
EFFICIENT IMPLEMENTATION OF TMVP-BASED PRIME FIELD
MULTIPLICATION AND ITS APPLICATIONS TO ECC

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HALİL KEMAL TAŞKIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

FEBRUARY 2019

Approval of the thesis:

EFFICIENT IMPLEMENTATION OF TMVP-BASED PRIME FIELD
MULTIPLICATION AND ITS APPLICATIONS TO ECC

submitted by HALİL KEMAL TAŞKIN in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Cryptography Department, Middle East
Technical University by,

Prof. Dr. Ömür Uğur
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Mathematics, METU

Assoc. Prof. Dr. Murat Cenk
Cryptography, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Mathematics, METU

Assoc. Prof. Dr. Sedat Akleylek
Computer Engineering, Ondokuz Mayıs University

Assoc. Prof. Dr. Oğuz Yayla
Mathematics, Hacettepe University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: HALİL KEMAL TAŞKIN

Signature :

v

vi

ABSTRACT

EFFICIENT IMPLEMENTATION OF TMVP-BASED PRIME FIELD
MULTIPLICATION AND ITS APPLICATIONS TO ECC

Taşkın, Halil Kemal

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

February 2019, 69 pages

The need for faster and practical cryptography is a research topic for decades. For
elliptic curve cryptography, which is proposed independently by Koblitz and Miller
in 1985 as a more efficient alternative to RSA, the applications of it in real life started
after 2000s. Today, most of the popular applications and protocols like Whatsapp,
Signal, iOS, Android, TLS, SSH, Bitcoin etc. make use of elliptic curve cryptography.

In this thesis, we present a new representation of finite field multiplication which is
one of the basic building blocks for the ECC using Toeplitz matrix-vector product
(TMVP) and discuss its arithmetic cost and comparison. In addition, we evaluate the
delay complexity of the proposed algorithm when computations are performed using
multi-core systems. We also describe how to choose proper prime fields that make
use of Toeplitz matrices to get faster field arithmetic. Then, we give parameter choice
details to select prime fields that support TMVP operations and propose some prime
fields to work on. We propose a new multiplication algorithm over F2255−19 where the
de-facto standard Curve25519 algorithm is based on. The proposed algorithm for the
underlying finite field multiplication exploits the TMVP and achieves salient results.

We also introduce the safe curve selection rationale and discuss about attacks on ECC.
Next, we propose a new curve choice parameter and safe curve generation process.
Finally, we introduce the Curve2663 and give details about its implementation and

vii

benchmark results and conclude the thesis.

Keywords: Toeplitz matrix-vector product, Elliptic curve cryptography, Polynomial
multiplication, Finite field multiplication, Montgomery curve, Safe curves

viii

ÖZ

TMVÇ TABANLI VERİMLİ ASAL CİSİM ÇARPMASI GERÇEKLEMESİ VE
ELİPTİK EĞRİ KRİPTOGRAFİ’YE UYGULAMALARI

Taşkın, Halil Kemal

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Şubat 2019, 69 sayfa

Daha hızlı ve pratik şifrelemeye duyulan ihtiyaç, onlarca yıldır bir araştırma konu-
sudur. 1985 yılında Koblitz ve Miller tarafından bağımsız olarak RSA’ya daha etkin
bir alternatif olarak önerilen eliptik eğri kriptografisinin gerçek hayattaki uygulama-
ları 2000’li yıllardan sonra başlamıştır. Günümüzde Whatsapp, Signal, iOS, Android,
TLS, SSH, Bitcoin gibi popüler uygulamaların ve protokollerin çoğu eliptik eğri krip-
tosistemler (EEK) kullanmaktadırlar.

Bu tez çalışmasında, Toeplitz matris-vektör çarpımını (TMVÇ) kullanarak EEK’nin
temel yapı taşlarından birisi olan sonlu cisim çarpımı için yeni bir gösterim sunu-
yoruz ve bu gösterimin aritmetik maliyetini ve karşılaştırmasını ele alıyoruz. Buna
ek olarak, çok çekirdekli sistemler kullanılarak hesaplamalar yapıldığında algoritma-
mızın gecikme karmaşıklığını hesaplıyoruz. Ayrıca daha hızlı cisim aritmetiği elde
etmek için Toeplitz matrislerini kullanabileceğimiz uygun asal cisimlerin nasıl seçi-
leceğini de açıklıyoruz. Ardından, TMVÇ’yi destekleyen asal cisimlerin seçilmesinin
ve üzerinde çalışılabilecek asal cisimlerin önerilmesi için parametre seçilmesinin de-
taylarını veriyoruz. Curve25519 algoritmasının üzerine inşaa edildiği F2255−19 sonlu
cismi üzerinde TMVÇ kullanan yeni bir çarpma algoritması gösterimi öneriyoruz.
Önerdiğimiz bu algoritma dikkat çekici sonuçlar elde etmektedir.

Ayrıca güvenli eğri seçimi gerekçelerini ortaya koyup, EEK’ye yapılan ataklar hak-

ix

kında bilgi veriyoruz. Daha sonra yeni bir eliptik eğri seçim parametresi ve güvenli
eliptik eğri üretme sürecini öneriyoruz. Son olarak, Curve2663 eğrisini tanıtıyoruz,
gerçeklemesi ve kıyaslama sonuçları hakkında ayrıntılı bilgi veriyoruz ve tezi sonuç-
landırıyoruz.

Anahtar Kelimeler: Toeplitz matrisi vektör çarpımı, Eliptik eğri kriptografi, Polinom
çarpımı, Sonlu cisim çarpımı, Montgomery eğrileri, Güvenli eğriler

x

To My Mother
(Annem’e)

xi

xii

ACKNOWLEDGMENTS

I would like to express my appreciation to my thesis supervisor Assoc. Prof. Dr.
Murat Cenk for his patient guidance and valuable advices during the development and
preparation of this thesis. His willingness to give his time and to share his experiences
has brightened my path.

I wish to thank the members of my dissertation committee, Prof. Dr. Ersan Akyıldız,
Assoc. Prof. Dr. Ali Doğanaksoy, Assoc. Prof. Dr. Sedat Akleylek and Assoc.
Prof. Dr. Oğuz Yayla for generously offering their time and good will throughout the
preparation and review of this thesis.

I owe my sincere thanks to Prof. Dr. Ali Aydın Selçuk, Dr. Mert Özarar, Assoc.
Prof. Dr. Oğuz Yayla, Dr. Çağdaş Çalık and Dr. Cihangir Tezcan for their valueable
suggestions, encouragement, guidance and support during my graduate life.

I would like to thank The Scientific and Technological Research Council of Turkey
(TÜBİTAK) for supporting part of this research under the Grant No. 115R289.

I express my gratitude to Mehmet Özkan and Murat Demircioğlu for their uncondi-
tional friendship, support and patience throughout these years. I will always remem-
ber our discussions and projects we did with Mehmet.

I am also grateful to all my friends, especially, Ahmet S., Fuad H., Bartu Y., Elif Ç.,
Mansoor K., Emre A., Aykut B., Mustafa B. and Salim S. for their close friendship. I
also would like to thank all my managers and colleagues in my professional work life
for their support and motivation.

A special thanks go to my family, especially to my grandmother (Nene), my uncle
Gökhanemmi, my cousins Eren Efem and Elif Vesile (latest and cutest member of
our family), my elder cousin Zuhal and also all Semerci family members, especially,
Eralp and İlay for being there and supporting me all the time.

I would like to acknowledge and extend my heartfelt gratitude to my mother Havva
for supporting me at every turn and moment of my life. Without your support and
encouragement, this wouldn’t have been possible.

Lastly, my deepest gratitude goes to my grandfather Halil and my father Mustafa.
Your ideas enlightened my way of thinking. It is my honor to have and complete your
names as my name.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

2 PRELIMINARIES . 5

2.1 Finite Fields . 5

2.2 Elliptic Curves . 12

3 TMVP-BASED FIELD MULTIPLICATION 15

3.1 Toeplitz Matrix-vector Multiplication 15

3.2 The Proposed Decomposition for 10-Dimensional TMVP . . 16

3.2.1 Computation of Submatrices 19

xv

3.2.1.1 Computing A0B0 19

3.2.1.2 Computing A0B1 19

3.2.1.3 Computing A1B0 20

3.2.1.4 Computing A1B1 21

3.2.1.5 Computing A2B0 21

3.2.1.6 Computing A2B1 22

3.2.1.7 Computing the cost for K0L0 and K0N0 23

3.2.1.8 Computing the cost for P0L0 and P0N0 24

3.2.1.9 Computing the cost for R0L
′
0 and R0N

′
0 25

3.2.2 Arithmetic Cost and Comparison 26

3.2.3 Delay Evaluation 28

3.3 TMVP-Friendly Prime Fields 29

3.3.1 Toeplitz Matrix Formed Field Element Represen-
tation . 30

3.3.2 Prime Number Forms 31

3.3.3 New Prime Fields 31

3.3.3.1 Representation for F2266−3 32

3.3.3.2 Representation for F2545−3 32

3.3.3.3 Representation for F2550−5 34

4 SPEEDING UP CURVE25519 . 37

4.1 Curve25519 . 37

4.1.1 The radix-225.5 Representation for F2255−19 37

xvi

4.2 Multiplication Over F2255−19 Using TMVP 38

4.3 Implementation and Benchmark Results 40

5 ELLIPTIC CURVES SEARCH . 43

5.1 Choosing Safe Elliptic Curves 43

5.1.1 Curve Parameters 43

5.1.2 Attacks . 43

5.1.2.1 Pollard’s Rho Attack 44

5.1.2.2 Small-subgroup Attack 44

5.1.2.3 Twist Security 45

5.1.2.4 Other Attacks 45

5.1.3 New Curve Choice Parameter 45

5.1.4 The Proposed Safe Curve Generation Process . . . 46

5.2 New Curve Parameters . 46

5.2.1 Curve2663 . 46

5.3 Implementation and Benchmark Results 48

6 CONCLUSION . 51

REFERENCES . 53

APPENDICES

A SOURCE CODE OF 10-DIMENSIONAL TMVP IMPLEMENTA-
TION . 57

B SOURCE CODES AND PROCESS DETAILS FOR CURVE SEARCH 63

xvii

CURRICULUM VITAE . 67

xviii

LIST OF TABLES

TABLES

Table 3.1 The Cost Computation of Matrices 26

Table 3.2 The Cost Comparison of Algorithms 28

Table 4.1 Implementation Benchmark Comparison Over F2255−19 41

Table 4.2 Field Multiplication Implementation Cycles Over F2255−19 41

Table 5.1 Order Type Parameter Details . 45

Table 5.2 Field Multiplication Implementation Cycles 49

Table 5.3 Scalar Multiplication Implementation Cycles 50

Table B.1 Search Ranges for Elliptic Curves 65

xix

LIST OF FIGURES

FIGURES

Figure 3.1 Four-core Parallel Implementation Delay Overview 29

xx

LIST OF ABBREVIATIONS

A Single-precision word addition

Ad Double-precision word addition

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

Fp Finite field of size p

M Single-precision word multiplication

Mn×n n× n Toeplitz Matrix

TMVP Toeplitz Matrix-vector Product

xxi

xxii

CHAPTER 1

INTRODUCTION

Classical Diffie-Hellman methods are getting slower due to their key size. In the

mean time, the applications of elliptic curve cryptography in real life started after

2000s [11], which led to faster asymmetric operations. Nowadays, Edwards [5] and

Montgomery [23] curves are studied in detail, and several elliptic curves in these

forms [3, 4, 6, 10, 14, 19] are published and deployed in the field. Thus, this research

also focuses specifically on Montgomery curves.

The finite fields that elliptic curves are defined over can be categorized as binary

extension fields and prime fields with primes bigger than 2. Due to the developments

in the area [16, 34], the interest turned to prime fields over which new elliptic curves

are mostly defined. This thesis focuses on prime fields, too.

NIST has several approved curves for ECC. But after the NIST’s Dual_EC_DRBG

incident [29] and IETF’s request to CFRG for alternative elliptic curves [12], the

search for new elliptic curves which can be generated in a transparent and verifiable

way emerged. Looking for a proper elliptic curve on which a cryptosystem can be

built is a trade off between being theoretically secure and being implemented effi-

ciently in real life. This leads to the question if we can find an elliptic curve with the

highest security and fastest implementation. To answer this question, there are lots

of on going efforts and new elliptic curve proposals. The NIST curves are already

efficient enough for this purpose. However, due to the reasons mentioned at the be-

ginning, alternatives such as Curve25519 [4] are also widely deployed in the field and

included in new standard drafts [28]. It became the de-facto standard for the industry

and used in many popular applications such as Whatsapp, Signal, Threema, iOS, An-

1

droid etc.[20], which makes it a gripping target to work on. NIST also announced that

the upcoming draft of SP 800-186 will specify Curve25519. Additionally, its associ-

ated key agreement scheme, X25519, will be considered for inclusion in a subsequent

revision to SP 800-56A [28].

The Curve25519 function is an Fp-restricted x−coordinate only scalar multiplication

on E(Fp), where p is the prime number 2255 − 19 and E is the elliptic curve y2 =

x3 + 486662x2 + x. It is known for being faster than NIST Curves and makes use

of Montgomery curves. The design choice is based on selection of primes as close

as possible to a power of 2 to save time in field operations. There are various studies

regarding the implementation for Curve25519, which mostly exploit specific CPU

architectures with special instructions [13, 17, 24].

For the elliptic curve operations, the underlying finite field operations are crucial in

terms of performance. Thus, improving complexity of multiplication is an important

problem in computer algebra. In the literature, there are several methods and ap-

proaches dealing with optimizing the complexity of multiplication. This thesis also

proposes and discusses some new complexity results based on Toeplitz matrix-vector

multiplication a.k.a Toeplitz matrix-vector product (TMVP) in depth.

