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ABSTRACT 

 

SMOOTH SLEW MANEUVERS OF FLEXIBLE SPACECRAFT 

 

Altınışık, Süleyman  

Master of Science, Aerospace Engineering 

Supervisor: Prof. Dr. Ozan Tekinalp 

 

January 2019, 69 pages 

 

In this thesis, the vibration suppression of flexible spacecraft that carries out attitude 

tracking maneuvers is addressed. Attitude control algorithm that uses quaternion 

parametrization is employed. The nonlinear tracking controller employs the to-go 

quaternion and its derivative. Feedback controller designed is based on this recently 

developed attitude formulation. Piezoelectric sensors and actuators are also included 

to rapidly suppress structural vibration. The simulation results demonstrate the success 

of the algorithm in attitude tracking and vibration suppression.    

 

 

Keywords: Attitude Tracking, Flexible Spacecraft, Vibration Control, Piezoelectric 

Actuator, Piezoelectric Sensors, Quaternion, Spacecraft Jitter  
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ÖZ 

 

ESNEK YAPILI UZAY ARACININ DÜZGÜN YÖNELİM MANEVRALARI 

 

Altınışık, Süleyman  

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Danışmanı: Prof. Dr. Ozan Tekinalp 

 

Ocak 2019, 69 sayfa 

 

Bu tez çalışmasında, yönelim takibi yapan esnek yapılı uzay aracında titreşim 

önlemesi üzerine çalışılmıştır. Kontrol algoritması yönelim dörtlüğü kullanmaktadır. 

Doğrusal olmayan takip kontrolcüsü gidilecek yönelim dörtlüğü ve türevini kullanır. 

Geribildirim kontrolcüsü yeni yönelim formulasyonu kullanılarak tasarlanmıştır. 

Uzay aracı üzerindeki titreşimleri ortadan kaldırmak için sistemde piezoelektrik 

algılayıcılar ve eyleyiciler bulunmaktadır. Algoritmanın yönelim takibinde ve titreşim 

önlemesindeki başarımı benzetim sonuçları ile gösterilmiştir.  

 

Anahtar Kelimeler: Yönelim Takip, Esnek Uzay Aracı, Titreşim Kontolcüsü, 

Piezoelektrik Eyleyici, Piezoelektrik Algılayıcı, Yönelim Dörtlüğü, Uzay Aracı 

Titreşimleri 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Main theme of this thesis is the development of a control algorithm that suppresses 

vibration in flexible spacecraft on time dependent attitude trajectories.  This chapter 

creates a background about the work by giving an overview of the control problem in 

flexible spacecraft and by summarizing the contributions made in this work.  

In Section 1.1, the flexible spacecraft problem is defined, and the critical aspects of 

this problem are underlined. The goals of this thesis are explained also in this chapter. 

In Section 1.2, previously conducted studies on this topic are summarized. Section 1.3 

includes the original contributions in this thesis. The chapter concludes with Section 

1.4 which presents the organization of the thesis. 

 Motivation 

In the past five decades, after the travel to the moon in the 20th century, space 

adventure has gained a great speedup. Developing deep space exploration programs 

drew attention in many countries. These programs created many new demands in 

space missions. The growing demands also increased the requirements the satellites 

must have.  

Next generation spacecraft will need a massive amount of electrical energy to 

accomplish a more complicated mission such as interplanetary missions [1]. Solar 

panels attached to the satellites may be used to perform such an activity. Then, solar 

panels must be designed to extend surface to absorb enough sunlight and also they 

must be lightweight to reduce the cost of the mission. Moreover, today there exists 

some missions such as Synthetic Aperture Radar satellites with a high amount of 
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power for its operation (Figure 1.1). This requirement can also be satisfied by 

producing satellites with a large surface solar panel.  

 

Figure 1.1 Synthetic Aperture Radar Satellites (Left;Sentinel-1, Right; Radarsat-2) 

Not only solar panels but also antennas are used in advanced satellites to make a 

communication with Earth from far away distance. To increase service life and reduce 

the launch cost, most of the modern satellite often employ large-scale and light 

damping structures for antennas and solar arrays. This design restriction has become 

a major challenge recently due to flexibility and vibration effects on spacecraft. These 

effects may cause many problems in the satellite. Structural failure may be observed 

due to vibration, or satellite normal operations may be interrupted because of the 

undesired motion of flexible appendages. An attitude control algorithm that 

compensates for this vibration and flexibility effects on satellite, is a challenging task. 

It is not enough to decrease the effect of flexibility with attitude control algorithm. 

Additionally, these flexible satellites need to achieve attitude maneuver with high 

pointing precision and stability to perform complex space missions such as Earth 

observation and space monitoring. 

Another challenging task in space missions is the reduction of the sensors and 

actuators necessary to perform control strategy. Continuation of space missions is a 

crucial prerequisite. From this point of view, the development of control laws that are 

capable of fixing such failures is significant. In particular, the modal variables 
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describing the deflection of flexible elements are crucial for the pointing performance. 

Moreover, structural tests on Earth may have been considered unreliable because the 

performance of the controller designed on the basis of perfect knowledge of modal 

variables may deteriorate in space conditions. As a solution to this problem, dynamic 

controller or back up controller may be used. Furthermore, although its performance 

is lower, a dynamic controller is preferable on the grounds that it can be superior to 

the sensor redundancy policy because it is only based on extra software capabilities 

on the on-board computer. 

Among the active control schemes, piezoelectric actuators have attracted interest as a 

solution for the attenuation of flexible spacecraft oscillations [2], [3], [4]. There are 

some studies on these devices that demonstrate its effectiveness to damp out vibration 

experimentally [5], [6]. Moreover, these devices are lightweight and they also have 

low power consumption. These devices consist of films of piezoelectric material 

placed along the flexible parts of the structure (Figure 1.2). Their basic action is to 

increase the stiffness and the internal damping of the system. Thanks to their inherent 

distributed nature, they are liable to suppress the vibration of flexible spacecraft. 

 

Figure 1.2 Schematic Drawing of Flexible Spacecraft with Piezoelectric Actuators 
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 Literature Survey 

Flexible spacecraft control finds an important area in the control of space systems. 

There are some books that specifically explain the detail of flexible structures and 

control of it. The book Spacecraft Dynamics and Control by Sidi addresses in detail 

the problems regarding modeling and control of flexible structures [7]. By using both 

the Lagrangian approach and extending Hamilton’s principle, the flexible spacecraft 

model with sloshing dynamic may be obtained. Another book Flexible Spacecraft 

Dynamics, Control and Guidance by Mazzini, gives the more detailed model of 

flexible structure and treats several control methods including Linear Quadratic 

Regulator and Lyapunov’s direct method [8].  

Except for books, a number of researchers have studied control of flexible spacecraft. 

As a control method, the input shaping technique is applied by many researchers [9], 

[10]. By convoluting a reference input with an impulse sequence, controller attempts 

to suppress structural vibrations from flexible modes. Although the controller 

suppresses the vibration effects, the applied technique was developed for linear 

systems. Therefore its direct application on the nonlinear systems is somewhat limited 

[11]. 

Sliding mode control is another control technique applied to flexible spacecraft [12] 

[13], [14], [15], [16]. It has many advantages like precise tracking, robustness against 

disturbances and unpredicted inaccuracies. On the other hand, chattering problem that 

may cause huge damages in the system is the disadvantage of a sliding mode 

controller. 

