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Supervisor, Computer Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Gökberk Cinbiş
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ABSTRACT

EARLY-EXIT CONVOLUTIONAL NEURAL NETWORKS

Demir, Edanur
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

January 2019, 53 pages

This thesis is aimed at developing a method that reduces the computational cost of

convolutional neural networks (CNN) during inference. Conventionally, the input

data pass through a fixed neural network architecture. However, easy examples can

be classified at early stages of processing and conventional networks do not take this

into account. In this thesis, we introduce “Early-exit CNNs”, EENets for short, which

adapt their computational cost based on the input by stopping the inference process at

certain exit locations. In EENets, there are a number of exit blocks each of which con-

sists of a confidence branch and a softmax branch. The confidence branch computes

the confidence score of exiting (i.e. stopping the inference process) at that location;

while the softmax branch outputs a classification probability vector. Both branches

are learnable and they are independent of each other. During training of EENets,

in addition to the classical classification loss, the computational cost of inference

is taken into account as well. As a result, the network adapts its many confidence

branches to the inputs so that less computation is spent for easy examples. Inference

works as in conventional feed-forward networks, however, when the output of a con-

fidence branch is larger than a certain threshold, the inference stops for that specific
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example. Through comprehensive experiments, we show that EENets significantly

reduce the computational cost upto 2% of the original without degrading the testing

accuracy. The idea of EENets is applicable to available CNN architectures such as

ResNets. On MNIST, SVHN and CIFAR10 datasets, early-exit (EE) ResNets achieve

similar accuracy with their non-EE versions while reducing the computational cost to

20% of the original.

Keywords: Deep Learning, Object classification, Adaptive Computation, Early Ter-

mination, Confidence for Classification
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ÖZ

ERKEN-SONLANDIRMALI EVRİŞİMSEL SİNİR AĞLARI

Demir, Edanur
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Ocak 2019 , 53 sayfa

Bu tez, evrişimsel yapay sinir ağlarının (CNN) kestirim sırasında harcadığı hesaplama

maliyetini azaltan bir yöntem geliştirmeyi amaçlamaktadır. Geleneksel evrişimsel ya-

pay sinir ağlarında, veriler sabit bir sinir ağı mimarisinden geçer. Aslında, tüm mima-

riden geçen kolay örnekler işlemenin erken aşamalarında sınıflandırılabilir ve gele-

neksel ağlar bu durumu dikkate almaz. Bu çalışmada, belirli çıkış noktalarında kesti-

rim sürecini durdurup, hesaplama maliyetini girdiye dayalı olarak uyarlayan “Erken-

sonlandırmalı Evrişimsel Yapay Sinir Ağlarını”, kısaca EENetleri tanıtacağız. EENet-

lerde, her biri güvenirlik ve softmax çıkışlarından oluşan bir çok erken sonlandırma

bloğu vardır. Güvenirlik çıkışı, herhangi bir sonlandırma noktasında modelden çık-

manın (yani kestirim sürecini durdurmanın) güven skorunu hesaplar; softmax çıkışı

ise sınıflandırmanın olasılık vektörünü üretir. Her iki çıkış dalı da öğrenilebilir ve bir-

birinden bağımsızdır. EENetlerin eğitimi sırasında, klasik sınıflandırma kaybına ek

olarak, sonuç çıkarmanın hesaplama maliyeti de dikkate alınır. Sonuç olarak, önerdi-

ğimiz sinir ağı güvenirlik çıkışlarında girdileri işler ve sonlandırabilir, böylece kolay

örnekler için daha az hesaplama yapılır. Kestirim, geleneksel ağlardaki ileri besleme

gibi çalışır, ancak bir güvenirlik çıkış dalındaki güven skoru belirli bir eşikten daha
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büyük olduğunda, kestirim bu örnek için tamamlanır ve hesaplama sonlandırılır. Kap-

samlı deneyler sayesinde, EENetlerin test doğruluğuna zarar vermeden hesaplama

maliyetini orjinal modelin %2’sine kadar azalttığını gösteriyoruz. EENet fikri, Res-

Netler gibi mevcut CNN mimarilerine uygulanabilir. MNIST, SVHN ve CIFAR10

veri setlerinde, erken çıkışlı (EE) ResNetler, EE olmayan sürümleriyle benzer bir

doğruluk elde ederken hesaplama maliyetini orjinal modelin %20’sine kadar azalttığı

görülmüştür.

Anahtar Kelimeler: Derin Öğrenme, Nesnelerin Sınıflandırılması, Uyumlu Hesap-

lama, Erken Sonlandırma, Sınıflandırma Güvenirliği
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Mehmet Tan for their valuable feedback.

I would like to thank Muhammed Kocabaş and Ufuk Ertenli for their help.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

Deep neural networks are power-hungry. They typically need powerful processing

units (i.e. GPU cards) in order to run in a reasonable amount of time. Reducing their

computational cost with zero or minimal degradation in accuracy is an important goal

that has been approached from several different directions. One promising way to this

end is to make the network adapt its computational cost to the input during inference.

This idea has recently been explored in many ways. Researches have proposed early

termination networks [1] [2] [3] [4] [5], layer skipping networks [6] [7] [8], special-

ized branches with wide networks [9], adaptive neural trees [10], cascaded networks

[11] and pruning methods such as channel gating networks [12].

Conventionally, the input data pass through a fixed neural network architecture. How-

ever, easy examples can be classified at early stages of processing and conventional

networks do not take this account. In order to reduce the computational cost, the

methods mentioned above aim to adapt the computation graph of the network to the

characteristics of the input instead of running the fixed model that is agnostic to the

input. Our work in this thesis can be categorized under the “early termination net-

works” category.

1.2 Proposed Method

In this thesis, we introduce “Early-exit CNNs”, EENets for short, which adapt their

computational cost based on the input itself by stopping the inference process at cer-
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tain exit locations. Therefore, an input does not have to flow through all the layers

of the fixed network; on the contrary, the computational cost can be significantly

decreased based on the characteristics of inputs. Figure 1.1 shows the architectural

overview of the Early-exit Convolutional Neural Networks.

In EENets, there are a number of exit blocks which consist of a confidence branch

and a softmax classification branch. The confidence branch computes the confidence

score of exiting (i.e. stopping the inference process) at that location; while the soft-

max branch outputs a classification probability vector. Both branches are learnable

and they are independent of each other. These exit blocks can be built just by adding

a small number of parameters (∼0.0002% of the total parameters of EENet-110 for

each early-exit block with 10-classes datasets). Thus, the additional parameters com-

ing from early-exit blocks do not increase the computational cost and they can be

ignored.

During training of EENets, in addition to the classical classification loss, the com-

putational cost of inference is taken into account as well. As a result, the network

adapts its confidence branches to the inputs so that less computation is spent for easy

examples. Inference works as in conventional feed-forward networks, however, when

the output of a confidence branch is larger than a certain threshold, the inference stops

for that specific example.

Since the early termination is performed according to the trained confidence scores,

it maintains the accuracy with a proper loss trade-off that will be explained in chapter

3. Instead, early-exit blocks can provide some kind of network regularization and the

mitigation of vanishing gradients in back-propagation.

1.3 Challenges

Defining a proper way to train confidence scores is important because the model could

be biased towards wrong decisions such as early or late termination. These wrong

decisions either decrease accuracy or increase the computational cost unnecessarily.

Deciding at which point an input can be classified and the execution can be terminated

is the key challenge of the problem.
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Figure 1.1: Architectural overview of EENets. An early-exit block (shown with gray

color) can be added at any layer. If, at a certain early-exit block, say the ith one, the

network is sufficiently confident (i.e. hi > 0.5), then the execution is terminated at

that point and the network’s output is set to ŷi. ci denotes the computational cost (in

terms of the total number of floating-point operations) upto the ith early-exit block.

