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ABSTRACT

FUZZIFIED SEMANTIC WEB REASONING FOR ACTIVITY DETECTION
IN WMSN APPLICATIONS

Özdin, Ali Nail
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazıcı

January 2019, 67 pages

Activity detection in WMSNs is a hot topic for surveillance applications since auto-

mated determination of activities is a difficult process. This study aims to increase

the reliability of activity detection by using semantic Web technologies extended with

fuzzy logic. The proposed approach consists of three layers: sensor, data and seman-

tic Web layers. The sensor layer includes a WMSN including sensor nodes with

multimedia and scalar sensors. The data layer retrieves and stores data from the sink

of the WMSN. At the top of the architecture, there is a semantic Web layer including a

semantic Web application server, a fuzzy reasoning engine, and a semantic knowledge

base. When there is a new entity detection at the sensor layer, the related data pro-

duced by the sensors and the sink is collected in the data layer and transmitted to the

semantic Web application server where the data is converted to subjects-predicates-

objects in accordance with designed ontology and saved in RDF format. Then, the

fuzzy reasoning engine is automatically activated and fuzzy rules are executed to de-

cide whether there is an activity in the controlled area. The proposed approach is

implemented for an example surveillance application in which various threat types
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are deduced (i.e., attack, protest or ordinary mobility). In the implementation, the

sensor layer is simulated with an application which produces synthetic data accord-

ing to given scenarios. Users of the system can monitor occurring events in near-real

time or replay recent events on their browsers. This implementation proves that the

semantic Web technologies extended with fuzzy logic may have a significant impact

on activity detection in WMSNs.

Keywords: fuzzy logic, semantic Web, Web 3.0, activity detection, wireless multi-

media sensor networks
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ÖZ

KABLOSUZ MULTİMEDYA SENSÖR AĞLARINDA AKTİVİTE TESPİTİ
İÇİN BULANIKLAŞTIRILMIŞ ANLAMSAL WEB MUHAKEMESİ

Özdin, Ali Nail
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Ocak 2019 , 67 sayfa

Kablosuz multimedya sensör ağlarında (KMSA) aktivite tespiti oluşan aktivitelere

otomatik olarak karar vermek zor bir süreç olduğundan gözetleme uygulamaları için

sıcak bir konudur. Bu çalışma bulanık mantık ile genişletilmiş anlamsal Web teknolo-

jilerini kullanarak aktivite tespitinin güvenilirliğini artırmayı hedeflemektedir. Öneri-

len yaklaşım üç katmandan oluşmaktadır; sensör, veri ve anlamsal Web katmanlarıdır.

Sensör katmanı multimedya ve skaler sensörleri içeren sensör düğümlerinden oluşan

KMSA’nı içerir. Veri katmanı veriyi KMSA’nın sink bilgisayarından alır ve kaydeder.

Mimarinin en üstünde ise anlamsal Web uygulama sunucusu, bulanık muhakeme mo-

toru ve anlamsal bilgi tabanını içeren anlamsal Web katmanı bulunmaktadır. Sensör

katmanında yeni bir varlık tespiti yapıldığında, sensör düğümleri ve sink bilgisayarı

tarafından bu tespite ilişkin üretilen veriler veri katmanında toplanır ve veri tasar-

lanan ontolojiye uygun olarak subject-predicate-object üçlüsüne dönüştürülüp RDF

formatında kaydedildiği anlamsal Web uygulama sunucusuna iletilir. Sonrasında bu-

lanık muhakeme motoru kontrollü bölgede bir aktivite oluşup oluşmadığına karar ver-

mek için otomatik olarak aktifleşir ve bulanık kurallar işletilir. Önerilen yaklaşım,
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içerisinde çeşitli tehdit tiplerinin çıkarımının yapıldığı örnek bir gözetleme uygula-

ması için uygulanmıştır(örneğin, saldırı, protesto veya sıradan hareketlilik). Uygula-

mada, sensör katmanı verilen senaryolara göre sentetik veri üreten bir program ile

simule edilmiştir. Bu sistemin kullanıcıları anlık oluşan etkinlikleri gerçek zamana

yakın olarak veya son zamanlarda oluşan etkinlikleri tekrar oynatarak izleyebilirler.

Bu uygulama bulanık mantık ile genişletilen anlamsal Web teknolojilerinin kablo-

suz multimedya sensör ağlarında yapılan aktivite tespitinde önemli bir etkiye sahip

olabileceğini gösterir.

Anahtar Kelimeler: bulanık mantık, anlamsal Web, Web 3.0, aktivite tespiti, kablosuz

multimedya sensör ağları
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simulator that plays an important role in my project.

My special thanks are to my darling, Burcu BAŞAR for her moral support and endless
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The rapid development of microelectronics over the past decade has resulted in en-

ergy savings and smaller sensors in our daily lives. The reduction in sensor size has

resulted in an increase in the scale of growth of wireless multimedia sensor networks

[4]. As a result, wireless multimedia sensor networks are commonly used to col-

lect data from the physical environment. Wireless multimedia sensor networks have

many different applications. Some of them are field monitoring, health monitoring

or earth sensing. Particularly in security applications, field monitoring is one of the

common uses of wireless multimedia sensor networks, where sensors are deployed in

a selected area and events are expected to be detected [5]. On the other hand, another

common use of wireless multimedia sensor networks is the earth sensing applications

where environmental conditions such as disease detection [6], air pollution [7] or wa-

ter quality drinking [8] are monitored. More specifically, the position and pulse of

patients are recorded in health monitoring applications. If the patient has a pulse-

related disease, the disease can be detected and diagnosed early even if the patient is

at home [6].

Each monitoring application has an activity detection mechanism. Activity detec-

tion has been an important research area in the development of technology. Activity

detection can be achieved from environmental measurements done by scalar sensors

such as PIR, acoustic and vibration sensors as well as multimedia sensors such as

camera and microphone. After collecting sensor measurements in WMSNs, sensors

transmit measurements to sensor nodes and those data is processed and transmitted to
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the central without human assistance. With this feature, sensor networks are ideally

suited for activity detection applications in hazardous environments such as infectious

material search [9] or nuclear radioactivity source detection [10].

The difficulty in determining the activity depends on the type of activities to be de-

termined. Identifying an activity involves distinguishing between similar activities

and deciding which activity is involved. It is possible to differentiate activities us-

ing a rule-based system. Rule-based systems are a type of expert system consisting

of a set of rules. Rule-based systems can be created in two ways. The first is to

develop the system by learning from real data and the second to establish such a

rule-based mechanism by acquiring information from domain experts [11]. In this

study, the rule-based mechanism is created using semantic Web technology based on

information obtained from field experts. According to Tim Berners-Lee et al. [12],

the semantic Web is a continuation of Web 2.0 and allows computers and people to

collaborate with semantically well-defined information. The semantic Web aims to

explain the meaning of the data, not the raw data. In addition, the semantic Web is

used to combine different data sources and obtain new data by reasoning from these

sources [3].

For a rule-based system, an activity has occurred or not, there is no third possibility.

But in reality, rule-based systems have many decision points, because the truth of

some rules is relative. It is very convenient to use fuzzy set theory to increase the

reliability of a rule-based system. The fuzzy set, proposed by L. A. Zadeh in 1965, is

created by a membership function where each decision point corresponds to a set of

values with a degree [0,1], between 0 and 1 [13]. Fuzzy set theory is related to human

reasoning and skepticism based on intuitive reasoning. For example, the reasoning

does not consist of two outcomes. Unlike computers, tallness of a person varies

from person to person and depends on the application domain [14]. On the basis of

information received from domain experts, it is important to decide whether an event

occurs with a possibility of zero or one or a value between zero and one ([0,1]) or

whether a person is tall or not, via the functions of belonging of the corresponding

fuzzy sets.
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1.2 Problem Definition

In this thesis, activity detection is performed by establishing the wireless multime-

dia sensor network on a physical environment. While putting this into practice, two

fundamental problems are encountered and a new approach is adopted to solve these

problems. The first of these concerns is how to make processed sensor data acquired

from the sink of WMSN available in a well-defined format for end-users and other

systems to consume this data. Second, how to make the decision, or, in other words,

which mechanism for activity detection is more reliable. Recent studies in the liter-

ature do not focus on solving these two problems together. For example, [15] and

[3] aim at collecting data from different types of wireless sensor networks, then us-

ing Semantic Web technologies to standardize this data and communicate different

types of sensors. Thus, we can deduce new information using reasoning techniques

on the semantic Web. Moreover the study given in [1] make WSN data available for

end-user’s usage by defining a semantic web ontology. On the other hand, the study

given in [16] use wireless sensor networks with fuzzy set theory to detect activity

in the environment. The reason for the lack of such systems is that such intelligent

sensor network data is not available for end-users, because these systems do not have

a semantic Web mechanism so there is no well-defined, machine processable data

for end users. Therefore, no study that solves these two problems with the presented

infrastructure is available in the literature.

In order to solve the two problems described above, the proposed approach consists

of three layers which are the sensor, data and semantic Web layers. The sensor layer

covers the environment in which the wireless multimedia sensor nodes, gateways and

the sink are deployed. In the second layer, the data sensed by sensors and transformed

into object recognition data by pre-processing in the sensor nodes and/or the sink,

which are ready to be used for activity detection or be shared, are stored. At the top of

the architecture, there is a semantic Web layer including a semantic Web application

server, a fuzzy reasoning engine, and a semantic knowledge base. When a new data

item reaches to the semantic Web application server, it is converted into semantic

Web tuples (subjects, predicates, and objects) and stored in RDF format. Then, the

fuzzy reasoning engine is activated, executes a process called "fuzzy reasoning" and
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the related rules are fired for activity detection.

In the context of putting this approach into practice, an example surveillance appli-

cation is implemented as a case study. This application simulates a WMSN deployed

around a border post and attempts to detect threats (i.e., attack, protest or ordinary

mobility), in terms of varying levels of concern. In the implementation, the WMSN

is simulated by a program called Environment Simulator. The sensor data collected

and transformed into entity recognition data by processing in the sensor layer is trans-

ferred to the data layer where a sensor database is available. In the semantic Web

layer, there are an application server that takes requests from clients and accordingly

provides responses, a semantic knowledge base in which data is stored in RDF for-

mat, and a fuzzy reasoning engine with fuzzy rules. In addition, fuzzification and

defuzzification processes are performed at this layer. A new semantic Web ontol-

ogy based-on fuzzy logic is defined for activity detection. The reasoning results are

presented to the user with a hazard ratio that is calculated using the detected entity

types (person, vehicle, animal), time, directions of the detected entities, and proxim-

ity to the post center. This calculation is augmented with the fuzzy set theory. The

activities detected in the WMSN, are presented with a GUI to the end-users. In this

thesis, a new approach is introduced using a combination of semantic Web, wireless

multimedia sensor network, fuzzy set theory and reasoning for activity detection in

monitoring applications using WMSNs and more complete use is therefore compared

to other approaches in the literature.

