Geometrically enhanced morphology-dependent
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The effect that geometrical resonances of orbiting internally reflecting rays have on the morphology-
dependent resonances of microspheres is investigated heuristically and numerically using generalized
Lorenz—Mie theory. Angularly resolved off-axis Gaussian beam elastic scattering spectra are presented.
The results obtained show that the elastic scattering intensity of morphology-dependent resonances
is noticeably enhanced in the vicinity of the geometrical resonance scattering angles. © 2011 Optical

Society of America
OCIS codes:  140.3945, 290.4020, 140.4780.

1. Introduction

Morphology-dependent resonances (MDRs) of micro-
spheres [1] have quality factors that can be as large
as 2 x 1010 [2]. These large-@ MDRs have found a
variety of potential applications in microlasers [3],
channel dropping [4], optical switching [5], ultrafine
sensing [6], biomolecular agent detection [7], rotation
detection [8], high-resolution spectroscopy [9], tun-
able filters [10], and Raman lasers [11]. In addition,
silicon microspheres have been used in channel drop-
ping [12] and have been considered for optoelectronic
applications [13,14]. Recently, optical modulation in
a silicon microsphere has been observed [15].
Among these applications, there has been much in-
terest in optical miniature biosensors that utilize
high-@ microsphere resonators [16]. These sensors
have taken advantage of either the wavelength shift
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or the linewidth broadening of MDRs induced by the
adsorption of biomolecules onto the surface of the mi-
crosphere [17]. While the wavelength shift of an
MDR is caused either by a change in the refractive
index or the size of the microsphere, linewidth broad-
ening is frequently due to scattering losses that affect
the cavity @-factor [18]. Because of the importance of
improving detector performance, increasing the sen-
sitivity of these devices is crucial. Enhanced sensitiv-
ity of microsphere sensors can result from coating the
microsphere with a high refractive index surface
layer in order to increase the frequency shift sensi-
tivity [19]. Ultrasensitive chemical sensors have
been fabricated using film-coated microspheres [20].

In this paper, we report another enhancement of
microsphere MDRs at specific and predictable scat-
tering angles for special values of the refractive index
corresponding to a geometrical resonance of the ray
incident at the edge of the sphere. We find that
geometrical-resonance-enhanced MDRs have a high-
er intensity in the vicinity of the resonant angles,



leading to better sensitivity. In addition, this me-
chanism also provides an additional parameter, i.e.,
the angular dependence of the enhancement, for the
detection and analysis of biological agents. Our ap-
proach thus differs from previous sensing enhance-
ment methods leading to higher sensitivity, such
as surface layer index change.

2. Optical Excitation of Microspheres

The excitation efficiency of MDRs by a focused beam
can be made much higher than that for plane wave
excitation if the center of the beam focus is suitably
located [21]. Specifically, generalized Lorenz—Mie
theory (GLMT) [22—24] predicts that a large couphng
efficiency to the MDRs occurs when an off-axis Gaus-
sian beam strongly illuminates the edge of the micro-
sphere [25,—29]. One can qualitatively consider the
Gaussian beam as a collection of parallel rays inci-
dent on the sphere surface. If one of the rays is inci-
dent at the angle #; and the sphere refractive index is
m, the ray refracts at the angle 9, according to Snell’s
law sin(0;) = m sin(6,), where 6, is the angle between
the normal to the surface and the transmitted ray.
Once inside the sphere, the transmitted ray repeat-
edly encounters the sphere surface and is partially
transmitted and partially reflected each time. Let
p denote the number of chords of the ray path inside
the sphere before the ray exits and travels to the far
zone. Like MDRs, geometrical resonances of the rays
in the edge region also depend on both the sphere’s
radius and refractive index. The effect of geometrical
resonances on the angular dependence of the MDR
spectra then provides an additional experimental
parameter with which to design input/output cou-
pling to/from the microsphere.

