

A DYNAMIC SOFTWARE PRODUCT LINE FOR REMOTE MONITORING OF

COMPUTER SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 GÜLŞAH ERDİL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

FEBRUARY 2019

Approval of the thesis:

A DYNAMIC SOFTWARE PRODUCT LINE FOR REMOTE MONITORING OF

COMPUTER SYSTEMS

submitted by GÜLŞAH ERDİL in partial fulfillment of the requirements for the degree of Master

of Science in Computer Engineering Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün

Head of Department, Computer Engineering

Prof. Dr. Halit Oğuztüzün

Supervisor, Computer Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Ebru Aydın Göl

Computer Engineering, Middle East Technical University

Prof. Dr. Halit Oğuztüzün

Computer Engineering, METU

Assist. Prof. Dr. Ayça Tarhan

Computer Engineering, Hacettepe University

Date: 20.02.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Gülşah Erdil

v

ABSTRACT

A DYNAMIC SOFTWARE PRODUCT LINE FOR REMOTE MONITORING

OF COMPUTER SYSTEMS

Erdil, Gülşah

Master of Science, Computer Engineering

Supervisor: Prof. Dr. Halit Oğuztüzün

February 2019, 76 pages

Remote Monitoring and Management systems are Information Technology (IT)

software tools to organize and manage distributed client workstations from a central

point. They are used by many large-scale technology companies that are willing to

minimize their labor cost needed for running the IT infrastructure, collect and measure

the data of clients within the organization, administrate them from a single point, in a

reliable and secure way. Dynamic user profile deployment, dynamic reconfiguration

of remote monitors in response to changes in clients' workstations and creating on-

the-fly notifications according to monitor results are the main features of remote

monitoring and management systems. These features can be fully implemented by

Dynamic Software Product Line (DSPL) Engineering. DSPL for Remote Monitoring

of Computer Systems aims to provide IT Service Providers with a dynamically

reconfigurable, reusable and easy to define monitoring and measurement mechanism.

The presented study offers monitoring mechanisms and it also provides an

infrastructure for further management applications. It applies DSPL engineering

concepts which are well defined in academic studies but not extensively implemented

in business realm. It enables IT management systems with reusable and autonomously

monitoring software assets. This study also provides a remote monitoring application

vi

as a case study, constructed by using the aforementioned DSPL with the help of the

reusable software components.

Keywords: Remote Monitoring and Management, Variability Management, Dynamic

Software Product Line, Reconfigurability

vii

ÖZ

BİLGİSAYAR SİSTEMLERİNİN UZAKTAN İZLENMESİ İÇİN DİNAMİK

YAZILIM ÜRÜN HATTI

Erdil, Gülşah

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Danışmanı: Prof. Dr. Halit Oğuztüzün

Şubat 2019, 76 sayfa

Uzaktan izleme ve kontrol sistemleri, dağıtık iş istasyonlarını merkezi bir noktadan

organize etmek ve yönetmek için kullanılan Bilgi Teknolojileri (BT) yazılımlarıdır.

Büyük ölçekli birçok şirket, bilgi teknolojileri altyapıları için harcanan iş gücünü

azaltmak, bu işlemleri tek bir noktadan sağlıklı ve güvenli bir şekilde yönetmek için

bu yazılımları kullanmaktadır. Dinamik kullanıcı profili tanımlanması, iş

istasyonlarının değişen durumlarına bağlı olarak monitörleme mekanizmalarının

dinamik olarak yeniden yapılandırılabilmesi, monitör sonuçlarına göre anında

bildirim oluşturulabilmesi, uzaktan izleme ve kontrol sistemlerinin ana özellikleridir.

Bu özellikler Dinamik Yazılım Ürün Hattı Mühendisliği (DYÜH) metodolojileri ile

tam olarak gerçeklenebilmektedir. Bilgisayar Sistemlerinin Uzaktan Kontrolü için

Dinamik Yazılım Ürün Hattı, BT servis sağlayıcılarına dinamik olarak yeniden

yapılandırabilen, tekrar kullanılabilir, kolay monitörleme ve yönetme mekanizmaları

sunmayı amaçlamaktadır. Bu çalışma esas olarak monitörleme mekanizmalarını

sunmaktadır ve dolaylı olarak yönetim mekanizmalarına altyapı sağlamaktadır.

Sunulan çalışma, akademik araştırmalarda iyi tanımlanmış, ancak iş dünyasında

yaygın olarak uygulanmayan DYÜH kavramlarını hayata geçirir ve BT yönetim

sistemleri için tekrar kullanılabilir ve otonom monitörleme yazılım bileşenleri sunar.

viii

Ayrıca bu ürün hattı kullanılarak hazırlanmış bir uzaktan yönetim uygulaması da vaka

analizi olarak sunulmaktadır.

Anahtar Kelimeler: Uzaktan İzleme ve Kontrol, Değişkenlik Yönetimi Dinamik

Yazılım Ürün Hattı, Yeniden Yapılandırma

ix

To My Beloved Grandmother and Family

x

ACKNOWLEDGEMENTS

Initially, I would like to thank my supervisor Halit Oğuztüzün, who is always patient,

understanding but more importantly a guiding spirit for me. He always led to me to

right ways, encouraged me to do the better.

Besides my supervisor, I would like to thank all the colleagues from Nurd Yazılım.

They also contributed to my study during the tests and demo preparation and spent

time for my study.

I would like to thank Uğur Çakır for the financial and moral support he provided to

me for my academic studies. He eased the process to continue my studies as parallel

to work life.

Thanks to Sina Entekhabi, for his worthless helps and contribution to my study. I am

grateful to him for allowing me to use the algorithm he developed in my thesis.

My husband, Onur Can Erdil is one of the biggest supporters on all stages of my life,

and he was again the biggest supporter during the hard days of the study. Special

thanks to him for his help and love.

The architects of all the achievements I have reached today is my dear mother, father

and sister. I am grateful that I have them and their unrequited love. I always owe them

for their unconditional support and all the facilities they have provided to me.

This work has been supported by TÜBİTAK-ARDEB-1001 program under project

215E188.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ..vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES ... xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xvi

CHAPTERS

1. INTRODUCTION .. 1

2. BACKGROUND .. 5

2.1. Summary ... 5

2.2. Information Technology Service Management ... 5

2.2.1. Information Technology Service Management Approaches and Standards

 .. 6

2.2.1.1. ITIL .. 6

2.2.1.2. COBIT .. 7

2.2.1.3. ISO/IEC 27000-series .. 7

2.2.2. Remote Monitoring as an IT Service .. 8

2.3. Dynamic Software Product Lines .. 12

2.3.1. Software Product Lines ... 12

2.3.2. Variability Management ... 14

2.3.2.1. Decision Models .. 16

xii

2.3.2.2. Orthogonal Variability Model (OVM) .. 16

2.3.2.3. Feature Models .. 17

2.3.3. Dynamic Reconfiguration at Runtime Needs ... 21

3. FEATURE MODEL OF THE REMOTE MONITORING SYSTEM 29

3.1. Summary ... 29

3.2. Feature Modeling of RMM System .. 29

3.3. Feature attributes and Extra Functional Features .. 40

3.4. A New Concept: Dynamic Feature Attribute .. 41

4. DETAILED DESIGN OF DYNAMIC SOFTWARE PRODUCT LINE 45

4.1. Summary ... 45

4.2. Architecture ... 45

4.2.1. Core Classes – Plugins ... 47

4.2.2. Core Classes – Relationships ... 51

4.3. Context Awareness and Dynamic Binding Mechanisms 56

5. CASE STUDY: COMODE ONE ITSM PRODUCT... 61

5.1. Summary ... 61

5.2. Product Overview ... 61

5.3. RMM Agent Built with DSPL .. 64

6. CONCLUSION AND FUTURE WORK ... 69

REFERENCES .. 73

xiii

LIST OF TABLES

TABLES

Table 1 Feature Dictionary... 31

Table 2 C1 Minimal RMM Agent Plugins ... 64

xiv

LIST OF FIGURES

FIGURES

Figure 1 Example CPU Monitor Creation (Courtesy NURD) 10

Figure 2 Example CPU Monitor Rule Definition (Courtesy NURD) 11

Figure 3 Example Alert Creation for Service Desk Support Team (Courtesy NURD)

 ... 11

Figure 4 SPL Framework adapted from (Böckle, Pohl, & van der Linden, 2005) 13

Figure 5 Orthogonal Variability Model Components and Relationships (Lauenroth &

Pohl, 2005) ... 17

Figure 6 Basic Feature Model Characteristics ... 18

Figure 7 Extended Feature Modeling Example. .. 19

Figure 8 Cardinality Based Feature Model Characteristics 20

Figure 9 MADAM Adaptation Platform (Hallsteinsen, Stav, Solberg, & Floch, 2006)

 ... 24

Figure 10 Model Based Reconfiguration Engine (Cetina, Giner, Fons, & Pelechano,

2009) .. 25

Figure 11 Models@runtime Architecture (Morin, Barais, Jezequel, Fleurey, &

Solberg, 2009) .. 26

Figure 12 RMM Feature Model ... 37

Figure 13 Energy Subtree of RMM Feature Model ... 38

Figure 14 Security Subtree of RMM Feature Model ... 38

Figure 15 Performance Subtree of RMM Feature Model .. 39

Figure 16 Resource Utilization Subtree of RMM Feature Model 39

Figure 17 Tracking System Feature Model with Dynamic Attributes 41

Figure 18 Component Based Architecture of DSPL for RMM of Computer Systems

 ... 46

Figure 19 Plugin Factory Design ... 47

xv

Figure 20 Core Classes - Plugins ... 48

Figure 21 PluginFactoryInterface Definition ... 51

Figure 22 Dynamic Plugin Loading During Runtime .. 52

Figure 23 Dynamic Plugin Unloading During Runtime .. 55

Figure 24 RMM Activities ... 56

Figure 25 Core Classes - Feature Activation ... 58

Figure 26 Feature Activation & Configuration Validation .. 59

Figure 27 C1 RMM Product Feature Model .. 62

Figure 28 CPU Monitor Plugin Classes ... 65

Figure 29 CpuMonitorFactoryPlugin Class Definition .. 66

Figure 30 CpuMonitorWorker Class Definition .. 68

xvi

LIST OF ABBREVIATIONS

C1 Comodo ONE

CO Control Objective

COBIT Control Objectives for Information and Related Technology

DAS Dynamically Adaptive System

DCO Detailed Control Objective

DSPL Dynamic Software Product Line

DSPLE Dynamic Software Product Line Engineering

FM Feature Model

FODA Feature Oriented Domain Analysis

HIPS Host Intrusion Prevention System

IT Information Technology

ITIL Information Technology Infrastructure Library

ITSM Information Technology Service Management

MoRE Model-Based Reconfiguration Engine

MSP Managed Service Provider

PLE Product Line Engineering

RM Remote Monitoring

RMM Remote Monitoring and Management

SLA Service Level Agreement

SPL Software Product Line

SPLE Software Product Line Engineering

UAR Unknown Application Running

1

CHAPTER 1

1. INTRODUCTION

Fast evolving world and dynamic adaptation needs to catch up continuously changing

technology trends has brought large scale, multi employee companies along with. To

ensure the sustainability of the work flow, to increase productivity by keeping

employee’s workstations healthy and consistent, and to keep servers, networks and

software applications of the company always up and running, companies hire

Information Technology (IT) staff and managers. To reduce the cost to employ IT

management staff within the organization, but more importantly, to diminish the

human errors, to automate the management of computer systems and to administer

them from a single center, Remote Monitoring and Management (RMM) software

tools are being used by organizations. These tools are not only used directly inside the

IT departments of technology companies, but also used by Managed Service Providers

(MSP). Several large companies do not even have an IT department, but they

outsource their IT management operations to professional MSPs. Companies that are

willing to enhance the quality of their services and reduce the risks for their product

development, they budget for professional Managed Service Providers. MSP’s are

responsible to fulfill all technological needs in IT sense such as managing endpoints

or servers’ network infrastructure, clients’ portals, their troubleshooting and

maintenance. To fulfill these aims, MSPs need to distribute their services to several

remote customers across a wide network, generally via internet (Kumbakara, 2008).

At this point, RMM software are perfectly matched for this requirement and they are

started to be used by many MSP companies.

RMM software generally has two components, one of which is an admin portal, used

by IT personnel and the other is RMM agent deployed to managed client computers.

With the help of the agents, RMM system identifies newly joined clients and deploys

2

some default and predefined set of monitoring mechanisms and instructions. There is

also need for RMM systems to take actions after deployment and show dynamic

behaviors during runtime. In this regard, the application of Dynamic Software Product

Line (DSPL) Engineering methodology seems well suited for RMM systems.

Although there is extensive academic research on DSPL concepts and techniques, the

application areas and best practices in business are still preliminary. How DSPL

mechanisms are put into practice in RMM product families and what are the

effectiveness, benefits and gains in DSPL approach applied to RMM systems are the

driving questions for this thesis.

A Remote Monitoring and Management System is used to manage clients’

workstations remotely with the help of automatic, reliable and maintainable

management monitors. The features of RMM are varying according to the custom

needs. Nevertheless, in all of them, RMM can detect the new clients joining the

network and then it configures and manages them automatically by the rules

prescribed by IT service providers. For example, after new client identification is

completed, a default profile defined by IT manager or a specific one to this client is

deployed to the end user machine and controls it remotely. In a security concerned

profile, the manager can define such a rule that Malware Detection monitor starts to

watch the computer and whenever it detects a virus or spy, it removes the malware

automatically, or creates a notification to the user or Management Service Providers.

As another rule example, whenever a CPU Monitor detects that CPU usage is

exceeding the 70 percent, then Event Log Monitor also is set up. Considering these

features, remote monitoring and management software is very suitable to model as a

Dynamic Software Product Line. With this motivation, DSPL of Remote Monitoring

Systems emerged, which facilitates the construction and configuration of remote

monitors by applying the dynamic reconfiguration and asset reuse approaches guided

by a variability model.

This study contributes to the software engineering field by exploring the applicability

of DSPL methodology in the Remote Monitoring and Management domain. Although

3

computer systems are addressed specifically on this study, it can also be a guide for

monitoring systems in other application fields. The study focuses the Remote

Monitoring (RM) area mainly and management part is out of concern for this thesis.

