
1 Introduction
The theory of shape grammars supports a pragmatic view on shape perception and
utilizes visual rules for acting on shapes. A shape is not an entity composed of
predefined parts but is temporarily decomposed into its relevant parts according to
the desired action. Since rules are visual, there is always the opportunity to perceive the
parts, and hence the whole, differently. The recognition of any relevant part within a
given shape without a predefined decomposition is a fundamental issue and a technical
problem to be resolved for the implementation of visual computing.

There are infinitely many instances of shapes such as that in figure 1, embedded in
shapes such as that in figure 2. These instances display Euclidean transformations of
rotation, reflection, translation, and scaling. If these figures are to be represented in a
digital medium, rather than on paper, the problem is in how to represent both shapes
so that all of these instances of the first shape, depending on when we want to use
them, are readily available to us to crop off from the second shape.

It is not possible to talk about all of the infinitely many embedded parts of the kind
in figure 1 in finite terms. A good portion of these parts will be lost when adhered

to an abstract reduction. Yet, it might be feasible to
give several constrained sets of these parts, without
giving an absolute definition for the initial whole/
shape. Elsewhere (Keles et al, 2009) we have introduced
a summary of the preliminary form of a practical
method that does not compromise the continuous nature
of shapes. Pursuing the idea further, here we describe
in full detail the technical framework and algorithms
developed. The detection of given parts/shapes, such as

Embedding shapes without predefined parts

Hacer Yalim Keles
Computer Engineering Department, Middle East Technical University, Ankara 06531, Turkey;
e-mail: hacerkeles@gmail.com

Mine Oë zkar ô
Department of Architecture, Middle East Technical University, Ankara 06531, Turkey;
e-mail: ozkar@metu.edu.tr

Sibel Tari
Computer Engineering Department, Middle East Technical University, Ankara 06531, Turkey;
e-mail: stari@metu.edu.tr
Received 21 January 2009; in revised form 23 August 2009

Environment and Planning B: Planning and Design 2010, volume 37, pages 664 ^ 681

Abstract. For a practical computer implementation of part embedding in shapes that is also true to
their continuous character and the shape grammar formalism, shapes and their boundaries are
handled together in composite shape and label algebras. Temporary representations of shapes,
termed `overcomplete graphs', comprise boundary elements of shapes and how they are assembled,
and are utilized in a two-phase algorithm that systematically searches for embedded parts. The
associated implementation is developed to receive user-defined constraints for an interactive
search. In particular, the user-defined reference shape extends the search to nondeterministic cases.

doi:10.1068/b36010

ôCorresponding author.

Figure 1. Figure 2.

those in figure 3 in a shape (figure 4), without predefinitions serves to articulate solutions
for different technical problems posed with each of these four exemplary cases.

2 Background
The pioneering work of Stiny and Gips (1972), as well as the numerous shape gram-
mars and their implementations that followed it, have brought about a broad research
field that is of significant interest to the computational design community. Stiny (2006)
recently reinstated the philosophical and technical characteristics of the theory of
shape grammars, providing a renewed reference point for this field.

Contributing largely to design research, some of the previous works in the litera-
ture used shape grammars to identify and formalize the styles of existing designs and
generated new designs with the same style. Others have focused mainly on defining
shape rules and shape grammars to generate new design styles. However, many of
these shape grammars have not been computationally implemented while the existing
shape grammar implementations are mostly application specific and provide partial
solutions to the more general problem of computational shape embedding. Agarwal
and Cagan (1998) and Pugliese and Cagan (2002) employ symbols in matching
subshapes and dwell on specific engineering shape grammars. Heisserman (1994)
represents solid shapes as graphs in a generative grammar developed for Queen
Anne houses. Some other works (McGill, 2001; Wang and Duarte, 2002) that imple-
ment a class of shape grammars referred to as basic shape grammars (Knight, 1999)
remain focused on addition rules and their sequences, but not on the technicalities of
emergent shape detection.

On the other hand, there are a few works that directly address the implementation
of part/subshape detection and of the embedding part relation of shapes. Pointing out
that the existing implementations for rule application are limited to certain rule sets in
given engineering or design problems and to transforming the entire shape rather than
its parts, McCormack and Cagan (2002; 2006) propose a parametric subshape detec-
tion method. They decompose shapes into subshapes which are hierarchically ordered
on the basis of their constraining relations with other parts. Recognition is then
performed by matching the shapes within the same subsets and their combinations.
Parametric shape recognition is especially useful for engineering shape grammars
with well-defined problems. The hierarchic grouping of subshapes is constructed in
accordance with the designer's intention, but is open to the question of how this
prejudgment is to constantly change in the design process when new features are
meaningful in the determination of new groups for parts of shapes.

(a) (b) (c) (d)

Figure 3.

Figure 4.

Embedding shapes without predefined parts 665

A prominent approach proposed for the subshape recognition problem is the
algorithmic representation of shape rule application developed by Krishnamurti
(1980; 1981) based on maximal elements. Krishnamurti sets the basis for works that
implement a shape grammar interpreter supporting emergent subshapes (Chase, 1989;
Krishnamurti and Giraud, 1986; Tapia, 1999). Tapia's implementation, GEdit, provides
a graphical user interface for rules to be defined with orthogonal shapes.

In line with the philosophical perspective regarding the continuous character of
shapes and expanding on the guidelines provided by the last two groups of work
cited here, this paper illustrates a practically accessible subshape detection method.
The proposed method varies technically from the cited work due to its flexible shape
representation extending to nondeterministic cases with the help of a reference
shape which provides a user-defined context to an otherwise context-free problem.
On the technical side, the work introduces a data structureöan overcomplete
graphöwhich, unlike the previous graphs in shape grammar and computer graphics
literature (eg Heisserman, 1994), is not fixed.

