗)∥2

+∆t4α1∥(I − Pu,R)Dutt(t∗)∥2). (5.2.38)

Dropping the third term in the left hand side of (5.2.38) and summing over the time

steps and multiplying by 2∆t gives

∥φMu,r∥2 +∆t
M−1

∑
n=0

(2ν∥Dφn/2u,r ∥2 +Da−1∥φn/2u,r ∥2 + α1∥(I − Pu,R)Dφn/2u,r ∥2)

≤ ∥φ0
u,r∥2 +K∆t(ν−1∥g∥2

∞

M−1

∑
n=0

(β2
T ∥φ

n/2
T,r ∥2 + β2

C∥φ
n/2
C,r∥2)

+
M−1

∑
n=0

(∥ηn/2T ∥2 + ∥ηn/2C ∥2 + ∥ηu
n/2∥2)

+
M−1

∑
n=0

∥Dηu
n/2∥2(1 + ∥Dηnu∥2 + ∥Dηn−1

u ∥2)

+ν−1h−1
M−1

∑
n=0

(∥Dηu
n/2∥2 + ∥D(u(tn+1) + u(tn)

2
)∥2)(∥φnu,r∥2 + ∥φn−1

u,r ∥2)

+α1

M−1

∑
n=0

∥(I − Pu,R)Du(tn/2)∥2 +
M−1

∑
n=0

∥p(t
n+1) + p(tn)

2
− qh∥2

+∆t4(ν−1∥g∥2
∞

M−1

∑
n=0

(β2
T ∥Ttt(⋅, t̃)∥2 + β2

C∥Ctt(t∗)∥2)

+
M−1

∑
n=0

(ν + ν−1∥Du(tn/2)∥2)∥Dutt(⋅, t̃)∥2 +Da−1
M−1

∑
n=0

∥utt(t∗)∥2

+ν−1
M−1

∑
n=0

∥ptt(t∗)∥2 + ν−1
M−1

∑
n=0

∥uttt(t∗)∥2 + α1

M−1

∑
n=0

∥(I − Pu,R)Dutt(t∗)∥2)).

Using Lemma 2.1.4, Lemma 5.2.1, Assumption 2.2.1 in (5.2.39) and applying regu-
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larity assumptions leads to

∥φMu,r∥2 +∆t
M−1

∑
n=0

(2ν∥Dφn/2u,r ∥2 +Da−1∥φn/2u,r ∥2)

+α1

M−1

∑
n=0

∥(I − Pu,R)Dφn/2u,r ∥2

≤ ∥φ0
u,r∥2 +K

⎛
⎝
ν−1β2

T ∥g∥2
∞∆t

M−1

∑
n=0

∥φn/2T,r ∥2 + ν−1β2
C∥g∥2

∞∆t
M−1

∑
n=0

∥φn/2C,r∥2

+h2m + (1 + ∥Su,r∥2 + ∥Su,R∥2)h2m+2 + ε2
u,r + ε2

u,R +
d

∑
i=r1+1

λi +
d

∑
i=r2+1

µi

+
d

∑
i=r3+1

ξi + (∆t)4 + (h2m + (∥Su,r∥2 + ∥Su,R∥2)h2m+2 + ε2
u,r)2

+ν−1h−1(h2m + ∥Su,r∥h2m+2 + εu,r + ∥Du∥2
∞)

M−1

∑
n=0

(∥φnu,r∥2)
⎞
⎠
. (5.2.39)

Finally, we add (5.2.27), (5.2.28) and (5.2.39) to get

∥φMu,r∥2 + ∥φMT,r∥2 + ∥φMC,r∥2 +
M−1

∑
n=0

(2ν∆t∥Dφn/2u,r ∥2 +Da−1∆t∥φn/2u,r ∥2)