1.3 Contribution

The first contribution of this thesis is to translate the processed sensor data obtained

from the sink of wireless multimedia sensor network into semantic Web data in order

to make this data available for other software or end-users. The second contribution

is the integration of fuzzy logic into the semantic Web-based reasoning system. There

are no studies in the literature using these two contributions together. For example,

the studies given in [3] and [15] aimed at collecting data from different types of

wireless sensor networks and standardizing sharing of collected data with semantic

Web technologies. Moreover, some studies make WSN data available for end-users
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by defining a semantic web ontology [1]. However, these studies do not use the fuzzy

set theory. On the other hand, there are studies using the fuzzy set theory to detect

activity in the environment without using semantic Web technologies [16]. Therefore,

the approach used in this study differs from existing studies.

Throughout the activity detection process, this study provides intuitive results in se-

mantic Web applications by using fuzzy set theory. In other words, fuzzy set theory

is used in this study because it offers the possibility of inferencing similar to that of

humans. With this feature, the reliability of the reasoning results generated by the

rule-based system increases because of future data for updating rules by field experts.

On the other hand, when semantic network technologies are not used in applications

where only the wireless sensor network and fuzzy set theory are used, it may be

impossible to open processed sensor data produced in the sink to other software or

end-users and identify critical activities. Our approach eliminates these problems.

In this thesis, to demonstrate the proposed concept, a surveillance application which

uses processed WMSN data as a case study is implemented. The Environment Sim-

ulator is used to simulate and acquire processed sensor data or in other words entity

recognition data, as if source of this data is the sink, to detect activities. The study

was tested with different scenarios by Environment Simulator. In addition, a semantic

Web application has been implemented to use processed real-time sensor data from

this simulator, as if source of this data is the sink. This application converts the sim-

ulator data into semantic Web RDF tuples according to the designed ontology. The

resulting RDF tuples are stored in the database. After executing the fuzzy logic in

the RDF data, the sensors detect the objects and then intuitive results are visually

displayed on the Web by the user. The reasoning results correspond to the default

hazard rate values that are calculated using the detected entity types (person, vehi-

cle, animal), the time, the directions of the detected entities, and the proximity of the

protected area in the WMSN environment. This calculation is augmented with the

theory of fuzzy sets for fuzzy reasoning by the Semantic Web. In addition, with this

GUI, any activity in the WMSN environment can be shown to the user in real time or

offline.
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1.4 Outline

The rest of the work is organized as follows: The next section provides background

information on fuzzy set theory and semantic Web technologies. Subsequently, the

studies linked to sensor networks, semantic Web and fuzzy set theory concepts are

briefly discussed. In addition, the reasoning used in the systems included in the lit-

erature is compared to the approach proposed in this thesis. Chapter 3 describes our

approach and the theoretical use of the semantic Web and fuzzy set theory to identify

activities through the WMSN. Chapter 4 describes the case study; architecture, and

capabilities of our example surveillance application. Finally, Chapter 5 describes the

conclusions and possible future work of this thesis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

In this thesis, by combining fuzzy set theory and the semantic Web, an infrastruc-

ture in which processed sensor data in the sink can be represented in a well-defined

and machine-processable format is introduced, and aims to increase the reliability of

decision-making mechanisms. In this part, the semantic Web and fuzzy set theory

technologies used in this thesis are explained in detail.

2.1.1 Semantic Web

The semantic Web was announced by Tim Berners Lee as a revolution in Web 2.0

in 2001 and it was stated that there is a standard for digitally storing well-defined

information to work collaboratively with computers and users [12]. The rise of the

digital world began with the Artificial Intelligence concept introduced at the Dart-

mouth Conference in 1956 [17]. Today, the World Wide Web connects billions of

documents and search engines quickly find the necessary information on these sites.

We believe that the use of Semantic Web will become more and more common and

important as AI, because semantic Web makes machine-readable Web documents.

Documents on the Web are designed so that people can read and manipulate them.

The semantic Web, on the other hand, represents an innovation that defends the the-

ory that computers can do it. Semantic Web establishes logical connections, which

are also referred to as "meaning of Web data", for different systems to work in har-

mony with each other. For example, suppose that a person books a theater ticket on a
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website and books a vacation for another date on another website. Let’s say that this

person has a calendar application that can list all the reservations made by him / her-

self over another website. The existence of such an ecosystem is only possible by the

semantic Web theory. Different Web applications can communicate with each other

and in this way the person sees his / her made reservations from a single Web appli-

cation. In order for computer programs to extract from Web content, the content must

be produced in a machine-readable form. The contents produced for this purpose are

expressed as ontology. The languages used to create these ontologies are expressed as

ontology languages [18]. For example, the Resource Description Framework Schema

is one of the most widely used ontology languages. RDFS is an ontology language

that can be created using the RDF conceptual data model. In addition, the query lan-

guage SPARQL is used to query the semantic data. In this part, we talk about the

issues that are the cornerstones of the semantic Web such as RDF[19], RDF Schema

and reasoning.

2.1.1.1 Resource Description Framework

It is a formal language for creating a common data structure to enable Web appli-

cations to exchange data with each other. The main difference from languages such

as HTML and XML is that processing activities such as reasoning on data can be

performed rather than just displaying the Web documents correctly. RDF is the most

basic representation format used in semantic Web applications. RDF has been used

in RSS 1.0 previously.

An RDF document defines a directional graph. A set of nodes is connected to each

other by directional arrows. Node and edge are distinguished by their labels. For

example, Figure 2.1 describes the relationship between a film and its producer in

RDF graph representation. Looking at this figure it will be inferred that the film1 is

produced by producer1. At this point, separating RDF from standards such as XML,

film1 and producer1 are labeled using Uniform Resource Identifiers. In this way, RDF

aims to have a single URI accepted for each resource. Thus, for instance, the same

sensor may have different names in the XML files produced by two different systems

expressing the data of a temperature sensor while the RDF standard assumes this and
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argues that the same resource must have the same URI. To achieve this, it is necessary

to work with well-defined vocabulary according to RDF standard. Vocabulary can

be selected depending on context. For example, if it is planned to produce RDF in

a subject where people are communicating with each other, the Friend of a Friend

(FOAF)[20] vocabulary should be used. Data values displayed in RDF are kept in

objects called "literal". Literals store data such as numbers, text, Boolean, time. In

Figure 2.1, "Title of film1" and "Name of producer1" are literal objects in the graph.

Figure 2.1: A basic RDF graph representing relationship between a film and producer

Processing of an RDF data by computers is not possible with graph representation.

Therefore, RDF data must be serialized. They are converted to triples called subject-

predicate-object for serialization. For example, in Figure 2.1, "example.org/film1",

"example.org/producedBy" and "example.org/producer1" are referred to as subject,

predicate and object respectively. Similarly, "example.org/film1", "example.org/title"

and "Title of the film1" can be expressed in the same way. As can be understood here,

while a URI type may be a subject, predicate or object, the literal may be the only

object. Triple syntax was first published in 1998 by Tim Berners-Lee as Notation

3 (N3). Subsequently, N-Triples and Turtle syntaxes followed this development in

2004. In Turtle syntax, URIs can be abbreviated using namespaces, and also URIs

are written with angular brackets. Literals are shown in the quotation marks. Each

line ends with a dot. Below is an RDF document written using the Turtle syntax:

@prefix ex: http://example.org/ .

ex:film1 ex:producedBy ex:producer1.

ex:film1 ex:title " Title of the film1 ".

ex:producer1 ex:name " Name of the producer1 ".
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2.1.1.2 RDF Schema

While defining a new domain of interest, some inferences that can be easily made

by the human brain cannot be done by computers. For example, let’s assume that

there are classes such as "person", "book", "library", individuals such as "Ali Ozdin",

"METU Library", "Calculus Book" and relationships like "worksIn". Human brain

can easily deduce that "worksIn" relationship is between the "person" class and the

"library" class, while the computer cannot do it without providing related informa-

tion. RDF Schema provides additional descriptions of the RDF data that the computer

can understand. The most common ones are rdf:type, rdfs:Class, rdfs:subClassOf,

rdf:Property, rdf:subPropertyOf, rdfs:comment, rdfs:seeAlso tags. The following de-

scribes the use and contribution of these tags.

@prefix ex: http://example.org/ .

ex:film1 rdf:type ex:HorrorFilm .

ex:HorrorFilm rdf:type rdfs:Class .

Type and Class: The first thing that is needed when defining a resource in Domain

of Interest is to define this resource as the element of a certain aggregation. rdf:type

is used to define the classes to which the resources belong. However, these classes

should be explicitly emphasized to be perceived as class by computers. Because the

fact that a resource has a URI does not necessarily indicate that it is a class. In the

example above, ex: film1 is not a class. Therefore, the class that the resource belongs

to is explicitly expressed by using rdf:type with the reference to the class rdfs:Class.

@prefix ex: http://example.org/ .

ex:film1 rdf:type ex:HorrorFilm .

ex:HorrorFilm rdf:type rdfs:Class .

ex:Film rdf:type rdfs:Class .

Subclass: For example, suppose we have an RDFS document as shown above. The

human brain may conclude that a horror movie is also a film, but the same is not

possible for computers. ex:film1 will not be among the results in the query we will

make to this document to see all the films of "ex:Film" type. Therefore, it is necessary

to specify the relations between the classes on the RDFS document. For this, it is
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necessary to state that every horror movie is a movie by using the rdfs:subClassOf

tag as follows.

@prefix ex: http://example.org/ .

ex:film1 rdf:type ex:HorrorFilm .

ex:HorrorFilm rdf:type rdfs:Class .

ex:Film rdf:type rdfs:Class .

ex:HorrorFilm rdfs:subClassOf ex:Film .

@prefix ex: http://example.org/ .

"Mr. X" ex:graduatedFrom ex:METU .

Ex:graduatedFrom rdf:type rdf:property .

Property: Tags that express the relationship between resources belong to the property

class. For example, ex:graduatedFrom can be thought of as a resource because it has

a URI, but in fact, although the human brain is able to deduce that it is a marker that

expresses the relationship between two resource is given; reference is made to the

class rdf:property to make it machine-processable as shown above.

@prefix ex: http://example.org/ .

"Mr. X" ex:graduatedFrom ex:METU .

ex:graduatedFrom rdf:type rdf:property .

ex:studiedIn rdf:type rdf:property .

Subproperty: Suppose for example that we have an RDF document, as shown above.