The attitude control of a spacecraft is a nonlinear problem that requires nonlinear 

control methods. The most common nonlinear control approach uses a Lyapunov 

function [17], [18]. Lyapunov stability approach suggests associating an energy-like 

Lyapunov function to the system. In other words, a function increases as the norm of 

the system vector increases and decreases as the norm decreases. In order to decide if 

the function decreases, one can compute the time-derivative of the Lyapunov function 
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“along the trajectories” of the system to be analyzed. In this theory, the key point is 

the selection of Lyapunov function. There are no general procedures for choosing a 

Lyapunov function, which means that there is no unique Lyapunov function for a 

given system. It is pointed out that Lyapunov’s method for a general dynamical system 

is more of a philosophical approach because of the flexibility in choosing the 

Lyapunov function [19]. 

There are some previous works for attitude control of spacecraft which use Lyapunov 

approach by knowing state of the system totally [20], [21], [22]. These controllers 

consider that the variables describing the attitude, angular velocity and flexible system 

elements are measured. Unfortunately, in some cases, due to failure of sensors this is 

not considered to be known. One way to overcome sensor failure problem could be 

the use of adaptive control schemes [23], [24], [25].  Another way to achieve this is to 

use a dynamic controller that compensates the failure of sensors in the spacecraft. 

Previous works on the design of the dynamic controller may be found in the literature 

[26], [27], [28], [29].   

Another important issue related to control of flexible effect in spacecraft is using the 

active control schemes. With the advancing technology, many researchers have 

focused on the problem of active vibration control during the past two decades [30], 

[31], [32], [33]. For the active vibration control of flexible spacecraft, an effective 

method is to use the embedded piezoelectric actuators. This is because of the 

advantages the piezoelectric actuators have. Piezoelectric actuators have high 

stiffness, lightweight, low power consumption and easy implementation [34], [35].  

This thesis aims to propose a flexible spacecraft control method by considering the 

requirements mentioned above. Nonlinear controller is developed based on Lyapunov 

stability approach. To increase the fault tolerance of the system, a controller is 

proposed considering sensor failure in the modal variables and its actuators. Also, 

active control that uses piezoelectric materials in the system is developed to get a more 

robust controller.  
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 Contributions  

The contributions of this thesis can be summarized as: 

 Designing a novel feedback controller based on recently developed attitude 

algorithm which takes into account to-go quaternion and its derivative  

 Developing an active control method that uses piezoelectric actuator to damp 

out vibration faster  

 Comparing the PD-like(Classical) controller with the tracking controller to 

observe the effectiveness of the recently developed control algorithm  

 Outline 

This thesis is structured into the following sections:  

In Chapter 1, basic information about flexible spacecraft problem is introduced, and 

the goals of this thesis are explained. Original contributions made in this thesis are 

stated. This chapter also includes a review of pertinent literature.   

In Chapter 2, the applied attitude dynamic is discussed. Basic information about 

quaternions are given, and derivation of the attitude controller that takes into account 

the desired attitude and its derivative is implemented.  

In Chapter 3, flexible spacecraft mathematical model is obtained. A rigid satellite and 

a flexible beam with a tip mass are studied for derivation of the model. Furthermore, 

mathematical model that contains piezoelectric actuator in the system is given.  

In Chapter 4, the development of the control algorithm is performed for different 

cases. A novel Lyapunov based control algorithm different from the classical PD-like 

controller is developed. Obtained tracking controller is different from the conventional 

one because of the new terms in the algorithm. The new algorithm is based on the 
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attitude formulation that takes time dependent desired attitude and its derivative into 

account.  

In Chapter 5, simulation results for different controllers are given. Firstly, unmodeled 

dynamic is considered and simulation is performed. Then, considering flexible 

satellite model simulation is performed. Also, another simulation is conducted adding 

piezoelectric actuators to the system. All of the simulations are performed for both 

classical attitude controller and tracking attitude controller. Finally, all the results are 

compared with each other to show the effectiveness of the tracking controller.      
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CHAPTER 2  

 

2. ATTITUDE DYNAMIC PARAMETRIZATION  

 

Quaternion parametrization is used for attitude propagation. It is based on the to-go 

quaternion formulation that takes the time dependent desired attitude trajectory into 

account. The derivative of the to-go quaternion is derived. 

In section 2.1, brief information about quaternions and quaternion multiplication 

operator are given. In Section 2.2, derivation of the to-go quaternion is performed and 

recently developed attitude controller is obtained.  

2.1. Quaternions 

Quaternions are used for computing three-dimension rotations without any singularity. 

Its enabling us to describe any rotation in 3-D by an axis of rotation and angle about 

that axis. Attitude propagation may be parametrized by unit quaternions. A unit 

quaternion represents a rotation around a unit vector  , with the amount of angle  . 

A set of orthogonal i, j, and k may define this axis of rotation, 

 
sin sin sin cos

2 2 2 2

T

x y zq
   

  
        

        
        

  (2.1) 

or, 

 
sin sin sin cos

2 2 2 2
x y zq

   
  

       
         

       
 i j k  (2.2) 
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Figure 2.1 Representation of 3-D rotation via Quaternions 

A sequence of rotations may be represented by a single quaternion by multiplying 

them in a special fashion. 

 
4 4 4 4

Tq p q p q pp q q p q p        (2.3) 

where 

4( , )q qq  (2.4) 

and 

4( , )p pp  (2.5) 

In the above, 1 2 3, ,( )p ppp   and 1 2 3, ,( )q qqq   are the vector parts of p and q , 

respectively [8]. Also quaternion multiplication may be written using vector matrix 

rotation defined in ℝ4×4 and ℝ4×1 respectively. 

 q p q p


     (2.6) 

where, 

 
4

4

x

T

q I
q

q

q q

q

 
    

 





 (2.7) 

here, q  denotes the skew-symmetric matrix representation of cross product operation. 
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3 2

3 1

2 1

0

0

0

x

q q

q q

q q

q

 
 
 
  



 



 (2.8) 

 

2.2. Derivation of the To-Go Quaternion 

Let define the quaternion associated with the desired attitude using d , and current 

attitude using q , then the to-go attitude t  may be written as [36],     

 d q t  (2.9) 

or, 

 1t q d  (2.10) 

where 
1q  denotes the inverse or conjugate quaternion, since only unit quaternions 

are considered. 

In vector matrix form,  

4 3 2 11 1

3 4 1 22 2

2 1 4 33 3

1 2 3 44 4

d d d dt q

d d d dt q

d d d dt q

d d d dt q

 (2.11) 

or,  

4 4t q

t q
D  (2.12) 

The derivative of the to-go quaternion may be obtained [36], 

4 44
q qt

q qt
D D  (2.13) 

In general, the desired final attitude is fixed. However, for tracking control the time 

dependent feature of the desired attitude maybe taken into account [36], 
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4 4

1

2 0

x

Tq q

q q
 (2.14) 

or, 

4 4

1

2q q

q q
 (2.15) 

 

Equation (2.13) may be rewritten as [36],  

4 44

1

2q qt

q qt
D D  (2.16) 

Define the parameter [36],  

4 3 2 1

3 4 1 2

1

2 1 4 3

1 2 3 4

d d d d

d d d d

d d d d

d d d d

D  (2.17) 

and 

1 1

44

1

2 tt

tt
DD D D  (2.18) 

After some simplifications [36],  

4

44

- 1

2- 0 0

x x

T T
I

tt

tt s s
s

s
 (2.19) 

where,  

1 4 2 3 3 2 4 1

1 3 2 4 3 1 4 2 4 1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

, 0

d d d d d d d d

d d d d d d d d d d d d d d d d

d d d d d d d d

s s  (2.20) 

and I  is the identity matrix. It is easily seen that 4 0s  and derivative of the to-go 

quaternion may be written as [36], [37] 
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4

4

1 1
( ) ( )

2 2

1
( )

2

x x

T T

t

t

t t

t

s s

s

 (2.21) 

As an attitude controller, Equation (2.21) is used for spacecraft attitude control. As 

clearly seen, this algorithm takes into account derivative of the desired trajectory. 