Furthermore, our approach relies on the user's perception rather than on a nomen-
clature for the user to learn. While introducing the problem in section 1, we remarked
that infinitely many instances of embedded shapes cannot be talked about in finite
terms unless one introduces specific constraints. These constraints may take the form
of analytic or symbolic abstractions. As exemplified in carriers used by Krishnamurti
and Stouffs (2004), fitting a linear form to a maximal line segment and assuming that
it continues beyond the given line segment or fitting a higher order function to a
curved shape are such analytic abstractions. Instead, we work with a construct that
we refer to as a perceptual whole, which is not always the maximal element. Our
representational units are not abstract or external to the user, but are boundary
elements of shapes perceived by the user. When necessary, constraints are introduced
by the user according to his or her intentions with the help of a reference shape.
We assume nothing beyond what is drawn.

3 The problem of shape representation
The very first steps in embedded part (subshape) detection involve how shapes are
represented. Shapes are continuous by nature and `what you see is what you get'. The
ultimate aim is to come up with a representation that does not add or subtract from
this continuous nature so that shapes remain as they are. In accordance with the
presumption above, shapes, in this paper, are considered with the boundaries of
embedded parts as inherent properties of this continuous nature.

Let us look at figure 4 again and propose for the given line shape(s) some topological
descriptions that incorporate boundaries and boundaries of parts. Each description is a
set of assumed primary features and how they are assembled. Any description, repre-
sented through labels in Vij , is arbitrary, disputable, and temporary; that is, the U12

shape remains as what you see. For figure 4, a description is acquired through two
classes of points that are (1) boundary points and (2) intersection points of maximal
lines. This is similar to the decomposition points in Prats et al's (2006) generative study
on curved line shapes where they introduce a four-layer construction of contour,
decomposition, structure, and design for shape representation. Not implying such
constructions, we simply maintain that the intersection points are coincidentally boun-
dary points of some embedded parts. These can be defined as point shapes that are
coincident with more than one maximal line in the shape (figure 5).

With this description, boundaries of maximal parts (in this case points) are iden-
tified along with those points that are coincident. The shape is enriched to include

666 H Y Keles, M Oë zkar, S Tari

labels for these elements (points) that belong to other algebras (U02). It is thus mapped
from the U12 algebra into the V02 algebra.

3.1 Mapping a U12 shape to a V02 shape
A maximal line is the Boolean sum of all the infinitely many line segments embedded
in it that share either parts or coincident boundaries. Observing the intersection points and
the boundary points of the four maximal lines in figure 5, we call these points `topo-
logically critical points' and identify some line segments that are bounded by these
points. These line segments are always bounded by the intersection points, the boun-
dary points of the maximal lines, or both, and are not coincident with any other
critical point. They are designated here according to the perceived topology, and serve
the purpose of illustrating a generic case. In other cases, they can be assigned, even
manually, in many different ways depending on what is intended with the choice of the
set of critical points.

Let us define a shape in U12 with such segments:

SU12
� fl1 , l2 , . . . , ln g ,

where l is a line segment. In this representation the definition of topologically critical
points of a shape can now be unified to a class of boundary points of the said line
segments. A shift from U12 to U02 can be defined as a mapping M for any shape using
the boundary relation for each line segment designated in that shape:

M: U12 ! U02 ,

M�SU12
� � �

b�l1 �, b�l2 �, . . . , b�ln �
	

,

where b is the boundary operator:

b�l1 � � f pi1 , pi2g ,

and pi1 and pi2 are the boundary points of the line segment li . This operator generates
a mapping of the shape from U12 to U02 where only the topologically critical points are
visible. In order to constrain the interpretation of this new point shape, we extend the
shift between algebras to the label algebra V02 in order to include a set of labels for
each point.

M: U12 ! V02 ,

M�SU12
� ��� p11 , L� p11 ��, � p12 , L� p12 ��, � p21 , L� p21 �, . . . , � pn1 , L� pn1 ��, � pn2 , L� pn2 ��

	
,

p5 p6 p7

p9

p8

p4

p3

p1 p2

Figure 5. Boundary points: { p1 , p2 p4 , p5 , p6 , p8 , p9 }: intersection points: { p3 , p4 , p5 , p6 , p7 };
and both boundary and intersection points: {p4 , p5 , p6 }.

Embedding shapes without predefined parts 667

where L(p) gives the label(s) of point p. The labels encode the relations between the
points in U02 and refer to the line segments in U12 . For each point, a set of line
segments that the point is coincident with is stored in a list of labels (figure 6).

The shape obtained after this mapping contains a finite number of points and
associated labels. Labels encode the information of how a point connects to other
points. Labels can be changed, altering the connection information for alternative
readings of the shape in V02 without altering the shape. We can also represent a shape
using different V02 representations as dictated by the selection of critical points.We can
add all these V02 representations to get yet another V02 representation, all without
altering the shape.

3.2 Attributed representation
For a computer implementation we define the points and their relations in V02 as an
attributed undirected graph, a temporary data structure to facilitate their representa-
tion. The nodes (vertices) of the graph refer to the points in V02 . The nodal attributes
refer to labels which code the connectivity between nodes. Thus, the graph edges
are indirectly implied by the nodal attributes. In this paper we will refer to these
attributed undirected graphs as `graph representations of shapes'.

When a shape in U12 is mapped onto a shape in V02 , it is in fact mapped onto an
attributed undirected graph G � (N, E), where N is the set of points (nodes) of the
shape in V02 and E is a Boolean relation such that there is an edge from node ni to nj if
(ni , nj) 2 E. E is defined below:

if L�ni) \ L�nj � 6� f , then �ni , nj � 2 E ,

where L(n) is the set of labels associated with the point corresponding to node n. There
are two kinds of attributes stored for each node in the simple undirected graph
representation:
1. Node position: local image space coordinates of the points of the shape in V02 .
2. Edge information: edges code in V02 how the elements in U02 bound parts of the U12

shape. In other words, edges very abstractly represent the elements (of choice induced
by the selection of critical points) that are parts of the U12 shape and the boundaries of
which coincide with the U02 shape.