When we query this document to see all people registered in the system with the query

"ex:studiedIn", "Mr X" individual will not be included among the results. In fact, the

human brain can deduce "ex:graduatedFrom" relationship involves "ex:studiedIn",

but computers can not make the same deduction directly. For this reason, it is neces-

sary to specify the relations of the properties between each other on the RDFS doc-

ument. For this, it is necessary to state that the relation ex:graduatedFrom involves

ex:studiedIn relation in RDF document by using rdfs:subPropertyOf tag as follows.
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@prefix ex: http://example.org/ .

"Mr. X" ex:graduatedFrom ex:METU .

ex:graduatedFrom rdf:type rdf:property .

ex:studiedIn rdf:type rdf:property .

ex:graduatedFrom rdfs:subPropertyOf ex:studiedIn .

Domain and Range: Domain and range are used to describe the class to which the

subject and object respectively using that property belongs. For example, as shown

below, the human brain can understand that the relationship of "ex:graduatedFrom"

is between a human and a university, but in order for the machine to understand this,

reference should be made to the "ex:Person" and "ex:University" classes using the

rdfs:domain and rdfs:range.

@prefix ex: http://example.org/ .

"Mr. X" ex:graduatedFrom ex:METU .

ex:graduatedFrom rdf:type rdf:property .

ex:graduatedFrom rdfs:domain ex:Person .

ex:graduatedFrom rdfs:range ex:University .

Other Relations: When describing a new resource, adding human-readable explana-

tions using natural language will be useful to increase comprehensibility. Therefore,

rdfs:comment is used. On the other hand, rdfs:seeAlso is used to access detailed

information about a resource.

2.1.2 Fuzzy Set Theory

Fuzzy set theory is a theory that aims to replace human inference and thereby solve

complex decision-making problems. Foundations were introduced by L. A. Zadeh

in 1965. Systems such as weather forecasting and disease diagnosis systems can be

cited as examples of some decision-making problems that require the use of fuzzy

logic. The data to be used in such decision making systems does not express accurate

and precise results. Crisp logic is used to express these values in Boolean logic.

For example, a crisp value is absolutely either true or false. There can be no value

between these two. For example, the period during which a person is detected near
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the border station is called "Dangerous" or "Safe" and is classified in the following

image control function sets:

Safe = {x | for all x, time < 15:00 PM }

Dangerous = {x | for all x, time >= 15:00 PM }

The aforementioned sets belong to the safe group of persons identified near the bor-

der station before 15:00, while those identified after 15:00 belong to the category of

dangerous persons. But a crisp logic presents important limitations. For example,

the detections made at 8:00 pm and 14:59 pm, despite the difference of about 7 hours

between them, belonged to the same crisp set "Safe", while a determination was made

at 15:00 pm although it was a difference of one (1) minute it’s in the dangerous cate-

gory. That’s why crisp sets are not the right way to classify the time of day. For this

reason, fuzzy set theory is used to eliminate the limitations of crisp logic. In fuzzy set

theory, each element is a member of a set with a certain degree of membership (u).

In other words, the degree of belonging to a crisp set is u ∈ {0, 1}, but the degree of

membership in a fuzzy set is u ∈ [0, 1].

Figure 2.2: A general schema of a fuzzy logic controller

While F is a fuzzy set and X is a crisp set that belongs to this set, the membership

function is shown as uf : X → [0, 1]. In this case, the F set consists of a sequential
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pair of crisp input x and the corresponding fuzzy membership value uf [21].

F = {(x, uf (x)) : ∀x ∈ X} (2.1)

The fuzzy logic controller system uses crisp sets to make decision-making mecha-

nisms more accurate. In order to achieve this, the X crisp set received as input is

transformed into Y fuzzy set after processing x ∈ X . Fuzzy Logic Controller, as

shown in Figure 2.2, consists of 4 main components, Fuzzification, Fuzzy Rule Base,

Fuzzy Inference Scheme and Defuzzification.

Fuzzification: It is about taking the crisp input values of all the variables that the

system needs at the time of decision making and converting them into fuzzy sets

by placing them in a membership function. The fuzzifier is responsible for the fact

that each crisp input value is received and given to the corresponding membership

function. The fuzzy set elements that will be entered for the fuzzy inference engine

are called state variables [22], while the values they receive are called fuzzy linguis-

tic labels. For example, the "distance to border" described in Chapter 4 is a state

variable, while the words "very close", "close", and "far" are referred to as fuzzy lin-

guistic labels. Each linguistic label has a corresponding membership function. The

commonly used forms of functions are triangular, trapezoidal, Z-shaped, sigmoidal,

Bell and Gaussian shapes. In the surveillance application performed in this thesis,

membership functions for each different crisp input dataset are described in Chapter

4.

Fuzzy Rule Base: Fuzzy Rule Base is a set of rules created by using logical AND, OR

operators, with state variables and linguistic labels. Using these rules, the linguistic

labels of the output state variable and their degree of membership are calculated. For

example, the Ri fuzzy rule taking m input and producing an output is defined as

follows:

Ri : IF ( I1 is Ai1 AND I2 is Ai2 AND ... AND Im is Aim ) THEN ( O is Bi )

(2.2)
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where {I1, I2, . . ., Im} are the input state variables, O is output state variable, {Ai1,

Ai2, . . ., Aim} are the input linguistic labels and Bi is the output linguistic label.

Fuzzy Inference Scheme: Following fuzzification, the state variables, obtained as

a fuzzy set, are taken with related linguistic label and its membership value pairs

as input. Then, those pairs are processed with the fuzzy rule base and fuzzy output

sets are produced [22]. To achieve this, output linguistic labels and their degrees of

membership in a set of fuzzy output are calculated using equations 2.1 and 2.2 as

follows:

eval(Ri) : (uAi1(I1) AND uAi2(I2) AND ... ANDuAim(Im))→ uBi(O) (2.3)

The fuzzy output to be obtained as a result of the matching rules calculates the mem-

bership value of each linguistic label in the fuzzy output set using T-operators[23],

such as MIN, MAX, NOT, instead of AND, OR, NOT as follows:

uAi(Ii) AND uAj(Ij) = uAi∩Aj
(Iij) = MIN(uAi(Ii), uAj(Ij)) (2.4)

uAi(Ii) OR uAj(Ij) = uAi∪Aj
(Iij) = MAX(uAi(Ii), uAj(Ij)) (2.5)

NOT (uAi(Ii)) = uAi(Ii) = 1− uAi(Ii) (2.6)

Defuzzification: The produced fuzzy output linguistic variables from the fuzzy in-

ference scheme arrive in the defuzzification module with membership degrees. At

this point, all fuzzy outputs are aggregated into one crisp output by Defuzzifier. To

perform defuzzification, many methods are available, such as maximum membership,

centroid, weighted average, mean max membership [24]. In this thesis, the centroid

method is preferred. Centroid, in other words, the center of gravity method can be
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formulated as follows:

z∗ =

∑N
a=1(za) ∗ uc(za)∑N

a=1 uc(za)
(2.7)

where uc(za) is the modified membership functions of fuzzy output set C,
∑

denotes

the summation and N is the number of points the modified fuzzy output span over

X-axis.

Figure 2.3: Center of gravity defuzzification method

2.1.3 Semantic Web Reasoning with Fuzzy Set Theory Augmentation

Through the semantic Web, reasoning can be implemented by directly defining your

own rules, as well as by using RDFS tags. In this way, new information is deduced.

However, the accuracy of the data obtained is 100%, given the nature of the semantic

Web. However, unlike binary reasoning, fuzzy set theory states that a judicial power

is correct according to a certain degree of membership. As part of the study conducted

in this thesis, the goal is to produce results closer to human inference by increasing

semantic web reasoning with fuzzy set theory. To achieve this, the input and output

membership functions generated using fuzzy set theory have been implemented in

reasoning rules on the semantic Web. Then, the results produced were saved in tuples

as literal values to match the semantic Web tuple format. As part of this study, a

separate ontology is developed to record the membership values obtained.
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2.2 Related Work

In the last decade, semantic Web technologies are integrated with wireless sensor net-

works for different purposes such as activity detection, data management [2], raw data

processing [25], communication of different wireless sensor networks [3], analysis of

sensor networks and their data [26] , optimization of energy consumption of sensor

networks [27] or estimation of fire time indices [28]. In this thesis, the purpose of

using the semantic Web with wireless multimedia sensor networks is to use the rea-

soning capabilities offered by the semantic Web during activity detection and to open

up the reasoning results obtained in the semantic Web. These results are for external

world, allowing other users to use this data with the use of semantic Web ontology.

The difference between this study and other applications that allow activity detection

using the semantic Web increases semantic Web reasoning with fuzzy logic. Thus,

the results of this theory are relatively more intuitive and close to human reasoning.

Activity detection can be done using semantic Web technology as well as other meth-

ods. For example in order to make activity learning, study [29] was implemented

by applying dynamic K-means clustering. By introducing a smart home system; in

order to measure the orientation, they place a PIR motion sensor in various parts of

the house and places an object sensor on some objects, such as a telephone. It defines

seven activities consisting of brooming, cooking, washing, cleaning, eating, sleeping

and talking. Using K-Means Clustering, the first four activities are defined to the sys-

tem by passive learning and the last three activities are expected to be learned by the

system. Moreover, the study given in [30] focuses on voice activity detection and uses

the SVM and GMM classifiers to label and classify acoustic event sounds (applause,

cup sound, etc.). After classification, voice activity detection is done by separating

acoustic event sounds from speech. Finally, study [31] focuses on activity monitor-

ing within the smart home systems that emerged as a result of the widespread use

of health-care monitoring applications. In general, smart home activity monitoring

applications uses supervised activity detection. On the other hand, study [31] focuses

on unsupervised activity recognition because of the fact that; it is very expensive to

make manual labeling and violates the privacy of the personal life of the individuals

for applications using supervised activity detection. In order to perform unsupervised
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activity recognition with the framework called NECTAR, a hybrid approach consist-

ing of ontology and segmentation was introduced. Segments, via feedbacks from the

environment to avoid errors due to heterogeneous environmental conditions, consist

of sensor events that cannot be defined by ontology.

A study by Zafeiropoulos, Anastasios, et al. investigates data management on sen-

sor networks using semantic web technologies[1]. The problem pointed out by this

study is that due to the lack of ontological definitions, end-users cannot produce the

required data by using raw data produced by the sensor networks. As a solution,

as seen in Figure 2.4 3-Layered architecture is presented: A data layer that collects

and groups this data, a processing layer that processes this grouped data and finally,

semantic layer that responsible for context annotation and reasoning [1]. The study

of Zafeiropoulos et al. covers only the classical semantic web rule-based reasoning

techniques without fuzzy set theory while detecting activities.