Basic blocks are classical computation blocks that may be composed of one or more

convolutional layers and non-linear activation functions. Their contents depend on

the base network that is intended to be transformed into early-exit version. EENets

aim to strike a balance between minimizing the computational cost and maximizing

the accuracy.
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We tackle this problem by making confidence scores learnable within our novel loss

function which balances computational cost and classification loss in a single expres-

sion.

1.4 Contributions and Novelties

In comparison to the existing early termination networks, our contributions in this

work are as follows:

• All exit blocks of an EENet are fed by all inputs even if some of them are

classified in early stages of the model. This avoids a possible dead unit problem

where some layers are not trained at all.

• The confidence scores of EENets are learnable and they do not depend on

heuristic calculations. As a consequence, their initialization is not an issue

and they can be initialized just like other parameters of the network.

• Our loss function considers both accuracy and cost simultaneously and provides

a trade-off between them via an hyperparameter.

• EENet has a single stage training as opposed similar previous work which are

trained in multiple stages.

• EENets are compact models not requiring additional hyper parameters such as

non-termination penalty or confidence threshold variables.

By maintaining the same accuracy, EENets classify most of the examples early just by

spending around 5-fold less computational cost in terms of floating-point operations

(FLOPs) compared to their counterpart ResNets [13] on MNIST [14], SVHN [15] and

CIFAR10 [16] datasets. In the models which have a large capacity such as EENet-

152, the cost savings can be upto 50x. In such deep models, EENets not only maintain

but also improve the accuracy a little probably due to the regularizing effect of using

less parameters.

4



1.5 Outline of the Thesis

Chapter 2 discusses the related work on the area of adaptive computational networks.

It emphasizes the differences between our novel model and them.

Chapter 3 describes the architecture of EENets. It includes the types of the early-exit

blocks, how these blocks can be distributed to a network, feed-forward and backward

phases of the model and our novel loss function. Other details about training and

inference phases are also given in that chapter.

Chapter 4 exhibits the performances of EENets. The test environment, the architec-

tures that we experimented with and the results on benchmark datasets with ResNets

are given and demonstrated in that chapter.

Chapter 5 provides a brief summary and discussion.
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CHAPTER 2

RELATED WORK

2.1 Introduction

In this chapter, we review related work in the area of adaptive computational net-

works, and discuss their differences and similarities with our model. Adaptive com-

putational networks based on the input’s characteristic can be examined in the follow-

ing main categories: early termination networks, layer skipping networks, specialized

branches with wide networks, neural trees, cascaded networks and pruning methods

such as channel gating networks.

2.2 Early Termination Networks

Early termination network are based on the idea that it might not be necessary to run

the whole network for some inputs. Similar to EENets, early termination networks

[1], [2], [3], [4], [5] have multiple exit blocks that allow early termination based on

an input’s characteristics. All of these studies have some kind of confidence scores to

decide early termination.

One of the early termination networks, BranchyNets [2] have multiple exit blocks

each of which consists of a few convolutional layers followed by a classifier with

softmax. In other words, BranchyNets have one head just for classification at their

exit blocks. The exit blocks of Beretizshevsky and Even [3] are composed of pooling,

two fully-connected (FCs) and batch normalization layers. Like BranchyNets, one

conventional head at an exit block is trained for classification. The confidence scores

are derived via some heuristics. In the training procedure of the model of Beretiz-
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shevsky and Even, the weights of only convolutional and the last FC layers are firstly

optimized. Later, the remaining FC layers are optimized, one by one. On the other

hand, MSDNets [1] have multi-scaled features with dense connectivity among them.

Exits of MSDNets consist of two convolutional layers followed by a pooling and a

linear layer. However, similar to BranchyNets, MSDNets do not have confidence

branches at their exit blocks.

In these studies, the confidence scores are derived from the predicted classification

results (i.e. the maximum over the softmax). Because such confidence scores are not

learnable, termination criteria or threshold of an exit branch is an important issue. The

exit threshold providing the maximum accuracy should be empirically discovered in

these models. Unlike EENets, the loss functions of these studies do not encourage an

early-exit by considering the computational cost. In addition, they have a dead layer

problem coming from improper initialization of the confidence scores in the training.

The scores may be biased to exit always early and deeper layers may not take learning

signals properly. To avoid that situation, all of BranchyNets, MSDNets and the model

of Beretizshevsky and Even use a multi-stage training.

Spatially Adaptive Computation Time for Residual Networks, shortly SACTs [4], is

another study in the area. Exit blocks of the model consist of a pooling and a fully-

connected layer followed by a sigmoid function like our model. However, the final

confidence score of early termination (namely halting score in the paper) is calculated

by the cumulative learnable scores of the previous exit blocks. As soon as the cumu-

lative halting score reaches a constant threshold (i.e. T ≥ 1.0), the computation is

terminated. Unlike EENets, the classification output vector of SACTs (i.e. the output

of the softmax branch) is derived from weighted summation of the inputs of the con-

fidence branches so far. While EENets directly train the confidence scores by taking

them into account in the loss function, SACTs employ the number of executed lay-

ers as non-termination penalty in the loss function. Another work, Conditional Deep

Learning (CDL) [5] has multiple exit blocks each of which consists of just a linear

classifier. Starting from the first layer, linear classifiers are added to the end of each

convolutional layer iteratively as long as this addition process does not decrease the

accuracy. In CDL, user defined threshold is used to decide if the CDL is confident

enough to exit. The training procedures of SACTs and CDLs are multi-stage.

8



2.3 Layer Skipping Networks

Layer skipping networks [6], [7], [8] adapt the computation to the input by selec-

tively skipping layers. In these networks, a gating mechanism determines whether

the execution of the layer is required for an example or whether it can be skipped.

In this way, the execution can skip some set of the layers and jump on the effective

ones. However, their main challenge is learning the discrete decisions of the gates.

AdaNets [6] use Gumbel Sampling [17] while SkipNets [7] and BlockDrop [8] apply

reinforcement to this end. None of the studies has a separate confidence branch at the

gate blocks.

Similar to the early-exit blocks of early termination nets, the gates of the layer skip-

ping networks may die and lose their functionality if they incline to be too much

turned off during training. Thus, the actual capacity usage decreases. On the other

hand, if the gates tend to be turned on, the networks can lose their cost diminish-

ing effects on computation time. As a result, the networks can not only perform as

counterpart static models but also spend additional computational cost for the gate

functions (i.e. the same capacity with more cost). In order to avoid such cases, the

gate blocks require to be initialized carefully and trained properly. Thus, the layer

skipping networks have a complicated multi-stage training.

2.4 Specialized Branches with Wide Networks

As wide networks, HydraNets [9] are another approach in the area. HydraNets con-

tain distinct branches specialized in visually similar classes. HydraNets possess a

single gate and a combiner. The gate decides which branches to be executed at infer-

ence. And the combiner aggregates feature from multiple branches to make a final

prediction. In training, given a subtask partitioning (i.e. dividing dataset into visually

similar classes), the gate and the combiner of the HydraNets are trained jointly. The

branches are indirectly supervised by the classification predictions after combining

the features computed by the top-k branches.
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2.5 Neural Trees

Adaptive Neural Trees, ANTs [10], can be considered as a combination of decision

trees (DTs) with deep neural networks (DNNs). In other words, it includes the fea-

tures of the conditional computation of DTs with the hierarchical representation learn-

ing and gradient descent optimization of DNNs. ANTs learn routing functions of a

decision tree thanks to the training feature of DNNs. While doing this, instead of

a classical entropy, ANTs use stochastic routing, where the binary decision is sam-

pled from Bernoulli distribution with mean rθ(x) for input x. As an example, rθ can

denote a small convolutional neural networks (CNNs). However, ANTs are trained

in two stages: growth phase during which the model is trained based on local opti-

mization and refinement phase which further tunes the parameters of the model based

on global optimization. The training process of ANTs is complicated because of the

refinement phase.

2.6 Cascaded Networks

Some other approaches focus on cascaded systems. The model of Bolukbasi et al.