For linear shapes the connection between two nodes is the unique line that passes
through the node coordinates. Hence, it is sufficient to keep a simple flag that repre-
sents a linear connection. Merely for efficiency considerations for the algorithms we
present in the upcoming sections, in the linear case, we store node-to-node connection
angles which could have been calculated from the node position information (figure 7).

p1 p2

l1 l2
p3

l3
p4 l4

l5 l6

p6p5
l7 p6 l8 p7

l10

p9

{l1} {l2}

{l1, l2, l3, l4}

{l3, l5, l6}

{l5, l7} {l6, l7, l8} {l9}

{l4, l8, l9, l10}

{l10}
(a) (b)

l9

Figure 6. (a) Shape in U12V02 with labels for line segments and points shown for illustrative
purpose; (b) shape in V02 .

668 H Y Keles, M Oë zkar, S Tari

The mapping of a U12 shape to a V02 shape as depicted in figure 6 for linear shapes
readily applies to curved shapes when the line segments are replaced with arbitrary
segments induced by the U02 shape. Linear or not, segments of U12 elements, have a
boundary elements set in V02 (figure 8). Identical attributes, which are as specific as
angles in the linear case, indicate collinearity, continuity, and hence a perceptual whole,
in this case a maximal line. More generally, we may perceive a U12 element, say
(s5 [s3 [s2) in figure 8(a), as a perceptual whole whose boundaries are given by the
points p5 and p2 . If two edges connecting through a node have similar attributes, we
can choose not to perceive the node as a critical point leading to an alternative
traversal of the graph. This implies an alternative perception in U02 and V02 without
altering the U12 shape. Generically, each segment can be described in a canonical
frame (figure 9) to facilitate comparison without fitting a curve and respecting the
segment as it is. The nodal position of ni is mapped to (0, 0) and the nodal position
of nj is mapped to (1,1) in the canonical representation of a curve segment bounded by
ni and nj . The crucial point here is to make the node order compatible for the node
pairs of both graphs during the matching of two graph line segments.

nj nk nk nj

a1 a2

a2 ÿ a1

ni ni ni
�x �x

(a) (b)
Figure 7. (a) Sample node-to-node connection angles (that is, the positive angle with the
positive x-direction for the edge connecting the nodes ni to nj and nk): a1 and a2 . (b) The edge
connection angles between the edges connecting (ni , nk) and (ni , nj): (a2 ÿ a1).

p1
p2

s1 s2

p3

s3
s4p4

s6s5 p7
s9

p8s8

s10

p9

p5 s7
p6

{s1}
{s2}

{s1, s2, s3, s4}

{s3, s5, s6}

{s4, s8, s9, s10}
{s5, s7}

{s6, s7, s8} {s9}

{s10}(a) (b)

Figure 8. Linear or not, segments of U12 elements have boundary elements set in V02 .

1.0
0.8
0.6
0.4
0.2
0.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

(1, 1) (1, 1) (1, 1) (1, 1)

(s2) (s4) (s6) (l4)

Figure 9. Sample canonical representations for the curved line segments s2 , s4 , and s6 of the shape
in figure 8 and the straight-line segment l4 in figure 6. For straight-line segments, the canonical
representation is the same (except for the density of the plotted points).

Embedding shapes without predefined parts 669

Once the segments have been represented in a canonical frame with all the position
and scale effects filtered out, even a simple vectorial distance can be used to measure
the differences between two segments. Notice the resemblance between the canonical
frame representations of s4 and l4 . In general, matching is a separate issue. One can
even use elastic curve difference measurement techniques such as dynamic time
warping (Sakoe and Chiba, 1978) on segments without normalizing their scales.

4 Handling identity relations of shapes
A shape can be perceived in different instances where its scale, orientation, and
position change. All these instances are identical shapes under Euclidean transforma-
tions. In this section we seek correlation between the graph representations of shapes
in order to detect identity-embedding relations between shapes (figure 10).

The mapping function described in section 3 is not a one-to-one relation where
each shape is uniquely represented with a graph and each graph uniquely maps to a
shape. The graph representations show the assumed topologically critical points and
relations between these points. For a given shape the relations between the points in the
graph representations do not change when shapes undergo Euclidean transformations.
Only the positions of the points (nodes) change. To seek an identity relation between
two line shapes, we define a constrained structural isomorphism between their repre-
sentative graphs to preserve edge connection angles and edge length ratios in addition
to the adjacency relations. This is a bijection between the node sets of two exemplary
graphs G1 and G2 ,

f: N�G1 � ! N�G2 � ,

such that any two nodes ni and nj of G1 are adjacent in G1 if and only if f(ni) and f(nj)
are adjacent in G2 . Moreover, for any two nodes nj and nk of G1 where the node ni has
an adjacency relation:
(1) The edge connection angle between hnj , ni , nk i nodes of G1 centered at ni and the
corresponding angle centered at f(ni) in G2 , hf(nj), f(ni), f(nk)i, should be equivalent.
(2) The edge length ratio rG1

� kP(nj)ÿ P(ni)k=kP(nk)ÿ P(ni)k where (0 < rG1
4 1) of

G1 and rG2
� kP[f(nj)]ÿ P[f(ni)]k=kP[f(nk)]ÿ P[f(ni)]k (where 0 < rG2

4 1) of G2

should be equivalent. Note that P(n) gives the local coordinates of a node n.
The shape identity relation partitions the set of graphs into equivalence classes.