A measure of efficiency of polynomial multiplication is to count the number of co-

efficient multiplications required. If polynomials f(x) and g(x) both have degree n,

then both have n + 1 coefficients, and each coefficient of f(x) is multiplied by every

coefficient of g(x). Thus, multiplying two polynomials of degree n in the standard

way requires (n + 1)2 number multiplications. Therefore, complexity of polynomial

multiplication is one of the major problems in computer algebra. If we can express

the finite field multiplications as polynomial multiplications, we can use polynomial

multiplication methods on finite fields. In general, these methods focus on integer

arithmetic but it is possible to extend and improve these methods to finite fields. Be-

sides, polynomial multiplications can also be expressed as matrix vector product.

For the underlying finite field multiplication operation, the schoolbook algorithm to-

gether with the refined Karatsuba algorithm leads to the best known results in elliptic

curve based cryptography [4]. It is shown in [1] that using TMVP, new algorithms

can be constructed with better complexities.

2

TMVP method also has advantages when the algorithm is implemented in multi-core

CPUs thanks to its independent submatrix computations.

The preliminaries are presented in Chapter 2. The rest of the thesis is organized as

follows:

In Chapter 3, we introduce the key parts of the TMVP and their arithmetic costs, then,

propose a new finite field multiplication algorithm based on TMVP. We also choose

and propose new finite fields and their representations that have Toeplitz matrix suit-

able field multiplication operations with better complexity compared to schoolbook

algorithms. Moreover, to take advantage of this method for the Curve25519, we build

a new representation which is in Toeplitz matrix form and get salient results in Chap-

ter 4.

After prime field parts, in Chapter 5, we give details for choosing safe curves with

respect to different criteria and attacks. We also propose a new criteria for categoriz-

ing curves. At the end, we define the safe elliptic curve selection algorithm and run it

with MAGMA software [36]. We find and propose a new elliptic curve that meets the

criteria we defined. After explaining its details, we conclude the thesis.

3

4

CHAPTER 2

PRELIMINARIES

In this chapter, we summarize the basics of finite fields and elliptic curves. First,

we briefly introduce the definition of finite fields with its operations. Next, we give

details for elliptic curves and its applications to cryptography.

2.1 Finite Fields

A field consists of a set F together with two operations, namely, addition (+) and

multiplication (·). It satisfies:

1. (F,+) is an additive abelian group with identity 0.

2. (F\{0}, ·) is a multiplicative abelian group with identity 1.

3. The distributive property of multiplication; (x + y) · z = x · z + y · z for all

x, y, z ∈ F.

If the defined set F is a finite set, then, the field is said to be finite and we use the

notation Fq such that q is the order of a finite field which is the number of the elements

in the field. A finite field exists if and only if the order of the field q is a prime or

power of a prime. We can write q as the power of a prime p such that q = pm for

m ≥ 1. Characteristic of the field is defined as the value of p. If we have q = p that is

m = 1, F is called as a prime field and for the case m ≥ 2, F is called as an extension

field.

5

Prime Fields

Let p be a prime number. The set {0, 1, 2, . . . , p − 1} together with addition and

multiplication over modulo p forms a finite field of order p. We will use the Fp
notation for this field throughout the thesis. The study in this thesis focuses on prime

fields with characteristic > 2.

Field Operations

By definition, any element x ∈ F has an additive inverse −x such that x+ (−x) = 0,

and similarly has a multiplicative inverse x−1 such that x·x−1 = 1. For the subtraction

operation x − y, the inverse of the y is used, and similarly for the division operation

x/y, inverse of the y is used as follows:

x− y = x + (−y)

x/y = x · y−1.

Note that, the cost for the subtraction operation is the sum of an addition cost and an

additive inversion cost, similarly, the cost for the division operation is the sum of a

multiplication cost and a multiplicative inversion cost.

Prime Field Arithmetic

The performance of ellipic curves depends heavily on the prime field arithmetic, espe-

cially, field multiplication and inversion. Thus, performing arithmetic in prime field

Fp is at the heart of the elliptic curve cryptography.

We focus on prime fields with big characteristic, e.g. p > 2200. Hence, the length of

the elements will be larger than 200−bit. However, CPU architecture sizes are mostly

multiples of 8. Most common architectures are in 32−bit and 64−bit sizes.

Let elements of Fp be the integers from 0 to p− 1 and m = dlog2pe be the length of

p. Assume the CPU architecture size is n−bit. In this case, the word count will be

l = dm/ne where each word will fit into the CPU register. After this point, a field

element x ∈ Fp can be represented as an array x = (xl−1, xl−2, . . . , x2, x1, x0) where

6

x0 is the least significant word and array values x0, x1, . . . , xl−2 are n−bit, xl−1 is

(m−n(l− 1))−bit. From now on, the arithmetic operations will be handled on these

arrays. A detailed representation called radix−2r is discussed in Sections 3.2 and

3.3.1.

Addition and Subtraction

The addition and subtraction operations on Fp is handled on arrays with adding or

subtracting the corresponding values while taking carry values into account. The

Algorithm 1 shows prime field addition operation, including the reduction part at the

end. Similarly, Algorithm 2 shows prime field subtraction operation.

Algorithm 1 Prime Field Addition

Input: x = (xl−1, xl−2, . . . , x2, x1, x0), y = (yl−1, yl−2, . . . , y2, y1, y0);x, y ∈ Fp
Output: z = x + y; z = (zl−1, zl−2, . . . , z2, z1, z0) ∈ Fp.

1: z0 ← x0 + y0

2: if z0 ∈ [0, 2n) then c← 0

3: else c← 1

4: end if

5: for i from 1 to l − 1 do

6: zi ← xi + yi + c

7: if zi ∈ [0, 2n) then c← 0

8: else c← 1

9: end if

10: end for

11: if c = 1 then z ← z − p

12: else if z ≥ p then z ← z − p

13: end if

14: return z

7

Algorithm 2 Prime Field Subtraction

Input: x = (xl−1, xl−2, . . . , x2, x1, x0), y = (yl−1, yl−2, . . . , y2, y1, y0);x, y ∈ Fp
Output: z = x− y; z = (zl−1, zl−2, . . . , z2, z1, z0) ∈ Fp.

1: z0 ← x0 − y0

2: if z0 ∈ [0, 2n) then c← 0

3: else c← 1

4: end if

5: for i from 1 to l − 1 do

6: zi ← xi − yi − c

7: if zi ∈ [0, 2n) then c← 0

8: else c← 1

9: end if

10: end for

11: if c = 1 then z ← z + p

12: end if

13: return z

Multiplication and Division

Let x, y, z ∈ Fp and suppose we want to compute the product x · y = z. For a

multiplication over Fp, there are two phases: The first phase is multiplication and the

second phase is reduction. In Algorithm 3, the schoolbook method for multiplication

is given without reduction part.

Considering the array representation with n−bit word size of the elements, the mul-

tiplication of each array values will result in a 2n−bit value. To store these values, t0

and t1 values are used as temporary state values where size of each value is n−bit and

(t1t0) is a double-word sized number which is the concenation of these values where

t0 is the least significant word.

For the division operation, one can use the combination of the operations inversion,

multiplication and reduction.

8

Algorithm 3 Prime Field Multiplication Without Reduction

Input: x = (xl−1, xl−2, . . . , x2, x1, x0), y = (yl−1, yl−2, . . . , y2, y1, y0);x, y ∈ Fp
Output: Z = x · y;Z = (Z2l−2, Z2l−3, . . . , Z2, Z1, Z0) s.t. Zi ∈ [0, 2n).

1: for i from 0 to 2l − 1 do

2: Zi ← 0

3: end for

4: for i from 0 to l − 1 do

5: t1 ← 0

6: for j from 0 to l − 1 do

7: (t1t0)← Zi+j + xi · yi + t1

8: Zi+j ← t0

9: end for

10: Zi+l ← t1

11: end for

12: return Z

Reduction

Reduction part in field multiplication is an important part of the total cost. Especially,

elliptic curve operations make heavy use of field multiplication. Hence, reduction

with low cost should be considered. Based on the form of the prime number of the

field, the reduction algorithms can be less expensive. There are various methods such

as Barrett reduction or Montgomery reduction for arbitrary prime numbers.

Considering the prime fields, form of the prime number plays a crucial role. In Sec-

tion 3.3.2, prime number forms are discussed. In this thesis, we focus on prime num-

bers with the form p = 2k − r s.t. r > 0, namely, Crandall primes. Thus, we give a

straightforward method for reduction over Crandall primes in Algorithm 4. Note that,

values t′0, t
′
1 are (m − n(l − 1))−bit values as introduced in prime field arithmetic

part.

9

Algorithm 4 Reduction for Crandall Primes

Input: Z = (Z2l−2, Z2l−3, . . . , Z2, Z1, Z0) s.t. Zi ∈ [0, 2n).

Output: z = (zl−1, zl−2, . . . , z2, z1, z0); z ∈ Fp, s.t. p = 2k − r

1: for i from 0 to l − 2 do

2: (t1t0)← Zi + Zi+l

3: zi ← t0

4: zi+1 ← zi+1 + t1

5: end for

6: (t′1t
′
0)← zl−1 + Zl−1 + Z2l−1

7: zl−1 ← t′0

8: z0 ← z0 + rt′1

9: (t1t0)← z0

10: z0 ← t0

11: z1 ← z1 + t1

12: return z

Inversion

The multiplicative inverse of a nonzero element x ∈ Fp is denoted as x−1. To cal-

culate x−1, there are various methods such as extended Euclidean algorithm, binary

inversion algorithm, Montgomery inversion method and Fermat’s little theorem. We

will focus on the method that uses Fermat’s little theorem as it introduces a constant-

time algorithm and can be optimized further for a specific prime number. Fermat’s

little theorem states that for any nonzero element x ∈ Fp, we get xp−1 ≡ 1 mod p.

From this equation, we can deduce xp−2 ≡ x−1 mod p. Thus, computing xp−2 mod p

yields the inverse of the element.

Unfortunately, for the case p = 2k− r , the optimizations are not simple as it depends

on both k and r. Generalization of the inversion on Crandall primes are discussed

in [33]. Most of the time, the inversion algorithm requires meticulously handcrafted

lifting method. We use an optimized example of inversion over F2266−3 as it is intro-

duced in [27]. The pseudocode of the inversion algorithm is given in Algorithm 5.

10

Algorithm 5 Inverse of an Element on F2266−3 using Fermat’s Little Theorem

Input: x ∈ F2266−3

Output: x2266−5 ∈ F2266−3

1: t0 ← x

2: t1 ← t0 · x
3: t2 ← t21

4: t3 ← t22

5: t3 ← t3 · t1
6: t4 ← t23

7: for i from 1 to 2 do

8: t4 ← t24

9: end for

10: t5 ← t24

11: t5 ← t5 · t3
12: t6 ← t25

13: for i from 1 to 7 do

14: t6 ← t26

15: end for

16: t6 ← t6 · t5
17: t7 ← t26

18: for i from 1 to 15 do

19: t7 ← t27

20: end for

21: t7 ← t7 · t6
22: t8 ← t27

23: for i from 1 to 31 do

24: t8 ← t28

25: end for

26: t8 ← t8 · t7
27: t9 ← t28

28: for i from 1 to 63 do

29: t9 ← t29

30: end for

31: t9 ← t9 · t8
32: t10 ← t29

33: for i from 1 to 127 do

34: t10 ← t210

35: end for

36: t10 ← t10 · t9
37: t11 ← t210

38: for i from 1 to 6 do

39: t11 ← t211

40: end for

41: t12 ← t11 · t4
42: t12 ← t12 · t2
43: t12 ← t12 · x
44: for i from 1 to 3 do

45: t12 ← t212

46: end for

47: t13 ← t12 · t1
48: return t13

11

2.2 Elliptic Curves

An elliptic curve E over a field Fp is defined as the equation

E(Fp) = {∞} ∪ {(x, y) ∈ Fp × Fp | y2 = x3 + Ax + B}

where∞ is the point at infinity and the discriminant of the curve ∆ = 4A3 + 27B2 6=
0. The condition ∆ 6= 0 ensures that E has no singular point.

There are three different curve forms which are used by majority of the deployed

elliptic curves in cryptography. We will be using the following notations, for the

short Weierstrass form, twisted Edwards form and Montgomery form, respectively

[14]:

EA,B
W : y2 = x3 + Ax + B,

Ea,d
Ed : ax2 + y2 = 1 + dx2y2,

EA,B
M : By2 = x3 + Ax2 + x

The Short Weierstrass form can be used to describe any type of elliptic curve over

prime fields. But, the other two forms can only represent elliptic curves with orders

satisfying the condition "4 divides #E(Fp)".

Note that all three forms have two parameters. But, most of the time, due to the

efficiency requirements, one of them is fixed. Thus, the curves are only defined by

one parameter. Usually, the fixed parameter, for short Weierstrass form, is A = −3;

for twisted Edwards form, is a = 1 and for Montgomery form, is B = 1.

Additionally, every twisted Edwards curve defined over a prime field Fp is birationally

equivalent to a Montgomery curve which is defined on the same prime field and vice

versa. The transformation from twisted Edwards to Montgomery form are defined as

follows [5]: Assume we have the Edwars curve x2 + y2 = 1 + dx2y2 where d(1− d)

is nonzero defined over Fp. Substituting x = u/v and y = (u − 1)/(u + 1), we

get the Montgomery curve Bv2 = u3 + Au2 + u where A = 2(1 + d)/(1 − d) and

B = 4/(1− d).

12

Adding Points on an Elliptic Curve

Let EA,B
W be an elliptic curve. Let P1 = (x1, y1), P2 = (x2, y2) be points on EA,B

W

with P1, P2 6=∞. Define P1 + P2 = P3 = (x3, y3) as follows:

1. If x1 6= x2;

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1 where m = (y2 − y1)/(x2 − x1).

2. If x1 = x2 but y1 6= y2, then P1 + P2 =∞.

3. If P1 = P2 and y1 6= 0;

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1 where m = (3x2
1 + A)/(2y1).

4. If P1 = P2 and y1 = 0; P1 + P2 =∞.

For an explicit database of formulas for different elliptic curve forms, readers are

referred to [7].

The Group Law

The following properties are satisfied for the addition of points on an elliptic curve

E;

1. (Commutativity) P1 + P2 = P2 + P1 for all P1, P2 on E.

