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Head of Department, Computer Engineering

Prof. Dr. Halit Oğuztüzün
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ABSTRACT

MULTI–TARGET IMPLEMENTATION OF A DOMAIN SPECIFIC
LANGUAGE FOR EXTENDED FEATURE MODELS

Demirtaş, Görkem

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Halit Oğuztüzün

December 2018, 62 pages

Translation of feature models to constraint logic programs is an effective method to

enable their automated analysis using existing constraint solvers. More flexibility

can be offered for building and application of analysis operations on extended fea-

ture models by providing a syntax and mechanism for interfacing the host solver with

user defined constraint predicates. These constraints, such as global constraints, can

be provided by the constraint solver runtime or by the translator itself as a part of

the output. The translator defines a specific parameter passing mechanism for each

target environment to be used by the programmer who creates the binding between

the translator and the environment. These constraint predicates can use external data

sources such as relational databases and application specific algorithms thus sepa-

rating the concerns of building the model and incorporating domain requirements in

analysis steps. In practice such constraints reduce the labeling possibilities for the

solver, thereby narrowing down the set of results, i.e. a product’s configurations.

We describe the design and implementation of an extended feature model compiler

supporting syntax for arbitrary predicates, that targets multiple constraint solvers.
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ÖZ

GENİŞLETİLMİŞ ÖZELLİK MODELLERİ İÇİN BİR ALANA ÖZGÜ
DİLİN ÇOK HEDEFLİ GERÇEKLEŞTİRİMİ

Demirtaş, Görkem

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Halit Oğuztüzün

Aralık 2018 , 62 sayfa

Özellik modellerinin kısıtlı mantık programına dönüştürülmesi, var olan kısıt prob-

lemi çözücüler ile bu modellerin otomatik analizi için etkili bir yöntemdir. Hedef

kısıtlı mantık programına kullanıcı tanımlı kısıt yüklemleri eklemek için bir sözdi-

zimi ve mekanizma sunulması, model geliştirme ve analiz aşamalarına esneklik ka-

zandırabilir. Bu kısıtlar, örneğin evrensel kısıtlar, kısıt problemi çözücü tarafından

veya derleyici çıktısına dahil olarak tanımlanabilir. Derleyici ve hedef çalışma or-

tamı arasındaki bağlantıyı kuracak programcının kullanımı için derleyici hedefe özgü

bir parametre alma mekanizması tanımlar. Bu mekanizma ile tanımlanan kısıtlar, dış

veri tabanları ve uygulamaya özgü algoritmalar kullanabilir böylece modelin oluş-

turulması ve alana bağlı gereksinimlerin analize dahil edilmesi süreçleri birbirinden

bağımsız hale getirilebilir. Uygulamada bu kısıtlar, çözüm değişkenlerinin alabileceği

değerleri kısıtlayarak sonuç ürün yapılandırma kümesini küçülmesini sağlar. Bu ça-

lışmada, farklı kısıt problemi çözücü ortamlarını destekleyen bir genişletimiş özellik

modeli derleyicisi kaynak dil sözdizimi, kullanıcı tanımlı yüklem etkileşim mekaniz-

ması ile anlatılmıştır.
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CHAPTER 1

INTRODUCTION

1.1 Scope

In this study, a domain specific language (DSL) is defined for describing extended

feature models with feature and group cardinalities, feature attributes and arbitrary

constraint predicates over features and attributes. A compiler has been developed to

translate feature models to constraint satisfaction problems (CSP) for a target con-

straint solver. The compiler also provides basic feature model analysis operations,

several constraint predicates and a mechanism for interfacing the host solver with the

feature model itself, for user defined constraint predicates. Optimization, analysis

and input–output reporting within the DSL are not covered. Feature model import,

export and composition operations are not provided. Complex attribute types are not

handled.

1.2 Contributions

The language of the compiler developed is based on the syntax defined in [18] with

extensions for declaring signatures for user defined predicates. Such predicates fol-

low a well defined interface between the compiler and its target environments. The

grammar has been defined in Lemon ([14]) and Ragel ([26]) syntax. As constraint

solver environments, GNU Prolog ([10]), Choco ([23]) and Gecode ([12]) targets

have been implemented. One of the important features of the language and its com-

piler described herein is that they are text based. Thus, a specialized environment is
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not needed for development, storage and sharing of the feature models. The imple-

mentation source code can be accessed at [13].

Relationships and attributes in a feature model can be thought as a static design which

describes a product in terms of broad requirements. As an example, a very fine

grained feature model might enumerate all of the possible values of some attribute

but it will be syntactically heavy and hard to comprehend or might not be even possi-

ble in practice. With syntax support, that attribute can be a parameter of a constraint

predicate. Such use allows the designer to declare the domain of the attribute in broad

terms and delegate the concern of refining the value to some other source of truth such

as a database or an algorithm in an external library.

Another use case of predicate syntax is defining a set of attributes that must have

values in relation to each other, which does not have a convenient syntax if not for

the constraint predicates. As an obvious example, a predicate can build an SQL query

with the supplied attribute references as a row of data to be matched and get the

possible values from a database. Administration of such a database can be delegated,

for example, to an inventory management system.

While existing syntax allows definition of some constraint on a feature model, it might

not have enough performance. A native implementation of the same constraint can be

provided to the model by the user in the form of a predicate. Also an external library

might be required for a constraint in a model and a predicate which integrates such

a library can be provided. Implementation of a predicate is done for a host solver

environment once and can be used for any feature model later on.

1.3 Overview

In chapter 2 several concepts such as feature model relations that underlie the domain

are explained. In chapter 3, a syntax expressing these concepts and semantic mapping

of the constructed model to a CSP are defined. In chapter 4, implementation details

such as parsing method and code generation for multiple targets is described. In

chapter 5, analysis of the feature model is explained. In chapter 6, an overall summary

of development is given and future study topics are proposed.
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CHAPTER 2

BACKGROUND

2.1 Domain Specific Languages

Domain specific languages (DSLs) are described in [22] as follows:

Domain-specific languages (DSLs) are languages tailored to a spe-

cific application domain. They offer substantial gains in expressiveness

and ease of use compared with general-purpose programming languages

in their domain of application.

Specific application domain here is defining feature models through relations between

features and constraints over attributes. The compiler implements a free standing DSL

([11]) to generate code for target solver environments that allows executing analysis

operations on the feature model.

2.2 Extended Feature Models

Feature models (FM) are a popular notation for defining product line variability and

commonality with many variants and extensions described in literature. They rep-

resent a set of possible products in terms of hierarchical set of features. They are

composed of relations between parent and child features and cross-tree constraints

between the branches of the hierarchy ([16],[5]). If the parent feature is not included,

its child features are not included in a product as well. Feature relations are briefly;
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• Mandatory: Child feature must be included if the parent feature is included in

the product.

• Optional: Child feature may be included or not if the parent feature is included.

• Alternative: Within a set of child features, exactly one of them must be included

if the parent feature is included.

• Or: Within a set of child features, at least one of them must be included if the

parent feature is included.

• Requires: If feature A requires B, both features must be included in a product,

if feature A is included.

• Excludes: Given two features, if one of them is included in a product, the other

cannot be included.

Further constraints can be defined via logical operators on features which are treated

as boolean variables ([18]). In this case, requires can be defined as an implication

and excludes can be defined as a negation of an and operation.

An extension to the basic feature model is cardinalities as introduced in ([24],[9]):

• Feature cardinality: Cardinality of a child feature defines the number of its

instances that can be included in a product, denoted by a sequence of intervals

[n..m] each with a lower bound n and an upper bound m. It is a generalization

of the mandatory ([1..1]) and optional ([0..1]) relations.

• Group cardinality: An interval < n−m > that defines the number of features

from a set of child features that can be included in the product where at least n

and at most m features must be selected. It is a generalization of the alternative

(< 1− 1 >) and or (< 1− n > where n is the size of the set of child features)

relations.

Attributes are information about the features and consist of a name, a domain and

a value at the minimum ([16],[4],[5]). Similar to the logical constraints on features,

arithmetic, relational and logical operators can be used on attributes to define complex

4



constraints in a model. As a further generalization, propositional logic clauses can be

used over a set of attributes ([17]).

2.3 Feature Models as Constraint Programs

A solution to a constraint satisfaction problem is, essentially, assignment of values

to a set of variables from their respective domains, simultaneously satisfying a set of

propositions over these variables. Aim of translating feature models to CSPs is to

use existing constraint solvers such as Gnu Prolog [10] or Choco Solver [23] to find

valid product configurations and analyze the model. Further information on constraint

logic programming and its application on feature models can be found in [15] and

[20]. By using a constraint solver which features variables with integer domains and

constraints that operate on integer values, feature models can be mapped to constraint

logic programming (CPL) clauses succinctly ([21], [5]). Global constraints can also

be used within the model and mapped as described in [17] for more expressive power.