Figure 2.4: Three layered structure for data management in sensor networks[1]

Similar to the study described in [1], Moraru et al. have also established a framework
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Figure 2.5: A framework for transforming and publishing sensor measurements[2]

that automatically converts sensor raw data to a comprehensive semantic sensor data

in [2]. Moraru et al. aims to automatically annotate sensor data, publish sensor data

using well-known vocabulary and support event detection applications by applying

reasoning techniques. Therefore, they present a concept framework shown in Figure

2.5. On the other hand, the study presented in this thesis uses semantic web reason-

ing and fuzzy set theory together and increases the reliability of detected activities.

Moreover, instead of annotating raw sensor data, our study focuses on publishing

processed sensor data acquired from the sink of a WMSN.

One of the goals of using the semantic Web with wireless multimedia sensor networks

is, by keeping the data in RDF format, to use processed data acquired from WMSN.

Contrary to the study conducted in this thesis, the reasoning using fuzzy set theory is

not the focus of studies [15] and [3]. In fact, these studies do not focus on activity

detection. Moreover, these studies concentrate on using different types of wireless

sensor networks and semantic Web services. For example, the study specified in [3]

introduces two approaches that allow different types of sensor networks to communi-

cate. The first method is that each node can have its own semantic Web Service. It

is not necessary to have a generic web service to publish the data of the node. The

second method is to have a base station node and to deploy the Semantic Web Ser-

vice on this node to communicate with different sensor networks. In this case, as

shown in Figure 2.6, requests are issued by end-users using third-party software, the
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Figure 2.6: Interaction of WSNs and end-users[3]

corresponding response is retrieved from the base station node and forwarded to the

end-user [3]. As in the work specified in [3], between different applications, [32] also

aims to reuse the data produced by different types of sensor networks that perform

measurements such as sound, location, and temperature between different applica-

tions. Therefore, for all types of sensor networks, the raw sensor data is converted to

semantic sensor data in accordance with the ontology described previously.

Kapitanova et al. put forward a study that makes event detection in WSNs with fuzzy

set theory[16]. Furthermore, their study aims to tolerate data from untrusted and low-

precision sensors. To achieve this, sensor data is fuzzified without applying semantic

Web techniques to obtain a membership degree. On the other hand, the study in this

thesis uses the semantic Web with fuzzy logic to create rules for reasoning. Through

the semantic Web approach, processed sensor data acquired from the sink of WMSN

and associated reasoning results can be opened to the outside world. However, study

[16] focuses on reducing the growing number of rules resulting from the use of fuzzy

set theory. Because if fuzzy set theory is used, the number of rules will automatically

reach mn for m different values that n different variables can take.
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CHAPTER 3

FUZZY LOGIC ON SEMANTIC WEB REASONING FOR ACTIVITY

DETECTION IN WIRELESS MULTIMEDIA SENSOR NETWORKS

The goal of this study is to design a reliable reasoning system to be used in activity

monitoring applications and make acquired data available for other users or applica-

tions. To achieve this goal, semantic Web technologies extended with the fuzzy set

theory is integrated with a WMSN which enables environmental monitoring in an

efficient way. The theory of fuzzy sets is necessary for reasoning systems to obtain

a reasoning mechanism close to the human reasoning. The architecture presented in

this thesis according to requirements is composed of three (3) main layers, as shown

in Figure 3.1. According to this architecture; the sensors, the living beings and their

environment form the layer of sensors. The raw data sensed by these sensors is pro-

cessed at the sensor nodes and/or sink to determine whether there is a target object

in the surveillance area. These data are then stored in the data layer. Finally, these

processed data are transferred to the semantic Web layer. Data transformation process

between layers is shown in Figure 3.2. The semantic Web layer manages the entire se-

mantic Web and its fuzzy reasoning process for activity detection. It is extended with

fuzzy sets theory to obtain a reasoning mechanism close to the human reasoning.

3.1 Sensor Layer

The sensor layer is the lowest layer of architecture. In this layer, by distributing sensor

nodes of equal distance in a selected area, environmental conditions and living things

in the environment are monitored to recognize objects using the established wireless

multimedia sensor network. As shown on Figure 3.3, Sensor layer’s wireless mul-
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Figure 3.1: Activity detection architecture on wireless multimedia sensor networks

Figure 3.2: Data transformation flow
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Figure 3.3: Wireless multimedia sensor node architecture

timedia sensor node architecture consists of multimedia sensors including cameras,

microphones and scalar sensors including passive infrared (PIR), acoustic and vibra-

tory sensors. Normally, multimedia sensors are kept in sleep mode to decrease energy

consumption. On the other hand, scalar sensors are always in active mode. Cameras

and microphones are decided to be awakened according to the scalar sensors’ mea-

surements. When the camera and microphone are turned on, first of all, both type

of audio and video are processed using automatic learning methods and fused at the

sensor node. Then, generated information is transferred to the sink via gateways and

more complex fusion is performed here to accurately detect and recognize objects in

the monitored area of established WMSN shown in Figure 3.4. This processed sensor

data is transferred to the data layer, located in the upper layer of the architecture.

3.2 Data Layer

The pre-processed sensor data taken from the sensor layer is stored in this layer and to

be used in the semantic Web layer. The data stored in this layer include information

about sensed entities such as entity type, timestamp and information about sensors

such as their positions. Entities are stored in the sensor DB which works with a data

layer server. As an example, the data stored in the data layer for the surveillance

application described in Chapter 4 contains the following items:

• Latitude,
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Figure 3.4: Wireless multimedia sensor network architecture

• Longitude,

• Altitude,

• Sensors in the neighborhood,

• Timestamp,

• Type of entity detected.

The position of the sensor expressed with latitude, longitude and altitude, and the type

of entity with time stamp play an important role in the event detection performed by

the semantic Web layer. The type of entity can be, for example, a person, a dog or a

car. The data layer server sends a notification to the Semantic Web layer about arrival

of a new WMSN entry and triggers the operation of the semantic Web layer.
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3.3 Semantic Web Layer

This layer is responsible for managing all operations associated with the semantic

Web. In semantic Web layer, client requests are processed, components are initialized

and executed. This layer has three main components: Web application core, semantic

WMSN KB and fuzzy semantic reasoning engine. Activity detection is performed on

this layer. The semantic Web layer converts processed sensor data taken from the data

layer into semantic tuples (subject, predicate, and object) in accordance with designed

ontology. In addition, Semantic Web layer is required to check the semantic sensor

database for the presence of new fuzzy semantic reasoning data.

Figure 3.5: Coordination of components in semantic Web layer

Figure 3.5 shows the coordination between semantic Web layer components while

performing activity detection. First of all, Web application core converts processed

sensor data to RDF tuples and then inserts them into semantic WMSN KB. Secondly,

as soon as a new insertion to knowledge base happens, fuzzy semantic reasoning

engine is activated and fuzzification and inferencing is performed. Then Web appli-

cation core reads knowledge base and starts defuzzification. Finally defuzzification

results are shared with clients.
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3.3.1 Web Application Core

The Web application core, works on a server, manages and coordinates the entire pro-

cess of the semantic Web layer. The communication between the data layer and the se-

mantic Web layer is bidirectional. The initialization of communication depends on a

setting in the Web application core. In online mode, the instantaneous WMSN data is

monitored and the sensor DB located in the data layer warns the Web application core

to inform about the availability of new WMSN data. In offline operation mode, the

Web application core initiates communication and request previously stored WMSN

data. Communication with end-users are also managed by this application.

In Algorithm 1, between server and client application, established communication

in order to monitor the WMSN environment instantly is observed. To be informed

that newly processed sensor data has been added to sensor DB by the sink, it is

firstly subscribed to the database via data layer server. After that, some indicators

are checked and the algorithm is routed. For example, thanks to this algorithm,

the entities that are sensed from the sensors are shown to the users with their in-

stantaneous positions. In addition, how many entities are detected for each entity

type and the inferences obtained with semantic web reasoning are shared with the

client via this algorithm. As for the computational complexity of this algorithm,

generateGraphicsInnerContent has O(n2), findNumberOfEntityTypes and

getFuzzyReasoningResults have O(n) complexity. Therefore, the algorithm com-

plexity is calculated as O(1)∗MAX(O(n), O(n2)) = O(n2) because of the functions

used in this algorithm.

In Algorithm 2, between server and client application, it is observed that a com-

munication is established in order to monitor activities occurred previously in the

WMSN environment. Here, as in Algorithm 1, the algorithm is routed by check-

ing some flags and the entities that are sensed from the sensors at the selected date

are shown to the users with their instant positions. In addition, how many entities

are detected for each entity type and the inferences obtained with semantic Web rea-

soning are shared with the client via this algorithm. As for algorithm complexity,

generateGraphicsInnerContent has O(n2) complexity. Therefore, the algorithm

complexity is calculated as O(n) ∗ MAX(O(n), O(n2)) = O(n3) because of the
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Algorithm 1 Request handling mechanism for live sensor data
procedure HANDLEREQUESTSFORLIVEDATA( ) . Currently acquired data

subscribeToSensorDB() . in Data Layer, for sensor and its data

if sendV isualContent = true then

sendV isualContent← false

response.EventType← ”svgUpdate”

if waitForSensorListSemaphore() then

takeSensorDataListSemaphore()

end if

response.Data← generateGraphicsInnerContent()

releaseSensorDataListSemaphore()

else

sendV isualContent← true

findNumberOfEntityTypes()

if chosenConceptToSend = ENTITY _TY PE_X then

chosenConceptToSend← ENTITY _TY PE_Y

response.EventType← ”numOfEntityTypeX”

response.Data← numOfEntityTypeX

else if chosenConceptToSend = ENTITY _TY PE_Y then

chosenConceptToSend← SEM_FUZZY _REASONING

response.EventType← ”numOfEntityTypeY ”

response.Data← numOfEntityTypeY

else if chosenConceptToSend = SEM_FUZZY _REASONING

then

chosenConceptToSend← ENTITY _TY PE_X

response.EventType← ”semanticFuzzyReasoning”

response.Data← getFuzzyReasoningResults()

end if

end if

sendResponse()

end procedure
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Algorithm 2 Request handling mechanism for offline sensor data
procedure HANDLEREQUESTSFOROFFLINEDATA( requestedDay ) .

Previously acquired data

getPreviousSimulationList() . from SensorDB in Data Layer

while i 6= previousSimulationListSize do . Look up each sim. entity

if previosSimulationList[i].name = requestedDay then

if requestedParameter = ”numOfEntityTypeX” then

response.Data← numOfEntityTypeX

else if requestedParameter = ”numOfEntityTypeY ” then

response.Data← numOfEntityTypeY

else if requestedParameter = ”semanticFuzzyReasoning”

then

response.Data← getFuzzyReasoningResults()

else if requestedParameter = ”visualContent” then

response.Data← generateGraphicsInnerContent()

end if

end if

i← i+ 1

end while

sendResponse()

end procedure

functions used in this algorithm.

