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aMiddle East Technical University, Department of Physics,

Dumlupinar Boulevard, 06800, Ankara, Turkey
bUniversity of Kentucky, Department of Physics and Astronomy,

Lexington, KY 40506, U.S.A.
cGazi University, Department of Physics,

Teknikokullar, 06500, Ankara, Turkey

E-mail: u.coskun@uky.edu, kseckin@metu.edu.tr, toga.can@metu.edu.tr,

gonulunal23@gmail.com

Abstract: We examine the 5d Yang-Mills matrix model in 0 + 1-dimensions with U(4N)

gauge symmetry and a mass deformation term. We determine the explicit SU(4) ≈ SO(6)

equivariant parametrizations of the gauge field and the fluctuations about the classical four

concentric fuzzy four sphere configuration and obtain the low energy reduced actions(LEAs)

by tracing over the S4
F s for the first five lowest matrix levels. The LEAs so obtained have

potentials bounded from below indicating that the equivariant fluctuations about the S4
F

do not lead to any instabilities. These reduced systems exhibit chaos, which we reveal

by computing their Lyapunov exponents. Using our numerical results, we explore various

aspects of chaotic dynamics emerging from the LEAs. In particular, we model how the

largest Lyapunov exponents change as a function of the energy. We also show that, in the

Euclidean signature, the LEAs support the usual kink type soliton solutions, i.e. instantons

in 1+0-dimensions, which may be seen as the imprints of the topological fluxes penetrating

the concentric S4
F s due to the equivariance conditions, and preventing them to shrink to zero

radius. Relaxing the Gauss law constraint in the LEAs in the manner recently discussed

by Maldacena and Milekhin leads to Goldstone bosons.
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1 Introduction

Matrix models associated to M-theory and string theories [1–3] have been under investiga-

tion from various perspectives ever since their discovery over twenty years ago. The broad

span of interest on the subject is reflected in the literature (for a recent review, see [4] and

references therein.) Among these, the BFSS model [1] is a supersymmetric U(N) gauge

theory consisting of nine N ×N matrices in its bosonic part, whose entries depend on time

only and it also goes by the common name of matrix quantum mechanics in the literature.

It is associated to type II-A string theory [4–6] and appears as the DLCQ (discrete light-

cone quantization) of M-theory on flat backgrounds [4–6]. The massive deformation of the

BFSS theory, preserving the supersymmetry, is known as the BMN model and describes

the DLCQ of M -theory on pp-wave backgrounds [2, 3]. These matrix models describe

systems of N coincident D0-branes, respectively in flat and spherical backgrounds. The

latter is due to the fact that fuzzy 2-spheres appear as vacuum configurations in the BMN

model. At large N and strong coupling/low temperature limit, D0-branes form a black

brane, i.e. a string theoretic black hole [4, 5]; the structure of this gravity dual is discussed

in varying amount of detail in several references [4, 5]. In [7], a model on how the fuzzy

spheres in the BMN model collapse to form a black hole is discussed.

The perspectives gained from the matrix models have recently started to motivate nu-

merous investigations oriented to acquire new information on the properties of black holes,

such as their thermalization, evaporation processes as well as their microscopic constituents

via the study of BFSS and BMN models at large N , using both analytical insights and ever

increasingly numerical techniques [8–17]. In some of these works, for the BMN and BFSS

models in the large N and high temperature limit numerical evidence for the fast ther-

malization is obtained [11–14]. From a more general perspective, the latter is an example

of the fast scrambling conjecture, which has been proposed by Sekino and Susskind [18]

and which may be stated as the fact that in black holes, chaotic dynamics set in faster

than in any other physical system and the rate at which this occurs is logarithmic in the

number degrees of freedom of the black hole, that is, it is proportional to the logarithm

of its Bekenstein-Hawking entropy. Even though the aforementioned limit is distinct from

the one in which the gravity dual is obtained, it is the natural limit in which the classical

mechanics provides a good approximation to the quantum mechanical matrix model.1 This