First step of finding solutions to a CSP is declaring variables and their domains. Next,

arithmetic and logical constraints over these variables are defined and stored in a con-

straint set. A goal is defined to determine the set of solutions of interest, such as an

optimization of some value or simply a valid solution. In the solving phase, propaga-

tion and labeling is done repeatedly to find the solutions. Propagation is repeatedly

reducing the domains of the variables with respect to the constraints on them, until

no further removal of values from the domains are possible. Labeling is assigning

variables a value from their domain without violating any of the constraints. Depend-

ing on the goal, labeling continues with a different value from the domain, picked

according to the search strategy given while setting up the goal, adding additional

constraints if necessary. It continues until no new value can be assigned ([10]). For

example, maximizing a certain variable can involve assigning the maximum possible

value from its domain and continue labeling other variables. Upon failure, a tem-

porary constraint can be added to reduce the domain of the variable of interest, a

backtrack information is stored to roll back the additional constraint and labeling is

retried.
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2.4 Feature Model Analysis

Here we will mention some of the concepts and analysis operations relevant to our

study, explained in detail in [5].

• Full Configuration: It is the complete sets of selected and unselected features.

In this study, an assignment of values to all of the attributes are also considered

as a part of the full configuration.

• Product: A valid full configuration with respect to the feature model given.

• Partial Configuration: If the union of selected and unselected features doesn’t

cover all of the features in the model, it is a partial configuration. In this study,

a partial assignment of attributes is also considered as a partial configuration,

even if all of the features defined in the model is covered by selected and unse-

lected feature sets.

• Valid Configuration: If selected and unselected sets of features don’t violate

any of the relations declared in the model, it is a valid configuration. Here, we

also consider assignments of attributes.

• Filtering: Given a feature model and a configuration, filtering is derivation of

products that include the input configuration. For example, given a feature

model of a mobile phone, finding all products with WiFi functionality.

• Core features: Set of features that are selected for all of the products.

• Dead features: Set of features that are unselected for all of the products. They

often indicate an error in the model.

• Variant features: Set of features that are not in the core or dead feature sets.

• Product count: Given a partial configuration, the count of valid products that

include the partial configuration or count of all products that can be derived if

no partial configuration is given.
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2.5 Related Work

There are several visual and textual tools which implement the extensions to the basic

feature models in differing capacities. However they do not support arbitrary con-

straint predicates as a part of feature model definitions or have limited support. Short

descriptions of some relevant tools are given here:

• AHEAD Tool Suite ([3]): It provides feature oriented programming by com-

posing feature implementations in Java. One relevant tool is guidsl which

takes feature model descriptions and allows building product configurations.

The syntax only describes feature relations.

• FAMA Framework ([6]): It is a framework and a visual tool to design and

analyze feature models. It can integrate different solvers for analysis. One of

the internal feature model representation languages is called AFM which has

syntax for attributes and cross tree relations.

• FeatureIDE ([19]): It is a visual editor for feature models which can be exported

to several formats. The output can be used for code generation or feature model

analysis by other tools. It does not have attribute editing functionality.

• S2T2 ([7]): It is a visual tool for feature model design and basic analysis. It

does not handle attributes.

• TVL ([8]): It is a DSL for defining extended feature models. It has syntax

for complex types for attribute values and a predefined set of functions. The

reference compiler can be used for validity checking and converting a model to

a CSP problem in DIMACS format.

• Clafer ([2]): It is a DSL for defining extended feature models which are com-

posable. The syntax contains constructs for optimization goals. There is a suite

of tools to visually design feature models, perform analysis and generate prod-

uct configurations.

7



• VariaMos ([21]): It is a visual tool for design and analysis of extended feature

models. It can generate code for a target constraint solver and has facilities to

interface with the target syntax, including predicates. It does not implement a

textual DSL.

• Familiar ([1]): It is a highly interactive tool for analysis, modification and com-

position of feature models, with syntax for import, export, and reporting fa-

cilities. It can process various feature model file formats. It does not handle

attributes.

• Velvet ([25]): A DSL for describing feature models with syntax for attributes.

The syntax of our DSL resembles TVL ([8]) without scopes and expressiveness is

comparable to VariaMos ([21]) which also include predicate support. Our implemen-

tation combines the flexibility of the text based tools with the analysis capabilities of

graphical tools.
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CHAPTER 3

SYNTAX AND SEMANTICS

A new DSL is implemented for extended feature models based on the syntax de-

scribed in [18]. To include arbitrary predicates in the feature model description, the

syntax of predicate parameters includes constructs for;

• Non negative integer and boolean constants.

• Feature references.

• References to existing arbitrary symbols in the host environment.

• Sets of attribute references, grouped by name or feature.

• Neutral values for attributes of unselected features as described in [17].

One important deviation of this implementation from [18] is that, neutral values are

always passed instead of elimination of attributes for unselected features as described

in [17]. The number of parameters passed to a predicate is determined at compile

time and does not change at runtime due to implementation considerations.

3.1 Grammar

Syntax is given in EBNF notation and literal classes in regular expression notation.

Comments start with /* and end with */ for multiple lines and start with // and end

with a newline. Comments are omitted from the grammar given here. Annotations

and examples are interleaved to explain some of the details. Line numbers are used

for referencing the production rules in the following sections.
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Table 3.1: Operator associativity and precedence (lower to higher)

Associativity Operator

left if then

left excludes requires

left iff <->

left implies ->

left or |

left and &

left < > <= >= == !=

left + -

left / * mod

right not - (unary)

left . #

left ()

<digit> ::= "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"

<letter> ::= "_"|"a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"

|"k"|"l"|"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"v"|"x"|"y"

|"z"|"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"

|"N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"X"|"Y"|"Z"

1. <root> ::= <rulelist>

2. <rulelist> ::= <rule> ";" { <rule> ";" }

3. <name> ::= <letter> { <letter> | <digit> }

4. <int> ::= <digit> { <digit> }

Input consists of statements which are terminated by ;. Feature relationships are

in the top level. parent ! child denotes a mandatory relation between the

parent feature and its child. Similarly, parent ? child is an optional

relation. A relation with a domain like parent [1..3] child denotes a re-

lation with feature cardinality. Set of features like {f1, f2, f3} is used for the
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alternative relation (!), or relation (!+) and relation with group cardinality (e.g.

<1-3>). Group cardinality syntax is more restrictive than full domain syntax such

that it doesn’t allow multiple intervals.

5. <rule> ::= <adecl>

6. | <cexpr>

7. | <call>

8. | <name> "!" <name>

9. | <name> "?" <name>

10. | <name> "!" <ruledeps>

11. | <name> "!" "+" <ruledeps>

12. | <name> <domain> <name>

13. | <name> "<" <int> "-" <int> ">" <ruledeps>

14. <ruledeps> ::= "{" <siblings> "}"

15. <siblings> ::= <name> { "," <name> }

Domains can be a series of non overlapping and increasing intervals of non negative

integer values like [1..8] and [2..4][7..9] or enumeration of increasing non

negative integers like {3,6,9}.

16. <domain_r> ::=

"[" <int> ".." <int> "]" {"[" <int> ".." <int> "]"}

17. <domainlist> ::= <int> { "," <int> }

18. <domain> ::= <domain_r>

19. | "{" <domainlist> "}"
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A clone feature declared by feature cardinality syntax can be referenced by an index-

ing such as f#0. Indexing is zero based. Clone children of a clone feature in the

dependency tree has multiple indexes concatenated from ancestor to descendant. If

p [1..3] a; a [1..2] b; is given, b#2#1 is the 2nd clone of b under 3rd

clone of a.

20. <idx> ::= <name> "#" <int> { "#" <int> }

21. <feature> ::= <name>

22. | <idx>

Attributes can be non negative integers or booleans, which are treated as 0 for false

and 1 for true in arithmetic expressions. However, results of relational expres-

sions cannot be used in arithmetic expressions. Operator precedence and associativity

(given in table 3.1) is not expressed through the grammar but declared and handled

separately in the implementation (chapter 4).

23. <attr> ::= <feature> "." <name>

24. <adecl> ::= <name> "." <name> "in" <domain>

25. | <name> "." <name> "boolean"

26. <iexpr> ::= <attr>

27. | <int>

28. | "true"

29. | "false"

30. | "(" <iexpr> ")"

31. | <iexpr> "+" <iexpr>

32. | <iexpr> "-" <iexpr>

33. | "-" <iexpr>

34. | <iexpr> "/" <iexpr>

35. | <iexpr> "*" <iexpr>

36. | <iexpr> "mod" <iexpr>
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37. <bexpr> ::= <iexpr>

38. | "(" <bexpr> ")"

39. | <iexpr> ">" <iexpr>

40. | <iexpr> "<" <iexpr>

41. | <iexpr> ">=" <iexpr>

42. | <iexpr> "<=" <iexpr>

43. | <iexpr> "==" <iexpr>

44. | <iexpr> "!=" <iexpr>

Cross tree relationships are formed by logical operators.