[11] adaptively chooses a deep network among the-state-of-arts such as AlexNet [18],

GoogleNet [19], and ResNet [13] to be executed per example. Each convolutional

layer is followed by the decision function to choose a network. But it is hard to

decide if termination should be performed just by considering a convolutional layer

without employing any classifier. It has a multi-stage training procedure where the

gates are trained independently from the rest of the model.

2.7 Pruning Methods

Channel Gating Neural Networks [12] dynamically prune computation on subset of

input channels. Based on the first p channels, a gate decides whether to mask the

rest of the channels. Similar to SACTs [4], when the classification confidence score

reaches some threshold, the remaining channels are not computed.
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2.8 Contributions and Novelties

In the inference phase of adaptive computational networks, inputs pass onto the layers

of model until the model reaches some confidence level for classification and early

termination. However, in the training phase of most of these networks, feeding the

model is also terminated when getting enough confidence for early termination. Con-

sequently, the models may not be trained properly if the execution is frequently termi-

nated at the intermediate exit blocks. On the other hand, all exit blocks of EENets are

contributed by all inputs, even if some of them are classified in the early stages of the

model. This compact training procedure also avoids the possible dead unit problem

happened in the previous works.

Another contribution of EENets is the separate confidence branches at their exit

blocks. Unlike most of the previous adaptive computational approaches, the confi-

dence scores of EENets are trainable and do not depend on some heuristic calcula-

tions. Having separate learnable parameters allows the confidence branches to be

not biased towards classification results. On the other hand, taking learning signals

through our composite loss function (in back-propagation phase) trains them indi-

rectly based on the classification accuracy as well. Since the confidence branches are

not calculated by heuristics, their initialization is not an issue and they can be ini-

tialized just like other parameters of the network. This separate confidence branches

approach allows EENets to be more flexible structures than the previous networks in

the area.

Another novelty of our study is the loss function that takes both accuracy and the

cost spending into account simultaneously and provides a trade-off between them

through the confidence scores. Rather than most of the previous studies, our cost

values employed in the loss function are not hyper-parameters and calculated as rates

of actual floating-point operations. Unlike most of the previous studies, EENets have

a single stage training in spite of multiple outputs of their exit blocks. It is a compact

model not requiring additional hyper parameter such as non-termination penalty or

confidence threshold variables.

Table 2.1 summarizes the differences between EENets and the related work.
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Table 2.1: Differences with related work. The features of the related work are com-

pared in terms of whether they have a single stage training (SST), a non-specialized

initialization process (NSI) and learnable confidence scores (LCS) in the table below.

Check mark represents whether the model has the feature or not. The last column

shows what their loss functions include (e.g. the classical classification loss as the ac-

curacy or the number of executed layers (# exec. layers) as the computational cost).

The term of “accuracy and cost” just shows that the loss function takes both of them

into account but note that the accuracy and cost values of different models can be

obtained in different ways. Some features may not be applicable for some models. In

such cases, we use “-” symbol.

Differences with related work

Model SST NSI LCS Loss func. includes

AdaNet [6] 3 7 3 accuracy and # exec. layers

ANT [10] 7 7 - accuracy

Beretizshevsky et al. [3] 7 7 7 accuracy

BlockDrop [8] 7 7 3 accuracy and cost

Bolukbasi et al. [11] 7 3 3 accuracy and cost

BranchyNet [2] 3 7 7 accuracy

CDL [5] 7 7 7 accuracy and cost

Channel gating [12] 7 7 3 accuracy and cost

HydraNet[9] 3 7 - accuracy of top-k branches

MSDNet [1] 3 3 7 accuracy of top-k classifier

SkipNet [7] 7 7 7 accuracy and cost

SACT [4] 7 7 3 accuracy and # exec. layers

EENet 3 3 3 accuracy and cost
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CHAPTER 3

THE MODEL

3.1 Introduction

In this chapter, the architecture of EENets is described. The chapter includes the

details about types of exit blocks, how to distribute early-exit blocks to a network,

feed-forward and backward phases of the model and the loss function.

3.2 Architecture

Any given convolutional neural network (CNN) can be converted to an early-exit

network by adding early-exit blocks at desired locations. In this thesis, we explain

EENets through the ResNet architectures [13] since they are widely used and they

yield state-of-the-art results in many problems. ResNets have identity skip connec-

tions that bypass each layer, meaning the input to each layer is also added to its output.

Therefore, gradients can propagate directly through the skip-connection, early layers

still receive sufficient learning signal even in very deep networks. By this method,

ultra-deep networks with over a thousand layers can be built easily [20], [21]. Since

ResNets are deep networks, it is convenient to add multiple early-exit blocks to them.

Because we explain EENets through ResNets, the main flow of EENets can be con-

sidered being composed of the identity skip-connections and the layer functions such

as convolution, pooling etc. Formally, consider Fl(·) and xl as the function of the lth
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layer and the output of this function, respectively. The main flow can be defined as:

xl = xl−1 + Fl(xl−1) (1)

Beside the main network, the architecture of EENets has multiple early-exit (EE)

blocks. Each EE-block consists of two fully-connected (FC) heads, namely confi-

dence branch and conventional classification softmax branch. Both take channel-

based feature maps as an input.

In order to employ in EENets, we define three types of early-exit blocks, namely

plain, pool and bnpool. The plain-type exits are composed of just separate fully-

connected (FC) layers and input of that block are directly used in the FC branches.

The pool exits have a global average pooling layer before FC branches. Lastly, the

bnpool-type exit blocks consist of a batch normalization layer followed by a ReLU

activation and a global average pooling layer. After passing these layers, the data

flows to the separate confidence and classification branches. Figure 3.1 shows the

architecture types of the early-exit blocks.

In the pool and bnpool early-exit blocks, the size of feature map is reduced by global

average pooling that is denoted by z(x). The purpose of this is to reduce the com-

putational cost at early-exit blocks. Consequently, they can decide to terminate the

execution, in a shorter amount of time. The early-exit blocks that have a global av-

erage pooling layer provided more accurate results in experiments (will be given in

Chapter 4). The following equations are constructed on the idea of pool early-exit

blocks. The average pooling function can be described as:

zn,c(x) =
1

H ∗W

H∑
i=1

W∑
j=1

xn,c,i,j (2)

In Equation (2), n denotes the batch size and c denotes the number of channels. H

and W denote height and width of the feature maps, respectively.

The pooled data passes onto two separate branches, namely classification branch and

confidence branch. The number of outputs of the classification softmax branch is

same as the number of classes in the dataset. This branch has a softmax activation
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Figure 3.1: Architecture of plain, pool, and bnpool early-exit blocks. The plain-

type exits are composed of just separate fully-connected (FC) layers and input of

that block is directly processed in the FC branches. The pool exits have a global

average pooling layer before FC branches. Lastly, the bnpool-type exit blocks consist

of a batch normalization layer followed by a ReLU activation and a global average

pooling layer. The input of the early-exit block, x, passes onto these layers before

entering the separate FC branches. h and ŷn denote the confidence score and the

predicted classification label. “fc X, activation” denotes the fully-connected heads

which have X number of outputs. The activation is the last activation function of

branches.
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in the end. The other branch, namely confidence, uses a sigmoid function as an

activation function and it has a scalar output representing the confidence of the work

at that specific exit block. Both branches (or output heads) feed the network jointly

and are back-propagated in the training.

Formally, let x be the input to the nth early-exit block. x is actually the output of

the basic block (see Figure 1.1) immediately preceding the nth early-exit (EE) block.

In the EE-block, two things are computed: (i) ŷn, the class prediction vector, and

(ii) hn, the confidence level of the network for the prediction ŷn. They are given in

Equation (3) where w1 and w2 are the parameters of separate fully-connected layers

of the softmax and confidence branches, respectively.