+γ∆t
M−1

∑
n=0

∥∇φn/2T,r ∥2 +Dc∆t
M−1

∑
n=0

∥∇φn/2C,r∥2 + α1∥(I − Pu,R)Dφn/2u,r ∥2

+α2∆t
M−1

∑
n=0

∥(I − PT,R)∇φn/2T,r ∥2 + α3∆t
M−1

∑
n=0

∥(I − PC,R)∇φn/2C,r∥2

≤ ∥u0
r − ũ0∥2 + ∥T 0

r − T̃ 0∥2 + ∥C0
r − C̃0∥2 +K

⎛
⎝
ν−1β2

T ∥g∥2
∞∆t

M−1

∑
n=0

∥φn/2T,r ∥2

+ν−1β2
C∥g∥2

∞∆t
M−1

∑
n=0

∥φn+1
C,r ∥2 + h2m + (∥Su,r∥2 + ∥Su,R∥2 + ∥ST,r∥2 + ∥ST,R∥2

+∥SC,r∥2 + ∥SC,R∥2)h2m+2 + ε2
u,r + ε2

u,R + ε2
T,r + ε2

T,R + ε2
C,r + ε2

C,R + (∆t)4

+(h2m + ∥Su,r∥2h
2m+2 + ε2

u,r) × (h2m + (∥Su,r∥2 + ∥ST,r∥2 + ∥SC,r∥2)h2m+2

+ε2
u,r + ε2

T,r + ε2
C,r) +

d

∑
i=r1+1

λi +
d

∑
i=r2+1

µi +
d

∑
i=r3+1

ξi

+((ν−1 + γ−1 +D−1
c )h2m−1 + (∥Su,r∥ + ∥ST,r∥ + ∥SC,r∥)h2m+1

+ν−1h−1εu,r + γ−1h−1εT,r +D−1
c h

−1εC,r + ∥Du∥2
∞)

M−1

∑
n=0

∥φnu,r∥2
⎞
⎠
.
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We remark that the application of the discrete Gronwall inequality requires an as-

sumption on the time step size. The final error estimation can be obtained by using

the assumption (u0
r, T

0
r ,C

0
r ) = (ũ0, T̃ 0, C̃0), the triangle inequality, Assumption 2.1.1

and Assumption 2.2.1.

5.3 Numerical Experiments

In this section, the numerical experiments for the linearly extrapolated schemes de-

scribed by (5.1.2)-(5.1.4) are illustrated. The numerical experiments include a con-

vergence test experiment with respect to VMS-POD modes R and a comparison test

experiment by considering POD and VMS-POD solutions.

5.3.1 Problem description

In the numerical experiments, we choose the same test problem with Chapter 4. We

also select the time step ∆t = 1.5625e − 05, POD basis number r = 12, the kinematic

viscosity ν = 1. Recall that we use snapshots come from DNS obtained by finite

element spatial discretization. Thus, to get fine mesh solution for snapshots, we use

BDF2 finite element method with Ra = 104 and ∆t = 0.00025 with 30 × 60 uniform

triangulation. In this case, one gets 59,255 total degrees of freedom for Taylor-Hood

elements and piecewise quadratics for both temperature and concentration.

5.3.2 Test 1: Convergence rates with respect to R

We evaluate the convergence rates of VMS-POD solution to measure the effect of

the error sources. POD and VMS cutoffs become dominant sources when the spatial

error and the temporal error are neglected. Our special interest is the scaling of the

error with respect to R. The VMS contributions for the velocity, the temperature, and

the concentration are defined by

εu,R =
¿
ÁÁÀ d

∑
j=R+1

∥ψj∥2
1λj, εT,R =

¿
ÁÁÀ d

∑
j=R+1

∥φj∥2
1µj, εC,R =

¿
ÁÁÀ d

∑
j=R+1

∥ηj∥2
1ξj.
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We choose the artificial viscosities α1 = 2, α2 = 1
8 , α3 = 1

8 for the velocity, the

temperature and the concentration, respectively. The results of this test are shown in

Table 5.1.

Table 5.1: Convergence of the VMS-POD for varying R

r R εu ∥∇(u − ur)∥L2(H1) rate εT ∥∇(T − Tr)∥L2(H1) rate

12 4 21.8237 0.63196 - 1.5694 0.01427 -

12 6 8.8818 0.22636 1.14 0.4319 0.00823 0.42

12 8 4.4168 0.13008 0.79 0.1842 0.00416 0.80

r R εC ∥∇(C −Cr)∥L2(H1) rate

12 4 1.5529 0.02991 -

12 6 0.6768 0.01468 0.85

12 8 0.3858 0.00927 0.81

As seen in Table 5.1, the rates of error in L2(0, T ;H1(Ω)) consistent with 0.5 ex-

pected by the analysis.