45. <cexpr> ::= <feature>

46. | <bexpr>

47. | "(" <cexpr> ")"

48. | <feature> "excludes" <feature>

49. | ( "not" | "~" ) <cexpr>

50. | <cexpr> ( "and" | "&" ) <cexpr>

51. | <cexpr> ( "or" | "|" ) <cexpr>

52. | <feature> "requires" <cexpr>

53. | <cexpr> ( "implies" | "->" ) <cexpr>

54. | "if" <cexpr> "then" <cexpr>

55. | <cexpr> ("iff" | "<->") <cexpr>

Built in or user defined constraints can be used in the model. Integer or boolean

constants, attributes, features can be given as parameters. Symbols in the host solver

environment syntax can also be given as a parameter unchanged like :symbolwhere

it will be translated to symbol i.e. without the :. Parameters like _.attr are used

to pass the list of attributes which are named attr from all features. Parameters like

feature._ is used to pass all attributes of feature in the order they are declared.

[ and ] is used to build a list of variables or a nested list of variables. Nesting level

may or may not be significant for a given target. | is used to give a default value for

attributes or list of attributes whose feature is not selected. Implicit default value is

0. An example constraint definition for sum of all attributes named attr is (with the

default value 0 for attributes of the unselected features): sum_eq(5,_.attr|0).
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56. <paramlist> ::= <param> { "," <param> }

57. <call> ::= <name> "(" <paramlist> ")"

58. <param> ::= <int>

59. | "true"

60. | "false"

61. | ":" <name>

62. | <feature>

63. | <attr> "|" <int>

64. | <attr>

65. | "_" "." <name> "|" <int>

66. | "_" "." <name>

67. | <feature> "." "_" "|" <int>

68. | <feature> "." "_"

69. | "[" <paramlist> "]"

3.2 Intermediate Representation

After parsing of the input feature model source, resulting abstract syntax tree (AST)

is converted to the intermediate representation (IR) for the code generation step. IR

is designed for easy translation of constraints to the declarations in the target solvers,

which are GNU prolog CLP clauses and operators ([10]), Choco 4 ([10]) and Gecode

6 ([12]) library functions for constraints.

As the IR is semantically very close to prolog, result of the AST translation described

in the following chapters are given in a prolog-like syntax. One important deviation

is, operators mentioned are all have CLP semantics and not usual prolog expression

semantics. For clarity, a reference of such operators is given in table 3.2.
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Table 3.2: IR Operator Descriptions

Operator Definition

in .. Domain

= Equal

\= Not Equal

< Less

=< Less or Equal

> Greater

>= Greater or Equal

+ Addition

- Subtraction

- (unary) Negation

* Multiplication

/ Integer Division

rem Remainder

\/ Or

/\ And

\+ Not

\/\ Not And

==> Implies

<=> Logical Equivalence
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3.3 Syntax Directed Translation

3.3.1 Notation

To describe syntax directed translation of AST, different styles of formatting are used

for input, output and value references:

• Token value: Formatted emphasized and can have subscripts. Matches a com-

plete or partial textual value of a token. Textual concatenation is used to denote

a new value.

• Production rule reference: Line numbers formatted like (1) reference the pro-

duction rule in the grammar given in section 3.1. Two useful sets are de-

fined in the context of the AST, parsed by the referenced rule: Name(i) =

{name0, name1, . . .} where namei is the value of the (i+1)th name terminal

parsed by the production rule (i). Similarly for Int(i) = {int0, int1, . . .} where

inti is the value of the (i + 1)th int terminal parsed by the production rule

(i). These sets can be empty. Additionally, min(Int(i)) and max(Int(i)) are

defined as the minimum and maximum integer value in that set, respectively.

• Output IR nodes: Formatted with bold fixed width text

i.e. F_feature0 ==> F_feature1 ,.

3.3.2 Variable Sets

In this section, we define several useful sets that are referenced in the following sec-

tions, used for building up the body of the main model predicate IR.

3.3.2.1 Feature Tree Construction

Feature declaration is implicit and achieved through relations between a parent and

child features. Attributes are declared explicitly, with a domain and an owner feature.

Let F the set of all features. Let FT be the set of tuples of parent and child features.

As FT is actually a tree of features, it is checked to ensure it is a single acyclic tree.
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Let A be the set of tuples of a feature, an attribute, a maximum value, a minimum

value, and a set of non negative integer ranges for the holes in the domain. Actions

for the production rules:

• (8),(9),(12): Name(p) = {name0, name1} =⇒
name0 ∈ F, name1 ∈ F, (name0, name1) ∈ FT .

• (10),(11),(13): For sub-production (15) let ∀namei, namei ∈ Name(15)
Name(p) = {name0} ∪Name(15) =⇒
name0 ∈ F, namei ∈ F, (name0, namei) ∈ FT .

• (24): For sub-production (16) let min = min(Int(16)),max = max(Int(16)),

H = {(int2i−1, int2i)|int2i−1, int2i ∈ Int(16), i ∈ [1, ‖Int(16)‖/2)},
for sub-production (17) let min = min(Int(17)),max = max(Int(17), )

H = {(inti, inti+1)|inti, inti+1 ∈ Int(17), i ∈ [0, ‖Int(17)‖ − 1)}
then Name(24) = {name0, name1}
=⇒ (name0, name1,min,max,H) ∈ A.

• (25): Name(25) = {name0, name1} =⇒ (name0, name1, 0, 1, ∅) ∈ A.

3.3.2.2 Feature Clones

Rule (12) for feature declaration introduces clones of child features recursively. Let

FC be the set of tuples of a feature and a number of clones. For sub-productions (16)

or (17) let c = max(Int(16)) ∨ c = max(Int(17)) then

Name(12) = {name0, name1} =⇒ (name1, c) ∈ FC.

Let FS be the set of tuples of a feature and a set of names.

• ∀feature ∈ F, ∀c ∈ N, (feature, c) /∈ FC =⇒ (feature, {ε}) ∈ FS.

• ∀(feature, c) ∈ FC, ∀(parent, feature) ∈ FT, (parent, S) ∈ FS =⇒
(feature, {selector_i|selector ∈ S, i ∈ (0, c]}) ∈ FS.
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3.3.2.3 Predicate Parameters

Rules (63), (64), (65), (66), (67), (68) introduce a variable which mirrors the value of

the referenced attribute if the feature is selected in the model and a neutral value if the

feature is not selected. Let V be the set of tuples of a feature, a selector, an attribute

and a default value:

• (63): For sub-production (23), Name(23) = {name0, name1},
Int(23) = {int0, int1, . . .},
Int(63) = Int(23) ∪ {d} =⇒ (name0, _int0_int1 . . . , name1, d) ∈ V .

• (64): For sub-production (23), Name(23) = {name0, name1},
Int(23) = {int0, int1, . . .} =⇒ (name0, _int0_int1 . . . , name1, 0) ∈ V .

• (65): Name(65) = {name0}, Int(65) = {int0},
∀(feature, name0, a, b,H) ∈ A,∀(feature, S) ∈ FS,
s ∈ S =⇒ (feature, s, name0, int0) ∈ V

• (66): Name(66) = {name0},
∀(feature, name0, a, b,H) ∈ A,∀(feature, S) ∈ FS,
s ∈ S =⇒ (feature, s, name0, 0) ∈ V

• (67): Name(67) = {name0}, for sub-production (21), Int(67) = {d},
∀(name0, attr, a, b,H) ∈ A =⇒ (name0, ε, attr, d) ∈ V .

For sub-production (22), Int(22) = {int0, int1, . . .}, Int(67) = Int(22) ∪ {d},
∀(name0, attr, a, b,H) ∈ A =⇒ (name0, _int0_int1 . . . , attr, d) ∈ V .

• (68): Name(68) = {name0}, for sub-production (21),

∀(name0, attr, a, b,H) ∈ A =⇒ (name0, ε, attr, 0) ∈ V .

For sub-production (22), Int(22) = {int0, int1, . . .},
∀(name0, attr, a, b,H) ∈ A =⇒ (name0, _int0_int1 . . . , attr, 0) ∈ V .

3.3.3 Domain Declarations

Domains are lists of non overlapping non negative integer intervals whose bounds are

in increasing order. If the length of the interval list is greater than one, it is a discon-
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tinuous domain. Discontinuous domains are modeled as a continuous domain with

additional constraints, in order to avoid domain size limitations of implementations

in such cases.

Features are mapped to boolean variables. Attribute domains are mapped to non neg-

ative integer variables, even if they are declared as boolean in the model. This allows

uniform treatment of types in the generated arithmetic and variable list expressions.

To avoid inflation of product count when a feature is unselected, its attributes are

assigned to the minimum value from their domains.

• For all (feature, S) ∈ FS, s ∈ S emitted clauses;

F_features in 0..1,

• For all (feature, attr,min,max, {(a, b), . . .}) ∈ A, (feature, S) ∈ FS,
s ∈ S emitted clauses;

A_features_attr in min..max,

\+F_features ==> (A_features_attr = min),

(A_features_attr =< a) \/ (A_features_attr >= b),...