ŷn = softmax(wT
1 z(x))

hn = σ(wT
2 z(x))

(3)

Note that the classification and the confidence branches have softmax and sigmoid

activation functions, respectively. As a traditional multi-classification head, the clas-

sification branch of the early-exit blocks employs the softmax activation function. On

the other hand, the confidence branch of EE-blocks uses the sigmoid activation func-

tion because it is expected to be estimate the probability of prediction correctness.

The sigmoid function maps the output of the branch onto the interval [0, 1]. The con-

fidence score of the last exit layer (note that it is not an early-exit block) is set to 1 in

order to guarantee to terminate the execution at the end of the model.

3.3 Inference

The Early-exit Convolutional Neural Networks have a certain threshold in order to de-

cide early termination in inference procedure. If the confidence score of an early-exit

block is above the threshold, the classification results of the current stage will be the

final prediction. Each input is classified based on their individual confidence scores

predicted by the early-exit blocks. Thus, one input can be classified and terminated

early while others continue the execution on the model.
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Early termination threshold is T = 0.5. It is the midpoint of the confidence score

since the result of the sigmoid function of confidence branches is a probability. The

threshold is employed just in the inference phase. Because all early-exit blocks con-

tribute the loss function for all examples (even if some of them can be classified

early), the examples are executed through the whole model. Therefore, the threshold

does not affect the training process. The pseudo-code of the inference procedure of

EENets are given in Algorithm 1.

Algorithm 1 Inference of Early-exit Convolutional Neural Networks
1: i← 0

2: while i < N do

3: x← BasicBlocksi(x)

4: hi, ŷi ← EEBlocki(x)

5: if hi ≥ T then

6: return ŷi
7: end if

8: i← i+ 1

9: end while

10: x← BasicBlocksi(x)

11: ŷ ← ExitBlock(x)

12: return ŷ

In Algorithm 1, EEBlocki represents the ith early-exit (EE) block of the model and

BasicBlocksi denotes the sequence of intermediate blocks between (i− 1)th EE-

block and ith EE-block. Obviously, BasicBlocks0 is the initial basic blocks of the

model before entering any EE-block. N denotes the total number of early-exit blocks.

hi and ŷi shows the confidence score and classification output vector of ith EE-block.

3.4 Training

The trainable heads of our model are the confidence and the classification softmax

branches of the early-exit blocks and the final conventional classification softmax

head at the end of the model as mentioned in the previous sections. All these output
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heads should be trained carefully to maintain the balance between accuracy and cost.

Especially, the confidence scores are the key point of that trade-off.

Assume that the model obtains some accuracy with the current classification output

vector (ŷn) by spending the computational cost (cn) at the nth early-exit block. Our

training motivation is that the confidence score of the nth early-exit block (hn) should

be promoted if the prediction of the following early-exit block (ŷn+1) is not worth

executing the following layers with the additional computational cost between these

consecutive early-exit blocks (i.e. cn+1 − cn). In this way, the confidence scores can

maintain the accuracy by taking the cost spending into account.

To catch such a proper balance between the accuracy and the computational cost,

EENets are trained by separate loss parts, namely LMC and LCost. The LMC denotes

the multi-classification loss and the LCost denotes the loss coming from the compu-

tational cost. The general loss, L, is the combination of both these losses with a

trade-off parameter λ like in Equation (4).

L = LMC + λLCost (4)

In order to define the LMC and LCost, our inference approach can be employed for the

training as well. As seen from Equation (5), during the training procedure, the final

classification output vector, ŷ, can be obtained from a single equation which consists

of the outputs of all exit blocks.

ŷ =I{h0≥T} ∗ ŷ0 + I{h0<T} ∗ {

I{h1≥T} ∗ ŷ1 + I{h1<T} ∗ {. . .

I{hN≥T} ∗ ŷN + I{hN<T} ∗ ŷN+1} . . . }

(5)

In Equation (5), ŷ denotes the final classification output vector and N shows the

number of early-exit blocks. ŷi and hi denote the classification output vector and

confidence score of the nth early-exit block, respectively. Obviously, ŷN+1 symbol-

izes the predicted output vector of the last exit block of the model. In addition, I{h0≥T}

denotes the indicator function mapping a confidence score onto 0 or 1 that mean the
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continue or exit decision, respectively. For example, if the first early-exit block is

confident of classification that means I{h0≥T} = 1, the predicted class label will be

the classification output of the first early-exit block, namely ŷ0.

However, Equation (5) is not differentiable. As a consequence, it is not convenient

for back-propagation. We modified it by approximating the indicator function with

sigmoid in Equation (6) where hn denotes the confidence score of the nth early-exit

block. The Ŷ0 symbolizes the classification output vector derived by all exit blocks.

Similarly, ŶN+1 is the output of conventional NNs that do not consider any early-exit

blocks. The derived cumulative prediction, Ŷn, can be employed later in feeding the

confidence branches of the early-exit blocks to encourage maintaining the accuracy.

Ŷ0 =h0 ∗ ŷ0 + (1− h0) ∗ {

h1 ∗ ŷ1 + (1− h1) ∗ {. . .

hN ∗ ŷN + (1− hN) ∗ ŷN+1} . . . }

Ŷ1 =h1 ∗ ŷ1 + (1− h1) ∗ {. . .

hN ∗ ŷN + (1− hN) ∗ ŷN+1} . . . }

ŶN =hN ∗ ŷN + (1− hN) ∗ ŷN+1

Ŷn =hn ∗ ŷn + (1− hn) ∗ Ŷn+1

ŶN+1 =ŷN+1

(6)

On the other hand, the computational cost should be defined as a contrasting force in

the loss function to maintain accuracy-cost balance. It should encourage the model

to classify easy examples early. For this purpose, the computational cost until the

nth exit block, cn, are calculated by the number of floating-point operations (FLOPs)

from the beginning of the model to the last operation of that exit block. Since FLOPs

values are too large to be included in the loss function (when comparing to cross-

entropy loss values), they should be scaled down to some convenient number.

In order to construct a general form of this scaling down operation, the computational

costs are normalized to the total number of FLOPs from the beginning to the end of

the model (i.e. cn ∈ [0, 1]). Similar to the classification label Ŷn, the general cost,
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Cn can be derived from the same approach in Equation (7).

C0 =h0 ∗ c0 + (1− h0) ∗ {

h1 ∗ c1 + (1− h1) ∗ {. . .

hN ∗ cN + (1− hN) ∗ cN+1} . . . }

C1 =h1 ∗ c1 + (1− h1) ∗ {. . .

hN ∗ cN + (1− hN) ∗ cN+1} . . . }

CN =hN ∗ cN + (1− hN) ∗ cN+1

Cn =hn ∗ cn + (1− hn) ∗ Cn+1

CN+1 =cN+1

(7)

After defining the training prediction of class label and the computational cost, the

LMC and LCost can be described in Equation (8) where y is the ground truth value

and CE(y, Ŷ) is the cross-entropy function as a conventional classification loss. In

Equation (8), K denotes the number of classes in the dataset.

LCost = C

LMC = CE(y, Ŷ) = −
K∑
k=1

yk ∗ log(Ŷ)
(8)

Note that the C and Ŷ are not specified with exit-id, nth, in Equation (8). As a

combination of LMC and LCost, one of our proposed loss functions, Lv1, is derived in

Equation (9). It is the first version of general loss function where λ trades-off between

the different loss terms (in experiments, we choose λ = 1).

Lv1 = LMC + λLCost

= CE(y, Ŷ0) + λC0

(9)

The zero degree of Ŷ and C are used in the Lv1 since Ŷ0 and C0 are the cumulative

form of the prediction and computational cost of all exit blocks, respectively. For
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example, the loss function of the model which has three early-exit blocks are given in

Equation (10).