This algorithm is the extension of the to-go quaternion which may be written as [36], 

[37], [38],  

44

1

2 0

x

T tt

tt
 (2.22) 

Also note that the to-go quaternion is the conjugate of the error quaternion commonly 

used in the literature [17]. 
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CHAPTER 3  

 

MATHEMATICAL MODEL OF A FLEXIBLE SPACECRAFT 

 

This chapter describes the mathematical model of the flexible spacecraft employed in 

this work. A rigid satellite and a flexible beam with a tip mass is studied. Flexible 

beam contains bonded piezoelectric material to be used as sensors and actuators.     

 

Figure 3.1 Model of Flexible Spacecraft with Bonded Piezoelectric Material 

3.1. Constitutive Equation 

The linear constitutive equation in a piezoelectric medium may be expressed by the 

direct and inverse piezoelectric equations respectively. Three-dimensional 

electromechanical constitutive equation of piezoelectric material can be written as 

[39],  
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0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0

T
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T
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E

E

E

Z c

Z c

Z c c c

S c S S S

S c S S S

S c S S S

S c S

S c S

S S

1

2

3

1

2

3

4

5

6

D

D

D

 

(3.1) 

where ( 1,2,..,6)i i denotes the stress, ( 1,2,..,6)iS i  denotes strain, 

( 1,2,..,6)iZ i  denotes the electric displacement along i th axis, ( 1,2,3)iD i  

denotes the applied electric field density, ( 1,2,3)i i  denotes the permittivity of the 

piezoelectric material, ( 1,3, 1,3,5)ijc i j  are piezoelectric charge constants and 
E

ijS  

are elastic constants of the piezoelectric material.  

Strain displacement model of the substructure that is based on Euler-Bernoulli beam 

theory [35],  

2

2
, 0x y z xy yz zx

w
y

x
 (3.2) 

Equation (3.1) can be reduced to the one-dimensional constitutive equation with 

Eqaution (3.2) [35].  

3 33 31

1 131 11

T

E

Z Fc

S Tc S
 (3.3) 

Using the fact that the elastic constant for piezoelectric material is the inverse of its 

Young’s modulus pE , this equation can be written as [35],  
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2
3 33 1 31

1 131

T

d p P

P P

Z Fc E c E

S Sc E E
 (3.4) 

3.2. Governing Equation 

Several assumptions are made to obtain the model:  

1. The beam bends according to the Euler-Bernoulli beam theory 

2. The axial deformations and the torsional deformations are neglected.  

3. Deformations and strains are small.  

4. The piezoelectric layer is homogenous and is unaxially polarized  

5. The piezoelectric material is perfectly bonded to the beam  

Consider a flexible spacecraft model consisting of a rigid hub in the core and uniform 

cantilever beam with surface bonded piezoelectric sensors and actuators as shown in 

Figure 2.1. Also the beam has a tip mass tm . Define the inertial frames as OXY  and 

the frame fixed on the rigid body as oxy . Then,  denotes the angle of the rotation 

along the z axis between these frames. 

Based on the satellite model shown in Figure 2.1, total transverse velocity of a mass 

element on the flexible beam can be computed as follows [40]:    

( , ) ( , ) ( ) ( )v x t w x t x r t  (3.5) 

where r  be the distance between the rigid hub center of mass and attachment point, 

x  denotes the variable measured from the outer surface of the rigid body along the 

undeformed axis, ( , )w x t  is the deflection measured from the x axis.  

By using assumed modes method [19], the elastic displacement ( , )w x t can be 

discretized as [35],  

1

( , ) ( ) ( ) [ ][ ]
N

j j

j

w x t x f t f  (3.6) 
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where 1 2[ ] [ ... ]n  , 1 2[ ] [ ... ]nf f f f  state dependent functions  

( )( 1,..., )j x j n  are assumed mode shapes or admissible functions which must 

satisfy the geometric boundary conditions of the problem and ( )( 1,..., )jf t j n  are a 

set of generalized coordinates.  

By considering assumptions aforementioned, the total kinetic energy of the active 

structure can be expressed as [35],  

1

pn

b pi

i

T T T  (3.7) 

with,  

2
2 2 2

0 0

2
2 2

1 1 1
( )

2 2 2

1 1
( , ) ( ) ( , )

2 2

l l

b h

t t

T J w r x dx w dx

m w l t r l m w l t

 
(3.8) 

and, 

2
2 21 1

( )
2 2

i i i i

i i

x h x h

pi pi pi

x x

T w r x dx w dx  (3.9) 

Where bT denotes the kinetic energy of substructure, piT denotes the kinetic energy of 

the i th piezoelectric patch, pn denotes the number of piezoelectric patches, l  is the 

length of the beam, hJ  is the hub moment of inertia,  is the mass per unit length of 

the piezoelectric patch, pi  is the mass per unit length of ith piezoelectric patch, ix  is 

starting x coordinate of the piezoelectric patch and ih  is the length of the piezoelectric 

patch.  

Also, where the total mass moment of inertia of the beam, hub, tip mass along the z-

axis (Figure 3.1) is [35], 



 

 

 

19 

 

2 2 2

10

( ) ( ) ( )

i ip

i

x hl n

h t pi

i x

J J r x dx m r l r x dx  (3.10) 

0

1

[ ] [ ] [ ] [ ( )] [ ( )]

[ ] [ ]
i ip

i

l

T T

t

x hn

T

pi

i x

M dx m l l

dx
 

(3.11) 

0

1

( )[ ] ( ) [ ( )]

( )[ ]
i ip

i

l

T

t

x hn

pi

i x

r x dx m r l l

r x dx
 

(3.12) 

Then, total kinetic energy can be written as [35],  

2 21 1
[ ] [ ][ ] [ ][ ]

2 2

1
[ ] [ ][ ]

2

T

T

T J f M f f

f M f
 

(3.13) 

Total work done by the system can be given as [35],  

1

pn

b pi m

i

W W W W  (3.14) 

Where bW  is the work done by the beam, piW  is the work done by the i th piezoelectric 

patch and mW  is the work done by the external control torque [35].  