2. (Identity) P +∞ = P for all P on E.

3. (Inverse) For a point P on E, there exists a point, denoted as −P satisfying

P + (−P) =∞

4. (Associativity) (P1 + P2) + P3 = P1 + (P2 + P3) for all P1, P2, P3 on E.

These properties show the points on E form an abelian additive group.

Scalar Multiplication

Let P be a point on the elliptic curve E and k > 0 be an integer. The scalar multipli-

cation (a.k.a point multiplication) kP = Q where P and Q on E is defined as adding

13

the P to itself k times:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

.

This method is the exhaust way to compute the result. There are methods such as

Double-and-add, Windowed method, Sliding-window method, Non-adjacent form

method and Montgomery ladder method that speeds up the multiplication.

Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) can be used to create Public Key Cryptography

(PKC) primitives using elliptic curves over finite fields. ECC was first proposed by

Koblitz [22] and Miller [26] independently in 1985 as a more efficient alternative

to RSA [31]. Moreover, ECC achieves same security level with smaller key size

compared other PKC primitives based on integer factorization or finite field discrete

logarithm problem.

Suppose Alice and Bob want to agree on a secret value using an unsecure channel. An

elliptic curve based Diffie-Hellman (ECDH) key exchange is the following protocol

in its simplest form:

1. Alice and Bob agree on an elliptic curve E(Fq) with a public point P ∈ E(Fq)

with large prime order.

2. Alice creates a secret integer a and computes aP = Pa. She sends it to Bob.

3. Bob creates a secret integer b and computes bP = Pb. He sends it to Alice.

4. Alice computes aPb = abP .

5. Bob computes bPa = baP = abP .

6. Using the common secret abP , Alice and Bob can derive their secret shared

encryption key.

14

CHAPTER 3

TMVP-BASED FIELD MULTIPLICATION

Using Toeplitz matrices to perform field operations more efficient has been showed in

several studies [1, 35]. In this chapter, we will give details about TMVP and propose

10-dimensional decomposition for matrix multiplication. We will also define criteria

to get a Toeplitz matrix suitable form on every prime field with primes in Crandall

form. Depending on this idea, we will choose some prime fields to work on and

explain their representations.

3.1 Toeplitz Matrix-vector Multiplication

A Toeplitz matrix is a matrix in which each descending diagonal from left to right is

constant. The form of an n× n Toeplitz matrix can be represented as follows:

a0 a1 a2 · · · an−1

an a0 a1
. . . an−2

an+1 an a0
. . . an−3

...

a2(n−1) · · · an+1 an a0

The 2−way and 3−way approaches for binary extension fields in [15] can easily be

converted to the multiplication over the ring of integers. We advise the readers to

check [15] for a comprehensive work about TMVP and its cost computation over

binary extension fields. For a TMVP of size 2 over the ring of integers, we have:

T · V =

 T0 T1

T2 T0

 ·
 V0

V1

 =

 P1 + P2

P1 + P3

15

where T is 2× 2 Toeplitz matrix and

P1 = T0(V0 + V1)

P2 = (T1 − T0)V1

P3 = (T2 − T0)V0.

Using TMVP of size 2, the cost of computing T · V is 3M + 3A + 2Ad. While using

schoolbook method, the cost is 4M + 2Ad where M is the cost of a multiplication

operation, A and Ad are the costs of addition operations for single and double precision

words, respectively. Thus, using TMVP, we save 1M, but get extra 1A + 2Ad.

For a TMVP of size 3, we have:

T · V =

T0 T1 T2

T3 T0 T1

T4 T3 T0

 ·

V0

V1

V2

 =

P3 + P4 + P6

P2 − P4 + P5

P1 − P2 − P3

where T is 3× 3 Toeplitz matrix and

P1 = (T4 + T3 + T0)V0 P4 = T1(V1 − V2)

P2 = T3(V0 − V1) P5 = (T0 + T1 + T3)V1

P3 = T0(V0 − V2) P6 = (T0 + T1 + T2)V2

Using TMVP of size 3, the cost of computing TV is 6M+8A+6Ad, using schoolbook

method, the cost is 9M + 6Ad. Thus, using TMVP, we save 3M, but get extra 8A.

For a TMVP of size 4, we can split the matrix into four 2× 2 Toeplitz matrices which

enables the recursive computation. It should be noted that the recursive use of this

algorithm results in more gaining in the computation. This will be discussed in the

following sections.

3.2 The Proposed Decomposition for 10-Dimensional TMVP

In this section, we will propose a 10-dimensional TMVP strategy to be used for field

multiplication. Suppose we want to multiply two 10−term polynomials, namely, f(x)

16

and g(x);

f(x) =
9∑
i=0

fix
i g(x) =

9∑
i=0

gix
i

The straightforward method to multiply these polynomials is the schoolbook multi-

plication. We can compute f(x) · g(x) = h(x) as follows:

h(x) =
9∑
i=0

9∑
j=0

figjx
i+j

When the polynomials are multiplied in modulo x10 − 1, one can write this multipli-

cation using the matrix operations which yields the following matrix equation:

g0 g9 g8 g7 g6 g5 g4 g3 g2 g1

g1 g0 g9 g8 g7 g6 g5 g4 g3 g2

g2 g1 g0 g9 g8 g7 g6 g5 g4 g3

g3 g2 g1 g0 g9 g8 g7 g6 g5 g4

g4 g3 g2 g1 g0 g9 g8 g7 g6 g5

g5 g4 g3 g2 g1 g0 g9 g8 g7 g6

g6 g5 g4 g3 g2 g1 g0 g9 g8 g7

g7 g6 g5 g4 g3 g2 g1 g0 g9 g8

g8 g7 g6 g5 g4 g3 g2 g1 g0 g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

Please note that the 10 × 10 matrix is in Toeplitz matrix form. Hence, we can use

TMVP operations to compute the result. For the building blocks, we have TMVP

computations for the sizes 2 × 2 and 3 × 3 as introduced in previous section. Thus,

we develop our strategy to mount these operations for the corresponding matrix mul-

tiplication.

The size 10 has been chosen specificially for the ease of implementation on both

32−bit and 64−bit implementations. The matrix will be splitted into upper and lower

triangular matrices where each of them will be splitted into 5× 5 matrices later. This

decision will enable efficient implementation of the matrix multiplication even with

17

bigger coefficients. The splitted form of the operation is shown below:

g0 0 0 0 0 0 0 0 0 0

g1 g0 0 0 0 0 0 0 0 0

g2 g1 g0 0 0 0 0 0 0 0

g3 g2 g1 g0 0 0 0 0 0 0

g4 g3 g2 g1 g0 0 0 0 0 0

g5 g4 g3 g2 g1 g0 0 0 0 0

g6 g5 g4 g3 g2 g1 g0 0 0 0

g7 g6 g5 g4 g3 g2 g1 g0 0 0

g8 g7 g6 g5 g4 g3 g2 g1 g0 0

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

+

0 g9 g8 g7 g6 g5 g4 g3 g2 g1

0 0 g9 g8 g7 g6 g5 g4 g3 g2

0 0 0 g9 g8 g7 g6 g5 g4 g3

0 0 0 0 g9 g8 g7 g6 g5 g4

0 0 0 0 0 g9 g8 g7 g6 g5

0 0 0 0 0 0 g9 g8 g7 g6

0 0 0 0 0 0 0 g9 g8 g7

0 0 0 0 0 0 0 0 g9 g8

0 0 0 0 0 0 0 0 0 g9

0 0 0 0 0 0 0 0 0 0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

We can split this matrix into submatrices to mount 2× 2 or 3× 3 TMVP operations.

The matrix can be splitted into submatrices as follows:

A05×5 05×5

A15×5 A05×5

10×10

·

B05×1

B15×1

10×1

+ ·

A25×5 A15×5

05×5 A25×5

10×10

·

B05×1

B15×1

10×1

where matrices Ai for i = 0, 1, 2 are 5×5 matrices, Bj for j = 0, 1 are 5×1 matrices

and 05×5 is 5× 5 zero matrix.

Note that, 5×5 matrices can be split asymmetrically into 1 column by 4 columns or 3

columns by 2 columns and vice versa for both case. Thus, considering all split forms

that allows to mount 2 × 2 or 3 × 3 TMVP, there are 44 + 44 = 512 different forms.

We have investigated all such forms and figured out the one with the lowest cost as

details are introduced in the following subsections.

We need to compute the products: A0B0, A0B1, A1B0, A1B1, A2B0 and A2B1. The

computation details of every operation is given in the following subsection.

18

3.2.1 Computation of Submatrices

3.2.1.1 Computing A0B0

A0B0 =

K21x4
K31x1

K04×4
K14x1

5×5

·

L04x1

L11x1

5×1

=

K2L01x1
+ K3L11x1

K0L04x1
+ K1L14x1

5×5

K0L0 : will be calculated later with TMVP approach.

K1L1 :

0

0

0

g0

 ·
[
f4

]
= ��4M = 1M

K2L0 :
[
g0 0 0 0

]
·

f0

f1

f2

f3

 = �����
4M + 3Ad = 1M

K3L1 :
[

0
]
·
[
f4

]
= ��1M = 0

Last additions cost extra 5Ad additions. But, we have K3L1 with no cost and K1L1

with only 1M, thus, total cost is:

Cost(K0L0) + 2M + 1Ad

3.2.1.2 Computing A0B1

A0B1 =

K21x4
K31x1

K04×4
K14x1

5×5

·

N04x1

N11x1

5×1

=

K2N01x1
+ K3N11x1

K0N04x1
+ K1N14x1

5×5

19

K0N0 : will be calculated later with TMVP approach.

K1N1 :

0

0

0

g0

 ·
[
f9

]
= ��4M = 1M

K2N0 :
[
g0 0 0 0

]
·

f5

f6

f7

f8

 = �����
4M + 3Ad = 1M

K3N1 :
[

0
]
·
[
f9

]
= ��1M = 0

Last additions cost extra 5Ad additions. But, we have K3N1 with no cost and K1N1

with only 1M, thus, total cost is:

Cost(K0N0) + 2M + 1Ad

3.2.1.3 Computing A1B0

A1B0 =

P04×4 P14x1

P21x4 P31x1

5×5

·

L04x1

L11x1

5×1

=

P0L04x1

+ P1L14x1

P2L01x1
+ P3L11x1

5×5

P0L0 : will be calculated later with TMVP approach.

P1L1 :

g1

g2

g3

g4

 ·
[
f4

]
= 4M

P2L0 :
[
g9 g8 g7 g6

]
·

f0

f1

f2

f3

 = 4M + 3Ad

P3L1 :
[
g5

]
·
[
f4

]
= 1M

20

Last additions cost extra 5Ad additions, thus, total cost is:

Cost(P0L0) + 9M + 8Ad

3.2.1.4 Computing A1B1

A1B1 =

P04×4 P14x1

P21x4 P31x1

5×5

·

N04x1

N11x1

5×1

=

P0N04x1

+ P1N14x1

P2N01x1
+ P3N11x1

5×5

P0N0 : will be calculated later with TMVP approach.

P1N1 :

g1

g2

g3

g4

 ·
[
f9

]
= 4M

P2N0 :
[
g9 g8 g7 g6

]
·

f5

f6

f7

f8

 = 4M + 3Ad

P3N1 :
[
g5

]
·
[
f9

]
= 1M

Last additions cost extra 5Ad additions, thus, total cost is:

Cost(P0N0) + 9M + 8Ad

3.2.1.5 Computing A2B0

A2B0 =

R14x1

R04×4

R31x1
R21x4

5×5

·

L
′
11x1

L
′
04x1

5×1

=

R0L

′
04x1

+ R1L
′
14x1

R2L
′
01x1

+ R3L
′
11x1

5×5

21

R0L
′
0 : will be calculated later with TMVP approach.

R1L
′
1 :

0

0

0

0

 ·
[
f0

]
= ��4M = 0

R2L
′
0 :

[
0 0 0 0

]
·

f1

f2

f3

f4

 = �����
4M + 3Ad = 0

R3L
′
1 :

[
0
]
·
[
f0

]
= ��1M = 0

Last additions cost extra 5Ad additions. But, we have no cost, thus, total cost is:

Cost(R0L
′

0)

3.2.1.6 Computing A2B1

A2B0 =

R14x1

R04×4

R31x1
R21x4

5×5

·

N
′
11x1

N
′
04x1

5×1

=

R0N

′
04x1

+ R1N
′
14x1

R2N
′
01x1

+ R3N
′
11x1

5×5

R0N
′
0 : will be calculated later with TMVP approach.

R1N
′
1 :

0

0

0

0

 ·
[
f5

]
= ��4M = 0

R2N
′
0 :

[
0 0 0 0

]
·

f6

f7

f8

f9

 = �����
4M + 3Ad = 0

R3N
′
1 :

[
0
]
·
[
f5

]
= ��1M = 0

22

Last additions cost extra 5Ad additions. But, we have no cost, thus, total cost is:

Cost(R0N
′

0)

3.2.1.7 Computing the cost for K0L0 and K0N0

K0L0 =

g1 g0 0 0

g2 g1 g0 0

g3 g2 g1 g0

g4 g3 g2 g1

 ·

f0

f1

f2

f3

=

 X0 X1

X2 X0

 ·
 C0

C1

=

 T1 + T2

T1 + T3

T1 = X0(C0 + C1), T2 = (X1 −X0)C1, T3 = (X2 −X0)C0

Total cost is:

Cost(K0L0) = 3 (M(2)) + 8A + 4Ad

where, M(2) is the cost of computing 2× 2 TMVP.

K0N0 =

g1 g0 0 0

g2 g1 g0 0

g3 g2 g1 g0

g4 g3 g2 g1

 ·

f5

f6

f7

f8

=

 X0 X1

X2 X0

 ·
 D0

D1

=

 T1 + T2

T1 + T3

T1 = X0(D0 + D1), T2 = D1(X1 −X0), T3 = D0(X2 −X0)

23

We have (X1 −X0) and (X2 −X0) computed already, thus, total cost is:

Cost(K0N0) = 3 (M(2)) +8A +4Ad

−3A ← (X1 −X0)

+ −3A ← (X2 −X0)

3 (M(2)) +2A +4Ad

where, M(2) is the cost of computing 2× 2 TMVP.