Management components and related software assets will be added to the framework

as a future work. After this point, only remote monitoring concepts will be mentioned,

and related software components will be represented.

The outline of this work is as follows: Initially the introduction part including the

motivation behind the study will be given as Chapter 1. Chapter 2 provides the

background of RMM and DSPL concepts. Then commonality and variation points

analysis of RMM systems is given under the Chapter 3 Feature Model of Remote

Monitoring Systems, which is an important phase for dynamic software product line

development. Chapter 4 specifies detailed design for DSPL in terms of architecture,

self-awareness, dynamic binding mechanism and reusable software assets. In Chapter

5, as a case study COMODO ONE ITSM Product generated with the help of our

framework is explained. As a final section, at Chapter 6 conclusion and future research

directions are presented.

5

CHAPTER 2

2. BACKGROUND

2.1. Summary

This chapter introduces background information about the study. It enlightens the

basics of two concepts that are subject to this thesis: Information Technology Service

Management and Dynamic Software Product Lines. In the first part, ITSM essentials,

standards, approaches and RMM-as-IT-service are explained. Under DSPL

subsection, SPL as building block, Variability Management techniques and Dynamic

Reconfiguration need in SPL engineering are discussed.

2.2. Information Technology Service Management

Today's companies are dealing with considerable amount of data to carry out their

production, marketing or maintenance processes. To sustain their product lines and

increase the quality of their services, they need to build an infrastructure to create,

store, modify and exchange these data in a secure and reliable way. This need has

become crucial for firms because only a healthy business development environment

allows for the development of healthy products. Therefore, companies attach great

importance to the management of information technologies and make serious

investments on IT management. As computer-based technology firms are spread

worldwide, the diversity of information and the power of data increased, their

management also became diverse and challenging. Almost every company either have

created a separate and specialized IT management department, or for especially large-

scale and cross-country firms have been outsourcing this need to professional IT

management companies or Managed Service Providers (Sena & Obispo, 2006).

Keeping the IT management infrastructure stable and consistent is vital for firms in

almost every sector, because it directly affects the business development environment

6

and the resulting quality of product or services. Companies know that any failure or

outage on IT infrastructure leads to outages on data flowing inside networks, failure

on internal business processes and resulting product in return. Any unavailability of

servers of a technology company, hardware or software problems on employees’

machines or unpredictable interruptions on network give rise to failure on business

performance and impair the product (Hinz & Gewald, 2006).

2.2.1. Information Technology Service Management Approaches and Standards

2.2.1.1. ITIL

To provide a standard development and operating environment, handle complex and

diverse business activities, IT Service Management (ITSM) approaches and set of

standard IT services are shaped since information technology has taken over the world.

Information technology Infrastructure Library (ITIL) is one of the de facto standards

and it has been continuously revised as IT management challenges increase. ITIL is

IT service management framework and it defines IT service concepts, provides best

practices for planning of these services and delivery of them to companies. It also

highlights the methodologies about the service support after its delivery is completed.

ITIL specifies services as something that a customer, who can be the owner of a

technology company, needs and utilizes to maintain their business. For example; an

IT service can be a server, database or storage administration, network management

or regulation of user workstations (Arraj, 2010).

ITIL defines the IT service standards in a 4-step life cycle. First step is Service Strategy

in which general approach is set by understanding the customer IT service needs, what

are the customer specific requirements, required IT capabilities and infrastructure to

meet these requirements. This step includes high level design of development and

implementation phases and covers other steps of framework. Service Design step

ensures that before delivery of services, they should be designed to fit exactly the

customer needs in a cost-effective way. Necessary technology and tools should be

determined on this step. Service Operation as a third step aims to deliver designed

7

services to customer, check the health status of these services and provide a nonstop

IT infrastructure. Continual Service Improvement is last but most important phase and

on this step the effectiveness of provided services are measured, renewing or

improvement of IT services are done, and new approaches are applied to existing

services (Arraj, 2010).

2.2.1.2. COBIT

The Control Objectives for Information and Related Technology (COBIT) is another

framework created by Information Systems Audit and Control Association (ISACA),

which defines a set of control mechanisms over IT services and used by many

organizations in the world. The framework’s main aim is to align IT processes within

the company with the business goals via provided controlling mechanisms.

COBIT argues that proper IT government and effective use of IT services are directly

linked with the achievement of business goals of technology companies. Application

of COBIT makes a significant contribution on business achievements within the firms,

via the Control Objectives (CO) defined inside framework (Ridley, Young, & Carroll,

2004). These control objectives are generated for alignment of business objectives and

IT processes, and these processes are grouped into four different domains: Planning

& Organization, Acquisition & Implementation, Delivery & Support, Monitoring and

Evaluating (Sahibudin, Sharifi, & Ayat, 2008).

The framework defines 34 different control objectives, and several detailed control

objectives (DCOs) for each CO to fulfill IT governance and management. It is claimed

that, appropriate application of these objectives results in successful IT governance

and business achievements in return (Von Solms, 2005).

2.2.1.3. ISO/IEC 27000-series

The ISO/IEC 27000 series is set of information security standards published by

International Organization for Standardization (ISO) and International

Electrotechnical Commission (IEC). These standards provide a methodology and

8

systematic approach to keep information assets secure and provides security specific

control objectives to companies implementing these standards (Sahibudin, Sharifi, &

Ayat, 2008). These standards provide “how to” specifications in addition to “what to”

information about the IT management including capabilities, infrastructures and

methodologies, especially on security domain.

2.2.2. Remote Monitoring as an IT Service

Information technology services can be provided by internal IT departments as well

as they can be outsourced to third party organizations such as Managed Service

Providers (MSP). In both approaches, professional and successful IT service

management is used as a tool for business accomplishments. To achieve these

accomplishments, required IT services must be correctly identified by organizations

and MSPs should provide perfectly matching IT services to customers. To fulfill these

two crucial needs, Service Level Agreement (SLA) protocols are created between

Service Providers and companies.

IT services delivered by service providers are grouped into 7 different domains

(Kumbakara, 2008):

• Help Desk: Centralized services to fulfill IT related end-user requests and

problems belong to this domain, services like incident solving, change request

handling can be provided in email, phone call or face to face methods.

• Asset Management: Services for physical inventory, budget or software

licensing inside the enterprise fall into this domain.

• Procurement: Hardware or software purchasing, pricing, ordering and

maintenance during hardware/software’s lifecycle related services are

procurement services.

• Service Management: Health check of running IT assets, status change or

problem monitoring, reporting and diagnosing services are included.

9

• Security: Intrusion detection over local network areas, virus/spy protection,

detection of firewall activities, user account management, password

management are all referred as security concerned services.

• Network Monitoring & Administration: Under this category, monitoring of

network traffic, health check of devices over a network area, network error

detection and fix, LAN & WLAN management, and performance concerned

services are listed.

• Hardware & Software Support: Fulfillment of hardware and software service

needs, install, update or uninstall operations, maintenance of these assets are

hardware & software support services. These services target keeping the end-

users’ work environments healthy.

Remote Monitoring and Management is a software tool used by IT Management

service providers by applying some of the services on mentioned domains. It manages

and organizes client systems especially on Security, Network Monitoring, and Service

Management domains. RMM system enables MSPs to setup monitors over client

computers/systems to gather information and data pertaining to how the system is

performing and to supervise the security, performance and network related issues.

With the help of the monitoring mechanism, the MSP or the technical support team

can execute management tasks autonomously (SearchITChannel, 2015). Remote

Monitors are, in general, shaped with following concerns: Energy, Security,

Performance and Resource Utilization. Under these categories; TCP, Network

Bandwidth, CPU, RAM, Folder Size, File Size, Intrusion Detection and many other

monitors are set to clients’ computers and their workstations are managed by service

providers remotely. An autonomous and self-adaptive remote monitoring and

management software is preferred by many companies because it helps to reduce labor

cost and replace the error prone manual IT service management operations. Instead of

wasting hours for employed IT support teams, RMM software with a single IT

manager can provide several IT services for different service domains. It also enables

10

IT Manager / MSPs to organize the client machines automatically by minimizing

human factor and solves the issues without interrupting the client.

With the help of RMM software, IT service providers can apply proven standards and

approaches like ITIL or ISO/IEC 27000-series. RMM provides an admin portal for

MSP, to prepare the set of rules and monitoring mechanisms for end users’

workstations with “always-eyes-on”, 24 hours per day watching paradigm. This portal

is named as ITSM Portal and all devices within the organization together with their

information are listed visually to MSP. Service providers can prepare grouped

monitors specific to different domains, like Security or Network Administration, with

the help of ITSM portal, and then assign them to a group of end-users having similar

profiles. To deliver these monitoring needs, an RMM Agent is installed to client

computers within the network of the company. This agent works silently without

interrupting the user and monitors the user’s work environment according to the rules

defined by MSP.

Figure 1 Example CPU Monitor Creation (Courtesy NURD)

An example CPU monitor creation page from NURD’s COMODO ONE ITSM

Portal can be seen on Figure 1. In addition, corresponding rule definition for this

CPU monitor can be observed on Figure 2. During monitor creation, MSP is also

able to attach an alerting mechanism which is triggered when the requested condition

is met (See Figure 3). For example, on the devices applied CPU monitor, a service

11

desk ticket is created for Support team when the CPU usage is more than or equal to

the given threshold, i.e. 100% for 5 minutes. This ticket also contains the current

threshold value, device data and performance metrics information of this device.

Such predefined monitors on ITSM Portal can be deployed to many devices on

network automatically and then the support team can examine the alerts created by

these monitors and take an action to solve the problem on the end user machine.

Therefore, this is an autonomous, cost effective, reliable and scalable IT service

delivery method.

Figure 2 Example CPU Monitor Rule Definition (Courtesy NURD)

Figure 3 Example Alert Creation for Service Desk Support Team (Courtesy NURD)

12

2.3. Dynamic Software Product Lines

2.3.1. Software Product Lines

It has started to be more challenging for the companies that their customers request

for changes and modifications continuously for the software intensive systems they

are acquiring. To fulfill these requests and cope with the challenge of customer

specific adaptation, firms can produce short term solutions like “working-hard” or

increasing work power, but in long term these lead to loss of time and money. Such

solutions are also reasons behind the failure of companies among their competitors

(Capilla, Bosch, & Kyo-Chul, 2013). As a long-term solution, Product Line

Engineering (PLE) approach which has been already followed for mechanical or

physical systems for years, has been started to be used for software applications.

PLE techniques applied in several different projects, aims to create a common

architecture and a set of reusable assets. The use of these artifacts on different products

from same family reduces time, cost and work load in return (Böckle, et al., 2002,

August). Software Product Line Engineering (SPLE) has also same objectives;

building a software product family which share the similar software architectures, with

similar attributes and core software assets. Besides, the variation points among

products and derivation use cases should be identified (Bagheri, Di Noia, Ragone, &

Gasevic, 2010). Such a product family built on top of the SPLE basics can respond

instantly to customer specific modification and adaptation requests by tailoring the

core assets according to specific requirements. These techniques empower firms to

produce more qualified products with low cost and man power and improves mass

production of software intensive systems.

SPLE is a two-part engineering process: Domain Engineering and Application

Engineering. Domain Engineering aims to establish a platform composed of reusable

software assets to produce software applications. It comprises all phases of software

development such as requirement analysis, architectural design, component

13

realization and test. It produces reusable assets for all these phases by applying

commonality and variability (C&V) analysis over product families.

 “Domain engineering is the process of software product line engineering in

which the commonality and variability of the product line are defined and

realized.” (Böckle, Pohl, & van der Linden, 2005)

Figure 4 SPL Framework adapted from (Böckle, Pohl, & van der Linden, 2005)

Domain Engineering consists of 5 stages: Product Management, Requirement

Analysis of Domain, Design of Domain, Realization of Domain and Test. All these

D
o

m
a
in

 E
n

g
in

e
e
ri

n
g

A
p

p
li

c
a
ti

o
n

 E
n

g
in

e
e
ri

n
g

Product
Management

Domain
Requirement
Engineering

Domain Design Domain
Realisation

Domain
Testing

Domain Artifact Including Variability Model

Application
Requirement
Engineering

Application
Realisation

Application
Design

Application
Testing

Artifacts of Application N

Artifacts of Application 1

Requirements Architecture Components Test Artifacts

Requirements Architecture Components Test Artifacts

14

phases aim to create an infrastructure for a product family, without taking customer or

product specific requirements into consideration.

Application Engineering is the phase of binding application and customer specific

requirements to variability points defined on the established platform at domain

engineering phase. It enables the construction of specialized end products with the

help of reusable software components of product line.

"Application engineering is the process of software product line engineering

in which applications of the product line are built by reusing domain artifacts

and exploiting the product line variability." (Böckle, Pohl, & van der Linden,

2005)

In application engineering, the same 4 steps as in Domain engineering, other than

product management are also executed (See Figure 4). But at application engineering

phase, set of requirements specific to the product is determined, specific architectural

design decisions for this product are applied, the set of reusable components defined

earlier is used for product construction and explicit test cases for new product is

chosen.

This two-part engineering approach separates SPLE concerns into two parts also: 1)

Establishing efficient and powerful product lines, 2) Fulfilling customers’ specific

needs quickly and manufacturing qualified and low-cost software systems via these

product lines. This approach does not need to be executed as waterfall model, instead

it is better to apply spiral, V model or agile methodologies as the companies adopt

during their software development lifecycle (Metzger & Pohl, 2007).

2.3.2. Variability Management

Variability Managing (VM) is the basis for many Software Product Line Engineering

methodologies. VM targets to identify the variable and common aspects among the

products that show similar characteristics. Commonality and Variability Analysis is

the most used method for variability management. C&V analysis provides software

15

engineers with a systematic way on the construction of product families. In this

systematic approach, commonality implies the attributes that have same values among

a set of objects, while variability stands for the attributes that take different values

among them (Coplien, Hoffman, & Weiss, 1998).

Determination of variable and common points on the construction of different

products is accomplished firstly on the requirement analysis phase of the domain

engineering. Requirement analysis provides a great deal of input to the identification

of common and variable features for the software product families. Product features

are created based on these requirements (Böckle, Pohl, & van der Linden, 2005). After

requirements analysis phase, architectural design, component realization and test steps

also contribute to feature set construction. At every phase, variation points are refined,

and new points are added to the set. In the same steps of application engineering phase,

already defined variable and common attributes are bound to real applications.