• For all (feature, s, attr, d) ∈ V, (feature, attr, a, b,H) ∈ A,
min = min(a, d),max = max(b, d), emitted clauses;

V_features_attr_d in min..max,

(F_features /\ V_features_attr_d = A_features_attr) \/

(\+F_features /\ V_features_attr_d = d),

3.3.4 Feature Relations

3.3.4.1 Mandatory Relations

Mandatory relations are declared by rule (8).

Name(8) = {name0, name1}, (name0, S) ∈ FS, For all s ∈ S, emitted clauses;

F_name1s <=> F_name0s,
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3.3.4.2 Optional Relations

Optional relations are declared by rule (9).

Name(9) = {name0, name1}, (name0, S) ∈ FS, For all s ∈ S, emitted clauses;

F_name1s ==> F_name0s,

3.3.4.3 Feature Cardinality

Relations with feature cardinalities are declared by rule (12). Let Name(12) =

{name0, name1}, (name1, c) ∈ FC, (name0, S) ∈ FS. Let H be the holes in the

cardinality relation domain:

• For sub-production (16) let min = min(Int(16)),

∀i ∈ [1, ‖Int(16)‖/2), int2i−1 ∈ Int(16), int2i ∈ Int(16) =⇒
(int2i−1, int2i) ⊆ H .

• For sub-production (17) let min = min(Int(17)),

∀i ∈ [0, ‖Int(17)‖ − 1), inti ∈ Int(17), inti+1 ∈ Int(17) =⇒
(inti, inti+1) ⊆ H .

For all s ∈ S, i ∈ [0, c− 1), emitted clauses;

• If i+ 1 /∈ H; F_name1s_(i+ 1) ==> F_name1s_i,.

• If i+ 1 ∈ H; F_name1s_(i+ 1) <=> F_name1s_i,.

For all s ∈ S, emitted clauses;

• If min > 0; F_name1s_(min− 1) <=> F_name0s,.

• If min = 0; F_name1s_0 ==> F_name0s,.

3.3.4.4 Group Cardinality

Rules (10), (11), (13) declare relations with group cardinality where domain of the

number of selected child features is given explicitly or implicitly.
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• (13): Let Name(13) = {name0, name1, name2, . . .}, Int(13) = {int0, int1},
int0 ≤ int1 ≤ ‖Name(13)‖ − 1, (name0, S) ∈ FS, Let u be an unique identi-

fier. For all s ∈ S emitted clauses;

G_u in 0..int1,

G_u = F_name1s+F_name2s+...,

(F_name0s /\ G_u >= int0) \/ (\+F_name0s /\ G_u = 0),

• (11): Let Name(11) = {name0, name1, name2, . . .}, c = ‖Name(11)‖ − 1,

(name0, S) ∈ FS, Let u be an unique identifier. For all s ∈ S emitted clauses;

G_u in 0..c,

G_u = F_name1s+F_name2s+...,

(F_name0s /\ G_u >= 1) \/ (\+F_name0s /\ G_u = 0),

• (10): Let Name(10) = {name0, name1, name2, . . .}, (name0, S) ∈ FS. For

all s ∈ S emitted clauses;

F_name0s = F_name1s+F_name2s+...,

3.3.5 Predicates

The main interface of the feature model to the host environment is predicate calls.

They are predefined but the compiler has no knowledge of the arity of the predicate or

the correct types of the parameters. Let P(i) = {p0, p1, . . .} be the set of IR sub-nodes

generated by the production rule (i) where pj is the (j + 1)th sub-node generated:

• (57): Name(57) = {name0, . . .} and for sub-production (56),

P(56) = {p0, p1, . . .} emitted clauses; name0(p0,p1,...),

• (58): Int(58) = {int0}, emitted clauses; int0

• (59): Emitted clauses; 1

• (60): Emitted clauses; 0

• (61): Name(61) = {name0}, emitted clauses; name0
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• (62): Name(62) = {name0}, for sub-production (21), emitted clauses;

F_name0,

for sub-production (22), Int(22) = {int0, int1, . . .}, emitted clauses;

F_name0_int0_int1...

• (63): For sub-production (23), Name(23) = {name0, name1},
Int(23) = {int0, int1, . . .}, Int(63) = Int(23) ∪ {d} emitted clauses;

V_name0_int0_int1..._name1_d

• (64): For sub-production (23), Name(23) = {name0, name1},
Int(23) = {int0, int1, . . .} emitted clauses;

V_name0_int0_int1..._name1_0

• (65): Name(65) = {name0}, Int(65) = {int0},
∀(feature, name0, a, b,H) ∈ A,∀(feature, S) ∈ FS,
s ∈ S =⇒ V_features_name0_int0∈ P(65).

For P(65) = {p0, p1, . . .} emitted clauses; [p0,p1,...]

• (66): Name(66) = {name0},
∀(feature, name0, a, b,H) ∈ A,∀(feature, S) ∈ FS,
s ∈ S =⇒ V_features_name0_0∈ P(66).

For P(66) = {p0, p1, . . .} emitted clauses; [p0,p1,...]

• (67): Name(67) = {name0}, for sub-production (21), Int(67) = {d},
∀(name0, attr, a, b,H) ∈ A =⇒ V_name0_attr_d ∈ P(67).

For sub-production (22), Int(22) = {int0, int1, . . .}, Int(67) = Int(22) ∪ {d},
∀(name0, attr, a, b,H) ∈ A =⇒ V_name0_int0_int1..._attr_d ∈ P(67).

For P(67) = {p0, p1, . . .} emitted clauses; [p0,p1,...]

• (68): Name(68) = {name0}, for sub-production (21),

∀(name0, attr, a, b,H) ∈ A =⇒ V_name0_attr_0 ∈ P(68).

For sub-production (22), Int(22) = {int0, int1, . . .}, Int(68) = Int(22),

∀(name0, attr, a, b,H) ∈ A =⇒ V_name0_int0_int1..._attr_0 ∈ P(68).

For P(68) = {p0, p1, . . .} emitted clauses; [p0,p1,...]

• (69): For sub-production (56), P(56) = {p0, p1, . . .}
emitted clauses; [p0,p1,...]
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3.3.6 Expressions

3.3.6.1 Literal And Attribute Expressions

Production rules (26) to (44) defines relations between attribute values. Let E(i) =

{el, er} be the set of IR sub-nodes generated by the production rule (i) where el IR

sub-node generated by the production rule before the operator and er the sub-node

generated by the production rule after the operator. Only el may exist for unary or

implicit operations. Semantics of the generated operators are given in table 3.2:

• (26): Name(26) = {name0, name1},
Int(26) = {int0, int1, . . .} emitted clauses;

A_name0_int0_int1..._name1

• (27): Int(27) = {int0}, emitted clauses; int0

• (28): Emitted clauses; 1

• (29): Emitted clauses; 0

• (30): E(30) = {el}, emitted clauses; el

• (31): E(31) = {el, er}, emitted clauses; (el + er)

• (32): E(32) = {el, er}, emitted clauses; (el - er)

• (33): E(33) = {el}, emitted clauses; (-el)

• (34): E(34) = {el, er}, emitted clauses; (el / er)

• (35): E(35) = {el, er}, emitted clauses; (el * er)

• (36): E(36) = {el, er}, emitted clauses; (el rem er)

• (37): E(37) = {el}, emitted clauses; (el > 0)

• (38): E(38) = {el}, emitted clauses; el

• (39): E(39) = {el, er}, emitted clauses; (el > er)

• (40): E(40) = {el, er}, emitted clauses; (el < er)
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• (41): E(41) = {el, er}, emitted clauses; (el >= er)

• (42): E(42) = {el, er}, emitted clauses; (el =< er)

• (43): E(43) = {el, er}, emitted clauses; (el = er)

• (44): E(44) = {el, er}, emitted clauses; (el \= er)

3.3.6.2 Cross-Tree Relations

Production rules (45) to (55) defines relations between features which are not neces-

sarily parent and child. Let C(i) = {cl, cr} be the set of IR sub-nodes generated by the

production rule (i) where cl IR sub-node generated by the production rule before the

operator and cr the sub-node generated by the production rule after the operator. Only

cl may exist for unary or implicit operations. Semantics of the generated operators

are given in table 3.2:

• (45): Name(62) = {name0}, for sub-production (21), emitted clauses;

F_name0

For sub-production (22), Int(22) = {int0, int1, . . .}, emitted clauses;

F_name0_int0_int1...

• (46): Let F = {f0, f1, . . .} be the set of feature variable IR sub-nodes generated

and for each production rule (26) let Name(26) = {name0, name1},
Int(26) = {int0, int1, . . .} =⇒ F_name0_int0_int1... ∈ F . Let e be the

IR sub-node generated by non-terminal <bexpr> then emitted clauses;

(e /\ f0 /\ f1 /\ ...)