3.2.1.8 Computing the cost for P0L0 and P0N0

P0L0 =

g5 g4 g3 g2

g6 g5 g4 g3

g7 g6 g5 g4

g8 g7 g6 g5

 ·

f0

f1

f2

f3

=

 Y0 Y1

Y2 Y0

 ·
 C0

C1

=

 T1 + T2

T1 + T3

T1 = Y0(C0 + C1), T2 = C1(Y1 − Y0), T3 = C0(Y2 − Y0)

We have (C0 + C1) computed already, thus, total cost is:

Cost(P0L0) = 3 (M(2)) +8A +4Ad

+ −2A ← (C0 + C1)

3 (M(2)) +6A +4Ad

24

where, M(2) is the cost of computing 2× 2 TMVP.

P0N0 =

g5 g4 g3 g2

g6 g5 g4 g3

g7 g6 g5 g4

g8 g7 g6 g5

 ·

f5

f6

f7

f8

=

 Y0 Y1

Y2 Y0

 ·
 D0

D1

=

 T1 + T2

T1 + T3

T1 = Y0(D0 + D1), T2 = D1(Y1 − Y0), T3 = C0(Y2 − Y0)

We have (D0 + D1), (Y1 − Y0) and (Y2 − Y0) computed already, thus, total cost is:

Cost(P0N0) = 3 (M(2)) +8A +4Ad

−2A ← (D0 + D1)

−3A ← (Y1 − Y0)

+ −3A ← (Y2 − Y0)

3 (M(2)) +4Ad

where, M(2) is the cost of computing 2× 2 TMVP.

3.2.1.9 Computing the cost for R0L
′
0 and R0N

′
0

R0L
′

0 =

g9 g8 g7 g6

0 g9 g8 g7

0 0 g9 g8

0 0 0 g9

 ·

f1

f2

f3

f4

=

 Z0 Y2

0 Z0

 ·
 C

′
0

C
′
1

=

 T1 + T2

T1 + T3

25

T1 = Z0(C
′
0 + C

′
1), T2 = C

′
1(Y2 − Z0), T3 = C

′
0(0− Z0)

Total cost is:

Cost(R0L
′

0) = 3 (M(2)) + 5A + 4Ad

where, M(2) is the cost of computing 2× 2 TMVP.

R0N
′

0 =

g9 g8 g7 g6

0 g9 g8 g7

0 0 g9 g8

0 0 0 g9

 ·

f6

f7

f8

f9

=

 Z0 Y2

0 Z0

 ·
 D

′
0

D
′
1

=

 T1 + T2

T1 + T3

T1 = Z0(D

′
0 + D

′
1), T2 = D

′
1(Y2 − Z0), T3 = D

′
0(0− Z0)

We have (Y2 − Z0) and (0− Z0) computed already, thus, total cost is:

Cost(R0N
′
0) = 3 (M(2)) +8A +4Ad

−3A ← (Y2 − Z0)

+ −3A ← (0− Z0)

3 (M(2)) +2A +4Ad

where, M(2) is the cost of computing 2× 2 TMVP.

3.2.2 Arithmetic Cost and Comparison

As discussed in the previous section, we have A0B0, A0B1, A1B0, A1B1, A2B0

and A2B1 computed using TMVP method. The cost decomposition of the proposed

algorithm is given in Table 3.1. The costs are based on the products of 5×5 matrices.

26

Table 3.1: The Cost Computation of Matrices

Product Cost

A0B0 Cost(K0L0) + 2M + 1Ad

A0B1 Cost(K0N0) + 2M + 1Ad

A1B0 Cost(P0L0) + 9M + 8Ad

A1B1 Cost(P0N0) + 9M + 8Ad

A2B0 Cost(R0L
′
0)

A2B1 Cost(R0N
′
0)

The Cost() function in the table returns the cost of computing the corresponding

TMVP and K0N0, P0L0, P0N0, R0L
′
0 and R0N

′
0 are corresponding TMVP operations

for the matrices A0B1, A1B0, A1B1, A2B0 and A2B1, respectively.

To compute 4×4 TMVP, we can use 2×2 TMVP method and cost will be as follows:

Cost(M4×4) = Cost(M2×2) + 8A + 4Ad

where the cost for M2×2 has been discussed in Section 3.1.

Total cost for computing the TMVP operations are listed as follows:

Cost(K0L0) = 3 (M2×2) +8A +4Ad

Cost(K0N0) = 3 (M2×2) +2A +4Ad

Cost(P0L0) = 3 (M2×2) +6A +4Ad

Cost(P0N0) = 3 (M2×2) +4Ad

Cost(R0L
′
0) = 3 (M2×2) +5A +4Ad

Cost(R0N
′
0) = 3 (M2×2) +2A +4Ad

+

18 (M2×2) +23A +24Ad

The cost of a multiplication by M2×2 can be computed both using TMVP and school-

book multiplication method. Thus, we get two different costs for it, as discussed in

Section 3.1. We obtain two different costs at the end. The cost comparison is given

27

in the Table 3.2.

Table 3.2: The Cost Comparison of Algorithms

Method Cost

The Proposed Method #1 77M + 77A + 109Ad

The Proposed Method #2 95M + 23A + 109Ad

Bernstein [4] 101M + 92Ad

Note that, A is the single word addition operation and it is assumed that the cost of

computing 2A is equivalent computing 1Ad. The Proposed Method #1 uses TMVP

to compute M2×2 and The Proposed Method #2 uses schoolbook multiplication. The

cost for the multiplication with the coefficients are ignored since it varies for ev-

ery prime field and will have same cost on both proposed methods and Bernstein’s

method.

Comparing the results with Bernstein’s complexity, we get the following savings and

redundant operations.

• The Proposed Method #1: −24M and +56Ad

• The Proposed Method #2: −6M and +29Ad

We saved multiplications but got extra additions and expect to have improvements

based on this trade off. Theoretically, using Method #1, if we have a platform that

has the cost of 1M is equivalent to at least 2.33Ad, our algorithms have better results

in terms of total operation cost. The improvements are discussed in Sections 4.3 and

5.3. A reference implementation is given in Appendix A.

3.2.3 Delay Evaluation

The delay complexity for n × n Toeplitz matrix is defined as D(n) = 2log2(n)DM +

DA where DM and DA are the delays of computing field multiplication and addition

operations, respectively.

We have evaluated the delay complexity of the Proposed Method #1 when it is imple-

mented using a four-core parallel implementation. In this case, we will have comput-

ing paths C1, C2, C3 and C4.

28

Using first three paths, we compute the matrices mentioned in Section 4.2 and last

path is for extra operations. Delay for paths C1 and C2 is 18DM + 57DA, for C3 is

18DM + 58DA and for C4 is 22DM + 29DA.

Figure 3.1: Four-core Parallel Implementation Delay Overview

Path C1 contains the delay of the computations of matrices K0L0 and K0N0 as stated

in Figure 3.1 with parts P1, P2, P3 and P4 and the delay costs are 9DM, 25DA, 9DM and

21DA, respectively.

Similarly, path C2 is for P0L0 and P0N0 with parts P7(9DM), P8(25DA), P9(9DM) and

P10(19DA), path C3 is for R0L
′
0 and R0N

′
0 with parts P13, P14, P15 and P16 having

the same delay costs with path C1. The paths P5(4DA), P11(5DA), P17(4DA) and

P25(4DA) represent the final additions.

The path C4 represents the delay for extra computations mentioned in the Table 3.1

with parts P19, P20, P21, P22, P23 and P24. We finalize the computation with the mul-

tiplication of the constant as mentioned in Section 4.2 with delay costs represented in

parts P6(7DA), P12(8DA), P18(8DA) and P26(7DA).

As shown in Figure 3.1, the final addition operations have to wait for matrix opera-

tions be completed which causes a gap in path C4. But, the critical path is C3 since it

has the longest delay that corresponds to the delay of the algorithm.

If algorithm is implemented in single-core, its delay would be 76DM + 201DA. Com-

paring it with the delay of the critical path, we can deduce the proposed four-core

parallel implementation is almost embarrassingly parallel.

3.3 TMVP-Friendly Prime Fields

As it is introduced in [2, 35], TMVP method can be used for the finite field multipli-

cation to get faster implementations. But the main problem is to find a proper matrix

representation for the field elements which is in Toeplitz matrix form. It is possible

to manipulate the coefficients and get TMVP suitable results. Being TMVP-Friendly

means the matrix representation of the corresponding prime field yields a matrix in

29

Toeplitz form. This thesis focuses on finding and improving TMVP-Friendly prime

fields and element representations without doing complex manipulations. To accom-

plish this, we will stick with the radix-2r representation.

3.3.1 Toeplitz Matrix Formed Field Element Representation

Prime field elements are usually represented as big integers and these integers are

usually divided into several small chunks called limbs, so that field operations can be

carried out as sequences of operations on limbs. A radix-2r representation represents

an element f in a b−bit prime field as (f0, f1, . . . , fdb/re−1), such that

f =

db/re−1∑
i=0

fi2
dire.

Field arithmetic can then be carried out using operations on limbs. To calculate limb

size, assume the platform that the field operations will be implemented has n−bit

CPU register size. Let f be an element of prime field Fp where p is a k−bit prime

number. Define t as the number of limbs where dk/te < n. We can split f as follows:

f = [f0/dk/te, f1/dk/te, . . . , ft−2/dk/te, ft−1/m] (3.1)

where m = k − dk/te(t − 1) , 0 < m < n and fi/b indicates the limb fi has b−bit

length.

For the parameters that satisfy the condition in (3.1), we get a TMVP suitable matrix

representation. We expect the coefficients in the matrix as small as possible.

To define the upperbound for the coefficient size, assume we have same parameters

as (3.1) with at most 2t − 1 different coefficients in the matrix representation. Let ci

be a cofficient in the matrix with a length of b−bit. For each different coefficient ci in

the matrix, the following condition should be met:

2 (n− dk/te − 1) ≤ b (3.2)

Using (3.1) we can decide if the representation can be implemented on a specific

platform and we can define an upperbound for the coefficients using the (3.2). If the

bound is exceeded, field operation can not be implemented using the defined CPU

register size. (3.1) and (3.2) form the essential criterias to choose proper prime fields.

Hence, we can choose proper parameters to build a representation that is in Toeplitz

matrix form.

30

3.3.2 Prime Number Forms

There are different prime forms such as Mersenne primes (2k − 1), Crandall primes

(2k−c), Special Montgomery primes (2kc−1), Montgomery-friendly primes (2k(2l−
c)− 1), Solinas primes (2k − 2l ± · · · ± 1) etc.

Considering (3.2), we expect to have coefficients as small as possible to use much

more space in registers to minimize redundancy. Using Mersenne primes would result

in getting smallest possible coefficients as the subtraction part of the prime form is

fixed to 1. This would be useful but the reduces flexibility of choosing primes.

However, Crandall primes have flexibility with the parameter c. Considering 3.2,

primes with c < 210 [10] might have performance similar or close to Mersenne

primes. Thus, this property makes Crandall primes a good choice for our case.

3.3.3 New Prime Fields

Using (3.1) and (3.2), we have searched for suitable prime fields with different sizes

using MAGMA software [36]. We have focused on 32−bit and 64−bit implementations

and have decided to work on the following prime fields.

1. F2266−3 [21] with 10 terms on 32−bit platform.

2. F2336−3 [32] with 13 terms on 32−bit platform.

3. F2452−3 with 10 terms on 64−bit platform.

4. F2545−3 with 10 terms on 64−bit platform.

5. F2550−5 with 10 terms on 64−bit platform.

6. F2607−1 [27] with 10 terms on 64−bit platform.

Any prime field multiplication operation that is represented with a Toeplitz matrix

form with limb size t = 10 according to (3.1) can be implemented efficiently using

the method introduced in Section 3.2.

31

3.3.3.1 Representation for F2266−3

Let f be an element of prime field F2266−3. Using (3.1) with the parameters n =

32, k = 266, t = 10, we get the following representation:

f = [f0/27, f1/27, f2/27, f3/27, f4/27, f5/27, f6/27, f7/27, f8/27, f9/23]

We can also represent the element as a polynomial as follows:

f(x) = f0 + 227f1x + 254f2x
2 + 281f3x

3 + 2108f4x
4

+ 2135f5x
5 + 2162f6x

6 + 2189f7x
7 + 2216f8x

8 + 2243f9x
9

Let f, g and h in ∈ F2266−3, we can compute the f · g = h with the following matrix

representation:

g0 48g9 48g8 48g7 48g6 48g5 48g4 48g3 48g2 48g1

g1 g0 48g9 48g8 48g7 48g6 48g5 48g4 48g3 48g2

g2 g1 g0 48g9 48g8 48g7 48g6 48g5 48g4 48g3

g3 g2 g1 g0 48g9 48g8 48g7 48g6 48g5 48g4

g4 g3 g2 g1 g0 48g9 48g8 48g7 48g6 48g5

g5 g4 g3 g2 g1 g0 48g9 48g8 48g7 48g6

g6 g5 g4 g3 g2 g1 g0 48g9 48g8 48g7

g7 g6 g5 g4 g3 g2 g1 g0 48g9 48g8

g8 g7 g6 g5 g4 g3 g2 g1 g0 48g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

3.3.3.2 Representation for F2545−3

Let f be an element of prime field F2545−3. Using (3.1) with the parameters n =

64, k = 545, t = 10, we get the following representation:

f = [f0/55, f1/55, f2/55, f3/55, f4/55, f5/55, f6/55, f7/55, f8/55, f9/50]