In summary, algorithms 1 and 2 are required to provide the data requested by the client

side. The previously obtained and processed sensor data is extracted from the sensor

database in the data layer, which is different from that of Algorithm 1. In addition,

since the instantaneous processed sensor data is examined in Algorithm 1, different

from Algorithm 2, registering in the sensor database of the data layer, it is possible to

obtain data layer notifications if newly processed sensor data is obtained. The newly

processed sensor data obtained by this notification is converted to semantic WMSN

data in the semantic Web layer. In addition, the membership values of the output lin-

guistic labels obtained from the fuzzification and fuzzy inference applied by the fuzzy

semantic reasoning engine to these semantic sensor data are periodically checked
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from the semantic WMSN knowledge base. Interactions with semantic WMSN KB

must be compatible with designed ontology. Moreover, defuzzification process are

executed using the getFuzzyReasoningResults function by periodically checking

semantic WMSN KB. With defuzzification, the system performs activity detection

according to the specified fuzzy rules. Defuzzification is performed using the center

of gravity method with the equation specified in 2.7. Since activity detection is done

using fuzzy set theory, reasoning is closer to human reasoning than crip logic.

3.3.2 Semantic Wireless Multimedia Sensor Network Knowledge Base

Semantic WMSN KB is a type of graph database containing RDF tuples. RDF, called

the Resource Description Framework, is a concept that refers to the fact that data is

stored on the Web. RDF is a concept that has been put forward with the Semantic

Web idea and can be considered as a cluster containing triplets consisting of subjects,

predicates and objects. For example, if the phrase "Mary lives in Istanbul" is con-

verted to RDF, "Mary", "livesIn" and "Istanbul" refer to subject, predicate and object,

respectively.

In this study, the purpose of using the semantic Web is to integrate this work with

other studies in the future. With the idea of the semantic Web, RDF recommends

linking subjects by moving the idea of Web 2.0 to link documents a step further [33].

RDF provides this by giving a unique resource identifier (URI) to each subject. Thus,

if the same subject is mentioned on different web pages, the data of these two subjects

can be related (linked) to each other. In addition, this study can be used to make

processed sensor data acquired from the sink of WMSN available in a well-defined

format with a typed ontology for any other systems to consume this data. This feature

makes applications using the semantic Web extensible.

Semantic WMSN KB is based on an ontology shown in Figure 3.6, using RDFS.

This ontology is designed not only to cover the data obtained from the sensor layer,

but also to allow the input and output membership functions to be implemented in

order to perform fuzzification and record the results in the form of triples compatible

with the ontology. Thanks to this ontology, the data obtained from the sensor layer,

which are essentially position information, the type of entity, time stamp information
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Figure 3.6: Ontology design of semantic WMSN KB

Figure 3.7: Semantic KB’s domain of interest
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of when the entity is detected by the sensor nodes as shown in Figure 3.7 are repre-

sented. Moreover, inferencing data obtained after the fuzzification and/or inferencing

are stored on semantic WMSN KB in accordance with this ontology.

Update to the ontology is performed easily with a minimal code change on Web ap-

plication core thanks to the generic architectural design of semantic Web layer. For

example, if a new input linguistic label ILLx is added to the ontology; new fuzzifica-

tion rules should be added and inferencing rules should be updated on fuzzy semantic

reasoning engine. There is no need to update anything on Web application core. Be-

cause Web application core is only responsible for defuzzification and not interested

in input linguistic labels. If a new output linguistic label OLLy is added to this ontol-

ogy; there is no need to update or add new fuzzification rules. Inference rules should

be updated and/or added. Moreover, defuzzification implementation in Web appli-

cation core should be updated. Thanks to minimal code change of Web application

core, the system has very low test and verification cost.

3.3.3 Fuzzy Semantic Reasoning Engine

Fuzzy semantic reasoning engine, one of the main components of this layer, is re-

sponsible for fuzzification and inferencing process. Reasoning process is the process

of obtaining new semantic tuples from existing tuples. In other words, the reasoning

process gives the system the ability to learn. In this study, fuzzy semantic reason-

ing engine automatically passes over tuples after each tuple is inserted into semantic

WMSN KB in accordance with the ontology and tries to extract a new activity detec-

tion.

Fuzzy semantic reasoning engine is responsible for managing the fuzzification and

inferencing process by implementing input membership functions and fuzzy infer-

ence rule set in accordance with the ontology on the engine, as opposed to classic

rule-based reasoning of the semantic Web, as seen in Figure 3.8. Table 3.1 shows the

fuzzy rule set architecture used by fuzzy inferencing scheme. In this table; ILL0,1,..,n

refers to input linguistic labels of different input state variables; while Activity0,1,..,n

refers to different values ( eg: walking, running, etc. ) that the output state variable

can take, or, in other words, the type of activity to be detected ( eg: movement )
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Figure 3.8: Fuzzy logic controller implementation on semantic Web reasoning

Table 3.1: Architecture of fuzzy rule base

Rule InputStateVar 0 InputStateVar 1 . . . . InputStateVar n Activity Confidence

R0 ILL00 ILL10 . . . . ILLn0 Activity0 c0

R1 ILL01 ILL11 . . . . ILLn1 Activity1 c1

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Ra−2 ILL0a−2 ILL1a−2 . . . . ILLna−2 Activitya−2 ca−2

Ra−1 ILL0a−1 ILL1a−1 . . . . ILLna−1 Activitya−1 ca−1

Ra ILL0a ILL1a . . . . ILLna Activitya ca

according to our theory. Furthermore, there is a confidence coefficient c ∈ [0, 1] for

each rule. Even if any rule is triggered, confidence parameter can reduce the effect

of the rule by multiplying the detected activity’s output membership degree with the

triggered rule’s confidence coefficient before defuzzification.

Figure 3.9 shows the insertion of crisp inputs in accordance with the ontology de-

scribed in Figure 3.6 in the RDF tuple format. Prior to fuzzy inferencing, fuzzification

should be performed by Web Application Core by passing crisp inputs( RDF tuples

) as literal values into membership functions. Membership functions usually have

trapezoidal, reverse trapezoidal or triangular form. The membership function equa-

tions with these forms are shown in Equations 3.1, 3.2 and 3.3. In these equations

x represents crisp input data, a, b, c and d represent the range values in the mem-

bership functions. These equations are implemented within the membership func-
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Figure 3.9: Crisp input insertion in accordance with the ontology

tion rules and the fuzzification is completed by using these equations to calculate the

ILLxy(InputStateV arx), ILLtz(InputStateV art) input linguistic labels and their

membership degrees. For example, Figure 3.10 shows that how a trapezoidal mem-

bership function belonging to ILLxy varies according to uri : date, is implemented

in fuzzy reasoning engine.

Trapezoidal(x; a, b, c, d) = MAX(MIN(
x− a

b− a
, 1,

d− x

d− c
), 0) (3.1)

ReverseTrapezoidal(x; a, b, c, d) = MIN(MAX(
b− x

b− a
, 0,

x− c

d− c
), 1) (3.2)

Triangular(x; a, b, c) = MAX(MIN(
x− a

b− a
,
c− x

c− b
), 0) (3.3)
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Figure 3.10: Fuzzification with the ontology

@prefix uri: http://www.example.org / .

[ ILLxy(MembershipFunctionOfInputStateV arx):

( ?entityId uri:DirectPosition ?pos ) ,

( ?pos uri:date ?timestamp ) ,

difference(?timestamp, a, ?diff1 ),

difference(b, a, ?diff2 ),

quotient(?diff1, ?diff2, ?val1 ),

difference(d, ?timestamp, ?diff3 ),

difference(d, c, ?diff4 ),

quotient(?diff3, ?diff4, ?val2 ),

min(?val1, ?val2, ?val3 ),

min(1.0, ?val3, ?val4 ),

max(?val4, 0.0, ?membershipDegree )

notEqual( ?membershipDegree, 0.0 )

→ ( ?pos uri:ILLxy ?membershipDegree )

]

After fuzzification, the fuzzy inferencing process starts with the fuzzy rule set given
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in Table 3.1. In this process, activities and related membership degrees are calculated

with one or many triggered RfiredRule rules by using the Equation3.4. Figure 3.11

shows the implementation of Equation 3.4 in Fuzzy Reasoning Engine.

eval(RfiredRule) :MIN(ILLxy(InputStateV arx) AND ILLtz(InputStateV art))

∗ ConfidencefiredRule

→ OutputStateV ar(Activitym)

(3.4)

Figure 3.11: Fuzzy inferencing with the ontology

@prefix metu: http://www.example.org / .

[ eval(RfiredRule):

( ?pos metu:type metu:Position ) ,

( ?pos metu:ILLxy ?membershipDegree1 ) ,

( ?pos metu:ILLtz ?membershipDegree2 ) ,

min( ?membershipDegree1, ?membershipDegree2,

?minimumOfMembershipDegrees ),

product( ?minimumOfMembershipDegrees, ConfidencefiredRule ,

?resultingMembershipDegree )

→ ( ?pos metu:Activitym ?resultingMembershipDegree )

]
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By applying the method described above, the semantic Web’s reasoning process,

known as binary or in other words rule-based, is transformed into heuristic reasoning.

Thanks to heuristic reasoning, the reliability of deduction system is increased. Fuzzy

set theory, together with the reasoning process, gives the system the ability to think

like a human. The reasoning rules must be given to the fuzzy semantic reasoning

engine during the initialization phase for reasoning with semantic Web.

To summarize, fuzzy semantic reasoning engine is used to implement input mem-

bership functions with the rules defined on it. Input membership functions are used

for implementing fuzzification. In addition, inference processes which are made after

fuzzification and input to defuzzification process are also fulfilled by the rules defined

for this purpose on the engine.
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CHAPTER 4

CASE STUDY: AN EXAMPLE SURVEILLANCE APPLICATION

Figure 4.1: Surveillance application architecture

National security is one of the most important issues of this century. The soldiers

at border stations who use binoculars or radar to monitor the environment can detect

terrorist attacks at national borders. The problem here is that it will take hours or

even days to fix it when the radar breaks down. It is precisely at this moment that the

soldiers who protect the borders can face a sudden terrorist attack or some other ac-

tivities. The surveillance application called Border Safety Informer, uses the theory

described in Chapter 3 to solve this problem, instead of using a radar. As a result,

it establishes a synthetic wireless multimedia sensor network of hundreds of sensor

nodes around the border station and takes processed sensor data produced from the
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sink. Its purpose is to monitor the environment with the system in place and to in-

form troops waiting at the border post by calculating the percentage of danger. In

order to achieve this goal, the activity detection architecture defined in Figure 3.1 is

implemented with the software components to form the structure of Figure 4.1.