Variability binding means to choose variation points and their corresponding values

to generate customized products.

To summarize, for a customized product X belonging to a product family, specific

requirements are chosen. Then, design decision that must be applied to X defined on

general architecture (on domain engineering phase) is determined. Set of common

software assets needed to build X are listed. Then reusable test cases to ensure the

quality of the product are selected. By following these steps on the construction of

software intensive systems, companies create product lines maintaining low cost

product manufacture in short time.

There are various methodologies to identify the common and variation points of

product family, but three of them are widely used by technology producing companies:

Decision Models, Orthogonal Variability Model and Feature Models.

16

2.3.2.1. Decision Models

Construction of variation and commonality points for similar software systems is

shaped with the design decisions of the stakeholders effective on product creation.

This approach is named decision-oriented variability management. In this approach,

forming a customized product from a product line is accomplished by taking decisions

for every variation point (Dhungana, Rabiser, & Grünbacher, 2007). These variation

points arise from differences in the different stakeholders' view of the product. Product

is shaped with every decision taken during the both domain and application

engineering phases, therefore customization is maintained by stakeholders' decisions

at the end of the day.

Decision model is generated during the requirement analysis and architectural design

phases of domain engineering and decisions with their corresponding values are

resolved by application engineers during end product construction. Decision model

shows the extent of the variability for a product line comprehensively (Schmid & John,

2004).

According to the decision model definition in (Schmid & John, 2004), a decision point

is the sole determiner for a variant but same decision point can be a determiner for

distinct variation points. Each decision point has a name, description, and range of

values. Moreover, decision points can be relevant with each other, can require or

eliminate others. Therefore, decision models describe relational dependencies. It also

shows constraints like “Decision X is made only if Decision Y is bigger than some

threshold”. Binding time constrains can also be specified on these models.

2.3.2.2. Orthogonal Variability Model (OVM)

Orthogonal Variability Model provides a cross-sectional relationship between the

variability points produced on different artifacts of software development life cycle,

such as feature model, use case model or component models (Lauenroth & Pohl,

2005). Orthogonal VM has two base constructs, one of which is Variant, and the other

17

is Variation Points as it is illustrated on Figure 5. Variation Point is an abstract

definition for specialized Internal and External Variation Points. According to the

orthogonal VM approach, a variation point can either be internal or external. Internal

variation point is visible only for developers while external variation point is visible

for both developers and customers. Variation point and variant has dependency

relationship which means each variation point must be in correlation with at least one

variant, and vice versa. Variability dependency can be optional or mandatory.

Optional variability dependency implies that a variant can exist on a specialized

product of a product line but does not need to exist. Mandatory relationship means

that a variant must exist for an application if the corresponding variation point exists

for a customized product. This explanation does not imply that a variant is a part of

the products of a family.

Figure 5 Orthogonal Variability Model Components and Relationships (Lauenroth & Pohl, 2005)

2.3.2.3. Feature Models

Feature Modeling approach had been initiated by Kyo C. Kang and his colleagues as

a part of Feature Oriented Domain Analysis (FODA) Feasibility Study (Kang, Cohen,

Hess, Novak, & Peterson, 1990). According to the study, to ensure that large and

«abstract»
Variation Point

External
Variation Point

Internal
Variation Point

Variant

«abstract»
Variability

Dependency

Optional Mandatory

1..* 1..*

18

complex software intensive systems are understood by all stakeholders, firstly their

capabilities and features should be clarified. FODA holds that effective reuse of

software components can be accomplished firstly by exploring the capabilities and

feature set of product family during domain analysis.

Feature and capability definitions are abstractions of product components which can

be easily comprehended by both customers and developers. This is the reason behind

the extensive use of feature modeling for the commonality and variability analysis of

SPLE applications (Kang, Lee, & Donohoe, 2002).

After introduction of feature modeling by FODA, several extensions of this

methodology was published in following years: FORM (Kang, et al., 1998),

FeatuRSEB (Griss, Favaro, & d'Alessandro, 1998), and Generative Programming

(GP) Feature Models (Czarnecki & Eisenecker, 2000) and many more. They can be

grouped under three main categories: 1) Basic Feature Models, 2) Cardinality Based

Feature Models, 3) Extended Feature Models (Metzger & Pohl, 2014).

Figure 6 Basic Feature Model Characteristics

Basic feature models offer following characteristics:

• A model is depicted as a feature diagram which is an and/or tree of distinct

features. Empty circles represent optional features, while mandatory features

are represented by filled circles. A parent feature may have child features and

alternative features are depicted as children of the same parent having a “one

19

and only one can exist” relationship. A child feature can only exist if the parent

feature is selected, otherwise child feature is considered unreachable. If there

is no such relation is given between children, one or more child feature can be

active (See Figure 6).

• Features can have also interrelationships: requires relationship means that one

feature needs another feature existence, and mutually exclusive relationship

means that two features cannot exist at the same time. (Kang, Cohen, Hess,

Novak, & Peterson, 1990)

Extended feature modeling technique presents feature attributes as the biggest

change in modeling approaches until that time. According to Benavides et al, attribute

of a feature is quantifiable characteristic having a set of possible values. Attributes of

distinct features can have interrelationships, and this is called as extra-functional

features of a product family (Benavides, Trinidad, & Ruiz-Cortes, 2005).

Figure 7 Extended Feature Modeling Example.

Figure 7 demonstrates an extended feature model of a hypothetical product family

with X, Y, Z and their possible child features. Price and Count are attributes of these

features. While Price attribute can take a value between 100 and 200, Count attribute

can take value from 1 to n (attribute domain information). For such a feature model,

followings are an example of extra-functional relationship:

20

• PartY_1.Count > 5 requires PartZ_1

• Y.Price = (PartY_1.Price * PartY_1.Count) + PartY_1.Price

Cardinality based Feature Models had brought to a new concept to variability

managing “Cloned Features”. This modeling technique defines feature models as

follows: A root feature can have solitary features or grouped features. Solitary

features can have cardinality like [0..*] (meaning zero or more times) or [1..n]

(meaning x times where 1 ≤ x ≤ n). Cardinality indicates that how many times different

instances of same feature can coexist on a product. Although the cardinality of some

solitary features is not defined explicitly, they have still cardinality implicitly. For

example, mandatory features have cardinality of [1..1] and for optional features it is

[0..1]. In addition, a solitary feature does not have to have cardinality with a single

interval, they may have more than one interval like [1..2][5..7] which means a feature

can be cloned by 1,2,5,6,7 times (Czarnecki, Helsen, & Eisenecker, 2005a).

Figure 8 Cardinality Based Feature Model Characteristics

Group cardinality is used for group of k sub features of a parent feature with n lower

bound and n' upper bound where 0 ≤ n ≤ n' ≤ k. For example, for 3 sub features of a

parent features, if they have alternative relationship and no explicit cardinality is

21

given, group cardinality is <1-1>, which means only one sub feature should be

selected. However, these sub features can also have cardinality like <0-3> which

means 0 or more up to 3 features can be activated at the same time (See Figure 8).

According to the Czarnecki et al, features belonging to a group cannot also be a

solitary feature because if grouped feature also have solitary cardinality, the bounds

defined for the group can be exceeded (Czarnecki, Helsen, & Eisenecker, 2005b).

Feature Models of any type are formed during domain analysis and represent all

possible capabilities of product families. To shape one of the end products, a system

feature catalog is generated by selecting required features and this catalog identifies

the product configuration (Kang, Cohen, Hess, Novak, & Peterson, 1990).

2.3.3. Dynamic Reconfiguration at Runtime Needs

Dynamic needs originating from humans, system or environmental changes for an

already running software systems had exposed the need for dynamic adaption. New

feature demands for an already developed software product family, customer specific

or system specific adaptations have resulted with new approaches and solutions in the

literature. While software product line approach aims to create a product portfolio with

lower cost and high quality by adopting reusable software components, the emerging

need; adaptation to variable environment, sensing the changes in context conditions

have led to a newer approach: Dynamic Software Product Lines (Capilla, Trinidad,

Bosch, Ruiz-Cort's, & Hinchey, 2014). In today’s large and heterogeneous systems,

determining the requirements and features before deployment phase is not enough,

instead there is an emerging challenge to handle variability during runtime. DSPL

approach supports to define the variability points of a system for both pre and post

deployment stages and then suggests feature activation and deactivation mechanisms

to handle autonomous decision making and then dynamic reconfiguration of software

assets during execution (Cetina, Pelechano, Trinidad, & Cort's, 2008).

Dynamic software product lines provide following properties:

22

• Adaptation to dynamically varying system (internal) and environment

(external) needs.

• Dynamic reconfiguration of product by applying autonomous decision making

at runtime.

• Support for wide range of product families with the help of reusable software

components.

• Management of variability driven by an explicit variability model.

• Variability management with feature models at run time.

A distinguishing aspect of a DSPL from other dynamically reconfigured systems in

general is that a DSPL must possess a variability model explicitly; variability

management and dynamic adaptation mechanisms must be using this model. In a

product family, the most important thing to maximize the reuse of product components

is determination of commonalities and variabilities between them. Every single aspect

that is common or distinct can be accepted as a variant for this product family. It is

crucial to identify the goals for a system, ask domain questions and give explicit

answers to these questions, and in return they are also another variability

points/variants (Capilla, Bosch, & Kyo-Chul, 2013). On the other hand, a product also

can have some internal states and vary by the environmental changes during execution

cycles. To adapt the product to the varying conditions, some features must be activated

or deactivated, and the system needs to evolve and achieve self-adaptation. All

possible features that can be active for a product is called as “configuration” and

dynamic reconfiguration of these set of features during runtime is the most important

capability for Dynamic Software Product Line Engineering.

In the DSPL context we have a single system (or product) with many possible

configurations whereas in traditional SPL we have a product family with many

possible products. Note that in the traditional sense, products of a family (SPL) are

produced mainly by configuration; in the dynamic sense, appropriate configurations

of a system (DSPL) are obtained by reconfiguring it at run time.

23

Known DSPL Approaches:

a) MADAM

MADAM is an DSPL approach targeting the distributed systems in which modules

are connected to each other through a network and continuously reporting their status

changes like busyness, network capacity, battery or memory level. (Hallsteinsen, Stav,

Solberg, & Floch, 2006). MADAM Approach applies DPSL methodologies and

provides an adaptation platform to sense the context changes during runtime. This

platform matches the best variants with context changes to reconfigure the system and

fulfill adaptation.

MADAM's adaptation platform consists of different parts (See Figure 9). Core module

provides services for Component, Resources and Instance Management. Component

management provides controlling mechanisms for the product components'

deployment for initial time or during run time. Instance Management offers an

interface to control the instances of components’ life cycle like initialization, attribute

value binding, start or stop. Resource management provides monitoring and access

mechanism for resources of the system components. Context manager is one of the

most important modules of the platform. It always monitors the system, tries to

understand the contextual changes that lead to reconfiguration and stores them using

Context sensors. These context changes are passed to Adaptation Manager and it

examines them if there is a need for reconfiguration. To determine the variants that

may be affected by these changes, Planner is used. When the adaptation need is

finalized, Configurator reconfigures the application during time.

24

Figure 9 MADAM Adaptation Platform (Hallsteinsen, Stav, Solberg, & Floch, 2006)

b) Model Based Reconfiguration Engine

Model Based Reconfiguration Engine (MoRE) is another approach to capture the

context changes during lifecycle of pervasive systems and reflect these changes to

current configuration of them. The approach is developed on smart home case study

(Cetina, Giner, Fons, & Pelechano, 2009). As a first step, MoRE monitors the changes

of devices on smart home and looks for architectural change necessities according to

the conditions and corresponding resolutions (configuration). If there is need for a

change on the system, reconfiguration plan is prepared. This plan contains actions to

adopt current architecture to the needed one and check for consistency between

models and resulting configuration is done (See Figure 10). For example, in home

detection mechanism of smart home, the system monitors the home continuously and

25

when the owner leaves the home, movement sensors are activated, and their status are

watched continuously through communication channels.

Figure 10 Model Based Reconfiguration Engine (Cetina, Giner, Fons, & Pelechano, 2009)

MoRE is developed on top of OSGi framework and uses JAVA dynamic capabilities

to realize the dynamic reconfiguration. It identifies reconfiguration actions under three

different group. First group is Component related actions which are activating or

deactivating components of system without restarting it. OSGi infrastructure is used

to accomplish component install, start, stop or uninstall. Once a component is

activated on the system, Channel actions are fulfilled under the second group of

actions. Channels actions connect the activated component system by using OSGi

Wire class which adopts publish subscribe pattern. Lastly, Model actions are carried

out by reflecting architectural changes to feature model of the system (Cetina, Giner,

Fons, & Pelechano, 2009).

26

c) Models@runtime

Models@runtime is an approach to leverage model driven software engineering in

such a way that these models can be adapted to changing execution environments.

Models@runtime aims to create methodologies to identify adaptation needs of

software models at runtime environment and adjust them to these changes without or

with very little human intervention (Blair, Bencomo, & B. France, 2009).

Figure 11 Models@runtime Architecture (Morin, Barais, Jezequel, Fleurey, & Solberg, 2009)

Models@runtime tries to build Dynamically Adaptive Systems (DAS) by identifying

goals and behaviors of their components. To build these systems, Models@runtime

advises to develop models that is abstract enough to dynamically evolve during

execution time of the system. (Morin, Barais, Jezequel, Fleurey, & Solberg, 2009)

27

Figure 11 depicts the three-layered runtime architecture including DiVAStudioOnline,

CasualConnection and BusinessArchitecture. While BusinessArchitecture layer is

application specific, CasualConnection layer is platform specific and listens runtime

events and updates current context accordingly by also using architecture. Then Goal

Based Reasoning Engine determines the feature list to be activated. Aspect Model

Weaver of DiVAStudioOnline Layer chooses to corresponding aspects for selected

features to generate the resulting architectural model. Configuration Checker is

responsible for validating resulting configuration after aspect weaving is completed.