2
2

2

0

1 1
[ ] [ ][ ]

2 2

l

T

b b b b

w
W E I dx f K f

x
 (3.15) 

Where b bE I  is the flexural rigidity of the beam and bK  is the beam stiffness matrix.   
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'' ''

0

[ ] [ ] [ ]

l

T

b b bK E I dx  (3.16) 

The work done by the i th piezoelectric patch is the sum of the conservative and non-

conservative work terms defined as an integral over the volume of the piezoelectric 

patches such that [35],  

1 1 3 3

3 3

1 1

1
( ) ( ) ( )

2

1 01

0 12

i

i i i i

i i

pi pi c pi nc i i i i i

V

Tx h y h

i i

pi

i ix y

W W W S Z D dV

Z D
a dydx

 
(3.17) 

 

where iy  is the starting point of the piezoelectric as measured from the neutral axis of 

the beam and pia  is the width of ith piezoceramic wafer. Using Equation (3.4) and 

making the notational change 1xi iS  , Equation (3.17) can be expressed as [35],  

2 2 2

3 31 3 31 3

1
( ) 2

2

i pi i pi

i i

x t y t

T

pi pi p i p i xi p xi

x y

W a c E D c E D E dydx  (3.18) 

Using Equation (3.2) and Equation (3.6) and it is assumed that the piezoelectric plates 

are perfectly bonded to the beam, it can be obtained as [35], 

2 21 1
[ ] [ ] [ ] [ ][ ]

2 2

T T

pi i i i i piW e f b e f K f  (3.19) 

where ie  is the electrode voltage and   
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2

3 31 3

''

31

2

2 '' ''

( ),

[ ] [ ]
2

[ ] [ ] [ ]
3

i i

i

i i

i

pi i T

i p i pi i

pi

x h

pi T

i p pi i

x

x h

pi T

pi pi pi p i i pi

x

a h
c E e t D

t

t
b c E a y dx

t
K a t E y y t dx

 
(3.20) 

The work done by the external torque is given by 

mW u  (3.21) 

Then, substituting Equation (3.15), Equation (3.19) and Equation (3.21) into Equation 

(3.14), the total work can be written as [35],  

1 1
[ ] [ ][ ] [ ] [ ][ ]

2 2

1
[ ] [ ][ ]

2

T T

T

h

W e C e f B e

f K f T
 

(3.22) 

where 

1

1 2

1 2

[ ] ( )

[ ] [ ] [ ]

[ ] ( )( )...( )

[ ] ...

p

p

p

i

n

b pi

i

n

T

n

C diag

K K K

B b b b

e e e e

 
(3.23) 

Using the extended Hamilton’s principle, the equations of motion for the spacecraft 

and flexible appendages with piezoelectric bonded actuators be obtained as [35],  

[ ] [ ][ ] 2 [ ] [ ][ ] [ ]T TJ f M f f M f f u  (3.24) 

2[ ][ ] ([ ] [ ])[ ] [ ][ ]
T

M f K M f B e  (3.25) 
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[ ][ ] [ ] [ ]TC e B f  (3.26) 

The general non-linear, time-varying equations of motion for the slewing structure 

are given in Equations (3.24-3.26). Second order effects may be neglected, if the 

elastic displacements are small compared to the rigid body rotation. Then, Equation 

(3.24) can be written as [35],  

[ ][ ]J f u  (3.27) 

Some of the piezoelectric plates will be used as sensors while others will be used as 

actuators. Then, some of the piezoelectric patches will not have actuator voltage 

inputs while others will not have sensor voltage outputs. Therefore, [ ]B  and [ ]C

matrices may be broken down in sensor and actuator parts corresponding to the 

sensor and actuator voltages [ ]se  and [ ]ae . Doing this, Equation (3.25) and Equation 

(3.26) can be rewritten as [35], 

[ ] [ ][ ] [ ][ ] [ ][ ][ ]T

a a aM f K f B G e  (3.28) 

1[ ] [ ][ ] [ ] [ ]T

s s s se G C B f  (3.29) 

 where [ ]aG represents the actuator amplifier gain and [ ]sG  represents the sensor 

amplifier gain. The problem of selecting the appropriate locations for the 

piezoelectric actuators and sensors is a complete problem in itself and thus will not 

be addressed in this thesis.  

Using the following transformation, [ ] [ ][ ] [ ]TU M U I  and [ ] [ ][ ] [ ]TU K U K , 

which can be solved for the eigenvalues and eigenvectors satisfying the 

orthonormality conditions, where [ ]U  is a matrix with columns consisting of 

orthonormal eigenvectors, and 2[ ] ( , 1,..... )niK diag i N is a matrix with the 

eigenvalues along the diagonal, and inserting the coordinate transformation 

[ ] [ ][ ]f U . At the same time, introducing the modal damping, Equation (3.27), 

Equation (3.28) and Equation (3.29) can be rewritten in terms of modal coordinates 

[35],    
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[ ] [ ]TJ H u  (3.30) 

[ ] [ ][ ] [ ][ ] [ ] [ ] [ ][ ][ ]T

a a aC K H U B G e  (3.31) 

1[ ] [ ][ ] [ ] [ ][ ]T

s s s se G C B U  (3.32) 

where [ ] [ ][ ]TH U  and [ ] (2 , 1,..... )i niC diag i N is modal damping matrix, 

which i comes from the solution of the eigenvalue problem and normal or 

experimental value of 
i
can be used as damping values.  

The equation of motion for the flexible spacecraft without piezoelectric elements is 

given [35],    

[ ] [ ]TJ H u  (3.33) 

[ ] [ ][ ] [ ][ ] [ ] 0C K H  (3.34) 

Then, generalized flexible spacecraft dynamic may be obtained as follows: 

TJ H u  (3.35) 

and 

C K H  (3.36) 

where J  is the inertia matrix of whole undeformed structure which is symmetric 

positive definite,  is the modal coordinate vector of flexible modes being considered, 

H  defines the coupling matrix between flexible and rigid dynamics,  is the angular 

velocity of the main body and finally u  is the control torque to be used. If there are 

distributed actuators such as piezoelectric actuators, then the equation takes the 

following form [28]: 

TJ H u  (3.37) 

and 

2 pC K H H u  (3.38) 
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where 2H  defines the coupling matrix between flexible dynamics and piezoelectric 

actuators and pu  is the potential differences applied to the piezoelectric actuators and 

defined as [28],  

2 1 2[ ]T

pu H I I  (3.39) 

Then, related equations may be defined as, 

TJ H u

C K H
 (3.40) 

and 

2

T

p

J H u

C K H H u
 (3.41) 

By using Equation (3.40), dynamic of the flexible spacecraft may be obtained in first 

order form as [28], 

1 ( )

( )

T

mbJ H C K CH u

H

C K CH

 
(3.42) 

with  

T

mbJ J H H  (3.43) 

Also H  is total velocity of the flexible beam. Then, 

A ABH  (3.44) 

where 
0 I

A
K C

 
  

  
 and 

0
B

I

 
  
 

 with the appropriate dimensions. 
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Also dynamic of the flexible spacecraft with piezoelectric actuator may be obtained 

by using Equation (3.41), 

1

2

2

( )

( )

T T

mb p

p

J H C K CH u H H u

H

C K CH H u

 
(3.45) 

For the sake of simplicity at developing control algorithm, Equation (3.45) may be 

written as, 

1

2( )T T

mb pJ H C K CH u H H u  (3.46) 

and,  

A ABH  (3.47) 

where 2 2 1 2

1 2 2 2 2 2

0
[ ]

( ) ( )

T

T T

I
A A BH H I I

K H H C H H

 
      

    
 with the 

appropriate dimensions. 

Also, using the modal coordinates total vibration energy may be written as [35], 

T T

tE K  (3.48) 
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CHAPTER 4  

 

4. ATTITUDE CONTROL ALGORITHMS  

 

In this chapter, Lyapunov function based feedback control algorithms are developed. 

One control algorithm is based on the classic to-go quaternion attitude formulation. 

Another algorithm uses the recently developed attitude formulation that may smoothly 

maneuvers on predefined time dependent attitude trajectories. Lyapunov candidate 

functions are defined based on these attitude formulations. Also, piezoelectric 

actuators and sensors are also added to improve structural damping properties of the 

control system. Table that lists the number controllers used are given in Table 4.1.   