• (47): C(47) = {cl}, emitted clauses; cl

• (48): C(48) = {cl, cr}, emitted clauses; (cl \/\ cr)

• (49): C(49) = {cl}, emitted clauses; (\+cl)

• (50): C(50) = {cl, cr}, emitted clauses; (cl /\ cr)

• (51): C(51) = {cl, cr}, emitted clauses; (cl \/ cr)

• (52): C(52) = {cl, cr}, emitted clauses; (cl ==> cr)
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• (53): C(53) = {cl, cr}, emitted clauses; (cl ==> cr)

• (54): C(54) = {cl, cr}, emitted clauses; (cl ==> cr)

• (55): C(55) = {cl, cr}, emitted clauses; (cl <=> cr)
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CHAPTER 4

COMPILER ORGANIZATION

4.1 Implementation

The compiler is implemented in C using Lemon [14] parser generator and Ragel [26]

state machine compiler as the lexer. It receives a feature model source and optionally a

template and generates Gnu Prolog, Java 9 (for Choco solver version 4 [23]) or C++11

(for Gecode version 6 [12]) source code. General structure of the implementation is

shown in figure 4.1. Compiler source, build and running instructions are given in

Appendix B.

Model
Source Lexer Parser

Tree Converter

Feature Model AST

Constraint Logic IR

Template

GNU Prolog 
Utilities

GNU Prolog 
Translator

Prolog 
Predicates

Arbitrary Text

Options

Choco 4 
Utilities

Choco 4 
Translator

Choco 4 
Constraints

Gecode 5  
Utilities

Gecode 5 
Translator

Gecode 5 
Constraints

Figure 4.1: Compiler Block Diagram
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4.2 Utility Global Constraints

There are a few useful global constraints defined by the compiler for all of the targets.

More constraints can be defined by the user in a similar fashion for a specific target.

As parameters to the constraints, boolean attributes and features are treated as 1 and 0

for true and false boolean attributes respectively, selected and unselected for features

respectively.

• sum_eq(S,V): Let V be a list of parameters, then S is the sum of these pa-

rameters.

• min_eq(M,V): Let V be a list of parameters, then M is the minimum of these

parameters.

• max_eq(M,V): Let V be a list of parameters, then M is the maximum of these

parameters.

• all_different(V): Let V be a list of parameters, then they are constrained

to be different from each other.

• all_different_0(V): Let V be a list of parameters, then they are con-

strained to be different from each other if they are not 0.

4.3 Output Code Generation

The generated IR consists of named variables and clauses for the feature model (FM).

In this section outputs for the targets are described by giving examples for clarity.

General structure of the output is:

• FM object declaration.

• Declaration FM variables and their domains.

• Initialization of FM variables.

• Declaration FM Constraints.
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• Constraint solving strategy setup.

• Declaration of helper objects for analysis operations.

Example input models and excerpts from their outputs is given in Appendix A. FM

object outputs for the targets are explained here.

Actual analysis step is not handled in the generated code as it requires a specification

for analysis queries and resulting output, which is not a part of the DSL. Instead,

analysis objects are generated to be used with the host environment facilities. Their

use is explained in chapter 5. In analysis, for all targets, features and attributes are

referenced by the same name as in the model source. Names of clone features are

concatenated by their indexes with _, i.e. f#0#4 becomes f_0_4. Generated code

for different targets suit different uses cases best:

• For development of the feature model, prolog target can be used which is highly

interactive and has good debugging facilities.

• For configurators, Choco (java) target can be integrated into a graphical user

interface with databases for constraints and analysis options.

• For other automated tools, Gecode (C++) target offers best performance but

lacks flexibility of the other targets.

4.3.1 Prolog Target

The main FM object consists of generated predicates named product_model/3,

product_hook/3 and product_descriptor/4 but these are not the intended

public interface. The public interface is the analysis predicates and the predicate

product_configuration(C) where C is a list of items which describe the or-

der of features and attributes to construct a complete or partial product configuration

that can be used with other predicates. For the example in section A.1 an example

query may yield;

?- product_configuration(C).

C = [root,f1,f2-[attr1-_,attr2-_],f3_0,f3_1,f3_2,f3_3]
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Use of this result for FM analysis is explained in section 5.1. User defined predicates

in the model can be arbitrary prolog predicates. If these predicates are backtracking,

they may instantiate a part of the FM multiple times for the same solution. To avoid

it, all of the predicates are collected and run in product_hook/3.

4.3.2 Choco 4 Target

The main FM object consists of Product class with features and attributes

properties, which are modeled as inner classes with properties named after features

and attributes. User predicates are modeled as protected methods of the Product

class, accepting IntVar parameters and returning Constraint objects. Analysis

operations are in Analysis inner class, explained in more detail in section 5.2.

Example output excerpt can be seen in section A.3. Package name, model class name

and the class body can be changed by providing a custom template to the compiler.

4.3.3 Gecode 6 Target

The main FM object consists of a template class Model which a concrete class in-

herits from. The first parameter of the template should be the inheriting class itself.

Optionally, other mix-in classes can be given as parameters. The purpose of the re-

curring template parameter and mix-in classes as parameters is to enforce correct

resolution of method overrides.

The Model class has features and attributes properties, which are mod-

eled as inner classes with properties named after features and attributes. User pred-

icates are modeled as public methods of the Model class, accepting IntVar or

IntVarArgs& parameters and handle adding constraints to the model, themselves.

Analysis operations are methods in Analysis inner class, explained in more de-

tail in section 5.3. Example output excerpt and template instantiation can be seen in

section A.4.
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CHAPTER 5

MODEL ANALYSIS

Implemented DSL itself does not provide any analysis constructs, as explained before.

However, as a part of the generated output, following analysis operations defined in

section 2.4 are intended to be provided along with a full or partial configuration (as a

filtering operation) and additional cross-tree constraints:

• Finding valid products.

• Counting valid products.

• Core features.

• Dead features.

• Variant features.

For object oriented targets, this list is not completely implemented but inheritance

mechanism and the host application programming interface (API) can still be used.

Similarly, more involved types of analysis operations are not provided, such as opti-

mization, for they are not generic enough to generate code from a common IR for all

targets. A complete analysis example by using prolog output is given in Appendix C.

5.1 Prolog Target

The output consists of product_configuration/1, product_valid/3,

product_count/3, features_core/3, features_optional/3,

features_dead/3 predicates built with CLP expressions and related predicates:
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5.1.1 Product Description

product_configuration(C):

C is a list of items which describe the order of features and attributes to construct a

complete or partial product configuration that can be used with other analysis predi-

cates. An example query may yield;

?- product_configuration(C).

C=[root,f1,f2-[attr1-_,attr2-_],f3]

From this output, an example partial product configuration can be constructed;

PC=[+root,-f1,f2-[attr1-30|_],_]

where a feature name with + indicates it is selected and with - indicates it is unse-

lected in the configuration. In the example f1 is not selected and f3 is not specified.

Features with attributes does not have + but has the attribute list present when they

are selected, as f2 in the example. When declaring a partial product, feature and

attribute order is significant.

5.1.2 Valid Configuration and Filtering

product_valid(Product,Filters,Goal):

Product is a product configuration whose structure is described in subsection 5.1.1

if there are any valid products found. Filters is a list of expressions to filter

configurations by selected and unselected features and bind attributes to variables.

Unlike product configuration, the ordering is not important. It has its own syntax:

• +feature: An atom with unary + operator defines that the feature with the

same name is selected.

• -feature: An atom with unary - operator defines that the feature with the

same name is unselected.
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• f-attr=X: Let F be the boolean value that represents whether the feature f is

selected or unselected in the configuration and A the value of its attribute attr.

Then X is unified with F-A.

• +f-attr=X: Attribute named attr of feature name f is unified with X. Fea-

ture f is also selected in the configuration.

• f-[]=X: Let F be the boolean value that represents whether the feature f is

selected or unselected in the configuration and AL the value of its attribute list.

Then X is unified with F-AL. Attribute order is significant.

• +f-[]=X: Attribute list of feature name f is unified with X. Attribute order is

significant. Feature f is also selected in the configuration.

• attr=X: All attributes named attr are made a list and unified with X. At-

tributes of unselected features are set to 0 in X.

• attrˆD=X: All attributes named attr are made a list and unified with X.

Attributes of unselected features are set to D in X.

Goal is the condition to further filter by just before labeling features and attributes.

It can use the X variables unified in the filters. It is called as call(Goal).

An example query is;

?- product_valid(P,[+f2-[]=[A,6],+f1,-f3,f1-attr=B,

cost=C],A#>5).

In this query, f2 should be selected and its attributes should match the given list

where A is bound to the value of first declared attribute and the second one equals 6.

f1 should be selected, f3 should be unselected. Let the value of attr of f1 be X

and selected value of f1 be S, then B is S-X. Configurations are further filtered by

A#>5. All attributes named cost are collected in the list C.
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5.1.3 Product Count

product_count(Count,Filters,Goal):

Count is the number of valid configurations filtered by Filters and Goal. Filters

and Goal are the same as in subsection 5.1.2. An example query is;

?- product_count(C,[+f1],true).