If the configuration is valid then Configuration Manager on CasualConnection layer

create components, binds them to system and handles active ones also by creating

reconfiguration commands (Morin, Barais, Jezequel, Fleurey, & Solberg, 2009)

29

CHAPTER 3

3. FEATURE MODEL OF THE REMOTE MONITORING SYSTEM

3.1. Summary

This chapter presents the commonality and variability analysis for our remote

monitoring management (RMM) system for computer-based systems. The feature

Modeling technique has been chosen to express the variation points of the system. In

the first part, feature building by considering problem space and solution space

dimensions is discussed. In the following part, the new concept of Dynamic Feature

Attribute is introduced.

3.2. Feature Modeling of RMM System

In the RMM systems, management involves monitoring of workstations and collecting

the monitoring outputs. Therefore, determination of monitors according to the profile

of clients is the initial step of system development. Management of clients is out of

the scope of this study and after this point, study will be focusing on the Remote

Monitoring of workstations, however, the system will continue to be referred to as

RMM to ensure consistency. For the Commonality and Variability analysis of RMM,

which is the building block of DSPLs, we adopt the aspect and viewpoint-oriented

approach introduced by Kyo C. Kang and Hyesun Lee in (Capilla, Bosch, & Kyo-

Chul, 2013). C&V analysis of a product line can be modeled in many ways based on

different viewpoints adhering to the principle of separation of concerns. In the problem

space, user goals and objectives, required quality attributes, and product usage

contexts are typically modeled in product line engineering. In the solution space, C&V

is modeled for the functional dimension (i.e. capabilities, services), the operating

environmental dimension (e.g. operating system, middleware), and the design

dimension (e.g. domain technologies).

30

Problem Space Dimension:

Some variability points are derived from the goals that are addressed by different

assets of a software product line. These goals shape the product features and the

variability model of product line in return. From this point of view, it is useful to

identify following concepts for C&V of RMM systems:

• The goal: Enable IT staff with a remote monitoring and management system

for a large group of workstations.

• Usage Context: Remote Monitoring and Management system will be available

for various operating systems and it will be working as a background task,

without interrupting the end user. It should enable IT technician to configure

RMM for different type of user groups as well as individual users.

• Performance Attribute: RMM must be functioning for up to 2000 online

clients at a time.

Solution Space Dimension:

• Capabilities: Clients can have different profiles in accordance with the several

categories such as Resource Utilization, Security, Performance and Energy.

According to the profile applied to a client workstation, different monitors are

dynamically loaded or unloaded at run time.

• Operating Environment: Windows (minimum supporting version: XP)

In the light of above requirements especially solution space dimension - capabilities

related ones, a feature dictionary is constructed (See Table 1). This dictionary presents

the detailed information about all possible abstract and concrete features, optional and

mandatory features and constraints. These features are mapped to only functional

requirements of RMM system. Non-functional requirements including operational

environment related ones are out of scope and will be provided as future work.

31

Table 1 Feature Dictionary

Feature Definition

Energy This optional feature is the last of four main abstract features of

the RMM. It has one child feature: Idle State Monitor. (See

Figure 13)

Idle State Monitor It is a concrete feature that monitors the idle state of the system.

It continuously checks the indicators of idle state; whether the

screen protector is active, an input user is present, or the mouse

and the keyboard are not used for a certain period. It reports the

idle state changes to RMM. It has only common “ID” attribute

(See 3.3)

Security This feature is the second of four main abstract features of the

RMM. This optional feature aims to detect security

vulnerabilities on computer systems. It has three child features:

Access Restriction, Malware Detection, Intrusion Detection.

(See Figure 14)

Access Restriction It is an abstract feature to watch computer drivers with restricted

access to drivers. New Device Blocked and CD/DVD Detection

Monitors are concrete children. When Access Restriction is

activated, one of these features must also be activated.

New Device Blocked Monitor This feature continuously monitors new device blocking events

reported by antivirus programs. It has only common “ID”

attribute (See 3.3) If antivirus detects and blocks a new device, it

is reported to RMM immediately.

CD/DVD Detection Monitor This feature continuously monitors the CD/DVD drive. It has

only common “ID” attribute (See 3.3) For example, if a DVD is

inserted to computer, it is reported to RMM.

Malware Detection This is an abstract feature to monitor the malware attacks to

computer systems. When Security feature is activated, this

feature must also be activated. Two concrete child features;

Malware Handled and Unknown Application Running (UAR)

Monitors can be alternatively active in RMM.

Malware Handled Monitor This concrete feature monitors the malware handled events

generated by antivirus programs and reports the issue to RMM

immediately. It has only common “ID” attribute (See 3.3)

Unknown Application Running

Monitor
This concrete feature monitors unknown applications that has an

expired certificate or no certificate and reports the security

vulnerability to RMM. Event Log Monitor must also be activated

32

when this feature is activated. It has only common “ID” attribute

(See 3.3)

Intrusion Detection Monitor This feature is an abstract feature to detect the unauthorized entry

to the system. Intrusion Detection Monitor must be activated

when Security feature is activated. At least one of its five

concrete children, namely, Firewall Actions, Network

bandwidth, TCP, Ping and HIPS Monitors, must also be

activated.

Firewall Actions Monitor This concrete feature monitors the firewall actions. Network

Bandwidth Monitor is required when this feature is activated. It

contains following attributes other than common “ID” attribute

(See 3.3):

• “Action Type” attribute (Blocked, Allowed, Asked and

Blocked or Asked and Allowed)

• “Rule” attribute containing “Number Value” and a

“Relational Operator” (greater than, equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if number of actions with given action type reaches

the number value within a given interval, this value and action

type is reported to RMM.

Network Bandwidth Monitor This feature monitors the network bandwidth. It contains

following attributes other than common “ID” attribute (See 3.3):

• “Rule” attribute containing “Threshold for Network

Bandwidth Usage” and a “Relational Operator”

(greater than, equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if network bandwidth usage becomes greater than

the threshold value during the given interval, network bandwidth

usage is reported to RMM immediately.

Ping Monitor This feature monitors a given host via ping method. It contains

following attributes other than common “ID” attribute (See 3.3):

• “Rule” attribute containing “Host Name” and a “Ping

Condition” (up or down)

• “Interval” attribute used for duration for monitoring.

For example, if a given host (URL) is down for given interval,

the packet loss is reported to RMM immediately.

TCP Monitor This feature monitors the specified TCP Port of host at the

specified frequency. It contains following attributes other than

common “ID” attribute (See 3.3):

• “Rule” attribute containing “Host Name”, “Port” and a

“TCP Status” (open or closed)

• “Interval” attribute used for duration for monitoring.

33

For example, if requested port of a host is closed during the given

interval, it is reported to RMM together with the status.

Host Intrusion Prevention

System (HIPS) Events Monitor
This feature monitors the HIPS events generated by antivirus

program. It contains following attributes other than common

“ID” attribute (See 3.3):

• “Intrusion Type” attribute (Blocked, Allowed, Asked

and Blocked or Asked and Allowed)

• “Rule” attribute containing “Number Value” and a

“Relational Operator” (greater than, equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if number of HIPS events with given intrusion type

reaches the number value within a given interval, this value and

intrusion type is reported to RMM as a vulnerability.

Performance This mandatory feature is the second of four main and abstract

features of the RMM system. It has four child features monitoring

the components of computer systems that can be a measure of

performance: CPU, Disk Space, RAM and Event Log Monitors.

These features are coexisting and at least one of them must be

active in RMM (See Figure 15).

CPU Monitor This feature watches the percentage of current CPU usage on the

workstation. It contains following attributes other than common

“ID” attribute (See 3.3):

• “Rule” attribute containing “Threshold for CPU Usage”

and a “Relational Operator” (greater than, equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if CPU Usage becomes greater than the threshold

value during the given interval, CPU usage is reported to RMM

immediately.

Disk Space Monitor This feature keeps track of the usage of disk space on the

workstation. It contains following attributes other than common

“ID” attribute (See 3.3):

• “Disk Name” attribute used to identify the disk to be

monitored

• “Rule” attribute containing “Threshold for Left Disk

Space” and a “Relational Operator” (greater than,

equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if Disk space becomes less than the threshold value

during the given interval, left disk space is reported to RMM

immediately.

34

RAM Monitor This feature keeps track of RAM usage on the workstation. It

contains following attributes other than common “ID” attribute

(See 3.3):

• “Rule” attribute containing “Threshold for RAM

Usage” and a “Relational Operator” (greater than,

equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if RAM Usage becomes greater than the threshold

value during the given interval, RAM usage is reported to RMM

immediately.

Event Log Monitor This feature monitors the Event Log component of Windows

Operating System. It contains following attributes other than

common “ID” attribute (See 3.3):

• “Event ID” attribute indicating an identifier for events

given by Windows

• “Rule” attribute containing “Event Level ID” and

“Event Source”

• “Interval” attribute used for duration for monitoring.

For example, if an event with ID 26 and source

WindowsUpdateClient is generated, this event is reported to

RMM immediately.

Resource Utilization This mandatory feature is the first of four main abstract features

of the RMM. It has 4 different child features watching the

different sources of computer systems: Folder Size, File Size,

Process and Service Monitors. Resource Utilization feature is

must for RMM, and the system must have at least one child

feature of it (See Figure 16).

Process Monitor This feature continuously watches a predefined process. It

contains following attributes other than common “ID” attribute

(See 3.3):

• “Process Name” attribute identifying the process to be

watched.

• “Process Status” attribute identifying monitoring

condition (on or off).

For example, if the state of given process becomes on/off, status

is reported to RMM immediately.

Service Monitor This feature continuously watches a predefined service. It

contains following attributes other than common “ID” attribute

(See 3.3):

• “Service Name” attribute identifying the Windows

service to be watched.

• “Service Status” attribute identifying monitoring

condition (on or off).

35

For example, if the state of given service becomes on/off, status

is reported to RMM immediately.

Folder Size Monitor This feature continuously watches the size of the predefined

folder. It contains following attributes other than common “ID”

attribute (See 3.3):

• “Folder Path” used to identify folder to be monitored.

• “Rule” attribute containing “Threshold for Folder Size”

and a “Relational Operator” (greater than, equals, etc.)

• “Interval” attribute used for duration for monitoring

For example, if the size of folder becomes greater than the

threshold value during the given interval, folder size is reported

to RMM immediately.

File Size Monitor This feature continuously watches the size of predefined file. It

contains following attributes other than common “ID” attribute

(See 3.3):

• “File Path” used to identify file to be monitored.

• “Rule” attribute containing “Threshold for Folder

Size” and a “Relational Operator” (greater than,

equals, etc.)

• “Interval” attribute used for duration for monitoring.

For example, if the size of file becomes greater than the

threshold value during the given interval, file size is reported to

RMM immediately.

Figure 12 shows the Remote Monitoring System Feature Model by using the Extended

Feature Modeling approach (Benavides, Trinidad, & Ruiz-Cortes, 2005). It depicts the

cross-tree relationships between the monitors defined on dictionary and the attributes

of these features. The model and dictionary reflect only functional dimension of

common and variable points belonging to RMM system, and other dimensions are out

of the scope of this thesis. Every monitor depicted in the model represents a feature of

the RMM system. The activation and deactivation of these features determine the

current configuration of the system. For some product lines there may exist potentially

conflicting or dependent features and RMM system modeled in this study also has

these kinds of features.

36

Following are interrelationships between the features:

➢ When Firewall Actions Monitor is chosen by IT manager for this client,

Network Bandwidth Monitor is required and must also be activated to control

the injections.

➢ Because Malware affections means that possibly workstation user is online

and there is an active network traffic over computer, RMM system excludes

the Idle State Monitor when Malware Detection Monitor is active.

➢ Unknown Application Running Monitor requires Event Log Monitoring

because this monitor needs event information created by applications.

Cloned Features of RMM:

RMM system allows IT managers to create same monitor with different rule

definitions for multiple times and to deploy all of them to the same workstation. For

example, IT manager can define two Service Monitor with following rules:

Service Name: wuaserv Service Status: On

Service Name: Aruva Service Service Status: Off

To create such monitors, RMM system allows cloneable features. Every feature has

an ID attribute and this attribute indicates the number of each clone of the same

monitor. Therefore, it can be said that RMM Feature Model adopts also the Cardinality

Based Feature Modeling approach. As it is shown in the Figure 12, other than Event

Log Monitor, the number of clones is not limited with a certain number. This number

can be defined during application engineering phase by the implementer. Therefore,

only Event Log Monitor cardinality is depicted on the model.

RMM system feature model also has two constrains:

➢ While child feature cardinality is 0 to n, Event Log Monitor can exist up to 8

instances at the same time.

➢ For a selected configuration, total CPU usage of features cannot exceed 70%.

37

Figure 12 RMM Feature Model

38

Figure 13 Energy Subtree of RMM Feature Model

Figure 14 Security Subtree of RMM Feature Model

39

Figure 15 Performance Subtree of RMM Feature Model

Figure 16 Resource Utilization Subtree of RMM Feature Model

40

3.3. Feature attributes and Extra Functional Features

Feature Model of the RMM system defined on this study adopts Extended Feature

Modeling technique which provides attribute and extra-functional feature definitions.

Attributes and these extra functional feature definitions had been given to express the

quality related requirements of product families (Benavides, Trinidad, & Ruiz-Cortes,

2005).

Common Attributes:

• ID: Every child feature has ID attribute taking value from 1 to n indicating

feature identifier. As it is stated before on this chapter, its value is incremented

sequentially for every clone of the monitor. “n” can be defined on application

engineering / development phase.

• Interval: This attribute is used for duration and taking value between 1 to

MAX which is defined during application development.

• Rule: This attribute is shared by most of the child features. Rule attribute

identifies the monitoring details, for example Folder Size Monitor Rule

contains Threshold for Folder Size and Relational Operator (greater than,

equals, etc.) parameters.

Table 1 gives the specifications for the other attributes specific to child features. The

restrictions defined on constrains previously on this chapter, but it is better to explain

them in detail. Our model has following extra-functional features:

• Event Log Monitor.ID < 8: meaning there can exist maximum 7 Event Log

Monitor at a time.

• Parent Feature CPU usage = Sum of Child Features:

e.g. Malware Detection.CPU Usage = malware Handled Monitor.CPU Usage

+ UAR Monitor.CPU Usage

41

• Total CPU Usage of active features must not exceed 70 percentage.