Lv1 =CE(y, Ŷ0) + λC0

Lv1 =CE(y, h0 ∗ ŷ0 + (1− h0) ∗ (h1 ∗ ŷ1 + (1− h1) ∗ ŷ2))

+ λ ∗ (h0 ∗ c0 + (1− h0) ∗ (h1 ∗ c1 + (1− h1) ∗ c2))

(10)

As seen from Equation (9), the multi-classification cross entropy employs the cu-

mulative prediction, Ŷ0. However, if the confidence score of an early-exit block is

high (i.e. hn ' 1), the predictions of the following exit blocks (i.e. ŷn+1, ŷn+2,

. . . , ŷN+1) may not feed the model since they do not contribute the prediction Ŷ0.

As a consequence, the following exit blocks are not trained properly without enough

back-propagation signals. We need to be sure that the predictions coming from all

exit blocks are trained fairly.

By this motivation, we propose the second version of general loss functions, namely

Lv2 that is the weighted summation of the losses promoting the all exit blocks. Lv2
can be defined in Equation (11).

L(n)
MC = CE(y, Ŷn)

L(n)
Cost = Cn

Lv2 =
N+1∑
n=0

(L(n)
MC + λL(n)

Cost)

=
N+1∑
n=0

(CE(y, Ŷn) + λCn)

(11)

The second version of loss function of the model which has three early-exit blocks
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are given in Equation (12) as an example.

Lv2 = L0
MC + λL0

Cost + L1
MC + λL1

Cost + L2
MC + λL2

Cost

Lv2 = CE(y, Ŷ0) + λC0

+ CE(y, Ŷ1) + λC1

+ CE(y, Ŷ2) + λC2

Lv2 = CE(y, h0 ∗ ŷ0 + (1− h0) ∗ (h1 ∗ ŷ1 + (1− h1) ∗ ŷ2))

+ λ(h0 ∗ c0 + (1− h0) ∗ (h1 ∗ c1 + (1− h1) ∗ c2))

+ CE(y, h1 ∗ ŷ1 + (1− h1) ∗ ŷ2)

+ λ(h1 ∗ c1 + (1− h1) ∗ c2)

+ CE(y, ŷ2)

+ λc2

(12)

In this version of general loss, each early-exit block has a change to contribute the

prediction Ŷn (relatively the cross-entropy loss) since the equation of the prediction

starts with its confidence score hn that cannot be dominated by previous confidence

scores. Even if some of the exit blocks are dominant with high confidence scores, the

others can promote the loss function and can be properly back-propagated as well.

Overall, all exit blocks contribute the loss function for all examples, even if easy

examples can be classified at the shallower early-exit blocks. In other words, multiple

outputs coming from all exit blocks are trained jointly with the general custom loss.

Therefore, EENets do not have any dead layer problem happened in previous works

[1], [2], [3]. As a result, EENets do not require a complicated multi-stage training

process as well.

Finally, note that the cost loss LCost is an important factor to avoid entire execution of

network for all examples. As seen from Equation (6), because the most possible cor-

rect predictions come from the last exit block that exploits all capacity of the model,
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it is expected that the confidence scores tend to be higher value at the deeper exit

points, gradually. However, the cost penalty LCost forces the model to terminate early

since the shallower early-exit blocks have less computational cost. Therefore, the

confidence scores of the shallower early-exit blocks are promoted. In the big picture,

the confidence scores actually learn if the predictions of the following exit blocks are

worth executing more layers with the additional cost coming from these layers.

3.5 Distributing Early-exit Blocks to a Network

The number of early-exit (EE) blocks and their distribution technique is another im-

portant factor in the architecture of the model. The number of EE-blocks depends on

the depth of the network. Because the additional parameters coming from EE-blocks

are so small and negligible (i.e. ∼0.0002% of the total parameters of EENet-110 for

each EE-block with 10-classes datasets), the early-exit blocks can be added as much

as desired if the model holds.

The EE-blocks can be distributed based on the dataset and the capacity of the net-

work. EENets are suitable for many distribution methods such as; Pareto, Golden

Ratio, Fine, Linear, Quadratic, etc. According to the Pareto principle, 80% of the

results have been done by 20% of works. The Pareto distribution is inspired by that

principle (i.e. 80% of examples may be classified just by spending 20% of the total

computational cost of the model). By this motivation, the first EE-block splits the

network according to the Pareto principle where 20% of the total computational cost

is calculated in terms of the number of floating-point operations (FLOPs). Similarly,

the Fine distribution method divides the network and places the EE-blocks based on

5% of the total FLOPs. On the other hand, the Golden ratio distribution employs the

golden ratio, 0.6180, to apportion computational cost and to place the EE-blocks.

The Linear and Quadratic distributions split the network where the computational

cost of the layers between two consecutive EE-blocks increases in linear or quadratic

form, respectively. Figure 3.2 shows some of the distribution methods. Note that

there is not a best distribution method for all EENets. Empirically, the effects of the

distribution methods can be examined based on the dataset and the model capacity.
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Figure 3.2: Distributing early-exit blocks to a network. Pareto, Golden Ratio and

Fine can be represented in the upper figure. The ϕ denotes the ratio used in the

methods. For example, ϕ will be 0.2, 0.6180 and 0.05 for Pareto, Golden Ratio

and Fine distributions, respectively. N shows the number of early-exit blocks. The

below figure shows the Linear distribution where the computational costs between

consecutive early-exit blocks are same and this cost can be calculated by the desired

number of the early-exit blocks. Notice that the total cost is represented by 1 since

our cost terms are rates (i.e. c ∈ [0, 1]).
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CHAPTER 4

EXPERIMENTS

4.1 Introduction

In this chapter, we describe our experimental validation of EENets. The chapter pro-

vides and demonstrates the test environment, the overview of experimented architec-

tures, and the results of benchmark with ResNets.

Although our early-exit blocks can be applied to any CNN architecture, we have

chosen ResNets [13] for their widespread use. In the experiments, early-exit (EE)

ResNets are compared with their non-EE versions on MNIST [14], CIFAR10 [16]

and SVHN [15] datasets. In addition to ResNets, we also experiment with a very

low-capacity, custom CNN on the MNIST dataset.

The experiments are diversified in order to observe the effects of EENets in differ-

ent aspects and certain conditions. In this section, we try to answer the following

questions through comprehensive experiments:

• Do EENets really work? That is, is the inference processes terminated for

individual examples at different exit locations? Is there a variety in the exit

locations chosen by the network?

• Are EENets successful when compared to their counterparts in terms of the

computational cost and the accuracy?

• Which type of early-exit block should be chosen in certain conditions?

• How does the distribution of early-exit blocks affect the accuracy and the com-

putational cost?
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Our experiment environment included a i7-6700HQ CPU processor with 16GB RAM

and 2x NVIDIA Tesla PICe P100 16GB. The models are implemented in Keras with

the Tensorflow backend but we also implemented a toy model in PyTorch. Both

source codes of Keras and PyTorch implementations are published in GitHub1. The

models were optimized by Adam with the learning rate = 0, 001 and we used early

stopping with min delta = 0, 001 and patience = 20. The mini-batch size in the

experiments was 32. The most of the models were trained up to 200 epochs unless

otherwise stated.

4.2 Experimented Architectures

In the experiments, EENets built by adding the early-exit blocks to the ResNet mod-

els [13] (both basic and bottleneck architectures) are evaluated. The early-exit (EE)

ResNets based on bottleneck architectures consist of 50, 101 and 152 layers. By

modifying the 6n+2 layers ResNet models [13], we have constructed 20, 32, 44 and

110 layers EENets. Various number of early-exit blocks are distributed according to

the capacity of the models. The models which have a large capacity are trained on

CIFAR10 [16] and SVHN [15].

On the other hand, the models having a smaller capacity are evaluated on MNIST

[14] to observe how EENets perform in the situation of a dataset forcing the capacity

of the model. These small capacity networks are composed of 6, 8 and 18 layers with

a small number of filters.

Some of the ResNet based architectures that are evaluated in our experiments are

shown in Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6. Our own design EENet-8 which has

identity connections like ResNet is shown in Figure 4.7. This is a very small CNN

having 2-8 filters in its layers. We ran this low capacity model on the MNIST dataset.