In Section 4.1, unmodeled flexible dynamic is considered. Control system design is 

based on rigid body model using its actuators and rigid body sensors. In Section 4.2, 

discrete flexible body sensors beside rigid body sensors are taken into account. Control 

system design is based on the flexible satellite model. In Section 4.3, piezoelectric 

actuators are also added to the system. In all sections, controllers are designed 

considering two different quaternion based attitude controllers.   
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Table 4.1 Control System Design 

Equation of Motion Actuators Sensors 

Rigid Body Equation of 

Motion 
Rigid Body Actuators Rigid Body Sensors 

Flexible Body Equation 

of Motion 
Rigid Body Actuators 

Rigid Body Sensors 

+ 

Discrete Flexible Body 

Sensors 

Flexible Body Equation 

of Motion 

Rigid Body Actuators 

+ 

Piezoelectric Actuators 

Rigid Body Sensors 

+ 

Discrete Flexible Body 

Sensors 

4.1. Case Study 1: Control Using Rigid Body Actuators and Rigid Body Sensors 

In this section, the derivation of the control algorithm is based on the rigid body 

equations of motion. Rigid body sensors and rigid body actuators are available in the 

system.  

The first requirement is that spacecraft tracks the desired attitude. Consequently, 

control law must ensure the spacecraft attitude tracks the desired attitude.  The second 

requirement is that the vibration of spacecraft’s flexible appendages shall also be 

damped out.   

For the former requirement, quaternions are considered. To-go quaternion basically 

defines the difference between the desired attitude and realized attitude (i.e. attitude 

error). The attitude tracking requirement may be formulated such that as time goes to 

infinity, the vectorial part of  to-go attitude must go to zero lim = 0
t

t  (i.e. 4lim =1
t

t ) 
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Latter requirement may be quantified as modal coordinates vector goes to zero 

lim = 0
t

.  

4.1.1. Classical Attitude Controller 

In this part, the classical rigid body attitude controller is proposed. 

Theorem: The following feedback control law brings the system to desired attitude in 

a stable fashion. 

 
p du k k t  (4.1) 

for 0pk  and 0dk  properly selected.  

Proof: Consider the following positive definite Lyapunov function: 

1 4

1
2( )(1 )

2

T

p mbV k t J    (4.2) 

Taking time derivative of Equation (4.2), 

1 42( ) T

p mbV k t J     (4.3) 

Equations of motion without flexible body dynamics,  

1 ( )T

mb mbJ J u     (4.4) 

Substituting Equation (4.4) into the Equation (4.3), 

1

T

dV k    (4.5) 

is negative definite for 0pk  and 0dk .  

4.1.2. Effect of Flexible Body Dynamics 

To include the effect of flexible body dynamics on the stability, we consider the 

following Lyapunov equation. 

1 2V V V   (4.6) 
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with 

1 4

1
2( )(1 )

2

T

p mbV k t J    (4.7) 

and 

2 1

1
( )

2

T TV P


 


 
  

 
 (4.8) 

where 1 1 0TP P    

Taking time derivative of Equation (4.6), 

1 42( ) T

p mbV k t J     (4.9) 

and 

2 1( )T TV P


 


 
  

 
 (4.10) 

Substituting Equation (2.22) into the Equation (4.9), 

1

T T

p mbV k J   t   (4.11) 

Also substituting Equation (3.42) into the Equation (4.11), 

1 ( )T T T

pV k H C K CH u        t    (4.12) 

and Equation (4.1) into the Equation (4.12), 

 1

T T T

dV k H C K CH          (4.13) 

Then substituting Equation (3.44) into the Equation (4.10), 

2 1( )T TV P A ABH


 


  
   

  
  (4.14) 

Then,  
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 

1 1( ) ( )T T T T T

d

T T T T

V k P A P ABH

H CH H C K


   



 

 
     

 

 

  

  
 

(4.15) 

In Equation (4.15), if dk  is properly selected, derivative of the Lyapunov function will 

be decaying. Defining the term  T T

AH C K Q   . Then, if the attitude and 

control parameters defined as in Chapter 5, Figure 4.1 shows the values of the term 

AQ . 

 

Figure 4.1 Values of the Positive Term ( AQ ) in the derivative of the Lyapunov 

Function when a smooth time dependent slew maneuver is required 

Also, including all the terms in Equation (4.15) is simulated. The results are presented 

in Figure 4.2. From this plot it may be observed that the Lyapunov function derivative 

never go positive values with the selected dk  
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Figure 4.2 The Lyapunov function derivative history when a smooth time dependent 

slew maneuver is required 

Even if stepwise slew maneuver is input, the positive definite part of the Lyapunov 

function, AQ  is still bounded. Figure 4.3 shows the time history of AQ  and Figure 4.4 

shows the total value of the Lyapunov function derivative. 
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Figure 4.3 Values of the Positive Term ( AQ ) in the derivative of the Lyapunov 

Function when a stepwise slew maneuver is input 

 

Figure 4.4 The Lyapunov Function derivative history when a stepwise slew 

maneuver is input 

The negative definiteness of the Lyapunov function derivative may also be shown 

analytically. To show the global stability, derivative may be defined as,  
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5

T

AV x Q x Q   (4.16) 

where ( )
TT T Tx    is the state vector and, 

3

5

3 1

T T

dk I H CH Q
Q

Q Q

   
  

  
 (4.17) 

1P  may be computed as solution of the Lyapunov equation: 

1 1 1

1
3

1

2

2

TQ PA A P

PABH
Q

    


 

(4.18) 

Note that Lyapunov stability theorem indicates that given a stable A matrix a positive 

definite matrix P can be found such that TQ PA A P    where Q  is also positive 

definite [41]. Using the Lyapunov stability theorem, the matrix 1Q  is a fixed positive 

definite matrix and solution of the 1P  exists because ( )A , with (.) denoting 

the set of eigenvalues. Then, the matrix 5Q  is negative definite, 5( )Q , for a 

positive dk . 

4.1.3. Tracking Attitude Controller 

In this section, recently developed attitude propagation algorithm given in Equation 

(2.21) is employed. It gives a more precise trajectory tracking solution since the 

derivative of the desired trajectory is included.  

Theorem: The following controller brings the attitude to the desired one 

asymptotically: 

2( )p d d mbu k k k J   t s s  (4.19) 

for all 0pk  and 0dk  properly selected. 



 

 

 

35 

 

Proof: Given control law may be derived using a properly selected Lyapunov function.  

3 2V V V   (4.20) 

with 

3 4

1
2 (1 ) ( 2 ) ( 2 )

2

T

p mbV k t J      s s   (4.21) 

and 

2 1

1
( )

2

T TV P


 


 
  

 
 (4.22) 

where 1 1 0TP P    

Taking time derivative of Equation (4.20) to show asymptotic stability, 

3 42( ) ( 2 ) ( 2 )T

p mbV k t J      s s   (4.23) 

and 

2 1( )T TV P


 


 
  

 
 (4.24) 

Substituting Equation (2.21) into the Equation (4.23), 

3 ( 2 ) ( 2 ) ( 2 )T T T

p mbV k J        ts s s    (4.25) 

Also substituting Equation (3.42) into the Equation (4.25), 

3 ( 2 ) ( 2 ) (2 )

( 2 ) ( )

T T T

p mb

T T

V k J

H C K CH u 

       

      

ts s s

s

 

 
 (4.26) 

and Equation (4.19) into the Equation (4.26), 

 
3 ( 2 ) ( 2 )

( 2 )

T

d

T T

V k

H C K CH 

      

   

s s

s

 

 
 

(4.27) 
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Then substituting Equation (3.44) into the Equation (4.24), 

2 1( )T TV P A ABH


 


  
   

  
  (4.28) 

Then, 

 

1

1

( 2 ) ( 2 ) ( )

( )

( 2 ) (2 )

T T T

d

T T T T

T T T T

V k PA

PABH H CH

H C K H CH


 



 

 

 
        

 

 

   

s s

s s

 

  

 

 

(4.29) 

In Equation (4.29), if dk  is properly selected, derivative of the Lyapunov function will 

be decaying. Defining the term  ( 2 ) (2 )T T T T

BH C K H CH Q     s s  . 