limit is free from fermions as the latter contributes to the dynamics of the bosonic matri-

ces only at low temperatures. It has been also noted that [14], since, numerical studies

performed so far do not show a phase transition occurring between the low and the high

temperature limits of these matrix models [8–10, 19, 20], it is reasonable to expect that

features like fast scrambling of blackholes in the gravity dual could survive at the high

temperature limit too. In fact, chaotic dynamics in the BFSS model is studied in [14] in

this classical limit by calculating the Lyapunov spectrum, where it was also demonstrated

that a classical analogue of fast scrambling is valid for this system as the scrambling time

1It may be emphasized that, this picture is only valid for quantum mechanics but not for quantum field

theory, since in the latter high temperature theory does not a have good classical limit due to the UV

catastrophe, as already noted in [14].
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is found to be proportional to logN2. In [21] simulations of the BFSS model is performed

at intermediate temperatures to numerically study the black hole horizon.

Even the matrix models at small values of N appear to be highly non-trivial many-

body system whose complete solution evades us to date. Recently, there also has been

some interest in examining the chaotic dynamics emerging from such models [15, 22] (See,

also [23], for earlier attempts). These studies also provided some qualitative implications

on the black hole phases in such models; for instance, in [15] it has been argued that the

edge of the chaotic region found in a SU(2) YM matrix model with only two matrices,

i.e. the smallest matrix model with non-trivial dynamics, corresponds to the end of the

black hole phase. In [24] a novel approach has been developed to estimate the ground state

energy of this smallest matrix model. Authors of [22], considered simple ansatzes for the

BMN model at N = 2, 3 satisfying the Gauss law constraint to probe the chaotic dynamics.

Fuzzy two sphere and its direct sums are not the only compact spherical geometries

appearing in M-theory. In fact, it has been known for a quite long time that fuzzy four

spheres make their appearance in matrix models as longitudinal five branes [25]. For the

purposes of this paper however, presence of fuzzy four sphere solutions in Yang Mills 5-

matrix model with massive deformation term plays the central role. Pure YM 5-matrix

model has been known in the literature for quite a while [26] and may be obtained as the

reduction of the YM theory in 5 + 1-dimensions to 0 + 1-dimensions keeping only the time

dependence of the matrix elements. Together with the mass term it can also be conceived

as a deformation of a subsector of the bosonic part of the BFSS model, as we will explain

in more detail in the next section. Contrary to the fuzzy two sphere solutions in the BMN

model, fuzzy four spheres in the mass deformed YM-matrix model are classical solutions

for negative mass squared (µ2 = −8), which may be an indication of tachyonic instabilities.

Nevertheless, it was recently shown by Steinacker [27] that in pure YM 5-matrix model,

one-loop quantum corrections stabilizes the radius of the fuzzy four sphere and prevents

its collapse by shrinking to zero radius. In this paper, we mainly focus on a mass deformed

U(4N) YM 5-matrix model and consider the exact parametrization of SU(4) equivariant

fluctuation modes about the four concentric fuzzy four sphere configurations. Using the

equivariant parameterization of the gauge field and the fluctuations, we perform the traces

over the fuzzy four spheres at first five lowest lying levels and obtain the corresponding low

energy reduced actions (LEAs). We demonstrate that the potentials of all of these reduced

effective actions are bounded from below, from which we infer that the negativity of µ2

does not actually cause any instabilities under equivariant fluctuations. As we will briefly

discuss in section 3, this feature of our treatment may also be viewed as a consequence

of the fact that the equivariant parametrization of the fluctuations introduces topological

fluxes through the fuzzy four sphere, preventing it to shrink to zero radius.

Equivariant parametrizations breaks the U(4) symmetry of the concentric S4
F config-

uration down to U(1) × U(1) × U(1) and this is further reduced to only U(1) × U(1) in

LEAs as one of the gauge fields completely decouple after tracing over S4
F . The gauge

fields in the reduced actions are not dynamical, and their equations of motion lead to the

constraints, which may, in fact, be seen as the residue of the Gauss law constraint on the

matrix model enforcing the physical states to be the singlets of the gauge symmetry group.