1 Keras implementation: https://github.com/eksuas/EENet and
PyTorch implementation: https://github.com/eksuas/EENets_pytorch
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Figure 4.1: EENet-20 model with two early-exit blocks. The pool-type of early-exit

blocks and the basic blocks of ResNets are used. The X denotes the number of filters

in the basic blocks. The number of floating-point operations (FLOPs) of the exit

blocks are 74K, 334K and 1368K, respectively. Thus, the costs of the exit blocks

are 0.05, 0.24 and 1.00. The architecture of the model is the form of 6n+2 ResNet

models.
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Figure 4.2: EENet-18 model with three early-exit blocks whose type is the pool-type.

The basic blocks of ResNets are used as well. The X denotes the number of filters

in the basic blocks. The FLOPs of the exit blocks are 0.79M , 3.42M , 13.93M and

55.92M , respectively. Thus, the costs of the exit blocks are 0.01, 0.06, 0.25 and 1.00.

The architecture of the model is the form of Naive ResNet models.
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Figure 4.3: EENet-18 model with three early-exit blocks. The type of the early-exit

blocks is the bnpool. The basic blocks of ResNets are used as well. The X denotes

the number of filters in the basic blocks. The FLOPs of the exit blocks are 0.79M ,

3.42M , 13.94M and 55.94M , respectively. As a consequence, the costs of the exit

blocks are 0.01, 0.06, 0.25 and 1.00. It is another example of the architectures in the

Naive ResNet form.
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Figure 4.4: EENet-50 model with three early-exit blocks. The type of the early-exit

blocks is the pool. The bottleneck blocks of ResNets are used in this architecture.

The X denotes the number of filters in the bottleneck blocks. The FLOPs of the exit

blocks are 1.14M , 7.27M , 42.86 and 117.83M , respectively. As a result, the costs

of the exit blocks are 0.01, 0.03, 0.36 and 1.00. The architecture of the model is the

form of Naive ResNet models.
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Figure 4.5: EENet-101 model with three early-exit blocks. The pool-type of early-

exit blocks and the bottleneck blocks are employed. The FLOPs of the exit blocks are

1.14M , 7.27M , 138.05 and 213.02M , respectively. Thus, the costs of the exit blocks

are 0.01, 0.06, 0.65 and 1.00. The architecture of the model is the form of Naive

ResNet models.
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Figure 4.6: EENet-110 model with two early-exit blocks. The early-exit blocks are

in the pool-type. The FLOPs of the exit blocks are 0.42M , 2.09M0 and 8.69M ,

respectively. Consequently, the costs of the exit blocks are 0.05, 0.240 and 1.00. It is

another example of the architectures in the 6n+2 ResNet form.
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Figure 4.7: EENet-8 model with two early-exit blocks.
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4.3 Metrics

The testing accuracy of EENets is measured by considering the predicted labels at

exit locations. To measure computational cost, we use the number of floating-point

operations (FLOPs).

4.4 Results on MNIST

Firstly, we perform a set of experiments on MNIST dataset [14] to validate whether

the confidence scores of the early-exit blocks are meaningful (i.e. related with the

accuracy of the predictions of these early-exit blocks) and have a variety in inputs.

In these basic tests, the EENet-8 model is employed with quadraticly distributed two

pool-type early-exit blocks whose number of floating-point operations (FLOPs) and

costs are given in Table 4.1. The exit distribution of the MNIST examples on the

EENet-8 models trained with different loss functions are given in Table 4.1 as well.

The λ trade-off of our loss functions is chosen as 1.0 in these experiments.

As expected, the model EENet-8-LCost terminates the executions at the first early-

exit block by considering only the computational cost while EENet-8-LMC classifies

all examples at the last exit block to get the highest accuracy. On the other hand,

the EENet-8 model trained with Lv2 takes both the cost and accuracy into account,

as a consequence, it maintains the accuracy by spending less computational cost.

Moreover, our models classify inputs and terminate executions in a proportional dis-

tribution. For example, in Table 4.1, 969, 2251 and 6780 numbers of test examples

of MNIST are classified at the early-exit (EE) block-0, EE-block-1 and the last exit

layer of the EENet-8 model, respectively. This experiment shows that our loss func-

tion performs as expected and maintains the balance between the accuracy and com-

putational cost by meaningful confidence scores. Because of that, the EENet models

trained with the Lv2 loss function are evaluated in the remaining experiments.

Note that the success of our model (in Table 4.1) in terms of the computational cost

is not as good as the results of experiments performed on other models and datasets

(the experiments will be given in the following sections). The reason behind that, the
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Table 4.1: Exit distribution of the MNIST examples with different loss functions.

This table shows the results of MNIST examples evaluated on the EENet-8 model

(Figure 4.7) with 20 epochs in PyTorch. In the upper table, the computational cost

rates and the number of FLOPs from the beginning to the early-exit blocks are given

in the Relative Cost and FLOP columns, respectively. # examples that exit shows

the number of examples that are classified at that exit block. The exit distribution

of the MNIST test examples (10000 examples) on the EENet-8 models are shown

in the below table where EENet-8-Lv1, EENet-8-Lv2, EENet-8-LCost and EENet-8-

LMC are the EENet-8 models trained with only the Lv1, Lv2, LCost and LMC loss

functions, respectively. Last Exit represents the last exit block. Testing accuracy is

given in the Accuracy column. Note that the cost of ResNet-8 is always 1 since it

computes the whole model. Since early-exit blocks are not available for ResNets, “-”

is placed in the early-exit columns.

A. Exit distribution on EENet-8-Lv2

Exit Blocks FLOP
Relative

Cost

# examples

that exit

EE-block0 546 0.08 969

EE-block1 1844 0.26 2251

Last Exit 6982 1.00 6780

B. Benchmark of different loss functions

Model
# examples that exit from

Accuracy
Relative

EE-block0 EE-block1 Last Exit Cost

ResNet-8 - - 10000 97.38 1.00

EENet-8-LMC 0 0 10000 97.42 1.00

EENet-8-LCost 10000 0 0 10.32 0.08

EENet-8-Lv1 6614 3386 0 54.05 0.14

EENet-8-Lv2 47 2247 7706 96.55 0.82
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capacity of the model EENet-8 (in Figure 4.7) is very low than the traditional ResNets

in the original paper [13]. As seen from Table 4.1, the FLOPs of EENet-8 is 6982

while a traditional ResNet110 has 8.6M FLOPs. We deliberately choose this model

to force it to early classify the examples of MNIST as an easy dataset. Otherwise,

with a large capacity model, MNIST examples are classified in the early stages of

the model (mostly at the first early-exit block) because the dataset consists of simple

examples. As a consequence, the proportional distribution may not be examined on

MNIST if the model capacity is large like a traditional ResNet.

The computational cost, accuracy and loss values per epoch are shown in Figure 4.9.

We evaluate the model with different optimizers and learning rates. Adam optimizer

with learning rate 0.001 gives the best results. As seen in the figure, the accuracy

increases while the computational cost decreases gradually. As a consequence, we

continue training the models with Adam in the remaining experiments.

Another set of experiments are performed on MNIST to observe the effects of λ

trade-off on the loss function Lv2. The results can be seen in Table 4.2 and Figure

4.8. The best balance between the accuracy and the computational cost is observed in

condition λ ≈ 0.95. However, the effects of LMC or LCost can be changed through

the λ trade-off if more accurate results or less computational cost consumption are

desired (e.g. λ can be decreased to obtain more accurate results if the computational

cost is not an issue).