5.3.3 Test 2: Comparison of POD solution and VMS-POD solution

In this test, we check the ability of VMS method. We fix R = 5, α1 = α2 = α3 = 10−3.

Figure 5.1 shows decreasing behaviours of L2 errors in the velocity, the temperature,

and the concentration. These figures indicate that the L2 errors in VMS-POD solu-

tions improve the behaviour of the errors for each fluid variables compared with the

POD solutions.
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Figure 5.1: L2 errors of stabilized and unstabilized solution

For a final test, we consider the similar test with Chapter 4 but with even higher

Rayleigh number, Ra = 106. Here, even with 40 modes, the POD is unable to give

a good solution (see Figure 5.2), which is expected since Figure 4.1 shows a very

slow decay of the eigenvalues of the snapshot matrix. As seen in the Figure 5.2, for

Ra = 106, unstabilized POD did not matches with DNS solutions, but VMS-POD

gave good qualitative results.
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DNS POD VMS-POD
(r = 40) (r = 40, R = 20)

Figure 5.2: Shown above are Ra = 106 solution plots for the simulations using DNS,

POD and VMS-POD using 40 modes at t = 0.75.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In the first part of the thesis, we proposed, analyzed and tested a VMS-POD method

for incompressible NSE simulation, where the stabilization is completely decoupled

into the second step of a two step implementation at each time step. Decoupling of

the stabilization has the advantage of easily being incorporated into existing POD-G

codes, and also that stabilization parameters can be adjusted only in the stabilization

step (and not as part of the evolution equation). We rigorously prove an error estimate

for the model, in terms of the number of POD modes r, the stabilization parameters

R (number of modes not to add stabilization to) and νT , as well as the time step size

∆t and the mesh width h of the underlying FEM simulation that produced the POD

modes.

Results from several numerical experiments are provided that how effective the method

can be. In particular, we show for 2D channel flow past a step, POD-G has an energy

growth that causes poor lift and drag prediction, especially for longer times. The pro-

posed VMS-POD is able to fix this by stabilizing so that the energy matches the DNS

energy, which in turn leads to excellent lift and drag prediction, even up to t = 10 (and

from the plots, it appear the accurate predictions can continue for even longer time).

In the second part of the thesis extended the POD-ROM methodology to the Darcy-

Brinkman double diffusion system is presented. Under the usual assumptions, we

proved stability and convergence results for the POD-ROM scheme, and gave results

of several numerical tests. Our tests showed very good results for Rayleigh numbers

Ra = 104, 105, which were accurately simulated with r = 10 and r = 20, respectively.

For higher Ra, POD-ROM did not perform well without stabilization, but with a

VMS-type stabilization developed in Chapter 3, the stabilized it gave good qualitative
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results.

In the third part of the thesis, we presented the extrapolated Crank Nicholson VMS-

POD method for Darcy Brinkman equations with double diffusive convection. We

performed the stability and the error analyses for the proposed scheme. The approach

uses reduce order modelling by POD approach and increases numerical stability by

adding artificial diffusion term with a projection based VMS method. Numerical

experiments verified the efficiency of the algorithm (5.1.2)-(5.1.4).

This research will include some inspiring future directions. One of the possible di-

rection is to work on selection of eddy viscosity coefficient νT . We carry out our

analysis in Chapter 3 and Chapter 5 for bounded, positive and element-wise constant

νT . The nonlinear νT produces more complex mathematical theory due to the strong

monotonicity. Hence, the nonconstant and the nonlinear case of νT should also be

examined.

Another direction is the choice of optimal snapshots. It plays an important role in

improving the performance of the POD method. One could increase the success of

POD method by using the trust region philosophy in TRPOD method or creating a

special Voronoi cluster of snapshots in CVT method.

The problems studied in this thesis are nonlinear. The POD method can not decrease

the process time of the nonlinear equations sufficiently. Therefore, the efficiency of

the POD method must be increased by using empirical methods like EIM and DEIM.

We showed that POD is an effective approach for simulating NSE and Darcy-Brinkman

with double diffusive convection. Also, the POD ideas herein should be applied for

other multiphysics problems. For turbulence case, the optimal stabilization strategies

should be used. In such a case, the post-processing VMS method may be used to

support the POD method similar to Chapter 3. The stabilization step could be imple-

mented as coupled or decoupled.
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