These classes are subsets of the structural isomorphism classes of graphs. In other
words, being in the same isomorphism class for two graphs is a necessary but insuffi-
cient condition for being in the same shape equivalence class. The two graphs should
also satisfy the constraints defined in (1) and (2).

5 Handling part relations of shapes
Let us assume that we are to detect shape (a) as a part of shape (b) in figure 11. There
is more than one occurrence of (a) within (b) at different scales and orientations.When
the simple graph of (b) is traversed to obtain the subshapes which are shape equivalent

Figure 10. Three different instances that are shape equivalent under Euclidean transformations.

670 H Y Keles, M Oë zkar, S Tari

to (a), we obtain two simple subgraphs for which nodes and node connections are
shown in figure 12. Although both are shape equivalent to figure 11(a) under some
Euclidean transformations, figure 12(b) is not graph equivalent to figure 11(a) as it
has more nodes than the boundaries of its maximal lines. Instead, the corresponding
subgraph representation of figure 11(b) should be as in figure 13 where the only nodes
that define the subgraph are topologically critical points.

For cases such as these, where the graph representation for the embedded part is not
completely a subgraph of the graph representation of the shape it is a part of, we
extend the definition of a simple graph to obtain the overcomplete graph representa-
tion, so that for every possible traversal of the target graph there exists a subgraph
which is shape equivalent to the traversed subgraph and the nodes of which conform to
be topologically critical. This is achieved by using the relations between the points
which have implicit connections in addition to direct (explicit) connections.

As seen in figure 12(b), the criticality of a point depends on the context. These
points are boundaries of other shapes embedded in the initial shape. In the case of
linear shapes, for all the points which are coincident with the same straight line, there
is an implicit connection between each pair of points when the shape is considered.
By means of what we will here onwards call an `overcomplete graph representation of a
shape', all implicit connections are made explicit, and the subgraph shown in figure 13
becomes a valid subgraph of the graph in figure 11(b).

Let us call a graph G 0 � (N 0, E 0) an overcomplete graph where N 0 is the accepted
set of points of the shape in V02 and E 0 is a Boolean relation such that there is an edge
from ni to nj if ni and nj are both coincident with the same straight line. This relation
can be obtained by examining the connection angles. For example, assume that node ni
has a connection with a node nk with a connection angle a, and node nk has a
connection with another node nj with the same connection angle (figure 14). Then ni
is connected to both nkand nj . Connection angles between nodes in a simple graph
facilitate the identification of a set of nodes which are coincident with the same
straight line. In an overcomplete graph representation, all of the nodes in this set are
shown to have a direct connection with each other. It is thus another representation of
the given shape in V02 .

(a) (b)

Figure 11. Sample shape (a) to be detected in
shape (b).

Figure 12. Subgraphs for the graph of shape in
figure 11(b).

(a) (b)

Figure 13. A subgraph of
the graph of the shape in
figure 11(b).

nj

nk
a

a
ni

Figure 14. Node connection angles
between node pairs (ni , nk) and
(nk , nj).

Embedding shapes without predefined parts 671

As the definition of this extension implies, a simple graph G � (N, E) of a shape S
is a subgraph of an overcomplete graph G 0 � (N 0, E 0) of that shape. E 0 covers both
direct and indirect connections, while E covers only direct connections. Since, for a
given shape E � E 0 and N � N 0, we can infer that G � G 0, where `�' denotes the
subgraph relation.

6 The two-step detection of parts in an initial shape
In a nondeterministic case, for the left-hand side of the visual rule in figure 15 to be
embedded in the initial shape in figure 16 as part of a computation, the technical problem
is the detection of any one of the infinitely many occurrences of the left-hand side within
the initial shape.

For being able to detect any and if necessary every defined occurrence of the
left-hand side of a given rule (source shape) within the given initial shape (target
shape), a Euclidean transformation of the source shape is to be found identical to a
part of the target shape. Assume that GS � (NS , ES), as the graph representation of the
left-hand side of the rule, is the source graph and GT � (NT , ET), as the overcomplete
graph representation of the initial shape, where each node has an explicit connection
with the nodes that are coincident with the same maximal lines.

Nodes in a given source graph can be categorized as free or nonfree. A free node is
connected to just one other node whereas a nonfree node is connected to more than
one node. Free nodes are never at an intersection and are located at the boundaries of
the maximal lines. Differently, nonfree nodes are located at the intersection points
of two or more noncollinear maximal lines. Therefore, at least one of those edges
connected to a nonfree node is noncollinear with the others. As a result, nonfree nodes
play an important role in the problem of searching for parts.

The detection of parts is handled in two steps. In the first, Euclidean transforma-
tions of the selected source subgraph are matched to the target graph in V02 . These
transformations determine all of the parts of the initial shape which may match the
source shape. In the second, the part relation validation is performed. Considering
the source graph attributes, either a full graph matching or a subgraph matching is
performed where necessary. If there are free nodes in the source graph a simple graph
search is not sufficient to validate part relation. This is because, when a shape is
transformed and embedded within an initial shape, the free nodes of the corresponding
source graph may or may not be coincident with a node of the corresponding target
graph (figure 17). For this reason, in the second step, the shape algebra extends to
include the line segments in U12V02 .

If the shape from the left-hand side of the rule is part of the initial shape, a free
node of the source graph is either coincident with a node of the target graph or
coincident with a boundary point of a subpart embedded in a line connecting two
target nodes. In the latter case, the free node introduces a new critical point in the target
shape, in the scope of that particular embedding.

Figure 16.Figure 15.

672 H Y Keles, M Oë zkar, S Tari

If a free source node is not coincident with a target node in V02 , then the point
corresponding to the free source node must be coincident with a line in U12 that
connects two target nodes, since the source shape is assumed to be a part of the target
shape. For embedding such a shape, that point of the initial shape is named a critical
point. During shape embedding in U12V02 algebra, the critical point set of the target
shape is dynamically extended, depending on the position, orientation, and scale of the
source shape. In this respect, the proposed method dynamically decomposes a given
initial shape depending on the left-hand side of the rule for each possible mapping.