– 3 –
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In the LEAs the latter condition simply translates to the requirement that the two complex

fields appearing in the LEAs be real, that is, uncharged under the abelian gauge fields.

This breaks the U(1)×U(1) symmetry further down to Z2 × Z2.

We utilize the LEAs to explore the chaotic structure emerging from the matrix model

with the fuzzy four sphere background. For the reduced action obtained after tracing at

the matrix levels 4N = 16, 40, 80, 120 and 224 corresponding to the first five S4
F levels,

n = 1, · · · , 5, we numerically solve the Hamilton’s equations of motion and compute the

Lyapunov spectrum at several different energies, revealing the chaotic dynamics. We ex-

plore various features of the chaotic dynamics using our data. We show that the Largest

Lyapunov Exponents (LLE) have a dependence on energy, which fits very well with the

functional relation λn(E) = αn + βn
1√
E

. The data on LLEs also enables us to probe the

onset of chaos in the LEAs’ dynamics. In fact, we are able to estimate the energies at which

appreciable amount of chaotic dynamics is observed at each matrix level (n = 1, · · · , 5)

and also compute the rate at which LLEs change to be proportional to E−
3
2 .

Except at n = 1 the phase space of the LEAs are all ten dimensional, meaning that

there are ten Lyapunov exponents associated to the LEAs at the matrix levels n ≥ 2. At

n = 1, however, out of five of the generalized coordinates and corresponding velocities in

the LEA, three of them combine to appear only in a particular form thereby reducing the

dimension of the phase space to six. At low energies n = 1 model exhibit different features

compared to those for n ≥ 2 and this is discussed in through detail section 4.2. Plots of the

time development of all the Lyapunov exponents at several different values of energy at all

of the matrix levels (n = 1, · · · , 5) is given in the appendix B.4 and exhibit, in particular,

that all the Lyapunov exponents at a given energy sum up to zero, as is expected to happen

in all Hamiltonian systems. Some technical features of the computation of the Lyapunov

spectrum is outlined in section 4.2 for completeness.

The paper is organized as follows. In section 2, for completeness, we give a brief review

of S4
F and how it appears in Yang-Mills matrix models. In section 3, we first determine

the exact parametrization of the gauge field and the fluctuations, which are restricted to

transform as a scalar and vectors, respectively, under the combined adjoint action of SO(5)

isometry of S4
F and the SU(4) gauge symmetry generators in SO(5). In this section we also

obtain the LEAs by tracing over the S4
F at several different matrix levels, and elaborate

on their structure. In section 4 we focus on the dynamical structure of the LEAs. After

discussing the implications of the Gauss law constraint, we present our results exhibiting

the chaotic dynamics emerging from the LEAs. In section 5, we examine the properties of

the LEAs in Euclidean signature, and make evident through a number of examples that,

they possess Z2 kink solutions, i.e. instantons in 1 + 0-dimensions. These may be seen as

the imprints of the non-trivial topological fluxes piercing the S4
F , which were mentioned

above. Motivated by the recent work of Maldacena and Milehkin [28] on relaxing the

Gauss law constraint in BFSS and BMN models (see [29] for supporting numerical work),

in section 6, we revisit the gauge symmetry of the LEAs and present a concise treatment on

the consequences of not imposing the Gauss law constraint, which leads us to conclude the

presence of massless excitations (Goldstone bosons) associated to these LEAs. We close the

paper by summarizing our findings. Appendices collect reference formulas, intermediate
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steps of some of the analytic calculations, explicit form of the LEAs for n ≥ 2, the whole

sets of the corresponding minima of the associated potentials, as well as all the time series

plots of the Lyapunov spectrum at all matrix levels (n = 1, · · · , 5) and at several different

values of the energy.