We can also represent the element as a polynomial as follows:

f(x) = f0 + 255f1x + 2110f2x
2 + 2165f3x

3 + 2220f4x
4

+ 2275f5x
5 + 2330f6x

6 + 2385f7x
7 + 2440f8x

8 + 2495f9x
9

32

Let f, g and h in ∈ F2545−3, we can compute the f · g = h with the following matrix

representation:

g0 96g9 96g8 96g7 96g6 96g5 96g4 96g3 96g2 96g1

g1 g0 96g9 96g8 96g7 96g6 96g5 96g4 96g3 96g2

g2 g1 g0 96g9 96g8 96g7 96g6 96g5 96g4 96g3

g3 g2 g1 g0 96g9 96g8 96g7 96g6 96g5 96g4

g4 g3 g2 g1 g0 96g9 96g8 96g7 96g6 96g5

g5 g4 g3 g2 g1 g0 96g9 96g8 96g7 96g6

g6 g5 g4 g3 g2 g1 g0 96g9 96g8 96g7

g7 g6 g5 g4 g3 g2 g1 g0 96g9 96g8

g8 g7 g6 g5 g4 g3 g2 g1 g0 96g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

A special case for F2545−3 is radix-254.5 representation. This representation with

64−bit CPU architecture has similar matrix form in with Curve25519’s radix-225.5

representation [4] with 32−bit CPU architecture. Limbs can be represented as fol-

lows using radix-254.5 representation:

f = [f0/55, f1/54, f2/55, f3/54, f4/55, f5/54, f6/55, f7/54, f8/55, f9/54]

We can also represent the element as a polynomial as follows:

f(x) = f0 + 255f1x + 2109f2x
2 + 2164f3x

3 + 2218f4x
4

+ 2273f5x
5 + 2327f6x

6 + 2382f7x
7 + 2436f8x

8 + 2491f9x
9

33

In this case, we can compute the f · g = h with the following matrix representation:

g0 6g9 3g8 6g7 3g6 6g5 3g4 6g3 3g2 6g1

g1 g0 3g9 3g8 3g7 3g6 3g5 3g4 3g3 3g2

g2 2g1 g0 6g9 3g8 6g7 3g6 6g5 3g4 6g3

g3 g2 g1 g0 3g9 3g8 3g7 3g6 3g5 3g4

g4 2g3 g2 2g1 g0 6g9 3g8 6g7 3g6 6g5

g5 g4 g3 g2 g1 g0 3g9 3g8 3g7 3g6

g6 2g5 g4 2g3 g2 2g1 g0 6g9 3g8 6g7

g7 g6 g5 g4 g3 g2 g1 g0 3g9 3g8

g8 2g7 g6 2g5 g4 2g3 g2 2g1 g0 6g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

This representation allows to mount any field operation improvement that is made for

F2255−19 on 32−bit to F2545−3 on 64−bit.

3.3.3.3 Representation for F2550−5

Let f be an element of prime field F2550−5. Using (3.1) with the parameters n =

64, k = 550, t = 10, we get the following representation:

f = [f0/55, f1/55, f2/55, f3/55, f4/55, f5/55, f6/55, f7/55, f8/55, f9/55]

We can also represent the element as a polynomial as follows:

f(x) = f0 + 255f1x + 2110f2x
2 + 2165f3x

3 + 2220f4x
4

+ 2275f5x
5 + 2330f6x

6 + 2385f7x
7 + 2440f8x

8 + 2495f9x
9

Note that the polynomial representation is same as it is in F2545−3. Besides, this

TMVP suitable form is also a radix-255 representation, there is no redundancy on the

most significant limb.

Let f, g and h be in ∈ F2550−5. We can compute the f · g = h with the following

matrix representation:

34

g0 5g9 5g8 5g7 5g6 5g5 5g4 5g3 5g2 5g1

g1 g0 5g9 5g8 5g7 5g6 5g5 5g4 5g3 5g2

g2 g1 g0 5g9 5g8 5g7 5g6 5g5 5g4 5g3

g3 g2 g1 g0 5g9 5g8 5g7 5g6 5g5 5g4

g4 g3 g2 g1 g0 5g9 5g8 5g7 5g6 5g5

g5 g4 g3 g2 g1 g0 5g9 5g8 5g7 5g6

g6 g5 g4 g3 g2 g1 g0 5g9 5g8 5g7

g7 g6 g5 g4 g3 g2 g1 g0 5g9 5g8

g8 g7 g6 g5 g4 g3 g2 g1 g0 5g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

Note that, all three matrix representations are suitable for TMVP and satisfy (3.2).

35

36

CHAPTER 4

SPEEDING UP CURVE25519

4.1 Curve25519

The Curve25519 [4] function is a x−coordinate only scalar multiplication on E(Fp),

where p is the prime number 2255 − 19 and E is the elliptic curve:

y2 = x3 + 486662x2 + x

4.1.1 The radix-225.5 Representation for F2255−19

According to Bernstein’s representation [4], assume we want to compute f · g = h

where f, g and h in ∈ F2255−19. The integers are splitted into limbs using radix-225.5

representation as follows [4]:

f = [f0/26, f1/25, f2/26, f3/25, f4/26, f5/25, f6/26, f7/25, f8/26, f9/25]

g = [g0/26, g1/25, g2/26, g3/25, g4/26, g5/25, g6/26, g7/25, g8/26, g9/25]

h = [h0/26, h1/25, h2/26, h3/25, h4/26, h5/25, h6/26, h7/25, h8/26, h9/25]

Thus, any element of the field can be represented as the concatenation of the limbs as

follows:

f = f9‖f8‖f7‖f6‖f5‖f4‖f3‖f2‖f1‖f0

g = g9‖g8‖g7‖g6‖g5‖g4‖g3‖g2‖g1‖g0

h = h9‖h8‖h7‖h6‖h5‖h4‖h3‖h2‖h1‖h0

where the operation ‖ is the bitwise concatenation and f0, g0 and h0 are the least sig-

nificant limbs. We represent the elements as polynomials with coefficients indicating

37

the cumulative bit-size of the previous limbs:

f(x) =f0 + 226f1x + 251f2x
2 + 277f3x

3 + 2102f4x
4 + 2128f5x

5+

2153f6x
6 + 2179f7x

7 + 2204f8x
8 + 2230f9x

9

g(x) =g0 + 226g1x + 251g2x
2 + 277g3x

3 + 2102g4x
4 + 2128g5x

5+

2153g6x
6 + 2179g7x

7 + 2204g8x
8 + 2230g9x

9

h(x) =h0 + 226h1x + 251h2x
2 + 277h3x

3 + 2102h4x
4 + 2128h5x

5+

2153h6x
6 + 2179h7x

7 + 2204h8x
8 + 2230h9x

9

As a result, each polynomial represents its value at 1. We get the following matrix

representation:

g0 38g9 19g8 39g7 19g6 38g5 19g4 38g3 19g2 38g1

g1 g0 19g9 19g8 19g7 19g6 19g5 19g4 19g3 19g2

g2 2g1 g0 38g9 19g8 38g7 19g6 38g5 19g4 38g3

g3 g2 g1 g0 19g9 19g8 19g7 19g6 19g5 19g4

g4 2g3 g2 2g1 g0 38g9 19g8 38g7 19g6 38g5

g5 g4 g3 g2 g1 g0 19g9 19g8 19g7 19g6

g6 2g5 g4 2g3 g2 2g1 g0 38g9 19g8 38g7

g7 g6 g5 g4 g3 g2 g1 g0 19g9 19g8

g8 2g7 g6 2g5 g4 2g3 g2 2g1 g0 38g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

Basic schoolbook method is used to compute the h. Thus, cost of computing h is

100M+81Ad and 1M+11Ad for final reduction to get reduced coefficiens of h, namely,

h0, . . . , h9. Note that, shift and masking (bitwise AND) operation costs are ignored.

Hence, total cost is;

101M + 92Ad.

4.2 Multiplication Over F2255−19 Using TMVP

The radix-225.5 representation which is described in Section 4.1.1, is not suitable for

mounting TMVP operations since the matrix is not in Toeplitz form.

38

Using (3.1) and (3.2) with the parameters n = 32, k = 255, t = 10, we get the

following matrix representation which is in Toeplitz form. The representations of f, g

and h are defined as follows:

f =[f0/26, f1/26, f2/26, f3/26, f4/26, f5/26, f6/26, f7/26, f8/26, f9/21]

g =[g0/26, g1/26, g2/26, g3/26, g4/26, g5/26, g6/26, g7/26, g8/26, g9/21]

h =[h0/26, h1/26, h2/26, h3/26, h4/26, h5/26, h6/26, h7/26, h8/26, h9/21]

We represent the elements as polynomials with coefficients indicating the cumulative

bit-size of the previous limbs as follows:

f(x) =f0 + 226f1x + 252f2x
2 + 278f3x

3 + 2104f4x
4 + 2130f5x

5+

2156f6x
6 + 2182f7x

7 + 2208f8x
8 + 2234f9x

9

g(x) =g0 + 226g1x + 252g2x
2 + 278g3x

3 + 2104g4x
4 + 2130g5x

5+

2156g6x
6 + 2182g7x

7 + 2208g8x
8 + 2234g9x

9

h(x) =h0 + 226h1x + 252h2x
2 + 278h3x

3 + 2104h4x
4 + 2130h5x

5+

2156h6x
6 + 2182h7x

7 + 2208h8x
8 + 2234h9x

9

We get the following matrix representation for the new field multiplication method:

g0 608g9 608g8 608g7 608g6 608g5 608g4 608g3 608g2 608g1

g1 g0 608g9 608g8 608g7 608g6 608g5 608g4 608g3 608g2

g2 g1 g0 608g9 608g8 608g7 608g6 608g5 608g4 608g3

g3 g2 g1 g0 608g9 608g8 608g7 608g6 608g5 608g4

g4 g3 g2 g1 g0 608g9 608g8 608g7 608g6 608g5

g5 g4 g3 g2 g1 g0 608g9 608g8 608g7 608g6

g6 g5 g4 g3 g2 g1 g0 608g9 608g8 608g7

g7 g6 g5 g4 g3 g2 g1 g0 608g9 608g8

g8 g7 g6 g5 g4 g3 g2 g1 g0 608g9

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

=

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

Please note that, using this representation with schoolbook method does not make

sense since the constant coefficient here is 608 (a 10-bit integer) and the limbs

wouldn’t fit into registers. But, total result fits in registers. Thus, this representa-

tion can work and be useful. This is where the TMVP has advantages and makes this

presentation possible to be implemented in an efficient way. To achieve this, we can

split the matrix above into chunks and handle each part as follows:

39

g0 0 0 0 0 0 0 0 0 0

g1 g0 0 0 0 0 0 0 0 0

g2 g1 g0 0 0 0 0 0 0 0

g3 g2 g1 g0 0 0 0 0 0 0

g4 g3 g2 g1 g0 0 0 0 0 0

g5 g4 g3 g2 g1 g0 0 0 0 0

g6 g5 g4 g3 g2 g1 g0 0 0 0

g7 g6 g5 g4 g3 g2 g1 g0 0 0

g8 g7 g6 g5 g4 g3 g2 g1 g0 0

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

+ 608

0 g9 g8 g7 g6 g5 g4 g3 g2 g1

0 0 g9 g8 g7 g6 g5 g4 g3 g2

0 0 0 g9 g8 g7 g6 g5 g4 g3

0 0 0 0 g9 g8 g7 g6 g5 g4

0 0 0 0 0 g9 g8 g7 g6 g5

0 0 0 0 0 0 g9 g8 g7 g6

0 0 0 0 0 0 0 g9 g8 g7

0 0 0 0 0 0 0 0 g9 g8

0 0 0 0 0 0 0 0 0 g9

0 0 0 0 0 0 0 0 0 0

·

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

To compute this, one can use the strategy introduced in Section 3.2. The only extra

part is the multiplication with the constant. Using the advantage of splitting the ma-

trix into upper and lower triangular matrices, we can easily handle the multiplication

operation with 608 at the end of the computation. Note that, 608 can be decomposed

as follows:

608 = 25 · 19 = 25(24 + 21 + 1) = 29 + 26 + 25

So, to multiply an integer x with 608, one can use 3 shifts and 2Ad:

x · 608 = (x << 9) + (x << 6) + (x << 5)

The cost of the shift operation can be ignored and the total cost for computing a total

of 10 multiplications by 608 will cost extra 20Ad operations. Hence, the total cost

will be as described in Table 3.2 with an extra 20Ad operations.

4.3 Implementation and Benchmark Results

Our algoritm is based on 32-bit word size, thus, we focused on 32-bit implementa-

tions. To benchmark our algorithm, we have used different platforms including x86

and 32-bit ARM and compiled it on each platform with different configurations.

For x86 implementation, we use macOS Sierra with Apple LLVM gcc 4.2.1 compiler

on Intel i7-4750HQ CPU with 16GB RAM and for ARM implementation, we use

Raspbian 8 with gcc 4.9.2 on Raspberry Pi 2 with ARMv7l CPU and 1GB RAM.

We have implemented our field multiplication algorithm using C programming lan-

guage and compared our results with the finite field multiplication function fe_mul

40

of ref10 [37] implementation.

We have compiled the finite field multiplication functions for both implementations

on each platform using every optimization level of gcc and executed each result mul-

tiple times and got an avarage timing for each execution. Our results are better at

optimization level 2 and 3 [18] on x86 implementation up to %13 and has close tim-

ing results on ARM.
Table 4.1: Implementation Benchmark Comparison Over F2255−19

Platform Algorithm Opt. Level Timing (Avg.)

x86 Proposed Method #1 -O2 75ns

x86 ref10 -O2 80ns

x86 Proposed Method #1 -O3 70ns

x86 ref10 -O3 80ns

ARMv7l Proposed Method #1 -O2 2600ns

ARMv7l ref10 -O2 2600ns

We also give implementation cycles of the algortihms as an extended result in Ta-

ble 4.2. The results are obtained with gcc 4.2.1 compiler using optimization level 3

and fast-math and no-common options enabled on Intel i7-4750HQ with Hyper

Threading disabled. The counts listed in the table are obtained by taking a mini-

mum of 107 operations for each field multiplication algorithm. TT means TMVP and

TMVP, TSB means TMVP and Schoolbook for 4 × 4 and 2 × 2 matrix operations

respectively.