Then, if the attitude and control parameters defined as in Chapter 5, Figure 4.5 shows 

the values of the term BQ . 

 

Figure 4.5 Time History of the Positive Term ( BQ ) in the derivative of the Lyapunov 

function when a smooth time dependent slew maneuver is carried out 
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All terms in Equation (4.29) is plotted in Figure 4.6. The graph shows that the 

derivative of the Lyapunov function is always positive. 

 

Figure 4.6 Time History of the Lyapunov function derivative when a smooth time 

dependent slew maneuver is carried out 

The negative definiteness of the Lyapunov function may also be proved as follows: 

5(2 ) (2 )T T

d BV k x Q x Q   s s  (4.30) 

where ( )
TT T Tx   is state vector with 

3

5

3 1

1 1 1

1
3

1

2

2

T T

d

T

k I H CH Q
Q

Q Q

Q P A A P

P ABH
Q

   
  

  

    



 

(4.31) 
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Using the Lyapunov stability theorem [41], the matrix 
1Q  is a fixed positive definite 

matrix with the 1P  is the solution of Sylvester equation and exists because ( )A

, with (.) denoting the set of eigenvalues. Then, the matrix 5Q  is negative definite, 

5( )Q , for a positive dk . 

4.2. Case Study 2: Using Rigid Body Actuators and Rigid and Flexible Body 

Sensors 

In this case study, derivation of the control algorithm is performed considering flexible 

body sensors are available in the system. 

Control requirements may be defined as in Section 4.1. 

4.2.1. Attitude Control Using to-go Quaternion 

Theorem: The following controller brings the attitude to the desired one in a stable 

fashion: 

  T

p du k k H C K CHt         (4.32) 

for 0pk  and 0dk  properly selected.  

Proof: Consider the following positive definite Lyapunov function: 

1 2V V V   (4.33) 

with 

1 4

1
2( )(1 )

2

T

p mbV k t J      (4.34) 

and 

2 1

1
( )

2

T TV P


 


 
  

 
 (4.35) 
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where 1 1 0TP P    

Taking time derivative of Equation (4.33) to show asymptotic stability, 

1 42( ) T

p mbV k t J     (4.36) 

and 

2 1( )T TV P


 


 
  

 
 (4.37) 

Substituting Equation (2.22), Equation (3.42) and Equation (4.32) into the Equation 

(4.36), 

1

T

dV k    (4.38) 

Then substituting Equation (3.47) into the Equation (4.37), 

2 1( )T TV P A ABH


 


  
   

  
  (4.39) 

Then,  

1 1( ) ( )T T T T T

dV k PA PABH


   


 
    

 
    (4.40) 

Then,  

6 0TV x Q x   (4.41) 

where ( )
TT T Tx    is the state vector and 1P  may be computed as the solution 

of the Lyapunov equation as before, and, 
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3

6

3 1

1 1 1

1
3

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



 

(4.42) 

Using the Lyapunov stability theorem as it is stated in Section 4.1.2, the matrix 1Q  is 

a fixed positive definite matrix and solution of the 1P  exists because ( )A , with 

(.) denoting the set of eigenvalues. Then, the matrix 6Q  is negative definite, 

6( )Q , for properly selected dk . 

4.2.2. Attitude Control Using to-go Quaternion with Derivative 

Recently developed attitude control algorithm is used for the tracking attitude control 

given in Equation (2.21). It offers a more precise trajectory tracking solution since 

derivative of the desired trajectory is taken into account.  

Theorem: The following controller brings the attitude to the desired one in a stable 

fashion: 

 2( ) T

p d d mbu k k k J H C K CH       t s s   (4.43) 

for all 0pk  and 0dk  properly selected. 

Proof: Consider the positive definite Lyapunov function: 

3 2V V V   (4.44) 

with 

3 4

1
2 (1 ) ( 2 ) ( 2 )

2

T

p mbV k t J      s s   (4.45) 



 

 

 

41 

 

and 

2 1

1
( )

2

T TV P


 


 
  

 
 (4.46) 

where 1 1 0TP P    

Taking time derivative of Equation (4.44) to show asymptotic stability, 

3 42( ) ( 2 ) ( 2 )T

p mbV k t J      s s   (4.47) 

and 

2 1( )T TV P


 


 
  

 
 (4.48) 

Substituting Equation (2.21), Equation (3.42) and Equation (4.43) into the Equation 

(4.47), 

3 ( 2 ) ( 2 )T

dV k     s s   (4.49) 

Then substituting Equation (3.47) into the Equation (4.48), 

2 1( )T TV P A ABH


 


  
   

  
  (4.50) 

Then, 

1 1

( 2 ) ( 2 )

( ) ( )

T

d

T T T T

V k

PA PABH


   


      

 
 

 

s s 

  (4.51) 

Then, 

6(2 ) (2 )T T

dV k x Q x  s s  (4.52) 

where ( )
TT T Tx   is state vector with 
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3

6

3 1

1 1 1

1
3

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



 

(4.53) 

Using the Lyapunov stability theorem [41], the matrix 
1Q  is a fixed positive definite 

matrix with the 1P  is the solution of Sylvester equation and exists because ( )A

, with (.) denoting the set of eigenvalues. Then, the matrix 6Q  is also negative 

definite, 6( )Q , for properly selected dk . 

Thus the controller proposed brings to system to the desired attitude asymptotically. 

4.3. Case Study 3: Control with Rigid and Flexible Body Actuators and Rigid and 

Flexible Body Sensors 

In this section, piezoelectric actuators added to the system to damp out vibration effect 

on the spacecraft faster. Derivation of the control algorithm is performed. Control 

requirements may be defined as in Section (4.1). 

4.3.1. Attitude Control Using to-go Quaternion 

Theorem: The following controller brings the attitude to the desired one in a stable 

fashion: 

   2

T T

p d pu k k H C K CH H H u      t    (4.54) 

for 0pk  and 0dk  properly selected.  

Proof: Given control law may be derived using a properly selected Lyapunov function. 

Positive definite Lyapunov function: 
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1 2V V V   (4.55) 

with 

1 4

1
2( )(1 )

2

T

p mbV k t J      (4.56) 

and 

2 2

1
( )

2

T TV P


 


 
  

 
 (4.57) 

where 2 2 0TP P    

Taking time derivative of Equation (4.55) to show asymptotic stability, 

1 42( ) T

p mbV k t J     (4.58) 

and 

2 2( )T TV P


 


 
  

 
 (4.59) 

Substituting Equation (2.22), Equation (3.46) and Equation (4.54) into the Equation 

(4.58), 

1

T

dV k    (4.60) 

Then substituting Equation (3.47) into the Equation (4.59), 

2 2( )T TV P A ABH


 


  
   

  
  (4.61) 

Then,  

2 2( ) ( )T T T T T

dV k P A P ABH


   


 
    

 
    (4.62) 
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or it may be written as, 

7 0TV x Q x   (4.63) 

where ( )
TT T Tx    is the state vector  

4

7

4 2

T

dk I Q
Q

Q Q

  
  

  
 (4.64) 

2P  is the solution of the Lyapunov equation: 

2 2 2

2
4

1

2

2

TQ P A A P

P ABH
Q

    


 

(4.65) 

Using the Lyapunov stability theorem [41], the matrix 2Q  is a fixed positive definite 

matrix and solution of the 2P  exists because ( )A , with (.) denoting the set of 

eigenvalues. Then, the matrix 7Q  is negative definite, 7( )Q , for properly 

selected dk , proving asymptotic stability of the proposed controller. 