5.1.4 Feature Occurrences

features_core(Core,Filters,Goal),

features_dead(Dead,Filters,Goal),

features_optional(Opt,Filters,Goal):

Core is the list of features which are selected in all products. Dead is the list of

features which are not selected in all products. Opt is the list of features which are

both selected and unselected in non empty subsets of products. All these predicates

return the results filtered by Filters and Goal which are defined the same as in

subsection 5.1.2.

5.2 Choco 4 Target

The output FM class has an inner class named Analysis with methods to do basic

analysis operations on the FM instance. Optimization and complex analysis can be

done using the FM object directly.

5.2.1 Filtering

The constructor of Analysis class can optionally take ReExpression objects as

the constraints for all of the subsequent analysis operations. These constraints can be

used to define a partial configuration. For the simple FM in section A.1:
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Product p=new Product();

Product.Analysis a=p.new Analysis(

p.attributes.f2.attr1.eq(3));

For checking validity, boolean check(ReExpression... expr) method

can be used, optionally with additional constraints: a.check()==true;

5.2.2 Product Count

Method long count() returns the count of valid products: a.count()==8;

5.2.3 Processing Valid Products

Method void valid(IMonitorSolution callback) executes the given callback

object for every valid configuration found:

a.valid((IMonitorSolution)()->{

System.out.printf("%d ",p.features.f3_3.getValue());

})

1 1 0 0 0 0 1 1

5.2.4 Feature Occurrences

Map<String,IntVar> featuresCore(), Map<String,IntVar> featuresDead()

and Map<String,IntVar> featuresOptional() methods return the dictionary of

feature variables keyed by their names which are core, dead and optional features

respectively:

a.featuresCore().keySet()

[root, f2, f3_0, f3_1]
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5.3 Gecode 6 Target

The traditional development environments of C++ language is not conductive to in-

teractive programming thus no obvious approach to performing model analysis exists.

An easy to use API specification for analysis is left as an open problem. In this study,

analysis in C++ target is not fully implemented therefore the generated Analysis

inner class is more of an example than a ready to use interface. int count()

method demonstrates how to initialize the search for all of the solutions and access

each solution. Output example is given in section A.4.
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CHAPTER 6

CONCLUSION

6.1 Achievements

A textual DSL for extended feature models with syntax for constraint predicates is

defined and a compiler to convert them to CLPs is implemented. Such predicates can

be used for defining global constraints and external constraints that can be used to

decouple non-deterministic aspects of the product line from the design of the feature

model, such as inventory management and production capabilities. The predicate

syntax can express the necessary connection of these aspects inside the feature model.

The implementation is intended to be independent of specialized tools as much as

possible, to be easy to learn, use and integrate with other tools. The compiler is

extended to target multiple constraint solver environments. Users can pick the one

best suited to their needs, abilities and environments. For each target, an API for user

provided constraints is defined. Utility constraints are provided by using the same

mechanism. Helper objects are included into the output for FM analysis.

For the domain, design of the AST became a balancing act of simplifying expression

constructs and synthesizing nodes, for correct handling of attribute and feature inter-

action in expressions and correct value handling for the host environment. IR design

had a sizable impact on the ease of development of the multiple target code genera-

tors. It had to be generic enough while allowing the use of optimized constructs in

the host.
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6.2 Future Work

Syntax of the DSL could be extended to cover more use cases. There is no syntax

for optimization goals or analysis queries as in [6]. Such operations are delegated to

the host solver environment with a set of generated helper objects. Including such

constructs into the DSL might help analysis that works in multiple environments.

Syntax for operations on models such as inclusion of external models, merging or

extraction as in [1] is not supported. If included, it can improve model source code

modularity and allow reuse. String or data structure support for attributes as in [8] is

not provided, since all attributes are treated as non negative integer values to allow a

uniform mechanism of parameter passing for constraint predicates. Support for more

types can improve expressiveness.

Implementation of the compiler itself can be improved. Error reporting of the com-

piler can be improved by storing more information, such as line numbers, in the

tokens and keeping track of first encounters and repeat errors. More constraint solver

targets can be added.
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APPENDIX A

EXAMPLE MODELS

A.1 Simple Model

Input source;

root ? f1;

root ! f2;

root {2,4} f3;

f2.attr1 in [1..100];

f2.attr2 boolean;

A.2 Prolog Output Excerpt

product_model(F_root,

[F_root, F_f1, F_f2, F_f3_0, F_f3_1, F_f3_2, F_f3_3],

[A_f2_attr1, A_f2_attr2]

):-

fd_domain_bool(F_root),

fd_domain_bool(F_f1),

fd_domain_bool(F_f2),

fd_domain_bool(F_f3_0),

fd_domain_bool(F_f3_1),

fd_domain_bool(F_f3_2),

fd_domain_bool(F_f3_3),

fd_domain(A_f2_attr1,1,100),

(( #\ F_f2) #==> (A_f2_attr1 #= 1)),

fd_domain(A_f2_attr2,0,1),

(( #\ F_f2) #==> (A_f2_attr2 #= 0)),

(F_f1 #==> F_root),

(F_f2 #<=> F_root),

(F_f3_3 #<=> F_f3_2),
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(F_f3_2 #==> F_f3_1),

(F_f3_1 #<=> F_f3_0),

(F_root #<=> F_f3_1).

...

product_descriptor(

[F_root, F_f1, F_f2, F_f3_0, F_f3_1, F_f3_2, F_f3_3],

[A_f2_attr1, A_f2_attr2],

[

root - F_root,

f1 - F_f1,

f2 - F_f2,

f3_0 - F_f3_0,

f3_1 - F_f3_1,

f3_2 - F_f3_2,

f3_3 - F_f3_3

],[

f2 - [

attr1 - A_f2_attr1,

attr2 - A_f2_attr2

]

]

):-

(F_root #>0 ).

...

product_valid(Product,Filters,Goal):-

...

product_count(Count,Filters,Goal):-

...

features_core(Core,Filters,Goal):-

...

features_dead(Dead,Filters,Goal):-

...

features_optional(Opt,Filters,Goal):-

...
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A.3 Java Output Excerpt

package product;

import org.chocosolver.solver.Model;

import org.chocosolver.solver.variables.IntVar;

import org.chocosolver.solver.variables.BoolVar;

import org.chocosolver.solver.constraints.Constraint;

import org.chocosolver.solver.search.loop.monitors.IMonitorSolution;

import org.chocosolver.solver.expression.discrete.relational.ReExpression;

public class Product extends Model{

public class Features{

public BoolVar root=...

public BoolVar f1=...

public BoolVar f2=...

public BoolVar f3_0=...

public BoolVar f3_1=...

public BoolVar f3_2=...

public BoolVar f3_3=...

}

public Features features=new Features();

public class Attributes{

public class Attr_f2{

public IntVar attr1=...

public IntVar attr2=...

}

public Attr_f2 f2=new Attr_f2();

}

public Attributes attributes=new Attributes();

...

protected Constraint sum_eq(IntVar s,IntVar[] vars){ ...

...

public class Analysis{

public Analysis(ReExpression... filters){ ...

public Map<String,IntVar> featuresCore(){ ...

public Map<String,IntVar> featuresOptional(){ ...

public Map<String,IntVar> featuresDead(){ ...

public long count(){ ...

public void valid(IMonitorSolution callback){ ...

public boolean check(ReExpression... expr){ ...

}

}
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A.4 C++ Output Excerpt

#include <gecode/minimodel.hh>

#include <gecode/search.hh>

using namespace Gecode;

template <typename T,typename ...M> class Model:public M...,public Space{

friend T;

public:

...

void sum_eq(IntVar s,IntVarArgs& a){ ...

class Analysis{

...

public:

Analysis(Model* model){

...

int count(){

int solutions=0;

DFS<Model> search(m);

Model* solution;

while(solution=search.next()){

++solutions;

delete solution;

}

return solutions;

}

};

struct Features{

BoolVar root;

BoolVar f1;

BoolVar f2;

BoolVar f3_0; BoolVar f3_1; BoolVar f3_2; BoolVar f3_3;

...

}; Features features;

struct Attributes{

struct Attr_f2{

IntVar attr1;

IntVar attr2;

...

}; Attr_f2 f2;

...

}; Attributes attributes;

...