4.1 Sensor Layer

The sensor layer is simulated by a program called Environment Simulator. According

to defined parameters, Environment Simulator simulates the WMSN environment and

produces processed sensor data model based on graphs [34]. This graph data is stored

in sensor DB of data layer. As shown in Figure 4.2, using the Environment Simulator,

the number of clusters in the area and the distance between sensors in a cluster are

given as parameters before simulation. It deploys sensors in a rectangle are. The

latitude and longitude values of the upper left and lower right corners of the rectangle

should be given to deploy the WMSN to a place in a specific world coordinate. After

parameter definitions, the simulator creates a WMSN and inserts related data to the

sensor DB. It can produce sensor data according to the given scenarios. When a

simulation is started according to the given scenario, the instantaneous positions of

the simulated entities with their timestamps are inserted into the sensor database as if

there is a real WMSN.

At this point, the start timestamp of the simulation, the velocity information of the

moving entities in the simulation are entered into the system. The speed factor in-

formation of the simulation is entered in seconds in the system. The simulation de-

termines the frequency of data generation using the speed factor parameter. Using

Environment Simulator, entities such as Person, Animal, Vehicle, Group of People

and Group of People with Vehicle can be created. In order to create entities in the

rectangular area where the sensors are placed, the simulation drawer of Environment

Simulator can be opened to set the waypoint of the entities to be created at the time of

the simulation. For example, in Figure 4.3, twenty-five (25) simulations of different

entities are prepared, including a person, a vehicle, an animal, a group of people or a

group of people with a vehicle.
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Figure 4.2: Environment Simulator

Once the entities to be simulated have been drawn in the drawer, the simulation is

started from Environment Simulator. With the timestamp, the instantaneous positions

of the simulated entities are inserted into the sensor database as if they were the

entity positions detected by the sensor nodes close to that entity. Because sensor DB

is controlled by data layer server, the server must be enabled before Environment

Simulator can be run.

4.2 Data Layer

The data layer consists of a sensor database running on a server. The sink’s WMSN

data generated by the Environment Simulator is stored in sensor DB via data layer

server. Since the data produced by the simulator is in graph model [34], we have a

big graph database system at the data layer. In the surveillance application, OrientDB

which is a graph database is used as the sensor DB. The database model of OrientDB

consists of vertices and edges. The position information (latitude, longitude) of each

sensor is the first data inserted into the sensor DB graph store. After launching a

simulation from Environment Simulator, with timestamp, type and position of the

entities with the identification of the detection sensors are inserted into the sensor
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Figure 4.3: Simulation drawer of Environment Simulator

DB.

OrientDB has a push notification service. Semantic Web servlet application which is

in the semantic Web layer registers to push notification service of sensor DB. A noti-

fication is sent to the semantic Web servlet application server to initiate data transfer

when an update is made in the sensor database. In addition, semantic Web servlet ap-

plication can register to sensor DB via the data layer server to instantly obtain data on

adding, updating, or deleting a specific node by limiting the notification mechanism.

The structure of the sensor DB after insertions made by Environment Simulator over

HTTP connection is shown in Figure 4.4. Only actualData, sensorRawData,

sensorNode and fusedData vertexes of the sensor database are used by the se-

mantic Web servlet application. actualData vertex contains the entity’s type, unique

ID, position, and timestamp information. sensorRawData includes measurement

results from PIR, acoustic and vibratory sensors. PIR is a Boolean parameter and if

set to true; the camera must be turned on by the simulated sensor system. The results

of the acoustic and vibratory measurements are stored as float. Semantic Web servlet
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Figure 4.4: Sensor DB structure

application does not directly use the sensorRawData vertex. The sensorNode ver-

tex contains the position information of all the sensors in WMSN. The fusedData

node is not used directly by semantic Web servlet application, like sensorRawData.

The sensorRawData and fusedData vertices are used to access the sensorNode

vertices from actualData vertices.

Figure 4.5: Sensor DB - After initialization step

For example, when WMSN is created for the first time with Environment Simulator,

the structure in Figure 4.5 appears. In this structure, we first observe that the vertices

created are gateway, sensorNode and sink, their relation is represented by the lead
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edge. According to this structure, all the sensor nodes are connected to a gateway and

the gateway is connected to the sink.

Once initialization is complete, as soon as an entity is detected by the sensor nodes

and the sink, Environment Simulator adds the actualData, packet, sensorRawData,

action, fusedData, sensorMultimediaData vertices for the detected entity. The

resulting view of the sensor DB is shown in Figure 4.6. The semantic Web layer

shares calculated results with the client after taking those input data stored in the

vertices.

Figure 4.6: Sensor DB - After an entity is detected

4.3 Semantic Web Layer

Semantic Web Layer consists of a semantic Web servlet application, a semantic

WMSN KB, and a fuzzy reasoning engine by sharing the same ontology. Seman-

tic Web servlet application running on semantic Web servlet application server is the

core of the semantic Web layer. The semantic Web servlet application is a Web-
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based HTTP servlet application that is implemented using Java Enterprise Edition.

Servlets are a platform-independent, component-based way of creating Web applica-

tions, compared to the drawbacks of performance-related CGI programs [35]. Servlet

is actually a Java class that increases the capabilities of a server by presenting appli-

cations as part of the request-response programming model. CGI provides dynamic

content to the user by running a program on the server and accessing the database

through this program. Figure 4.7 shows the CGI and servlet architectures. Since the

servlet architecture has significant advantages over CGI, it is preferred in this study.

The first is that servlet is portable while CGI is not. For each incoming request, while

the servlet processes it by creating a separate Java thread, CGI creates a new operat-

ing system process. In addition, the servlet is cheaper than CGI. For example, HTML

data is analyzed automatically in the servlet and a direct connection to the database

can be established. For these reasons, it is best to create dynamic content in this layer

and provide that content to clients.

(a) CGI.

(b) Servlet.

Figure 4.7: Possible server architecture of a Web application
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On the front-end, the application is responsible for providing a graphical user inter-

face to show users the environment in which the WMSN is established. Client-side

of application has a responsive Web design and is compatible with mobile devices

through the Bootstrap framework [36]. All animations of the application are imple-

mented with support of HTML 5 SVG and Javascript. The semantic Web servlet

application runs on Apache Tomcat 7.0 server.

Figure 4.8 illustrates all the data and command flows between components in our

surveillance application. The synthetic and processed sensor data generated by Envi-

ronment Simulator are inserted into the sensor DB via the data layer server endpoint.

This data is extracted from sensor DB as offline or online and converted to semantic

Web tuples (subject, predicate and object) according to the designed ontology shown

in Figure 4.11.

Figure 4.8: Data flow between components

As soon as the semantic web tuples are inserted into the semantic WMSN KB, the

fuzzy reasoning engine is activated and initiates the fuzzification process and the

subsequent inference process for each position data of each entity. To make rea-

soning on the Web with semantic techniques, Apache’s Fuseki framework is used.

Fuseki acts as a SPARQL server where select, insert, update, or delete operations

can be performed on semantic web tuples over HTTP[37]. In order to perform the
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(a) Time of day (b) Closeness to target

Figure 4.9: Input membership functions

Figure 4.10: Output membership function

fuzzification, the implementations of the membership functions shown in Figure 4.9

must be assigned to the fuzzy reasoning engine via the input rule definition file pro-

vided during the initialization phase. The membership functions are applied to the

timeOfDay and closeness input state variables. timeOfDay can receive two lin-

guistic label values with a certain degree of membership. closeness can receive three

linguistic labels with a certain membership degree. timeOfDay receives daytime

and night linguistic labels on the ontology and closeness receives veryclose, close

and far linguistic labels. On the other hand, there are two crisp input state vari-

ables that do not have membership function. One of them is movingDirection with

two linguistic labels called gettingCloser and goingFar. The other state variable

is detectedEntityType that have five linguistic labels: person, animal, vehicle,

grpOfPeople, grpOfPeopleAndV ehicle.
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Figure 4.11: Terminological ontology of fuzzy semantic Web architecture

The membership degree values obtained as a result of fuzzification via membership

functions in the reasoning engine are automatically inserted into Semantic WMSN

KB in accordance with designed ontology. On the other hand, entityType and

movingDirection crisp state variables with their linguistic labels which have mem-

bership degrees of 1.0, are directly inserted into semantic WMSN KB without ap-

plying a membership function. The fuzzy inferencing process, which started after

fuzzification, is achieved by using the fuzzy rule base shown in Table 4.1 defined on

reasoning engine, and in this way the linguistic labels of the dangerRate output state

variable and their respective degrees of membership are calculated. dangerRate can

take three optional linguistic label value called ordinaryMobility, terrorAttack or

protest. A total of 5x3x2x2 = 60 different cases are evaluated for five entityType,

three closeness, two timeOfDay and two movementDirection values defined in

fuzzy reasoning engine’s rule base. The calculation of the membership degree in

the rules is performed by taking the minimum of membership degrees as defined in

Equations 2.3 and 2.4 in Section 2.1.2.

Each rule in fuzzy rule base has a confidence coefficient received from a domain ex-

pert. The membership degrees of each output linguistic label obtained after fuzzy

inferencing is multiplied by the confidence value of the related rule before defuzzi-
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fication to increase the reliability of the system. This multiplication completes the

work performed by fuzzy semantic reasoning engine.

On defuzzification stage, in other words, the stage of aggregation of triggered rules,

in order to perform defuzzification with center of gravity formula, a flc file is created

and desired defuzzification method with aggregation and accumulation properties is

configured by using a fuzzy logic inference system language defined in study [38].

Then, this fuzzy logic controller file is given to a framework described in study [39]

as input for generating our defuzzification method and this defuzzication method is

adapted to semantic Web servlet application. Finally, output linguistic labels of the

dangerRate state variable and processed membership degrees with confidence coef-

ficients are received from semantic WMSN KB by semantic Web servlet application.

The application retrieves them and by using dangerRate output membership function

given in Figure 4.10, calculates a crisp dangerRate data in percentage as formulated

in Equation 2.7. In addition to percentage of danger rate, semantic Web servlet appli-

cation then shares the position, entity type and timestamp information related to the

source entity with client.