7 The algorithm and four exemplary cases
The algorithmic details of the two steps are explained by referring to the four exem-
plary cases briefly illustrated in figure 3. The initial shape selected for the exemplary
cases has already been given in figure 4.

7.1 First pass
(1) Construct the source graph GS � (NS , ES) and overcomplete target graph
GT � (NT , ET).
(2) Enumerate the nodes in the target graph (nT

1 , n
T
2 , . . . , nT

k), where k is the total
number of nodes in the overcomplete target graph.
(3) From the source graph, select a subset of the source nonfree (NF) nodes in order to
construct a candidate transformation that transforms the source graph nodes into the
target graph domain to detect parts. There are four different cases to select this subset
according to the number of nonfree nodes in the source graph.

Case 1: There are three or more nonfree nodes in the source graph such that at least three
of them are noncollinear [figure 3(a) and figure 18]:
1. Select three nonfree source nodes SNF3 � fn S

1 , n
S
2 , n

S
3 g and construct the corresponding

three-node vertex-induced subgraph of the source graph GS [SNF3] � (NS3 , ES3).
2. Create a set of candidate node mappings p by generating all three-node permutations
of the target nodes. There are k(kÿ 1)(kÿ 2) permutations. Four sample mappings are
shown in the first row of figure 18.
3. Construct a three-node vertex-induced subgraph of the target graph for each
permutation TN3 � fnT

i , n
T
j , n

T
mg as GT [TN3] � (NT3 , ET3), where 14 i, j, m 4 k.

4. For each node mapping, m(n S
1 , n

S
2 , n

S
3) � (nT

i , n
T
j , n

T
m), (m 2 p):

(a) Compare the subgraph relation between GS [SNF3] and GT [TN3]. GS [SNF3] must be a
subgraph of GT [TN3] according to the particular node mapping m.
(b) Node distance ratios among the source nodes in NS3 must be compatible with the
node distance ratios among the mapped target nodes in NT3 .
(c) Edge connection angles as illustrated in figure 7 among the source nodes in NS3

must be compatible with the node connection angles among the mapped target nodes
in NT3 .
(d) List every mapping which satisfies these three conditions.

(a) (b) (c)

Figure 17. (a) Source graph: free node points are shown in grey; (b) target graph; (c) free nodes
are not coincident with any node of the target graph.

Embedding shapes without predefined parts 673

5. For each compatible mapping in the list, compute the transformation matrix C.
Since the source node coordinates and the corresponding target node coordinates are
known for three nonlinear points, the transformation matrix can be computed uniquely.

Case 2: There are exactly two nonfree nodes in the source graph [figure 3(b) and figure 19]:
1. Select two nonfree source nodes SNF2 � fn S

1 , n
S
2 g and construct the corresponding

two-node vertex-induced subgraph of the source graph GS �SNF2] � (NS2 , ES2). Selected
nonfree source graph nodes are depicted with the indexes 1 and 2 in the left-hand
column of the first row in figure 19.
2. Create a set of candidate mappings p by computing all two-node permutations of
the target nodes. Four sample mappings are displayed in the right-hand column of the
first row in figure 19.
3. Construct a two-node vertex-induced subgraph of the target graph for each permutation
TN2 � fnT

i , n
T
j g as GT [TN2] � (NT2 , ET2), where 1 4 i, j 4 k.

4. There are two-node mappings between the source graph and the target graph.
Therefore, a unique transformation matrix cannot be computed. Two artificial refer-
ence points can be introduced to compute the transformation matrices uniquely for
both source and target node pairs. Assume that an external line passes through one
of the two nonfree source nodes, say n S

2, perpendicular to the line connecting two
nonfree source nodes. The length of the external line is equal to the line connecting
two nonfree source nodes and the selected nonfree node is coincident with the external
line at the line midpoint. The boundary points of this newly created external line are
the external reference points for the source nodes: fr S1 , r S2 g as shown in the source
graph of the first row in figure 19. Similarly, an external line is drawn which passes
through the target node corresponding to the selected nonfree source node, say nT

j ,

Shape rule:

Sample mappings

(1) (2) (3) (4)

Source graphs

First pass

Second pass

1

2 3
2

1
3

3

1
2

2

1
3

3

1
2

1

2 3

4 5

4

2

1
3 5

5

3

1
2 4

4

2

1
3 5

5

3

1
2 4

Figure 18. Example rule for case 1 is displayed for four sample mappings (1) ^ (4). The candidate
mappings are displayed in the first row. A three-node source subgraph is selected from the
source graph and shown in the left-hand column of the first row. In the second pass illustrated
in the second row, the source graph is matched according to the transformation computed in
the first pass. Transformations in the second pass can be followed easily by tracing the node
correspondences between the graphs used in the first and second passes with the indexes.

674 H Y Keles, M Oë zkar, S Tari

according to the particular mapping. The line length is equal to the length of the line
which connects the two target nodes and the selected target node coincides with the
external line at the line midpoint. The boundary points of this line are the reference
points for the target node pairs frT1 , rT2 g.
5. There are two possible transformations that map the source graph nodes to the
target subgraph nodes. One of the transformations is a reflection of the other about
the axis that passes through the line connecting the two source/target nodes. Construct
these mappings as m1 (n

S
1 , r

S
1 , r

S
2) � (nT

i , r
T
1 , r

T
2), and m2 (n

S
1 , r

S
1 , r

S
2) � (nT

i , r
T
2 , r

T
1).