3. Geometrical Resonances

Consider the family of geometrical rays that contri-
butes to scattering by a microsphere after under-
going p + 1 interactions with the sphere surface.
Given 0; and p, the ray path inside the sphere, and
thus the scattering angles, never repeat for most
values of the refractive index. However, if the ray re-
turns to the exact position, where it entered the
sphere after p + 1 interactions with the sphere sur-
face, and N orbits within the sphere, the number of
scattering angles of the ray will be limited since the
ray will always follow the same path during subse-
quent orbits. If this effect occurs with constructive
interference as well, it is called a geometrical reso-
nance [30,31] and can be used under certain circum-
stances to enhance MDRs at or near the scattering
angles of the resonant ray. It should also be noted
that geometrical resonances are also important in
optical chaos when the scattering particle is de-
formed from its spherical shape [32,33]. These reso-
nances occur only for specific values of the relative
refractive index m. Consider for example the case
of N = 1 and the edge ray with 6; = z/2. Then p be-
comes the number of internal chords per orbit. Two
chords per orbit is physically impossible because 90°

refraction of the edge ray requires an infinite refrac-
tive index. The first closed path thus has p = 3. The
edge ray closed paths for p =3, 4, 5 for N = 1 are
shown in Fig. 1. Each interaction with the surface
along the path is labeled by the index ¢, where
0<qg<p-1.

The ray paths inside the sphere in Fig. 1 can be
geometrically considered as a sequence of triangles.
The two base angles are equal to the critical angle for
total internal reflection 6., and the vertex angle is
2z /p. Then 26, + 27 /p = = and

7 2

Since 6, = sin"1(1/m) in Eq. (1), the relation be-
tween m and p for a closed edge ray path after one
orbit is

o
cos (f;) .

For a repeating ray path with N = 1, increasing p
requires a lower relative refractive index, as is shown
in Fig. 2. The cases of p = 3, 4, 5 give the refractive
indices m = 2.0, 1.414, 1.236, respectlvely A geome-
trical resonance will occur only if the ray path is
closed and if the length of the ray path is an integer
number of wavelengths M of light inside the sphere
producing constructive interference of successive or-
bits. For edge ray incidence and N = 1, this occurs

when
2pa 7
1= o (p) 3)

where a is the sphere radius.

Equations (2) and (3) were derived assuming the
incident ray just grazed the sphere surface with
0, = /2. For an arbitrary incident ray, the right-
hand side of Egs. (2) and (3) should be multiplied
by sin(6;). Since the sine function is slowly varying
in the vicinity of 8; = z/2, Egs. (2) and (3) are a good
approximation to the geometrical resonance condi-
tion for rays incident both at the edge of the sphere
and in the vicinity of the edge.

The parameter space, i.e., the wavelength of the
incident light and the scattering angle, for a sphere
with m = 2 is pictorially illustrated in Fig. 3. The
scattering angle theta is the angular deviation of

(2
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Fig. 1. Geometrical resonance formation geometries for p = 3, 4,
5 and N = 1. The black arrows outside the sphere denote the scat-
tering angles of the geometrically resonant ray for 0 <qg <p -1
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Fig. 2. Relative refractive index of the sphere for a geometrical
resonance as a function of p for N = 1.

the scattered ray with respect to the direction of the
incident ray, where positive theta corresponds to a
counterclockwise deviation as in Fig. 1. The scatter-
ing angles of the geometrical resonance for the inci-
dent edge ray for p =3 are 0 = 0°, +120°, —120°.
These scattering angles are represented in Fig. 3 by
three broad horizontal bands. The two narrow verti-
cal lines in Fig. 3 represent the MDR wavelengths for
partial wavenumbers n + 1 and n and radial mode
number /. The rays corresponding to a relatively
tightly focused Gaussian beam can be considered
as having a certain degree of diffractive spreading.
Therefore, the vertical lines are expected to be nar-
row due to high-Q factors of microsphere MDRs,
while horizontal bands representing the geometrical
resonances are expected to have a small but nonzero
angular width that depends on the degree of focus of
the incident beam. Although the conditions for a geo-
metrical resonance of Egs. (2) and (3) were derived in
the context of ray theory, the resonance will be pre-
sent as well in a wave treatment of scattering. The
superposition of sharp MDRs and the geometrical re-
sonances will then give rise to angularly localized en-
hanced intensities if the phase of the scattered MDR
field and the phase of the scattered geometrical reso-
nance field constructively interfere, or nearly so.
This should be a rather rare occurrence since the
phase difference can randomly be anywhere between
0° and 180°. However, there is a mechanism that
makes a 0° phase difference rather common. Consid-
er the phase of a particular MDR as a fixed quantity.
We mentioned that Egs. (2) and (3) are nearly correct
for rays that strike the sphere near the edge rather
than only at the edge. But all those geometric reso-
nances near the edge have slightly different path
lengths from each other; thus they have different
phases with respect to each other. One of these
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Fig. 3. (Color online) Expected spectral and scattering angle