4.3.2. Attitude Control Using to-go Quaternion with Derivative 

Recently developed attitude algorithm is used for the attitude controller that may be 

seen in Equation (2.21).  

Theorem: The following controller brings the attitude to the desired one in a stable 

fashion: 

  22( ) T T

p d d mb pu k k k J H C K CH H H u        t s s   (4.66) 

for all 0pk  and 0dk  properly selected. 
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Proof: Given control law may be derived using a properly selected Lyapunov function. 

Positive definite Lyapunov function: 

3 2V V V   (4.67) 

with 

3 4

1
2 (1 ) ( 2 ) ( 2 )

2

T

p mbV k t J      s s   (4.68) 

and 

2 2

1
( )

2

T TV P


 


 
  

 
 (4.69) 

where 2 2 0TP P    

Taking time derivative of Equation (4.67) to show asymptotic stability, 

3 42( ) ( 2 ) ( 2 )T

p mbV k t J      s s   (4.70) 

and 

2 2( )T TV P


 


 
  

 
 (4.71) 

Substituting Equation (2.21), Equation (3.46) and Equation (4.66) into the Equation 

(4.70), 

3 ( 2 ) ( 2 )T

dV k     s s   (4.72) 

Then substituting Equation (3.47) into the Equation (4.71), 

2 2( )T TV P A ABH


 


  
   

  
  (4.73) 

Then, 
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2 2

( 2 ) ( 2 )

( ) ( )

T

d

T T T T

V k

P A P ABH


   


      

 
 

 

s s 

  (4.74) 

or it may be written as, 

7(2 ) (2 )T T

dV k x Q x  s s  (4.75) 

where ( )
TT T Tx    is state vector with 

4

7

4 2

2 2 2

2
4

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



 

(4.76) 

Using the Lyapunov stability theorem as it is stated in Section 4.1.1 [41], once the 

matrix 2Q  is a fixed positive definite matrix with the 1P  is the solution of Sylvester 

equation and exists because ( )A , with (.) denoting the set of eigenvalues. 

Then, the matrix 7Q  is negative definite, 7( )Q , for properly selected dk . As it 

derived in Section (4.3.1), we may find that the largest invariant set  with the help 

of LaSalle theorem. Then all the control objectives are satisfied. 
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CHAPTER 5  

 

SIMULATION RESULTS 

 

In this chapter, simulation results for different attitude controllers are presented. There 

are 3 different cases considered. Simulation of the mathematical model of flexible 

spacecraft as well as attitude dynamics are developed in MATLAB/Simulink 

environment.  

In Section 5.1, simulation results for the case study 1 is given. Based on the unmodeled 

flexible dynamics, rigid body model using its sensors and actuators in this simulation. 

On the other hand, in Section 5.2, discrete flexible body sensors are considered beside 

rigid body sensors. In Section 5.3, simulations are performed by adding piezoelectric 

actuators to the system to damp out vibration effect on the spacecraft faster. In all 

sections, simulations are performed considering two different attitude controllers, 

where the first one only uses to-go quaternion and the second one that also employs 

the derivative of the desired attitude.   

The desired attitude is defined as a time dependent function. A Cubic function is taken 

for the rotation angle. By using initial and final conditions, rotation angle coefficients 

may be obtained. Simulation time is choosen as 100 seconds. Unitary quaternion 

coefficients are taken for simplicity. Simulation parameters for the attitude are given 

in Table 5.1. 
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Table 5.1 Simulation Parameters for Attitude Dynamic 

Parameter Value 

Desired Attitude 
4

sin( / 2)

cos( / 2)d

d
 

Rotation Angle 2 3a bt ct et  

Rotation Angle 

Initial & Final Conditions 
0 0  

0 0  
2

3
f  0f  

Quaternion Coefficient (1,2,3) / 14T
 

Final Time 100ft  s 

By using parameters listed in Table 5.1, the time history for the desired attitude in 

terms of quaternion parameters may be obtained as in Figure 5.1. 

 

Figure 5.1 Time History of Desired Attitude in terms of Quaternion 

Also, time history of desired attitude in terms of Euler angles may be seen in Figure 

5.2. 
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Figure 5.2 Time History of Desired Attitude in terms of Euler Angles 

In the simulations, the flexible spacecraft is assumed to have only four bending modes. 

In Table 5.2, natural frequency and damping ratio of the related modes are given [16].  

Table 5.2 Parameters of Flexible Spacecraft 

 
Natural 

Frequency(rad/s) 

Damping 

Mode 1 0.7681 0.005607 

Mode 2 1.1038 0.00862 

Mode 3 1.8733 0.01283 

Mode 4 2.5496 0.02516 

The characteristics of the piezoelectric are summarized by the piezoelectric charge 

constant pc , the Young modulus of elasticity pE , and the thickness pb , are listed in 

Table 5.3 along with the bounding layer parameters. The length, width and thickness 

of the flexible panel are l , al , bl , respectively. The bending moment pM  due to 

piezoelectric films is proportional to the applied voltage according to p p pM c u

with [28] 

( ) ( 2 )

2( )

b b p b b p b b

p p a p

p p b b b

E b b b El b b l
c c l E

E b E b El
Nm/V (5.1) 
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Table 5.3 Characteristics of the Piezoelectric Layers of the Flexible Panel 

Piezoelectric Layer  Flexible Panel  

12171 10pc m  5l m 

9139 10pE  N/m2 0.8al m 

32.1 10pb m 0.1bl m 

 106.8 10E N/m2 

Rigid body inertia matrix, coupling matrices and controller parameters are also given 

in Table 5.4 [16]. The feedback gains 1000pk , 1000dk .  

Table 5.4 Simulation Parameters used for Controller and Flexible Spacecraft Model 

Parameter Value 

Control Parameters 
1000

1000

p

d

k

k
 

Piezoelectric Actuator Control 

Parameters 

1

2

100

100
 

Rigid Part Moment of Inertia 2

350 3 4

3 280 10

4 10 190

mbJ kgm  

Coupling Matrix between 

Flexible and Rigid Dynamics 

2

6.45637 1.27814 2.15629

-1.25619 0.91756 -1.67264
/

1.11687 2.48901 -0.83674

1.23637 -2.6581 -1.12503

H kgm s  

Coupling Matrix between 

Flexible Dynamics and Piezoelectric 

Actuators 

2

3

2

2

2

2

2.3425 10

4.2253 10

3.9129 10

7.0261 10

/H kgm Vs  

On the other hand, when piezoelectric actuators are present and chosen as shown in 

Table 5.4,  they increase the stiffness and the internal damping of the system. 
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Piezoelectric actuators control feedback gain values 1 , 
2
 are selected so that 

eigenvalues of the dynamics of the bending modes have natural frequencies 

0 [0.7988 1.1045 1.9078 2.6497]T  while for damping 

0 [0.009 0.012 0.018 0.152]T . Therefore, one has 
1 100 , 2 100 .    

All throughout this thesis, attitude control using to-go quaternion is named as classical 

attitude controller, while attitude controller using to-go quaternion with derivative 

named as tracking attitude controller.  