3.4. A New Concept: Dynamic Feature Attribute

All feature attributes mentioned on this study is static and their values can be

determined before deployment time except one attribute: CPU Usage. Current

attribute definition given by Benavides et al meets the requirement of assigning a static

value to attributes during domain or application engineering phases, or even at

deployment time, but for CPU Usage attribute, it is nearly impossible to determine

before execution of product. The measurement of CPU Usage of an active monitoring

may be affected by computers’ hardware specifications, operating system or other

instant running applications. The same monitor’s CPU Usage can even vary on the

same computer during its life cycle.

Figure 17 Tracking System Feature Model with Dynamic Attributes

Target Tracking system, whose feature model is given Figure 17 can be shown as

another example. This system is a like turret carrying a weapon to track and then hit a

specific target. It can follow a static target or moving target with 2D and 3D planes.

When 2D moving target tracking feature is activated, the system needs target ID, its

location on 2D plane and its velocity. TargetID attribute is a static attribute defined

early by the user operating the system. However, 2D location and velocity attributes

cannot be defined statically before application deployment time since they are

42

dynamic and change over time. These variable values are continuously measured by a

different system having thermal cameras and fed to the system in real time.

Such feature attributes whose value could only be determined during execution time

and changing during feature’s life cycle can be named as Dynamic Feature Attributes.

Such attributes seem more suitable to use on Dynamic Software Product Lines,

because DSPLs address to the system whose requirements, components and use cases

can vary during the life cycle of the product. The core of DSPL Engineering is

understanding these runtime changes during the execution time and adopt the product

accordingly. Therefore, dynamic attributes can be regarded as a component changes

that must be understood during runtime and the system can be reconfigured according

to its value.

Challenges About Dynamic Feature Models

Unlike static feature attributes whose values can be set during application engineering

phase of SPL Engineering, dynamic attributes cannot be statically set to a value before

deployment of product. While, this characteristic of dynamic feature attribute is good

for nonfunctional requirements with varying values, it also leads to some drawbacks.

• Global Constraint Problem: Feature models can have global constraints

affected by the attribute values of activated features. For example, RMM

Feature Model has a global constraint as follows: “Total CPU Usage of active

features must not exceed 70 percentage”. Because CPU usage measurement

is changing over time for lifetime of a monitor, it is challenging to calculate

total CPU Usage of activated monitors.

• Extra Functional Feature Problem: Parent feature attribute values can be

calculated by sum of children attribute values as an example of extra

functional features. However, dynamic attributes also cause problem for such

a calculation because dynamically changing values of children feature

attributes leads to varying values for parent feature attributes.

43

This study contributes to DSPL methodology with a new concept Dynamic Feature

Attributes definition but presented study will not manage them for the challenges

stated above. Instead, these attributes will not be considered during framework design

and will not be handled on the case study implementation. Dynamic feature attribute

managing during the life cycle of DSPL products will be presented as future work.

45

CHAPTER 4

4. DETAILED DESIGN OF DYNAMIC SOFTWARE PRODUCT LINE

4.1. Summary

This chapter presents the detailed design for Dynamic Software Product Line of

Remote Monitoring of Computer Systems. While first part explains the architectural

design and implemented classes and packages particularly, the second part enlightens

the adoption of context awareness and dynamic binding mechanisms.

4.2. Architecture

Remote Monitoring application as IT Security Management tool consists of two parts;

one of which is the Portal assisting IT personnel / MSPs to create and manage

monitors and the other is the Agent controlling client workstations according to the

profiles assigned to them. The DSPL presented in this study provides an infrastructure

to implement the Agent component of Remote Monitoring systems and

implementation of ITSM portal is out of scope for this study.

In Remote Monitoring and Management Systems, varying Profiles are created and

deployed to set of client workstations to control and manage them remotely by MSPs.

For example, for a group of users who must work under high security, an MSP can

form a Profile including following monitors:

• From Security Related Monitors: Malware Handled Monitor, Firewall

Actions Monitor, HIPS Event Monitor

• From Performance Related Monitors: CPU Monitor with 70% threshold,

RAM Monitor with 70% threshold with 5 min. duration.

46

Each monitor defined on this profile corresponds to a child feature on RMM Feature

Model. Therefore, a profile can be directly mapped to a configuration including set of

active features. This close relationship facilitates the determination of the features

corresponding to the monitors in the profile and the activation of them dynamically

during runtime. DSPL for RMM Systems adopts the component based architectural

style. Monitors are designed as cloneable and reusable software components referred

from RMM feature model.

Figure 18 shows the use of the system during the general flow of the remote

monitoring. Flow starts with the profile deployment by MSP (Step 1), then needed

configuration -set of features to be activated- is interpreted according to the new

profile (Step 2). The new configuration must be checked by Configuration Manager

to ensure that it conforms to the feature model (Step 3). After this verification, the

monitoring components inferred from the features are set up (Step 4) and

corresponding Qt plugins (The Qt Company, 2018) are loaded at runtime (Step 5).

After that point plugins start to monitor the workstation with respect to the rules

defined by MSP (Step 6).

Figure 18 Component Based Architecture of DSPL for RMM of Computer Systems

47

4.2.1. Core Classes – Plugins

The monitor is realized as a dynamically reconfigurable component on the system.

When there is need for a new feature activation, corresponding component is loaded

at runtime. As stated on 3.2, RMM Feature Model has cloned features; therefore, the

monitors are also designed as cloneable and a new monitor instance whose attributes

are bound to different values can be deployed by several times. To provide this

functionality, Factory Design Pattern is used (See Figure 19). Every monitor plugin is

implemented as a factory to create multiple instances of same monitor. Therefore

“Monitor – Plugin – Factory” trio is used commonly for the class and interface

naming.

Figure 19 Plugin Factory Design

RmmInterface

QObject

MonitorPluginInterface

PluginFactoryInterface

+ createInstance(): RMM::MonitorPluginInterface*

QObject

CpuMonitor::CpuMonitorFactoryPlugin

+ createInstance(): MonitorPluginInterface*

WorkerClass : typename

MonitorPlugin

CPUMonitor

Worker

48

Figure 20 Core Classes - Plugins

c
la

s
s

 R
M

M
_

F
ra

m
e

w
o

rk
_

C
o

re
_

C
la

s
s

e
s

_
P

lu
g

in
_

A
rc

h
it

e
c

tu
re

P
lu

g
in

F
ac

to
ry

In
te

rf
ac

e

+

cr
ea

te
In

st
an

ce
()

: R
M

M
::M

on
ito

rP
lu

gi
nI

nt
er

fa
ce

*

+

ge
tN

am
e(

):
 Q

S
tr

in
g

+

ge
tP

lu
gi

nT
yp

e(
):

 R
M

M
::R

m
m

P
lu

gi
nT

yp
e

+

~
P

lu
gi

nF
ac

to
ry

In
te

rf
ac

e(
)

P

lu
gi

nF
ac

to
ry

In
te

rfa
ce

()

+

re
le

as
eI

ns
ta

nc
e(

R
M

M
::M

on
ito

rP
lu

gi
nI

nt
er

fa
ce

*)
: v

oi
d

R
m

m
In

te
rf

ac
e

Q
O

bj
ec

t

M
o

n
it

o
rP

lu
g

in
In

te
rf

ac
e

+

ge
tM

on
ito

rI
D

()
: Q

S
tr

in
g

+

ge
tN

am
e(

):
 Q

S
tr

in
g

+

ge
tP

lu
gi

nT
yp

e(
):

 R
m

m
P

lu
gi

nT
yp

e

+

in
it(

):
 R

m
m

S
ta

tu
s

+

lo
ad

()
: v

oi
d

+

~
M

on
ito

rP
lu

gi
nI

nt
er

fa
ce

()

M

on
ito

rP
lu

gi
nI

nt
er

fa
ce

(Q
O

bj
ec

t*
)

+

se
tM

on
ito

rI
D

(Q
S

tr
in

g&
):

 v
oi

d

+

se
tM

on
ito

rM
es

sa
ge

(R
M

M
::M

on
ito

rM
es

sa
ge

*)
: v

oi
d

+

si
gn

al
M

on
ito

rD
at

a(
Q

S
tri

ng
):

 v
oi

d

+

sl
ot

M
on

ito
rD

at
a(

Q
S

tri
ng

):
 v

oi
d

+

st
ar

t(
):

 v
oi

d

+

st
op

()
: v

oi
d

W
o

rk
er

C
la

ss
 :

 t
yp

en
am

e

M
o

n
it

o
rP

lu
g

in

-
m

M
on

ito
rID

: Q
S

tri
ng

-
m

N
am

e:
 Q

S
tri

ng

-
m

P
lu

gi
nT

yp
e:

 R
m

m
P

lu
gi

nT
yp

e

-
m

W
or

ke
rIm

pl
: W

or
ke

rC
la

ss
P

tr

-
m

W
or

ke
rT

hr
ea

d:
 Q

T
hr

ea
d

+

ge
tM

on
ito

rID
()

: Q
S

tri
ng

+

ge
tN

am
e(

):
 Q

S
tri

ng

+

ge
tP

lu
gi

nT
yp

e(
):

 R
m

m
P

lu
gi

nT
yp

e

+

in
it(

):
 R

m
m

S
ta

tu
s

+

lo
ad

()
: v

oi
d

+

M
on

ito
rP

lu
gi

n(
Q

S
tri

ng
, R

m
m

P
lu

gi
nT

yp
e)

+

~
M

on
ito

rP
lu

gi
n(

)

+

se
tM

on
ito

rID
(Q

S
tri

ng
&

):
 v

oi
d

+

se
tM

on
ito

rM
es

sa
ge

(R
M

M
::M

on
ito

rM
es

sa
ge

*)
: v

oi
d

+

st
ar

t()
: v

oi
d

+

st
op

()
: v

oi
d

M
o

n
it

o
rC

la
ss

 :
 t

yp
en

am
e

M
o

n
it

o
rF

ac
to

ry

m

P
lu

gi
nM

ap
: F

ac
to

ry
M

ap

+

cr
ea

te
P

lu
gi

n(
Q

S
tri

ng
&

, R
m

m
P

lu
gi

nT
yp

e)
: M

on
ito

rC
la

ss
P

tr

+

M
on

ito
rF

ac
to

ry
()

+

~
M

on
ito

rF
ac

to
ry

()

+

re
le

as
eP

lu
gi

n(
M

on
ito

rC
la

ss
*)

: v
oi

d

Q
O

bj
ec

t

C
p

u
M

o
n

it
o

r:
:C

p
u

M
o

n
it

o
rF

ac
to

ry
P

lu
g

in

-
m

F
ac

to
ry

: M
on

ito
rF

ac
to

ry
<

C
pu

M
on

ito
rW

or
ke

rT
yp

e>

-
m

N
am

e:
 Q

S
tri

ng

-
m

P
lu

gi
nT

yp
e:

 R
m

m
P

lu
gi

nT
yp

e

+

C
pu

M
on

ito
rF

ac
to

ry
P

lu
gi

n(
)

+

~
C

pu
M

on
ito

rF
ac

to
ry

P
lu

gi
n(

)

+

cr
ea

te
In

st
an

ce
()

: M
on

ito
rP

lu
gi

nI
nt

er
fa

ce
*

+

ge
tN

am
e(

):
 Q

S
tri

ng

+

ge
tP

lu
gi

nT
yp

e(
):

 R
m

m
P

lu
gi

nT
yp

e

-
Q

_I
N

T
E

R
F

A
C

E
S

(P
lu

gi
nF

ac
to

ry
In

te
rfa

ce
)

-
Q

_P
LU

G
IN

_M
E

T
A

D
A

T
A

(II
D

)

+

re
le

as
eI

ns
ta

nc
e(

M
on

ito
rP

lu
gi

nI
nt

er
fa

ce
*)

: v
oi

d

G
en

er
ic

 p
u

re

vi
rt

u
al

in
te

rf
ac

e
fo

r

Q
t

P
lu

g
in

D
ef

in
it

io
n

IP
lu

g
in

F
ac

to
ry

-
m

F
ac

to
ry

M
ap

: P
lu

gi
nM

ap

-
m

P
lu

gi
nL

oa
de

r:
 IP

lu
gi

nL
oa

de
rP

tr

+

cr
ea

te
P

lu
gi

nI
ns

ta
nc

e(
Q

S
tri

ng
&

):
 M

on
ito

rP
lu

gi
nI

nt
er

fa
ce

*

+

ha
sP

lu
gi

nT
yp

e(
R

m
m

P
lu

gi
nT

yp
e)

: b
oo

l {
qu

er
y}

+

IP
lu

gi
nF

ac
to

ry
(Q

S
tri

ng
&

)

+

~
IP

lu
gi

nF
ac

to
ry

()

+

re
le

as
eP

lu
gi

nI
ns

ta
nc

e(
M

on
ito

rP
lu

gi
nI

nt
er

fa
ce

*)
: R

m
m

S
ta

tu
s

IP
lu

g
in

L
o

ad
er

-
m

P
lu

gi
nM

ap
: P

lu
gi

nM
ap

-
m

P
lu

gi
nN

am
eT

yp
eM

ap
: P

lu
gi

nN
am

eT
yp

eM
ap

-
m

P
lu

gi
nP

at
h:

 Q
S

tri
ng

+

ge
tP

lu
gi

nF
ac

to
ry

In
te

rfa
ce

(R
M

M
::R

m
m

P
lu

gi
nT

yp
e)

: P
lu

gi
nF

ac
to

ry
In

te
rfa

ce
*

+

IP
lu

gi
nL

oa
de

r(
Q

S
tri

ng
&

)

+

~
IP

lu
gi

nL
oa

de
r(

)

-
is

P
lu

gi
nL

oa
de

d(
R

M
M

::R
m

m
P

lu
gi

nT
yp

e)
: b

oo
l

-
is

P
lu

gi
nL

oa
de

d(
Q

S
tri

ng
):

 b
oo

l

+

lo
ad

A
llP

lu
gi

ns
()

: b
oo

l

+

lo
ad

S
pe

ci
fic

P
lu

gi
n(

Q
S

tri
ng

&
):

 R
M

M
::R

m
m

P
lu

gi
nT

yp
e

+

un
lo

ad
A

llP
lu

gi
ns

()
: b

oo
l

+

un
lo

ad
S

pe
ci

fic
P

lu
gi

n(
Q

S
tri

ng
&

):
 b

oo
l

sh
ar

ed
_p

tr

«t
yp

ed
ef

»