intensity distribution for p = 3 and m = 2.
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phases is likely to be close to the phase of the MDR,
giving the resonant enhancement. Said another way,
the MDR phase selects the phase of one geometrical
resonance out of all of them that have the same m
and p values, but with different values of 6;, for con-
structive interference and resonant enhancement.

4. Elastic Scattering Calculations

Numerical simulations based on GLMT for Gaussian
beam illumination were made in order to explore the
effects geometrical resonances on the MDRs of a mi-
crosphere. Focused off-axis illumination of a sphere
was used to increase the MDR coupling strength and
give higher power transfer into the microsphere. As
an example, we studied the angularly resolved trans-
verse magnetic (TM) and transverse electric (TE)
elastic scattering spectra of a microsphere with ra-
dius @ = 10 ym and refractive index m = 2.0 excited
by a focused Gaussian beam, whose axis is parallel to
the z axis and passes the sphere at the distance b =
+11.75 ym from the origin and having field half-
width @y = 1.75 ym in the beam focal plane. The
focal plane contains the center of the microsphere,
and the beam is incident just beyond the edge of
the sphere. Classically, this corresponds to a ray that
just misses striking the sphere. But in wave scatter-
ing, part of the amplitude tunnels through the cen-
trifugal barrier surrounding the sphere and is
transmitted inside. We considered the wavelength
interval A = 1300-1330 nm. The numerical computa-
tions used the localized model of the off-axis Gaus-
sian beam polarized in the x direction, with the
beam focal point longitudinal displacement z, = 0,
and having the beam confinement parameter s =
0.12 [34,35]. The details of the computational algo-
rithm are also given in these references. TE scatter-
ing was computed when the beam was offset in the
+v direction, and TM scattering was computed when
the beam was offset in the +x direction. The calcula-
tions were performed using a wavelength resolution
Al =30 pm and the scattering angle resolution
A9 =1°,

Figures 4 and 5 show various details of the angu-
larly resolved elastic scattering intensity as a func-
tion of wavelength and scattering angle for TM and
TE polarizations, respectively. The TM and TE elastic
light scattering intensity is shown in false color in dec-
ibels in Figs. 4(a) and 5(a). In order to illustrate the
geometric resonance enhancement, the TM elastic
light scattering intensity in decibels is also shown
at scattering angles of 47° (off-geometric resonance)
and 110° (on-geometric resonance) in Fig. 4(b). Simi-
larly, the TE elasticlight scattering intensity is shown
at scattering angles of 47° (off-geometric resonance)
and 96° (on-geometric resonance) in Fig. 5(b). In order
to illustrate the MDR enhancement, the TM elastic
light scattering intensity is shown at wavelengths
of 1312nm (off-MDR) and 1318 nm (on-MDR) in
Fig. 4(c), and the TE elastic light scattering intensity
is shown at wavelengths of 1320 nm (off-MDR) and
1326 nm (on-MDR) in Fig. 5(c).
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Fig. 4. (Color online) TM elastic light scattering intensity in dec-
ibels as (a) a false color image, (b) at scattering angles of 47° and
110°, and (c) at wavelengths of 1312 and 1318 nm.