6. For each mapping, m1 and m2 , compute a unique transformation matrix C.

Case 3: There are more than two nonfree nodes in the source graph all of which are
collinear (coincident with the same line) [figure 3(c) and figure 20]:
1. Select two nonfree source nodes randomly and compute the transformation matrices
following the algorithmic steps described in case 2.

Case 4: There are less than two nonfree nodes in the source graph [figure 3(d) and
figure 21]:
1. If a reference shape is provided (see the discussion related to the reference shapes
below in this section):
(a) Compute the reference shape graph GR � (NR , ER).
(b) Compute the transformation matrix as in case 1 or case 2, depending on the
number of reference nodes. Note that all the reference graph nodes are of the nonfree
type by definition of the reference graphs.
2. If there is no reference shape, assume that all nodes of the source shape are of the
nonfree type. Compute the transformation matrices as in case 1 or case 2, depending
on the number of source nodes.

Shape rule:

Sample mappings

(1) (2) (3) (4)

Source graphs

First pass

Second pass

r S1

r S2

nS
11

2

r S1

r S2

nS
1

nS
1

r S2

r S1

r S1

r S2

n S
1

n S
1

r S2

r S1

1 2

3 4

3

1

1 3

4

2

1 3

3

1

2 4

4

2

1 3

Figure 19. Example rule for case 2 is displayed for four sample mappings in (1) ^ (4). The graph
displayed with dashed lines in the first row contains nodes that are constructed with external
reference points explained in case 2(4).

Embedding shapes without predefined parts 675

Shape rule:

Sample mappings

(1) (2) (3) (4)

Source graphs

First pass

Second pass

r S1

r S2

nS
1

nS
1

r S2

r S1

r S1

n S
1

r S2

r S1

r S1

r S2

n S
1

1

2

r S2

n S
1

4 5
3

1 2
6

4 5
3

1 2
6

6
3

2

5

1 4

3 6

5
2

4

1

6

3

2

5

1 4

Figure 20. Example rule for case 3 is displayed for four sample mappings in (1) ^ (4). The
mappings in (1) and (2) are acceptable mappings for which source shape is part of the target
shape, while (3) and (4) are rejected mappings in the second pass of the algorithm.

Shape rule:

Sample mappings

(1) (2) (3) (4)

Source graphs

First pass

Second pass

1

2 3

1

2 3

1

12 23

3

1 3

2

4 5
1

2
3

4 5
1

3
2

5 4
1
2

3

4
1 2

5
3

5
13

4 2

Figure 21. Example rule for case 4 is displayed for four sample mappings in (1) ^ (4). A user-
defined reference shape is introduced along with the left-hand side of the rule, displayed with
light-weighted lines in the rule definition. Since all the nodes in a reference shape graph are
of the nonfree type, each critical point of the reference shape is coincident with a critical point of
the target shape during the computation of candidate mappings in the first pass.

676 H Y Keles, M Oë zkar, S Tari

7.2 Second pass
(1) For each possible mapping computed in the first step, find node associations
among the source nodes and the target nodes as:
(a) Transform all the nodes (free and nonfree nodes) of the source graph using the
transformation matrix (C) computed in the first step.
(b) For all the transformed nonfree source nodes, compute their correspondences, m,
with the target nodes by comparing coordinates. If there is any nonfree source node
which does not correspond to any target node, discard this mapping from the candi-
date mapping list; for example, in figure 20, the nonfree indexed as 3 in the sample
mapping (4).
(c) Compute the node correspondence, m, for all free source nodes:
i. If the transformed free source node is coincident with a node of the target graph,
associate the target node index with the corresponding free source node; for example,
in figure 20, the free node indexed as 4 in the sample mapping (4).
ii. If the transformed free source node is not coincident with a node of the target
graph, but coincident with a line segment that connects two target nodes, associate
the free source node with the set of target nodes which are coincident with the
boundary points of the corresponding line segment; for example, in figure 21, all free
nodes coincide with a line for the displayed sample mappings.
iii. If the transformed free source node is not coincident with a target node or with a
line segment that connects two target nodes, discard this mapping from the candi-
date mapping list; for example, in figure 20, nodes indexed as 4, 5, and 6 in sample
mapping (3).
(2) Control the node connection relations to validate each mapping, m:
(a) If each source node is associated with just one target node, then check for
each (n S

i , n
S
j) 2 ES , whether there exists a relation [m(n S

i), m(n
S
j)] 2 ET . If there exists

any (n S
i , n

S
j) 2 ES such that [m(n S

i), m(n
S
j)] =2 ET , this mapping is deleted from the

candidate mapping list.
(b) If, for some of the free source nodes, there is more than one associated target node
[see (1)(c)ii], assume that (n S

i , n
S
j) 2 ES and m(n S

j) � fnT
a , n

T
b g.

i. If nT
a 6� m(n S

i) and nT
b 6� m(nS

i), there must be [m(n S
i), n

T
a] 2 ET and [m(n S

i), n
T
b] 2 ET

with the same connection angles. Otherwise, discard this mapping.
ii. If nT

a � m(n S
i) and nT

b 6� m(n S
i), then there must be [m(n S

i), n
T
b] 2 ET . Otherwise, discard

this mapping.
iii. If nT

b � m(n S
i) and nT

a 6� m(n S
i), then there must be [m(n S

i), n
T
a] 2 ET . Otherwise, discard

this mapping.
(c) For each valid candidate mapping remaining in the list, the source shape is
accepted as part of the target shape with respect to the corresponding transformation.

According to the developed part detection algorithm, all possible left-hand sides of
the rules are in one of the four different cases defined in the first step of the algorithm
(see step 3). The last case (case 4) covers the rules in which the source graph contains
less than two nonfree nodes. There are infinitely many transformation possibilities for
this class of source shapes. Generating all possible solutions is not feasible both
for time and storage limitations of the computing medium. Hence, we introduce a
visual communication system that defines constraints for mapping the shape on the
left-hand side of the rule to a part of the target shape based on the user's (designer's)
intentions.