Table 4.2: Field Multiplication Implementation Cycles Over F2255−19

Implementation Reference Cycles Comparison to TSB
ref10 [4, 37] 104.94 -12.59%
Proposed Method #1 (TT) This Thesis, [35] 93.81 -2.22%
Proposed Method #2 (TSB) This Thesis, [35] 91.73

41

42

CHAPTER 5

ELLIPTIC CURVES SEARCH

5.1 Choosing Safe Elliptic Curves

In Chapter 3, we have introduced proper prime fields and in this chapter we discuss

how to find safe elliptic curves based on those prime fields. To accomplish this, we

first introduce known attacks against against elliptic curves and give our safe curve

search process details. The search codes and process details mentioned in this chapter

are given in Appendix B.

5.1.1 Curve Parameters

To define curve parameters, it is vital to define the underlying prime field first. As we

discussed on previous sections, we already have our prime fields defined. Therefore,

we should consider our parameters to define a curve.

In this thesis, we focus on Montgomery curves with B fixed to 1 and with

x−coordinate only representation. After defining the curve, one should specify a

base point B = (x1, y1) on the curve with a prime order. We expect to find a base

point with x1 value as small as possible.

5.1.2 Attacks

When the parameters are fixed to define an elliptic curve, attacks against the curves

should be tested to verify if the selected parameters satisfy the security requirements.

43

For this purpose, we follow the SafeCurves project [8] which offers an elegant ap-

proach for addressing different point of views.

Assume we have an elliptic curve EA,1
M defined over prime field Fp with a base point

B = (x1, y1) where order of the base point is k, order of the curve "n = tk", such

that k is prime and 4 divides t. The curves should be tested against at least the attacks

defined below.

5.1.2.1 Pollard’s Rho Attack

[30] is the best known method for solving the elliptic curve discrete logarithm prob-

lem [25] which has exponential time complexity O(
√
n) where n is the order of

the elliptic curve. But the improved attacks [9] reduces the complexity around(√
πk
4

)
≈ 0.8862

√
k additions where k is the order of the base point. Thus, we

expect to have this value at least 2100 as described in SafeCurves. However, for the

sake of being lightweight and short-term key usage, this limit can be streched down

to around 280 which also allows to find new alternative curves.

5.1.2.2 Small-subgroup Attack

Our curve choice assumption have order n = tk, where k is the large prime order

of the specified base point B and t is a small cofactor. The possible orders of curve

points can be divisors of t and k times divisors of t.

Assume Alice and Bob are exchanging keys with an ECDH protocol and an attacker

impersonated Alice is sending a point Q with small order instead of Alice’s legitimate

public key to Bob. Then, Bob computes bQ where b is Bob’s secret key and reveal the

result to complete key exchange. Since Q has small order, the attacker can check all

possibilites for b under the modulo of order Q which possibly results in finding the

correct value for b modulo order of Q.

To protect the curve against these types of attack, one can choose base point’s order

as a prime and equals to curve order but this is not possible in our case since 4 divides

t due to Montgomery form. Another protection is choosing b as a multiple of t such

44

that b = tr for a random r mod k. At worst case, this attack reduces security at most

dlog2(t)e-bit [8].

5.1.2.3 Twist Security

Twist security is first introduced in [4] for the special case when the curve form is

Montgomery with x-coordinate only representation. Considering any point (xi, yi) ∈
Fp, around half of the xi values are in Fp and the remaining half of the points corre-

spond to a point on the quadratic twist of the Fp [14]. Instead of checking if a point

corresponds to the curve itself of its quadratic twist every time, choosing a safe twist

is a much more elegant way for defining a safe curve. Thus, while searching for new

curves, every check that is done for the curve itself should be repeated for its twist.

5.1.2.4 Other Attacks

As well as the attacks mentioned here, SafeCurves lists some other attack parameters

to consider such as additive and multiplicative transfers, multiplicative embedding

degree, invalid curve attacks and its combination with small-subgroup attacks and

complex-multiplication field discriminant etc.

Our curve selection method covers only attacks mentioned in this chapter. Readers

are advised to check SafeCurves [8] for details.

5.1.3 New Curve Choice Parameter

We introduce a new parameter called Order Type and define types from 1 to 5 in Table

5.1:

Table 5.1: Order Type Parameter Details
Order Type Cofactor for Curve Order Cofactor for Twist Order Example Curves
Type 1 4 4 [10], [19], E-382, E-521
Type 2 4 or 8 4 or 8 This Thesis (Curve2663), Curve383187, [4], [6]
Type 3 4d 4 or 8 -
Type 4 4 or 8 4d -
Type 5 4d 4d -

45

Order Type 1 curves are the hardest to discover but the safest ones against Pollard’s

Rho attack. Most of the popular Edwards or Montgomery curves are in the class of

Order Type 2 such as Curve25519 etc.

Type 3, Type 4 and Type 5 curves have at least one order cofactor as 4d where d is

an arbitrary integer. Type 5 elliptic curves have the most relaxed cofactors with both

curve itself and its twist can have order cofactos upto 4d.

Relaxing the parameters enables finding new curves but affects the security margin

because of Pollard’s Rho and Small-subgroup attack’s cost. Hence, this trade off

makes sense to find new alternative curves without compromising the expected se-

curity level. Here, we expect to have d as small as possible and also expect smallest

number of different primes in its canonical factorization. Especially, for high-security

curves (where security margins are bigger than 256-bit) having flexible d values could

allow to discover new elliptic curves.

5.1.4 The Proposed Safe Curve Generation Process

We introduce a safe curve generation algorithm which focuses on the criterias defined

above. The algorithm is given in Algorithm 6.

5.2 New Curve Parameters

5.2.1 Curve2663

We follow the popular naming convention and use Curve2663 for our proposed curve

name. Following the algorithm described above, we find the Montgomery curve

E20710,1
M : y2 = x3 + 20710x2 + x

defined over prime field F2266−3 with order 23k where k is a prime.

k = 2262 + 741069371118823650710854304055602610\

2607498625779807844927895183684117667522393

46

Algorithm 6 Safe Curve Search
Choose a big prime p ≡ 1 mod 4 or p ≡ 3 mod 4.

if Not IsPrime(p) then return false

end if

Use Equations 3.1 and 3.2 to check if the prime field Fp is suitable for TMVP-

Based field arithmetic.

Choose a Montgomery curve y2 = x3 + Ax2 + x, where A2 − 4 is nonzero in Fp.

Choose a base point B = (x1, y1) of prime order k on the curve.

Check if (x1, y1) is on the curve.

Check if k is prime.

Check if kB = 0.

Check the cost for Pollard’s rho attack is above 2100, i.e. 0.8862
√
k > 2100.

Check if the security against the twist attacks is above 2100.

Check the cost for Pollard’s rho attack against the twist is above 2100, i.e.

0.8862
√
k′ > 2100.

if All checks above are satisfied then return EA,1
M : y2 = x3 + Ax2 + x defined

over Fp with base point B = (x1, y1).

else

Select a new A value and check the conditions again.

end if

47

Simirlarly, twist of the curve has order 22k′ where k′ is a prime.

k′ = 2264 + 3560785642376507194780385644645258867021

Base Point B = (x1, y1) has order k with x-coordinate equals 17.

(x1, y1) = (17, 94350722641181309376645675877820961\

234965813488916730811382919029489257823763054)

The cost for Pollard’s rho attack is around 2131.3257 and for Twist’s is around 2131.8257.

The details for the search process are given in Appendix B.

5.3 Implementation and Benchmark Results

We have proposed the TMVP-Friendly representation for F2266−3 in Section 3.3.3.1

and followed the strategy introduced in Section 3.2 for its implementation. The only

extra part is the multiplication with the constant which is similarly discussed for

F2255−19 in Section 4.2. We can easily handle the multiplication operation with 48

at the end of the computation and 48 can be decomposed as follows:

48 = 25 + 24

Thus, to multiply an integer x with 48, one can use 2 shifts and 1Ad:

x · 48 = (x << 5) + (x << 4)

The cost of the shift operation can be ignored and the total cost for computing 10

multiplications by 48 will cost extra 10Ad operations. Hence, the total cost will be as

described in Table 3.2 with an extra 10Ad operations.

Source code for a 32-bit reference implementation of Curve2663 can be accessed

online. 1

The code is written in ANSI C which is portable. Thus, it can be compiled for any

platform. Reference implementation contains five different field multiplication im-

plementations. For three of them, we have followed the implementation strategies
1 See https://gitlab.com/hktaskin/curve2663 for the code.

48

https://gitlab.com/hktaskin/curve2663

Table 5.2: Field Multiplication Implementation Cycles
Implementation Reference Cycles Comparison to TT
ref10 [4, 37] 119.07 -16.58%
donna [4, 37] 108.43 -8.39%
Kummer [27] 263.96 -62.37%
TT This Thesis, [35] 99.33
TSB This Thesis, [35] 101.35 -1.99%

for ref10 and donna implementations of Curve25519 [4] in SUPERCOP [37] on

F2266−3 and modified the implementation given in [27] to make it work with ANSI

C. Besides these field multiplication implementations, we have implemented two dif-

ferent TMVP-Based implementations of the proposed methods using the strategy in-

troduced in [35]. First implementation of us makes use of TMVP on both 4 × 4 and

2 × 2 matrix multiplications. The second implementation uses schoolbook matrix

multiplication algorithm instead of TMVP for the 2× 2 matrix multiplications.

The compiler for benchmarking we use is gcc [18] on macOS Sierra with Apple

LLVM gcc 4.2.1 on 2.0 GHz Intel i7-4750HQ with Hyper Threading disabled. We

have tested several different compiler optimization arguments and combinations to

get faster results for all implementations. We have selected the compiler optimization

level 3 along with -ffast-math and -fno-common options.

Table 5.2 shows the avarage implementation cycle counts of 5 different field multi-

plications. The counts listed are obtained by taking a minimum of 106 operations for

each field multiplication algorithm. TT means TMVP and TMVP, TSB means TMVP

and Schoolbook for 4× 4 and 2× 2 matrix operations respectively.

Our reference scalar multiplication implementation uses Montgomery Ladder to com-

pute scalar multiples of points on the curve and only implements variable base point

scalar multiplication. We follow the same strategy as described in [4]. For modular

inversion, the algorithm is optimized using the fact x−1 = xp−2 resulting in a constant

time algorithm with the strategies introduced in [4, 27].

Table 5.3 shows the avarage implementation cycle counts of scalar multiplication with

5 different field multiplications. The counts listed are obtained by taking a minimum

of 50K operations for each scalar multiplication algorithm. The Kummer implemen-

49

Table 5.3: Scalar Multiplication Implementation Cycles
Implementation Scalar Mult. Cycles Comparison to TSB
Ref10 319837 -14.56%
Donna 278875 -2.01%
Kummer 673724 -59.44%
TT 281392 -2.89%
TSB 273261

tation focuses specifically on Intel AVX2 implementation, besides, our implementa-

tion strategy is making the code portable. In this respect, we have re-implemented the

Kummer algorithm using ANSI C intrinsics. Thus, the drastic improvement ratio of

our algorithm against Kummer implementation can be explained in this fashion.

50

CHAPTER 6

CONCLUSION

The need for faster and practical cryptography has been an attractive research area

due to the fact that cryptographic operations are the most expensive part in an appli-

cation in general. Especially, asymmetric operations are the slowest part. With the

introduction of ECC, speeding up ECC operations became a focused research area.

ECC operations are based on finite field arithmetic. Therefore, in this thesis, we have

focused on optimizations for finite field arithmetic, especially, finite field multiplica-

tion. Furthermore, we also gave details of choosing safe primes and proposed a new

curve.

Overall, the contributions of this thesis can be summarized as follows:

In Chapter 3, we have presented the work related to TMVP and proposed a decom-

postion for 10-dimensional TMVP for field multiplication. We have searched for all

possible combinations to find a new representation that is efficient, and the proposed

algorithm is built on the new representation. Next, we have discussed the arithmetic

cost of our proposed multiplication algorithm which resulted in better complexity

compared to schoolbook multiplication. We have also evaluated the delay complex-

ity of the proposed algorithm using four-core implementation to stress its efficiency

when it is implemented in multi-core systems and showed that it can be implemented

as almost embarrassingly parallel. Finally, we have introduced a method to build

TMVP-Based element representation on prime fields and proposed some prime fields

that have promising forms for implementation.

In Chapter 4, we have proposed a new algorithm for finite field multiplication over

51

F2255−19 using TMVP method and implemented the proposed algorithm on differ-

ent platforms including x86 and ARM. Next, we have tested and compared our im-

plementation with different configurations on these platforms and showed that the

proposed algorithm has promising results indicating TMVP method can be used effi-

ciently for multiplication in F2255−19.

In Chapter 5, we have introduced a methodology to search and choose safe curves

and gave details of safe curve generation process. Next, we have defined a new cri-

teria called "Order Type" for cofactor categorization of the curves. Finally, we have

proposed a new curve called Curve2663 that we have found using the proposed safe

curve generation algorithm and demonstrated its details and benchmark results.

52

REFERENCES

[1] S. Ali and M. Cenk, A new algorithm for residue multiplication modulo 2521−1,
in Proceedings of the 19th International Conference on Information Security
and Cryptology Volume 10157, ICISC 2016, pp. 181–193, Springer-Verlag New
York, Inc., New York, NY, USA, 2017, ISBN 978-3-319-53176-2.

[2] S. Ali and M. Cenk, Faster residue multiplication modulo 521-bit mersenne
prime and an application to ecc, IEEE Transactions on Circuits and Systems I:
Regular Papers, 65(8), pp. 2477–2490, 2018.

[3] D. F. Aranha, P. S. L. M. Barreto, G. C. C. F. Pereira, and J. E. Ricardini, A note
on high-security general-purpose elliptic curves, Cryptology ePrint Archive, Re-
port 2013/647, 2013, https://eprint.iacr.org/2013/647.

[4] D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records, pp. 207–228,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, ISBN 978-3-540-33852-
9.

[5] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, Twisted edwards
curves, in S. Vaudenay, editor, Progress in Cryptology – AFRICACRYPT 2008,
pp. 389–405, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, ISBN 978-
3-540-68164-9.