IP
lu

g
in

L
o

ad
er

P
tr

E
ve

nt
O

bj
ec

tIn
te

rf
ac

e

Q
O

bj
ec

t

M
o

n
it

o
rW

o
rk

er

m

E
ve

nt
S

ta
tu

s:
 R

m
m

P
ro

to
M

es
sa

ge
::R

m
m

S
ta

tu
s

m

M
on

ito
rM

es
sa

ge
: R

M
M

::M
on

ito
rM

es
sa

ge
*

m

R
un

ni
ng

T
yp

e:
 R

m
m

T
yp

es
::M

on
ito

rR
un

ni
ng

T
yp

e:
:M

on
ito

rR
un

ni
ng

E
nu

m

m

S
am

pl
eR

at
e:

 in
t

m

S
am

pl
eT

im
er

: Q
T

im
er

*

fin

is
h(

):
 v

oi
d

+

ge
tE

ve
nt

T
im

e(
):

 R
m

m
P

ro
to

M
es

sa
ge

::M
sg

E
ve

nt
T

im
e

+

M
on

ito
rW

or
ke

r(
Q

O
bj

ec
t*

, i
nt

)

+

~
M

on
ito

rW
or

ke
r(

)

+

se
tM

on
ito

rM
es

sa
ge

(R
M

M
::M

on
ito

rM
es

sa
ge

*)
: v

oi
d

+

si
gn

al
E

ve
nt

(R
M

M
::M

on
ito

rE
ve

nt
*)

: v
oi

d

+

si
gn

al
M

on
ito

rD
at

a(
Q

S
tri

ng
):

 v
oi

d

+

si
gn

al
T

rig
ge

rO
nc

e(
):

 v
oi

d

+

sl
ot

O
nE

ve
nt

C
ap

tu
re

d(
R

m
m

T
yp

es
::E

ve
nt

Lo
gE

ve
nt

P
tr

):
 v

oi
d

+

sl
ot

T
im

eO
ut

()
: v

oi
d

st

ar
t()

: v
oi

d

C
p

u
M

o
n

it
o

r:
:C

p
u

M
o

n
it

o
rW

o
rk

er

-
m

C
pu

Lo
ad

Im
pl

: P
ro

ce
ss

or
Lo

ad
P

tr

-
m

C
pu

M
on

ito
rD

at
a:

 R
m

m
P

ro
to

M
es

sa
ge

::M
sg

C
pu

M
on

ito
rD

at
a

-
m

C
P

U
M

on
ito

rM
es

sa
ge

: R
M

M
::C

P
U

M
on

ito
rM

es
sa

ge
*

-
m

C
ur

re
nt

A
le

rtD
ur

at
io

n:
 in

t

+

C
pu

M
on

ito
rW

or
ke

r(
Q

O
bj

ec
t*

)

+

~
C

pu
M

on
ito

rW
or

ke
r(

)

+

in
it(

):
 R

m
m

S
ta

tu
s

+

sl
ot

F
in

is
h(

):
 v

oi
d

+

sl
ot

S
ta

rt(
):

 v
oi

d

+

sl
ot

T
im

eO
ut

()
: v

oi
d

«t
yp

ed
ef

»

C
p

u
M

o
n

it
o

r:
:

C
p

u
M

o
n

it
o

rW
o

rk
er

T
yp

e

sh
ar

ed
_p

tr

«t
yp

ed
ef

»

IP
lu

g
in

F
ac

to
ry

P
tr

«s
tru

ct
»

M
o

n
it

o
rE

ve
n

t

+

ev
en

tT
im

e:
 Q

D
at

eT
im

e

+

m
on

ito
rD

at
a:

 Q
S

tri
ng

+

m
on

ito
rId

: Q
S

tri
ng

+

m
on

ito
rS

ta
tu

s:
 M

on
ito

rS
ta

tu
s

+

rm
m

P
lu

gi
nT

yp
e:

 R
m

m
P

lu
gi

nT
yp

e

E
ve

ry
 M

on
ito

r

W
or

ke
r

se
nd

s
a

si
gn

al

ne
ce

ss
ar

y

co
nd

iti
on

 is
 m

et

vi
a

M
o

n
it

o
r

E
ve

n
t

st
ru

ct

M
o

n
it

o
r_

P
lu

g
in

_M
es

sa
g

e_
A

rc
h

it
ec

tu
re

::

M
o

n
it

o
rM

es
sa

g
e

+

m
on

ito
rId

: Q
S

tri
ng

+

m
on

ito
rR

un
ni

ng
T

yp
e:

 R
m

m
M

on
ito

rR
un

ni
ng

T
yp

e

+

pl
ug

in
T

yp
e:

 R
m

m
P

lu
gi

nT
yp

e

+

M
on

ito
rM

es
sa

ge
()

+

M
on

ito
rM

es
sa

ge
(M

on
ito

rM
es

sa
ge

*)

+

~
M

on
ito

rM
es

sa
ge

()

«
u
s
e
»

<
 M

o
n
it
o

rC
la

s
s
-

>
C

p
u
M

o
n
it
o

rW
o

rk
e

rT
yp

e
 >

-
m

F
a

c
to

ry

<
 W

o
rk

e
rC

la
s
s
-

>
C

p
u
M

o
n
it
o

rW
o

rk
e

r
>

-
m

P
lu

g
in

L
o

a
d

e
r

+
m

M
o

n
it
o

rM
e

s
s
a

g
e

«
s
tr
u
c
t»

M
o

n
it
o

rE
ve

n
t

«
flo
w
»

c
re

a
te

s

«
u
s
e
»

49

Following core classes are presented by the study to implement dynamic loading

mechanism and dynamic reconfigurability on runtime in return, with the help of

extended Qt Application by “The Low-Level API” methodology (The Qt Company,

The Low-Level API: Extending Qt Applications, 2018). They are also depicted on

Figure 20 as UML class diagram.

• IPluginLoader, is the class whose responsibility is to provide Qt Plugin

loading and unloading mechanisms during runtime. It needs a folder path in

which plugin dll files are located as constructor argument. Single plugin with

a given name or bulk loading / unloading functionalities are available thanks

to QPluginLoader class (The Qt Company, QPluginLoader Class, 2018).

• IPluginFactory, is a class used as a factory to create an instance of a Monitor

Plugin Factory with a given “name” by using IPluginLoader class. It also has

a capability to release an already created instance by iterating through the

plugin map saved before.

• PluginFactoryInterface, is an interface with pure virtual functions,

implemented by plugins to be defined and loaded dynamically (See Figure 20).

This interface is needed to extend a Qt Application to detect and load plugins

during runtime with the help of QPluginLoader. This interface also informs Qt

meta object system about the plugin interface with following command:

Q_DECLARE_INTERFACE(PluginFactoryInterface, PLUGIN_INTERFACE_RUID)

• MonitorPluginInterface, is an interface implemented by MonitorPlugins.

The type of instances created by monitor factory plugins is

MonitorPluginInterface (See Figure 20).

• MonitorPlugin, is a template class with template parameter WorkerType.

This class has a member “mWorkerImpl” with type of WorkerType. It moves

50

mWorkerImpl qobject to a new qthread, starts it, transmits worker messages

to upper layers through Qt Signals and Slots mechanism (The Qt Company,

Signals & Slots, 2018), and stops it when it is necessary.

• MonitorFactory, is a template class with template parameter MonitorClass. It

is designed in such a way that, every specific plugin; for example, CPU

Monitor Plugin, will use this class by realizing MonitorClass as a

MonitorPlugin to fabricate cloned CPU Monitors. MonitorPlugin instances

are also bounded to a specific worker implementation, for example monitoring

CPU usage.

• MonitorWorker, is parent class for different monitoring worker

implementations. It contains common members for monitor status and monitor

rule.

51

4.2.2. Core Classes – Relationships

Every Qt plug-in generated by the DSPL is a monitor factory to create multiple

monitors of same feature, for example 3 CPU monitors with different thresholds. To

create a Qt Plugin, a generic interface with pure virtual functions as stated at Figure

21 should be provided. PluginFactoryInterface is presented for this purpose. This

interface provides generic functions to create multiple instances of corresponding

monitor. Every specific monitor factory like CpuMonitorFactoryPlugin,

RamMonitorFactoryPlugin, FileSizeMonitorFactoryPlugin etc. is derived from

PluginFactoryInterface.

Figure 21 PluginFactoryInterface Definition

52

Figure 22 Dynamic Plugin Loading During Runtime

IP
lu

g
in

L
o

ad
er

M
o

n
it

o
rP

lu
g

in
In

te
rf

ac
e

P
lu

g
in

F
ac

to
ry

In
te

rf
ac

e
M

o
n

it
o

rP
lu

g
in

s
w

it
h

d
if

fe
re

n
t

W
o

rk
er

 C
la

ss
es

im
p

le
m

en
ts

 t
h

is

in
te

rf
ac

e.

IP
lu

g
in

F
ac

to
ry

c
re

a
te

In
s
ta

n
c
e

()
:
R

M
M

::
M

o
n
it
o

rP
lu

g
in

In
te

rf
a

c
e

*

c
re

a
te

P
lu

g
in

In
s
ta

n
c
e

(p
lu

g
in

N
a

m
e

):
M

o
n
it
o

rP
lu

g
in

In
te

rf
a

c
e

*

lo
a

d
S

p
e

c
if
ic

P
lu

g
in

(p
lu

g
in

N
a

m
e

):
 R

M
M

::
R

m
m

P
lu

g
in

T
yp

e

g
e

tP
lu

g
in

F
a

c
to

ry
In

te
rf

a
c
e

(R
m

m
P

lu
g

in
T

yp
e

):
P

lu
g

in
F

a
c
to

ry
In

te
rf

a
c
e

*

53

Figure 22 depicts Qt Plugin loading mechanism used to load monitor factory plugins

independent from monitor type. For any type of monitor, IPluginFactory class’

createPluginInstance function is called with the pluginName parameter, and this

parameter is determined according to feature to be activated. IPluginFactory uses

IPluginLoader class instance to load the Qt plugin to memory. After load is

successfully done, PluginFactoryInterface instance is obtained. This object is then

used to create monitor instances with corresponding rule definitions.

Every specific factory plugin definition implementing PluginFactoryInterface should

also have a mFactory member with type of MonitorFactory. MonitorFactory is a

template class with typename MonitorClass. MonitorClass typename is replaced with

MonitorPlugin class at runtime to create different MonitorPlugins corresponding to

features. MonitorPlugin class is designed as template class with typename

WorkerClass. WorkerClass is bound to different workers like CPUMonitorWorker,

RAMMonitorWorker, etc. It means that different MonitorPlugins are created by

different workers bindings. For example, CPUMonitorFactoryPlugin (which is a Qt

plugin implementing PluginFactoryInterface) has a member variable mFactory in type

of MonitorFactory<MonitorPlugin<CpuMonitorWorker>>. All implementation

details are given during the implementations of workers, like CpuMonitorWorker.

This mechanism eases the new plugin writing process for application engineers,

because all other components like PluginFactoryInterface, MonitorFactory and

MonitorPlugin classes are reusable during the new plugin implementation. Only

worker specification is enough to create a new plugin.

After a monitor factory plugin is loaded to memory, then createInstance function is

called on this instance (See Figure 22). This function fabricates an object with the

given monitor type, which is derived from MonitorPluginInterface. For example,

when CPUMonitorFactoryPlugin is loaded dynamically, we have a factory to generate

a cloneable MonitorPlugin with CPU type. createInstance function defined on

54

PluginFactoryInterface is called from this loaded plugin, factory creates an instance

implementing MonitorPluginInterface.

MonitorPluginInterface provides application developers with an interface to init,

start or stop plugins. After start function is called, WorkerClass is moved to new

QThread and starts to monitor the computer asynchronously according to the given

rules. This process is essence of “dynamic plugin loading at runtime” infrastructure,

which enables application implementers with a dynamic reconfiguration mechanism.

After factory plugins for monitors corresponding the possible feature set are created,

they are ready to deploy to computer systems and can be plugged and played.

Monitor factory plugins implemented as Qt Plugins can also be unloaded during

runtime without restarting the applications. The unload mechanism provided by

the framework is presented on Figure 23. To release a loaded factory plugin,

IPluginFactory class’ releasePluginInstance function is called with plugin type

parameter. IPluginFactory uses IPluginLoader’s loadSpecificPlugin and

getPluginFactoryInterface functions to obtain the PluginFactoryInterface pointer for

the loaded factory plugin. After then, relaseInstance function is used to unload a Qt

plugin from memory. An application developer should make sure that all monitor

instances are killed before the unload of monitor factory plugin, because

IPluginFactory and IPluginLoader do not control this condition while unloading

process.

55

Figure 23 Dynamic Plugin Unloading During Runtime

IP
lu

g
in

L
o

ad
er

IP
lu

g
in

F
ac

to
ry

P
lu

g
in

F
ac

to
ry

In
te

rf
ac

e

re
le

a
s
e

In
s
ta

n
c
e

(R
M

M
::
M

o
n
it
o

rP
lu

g
in

In
te

rf
a

c
e

*)

re
le

a
s
e

P
lu

g
in

In
s
ta

n
c
e

(M
o

n
it
o

rP
lu

g
in

In
te

rf
a

c
e

*)
:

R
m

m
S

ta
tu

s

lo
a

d
S

p
e

c
if
ic

P
lu

g
in

(Q
S

tr
in

g
&

):
 R

M
M

::
R

m
m

P
lu

g
in

T
yp

e

g
e

tP
lu

g
in

F
a

c
to

ry
In

te
rf

a
c
e

(R
M

M
::
R

m
m

P
lu

g
in

T
yp

e
):

 P
lu

g
in

F
a

c
to

ry
In

te
rf

a
c
e

*

56

4.3. Context Awareness and Dynamic Binding Mechanisms

The set of active features make up the current configuration of RMM system. As it is

described on Figure 24, new profile deployment or modification on the already

deployed profiles are the triggers to create a new configuration and consequently a set

of active features. Whenever new profile is gathered by the RMM agent of client

workstation during execution of the system, reconfiguration is needed. However, after

new set of active features are determined, configuration validation by considering the

feature model of the product must be fulfilled. Besides that, during the silent

execution, some conditions that may affect the states of the features arise. For

example, an IT manager can define a profile in such a way that, whenever

NetworkBandwidth threshold exceeds 80% for 15 minutes, start FirewallActions

Monitor. This is another trigger for RMM system to start reconfiguration process,

however it is planned to be added as a future work.