In this system the communication between the computing machine and the user
is similarly done by means of visual rule definition in U12 . However, the left-hand side
of the rule is defined in a particular way (figure 21). The original left-hand side of
the rule is defined in relation with another shape, called the reference shape, which is

Embedding shapes without predefined parts 677

labeled differently (that is, lies in a different layer) during part detection. During
the operations, the user-defined reference shape is mapped to the V02 domain
while the original shape (corresponding to the left-hand side of the rule) is in the
U12V02 composite domain. The reference shape is transformed to the V02 domain
to construct the graph of the reference shape in the usual way. However, the types of
graph nodes are modified to be nonfree-type nodes even for the free nodes of the
original reference graph. The reference shape determines the possible transformations
of the source shape that is used to identify the part of the target shape that matches to
the source shape. There is no predefined restriction about the reference shape defini-
tion. It may be defined in any way that is meaningful for a user. For example, in
figure 22, a change in the scale of the reference shape is introduced without changing
the visual rule applied in figure 21. Such a change in the reference shape significantly
changes the parts detected in the initial shape. The solution proposed for this type
source of graph searches enables the user to embed any source shape to a target shape
by characterizing a reference shape (figure 23). In the case that no reference shape is
provided to the system, the mapping constraints are defined by the system by redefin-
ing the node types of the source graph: for example, the set of mappings can be
constrained by redefining all the free nodes as nonfree. This can be changed according
to the user's intentions.

Shape rule:

Sample mappings

(1) (2) (3) (4)

Source graphs

First pass

Second pass

1

2 3

1

2 3

1

3 2 1 2

3

1 3

2

4
5

3
1

2

4
5

1
3

2

5 4

1
3

2 4
1 2

5
3

5 3
4 1 2

Figure 22. The application of the same rule in figure 21 with a different reference shape.

Figure 23. Sample reference shapes for the same rule in figure 21. Reference shapes are
emphasized with bold lines.

678 H Y Keles, M Oë zkar, S Tari

8 Further discussion
There may be cases in which the maximal lines do not intersect or in which their
virtual extensions intersect (figure 24). In our framework, such cases are no different
than case 4. In figures 25 and 26 we show two possible rules with varying reference
shapes for the case with two parallel lines. In the first rule given in figure 25, neither
the shape nor the added reference shape contains any intersection points. Yet, the
computer program is able to detect the embedded part (see the online appendix,
figure A8, http://dx.doi.org.10.1068/b26010ap). Two possible embeddings obtained with
the second choice of the reference shape as displayed in figure 26 are shown in
appendix figures A9 and A10.

The case shown in figure 24(c) requires a separate discussion. Whereas the embed-
ding of shapes in figure 24(a) and 24(b) are indeterminate, the embedding of shape
shown in figure 24(c) is determinate. Here, the reference shape can help in constraining
the problem further as shown in figure 27.

At this point, it is worth emphasizing once again that all that the method requires
is critical points that serve merely as registration marks. These registration marks are
to be consistent only in the scope of a particular embedding. They carry the same
meaning in both the source and the target shapes. In a case where perceptual wholes
do not intersect, another criterion may be sought. In this paper we emphasize the
importance of the user-defined reference shape to provide registration marks. Even
though it is appealing to complete the shape into a triangle by extending the three
maximal line segments beyond their drawn scope and marking the three corners of the
virtual triangle as critical points, we avoid imposing such interpretations on the shape.

Since we accept that shape is continuous in nature, we consider its parts to be
topological neighborhoods on it. Some that are more distinct than others are the
critical neighborhoods. As a critical neighborhood shrinks into a point, it serves as a
registration mark. In the absence of any such point, all points on the U12 shape are
equally critical and the embedding problem reduces to a partial and deformable
template matching. Such an approach has many practical difficulties. As a part of
our future work, we are developing weighted and labeled registration marks to solve
the above-mentioned problem efficiently while avoiding any reduction of a particular
shape to an analytic form.

The extension of our framework to solid shapes is not straightforward, but possi-
ble. Nodes of the overcomplete graph store the perceived topology in terms of how the
parts are assembled. Thus these are linkage elements. In the case of U12 the linkage
between parts is naturally coded by points which are nothing but the boundaries of

Figure 24. Figure 25.

(a) (b) (c)

Figure 26. Figure 27.

Embedding shapes without predefined parts 679

http://dx.doi.org.10.1068/b26010ap

one dimensional manifolds in a two-dimensional space. In the case of U33 , the nodes
should store two-dimensional manifolds in a three-dimensional space. Labels store
how the parts are combined via linkage elements and what the parts are so as to
construct graph edges.

9 Conclusion
This paper gives a detailed explanation of the technical framework developed for a
working computer implementation to handle the embedding relations of shapes
(figures A1 ^A10 in appendix A). The proposed system is an alternative to previous
approaches to the problem. It explores graph data structure to temporarily represent
boundary elements of shapes as well as how they are assembled. With the associated
algorithms, this structure enables a systematic search for parts.

Our solution to detect parts that are not predefined is based on the overcomplete
character of the shape graph representation as well as on the user-defined constraints.
The decompositions of an initial shape are changeable as rules are applied, or as
constraints are defined, in an interactive implementation where there is no definite
description made for the shape.

One of our aims has been to stay true to the nature of shapes. Therefore, the
elements that represent the shape and parts of it are not abstract or external to
the user, but are boundary elements of shapes perceived by the user. As seen in the
earliest shape computation descriptions by Stiny and Gips (1972), boundaries of shapes
are elements of visual computing. The generative rules that Stiny and Gips then
specified in their grammar for a series of oil paintings where weighted planes overlap
to give way to new shapes, are constituted of line shapes that define areas to be shaded
in later on. In visual computations, boundaries of maximal shapes often serve as
references to look for or identify parts: for example, drawing an outline first to later
shade in the plane. More importantly, boundaries are also treated as shapes. Thus we
can say that one of the motivations for the idea of utilizing multiple shape and label
algebras for embedding parts is coming from design.