The effect of tracking controller in spacecraft attitude tracking may be shown by 

subtracting the quaternion parameters from desired and realized attitude. Without 

flexible body effects on the spacecraft, it is easy to show the effect of tracking 

controller on the attitude tracking. Considering only rigid spacecraft dynamics, 

simulations are performed for classical and tracking attitude controller. In Figure 5.3, 

component wise difference between desired and realized attitude for classical attitude 

controller is given. Same graph for tracking attitude controller can be seen in Figure 

5.4. Comparing Figure 5.3 and Figure 5.4, it may easily be observed that tracking 

controller tracks the desired trajectory better than the classical one. This is because of 

the fact that tracking attitude controller takes the time derivative of the desired attitude 

into account.  
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Figure 5.3 Component Wise Difference Between Desired and Realized Quaternion 

with Classical Controller Only Rigid Body Dynamics Simulated 

 

Figure 5.4 Component Wise Difference Between Desired and Realized Quaternion 

with Tracking Attitude Controller 
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5.1. Simulation: Case Study 1 

In this section, feedback controllers that were developed in Section 4.1, are tested 

against nonlinear simulations. In the first part, the effect of flexible dynamics is 

canceled applying a first order low pass filter on the angular velocity measurement of 

the spacecraft.  

 

Figure 5.5 Schematic Drawing of Simulation with Low Pass Filter 

The effects of flexible dynamics on the pointing accuracy while using low pass 

filtered and unfiltered measurements is showed comparing body angular velocities 

and control torques. 

5.1.1. Filtered Case 

Considering the natural frequencies of the flexible system (Table 5.2), a first order 

low pass filter is chosen as 
1

10 1s
.  Then, using tracking attitude controller, time 

history of body angular velocity may be seen in Figure 5.6. 
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Figure 5.6 Time History of Angular Velocity after Low Pass Filter 

Also, corresponding control torque history is presented in Figure 5.7.   

 

Figure 5.7 Time history of Tracking Controller Control Torque with Low Pass Filter 
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5.1.2. Non-filtered Case  

Simulations are performed this time for the non-filtered case. Using tracking attitude 

controller, time history of body angular velocity may be observed in Figure 5.8. 

 

Figure 5.8 Time History of Angular Velocity Without  Filter 

 

Figure 5.9 Time history of Tracking Controller Control Torque Without  Low Pass 

Filter 
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Also, Figure 5.9 shows control torque history of flexible spacecraft without filter. 

Comparing the figures in terms of angular velocities and control torques, it is easily 

can be said that flexible parts on the spacecraft create oscillations.  

To compare tracking attitude controller with the classical one, time history of control 

torque for classical attitude controller is presented in Figure 5.10. Related controller 

was given in Section 4.1.2. 

Time history of control torque for tracking attitude controller was given in Figure 5.9. 

Related controller was presented in Section 4.1.3. Comparing Figure 5.9 and Figure 

5.10, it can be said that their control torque histories and control torque levels are 

similar.  

 

Figure 5.10 Time history of Classical Controller Control Torque Without  Filter 

5.2. Simulation: Case Study 2 

In this section, simulation is performed assuming that flexible body sensors are 

available and the flexible body dynamics is known. In Section 4.2, the associated 

formulation was given. 
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Classical attitude controller was given in Section 4.2.1. Generated vibration energy on 

the spacecraft using this controller may be observed in Figure 5.11.  

Using the tracking controller given in Section 4.2.2, vibration energy graph also may 

be seen in Figure 5.12. As it may be observed from this figure, using tracking 

controller the generated total vibration energy is decreased by about 20% as compared 

to the classical controller. The simulation results show that the success of tracking 

algorithm to suppress the vibration effects on the spacecraft while using almost the 

same amount of control torque.  

 

Figure 5.11 Time history of the Vibration Energy with Classical Controller  
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Figure 5.12 Time history of  the Vibration Energy with Tracking Controller 

5.3. Simulation: Case Study 3 

In this section, simulation is performed by adding piezoelectric actuators to the 

system. Using the controller in Section 4.3.1, the generated vibration energy is 

presented in Figure 5.13. Also, control torque created by piezoelectric actuators may 

be seen in Figure 5.14. Comparing Figure 5.13 with Figure 5.11, it may be observed 

that vibration energy on the spacecraft system is decreased considerably and it is 

damped out much faster with the help of flexible body torquers as expected.  
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Figure 5.13 Time History of Classical Controller Vibration Energy with 

Piezoelectric Actuator 

 

Figure 5.14 Time history of Control Voltage of Piezoelectric Actuator for Classical 

Controller 

Using the controller given in Section 4.3.2, graph of vibration energy on the system is 

presented in Figure 5.15. The graph shows that with piezoelectric actuators and 

tracking controller, vibration energy is reduced by about 30%. Thus, the best solution 
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for the vibration problem is obtained using tracking attitude controller and adding 

piezoelectric actuators to the system. Moreover, as it may be observed from Figure 

5.16, tracking controller needs much more less firing on the piezoelectric control 

voltages.  

 

Figure 5.15 Time History of Tracking Controller Vibration Energy with 

Piezoelectric Actuator 
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Figure 5.16 Time history of Control Voltage of Piezoelectric Actuator for Tracking 

Controller 
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CHAPTER 6  

 

CONCLUSION AND FUTURE WORK 

 

In this thesis, flexible spacecraft vibration suppression, using a time dependent to-go 

quaternion formulation as attitude propagator, is examined. A feedback control 

algorithm is obtained with the help of Lyapunov’s direct method. A classical PD-like 

controller is obtained by using attitude controller that contains time dependent 

trajectory. After that, recently developed attitude controller that takes into account 

time dependent trajectory and its derivative, is used to obtain tracking control law. 

Obtained tracking controller is different from the PD-like controller due to the new 

term in control torque. Tracking controller provides us with more precise and 

smoother trajectory tracking. That also means that vibration effect in the flexible 

spacecraft decreased in attitude tracking missions. Also, tracking controller is almost 

same control torque histories and levels with the classical PD-like controller.  

In the first case, controller is derived using unmodeled dynamics. Applying first order 

low pass filter on angular velocity, the effect of flexible parts on the spacecraft is 

shown. It effects both body angular velocity and control torque. Body angular velocity 

is important for pointing accuracy. On the other hand, control torque that is applied is 

very important because fuel consumption in the space is very limited. Also, obtained 

controller in the first case may be used as a controller in any failure in the discrete 

flexible body sensors and discrete flexible body torquers. Although its performance is 

lower, it is preferable on the grounds that it can be superior to the sensor redundancy 

policy because it is only based on extra software capabilities on the on-board 

computer. 

Second controller is obtained considering spacecraft have discrete flexible body 

sensors as well as rigid body sensors. In this controller, only rigid body actuators are 

considered. Controller is developed for both attitude controllers. The success of 



 

 

 

64 

 

tracking algorithm to suppress the vibration effects on the spacecraft is shown by 

comparing with the classical controller. Also, in any case of failure in the flexible body 

torquers, second controllers can be used as a controller for the spacecraft. 

Another controller is designed based on the spacecraft system that contains 

piezoelectric actuator in the system. Piezoelectric actuators provide increasing 

stiffness and internal damping for the system. Simulation results show that tracking 

controller with piezoelectric actuator was more successful in the attenuation of flexible 

effects compared to classical PD-like controller. It is observed that, when attitude 

trajectory mission is defined, almost half of the vibration effect on the spacecraft 

system decreased with the help of tracking controller. 

In the future, better positioning of piezoelectric actuators on real satellite structures 

shall be carried out. In addition, the effects of using reduced order flexible structure 

models on actual satellite structures shall also be investigated. 
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