[6] D. J. Bernstein, C. Chuengsatiansup, and T. Lange, Curve41417: Karatsuba
revisited, in Cryptographic Hardware and Embedded Systems - CHES 2014 -
16th International Workshop, Busan, South Korea, September 23-26, 2014. Pro-
ceedings, pp. 316–334, 2014, https://doi.org/10.1007/978-3-662-
44709-3_18.

[7] D. J. Bernstein and T. Lange, Explicit-formulas database, 2019, https://
www.hyperelliptic.org/EFD/.

[8] D. J. Bernstein and T. Lange, Safecurves: choosing safe curves for elliptic-curve
cryptography, 2019, https://safecurves.cr.yp.to.

[9] D. J. Bernstein, T. Lange, and P. Schwabe, On the correct use of the negation
map in the pollard rho method, Cryptology ePrint Archive, Report 2011/003,
2011, https://eprint.iacr.org/2011/003.

[10] J. W. Bos, C. Costello, P. Longa, and M. Naehrig, Selecting elliptic curves for
cryptography: an efficiency and security analysis, J. Cryptographic Engineering,
6(4), pp. 259–286, 2016.

53

https://eprint.iacr.org/2013/647
https://doi.org/10.1007/978-3-662-44709-3_18
https://doi.org/10.1007/978-3-662-44709-3_18
https://www.hyperelliptic.org/EFD/
https://www.hyperelliptic.org/EFD/
https://safecurves.cr.yp.to
https://eprint.iacr.org/2011/003

[11] Certicom Research, Standards for Efficient Cryptography. SEC 2: Recom-
mended Elliptic Curve Domain Parameters, 2000, http://www.secg.org/
SEC2-Ver-1.0.pdf.

[12] CFRG, Formal request from TLS WG to CFRG for new elliptic
curves, 2014, https://www.ietf.org/mail-archive/web/cfrg/
current/msg04655.html.

[13] T. Chou, Sandy2x: New curve25519 speed records, in Selected Areas in Cryp-
tography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada,
August 12-14, 2015, Revised Selected Papers, pp. 145–160, 2015.

[14] C. Costello, P. Longa, and M. Naehrig, A brief discussion on selecting new
elliptic curves, June 2015, position paper presented at the NIST Workshop
on Elliptic Curve Cryptography Standards (http://www.nist.gov/itl/csd/ct/ecc-
workshop.cfm).

[15] H. Fan and M. A. Hasan, A new approach to subquadratic space complexity
parallel multipliers for extended binary fields, IEEE Transactions on Computers,
56(2), pp. 224–233, Feb 2007, ISSN 0018-9340.

[16] J.-C. Faugère, L. Perret, C. Petit, and G. Renault, Improving the complexity of
index calculus algorithms in elliptic curves over binary fields, in D. Pointcheval
and T. Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, pp.
27–44, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, ISBN 978-3-642-
29011-4.

[17] A. Faz-Hernández and J. López, Fast Implementation of Curve25519 Using
AVX2, pp. 329–345, Springer International Publishing, Cham, 2015, ISBN 978-
3-319-22174-8.

[18] GNU Project, GCC Options That Control Optimization, 2019, https://
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

[19] M. Hamburg, Ed448-goldilocks, a new elliptic curve, Cryptology ePrint
Archive, Report 2015/625, 2015, https://eprint.iacr.org/2015/
625.

[20] IANIX, Things that use Curve25519, 2019, https://ianix.com/pub/
curve25519-deployment.html.

[21] S. Karati and P. Sarkar, Kummer for genus one over prime order fields, in Ad-
vances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part II, pp. 3–32, 2017.

[22] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation,
48(177), pp. 203–203, jan 1987.

54

http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
https://www.ietf.org/mail-archive/web/cfrg/current/msg04655.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg04655.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2015/625
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html

[23] P. L. Montgomery, Montgomery, p.l.: Speeding the pollard and elliptic curve
methods of factorization. math. comp. 48, 243-264, 48, pp. 243–243, 01 1987.

[24] P. Longa, Fourqneon: Faster elliptic curve scalar multiplications on ARM pro-
cessors, in Selected Areas in Cryptography - SAC 2016 - 23rd International
Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Pa-
pers, pp. 501–519, 2016.

[25] A. Menezes, The elliptic curve discrete logarithm problem: State of the art, in
K. Matsuura and E. Fujisaki, editors, Advances in Information and Computer
Security, pp. 218–218, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008,
ISBN 978-3-540-89598-5.

[26] V. S. Miller, Use of elliptic curves in cryptography, in H. C. Williams, editor,
Advances in Cryptology — CRYPTO ’85 Proceedings, pp. 417–426, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1986, ISBN 978-3-540-39799-1.

[27] K. Nath and P. Sarkar, Efficient inversion in (pseudo-)mersenne prime or-
der fields, Cryptology ePrint Archive, Report 2018/985, 2018, https://
eprint.iacr.org/2018/985.

[28] NIST, Transition Plans for Key Establishment Schemes using Public Key Cryp-
tography, 2017, https://csrc.nist.gov/News/2017/Transition-
Plans-for-Key-Establishment-Schemes.

[29] N. Perlroth, Government announces steps to restore confidence on encryption
standards, Sep 2013, https://bits.blogs.nytimes.com/2013/09/
10/government-announces-steps-to-restore-confidence-
on-encryption-standards.

[30] J. M. Pollard, Theorems on factorization and primality testing, Mathematical
Proceedings of the Cambridge Philosophical Society, 76(3), p. 521–528, 1974.

[31] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital sig-
natures and public-key cryptosystems, Commun. ACM, 21(2), pp. 120–126,
February 1978, ISSN 0001-0782.

[32] M. Scott, Ed3363 (highfive) – an alternative elliptic curve, Cryptology ePrint
Archive, Report 2015/991, 2015, https://eprint.iacr.org/2015/
991.

[33] M. Scott, On inversion modulo pseudo-mersenne primes, Cryptology ePrint
Archive, Report 2018/1038, 2018, https://eprint.iacr.org/2018/
1038.

[34] I. Semaev, New algorithm for the discrete logarithm problem on ellip-
tic curves, Cryptology ePrint Archive, Report 2015/310, 2015, https://
eprint.iacr.org/2015/310.

55

https://eprint.iacr.org/2018/985
https://eprint.iacr.org/2018/985
https://csrc.nist.gov/News/2017/Transition-Plans-for-Key-Establishment-Schemes
https://csrc.nist.gov/News/2017/Transition-Plans-for-Key-Establishment-Schemes
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards
https://eprint.iacr.org/2015/991
https://eprint.iacr.org/2015/991
https://eprint.iacr.org/2018/1038
https://eprint.iacr.org/2018/1038
https://eprint.iacr.org/2015/310
https://eprint.iacr.org/2015/310

[35] H. K. Taskin and M. Cenk, Speeding up curve25519 using toeplitz matrix-vector
multiplication, in Proceedings of the Fifth Workshop on Cryptography and Se-
curity in Computing Systems, CS2 ’18, pp. 1–6, ACM, New York, NY, USA,
2018, ISBN 978-1-4503-6374-7.

[36] The University of Sydney, Magma Computational Algebra System, 2019,
http://magma.maths.usyd.edu.au/magma/.

[37] Virtual Applications and Implementations Research Lab, System for Unified
Performance Evaluation Related to Cryptographic Operations and Primitives,
2019, http://bench.cr.yp.to/supercop.html.

56

http://magma.maths.usyd.edu.au/magma/
http://bench.cr.yp.to/supercop.html

APPENDIX A

SOURCE CODE OF 10-DIMENSIONAL TMVP

IMPLEMENTATION

We provide a naive reference ANSI C implementation of the proposed 10-

dimensional TMVP Implementation for field multiplication over F2266−3.

1 // fe_mul_tmvp.c

2

3 #include <stdio.h>

4

5 #define FE_MUL_TYPE_TMVP_TMVP

6 //#define FE_MUL_TYPE_TMVP_SCHOOLBOOK

7

8 typedef uint32_t fe[10];

9 static const uint64_t cmask27 = 0x7ffffff;

10 static const uint64_t cmask23 = 0x7fffff;

11

12 uint64_t P1, P2, P3, P4,

13 PF1, PF2, PF3, PF4, PF5, PF6, PF7, PF8,

14 PT1, PT2, PT3;

15 uint64_t R[20];

16

17 // T (2x2) * V (2x1) = M (2x1)

18 void Two_tmvp(uint64_t *M0, uint64_t *M1,

19 uint64_t T0, uint64_t T1, uint64_t T2,

20 uint64_t V0, uint64_t V1)

21 {

22 // 3M + 3A + 2Ad

23 PT1 = T0 * (V0 + V1);

24 PT2 = (T1 - T0) * V1;

25 PT3 = (T2 - T0) * V0;

26 *M0 = (PT1 + PT2);

27 *M1 = (PT1 + PT3);

28 }

29

30 // T (2x2) * V (2x1) = M (2x1)

57

31 void Two_schoolbook(uint64_t *M0, uint64_t *M1,

32 uint64_t T0, uint64_t T1, uint64_t T2,

33 uint64_t V0, uint64_t V1)

34 {

35 // 4M + 2Ad

36 *M0 = (T0 * V0);

37 *M0 +=(T1 * V1);

38 *M1 = (T2 * V0);

39 *M1 +=(T0 * V1);

40 }

41

42 // T is TMVP (4x4) * V (4x1) = M (4x1)

43 // &MO,&M1,&M2,&M3

44 // T0, T1, T2, T3, T4, T5, T6

45 // V0, V1, V2, V3

46 void Four_by_four(uint64_t *M0, uint64_t *M1,uint64_t *M2,

47 uint64_t *M3, uint64_t T0, uint64_t T1,

48 uint64_t T2, uint64_t T3, uint64_t T4,

49 uint64_t T5,uint64_t T6, uint64_t V0,

50 uint64_t V1,uint64_t V2, uint64_t V3)

51 {

52 // *M0 = (T0*V0) + (T1*V1) + (T2*V2) + (T3*V3);

53 // *M1 = (T4*V0) + (T0*V1) + (T1*V2) + (T2*V3);

54 // *M2 = (T5*V0) + (T4*V1) + (T0*V2) + (T1*V3);

55 // *M3 = (T6*V0) + (T5*V1) + (T4*V2) + (T0*V3);

56

57 #ifdef FE_MUL_TYPE_TMVP_SCHOOLBOOK

58 Two_schoolbook(&PF1,&PF2,T0,T1,T4,V0,V1);

59 Two_schoolbook(&PF3,&PF4,T5,T4,T6,V0,V1);

60 Two_schoolbook(&PF5,&PF6,T2,T3,T1,V2,V3);

61 Two_schoolbook(&PF7,&PF8,T0,T1,T4,V2,V3);

62 #elif defined FE_MUL_TYPE_TMVP_TMVP

63 Two_tmvp(&PF1,&PF2,T0,T1,T4,V0,V1);

64 Two_tmvp(&PF3,&PF4,T5,T4,T6,V0,V1);

65 Two_tmvp(&PF5,&PF6,T2,T3,T1,V2,V3);

66 Two_tmvp(&PF7,&PF8,T0,T1,T4,V2,V3);

67 #endif

68

69 *M0 = (uint64_t)(PF1 + PF5);

70 *M1 = (uint64_t)(PF2 + PF6);

71 *M2 = (uint64_t)(PF3 + PF7);

72 *M3 = (uint64_t)(PF4 + PF8);

73 }

74

75 void fe_mul_tmvp(fe h,fe f,fe g)

76 {

77 // A0B0

78 Four_by_four(&R[1],&R[2],&R[3],&R[4],

79 (uint64_t)f[1],(uint64_t)f[0],0LL,0LL,

80 (uint64_t)f[2],(uint64_t)f[3],(uint64_t)f[4],

58

81 (uint64_t)g[0],(uint64_t)g[1],

82 (uint64_t)g[2],(uint64_t)g[3]);

83

84 R[0] = ((uint64_t)f[0] * (uint64_t)g[0]);

85 R[4] += ((uint64_t)f[0] * (uint64_t)g[4]);

86

87 // A1B0

88 Four_by_four(&R[5],&R[6],&R[7],&R[8],

89 (uint64_t)f[5],(uint64_t)f[4],(uint64_t)f[3],

90 (uint64_t)f[2],(uint64_t)f[6],(uint64_t)f[7],

91 (uint64_t)f[8],(uint64_t)g[0],(uint64_t)g[1],

92 (uint64_t)g[2],(uint64_t)g[3]);

93

94 R[5] += ((uint64_t)f[1] * (uint64_t)g[4]);

95 R[6] += ((uint64_t)f[2] * (uint64_t)g[4]);

96 R[7] += ((uint64_t)f[3] * (uint64_t)g[4]);

97 R[8] += ((uint64_t)f[4] * (uint64_t)g[4]);

98

99 R[9] = ((uint64_t)f[9] * (uint64_t)g[0]);

100 R[9] += ((uint64_t)f[8] * (uint64_t)g[1]);

101 R[9] += ((uint64_t)f[7] * (uint64_t)g[2]);

102 R[9] += ((uint64_t)f[6] * (uint64_t)g[3]);

103 R[9] += ((uint64_t)f[5] * (uint64_t)g[4]);

104

105 // A0B1

106 Four_by_four(&P1,&P2,&P3,&P4,

107 (uint64_t)f[1],(uint64_t)f[0],0LL,0LL,

108 (uint64_t)f[2],(uint64_t)f[3],(uint64_t)f[4],

109 (uint64_t)g[5],(uint64_t)g[6],(uint64_t)g[7],

110 (uint64_t)g[8]);

111

112 R[5] += ((uint64_t)f[0] * (uint64_t)g[5]);

113 R[6] += (uint64_t)P1;

114 R[7] += (uint64_t)P2;

115 R[8] += (uint64_t)P3;

116 R[9] += (uint64_t)P4;

117 R[9] += ((uint64_t)f[0] * (uint64_t)g[9]);

118

119 // A2B0

120 Four_by_four(&R[10],&R[11],&R[12],&R[13],

121 (uint64_t)f[9],(uint64_t)f[8],(uint64_t)f[7],

122 (uint64_t)f[6],0LL,0LL,0LL,(uint64_t)g[1],

123 (uint64_t)g[2],(uint64_t)g[3],(uint64_t)g[4]);