Another one of our aims has been to provide a technical framework that is easy
to implement and that benefits from shape grammar formalism. The overcomplete
graph is constructed simply by operating on multiple representations in label algebra.
To recapitulate, the graph data structure is a temporary representation. It facilitates the
passage between images in their bitmap form and shapes via attributes and is equipped
with algorithms to facilitate search. It also brings flexibility in defining many kinds of
perceptual wholes, rather than relying on maximal elements.

Although graph representations are reductions of continuous shapes to discrete
nodes and their labeled connections, the approach presented here utilizes shape alge-
bras and part relations true to visual thinking. Not relying on any geometric notion or
symbolic representation, it works with perceptual wholes and no primary features
unless specified by the user. In this paper, topologically critical points are always either
the boundaries of perceptual wholes or the boundaries of segments embedded in these
perceptual wholes which have coincidence, commonly known as intersection points.
These boundaries induce what the parts are and their labels induce how they correlate.

Acknowledgements.The research presented is part of a project funded byTUë BIè TAKöThe Scientific
and Technological Research Council of Turkeyöunder grant number 108E015. We are indebted to
the anonymous reviewers for their constructive comments and suggestions.

680 H Y Keles, M Oë zkar, S Tari

References
Agarwal M, Cagan J, 1998, `̀A blend of different tastes: the language of coffeemakers''Environment

and Planning B: Planning and Design 25 205 ^ 226
Chase S C, 1989, `̀ Shapes and shape grammars: from mathematical model to computer

implementation'' Environment and Planning B: Planning and Design 16 215 ^ 242
Heisserman J, 1994, `̀ Generative geometric design'' IEEE Computer Graphics and Applications

14(2) 37 ^ 45
Keles H Y, Oë zkar M, Tari S, 2009, `̀ Revisiting shape embedding'', in Proceedings of eCAADe,

European Computer Aided Architectural Design EducationöComputation: The New Realm of
Architectural Design Eds G Cagdas, B Colakoglu (Istanbul Technical University and Y|ldiz
Technical University, Istanbul) pp 229 ^ 236

Knight T W, 1999, `̀ Shape grammars: six types'' Environment and Planning B: Planning and Design
26 15 ^ 31

Krishnamurti R, 1980, `̀ The arithmetic of shapes'' Environment and Planning B 7 463 ^ 484
Krishnamurti R, 1981, `̀ The construction of shapes'' Environment and Planning B 8 5 ^ 40
Krishnamurti R, Giraud C, 1986, `̀ Towards a shape editor: the implementation of a shape

generation system'' Environment and Planning B: Planning and Design 13 391 ^ 404
Krishnamurti R, Stouffs R, 2004, `̀ The boundary of a shape and its classification'' Journal of

Design Research 4(1), doi:10.1504/JDR.2004.009843
McCormack J P, Cagan J, 2002, `̀ Supporting designers' hierarchies through parametric shape

recognition'' Environment and Planning B: Planning and Design 29 913 ^ 931
McCormack J P, Cagan J, 2006, `̀ Curve-based shape matching: supporting designers' hierarchies

through parametric shape recognition of arbitrary geometry'' Environment and Planning B:
Planning and Design 33 523 ^ 540

McGill M C, 2001, `̀A visual approach for exploring computational design'', Master of Science
in Architecture Studies thesis, School of Architecture and Planning, Massachusetts Institute
of Technology, Cambridge, MA

Prats M, Earl C, Garner S, Jowers I, 2006, `̀ Shape exploration of designs in a style: toward
generation of product designs''Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 20 201 ^ 215

Pugliese M J, Cagan J, 2002, `̀ Capturing a rebel: modeling the Harley-Davidson brand through
a motorcycle shape grammar''Research in Engineering Design: Theory, Applications, and
Concurrent Engineering 13 139 ^ 156

Sakoe H, Chiba S, 1978, `̀ Dynamic programming algorithm optimization for spoken word
recognition'' IEEE Transactions on Acoustics, Speech and Signal Processing 26(1) 43 ^ 49

Stiny G, 2006 Shape: Talking about Seeing and Doing (MIT Press, Cambridge, MA)
Stiny G, Gips J, 1972, `̀ Shape grammars and the generative specification of painting and sculpture'',

in The Best Computer Papers of 1971 Ed. O R Petrocelli (Auerbach, Philadelphia, PA)
pp 125 ^ 135

Tapia M,1999, `̀Avisual implementation of a shape grammar system''Environment and Planning B:
Planning and Design 26 59 ^ 74

Wang Y F, Duarte J P, 2002, `̀Automatic generation and fabrication of designs''Automation in
Construction 11 291 ^ 302

ß 2010 Pion Ltd and its Licensors

Embedding shapes without predefined parts 681

Conditions of use. This article may be downloaded from the E&P website for personal research
by members of subscribing organisations. This PDF may not be placed on any website (or other
online distribution system) without permission of the publisher.

	Abstract
	1 Introduction
	2 Background
	3 The problem of shape representation
	3.1 Mapping a U12 shape to a V02 shape
	3.2 Attributed representation

	4 Handling identity relations of shapes
	5 Handling part relations of shapes
	6 The two-step detection of parts in an initial shape
	7 The algorithm and four exemplary cases
	7.1 First pass
	Case 1
	Case 2
	Case 3
	Case 4

	7.2 Second pass

	8 Further discussion
	9 Conclusion
	Acknowledgements
	References
	CrossRef-enabled references

