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Abstract

In this short note, I present a generalization of a set of static D-dimensional (D ≥ 3) Lifshitz black holes,

which are solutions of the gravitational model obtained by amending the cosmological Einstein theory with

the addition of only the curvature-scalar-squared term and that are described by two parameters, to a more

general class of exact, analytic solutions that involves an additional parameter which now renders them

stationary. In the special D = 3 and the dynamical exponent z = 1 case, the parameters can be adjusted

so that the solution becomes identical to the celebrated BTZ black hole metric.
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In recent years a flurry of activity has been seen on the extensions of the celebrated AdS/CFT

correspondence to diverse areas of physics, such as non-relativistic, and more specifically, condensed

matter systems (see [1, 2] and the references that cite these e.g. [3, 4] for a sample). Among works

in this vein, [5] is worthy of mentioning, since it was there that the Lifshitz spacetimes, which have

ever since enjoyed a growing interest as gravity duals of theories with nontrivial scaling properties

[(and with fewer symmetries) compared to their cousins which are conformal and dual to AdS

spacetimes], were first introduced into the literature. On the other hand, black hole solutions which

asymptote to these Lifshitz spacetimes, and thus which are simply referred to as “Lifshitz black

holes”, are needed when describing finite temperature aspects of these non-relativistic systems.

However, there aren’t that many exact analytic Lifshitz black holes around, and among those that

have been found so far (see e.g. [6–11] and the references therein), there are only static ones and,

perhaps surprisingly, there are no known stationary ones at all. This is the main motivation of the

present work. Here, I find a class of stationary D-dimensional exact analytic spacetimes, which

are solutions of the R2-corrected gravity theory, and discuss the conditions which allow these to

be interpreted as Lifshitz black holes.

The action of the gravity theory I consider is

I =

∫

dDx
√
−g

(

R+ 2Λ + αR2
)

, (1)

where Λ is the cosmological constant, and the field equations that follow from the variation of (1)

are

Rab −
1

2
gabR− Λgab + α

(

2RRab − 2∇a∇bR+ gab(2�R − 1

2
R2)

)

= 0 , (2)

with � ≡ ∇c∇c.

Aside from these, I also demand the modified scaling transformations

t 7→ λzt , ~x 7→ λ~x , r 7→ r/λ ,

where ~x denotes a (D− 2)-dimensional vector, that are respected by the static Lifshitz spacetimes

to hold as usual. I also want to keep the invariance under time and space translations, and spatial

rotations intact; however instead of separately asking for spatial parity (P) and time reversal (T)

invariance, I go for the weaker PT invariance.1 These assumptions lead to the following stationary

spacetimes

ds2 = −r2z

ℓ2z
dt2 + 2ω

rz+1

ℓz+1
dt dφ+

r2

ℓ2
dφ2 +

ℓ2

r2
dr2 +

r2

ℓ2
d~x2 , (3)

1 To be precise, I also do not include the transformation r 7→ −r to the allowed P transformations, or the translation

r 7→ r − r0 to the spatial translations, in accordance with the nomenclature on the Lifshitz spacetimes in the

literature. Thus, e.g. I think of PT as PT: (t, r, φ, ~x) 7→ (−t, r,−φ,−~x) throughout.
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where 0 ≤ r < ∞ and d~x2 ≡
∑D−3

i=1 dx2i , which obviously reduce to the usual static Lifshitz

spacetimes when the ‘rotation parameter’ ω is set to zero. For later convenience, I have chosen

xD−2 ≡ φ here and separated it from the remaining xi (1 ≤ i ≤ D − 3). Clearly ℓ > 0 sets

the length scale in this geometry, and the parameter ω, just like the ‘dynamical exponent’ z, is

dimensionless.