Table 4.1: Fuzzy rule base on fuzzy inferencing scheme

Rule Entity Type Closeness Time of Day Direction Danger Type Confidence

R0 Person Far Night Getting Closer Protest 0.3

R1 Person Far Night Going Far Ordinary 0.7

R2 Person Far Daytime Getting Closer Protest 0.1

R3 Person Far Daytime Going Far Ordinary 0.9

R4 Person Close Night Getting Closer Protest 0.6

R5 Person Close Night Going Far Protest 0.4

R6 Person Close Daytime Getting Closer Ordinary 0.7

R7 Person Close Daytime Going Far Protest 0.3

R8 Person Very Close Night Getting Closer Terror 0.5

R9 Person Very Close Night Going Far Protest 0.6

R10 Person Very Close Daytime Getting Closer Terror 0.4

R11 Person Very Close Daytime Going Far Protest 0.3

R12 Animal Far Night Getting Closer Ordinary 1.0

R13 Animal Far Night Going Far Ordinary 1.0

R14 Animal Far Daytime Getting Closer Ordinary 1.0

Continued on next page
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Table 4.1 – Continued from previous page

Rule Entity Type Closeness Time of Day Direction Danger Type Confidence

R15 Animal Far Daytime Going Far Ordinary 1.0

R16 Animal Close Night Getting Closer Ordinary 1.0

R17 Animal Close Night Going Far Ordinary 1.0

R18 Animal Close Daytime Getting Closer Ordinary 1.0

R19 Animal Close Daytime Going Far Ordinary 1.0

R20 Animal Very Close Night Getting Closer Ordinary 1.0

R21 Animal Very Close Night Going Far Ordinary 1.0

R22 Animal Very Close Daytime Getting Closer Ordinary 1.0

R23 Animal Very Close Daytime Going Far Ordinary 1.0

R24 Vehicle Far Night Getting Closer Ordinary 0.7

R25 Vehicle Far Night Going Far Ordinary 0.8

R26 Vehicle Far Daytime Getting Closer Terror 0.2

R27 Vehicle Far Daytime Going Far Terror 0.1

R28 Vehicle Close Night Getting Closer Ordinary 0.5

R29 Vehicle Close Night Going Far Ordinary 0.6

R30 Vehicle Close Daytime Getting Closer Terror 0.4

R31 Vehicle Close Daytime Going Far Terror 0.3

R32 Vehicle Very Close Night Getting Closer Terror 0.8

R33 Vehicle Very Close Night Going Far Terror 0.7

R34 Vehicle Very Close Daytime Getting Closer Terror 0.7

R35 Vehicle Very Close Daytime Going Far Terror 0.6

R36 GrpOfPeople Far Night Getting Closer Protest 0.3

R37 GrpOfPeople Far Night Going Far Ordinary 0.8

R38 GrpOfPeople Far Daytime Getting Closer Protest 0.2

R39 GrpOfPeople Far Daytime Going Far Ordinary 0.6

R40 GrpOfPeople Close Night Getting Closer Terror 0.3

R41 GrpOfPeople Close Night Going Far Protest 0.4

R42 GrpOfPeople Close Daytime Getting Closer Terror 0.2

R43 GrpOfPeople Close Daytime Going Far Protest 0.6

R44 GrpOfPeople Very Close Night Getting Closer Terror 0.9

R45 GrpOfPeople Very Close Night Going Far Terror 0.7

R46 GrpOfPeople Very Close Daytime Getting Closer Protest 0.8

R47 GrpOfPeople Very Close Daytime Going Far Terror 0.5

R48 GrpOfPeopleVehicle Far Night Getting Closer Protest 0.2

R49 GrpOfPeopleVehicle Far Night Going Far Ordinary 0.7

R50 GrpOfPeopleVehicle Far Daytime Getting Closer Ordinary 0.6

Continued on next page
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Table 4.1 – Continued from previous page

Rule Entity Type Closeness Time of Day Direction Danger Type Confidence

R51 GrpOfPeopleVehicle Far Daytime Going Far Terror 0.1

R52 GrpOfPeopleVehicle Close Night Getting Closer Terror 0.5

R53 GrpOfPeopleVehicle Close Night Going Far Ordinary 0.6

R54 GrpOfPeopleVehicle Close Daytime Getting Closer Protest 0.4

R55 GrpOfPeopleVehicle Close Daytime Going Far Terror 0.4

R56 GrpOfPeopleVehicle Very Close Night Getting Closer Terror 0.9

R57 GrpOfPeopleVehicle Very Close Night Going Far Protest 0.7

R58 GrpOfPeopleVehicle Very Close Daytime Getting Closer Protest 0.9

R59 GrpOfPeopleVehicle Very Close Daytime Going Far Terror 0.6

4.3.1 An Example Scenario

For example; suppose that the data to be read in the data layer via semantic Web

servlet application and inserted into the semantic WMSN KB are as follows:

Figure 4.12: Assertional ontology of semantic WMSN KB

Latitude = 39.2, Longitude = 23.5, Time = 17.00PM , DetectedEntity =

GrpOfPeople, Movement = GettingCloser, Distance = 6km. First of all, the

assertional ontology of this data will be as shown in Figure 4.12. Then fuzzy reason-

ing engine is activated and the fuzzification process begins. Membership degrees are

calculated through input membership functions shown in Figure 4.9, implemented by

using the equations 3.1 and 3.2 in rule base.
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Fuzzy input values are obtained as a result of fuzzification and final version of the

assertional ontology on semantic WMSN KB is as in Figure 4.13.

Night(Time) = ReverseTrapezoidal(17, 0, 11.5, 13.5, 24)

= MIN(MAX(11.5−17
11.5−0 , 0,

17−13.5
24−13.5), 1)

= 0.33

DayT ime(Time) = Trapezoidal(17, 0, 11.5, 13.5, 24)

= MAX(MIN( 17−0
11.5−0 , 1,

24−17.0
24−13.5), 0)

= 0.66

V eryClose(Distance) = Trapezoidal(6, 0, 0, 2, 7)

= MAX(MIN(6−0
0−0 , 1,

7−6
7−2), 0)

= 0.2

Close(Distance) = Trapezoidal(6, 2, 7, 9, 12)

= MAX(MIN(6−2
7−2 , 1,

12−6
12−9), 0)

= 0.8

Figure 4.13: Assertional ontology of semantic WMSN KB - After fuzzification

After combining the resulting fuzzy input values( veryClose, close, daytime, night

) with crisp input values( entityType, movementDirection ) that do not need fuzzi-

fication, fuzzy inferencing is started on fuzzy reasoning engine. Accordingly, R40,

R42, R44, R46 rules, expressed in Table 4.1, are triggered. As a result of triggering of
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the rules,output membership degrees are calculated by applying Equation 2.3 to input

membership degrees of danger types and the values obtained after this calculation is

multiplied by the confidence coefficients of related rules:

eval(R40) :GrpOfPeople(EntityType) AND Close(Distance)

AND Night(TimeOfDay) AND GettingCloser(Direction)

→ Terror(DangerType)

Terror(DangerType) = MIN(GrpOfPeople(EntityType), Close(Distance),

= Night(TimeOfDay), GettingCloser(Direction))

= MIN(1, 0.8, 0.33, 1.0) ∗ 0.3 = 0.099

eval(R42) :GrpOfPeople(EntityType) AND Close(Distance)

AND DayT ime(TimeOfDay) AND GettingCloser(Direction)

→ Terror(DangerType)

Terror(DangerType) = MIN(GrpOfPeople(EntityType),

= Close(Distance), DayT ime(TimeOfDay),

= GettingCloser(Direction))

= MIN(1, 0.8, 0.66, 1.0) ∗ 0.2 = 0.132

eval(R44) :GrpOfPeople(EntityType) AND V eryClose(Distance)

AND Night(TimeOfDay) AND GettingCloser(Direction)

→ Terror(DangerType)

Terror(DangerType) = MIN(GrpOfPeople(EntityType),

= V eryClose(Distance), Night(TimeOfDay),

= GettingCloser(Direction))

= MIN(1, 0.2, 0.33, 1.0) ∗ 0.9 = 0.18

eval(R46) :GrpOfPeople(EntityType) AND V eryClose(Distance)

AND DayT ime(TimeOfDay) AND GettingCloser(Direction)

→ Protest(DangerType)

51



Protest(DangerType) = MIN(GrpOfPeople(EntityType),

= V eryClose(Distance), DayT ime(TimeOfDay),

= GettingCloser(Direction))

= MIN(1, 0.2, 0.66, 1.0) ∗ 0.8 = 0.16

Figure 4.14: Assertional ontology of semantic WMSN KB - After fuzzy inferencing

Figure 4.15: Defuzzification output

Prior to defuzzification performed by semantic Web servlet application, value of the

output membership degrees are finalized. The final version of semantic WMSN

Knowledge Base after fuzzy inferencing is as shown in Figure 4.14. After this stage,
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the output membership degrees obtained from four triggered rules are defuzzified

and a crisp danger rate is calculated. The defuzzification calculation is performed as

specified in Equation 2.7:

COG = 25∗0+(30+35+40+45+50+55+60)∗0.16 + (65+70+75+80+85+90+95+100)∗0.18
0+0.16+0.16+0.16+0.16+0.16+0.16+0.16+0.18+0.18+0.18+0.18+0.18+0.18+0.18+0.18

= 66.09

While the semantic Web servlet application shares this danger rate data with client, it

also sends instant positions of sensors and entities to the client, allowing the data to be

displayed to client with animation. Semantic Web servlet application has two main

modes of operation: online and offline monitoring. For both modes of operation,

reasoning processes in semantic Web layer are identical to those described in this

section, but the way in which data is transmitted to semantic Web layer varies.

4.3.2 Offline Monitoring

Offline monitoring mode is used to watch previous WMSN activities generated by

Environment Simulator. When offline mode is turned on, semantic Web servlet ap-

plication connects to sensor DB graph store via data layer server to get processed

sensor data of all days. First, actualData list containing latitude, longitude, en-

tity type, timestamp, and ID information is retrieved from sensor DB. Sensor node

list in the WMSN is then taken from sensor DB together with the position infor-

mation. The positions of sensor nodes are used to display this on the client screen.

Secondly, the sensorNode vertex is used indirectly via actualData vertex. Finally,

the actualData and sensorData vertexes fetched from sensor DB are converted to

semantic Web tuples. To achieve this, an HTTP connection is established from se-

mantic Web servlet application to semantic WMSN KB through Apache Jena Fuseki

endpoint, and all semantic tuples are inserted into semantic WMSN KB. Then, these

semantic tuples are first fuzzified, then fuzzy inference is applied by fuzzy reason-

ing engine. Semantic Web servlet application performs a defuzzification process on

semantic Web tuples as soon as it detects of new fuzzy inference output tuples in

the checks it performs periodically, and then calculates the danger rate for terrorist

activity, protest or ordinary mobility and transmits the result to the client side. The

reasoning server rules are defined on initialization phase, so these rules do not directly
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affect operating mechanism of semantic Web servlet application.