Figure 24 RMM Activities

Optional

Profile
Deployment

Receive New
Profile

Create New
Feature Set

Validate
Configuration

Deploy
Monitors

Remove
Monitors

Receive
Monitor Status

Change on Active Monitor List Needed

Receive
Modified Profile

57

Our DSPL provides infrastructure to integrate reusable factory plugin components to

the product, as context changes occur during the runtime. Context changes in RMM

system means changes on profiles assigned to user groups as stated before. Sensing

such changes and deploying necessary monitoring mechanisms on the fly are called

context awareness and dynamic binding at runtime.

Figure 25 illustrates the IFeaturActivator, ConfigurationValidator, IPluginFactory and

IPluginLoader class relationships that are used for feature activation and deactivation

during runtime.

IFeatureActivator, is the component of the DSPL which is responsible to determine

the features that must be activated or deactivated conforming to the changes in profile

or client workstation modifications (results of the monitors as stated in the previous

example). It dynamically binds the necessary configuration to the running system by

passing a set of features to ConfigurationValidator component. This behavior of the

system is called as context awareness and self-adaptation on post deployment phase

of the product.

ConfigurationValidator, is the component that uses a feature model to validate the

state of product that will be passed. This component uses a validation algorithm

(Entekhabi, Karataş, & Oğuztüzün, October 2018), as a black box. Set of features that

is wanted to be activated, and deactivated are passed to ConfigurationValidator, along

with the current configuration. If validator returns success, it also provides only set of

features that must be activated. If it returns failure, an empty set is provided.

According to the result provided by ConfigurationValidator, IFeatureActivator

activates the necessary features. Figure 26 illustrates the feature activation process in

detail. Plugins corresponding to the features to be activated are loaded to memory by

using Dynamic Plugin Loading mechanism. Then monitor instances are created and

their workers are started to monitor the computer. This mechanism is an example of

dynamic binding features at runtime.

58

Figure 25 Core Classes - Feature Activation

IF
e

a
tu

re
A

c
ti

v
a

to
r

-
cu

rr
e

n
tC

o
n

fig
u

ra
tio

n
:

Q
L

is
t<

F
e

a
tu

re
>

-
m

C
o

n
fig

u
ra

tio
n

V
a

lid
a

to
r:

 C
o

n
fig

u
ra

tio
n

V
a

lid
a

to
r

#

m
P

lu
g

in
F

a
ct

o
ry

:
IP

lu
g

in
F

a
ct

o
ry

*

+

a
ct

iv
a

te
F

e
a

tu
re

s(
Q

L
is

t<
R

M
M

::
M

o
n

ito
rM

e
ss

a
g

e
*>

,
S

e
tIn

te
rf

a
ce

*)
:

vo
id

-
cr

e
a

te
F

e
a

tu
re

L
is

t(
Q

L
is

t<
R

M
M

::
M

o
n

ito
rM

e
ss

a
g

e
*>

,
Q

L
is

t<
F

e
a

tu
re

>
):

 b
o

o
l

+

d
e

a
ct

iv
a

te
F

e
a

tu
re

(M
o

n
ito

rP
lu

g
in

In
te

rf
a

ce
*)

:
vo

id

+

~
IF

e
a

tu
re

A
ct

iv
a

to
r(

)

#

IF
e

a
tu

re
A

ct
iv

a
to

r(
)

+

in
it(

):
 R

m
m

S
ta

tu
s

+

se
tP

lu
g

in
F

a
ct

o
ry

(I
P

lu
g

in
F

a
ct

o
ry

*)
:

vo
id

-
va

lid
a

te
N

e
w

C
o

n
fig

u
ra

tio
n

(Q
L

is
t<

F
e

a
tu

re
>

,
Q

L
is

t<
F

e
a

tu
re

>
):

 b
o

o
l«
st

ru
ct

»

F
e

a
tu

re

+

fe
a

tu
re

Id
:

Q
S

tr
in

g

+

ty
p

e
:

R
m

m
P

lu
g

in
T

yp
e

sh
a

re
d

_
p

tr

«
ty

p
e

d
e

f»

IF
e

a
tu

re
A

c
ti

v
a

to
rP

tr

C
o

n
fi

g
u

ra
ti

o
n

V
a

li
d

a
to

r

+

C
o

n
fig

u
ra

tio
n

V
a

lid
a

to
r(

)

+

~
C

o
n

fig
u

ra
tio

n
V

a
lid

a
to

r(
)

+

va
lid

a
te

C
o

n
fig

u
ra

tio
n

(Q
L

is
t<

R
M

M
::

F
e

a
tu

re
>

,
Q

L
is

t<
R

M
M

::
F

e
a

tu
re

>
,

Q
L

is
t<

R
M

M
::

F
e

a
tu

re
>

):
 b

o
o

l

IP
lu

g
in

F
a

c
to

ry

-
m

F
a

ct
o

ry
M

a
p

:
P

lu
g

in
M

a
p

-
m

P
lu

g
in

L
o

a
d

e
r:

 IP
lu

g
in

L
o

a
d

e
rP

tr

+

cr
e

a
te

P
lu

g
in

In
st

a
n

ce
(Q

S
tr

in
g

&
):

 M
o

n
ito

rP
lu

g
in

In
te

rf
a

ce
*

+

h
a

sP
lu

g
in

T
yp

e
(R

m
m

P
lu

g
in

T
yp

e
):

 b
o

o
l {

q
u

e
ry

}

+

IP
lu

g
in

F
a

ct
o

ry
(Q

S
tr

in
g

&
)

+

~
IP

lu
g

in
F

a
ct

o
ry

()

+

re
le

a
se

P
lu

g
in

In
st

a
n

ce
(M

o
n

ito
rP

lu
g

in
In

te
rf

a
ce

*)
:

R
m

m
S

ta
tu

s

S
e

tI
n

te
rf

a
c

e

#

m
E

ve
n

tO
b

je
ct

:
W

o
rk

e
rI

n
te

rf
a

ce
P

tr

#

m
E

ve
n

tT
h

re
a

d
:

Q
T

h
re

a
d

#

m
P

lu
g

in
M

a
p

:
P

lu
g

in
M

a
p

#

m
S

e
tId

:
Q

S
tr

in
g

+

a
d

d
Ite

m
(M

o
n

ito
rP

lu
g

in
In

te
rf

a
ce

*)
:

b
o

o
l

+

g
e

tP
lu

g
in

M
a

p
()

:
P

lu
g

in
M

a
p

&
 {

q
u

e
ry

}

+

g
e

tS
e

tID
()

:
Q

S
tr

in
g

+

in
it(

):
 v

o
id

+

ru
n

()
:

vo
id

+

~
S

e
tIn

te
rf

a
ce

()

#

S
e

tIn
te

rf
a

ce
(Q

S
tr

in
g

&
,

Q
S

tr
in

g
)

+

st
o

p
()

:
vo

id

IP
lu

g
in

L
o

a
d

e
r

-
m

P
lu

g
in

M
a

p
:

P
lu

g
in

M
a

p

-
m

P
lu

g
in

N
a

m
e

T
yp

e
M

a
p

:
P

lu
g

in
N

a
m

e
T

yp
e

M
a

p

-
m

P
lu

g
in

P
a

th
:

Q
S

tr
in

g

+

g
e

tP
lu

g
in

F
a

ct
o

ry
In

te
rf

a
ce

(R
M

M
::

R
m

m
P

lu
g

in
T

yp
e

):
 P

lu
g

in
F

a
ct

o
ry

In
te

rf
a

ce
*

+

IP
lu

g
in

L
o

a
d

e
r(

Q
S

tr
in

g
&

)

+

~
IP

lu
g

in
L

o
a

d
e

r(
)

-
is

P
lu

g
in

L
o

a
d

e
d

(R
M

M
::

R
m

m
P

lu
g

in
T

yp
e

):
 b

o
o

l

-
is

P
lu

g
in

L
o

a
d

e
d

(Q
S

tr
in

g
):

 b
o

o
l

+

lo
a

d
A

llP
lu

g
in

s(
):

 b
o

o
l

+

lo
a

d
S

p
e

ci
fic

P
lu

g
in

(Q
S

tr
in

g
&

):
 R

M
M

::
R

m
m

P
lu

g
in

T
yp

e

+

u
n

lo
a

d
A

llP
lu

g
in

s(
):

 b
o

o
l

+

u
n

lo
a

d
S

p
e

ci
fic

P
lu

g
in

(Q
S

tr
in

g
&

):
 b

o
o

l

sh
a

re
d

_
p

tr

«
ty

p
e

d
e

f»

IP
lu

g
in

L
o

a
d

e
rP

tr

#
m

P
lu

g
in

F
a

c
to

ry

«
u
s
e
»

-m
C

o
n
fi
g

u
ra

ti
o

n
V

a
lid

a
to

r

-m
P

lu
g

in
L

o
a

d
e

r

«
u
s
e
»

59

Figure 26 Feature Activation & Configuration Validation

:I
F

e
a

tu
re

A
c

ti
v

a
to

r
IP

lu
g

in
F

a
c

to
ry

:M
o

n
it

o
rP

lu
g

in
T

h
is

 C
la

ss

im
p

le
m

en
ts

M
o
n
it
o
rP
lu
g
in
I

n
te
rf
ac
e

M
o

n
it

o
rW

o
rk

e
r

Q
T

h
re

a
d

o
p

t
C

o
n

fi
g

u
ra

ti
o

n
 V

a
li

d
a

ti
o

n

[S
u

c
c

e
s

s
fu

l]

[U
n

s
u

c
c

e
s

s
fu

l]

lo
o

p
 F

e
a

tu
re

L
is

t

re
f

D
y

n
a

m
ic

 P
lu

g
in

 L
o

a
d

in
g

 M
e

c
h

a
n

is
m

C
u

rr
en

t
ac

ti
va

te
d

fe
at

u
re

 s
et

 is
 k

ep
t

sa
m

e

s
e

tM
o

n
it
o

rM
e

s
s
a

g
e

(R
M

M
::
M

o
n
it
o

rM
e

s
s
a

g
e

*)

s
ta

rt
()

lo
a

d
()

va
lid

a
te

N
e

w
C

o
n
fi
g

u
ra

ti
o

n
(r

e
q

u
e

s
te

d
C

o
n
f,

re
s
u
lti

n
g

C
o

n
fi
g

u
ra

ti
o

n
):

 b
o

o
l

c
o

n
n
e

c
t

(M
o

n
it
o

rW
o

rk
e

r)

s
ta

rt
()

s
e

tM
o

n
it
o

rI
D

(u
u
id

)

a
c
ti
va

te
F

e
a

tu
re

s
(Q

L
is

t<
R

M
M

::
M

o
n
it
o

rM
e

s
s
a

g
e

*>
,
S

e
tIn

te
rf

a
c
e

*)

m
o

ve
T

o
T

h
re

a
d

()

c
re

a
te

P
lu

g
in

In
s
ta

n
c
e

(p
lu

g
in

N
a

m
e

):
M

o
n
it
o

rP
lu

g
in

In
te

rf
a

c
e

*

c
re

a
te

F
e

a
tu

re
L

is
t(

Q
L

is
t<

R
M

M
::
M

o
n
it
o

rM
e

s
s
a

g
e

*>
,

Q
L

is
t<

F
e

a
tu

re
>

):
 b

o
o

l

s
ta

rt
()

60

61

CHAPTER 5

5. CASE STUDY: COMODE ONE ITSM PRODUCT

5.1. Summary

This chapter introduces the Comodo ONE ITSM tool and the minimal RMM agent

developed with the help of the infrastructure provided by the Dynamic Software

Product Line for Remote Monitoring of Computer Systems study. Product Overview

subsection gives the details about ITSM tool and the specific RMM product along

with its feature set and its configurations. Following subsection explains the

development of plugins corresponding to the feature set and RMM Agent end to end

execution are presented.

5.2. Product Overview

Comodo ONE (C1) Product is ITSM solution for the Managed Service Providers to

control many client workstations remotely with the help of automated monitoring and

scheduling mechanisms. Its main components are Remote Controller, Automation

Library and Scripting, Operating System Patch Management and Remote Monitoring

and Management Tools (Comodo Group, 2019).

C1 product aims to automate the IT operations by using predefined procedures, set of

scripts and rules. Remote Controller tool is also provided to IT managers, if they need

to connect the client workstations and touch their configurations specifically.

As a case study for DSPL for Remote Monitoring of Computer Systems, a minimal

RMM product as a part of C1 ITSM Tool is developed by reusing the components

provided by the framework. Figure 27 depicts the feature model of the C1 RMM

Product derived from the extended Feature Model given at Figure 12, by selecting

only Performance and Resource Utilization parent features.

62

Figure 27 C1 RMM Product Feature Model

63

Followings are the valid specifications for minimal RMM Product and its features:

• CPU, Disk Space, RAM, Event Log, Folder Size, File Size, Process and

Service Monitors are available for users.

• All Monitors are cloneable meaning more than one monitor with the same type

can be alive.

• Only Event Log Monitor cannot be cloned more than 8 times. As it is stated

before on this study, Windows Operating System has restriction about the

number of channels to fetch the data from event log system. It is the only

constraint for the product.

• While Performance and Resource Utilization parent features are defined as

mandatory on section 3.1 Feature Modeling of RMM System, minimal RMM

product developed for this case study have these features as optional. The

reason is that MSPs or IT stuff should create their default profile including

monitors. Otherwise, RMM agent should activate some monitors

corresponding to mandatory features.

• IT Manager can deploy more than one profile to same set of users, modify or

delete existing profiles without restarting the system. These profiles can have

intersecting monitor sets.

• Minimal RMM agent will respond to profile changes during runtime, by

understanding the changes over profiles, binding them to features, and

activating or deactivating corresponding monitors.

CPU Usage attribute is removed from FM of minimal RMM product because it is also

not handled by the framework as it is stated before.

64

5.3. RMM Agent Built with DSPL

Table 2 includes created plugins implementing PluginFactoryInterface for minimal

RMM agent.