};
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C++ model usage example;

class Product:public Model<Product>{};

int main(int argc,char** argv){

Product p;

Product::Analysis a(&p);

cout<<a.count()<<endl;

return 0;

}

A.5 Bike Model

bike ! frame;

bike [2..2] wheel;

bike ! drivetrain;

bike [2..2] brake;

bike ! seat;

bike ? accessories;

bike.total_cost in [1..100000]; bike.total_weight in [1..30000];

sum_eq(bike.total_cost,_.cost); sum_eq(bike.total_weight,_.weight);

wheel ! rim; wheel ! spokes; wheel ! hub; wheel ! {tire,solidtire};

hub ? brakedisc;

tire ! tube;

drivetrain ! {chain,belt};

drivetrain [0..2] shifter;

drivetrain ! crankset;

drivetrain ! {sprockets,pulley};

drivetrain ? tensioner;

crankset ! {chainrings,crankpulley};

shifter ? derailleur;

seat ! seatpost; seat ! saddle;

/* Material

1 steel

2 aluminium

3 cabon fiber

*/

frame.material in [1..3];

frame.hasdisc boolean;
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frame.weight in [4000..8000];

frame.cost in [100..1000];

rim.material in [2..3];

rim.diameter in {16,20,24,26};

rim.holes in {24,32,36};

rim.weight in [100..300];

rim.cost in [30..300];

spokes.length in [1..20];

spokes.count in [0..100];

/* Hub type

1 front hub

2 dynamo hub

3 freehub

4 gear hub

*/

hub.type in [1..4];

hub.diameter in [5..10];

hub.holes in {24,32,36};

hub.hasdisc boolean;

hub.gears in {0,3,7};

hub.spline in [0..2][7..10];

hub.weight in [50..1000];

hub.cost in [30..300];

tire.diameter in {16,20,24,26};

tire.weight in [80..150];

tire.cost in [20..40];

tube.diameter in {16,20,24,26};

solidtire.diameter in {16,20,24,26};

solidtire.weight in [150..300];

solidtire.cost in [280..300];

chain.weight in [150..150];

chain.cost in [100..100];

belt.weight in [50..50];

belt.cost in [400..400];

shifter.gears in [2..10];

shifter.cost in [30..100];

seatpost.material in [1..3];

seatpost.weight in [100..300];
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seatpost.cost in [50..150];

saddle.weight in [500..1000];

saddle.cost in [100..300];

/* Brake type

1 rim brake

2 disc brake

*/

brake.type in [1..2];

brake.weight in [25..100];

brake.cost in [50..200];

chainrings.count in [1..3];

/* Derailleur type:

1 front

2 rear

*/

derailleur.type in [1..2];

derailleur.gears in [2..10];

sprockets.count in [1..10];

sprockets.cost in [50..200];

rim#0.diameter==rim#1.diameter;

rim#0.holes==hub#0.holes;

rim#0.holes==spokes#0.count;

rim#0.material==3 -> brake#0.type!=2;

hub#0.type==1 or hub#0.type==2;

brake#0.type==2 -> frame.hasdisc and hub#0.hasdisc;

(rim#0.diameter-hub#0.diameter)/2+1==spokes#0.length;

rim#0.diameter==tire#0.diameter;

tire#0.diameter==tube#0.diameter;

rim#1.holes==hub#1.holes;

rim#1.holes==spokes#1.count;

rim#1.material==3 -> not brake#1.type!=2;

hub#1.type==3 or hub#1.type==4;

brake#1.type==2 -> frame.hasdisc and hub#1.hasdisc;

(rim#1.diameter-hub#1.diameter)/2+1==spokes#1.length;

rim#1.diameter==tire#1.diameter;

tire#1.diameter==tube#1.diameter;

shifter#0 requires shifter#0.gears==chainrings.count or

shifter#0.gears==hub#1.gears;

49



shifter#1 requires shifter#1.gears==sprockets.count;

chainrings.count>1 -> derailleur#0.type==1;

sprockets.count>1 -> derailleur#1.type==2;

sprockets.count>7 -> chainrings.count<3;

chainrings.count>sprockets.count -> hub#1.gears>0;

derailleur#0 requires shifter#0.gears==derailleur#0.gears and hub#1.gears==0;

derailleur#1 requires shifter#1.gears==derailleur#1.gears;

derailleur#1 requires tensioner;

chain requires sprockets and chainrings;

belt excludes derailleur#0;

belt excludes derailleur#1;

belt requires pulley and crankpulley;

sprockets requires hub#1.spline>=sprockets.count;

hub#0.spline==0;

frame.material==3 <-> seatpost.material==3;

//inventory

inventory(:frame,frame._);

inventory(:brake,brake#0._);

inventory(:brake,brake#1._);

inventory(:rim,rim#0._);

inventory(:rim,rim#1._);

inventory(:hub,hub#0._);

inventory(:hub,hub#1._);

inventory(:tire,tire#0._);

inventory(:tire,tire#1._);

inventory(:solidtire,solidtire#0._);

inventory(:solidtire,solidtire#1._);

inventory(:chain,chain._);

inventory(:belt,belt._);

inventory(:shifter,shifter#0._);

inventory(:shifter,shifter#1._);

inventory(:seatpost,seatpost._);

inventory(:saddle,saddle._);

inventory(:sprockets,sprockets._);

Prolog excerpt for inventory/2 predicate. Note the row with the default values:

inventory(brake,[Type,Weight,Cost]):-

member([Type,Weight,Cost],[[0,0,0], [1,25,50], [2,100,200]]).
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APPENDIX B

COMPILER USAGE

B.1 Source Code

The source code repository is available at [13]. The list of source files and their related

components (as shown in figure 4.1) are given in table B.1.

B.2 Build Instructions

For Windows, build command is: make -f Makefile.mingw . For Linux,

running make is sufficient. An executable named compiler is generated. Tested

build environment is GCC version 7, Make version 4.2, Lemon version 1.0, Ragel

version 6.9.

B.3 Running Instructions

Feature model compiler takes an input file parameter, optionally an output file param-

eter and a template parameter. Output file parameter can be omitted in which case

the output is printed to the console. Running fmdsl executable without any options

displays a help message:
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Usage: fmdsl [-t template][-p][-c4][-g5][-g6] input [output]

Options:

-t Template file with marker /**EMIT**/

replaced with the output.

-p Output in GNU prolog. (default)

-c4 Output in java for Choco 4.

-g5 Output in C++ for Gecode 5.

-g6 Output in C++ for Gecode 6.
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Table B.1: Source Files

Files Components

compiler.c Main input & output, Options

errors.h errors.c Error messages

lexer.h lexer.rl Lexer

parser.h parser.c grammar.lm Parser

tree.h tree.c FM AST

convert.h convert.c Tree Converter

emit.h emit.c CLP IR

gnu_prolog_emit.h GNU Prolog Translator

gnu_prolog_emit.c

gnu_prolog_support.pl GNU Prolog Utilities

choco4_emit.h Choco 4 Translator

choco4_emit.c

choco4_support.java Choco 4 Utilities

choco4_template.java

gecode5_emit.h Gecode 5 Translator

gecode5_emit.c

gecode5_support.cpp Gecode 5 Utilities

gecode6_emit.h Gecode 6 Translator

gecode6_emit.c

gecode6_support.cpp Gecode 6 Utilities

Makefile Makefile.mingw Build files

makestring._c

tests/ Test inputs
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APPENDIX C

EXAMPLE ANALYSIS SESSION

Example given in section A.5 is the source file of a simplified model which describes

a bike. Provided by the user, inventory/2 predicate is for describing inventory for

various features of the bike model and form the basis of example queries described

here.

C.1 Partial Configurations, Counting and Filtering

To understand product configurations, output of product_configuration/1

should be examined first:

?- product_configuration(C).

C = [bike-[total_cost-_,total_weight-_],frame-[

material-_,hasdisc-_,weight-_,cost-_],wheel_0,wheel_1,

drivetrain,brake_0-[type-_,weight-_,cost-_],brake_1-[

type-_,weight-_,cost-_],seat,accessories,rim_0-[

material-_,diameter-_,holes-_,weight-_,cost-_],

rim_1-[material-_,diameter-_,holes-_,weight-_,cost-_],

spokes_0-[length-_,count-_],spokes_1-[length-_,count-_],

hub_0-[type-_,diameter-_,holes-_,hasdisc-_,gears-_,

spline-_,weight-_,cost-_],hub_1-[type-_,diameter-_,

holes-_,hasdisc-_,gears-_,spline-_,weight-_,cost-_],

tire_0-[diameter-_,weight-_,cost-_],tire_1-[diameter-_,

weight-_,cost-_],solidtire_0-[diameter-_,weight-_,
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cost-_],solidtire_1-[diameter-_,weight-_,cost-_],

brakedisc_0,brakedisc_1,tube_0-[diameter-_],tube_1-[

diameter-_],chain-[weight-_,cost-_],belt-[weight-_,

cost-_],shifter_0-[gears-_,cost-_],shifter_1-[gears-_,

cost-_],crankset,sprockets-[count-_,cost-_],pulley,

tensioner,chainrings-[count-_],crankpulley,

derailleur_0-[type-_,gears-_],derailleur_1-[type-_,

gears-_],seatpost-[material-_,weight-_,cost-_],

saddle-[weight-_,cost-_]]

C is a list of feature names and their attributes list if it exists. It is similar to the

output of product_valid/3 but not cannot be used as a partial or complete con-

figuration directly. Feature names need to be prefixed with + or - operators to con-

struct a configuration. A valid configuration can be seen by examining an output of

product_valid/3:

?- product_valid(V,[],true).