One finds that (3) is a solution to (2) for generic values of the parameters z and ω in any D ≥ 3,

provided that the coupling constant α and the cosmological constant Λ are chosen as

α =
1

8Λ
, Λ =

2D2 + 3(z − 1)2 + 2D(2z − 3)

8ℓ2
+

(z − 1)2

8ℓ2(1 + ω2)
. (4)

However, there is even more to the story: Provided that the coupling constants in the action (1)

are chosen precisely as in (4), the following metric

ds2 = −r2z

ℓ2z
h(r) dt2 +

r2

ℓ2

(

dφ+ ω
ℓ2

r2
dt
)2

+
ℓ2

r2
dr2

h(r)
+

r2

ℓ2
d~x2 , where (5)

h(r) ≡ c+ k
ℓ2(1+z)

r2(1+z)
+M−

ℓp−

rp−
+M+ ℓp+

rp+
, with (6)

c ≡ 4 ℓ2 Λ

2z2 + (D − 2)(2z +D − 1)
, k ≡ 2ω2

D2 − 7D + 14− 2z(D − 3)
, and (7)

p± ≡ 1

2

(

3z + 2(D − 2)±
√

z2 + 4(D − 2)(z − 1)
)

, (8)

turns out to be a solution of the field equations (2) for any dimension D ≥ 3. Note that the

coefficients c and k are completely determined by z and ω, whereas the integration constants M±

are left as free parameters.

Before proceeding any further, it must be stated that the static version of the metrics (3) and

(5) [ i.e. those with vanishing ω for which c = 1, k = 0, the relation (4) for the constants in the

action (1) and the metric function h(r) in (6) are simplified accordingly] were first presented in

Sec. 2 of [8]. However, with the turning on of the parameter ω, the stationary metrics (3) and (5)

(with the accompanying equations (4) and (6)-(8), respectively) are clearly more general than the

solutions given in [8].

To note a rather appealing feature of these solutions and to give an interesting example, let

me quickly consider the conformal limit z = 1 and, for simplicity, set D = 3. One finds that the

metric (5) becomes identical to the BTZ metric [12] when one sets M+ = 0,M− = −M < 0 and

ω = −j/2:

ds2 =
(

M − r2

ℓ2

)

dt2 − j dt dφ+
r2

ℓ2
dφ2 +

dr2

−M + r2

ℓ2 + j2ℓ2

4r2

,
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which can be further brought to the canonical form when one takes φ = θℓ first and later sets

J = jℓ.

Let me also note that the curvature scalars of the metrics (3) and (5) are both given by R = −4Λ

precisely. As discussed earlier in [8] and [13], this allows for the casting of the action (1) into the

form

I =
1

8Λ

∫

dDx
√
−g (R+ 4Λ)2 ,

and this theory cannot be mapped into a scalar-tensor theory by a conformal transformation of

the metric. Thus one is really dealing with an authentic gravity theory here [8].

To have h(r) real, it follows from the expression of p± that z2 + 4(D − 2)(z − 1) > 0, which

further implies that2

z < z− ≡ 4− 2D − 2
√

(D − 1)(D − 2) < 0 or z > z+ ≡ 4− 2D + 2
√

(D − 1)(D − 2) > 0 .

However, if one is also to demand that the metric (5) describes a black hole solution, then one can

consider the branch z > z+ > 0 since then one can show, for the powers of r in the metric function

h(r), that p+ ≥ p− ≥ z+ > 0 and 2(z + 1) > 0. Hence for z > z+, the solution (5) represents a

black hole with an event horizon located at r = r+, that is found by the largest positive real root

of h(r) i.e. h(r+) = 0, provided the remaining parameters ω (thus c and k) and M± also play

along appropriately.

Obviously, a general analysis with generic values of z and ω given a specific D is a complicated

problem. However, it should be possible in principle to “exorcise” other exotic solutions such as

extremal black holes given the generic solution (5) by “playing around” with the parameters M±

and/or z and ω. An example in this vein is obtained when one considers the special case where the

critical value for the dynamical exponent z is reached and one sets z = z+ exactly. The solution

now reads

ds2 = −r2z+

ℓ2z+
f(r) dt2 +

r2

ℓ2

(

dφ+ ω
ℓ2

r2
dt
)2

+
ℓ2

r2
dr2

f(r)
+

r2

ℓ2
d~x2 , where (9)

f(r) ≡ c+ + k+
ℓ2(1+z+)

r2(1+z+)
+

ℓp

rp

(

M1 +M2 ln (r/ℓ)
)

, with (10)

s ≡ c+

∣

∣

∣

z=z+
, k+ ≡ k

∣

∣

∣

z=z+
, and p ≡ p+

∣

∣

∣

z=z+
, (11)

2 In the discussion that follows, the points z = z− and z = z+ are excluded from the allowed range of the dynamical

exponent z for a good reason: At these critical values, the metric function h(r) given in (6) is no longer valid and

needs to be modified. This is discussed in detail for the z = z+ case in the paragraph containing Eqs. (9)-(11)

below.
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and M1 and M2 are the new free parameters. Note that this is very similar in form to the previous

one (5)-(8), but now the metric function f(r) asymptotes to a constant in a slower fashion when

one approaches the boundary at r → ∞.