The dominant features of Figs. 4(a) and 5(a) may
be understood as follows. The large scattering en-
hancement near 0° is due to diffraction and electro-
magnetic surface waves for positive § and grazing
external reflection for negative 0. The p = 2 rainbow
at & = 180° is absent for both TE and TM scattering
since it corresponds to 6, = 0° for m = 2 and is not
excited by edge incidence. On the other hand, thep =
3 rainbow at 0 = -35.22° is visible in Fig. 5 for TE
scattering as the shoulder on the forward scattering
enhancement. For TM scattering, the p = 3 rainbow
is absent due to the low value of the internal Fresnel
reflection coefficient near the Brewster angle. The
angularly broad geometrical resonance enhance-
ments at 0 = +120° and 6 = —120° are clearly pre-
sent in Figs. 4 and 5. The § = +120° enhancement
is stronger than the 6 = —120° enhancement since
the internally circulating light reaches the 6 =
120° interface earlier in the ray path than it does
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Fig. 5. (Color online) TE elastic light scattering intensity in dec-
ibels as (a) a false color image (b) at scattering angles of 47° and
96°, and (c) at wavelengths of 1320 and 1326 nm.

for the 6 = -120° interface. The geometrical reso-
nances should have maximal constructive interfer-
ence at A= 1299.0, 1315.5, and 1332.3nm for
M = 80,79, 78. In Fig. 4 for TM scattering, the peak
enhancements at § = +120° and -120° are shifted
with respect to these predictions by about +3.0 nm,
and in Fig. 5 for TE incidence, they are shifted by
about —4.4 nm. These relatively small shifts are
likely due to the difference between the internal re-
flection phase shifts of the partial waves and the
analogous geometrical rays since the sphere size
parameter is x = 2za/A = 48, which is far below
the short wavelength limit.

In Figs. 4 and 5, there are also two observable sets
of MDRs with a mode spacing A1 =~ 16.4 nm, whose Q-
factors are in the range 102 to 10%. For TM scattering,
they occur at 1 = 1301.9 and 1318.5nm, and for TE
scattering they occur at 1 = 1311.7 and 1327.3 nm.
Using the first three terms of Eq. (1) in [36], their
wavelengths are consistent with the partial wave-
numbers n = 57, 56, respectively, and the radial
mode [ = 10. In Fig. 4, both resonances are notice-
ably enhanced when 6 is in the vicinity of +120°
and -120°. This angularly localized enhancement
of the MDR intensity is due to constructive interfer-
ence with the edge ray geometrical resonance. In
Fig. 5, the noticeable enhancement reaches its max-
imum at about +100° and —140°. Both of these en-
hancements are shifted by about —-20° from the
predicted scattering angles of the geometrical reso-
nance. This shift is again likely due to a relative
phase difference of the scattered MDR field and the
scattered geometrical resonance field.

Last, the narrow vertical features at 1304.11 and
1320.22nm in Figs. 4(a) and 4(b) are additional nar-
row linewidth TM MDRs, and the narrow features at
1310.9,1314.61, and 1327.45 nm in Figs. 5(a) and 5(b)
are additional narrow linewidth TE MDRs.

5. Conclusion

In this paper, we predicted the observation of en-
hancements in the elastically scattered MDR inten-
sity from microsphere resonators due to constructive
interference with geometrical resonances of rays in
the edge region. We also presented numerical simu-
lations demonstrating this effect for the case where
the edge of the microsphere is illuminated by an off-
axis Gaussian beam. This scattering enhancement
can be used as a novel experimental/design para-
meter for microsphere-based optical applications.
This enhancement could possibly be utilized in mi-
crosphere biosensors since the additional parameter,
i.e., the scattering angle dependence, should lead to
increased sensitivity for the detection and analysis of
biological agents. The enhancement can also lead to
the development of highly sensitive optical sensors
and thus finer measurement capability. The plausi-
bility of this novel photonic method in future
applications is supported here by our GLMT numer-
ical simulations. The results of Figs. 4 and 5 present
physical insights for the design and optimization of
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sensors utilizing geometrical-resonance-enhanced
MDRs and therefore hold promise for enhancing
sensor performance and efficiency.
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