V = [bike-[total_cost-1060,total_weight-9960],frame-[

material-1,hasdisc-0,weight-7950,cost-100],+wheel_0,

+wheel_1,+drivetrain,brake_0-[type-1,weight-25,cost-50],

brake_1-[type-1,weight-25,cost-50],+seat,+accessories,

rim_0-[material-2,diameter-16,holes-36,weight-150,

cost-50],rim_1-[material-2,diameter-16,holes-36,

weight-150,cost-50],spokes_0-[length-6,count-36],

spokes_1-[length-6,count-36],hub_0-[type-1,diameter-5,

holes-36,hasdisc-0,gears-0,spline-0,weight-50,cost-30],

hub_1-[type-3,diameter-5,holes-36,hasdisc-0,gears-0,

spline-7,weight-100,cost-100],tire_0-[diameter-16,

weight-80,cost-40],tire_1-[diameter-16,weight-80,

cost-40],-solidtire_0,-solidtire_1,+brakedisc_0,

+brakedisc_1,tube_0-[diameter-16],tube_1-[diameter-16],

-chain,belt-[weight-50,cost-400],-shifter_0,-shifter_1,
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+crankset,-sprockets,+pulley,+tensioner,-chainrings,

+crankpulley,-derailleur_0,-derailleur_1,seatpost-[

material-1,weight-300,cost-50],saddle-[weight-1000,

cost-100]] ?

Here we can see that our model is a valid model and the first valid configuration

found. Next, a partial configuration is given where all material attributes are set to 3

and validity is confirmed:

?- product_valid([_,frame-[material-3,hasdisc-_,weight-_,

cost-_],_,_,_,_,_,_,_,rim_0-[material-3,_,_,_,_],rim_1-[

material-3|_],_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,

_,_,_,seatpost-[material-3|_],_],[],true).

true ?

A trivial example of invalid configuration is where the root feature is unselected:

?- product_valid([-bike|_],[],true).

no

An example of invalid partial configuration is given, where all materials are set to 3

and solidtire_0 and solidtire_1 are selected:

?- product_valid([_,frame-[material-3,hasdisc-_,weight-_,

cost-_],_,_,_,_,_,_,_,rim_0-[material-3,_,_,_,_],rim_1-[

material-3|_],_,_,_,_,_,_,solidtire_0-_,solidtire_1-_,_,

_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,seatpost-[material-3|_],_],

[],true).

no
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Filtering is similar to checking a configuration but more efficient. Filters and

Goal parameters of predicates described in section 5.1 is used for filtering. Previous

example using filters;

?- product_valid(_,[+solidtire_0,+solidtire_1,

+frame-material=3,+rim_0-material=3,+rim_1-material=3,

+seatpost-material=3],true).

no

In this example all the materials are bound to variable M and value 3 is removed from

possible values in the goal clause:

?- product_valid(_,[+frame-material=M,+rim_0-material=M,

+rim_1-material=M,+seatpost-material=M],M#\=3).

M = 2 ?

Counting configurations are similar to finding valid configurations.

product_count/3 works the same as product_valid/3 but outputs a count

of valid configurations instead. Counting all valid products:

?- product_count(C,[],true).

C = 306800

C.2 Analyzing Feature Occurrences

In section C.1 section the example which selected solidtire_0 did not yield a

valid configuration. Turns out it is a dead feature in the feature model, caused by

expression rim#0.diameter==tire#0.diameter which implicitly selected

tire#0 always and excluded solidtire#0 as a consequence. Similarly for

solidtire#1;
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?- features_dead(D,[],true).

D = [solidtire_0,solidtire_1]

Examining optional features where shifter_1 is selected:

?- features_optional(O,[+shifter_1],true).

O = [accessories,brakedisc_0,brakedisc_1,derailleur_0]

Curiously derailleur#0 is optional although shifter#0 is not. A cursory look

into the model might suggest a shifter needs a derailleur but this is not the case.

Removing hub type 4 which is defined as hub gear and can have a shifter changes

the optional features. Checking the core feature set confirms derailleur#0 thus

must be selected:

?- features_core(C,[+shifter_1,+hub_1-type=H],H#\=4).

C = [bike,frame,wheel_0,wheel_1,drivetrain,brake_0,

brake_1,seat,rim_0,rim_1,spokes_0,spokes_1,hub_0,hub_1,

tire_0,tire_1,tube_0,tube_1,chain,shifter_0,shifter_1,

crankset,sprockets,tensioner,chainrings,derailleur_0,

derailleur_1,seatpost,saddle];

C.3 Global Constraints and Optimization

More constraints on a valid configuration can be specified by arbitrary prolog clauses.

The predicate to call and its parameters are declared in the model source. The pred-

icate itself should receive integer or boolean values and nested lists of attribute or

feature variables. The source can also pass an identifier in the host environment un-

touched. Some of the useful constraint examples are given here.
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C.3.1 sum

Filter expressions in the form attr=L are convenient way to collect all attributes

named attr of the selected features. The attributes of unselected values are set to

0 so it can be conveniently used for summation. sum_eq/2 is defined to sum CLP

variables;

?- product_valid(Z,[cost=_CL,weight=_WL],(sum_eq(C,_CL),

sum_eq(W,_WL))).

C = 1060

W = 9960

Z = [bike-[total_cost-1060,total_weight-9960],frame-[

material-1,hasdisc-0,weight-7950,cost-100],+wheel_0,

+wheel_1,+drivetrain,brake_0-[type-1,weight-25,cost-50],

brake_1-[type-1,weight-25,cost-50],+seat,+accessories,

rim_0-[material-2,diameter-16,holes-36,weight-150,

cost-50],rim_1-[material-2,diameter-16,holes-36,

weight-150,cost-50],spokes_0-[length-6,count-36],

spokes_1-[length-6,count-36],hub_0-[type-1,diameter-5,

holes-36,hasdisc-0,gears-0,spline-0,weight-50,cost-30],

hub_1-[type-3,diameter-5,holes-36,hasdisc-0,gears-0,

spline-7,weight-100,cost-100],tire_0-[diameter-16,

weight-80,cost-40],tire_1-[diameter-16,weight-80,

cost-40],-solidtire_0,-solidtire_1,+brakedisc_0,

+brakedisc_1,tube_0-[diameter-16],tube_1-[diameter-16],

-chain,belt-[weight-50,cost-400],-shifter_0,-shifter_1,

+crankset,-sprockets,+pulley,+tensioner,-chainrings,

+crankpulley,-derailleur_0,-derailleur_1,seatpost-[

material-1,weight-300,cost-50],saddle-[weight-1000,

cost-100]] ?
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C is the total cost and W is the total weight of the configuration P. _CL is individual

costs and _WL is individual weights. Domains in the model need not match so care

must be taken to the interpretation of the results.

C.3.2 minimize, maximize

Using fd_maximize/2 and fd_minimize/2 useful configurations can be found.

Finding cheapest bikes with the most gears and two shifters:

?- fd_maximize(fd_minimize(product_valid(P,[

+bike-total_cost=C,+shifter_0-gears=_G0,

+shifter_1-gears=_G1],_G0*_G1#=G),C),G).

C = 940

G = 21

P = [bike-[total_cost-940,total_weight-10500],frame-[

material-1,hasdisc-0,weight-7950,cost-100],+wheel_0,

+wheel_1,+drivetrain,brake_0-[type-1,weight-25,cost-50],

brake_1-[type-1,weight-25,cost-50],+seat,+accessories,

rim_0-[material-2,diameter-26,holes-36,weight-300,

cost-30],rim_1-[material-2,diameter-26,holes-36,

weight-300,cost-30],spokes_0-[length-11,count-36],

spokes_1-[length-11,count-36],hub_0-[type-1,diameter-5,

holes-36,hasdisc-0,gears-0,spline-0,weight-50,cost-30],

hub_1-[type-3,diameter-5,holes-36,hasdisc-0,gears-0,

spline-7,weight-100,cost-100],tire_0-[diameter-26,

weight-150,cost-20],tire_1-[diameter-26,weight-150,

cost-20],-solidtire_0,-solidtire_1,+brakedisc_0,

+brakedisc_1,tube_0-[diameter-26],tube_1-[diameter-26],

chain-[weight-150,cost-100],-belt,shifter_0-[gears-3,

cost-40],shifter_1-[gears-7,cost-70],+crankset,

sprockets-[count-7,cost-150],-pulley,+tensioner,

chainrings-[count-3],-crankpulley,derailleur_0-[
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type-1,gears-3],derailleur_1-[type-2,gears-7],

seatpost-[material-1,weight-300,cost-50],saddle-[

weight-1000,cost-100]] ?

G is maximized among the minimum cost (C) bikes. Using variables in the Goal

clause makes optimization operation more efficient than using it elsewhere.

C.3.3 all_different

In the model there are no restrictions for the materials of the rims, so they can be

different. Eliminating those cases can reduce the valid configurations by nearly 2/5

so it may be better to include it in the model itself, Counting such undesirable cases;

?- product_count(C,[+rim_0-material=M0,

+rim_1-material=M1],all_different([M0,M1])).

C = 117600
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