In the discussion above, I had to set z < z− < 0 or z > z+ > 0 so that the metric function h(r)

in (6) is real in the first place. One cannot help but wonder whether this really means that the

region z ∈ (z−, z+) is completely ‘forbidden’ for the dynamical exponent z? Working out the field

equations for the special value z = 0 indicates that this is certainly not the case! For z = 0, the

solution is

ds2 = −g(r) dt2 +
r2

ℓ2

(

dφ+ ω
ℓ2

r2
dt
)2

+
ℓ2

r2
dr2

g(r)
+

r2

ℓ2
d~x2 , where (12)

g(r) ≡ c0 + k0
ℓ2

r2
+

ℓD−2

rD−2

(

Mc cos
(
√
D − 2 ln (r/ℓ)

)

+Ms sin
(
√
D − 2 ln (r/ℓ)

)

)

, with (13)

c0 ≡ c
∣

∣

∣

z=0
and k0 ≡ k

∣

∣

∣

z=0
, (14)

and Mc and Ms are the two integration constants.

It is clearly of paramount importance to compute the conserved charges and to study the

thermodynamical properties of the solutions presented here to better understand their geometrical

and physical aspects. This should also be relevant for their dual condensed matter systems. In [13],

the solutions (5)-(8) with vanishing ω were studied using the background Killing charge definition

developed in [14], and they were shown to have both their energy E = 0 and their entropy S = 0.

One would expect this result to remain intact, i.e. that both E = 0 and S = 0, which, taken

together in the first law of black hole thermodynamics, also implies that the angular momentum

J vanishes as well: J = 0. This should make all the more sense when one considers the remark on

the vanishing of the action I that follows from R = −4Λ at the first place.

As a concrete and illustrative example along these lines, let me now concentrate on the D = 4,

z = 3/2 case. This particular choice is sort of motivated by historical reasons: The corresponding

solution (5)-(8) together with M+ = 0 and ω = 0 was the first ever member of the black hole

solutions generalized here and was first given in [15]. In this case, the cosmological constant Λ and

the metric function h(r) in (6) read

Λ =
132 + 131ω2

32ℓ2(1 + ω2)
and h(r) =

132 + 131ω2

132(1 + ω2)
− 2ω2 ℓ5

r5
+M−

ℓ3

r3
+M+ ℓ11/2

r11/2
,

respectively. Now the background Killing vector that yields the energy is ξ̄a = −(∂/∂t)a, and the

one that gives the angular momentum is ς̄a = (∂/∂φ)a, in the notation of [13]. However, there

seems to be a nontrivial ambiguity in the choice of the relevant background. If one naively, but
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somehow more intuitively, chooses the background to be the usual static Lifshitz spacetime with

z = 3/2

ds2 = −r3

ℓ3
dt2 +

r2

ℓ2
dφ2 +

ℓ2

r2
dr2 +

r2

ℓ2
dx2 , (15)

which was the background that was originally employed in [13] anyway, one surprisingly and

unexpectedly finds the divergent, unphysical results E → ∞ and J → ∞. The background that

leads to the aforementioned predictions, i.e. E = 0 and J = 0 result, is obtained when one sets

M± → 0 but leaves ω on, i.e. ω 6= 0, in h(r) above and uses this ‘undressed’ h(r) in (5) with

z = 3/2.

Obviously, the former (15) and the latter backgrounds are quite different from each other both

locally and structurally. This difference may partially account for the discrepancy between the

two energy and angular momentum computations, but I believe this is not the proper place for a

discussion on this point, and that the issue itself is beyond the scope of the present work. Obviously,

a more detailed and robust calculation of the conserved charges using other gravitational charge

definitions would be of great value in studying the thermodynamics of the solutions presented here.

Other open problems worthy of further study involve an analysis regarding the stability of these

solutions and a detailed discussion, similar to the one in [5], on the implications of these geometries

on the condensed matter systems that they are related to by holographic techniques.
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