Random MNIST examples classified with EENet-8 which consists of two early-exit

(EE) blocks are shown in Figures 4.10, 4.11 and 4.12 as classified at the EE-block-0,

EE-block-1 and the last exit blocks of the model, respectively . It is observed that the

early-exit blocks are specialized in visually similar examples of the same class or in

a few visually similar classes. For example, the EE-block-0 is only specialized in the

class of the number eight in this model (i.e. visually similar examples of the same

class). On the other hand, the EE-block-1 classifies the class of the number one, four

and seven. Note that these classes are visually similar as well.
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Table 4.2: Effects of λ trade-off on the loss functions Lv2. In the experiment, EENet-

8 model starting with 4 filters is evaluated on MNIST. The model is trained with

different λ trade-off by using ADAM optimizer on 20 epochs. The exit distribution of

the MNIST test examples (10000 examples) is shown in the table where the values are

the results of the last epoch. Testing accuracy is given in the Accuracy column. Time

column shows the average wall clock time of inference procedure in microseconds

(µs). The computational cost rates are given in the Relative Cost column. # examples

that exit from shows the number of examples that are classified at that exit block.

λ Accuracy
Time Relative # examples that exit from

(µs) Cost EE-block0 EE-block1 Last Exit

0.50 98.84 638.0 1.00 0 0 10000

0.70 98.52 711.6 1.00 0 0 10000

0.90 97.46 681.4 0.78 1120 1498 7382

0.95 97.48 643.3 0.74 1230 1883 6887

1.00 96.22 615.0 0.82 359 1879 7762

1.05 97.53 593.6 0.85 168 1771 8061

1.10 98.34 641.9 0.85 3 1939 8058

1.15 85.93 557.8 0.45 48 7245 2707

1.30 86.96 487.3 0.26 0 9996 4

1.50 85.19 476.4 0.26 0 9997 3
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Figure 4.8: The accuracy and computational cost vs λ trade-off on EENet-8.
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Figure 4.9: Epochs vs accuracy, loss and computational cost of the EENet-8 model

starting with 2 filters on MNIST.
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Figure 4.10: The MNIST examples are classified at the first early-exit block.

Figure 4.11: The MNIST examples are classified at the second early-exit block.

Figure 4.12: The MNIST examples are classified at the last exit block of the model.
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Table 4.3: Types of the early-exit blocks. The type of early-exit blocks: Plain, Pool

and Bnpool are evaluated on EENet-50 model with SVHN dataset. Pool-type is the

more accurate one with a small difference.

Block Type Accuracy Relative Cost

Plain 90.05 0.01

Pool 94.59 0.06

Bnpool 94.45 0.06

Finally, we have examined the models on MNIST in terms of the distributions of the

early-exit blocks. It is not hard to classify MNIST dataset on ResNet based models

since these models enjoy a large capacity than MNIST required. Thus, keeping the

first early-exit blocks in the very beginning of the model decreases the cost exces-

sively. Because of that, the quadratic distribution with a small number of EE-blocks

can be a good choice for this type of models and datasets (i.e. a large-capacity model

with a simple dataset that can be easily classified).

4.5 Results on SVHN

We evaluate our proposed model with the original ResNets on SVHN dataset [15] as

well.

We have firstly examined the performance of types of the early-exit blocks on EENet-

50 model in Figure 4.4. The results are given in Table 4.3. It is seen that the Pool-

type early-exit block produces the most accurate results among the exit blocks, even

if there is a small difference with the result of Bnpool-type. Consequently, we employ

the Pool-type early-exit blocks in the rest of experiments.

In order to show the actual performance of the early-exit idea, we have evaluated

large capacity network through comprehensive experiments on SVHN. The early-exit

(EE) ResNets which have the 6n+2 architecture [13] achieve similar accuracy with

their non-EE versions while reducing the computational cost upto 11% of the original
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Table 4.4: Results of 6n+2 based ResNets on SVHN. The average number of floating-

point operations are given in the column of FLOP. #Params denotes the total number

of model parameters. The given accuracy in the table is the testing accuracy.

Model Accuracy #Params FLOP

ResNet-20 95.61 0.27M 1.37M

ResNet-32 95.72 0.47M 2.34M

ResNet-44 95.79 0.67M 3.32M

ResNet-110 95.68 1.74M 8.69M

(e.g. the cost of the EENet-110 model whose EE-blocks are quadraticly distributed).

In average, EENets degrade the computational cost to 20% of that of their non-EE

versions. The results of these experiments are given in Table 4.4 and Table 4.5. As

seen, the quadratic and fine distributed models spend less computational cost than the

other distributed one. Besides, these models maintain the accuracy.

On the other hand, linear distributed EENets provide a little bit more accuracy. How-

ever, they spend 2-fold more computational cost than the models whose EE-block

distributed by the other methods do. The main reason behind that the first early-

exit block of the linear distributed model is located in much deeper layers than the

first EE-block of the model of other distributions. For example, the first EE-block

of the linear distributed EENet-32 spends 20% of the total computational cost while

quadraticly distributed one spends only 3% of that. The other explicit observation

is that the computational cost decreases while the model capacity increases in the

quadraticly distributed models.

Early-exit versions of the Naive ResNet models have a huge success comparing with

their non-EE counterparts [13] in terms of the computational cost. As seen from Table

4.6, EENet-18 classifies the inputs more accurately than ResNet-18 just by spending

6% of the total computational cost of the model. Moreover, EENet-152 reduces the

computational cost to 2% of that of its non-EE version. Note that the Naive ResNet

models have a larger capacity than the ResNets based on 6n+2 architecture. These

naive models were designed and evaluated on ImageNet dataset [22] in the original
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Table 4.5: Results of the 6n+2 based EENets on SVHN. The computational cost rates

and the average number of floating-point operations per example are given in the

columns of Cost and FLOP, respectively. The distribution methods of models are

given in the first column. #E denotes the number of EE-blocks. Cost Percent of EE-

Blocks shows the distribution of cost percent of EE-blocks. The given accuracy in the

table is the testing accuracy.

Model Acc. #E Cost Percent of EE-Blocks Cost FLOP

Q
ua

dr
at

ic

EENet20 94.94 3 <4,11,24> 0.24 0.33M

EENet32 95.08 4 <3,8,20,52> 0.20 0.47M

EENet44 95.37 6 <2,4,10,19,33,66> 0.17 0.56M

EENet110 95.41 6 <2,4,11,20,40,74> 0.11 0.97M

Fi
ne

EENet20 94.99 3 <5,11,18> 0.17 0.23M

EENet32 95.21 5 <5,12,16,20,24> 0.23 0.54M

EENet44 95.59 6 <5,10,16,21,24,33> 0.21 0.70M

EENet110 95.65 10 <6,10,14,19,23,27,32,36,40,44> 0.21 1.82M

Pa
re

to

EENet20 95.03 3 <24,45,73> 0.45 0.62M

EENet32 95.47 5 <20,36,52,68,84> 0.46 1.07M

EENet44 95.49 6 <21,44,55,66,78,89> 0.40 1.33M

EENet110 95.74 6 <21,40,53,62,70,74> 0.50 4.33M

G
ol

de
nR

at
e EENet20 94.79 3 <24,45,73> 0.39 0.54M

EENet32 95.26 5 <12,16,24,52,68> 0.23 0.55M

EENet44 95.73 6 <7,10,16,24,44,66> 0.39 1.29M

EENet110 95.51 6 <6,10,15,24,40,66> 0.34 3.03M

L
in

ea
r

EENet20 95.31 2 <45,73> 0.66 0.90M

EENet32 95.62 5 <20,36,52,68,84> 0.47 1.10M

EENet44 95.72 6 <16,33,44,66,78,89> 0.41 1.36M

EENet110 95.56 10 <10,19,27,40,49,57,66,74,83,91 0.19 1.62M
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Table 4.6: Results of the Naive ResNet based models on SVHN. The results of the

quadraticly distributed Naive ResNet based models with three EE-blocks are given

below. The computational cost rates and the average number of floating-point opera-

tions per example are given in the columns of Relative Cost and FLOP, respectively.

#Params denotes the total number of model parameters. The given accuracy in the

table is the testing accuracy.