124

125 // A1B1

126 Four_by_four(&P1,&P2,&P3,&P4,

127 (uint64_t)f[5],(uint64_t)f[4],(uint64_t)f[3],

128 (uint64_t)f[2],(uint64_t)f[6],(uint64_t)f[7],

129 (uint64_t)f[8],(uint64_t)g[5],(uint64_t)g[6],

130 (uint64_t)g[7],(uint64_t)g[8]);

59

131

132 R[10] += (uint64_t)P1;

133 R[10] += ((uint64_t)f[1] * (uint64_t)g[9]);

134

135 R[11] += (uint64_t)P2;

136 R[11] += ((uint64_t)f[2] * (uint64_t)g[9]);

137

138 R[12] += (uint64_t)P3;

139 R[12] += ((uint64_t)f[3] * (uint64_t)g[9]);

140

141 R[13] += (uint64_t)P4;

142 R[13] += ((uint64_t)f[4] * (uint64_t)g[9]);

143

144 R[14] = ((uint64_t)f[9] * (uint64_t)g[5]);

145 R[14] += ((uint64_t)f[8] * (uint64_t)g[6]);

146 R[14] += ((uint64_t)f[7] * (uint64_t)g[7]);

147 R[14] += ((uint64_t)f[6] * (uint64_t)g[8]);

148 R[14] += ((uint64_t)f[5] * (uint64_t)g[9]);

149

150 // A2B1

151 Four_by_four(&R[15],&R[16],&R[17],&R[18],

152 f[9],f[8],f[7],f[6],0LL,0LL,0LL,

153 g[6],g[7],g[8],g[9]);

154

155 R[19] = 0LL;

156

157 // Adding matrices and multiplication with 48

158 R[0] += ((R[10] << 5) + (R[10] << 4));

159 R[1] += ((R[11] << 5) + (R[11] << 4));

160 R[2] += ((R[12] << 5) + (R[12] << 4));

161 R[3] += ((R[13] << 5) + (R[13] << 4));

162 R[4] += ((R[14] << 5) + (R[14] << 4));

163 R[5] += ((R[15] << 5) + (R[15] << 4));

164 R[6] += ((R[16] << 5) + (R[16] << 4));

165 R[7] += ((R[17] << 5) + (R[17] << 4));

166 R[8] += ((R[18] << 5) + (R[18] << 4));

167 //R[9] += (R[19] << 5) + (R[19] << 4);

168

169 // Reduction

170 P1 = R[0] >> 27; R[0] &= cmask27; R[1] += P1;

171 P1 = R[1] >> 27; R[1] &= cmask27; R[2] += P1;

172 P1 = R[2] >> 27; R[2] &= cmask27; R[3] += P1;

173 P1 = R[3] >> 27; R[3] &= cmask27; R[4] += P1;

174 P1 = R[4] >> 27; R[4] &= cmask27; R[5] += P1;

175 P1 = R[5] >> 27; R[5] &= cmask27; R[6] += P1;

176 P1 = R[6] >> 27; R[6] &= cmask27; R[7] += P1;

177 P1 = R[7] >> 27; R[7] &= cmask27; R[8] += P1;

178 P1 = R[8] >> 27; R[8] &= cmask27; R[9] += P1;

179 P1 = R[9] >> 23; R[9] &= cmask23; R[0] += (P1 * 3);

180 P1 = R[0] >> 27; R[0] &= cmask27; R[1] += P1;

60

181

182 h[0] = (uint32_t)R[0];

183 h[1] = (uint32_t)R[1];

184 h[2] = (uint32_t)R[2];

185 h[3] = (uint32_t)R[3];

186 h[4] = (uint32_t)R[4];

187 h[5] = (uint32_t)R[5];

188 h[6] = (uint32_t)R[6];

189 h[7] = (uint32_t)R[7];

190 h[8] = (uint32_t)R[8];

191 h[9] = (uint32_t)R[9];

192 }

Listing 1: Reference Implementation of TMVP-Based Field Multiplication

61

62

APPENDIX B

SOURCE CODES AND PROCESS DETAILS FOR CURVE

SEARCH

To find a finite field with prime characteristic of the form 2n±c, we use the following

MAGMA code for n ∈ [255, 600] and c ∈ [1, 1000].

1 FILE := "~/Desktop/fieldsearch_output.txt";

2 for j:=255 to 600 do

3 for i:=1 to 1000 do

4 if (IsPrime(2^j+i)) then

5 fprintf FILE, "2^%o+%o,+,%o,%o\n",j,i,j,i;

6 end if;

7 if (IsPrime(2^j-i)) then

8 fprintf FILE, "2^%o-%o,-,%o,%o\n",j,i,j,i;

9 end if;

10 end for;

11 end for;

Listing 2: Prime Number Search Code

We have found 2562 different prime numbers as the result of the computation above.

We chose the following primes as start point: 2266 − 3, 2336 − 3, 2452 − 3, 2545 −
3, 2550 − 5.

To find proper elliptic curves on these finite fields, we look for the following condi-

tions:

Define a montgomery curve y2 = x3 + Ax2 + x;

1. Where (A− 2)/4 is as small as possible

2. Order of the curve is close to a prime (like 4p or 8p);

3. Order of the twist of the curve is close to a prime (like 4p or 8p);

63

To find the order of the curve we use MAGMA’s Order() function which is defined

as "Order(E): The order of the group of K-rational points of E, where E is an elliptic

curve defined over the finite field K." in Magma Handbook [36].

To find the twist of the curve we use MAGMA’s Twists() function which is defined

as "Twists(E): Given an elliptic curve over a finite field K, returns the sequence of all

nonisomorphic elliptic curves over K which are isomorphic over an extension field.

The first of these curves is isomorphic to E. " in Magma Handbook. This function

returns two elliptic curves where the first one is the curve itself and second one is the

twisted form of the curve. After finding a suitable curve, one can easily check other

conditions against attacks mentioned in Section 5.1.2.

Before we start exhaustive search, to verify our code works properly, we have tested

the code with Elliptic Curve defined by y2 = x3 + 486662x2 + x over F255−19 which

is the Curve25519.

We use the following MAGMA code for this purpose.

1 n := 266;

2 c := 3;

3 A := 20710;

4

5 K := GF(2^n - c);

6 Qx<x> := PolynomialRing(K);

7 I := Integers();

8

9 printf "n = %o\n",n;

10 printf "c = %o\n",c;

11 printf "A = %o\n",A;

12 printf "K: %o\n",K;

13 printf "Qx: %o\n",Qx;

14 printf "I: %o\n",I;

15

16 f := x^3 + A*x^2 + x;

17 E := EllipticCurve(f);

18 printf "f(x) = %o\n",f;

19 printf "E: %o\n",E;

20

21 TList := Twists(E);

22 printf "Number of Twists = %o\n",#TList;

23 for j := 1 to #TList do

24 printf "\n---------- Twist #%o ----------\n%o\n",j,TList[j];

25 ord := Order(TList[j]);

26 printf ">>> Order = %o\n",ord;

27 try

28 if IsPrime(I!(ord/2)) then

64

29 printf ">>> 2p\n";

30 elif IsPrime(I!(ord/4)) then

31 printf ">>> 4p\n";

32 elif IsPrime(I!(ord/8)) then

33 printf ">>> 8p\n";

34 end if;

35 catch e

36 z := 1;

37 end try;

38 end for;

Listing 3: Safe Curve Search Code

The search code supplied above finds the Curve2663. The code takes 3 fixed pa-

rameters, namely, n, c and A. It is possible to extend this code by creating loops on

the parameter A to search massively on a wide range of curves. Using this kind of

parallelization, search space can be distributed over multiple cores.

We have searched for curves over different prime fields using 23 cores for the ranges

for each finite field mentioned in the Table B.1

Table B.1: Search Ranges for Elliptic Curves
Prime Field "A" Coefficient Range # of Curves Avg. Time CPU Hours
2266 − 3 6− 80002 20000 32 sec 177 hours
2336 − 3 6− 1140002 285000 94 sec 7441 hours
2452 − 3 6− 68002 17000 328 sec 1548 hours
2545 − 3 6− 140002 35000 710 sec 6902 hours
2550 − 5 6− 60002 15000 959 sec 3995 hours

We have spent a total of 20063 CPU hours (nearly 836 CPU days) for curve search

process. First result that fits into our conditions was the elliptic curve defined by

y2 = x3 + 20710x2 + x over F2266−3 where details were introduced in Section 5.2.1.

After finding this result, we have stopped working on the field 2266 − 3, and focused

on other fields.

65

66

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Taşkın, Halil Kemal

Nationality: Turkish

Year and Place of Birth: 1987, Ödemiş

EDUCATION

Degree Institution Year of Graduation

M.Sc., Cryptography Middle East Technical University 2011

B.Sc., Mathematics Ed. (Elt.) Gazi University 2009

High School Ödemiş Anatolian Teacher 2005

Training High School

RESEARCH INTERESTS

Cryptography, Efficient implementation of Cryptographic Primitives, Cryptographic

Protocols, End-to-end Encryption, Application Security, Reverse Engineering, Secu-

rity Testing.

PUBLICATIONS

International Conference Publications

• Halil Kemal Taşkın and Murat Cenk. Speeding up Curve25519 using Toeplitz

Matrix-vector Multiplication. In Proceedings of the Fifth Workshop on Cryp-

67

tography and Security in Computing Systems (CS2 ’18). ACM, New York, NY,

USA, 1-6. 2018. DOI: https://doi.org/10.1145/3178291.3178292 .

• Halil Kemal Taşkın, Murat Demircioğlu and Salim Sarımurat, End-to-end En-

crypted Communication Between Multi-device Users, Information Security and

Cryptology Conference, İstanbul, Turkey, October 2014.

• Murat Demircioğlu, Halil Kemal Taşkın and Salim Sarımurat, Security Analysis

of the Encrypted Mobile Communication Applications, Information Security

and Cryptology Conference, İstanbul, Turkey, October 2014.

• Cihangir Tezcan, Halil Kemal Taşkın and Murat Demircioğlu, Improbable Dif-

ferential Attacks on Serpent using Undisturbed Bits, In Proceedings of the 7th

International Conference on Security of Information and Networks (SIN ’14).

Glasgow, UK. 2014. DOI: https://doi.org/10.1145/2659651.2659660 .

• Halil Kemal Taşkın and Murat Demircioğlu, Off-the-Record Communica-

tion with Location Hiding, Information Security and Cryptology Conference,

Ankara, Turkey, September 2013.

Proceedings/Posters

• Halil Kemal Taşkın and Murat Demircioğlu, Applications of Cryptology in

Cyber security and End-to-end Encryption, TBD 31st National IT Congress,

Ankara, Turkey, November 2014.

• Halil Kemal Taşkın, Using Context Triggered Piecewise Hashing on Computer

Forensics”, International Symposium on Digital Forensics, Ankara, Turkey,

May 2014. (Poster)

Invited Talks/Presentations

• Halil Kemal Taşkın, On Blockchain, CyberEge 2018 Ege University, İzmir,

May 2018.

• Halil Kemal Taşkın, Cloud Computing and Security, 6th Cyber Security Plat-

form, TOBB ETU, Ankara, November 2017.

68

• Halil Kemal Taşkın, Cryptology and End-to-end Encryption, Osmangazi Uni-

versity Informatics Days 2016, Eskişehir, May 2016.

• Halil Kemal Taşkın, A Mini Course on Magma CAS Programming, METU

SIAM, Ankara, March 2016. (A 4-hour crash course for graduate students)

• Halil Kemal Taşkın, Cyberspace: The Fifth Domain of Warfare, METU SIAM

Seminar Series, Ankara, April 2016.

• Halil Kemal Taşkın, Applications of Cryptology in Cyber security and End-to-

end Encryption, TSE 4th IT Standards Conference, Ankara, October 2015.

• Halil Kemal Taşkın, Anonymity Online: Computer networks and Security, Tor

& I2P, Ankara Cryptology Seminars, METU, Ankara, March 26th 2013.

Projects

• TÜBİTAK 1001 #115R289, Developing and Implementation of Efficient Algo-

rithms for Public Key Cryptography, Student Researcher, 2016-2018.

• TÜBİTAK 1001 #112E101, Improbable Differential Cryptanalysis of Block Ci-

phers, Student Researcher, 2012-2013.

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	PRELIMINARIES
	Finite Fields
	Elliptic Curves

	TMVP-BASED FIELD MULTIPLICATION
	Toeplitz Matrix-vector Multiplication
	The Proposed Decomposition for 10-Dimensional TMVP
	Computation of Submatrices
	Computing A0B0
	Computing A0B1
	Computing A1B0
	Computing A1B1
	Computing A2B0
	Computing A2B1
	Computing the cost for K0L0 and K0N0
	Computing the cost for P0L0 and P0N0
	Computing the cost for R0L0' and R0N0'

	Arithmetic Cost and Comparison
	Delay Evaluation

	TMVP-Friendly Prime Fields
	Toeplitz Matrix Formed Field Element Representation
	Prime Number Forms
	New Prime Fields
	Representation for F2266-3
	Representation for F2545-3
	Representation for F2550-5

	SPEEDING UP CURVE25519
	Curve25519
	The radix-225.5 Representation for F2255-19

	Multiplication Over F2255-19 Using TMVP
	Implementation and Benchmark Results

	ELLIPTIC CURVES SEARCH
	Choosing Safe Elliptic Curves
	Curve Parameters
	Attacks
	Pollard's Rho Attack
	Small-subgroup Attack
	Twist Security
	Other Attacks

	New Curve Choice Parameter
	The Proposed Safe Curve Generation Process

	New Curve Parameters
	Curve2663

	Implementation and Benchmark Results

	CONCLUSION
	REFERENCES
	APPENDICES
	Source Code of 10-Dimensional TMVP Implementation
	Source Codes and Process Details for Curve Search
	CURRICULUM VITAE