Figure 4.16: Offline mode in semantic Web servlet application ( no simulation is

selected )

The screen shown to client in offline monitoring mode is as in Figure 4.16. As it

appears in Figure 4.16, the user must first select a simulation to display in the appli-

cation. The simulation name is the same as the activity date entered in Environment

Simulator. When the activity date is selected, the number of each entity detected by

sensor nodes and total number of sensors detecting the entity are displayed to the user

for the selected date. In addition to entity count, sensors that detect the changed entity

positions are shown to client as blinking with the SVG animation feature of HTML

5. Furthermore, if a danger rate detection is performed by semantic Web servlet ap-

plication for the selected date, this information is shown to the user as in Figure 4.17.

Figure 4.17: Offline mode in semantic Web servlet application ( simulation replay )

In addition to its animation and reasoning capabilities, semantic Web servlet applica-
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Figure 4.18: Daily migration route

tion in offline mode shows the daily migration route and the migration route of the

last 7 days to the user. In the WMSN environment, seven vehicles, three animals and

three people were detected throughout the day, as shown in the Figure 4.18.

4.3.3 Online Monitoring

Online monitoring mode provides instant tracking of environment in which the syn-

thetic WMSN is established. As soon as this mode is turned on, semantic Web

servlet application first connects to sensor DB via data layer server and subscribes to

the actualData and sensorNode vertexes. The subscription enables semantic Web

servlet application to be notified when new processed sensor data as actualData ver-

tex is inserted into sensor DB graph store via Environment Simulator or sensorNode

vertex is updated. Insertion of actualData means that sensor nodes sense an entity

with a new position, type, ID and time stamp; while updates of sensorNode provide

information about which sensor nodes sense that entity.

When semantic Web servlet application is notified by data layer server as soon as an

actualData insertion or sensorNode update is available; LiveSim module of seman-

tic Web servlet application takes whatever is updated or inserted and waits for three
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seconds in a separate thread to receive a new notification. This trick is important for

integrity of the simulation. Because Environment Simulator simulates each entity in

turn. Therefore, in order to show that the entities are moving in parallel, the server

side of semantic Web servlet application does not send new animation data as soon as

it receives the first update notification. It waits for three-second periods throughout

the entire simulation and sends all the animation data to the client side at the end of

the first three-second waiting period without a notification from data layer server. In

this way, it is ensured that the entity data, which are added or updated in the order, are

displayed on the client side as if the entities are moving in parallel in the same time

interval.

The processed data obtained just before the client screen is updated with that new

data is converted into semantic tuples and inserted into semantic WMSN KB from the

relevant endpoint. The semantic tuples are then processed by fuzzy reasoning engine,

as in offline mode. If a new danger rate detection is performed, this information is

shared with the client.

The screen shown to the user in online monitoring mode is almost the same as in

offline monitoring mode. One difference between them is that the migration route

option is not in online tracking mode. Because it is designed as an offline tracking

capability. However, displaying the number of entities detected and the number of

sensor nodes that detect entities are the same as the offline monitoring mode. In

addition, animations shown to the client were again provided with HTML 5 SVG

feature and fuzzification and fuzzy inferencing mechanism in danger rate detection

process were also provided by fuzzy reasoning engine. Another difference between

online and offline monitoring mode is the type of communication. Messages sent

from client to server are provided with HTML server sent events. This mechanism

automatically asks the server if there is a need to update anything and if an update is

required, the client only updates related part of the page by taking this update from

the server.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The main idea put forward in this study is that activity detection can be done with

the semantic Web. The study presented in this thesis differs from other studies in

this area for two reasons. There are two types of studies in the literature. The first

type of study makes sensor raw data available for other software, end-users or other

sensor networks via the semantic Web. These studies do this by defining a new sensor

ontology or by updating existing ontologies. However, instead of converting raw

sensor data, our study focuses on publishing processed sensor data acquired from

the sink of WMSN, in accordance with the ontology. Moreover, fuzzy logic is not

used in those studies. The second type of study processes wireless sensor networks

data to detect activity using fuzzy set theory as in our study, but the semantic Web

infrastructure making processed sensor available in a well-defined format for any

other systems to consume this data does not exist in this type of studies. On the other

hand, the central point of this thesis is not only semantic Web technology, but also

the theory of fuzzy sets when detecting activity with processed multimedia sensor

networks data.

The architecture described in Chapter 3 is implemented for an example surveillance

application. This application, called BSI, is a security system that instantly calculates

and shares the current danger ratio with soldiers at the border station to alert them to

activities such as a terrorist attack or protest in the controlled area. In order to achieve

this, a data simulator[34] used in our work group in the university is used as Envi-

ronment Simulator to simulate the wireless multimedia sensor network environment
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and produce processed sensor data instead of sensor raw data as if this data comes

from the sink of WMSN. The study implements danger ratio detection calculations

using the rules defined on fuzzy reasoning engine. These rules are used in performing

fuzzification and fuzzy inferencing processes of fuzzy set theory. There are also un-

certainty values defined for rules, for example when a night-time activity can be more

dangerous than daytime. In this way, our approach gives semantic web reasoning

mechanism the ability to think humanely.

5.2 Future Work

The study presented in this thesis focuses on the usage of semantic Web reasoning

to detect activities with processed WMSN data. Moreover, fuzzy set theory is used

in conjunction with semantic Web reasoning. In addition, thanks to the usage of se-

mantic Web with a designed ontology, processed sensor data acquired from the sink

and fuzzy reasoning results are shared with other third party applications in a well-

defined, machine-processable format. On the other hand, standardization of different

types of sensor raw data and thus communication of different WMSNs are not fo-

cused on this study. In the future; if semantic part of our approach is improved in

order to standardize not only processed sensor data but also sensor raw data; this

study can be transformed into a high-potential product that can be preferred among

environmental monitoring applications in sectors such as health and defense because

of being transformed into a more extensible product.
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APPENDIX A

APPENDIX 1

A.1 Software for developing and using Border Safety Informer

• Eclipse for Java Enterprise Edition 4.4.2

• Apache Tomcat Server 7.0

• OrientDB Graph Store 2.2.17

• RabbitMQ 3.6.12

• Apache Jena Fuseki Server 2.4.0

• Synthetic Data Simulator

• Apache Jena RDF API

• JFuzzyLogic Framework

A.2 BSI Fuzzy Reasoning Engine Input Membership Function Rules

@prefix rdf: http://www.w3.org/1999/02/22rdf syntax ns .

@prefix rdfs: http://www.w3.org/2000/01/rdf schema .

@prefix metu: http://www.example.org / .
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[ decideTimeOfDayDayTime:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?pos1 metu:Date ?second1 ) ,

difference(?second1, 0.0, ?diff1),

difference(41400.0, 0.0, ?diff2),

quotient( ?diff1, ?diff2, ?param1 ),

min(?param1, 1.0, ?tmp1),

difference(86400.0, ?second1, ?diff3),

difference(86400.0, 48600.0, ?diff4),

quotient( ?diff3, ?diff4, ?param2 ),

min(?tmp1, ?param2, ?tmp2),

max( ?tmp2, 0.0, ?membershipDegree ),

notEqual( ?membershipDegree, 0.0 )

→ ( ?pos1 metu:DayTime ?membershipDegree )

]

[ decideTimeOfDayNight:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?pos1 metu:Date ?second1 ) ,

difference(41400.0, ?second1, ?diff1),

difference(41400.0, 0.0, ?diff2),

quotient( ?diff1, ?diff2, ?param1 ),

max(?param1, 0.0, ?tmp1),

difference(?second1, 48600.0, ?diff3),

difference(86400.0, 48600.0, ?diff4),

quotient( ?diff3, ?diff4, ?param2 ),

max(?tmp1, ?param2, ?tmp2),

min( ?tmp2, 1.0, ?membershipDegree ),

notEqual( ?membershipDegree, 0.0 )

→ ( ?pos1 metu:Night ?membershipDegree )

]
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[ decideMovementGettingCloser:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?conceptId1 metu:DirectPosition ?pos2 ) ,

( ?pos1 metu:Distance ?dist1 ) ,

( ?pos2 metu:Distance ?dist2 ) ,

( ?pos1 metu:Date ?second1 ) ,

( ?pos2 metu:Date ?second2 ) ,

notEqual( ?pos1, ?pos2 ),

sum(?second1, 240, ?second3) ,

equal( ?second2, ?second3 ),

difference(?dist2, ?dist1, ?distanceDifference),

le( ?distanceDifference, 0 ),

→ ( ?pos2 metu:Movement metu:GettingCloser)

]

[ decideMovementGoingFar:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?conceptId1 metu:DirectPosition ?pos2 ) ,

( ?pos1 metu:Distance ?dist1 ) ,

( ?pos2 metu:Distance ?dist2 ) ,

( ?pos1 metu:Date ?second1 ) ,

( ?pos2 metu:Date ?second2 ) ,

notEqual( ?pos1, ?pos2 ),

sum(?second1, 240, ?second3) ,

equal( ?second2, ?second3 ),

difference(?dist2, ?dist1, ?distanceDifference),

greaterThan( ?distanceDifference, 0 ),

→ ( ?pos2 metu:Movement metu:GoingFar )

]
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[ decideClosenessVeryClose:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?pos1 metu:Distance ?dist1 ) ,

difference(7.0, ?dist1, ?diff3),

difference(7.0, 2.0, ?diff4),

quotient( ?diff3, ?diff4, ?param2 ),

min(1.0, ?param2, ?tmp2),

max( ?tmp2, 0.0, ?membershipDegree ),

notEqual( ?membershipDegree, 0.0 )

→ ( ?pos1 metu:VeryClose ?membershipDegree )

]

[ decideClosenessClose:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?pos1 metu:Distance ?dist1 ) ,

difference(?dist1, 2.0, ?diff1),

difference(7.0, 2.0, ?diff2),

quotient( ?diff1, ?diff2, ?param1 ),

min(?param1, 1.0, ?tmp1),

difference(12.0, ?dist1, ?diff3),

difference(12.0, 9.0, ?diff4),

quotient( ?diff3, ?diff4, ?param2 ),

min(?tmp1, ?param2, ?tmp2),

max( ?tmp2, 0.0, ?membershipDegree ),

notEqual( ?membershipDegree, 0.0 )

→ ( ?pos1 metu:Close ?membershipDegree )

]
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[ decideClosenessFar:

( ?conceptId1 metu:DirectPosition ?pos1 ) ,

( ?pos1 metu:Distance ?dist1 ) ,

difference(?dist1, 9.0, ?diff1),

difference(14.0, 9.0, ?diff2),

quotient( ?diff1, ?diff2, ?param1 ),

min(?param1, 1.0, ?tmp1),

max( ?tmp1, 0.0, ?membershipDegree ),

notEqual( ?membershipDegree, 0.0 )

→ ( ?pos1 metu:Far ?membershipDegree )

]
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