Table 2 C1 Minimal RMM Agent Plugins

Performance Related Resource Utilization Related

CPUMonitorFactoryPlugin FolderSizeMonitorFactoryPlugin

DiskSpaceMonitorFactoryPlugin FileSizeMonitorFactoryPlugin

RAMMonitorFactoryPlugin ProcessMonitorFactoryPlugin

EventLogMonitorFactoryPlugin ServiceMonitorFactoryPlugin

As a need for a Qt application extended through plugins, followings have been

fulfilled by every plugin of minimal RMM agent (The Qt Company, The Low-Level

API: Extending Qt Applications, 2018):

• Every plugin inherits from QObject Class

• Every plugin is registered to Qt meta-object system about its interface

(PluginFactoryInterface) by using Q_INTERFACES() macro.

• Every plugin is exported by using Q_PLUGIN_METADATA() macro.

• Every plugin is tested by qobject_cast() function whether it implements the

given interface (PluginFactoryInterface)

65

Figure 28 CPU Monitor Plugin Classes

As an example plugin, CPU Monitor class and their relationships are depicted on

Figure 28. Besides that, Figure 29 demonstrates the CpuMonitorFactoryPlugin class

definition in detail. This class implements PluginFactoryInterface as need for being a

Qt Plugin. Besides that CpuMonitorFactoryPlugin overrides the functions coming

from PluginFactoryInterface interface, this class is also marked as QObject

(Q_OBJECT declaration) and as Qt Plugin (Q_PLUGIN_METADATA(IID

PLUGIN_INTERFACE_RUID) declaration). As it is stated before on Chapter 4, all

plugins are designed as factories to create multiple instances of the same monitor.

Therefore, once CpuMonitorFactoryPlugin as a Qt Plugin is loaded to memory during

runtime, createInstance() function is used to populate instances of CPU Monitor

Plugins.

PluginFactoryInterface

QObject

CpuMonitorFactoryPlugin

- mFactory: MonitorFactory<CpuMonitorWorkerType>
- mName: QString
- mPluginType: RmmPluginType

+ CpuMonitorFactoryPlugin()
+ ~CpuMonitorFactoryPlugin()
+ createInstance(): MonitorPluginInterface*
+ getName(): QString
+ getPluginType(): RmmPluginType
- Q_INTERFACES(PluginFactoryInterface)
- Q_PLUGIN_METADATA(IID)
+ releaseInstance(MonitorPluginInterface*): void

MonitorWorker

CpuMonitorWorker

- mCpuLoadImpl: ProcessorLoadPtr
- mCpuMonitorData: RmmProtoMessage::MsgCpuMonitorData
- mCPUMonitorMessage: RMM::CPUMonitorMessage*
- mCurrentAlertDuration: int

+ CpuMonitorWorker(QObject*)
+ ~CpuMonitorWorker()
+ init(): RmmStatus
+ slotFinish(): void
+ slotStart(): void
+ slotTimeOut(): void

std::shared_ptr<ProcessorLoad>

«typedef»
CpuMonitorWorker::
ProcessorLoadPtr

MonitorPlugin

«typedef»
CpuMonitorWorkerType

-mCpuLoadImpl

«use»

«use»

66

Figure 29 CpuMonitorFactoryPlugin Class Definition

67

All MonitorFactoryPlugin classes have a factory instance called mFactory which is

specialized according to the monitor type. This specialization is provided through

worker classes and its interface is given at Figure 30. CpuMonitorWorker is derived

from MonitorWorker base class which is provided by the framework. This worker

class contains the necessary functions to measure the CPU usage overtime according

to the given internals. If given conditions defined on the “Rule” attribute are met, then

this worker class sends the results to main application with the help of Qt Signals &

Slots Mechanism. Main application does not take the result into consideration to start

a reconfiguration process and it just passes them as logs to ITSM Servers. Then IT

Managers/MSP can follow up the monitoring logs by using ITSM Portal.

Other than plugin implementations, IFeatureActivator and ConfigurationValidator

classes are directly used during the implementation of minimal RMM Agent.

68

Figure 30 CpuMonitorWorker Class Definition

69

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

DSPL for Remote Monitoring of Computer Systems offers a framework for IT service

management through remote monitoring of computers by providing dynamically

reconfigurable, reusable software components. IT management needs are inevitable

and nearly vital for many companies to sustain their product line healthy. Performing

ITSM within the companies properly improves efficiency and quality of the work. It

is also undeniable that a healthy business development environment also leads to

lower costs and reliable products.

Running a remote monitoring system requires monitoring assets to be started and

stopped on the fly, independent from main application running state. It means that the

user of the system needs a mechanism to deploy monitoring components, terminate

them or add new ones, by interacting a main application which is always alive. Such

an application should be able to understand these needs, activate or deactivate

necessary monitoring elements during runtime. When these characteristics of the

Remote Monitoring Systems are considered, it can be easily observed that DSPL

Engineering methodologies and product building practices are well matched with such

systems. “Understanding monitoring needs and matching these needs to existing

software components” can be expressed by the “context awareness and dynamic

binding” mechanisms. Besides that, “loading or unloading monitoring components

during runtime without restarting the application” can be expressed by the “dynamic

reconfiguration” mechanism of DSPL Engineering. With this motivation, Remote

Monitoring of Computer Systems was considered and it was decided to build a DSPL

to establish infrastructure for remote monitoring systems.

70

This study initially presents a Feature Model for Remote Monitoring Systems. C&V

analysis which is the building block for the SPLE has been carried out for the remote

monitoring of computer systems. The study also provides a detailed feature dictionary

together with cardinality information, feature attributes, constraints and extra

functional features to constitute well-functioning DSPL for RMM systems.

To satisfy the altering monitoring needs for such systems, followings are offered as

fundamentals of the framework presented on this study:

• Reusable dynamic feature binding mechanism for monitoring needs (With the

help of IFeatureActivator and ConfigurationValidator classes)

• Reusable dynamic plugin loading mechanism by extending Qt Plugin Loading

mechanisms at runtime (With the help of IPluginLoader and IPluginFactory

classes)

• Reusable monitor factory plugin interface (With the help of

PluginFactoryInterface, MonitorPluginInterface and MonitorWorker

interfaces)

The case study presented on Chapter 5 demonstrates a product named “minimal RMM

Agent”. This agent has been built with the use of the DSPL offered in this study and

tested in the demo environment of COMODO, a company operating in the field of

ITSM. The case study “Minimal RMM Agent” shows that this study keeps its promise

to create a DSPL for Remote Monitoring systems.

This study contributes to Dynamic Software Product Line Engineering field with a

living DSPL example. By managing variabilities on ITSM Remote Monitoring

domain explicitly, a DSPL for IT Service Management Products has been developed.

This product line has enabled COMODO to complete their products more

economically and quickly. A functioning DSPL instance is a promising work for this

71

domain considering that although this subject is extensively studied in the academic

world, it is difficult to come across published practices in the business world.

The framework mainly focuses on the functional requirements of remote monitoring

system. Non-functional requirements of the system will be studied as a future work.

Dynamic feature attribute definition as an extension for Extended Feature Modeling

technique is given in this study but as it is stated on the Feature Modeling chapter,

handling such attributes within the framework is quite challenging therefore it is left

as future work also.

ITSM practices often use the concepts of monitoring and managing together. During

the monitoring of the system, the user can define extra operations according to the

results of monitors and these operations are counted as “management”. For example,

if an unknown process is activated on the computer and this state change is caught by

the system, MSP can run a script to kill this process. Such operations like automatic

script running, creating an SD ticket, automatic email sending operations are

management actions and framework does not provide software assets and mechanism

to handle such actions. They are planned to be considered and implemented in the

future.

73

REFERENCES

Arraj, V. (2010). ITIL®: The Basics. Buckinghampshire, UK.

Bagheri, E., Di Noia, T., Ragone, A., & Gasevic, D. (2010). Configuring Software

Product Line Feature Models Based on Stakeholders’ Soft and Hard

Requirements. International Conference on Software Product Lines (pp. 16-

31). Jeju Island, South Korea: Springer.

Benavides, D., Trinidad, P., & Ruiz-Cortes, A. (2005). Automated reasoning on

feature models. International Conference on Advanced Information Systems

Engineering (pp. 491-503). Heidelberg: Springer.

Blair, G., Bencomo, N., & B. France, R. (2009, October). Models@Runtime. IEEE

Computer Society vol. 42, no. 10, pp. 22-27.

Böckle, G., Muñoz, J. B., Knaube, P., Krueger, C., do Prado Leit, J. S., van der Linden,

F., . . . Weiss, D. (2002, August). Adopting and Institutionalizing a Product

Line Culture. International Conference on Software Product Lines (pp. 49-

59). Berlin,Heidelberg: Springer.

Böckle, G., Pohl, K., & van der Linden, F. (2005). A Framework for Software Product

Line Engineering. In Software Product Line Engineering (pp. 19-38).

Heidelberg, Berlin: Springer.

Capilla, R., Bosch, J., & Kyo-Chul, K. (2013). Variability Modeling. In C. Rafael, J.

Bosch, & K. Kyo-Chul, Systems and Software Variability Management (p. 32).

Springer.

Capilla, R., Trinidad, P., Bosch, J., Ruiz-Cort's, A., & Hinchey, M. (2014). An

Overview of Dynamic Software Product Line Architectures and Techniques:

Observations From Research and Industry. Journal of Systems and Software,

3-23.

74

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2009). Autonomic computing through

reuse of variability models at runtime: The case of smart homes. Computer,

42(10), 37-43.

Cetina, C., Pelechano, V., Trinidad, P., & Cort's, A. R. (2008). An Architectural

Discussion on DSPL. In SPLC (2), (pp. 59-68).

Coplien, J., Hoffman, D., & Weiss, D. (1998). Commonality and Variability in

Software Engineering. IEEE Software, 15(6), 37-45.

Czarnecki, k., & Eisenecker, U. (2000). Generative programming: methods, tools, and

applications. Addison-Wesley.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005a). Formalizing Cardinality-based

Feature Models and their Specialization. Software process: Improvement and

practice, 10(1), pp. 7-29.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005b). Staged Configuration through

Specialization and Multilevel Configuration of Feature Models. Software

Process: Improvement and Practice, 10(2), pp. 143-169.

Dhungana, D., Rabiser, R., & Grünbacher, P. (2007). Decision-Oriented Modeling of

Product Line Architectures. 2007 Working IEEE/IFIP Conference on Software

Architecture (WICSA'07) (pp. 22-22). IEEE.

Griss, M., Favaro, J., & d'Alessandro, M. (1998). Integrating Feature Modeling with

the RSEB. Proceedings. Fifth International Conference on Software Reuse

(Cat. No. 98TB100203) (pp. 76-85). IEEE.

Hallsteinsen, S., Stav, E., Solberg, A., & Floch, J. (2006). Using Product Line

Techniques to Build Adaptive Systems. 10th International Software Product

Line Conference (SPLC'06) (pp. 10 pp.-150). Baltimore, MD: IEEE.

Hinz, D., & Gewald, H. (2006). The Next Wave in IT Infrastructure Risk

Management: A Causal Modeling Approach with Bayesian Belief Networks.

75

In M. Khosrow-Pour, Emerging Trends and Challenges in Information

Technology Management, Volume 1 and Volume 2. Idea Group Publishing.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990).

Feature-oriented domain analysis (FODA) feasibility study (No. CMU/SEI-

90-TR-21). Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). FORM: A Feature-

Oriented Reuse Method with Domain-Specific Reference Architectures.

Annals of Software Engineering 19(4) 5.1, 143.

Kang, K. C., Lee, J., & Donohoe, P. (2002). Feature Oriented Product Line

Engineering. IEEE Software, 19(4), 58-65.

Kumbakara, N. (2008). Managed IT services: the role of IT standards. Information

Management & Computer Security,16(4), 336-359.

Lauenroth, K., & Pohl, K. (2005). Principles of Variability. In K. Pohl, G. Böckle, &

F. van der Linden, Software Product Line Engineering Foundations,

Principles and Techniques (pp. 58-88). Berlin, Heidelberg: Springer.

Metzger, A., & Pohl, K. (2007). Variability Management in Software Product Line

Engineering. Companion to the proceedings of the 29th International

Conference on Software Engineering (pp. 186-187). IEEE Computer Society.

Metzger, A., & Pohl, K. (2014). Software product line engineering and variability

management: achievements and challenges. Proceedings of the on Future of

Software Engineering (pp. 70-84). ACM.

Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., & Solberg, A. (2009). Models@

Run.time to Support Dynamic Adaptation. Computer 42(10), no. 10, 44-51.

Ridley, G., Young, J., & Carroll, P. (2004). COBIT and its Utilization: A framework

from the literature. System Sciences, 2004. Proceedings of the 37th Annual

Hawaii International Conference on (pp. 8-pp). IEEE.

76

Sahibudin, S., Sharifi, M., & Ayat, M. (2008). Combining ITIL, COBIT and ISO/IEC

27002 in Order to Design a Comprehensive IT Framework in Organizations.

Second Asia International Conference on Modelling & Simulation (AMS) (pp.

749-753). IEEE.

Schmid, K., & John, I. (2004). A customizable approach to full lifecycle variability.

In Science of Computer Programming 53 (pp. 259-284).

SearchITChannel. (2015, July). What is RMM software (remote monitoring and

management software). Retrieved from http://searchitchannel.techtarget.com/

definition/RMM-software-remote-monitoring-and-management-software

Sena, J., & Obispo, S. L. (2006). Outsourcing, Insourcing IT-Related Business: The

Impact on the Organization. In M. Khosrow-Pour, Emerging Trends and

Challenges in Information Technology Management, Volume 1 and Volume 2.

Idea Group Publishing.

The Qt Company. (2018, December 17). QPluginLoader Class. Retrieved from Qt

Documentation: https://doc.qt.io/qt-5.6/qpluginloader.html

The Qt Company. (2018, December 17). Signals & Slots. Retrieved from Qt

Documentation: http://doc.qt.io/qt-5/signalsandslots.html

The Qt Company. (2018, December 17). The Low-Level API: Extending Qt

Applications. Retrieved from How to Create Qt Plugins: https://doc.qt.io/qt-

5.6/plugins-howto.html

Von Solms, B. (2005). Information Security governance: COBIT or ISO 17799 or

both? Computers & Security 24(2), 99-104.