Model Accuracy #Params Relative Cost FLOP

ResNet-18 93.77 11M 1.00 1.37M

ResNet-50 95.72 23M 1.00 2.34M

ResNet-101 95.79 42M 1.00 3.32M

ResNet-152 95.68 58M 1.00 8.69M

EENet-18 95.61 11M 0.06 3.42M

EENet-50 95.72 23M 0.06 7.27M

EENet-101 95.79 42M 0.03 7.27M

EENet-152 94.68 58M 0.02 6.09M

paper [13]. Therefore, SVHN dataset [15] may be too easy to be classified by the

Naive ResNet models. The experiments show that EENets execute enough layers to

classify SVHN dataset with the same accuracy and they do not waste the computation

in such cases.

4.6 Results on CIFAR10

We tested a variety of EENet models on CIFAR10 [16] as well. The results are very

similar to that of the tests on SVHN dataset. Table 4.7 and Table 4.8 demonstrate the

results of the 6n+2 and the naive ResNet based models, respectively.

EENets designed on 6n+2 architecture of ResNets achieve similar accuracy with their

non-EE counterparts while reducing the computational cost upto 12% of the original

(e.g. the cost of the EENet-110 model whose early-exit blocks are quadraticly dis-

tributed). As seen from Table 4.8, the quadratic and fine distributed models spend
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Table 4.7: Results of 6n+2 based ResNets on CIFAR10. The average number of

floating-point operations per example are given in the column of FLOP. #Params

denotes the total number of model parameters. The accuracy is the testing accuracy.

Model Accuracy #Params FLOP

ResNet-20 83.04 0.27M 1.37M

ResNet-32 84.51 0.47M 2.34M

ResNet-44 85.73 0.67M 3.32M

ResNet-110 86.04 1.74M 8.69M

less computational costs than the model having other distribution methods. However,

their predictions are not accurate as much as the predictions of the early-exit models

distributed through Pareto principle.

The benchmark of EENets with the related work is given in Table 4.9. The results

are taken from the original papers. Note that results can change according to im-

plementation and training parameters (e.g. optimizer and learning rate). To avoid

the confusion, we have shared the results of ResNets and AlexNets [18] given in the

these studies. The accuracy of our ResNets implementation is less than many of the

studies. This may be due to our optimizer parameters which we have employed them

for both the ResNets and EENets. When comparing the models with the their training

parameters, EENets produce the close accuracy of our ResNet implementation (more

accurate results can be obtained with smaller λ) by spending less computational cost

than the given studies in Table 4.9. Note that the number of layers of some of the

studies are not specified since these are not given in the original papers.

In experiments, we have also observed that the additional parameters coming from

the early-exit blocks are very small and can be ignored. For example, the number of

parameters of an early-exit block of EENet-110 is ∼0.0002% of the total parameters

of the model with 10-classes datasets such as CIFAR10, MNIST and SVHN.
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Table 4.8: Results of the 6n+2 based EENets on CIFAR10. The computational cost

rates and the average number of floating-point operations per example are given in

the columns of Cost and FLOP, respectively. The distribution methods of models

are given in the first column. #E denotes the number of EE-blocks. Cost Percent of

EE-Blocks shows the distribution of cost percent of EE-blocks. The given accuracy

in the table is the testing accuracy.

Model Acc. #E Cost Percent of EE-Blocks Cost FLOP

Q
ua

dr
at

ic

EENet20 80.38 3 <4,11, 24> 0.24 0.33M

EENet32 81.80 4 <3,8,20,52> 0.20 0.47M

EENet44 82.16 6 <2,4,10,19,33,66> 0.19 0.62M

EENet110 82.69 6 <2,4,11,20,40,74> 0.12 1.06M

Fi
ne

EENet20 79.51 3 <5,11,18> 0.18 0.24M

EENet32 81.68 5 <5,12,16,20,24> 0.20 0.48M

EENet44 81.86 6 <5,10,16,21,24,33> 0.19 0.63M

EENet110 83.41 10 <6,10,14,19,23,27,32,36,40,44> 0.13 1.14M

Pa
re

to

EENet20 79.34 2 <24,45> 0.24 0.33M

EENet32 82.23 5 <20,36,52,68,84> 0.32 0.74M

EENet44 83.37 6 <21,44,55,66,78,89> 0.36 1.20M

EENet110 85.35 6 <21,40,53,62,70,74> 0.99 8.70M

G
ol

de
nR

at
e EENet20 79.98 3 <24,45,73> 0.27 0.36M

EENet32 81.88 5 <12,16,24,52,68> 0.22 0.52M

EENet44 81.55 6 <7,10,16,24,44,66> 0.16 0.54M

EENet110 82.84 6 <6,10,15,24,40,66> 0.13 1.17M

L
in

ea
r

EENet20 80.17 2 <45,73> 0.45 0.62M

EENet32 82.21 5 <20,36,52,68,84> 0.32 0.75M

EENet44 77.58 6 <16,33,44,66,78,89> 0.23 0.77M

EENet110 78.75 10 <10,19,27,40,49,57,66,74,83,91 0.21 1.82M
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Table 4.9: Benchmark of related work on CIFAR10. The computational cost rates are

given in the columns of Cost. The results are taken from the original papers. Note

that results can change according to implementation details and training parameters

(e.g. optimizer and learning rate). To avoid the confusion, we have shared the results

of ResNets and AlexNets given in the these studies. Consequently, we can compare

the results of only convenient work.

Model Accuracy Relative Cost

ResNet-110 [6] 94.39 -

AdaNet-110 [6] 94.24 0.82

AlexNet [2] 78.38 -

B-AlexNet [2] 79.19 0.42

ResNet [2] 80.70 -

B-ResNet [2] 79.17 0.53

ResNet-110 [7] 93.60 -

SkipNet-110 [7] 88.11 0.36

ResNet-18 [12] 94.60 -

ResNet-18-pruned-D [12] 93.00 0.27

Our ResNet-110 86.04 -

EENet-110 (Quadratic) 82.69 0.12

EENet-110 (Fine) 83.41 0.13

EENet-110 (GoldenRate) 82.84 0.13

EENet-110 (Linear) 78.75 0.21

Our ResNet-18 78.50 -

EENet-18 80.34 0.06
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CHAPTER 5

CONCLUSION

In this thesis, we propose the Early-exit Convolutional Neural Networks (EENets)

to reduce the computational cost of convolutional neural networks (CNN) during in-

ference. EENets have multiple exit blocks and they can classify the examples based

on their characteristics at early stages of processing through these exit blocks. Thus,

EENets terminate the execution early and avoid wasting the computational cost per

example.

The early-exit (EE) blocks of EENets consist of a confidence branch and a classifica-

tion branch. The confidence branch computes the confidence score of classification

and exiting (i.e. stopping the inference process) at current block. On the other hand,

the classification branch outputs a classification probability vector. Both branches are

learnable and they are independent of each other.

EENets are trained with our proposed loss function which takes not only the classi-

cal classification loss but also the computational cost of inference into consideration.

As a result, the confidence branches are adapted to the inputs so that less computa-

tion is spent for easy examples without harming the model accuracy. In other words,

the confidence scores of the EE-blocks are trained in the accuracy and cost trade-off.

Thus, they maintain the balance between them during inference. Inference phase is

similar to conventional feed-forward networks, however, when the output of a confi-

dence branch reaches a constant threshold (i.e. T = 0.5), the inference stops for that

specific example and it is classified at current exit block.

Through comprehensive experiments on MNIST, SVHN and CIFAR10 datasets, we

evaluate both the 6n+2 and naive ResNet based EENet models. It is observed that
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EENets significantly reduce the computational cost (to 2% of the original in ResNet-

152 on SVHN) by maintaining the testing accuracy. In addition, the 6n+2 EENet

models provide the same or more accuracy just by spending 20% of the total compu-

tational cost of non-early-exit versions of these in average.

Note that the idea of EENets is applicable to any feed-forward neural network. How-

ever, we demonstrated its use on convolutional neural networks. In this study, we

evaluate our model on ResNet based models but other the-state-of-art networks can

be easily converted to their early-exit versions. We leave this as future work.
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