2 Fuzzy S4 in Yang Mills matrix models

2.1 Basics

We launch the developments in this section by considering the Yang-Mills 5-matrix model

in Minkowski signature and with U(4N)2 gauge symmetry, whose action may be given

as [4, 26, 27]

SYM =

∫
dtLYM =

1

g2

∫
dt Tr

(
1

2
(DtXa)2 +

1

4
[Xa,Xb]2

)
, (2.1)

where Xa (a : 1, . . . 5) are 4N × 4N Hermitian matrices transforming under the adjoint

representation of U(4N) as

Xa → U †XaU , U ∈ U(4N) , (2.2)

DtXa = ∂tXa − i[A,Xa] are the covariant derivatives, A is a U(4N) gauge field transform-

ing as

A → U †AU − iU †∂tU , (2.3)

and Tr stands for the normalized trace Tr14N = 1. For future reference we write out the

potential part of LYM separately as

VYM = − 1

4g2
Tr[Xa,Xb]2 . (2.4)

Clearly, SYM is invariant under the U(4N) gauge transformations given by (2.2) and (2.3).

SYM is also invariant under the global SO(5) rotations of Xa. It can be obtained from the

dimensional reduction of the U(4N) gauge theory in 5 + 1-dimensions to 0 + 1-dimensions,

where the SO(5, 1) Lorentz symmetry of the latter yields to the global SO(5) of the re-

duced theory.

There are two distinct deformations of SYM preserving its U(4N) gauge and the SO(5)

global symmetries. One of these is obtained by adding a fifth order Chern-Simons term to

SYM (i.e. a Myers like term) which is given as [26]

SCS =
1

g2

∫
dt Tr

λ

5
εabcdeXaXbXcXdXe , (2.5)

while the other is a massive deformation term of the form

SMass = − 1

g2

∫
dt Tr µ2X 2

a . (2.6)

2The reason for taking the gauge symmetry group U(4N) will be come clear in the next section.
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It is useful to write out the potential terms for S1 = SYM + SMass and S2 = SYM +

SCS explicitly:

V1 =
1

g2
Tr

(
−1

4
[Xa,Xb]2 + µ2X 2

a

)
, V2 = − 1

g2
Tr

(
1

4
[Xa,Xb]2 +

λ

5
εabcdeXaXbXcXdXe

)
.

(2.7)

In this paper, our main interest is on the massive deformations and hence we will focus on

the dynamics emerging from S1, but will, although very briefly, also consider the conse-

quences of some of the developments presented in the paper for S3 = SYM + SMass + SCS.

We may as well note that S1, S2 and S3 may be thought as deformations of a subsector

of the bosonic part of the BFSS [1] matrix quantum mechanics. As is already well-known,

BFSS model can be conceived to emerge from the dimensional reduction of the YM theory

in 9 + 1 dimensions to 0 + 1- dimensions [4] with the SO(9, 1) of the former yielding to the

global SO(9) of BFSS on the nine matrices XI (I : 1 . . . 9), while the latter may be further

broken to SO(5)× SO(4), via the addition of SMass and/or SCS terms. To be more precise,

these deformations terms, involving only Xa (a : 1, . . . 5), spontaneously break SO(9) down

to SO(5)× SO(4) and naturally split the XI to an SO(5) vector Xa and a SO(4) vector Xα
(α : 1 . . . 4). Then, S1, S2 and S3 emerges by focusing on the sector of Xa’s only.

V2 is extremized by the matrices fulfilling

[Xb, [Xa,Xb]] + λεabcdeXbXcXdXe = 0 . (2.8)

This equation has two immediate solutions [26], one of which is the diagonal matrices

Xa = diag(X (1)
a ,X (2)

a , . . . ,X (4N)
a ) , (2.9)

while the other is given by a fuzzy four sphere S4
F , where λ is forced to take on a fixed value

λ = 2
n+2 , which depends on the matrix level of S4

F . This latter fact requires attention, since

it implies that the direct sum of fuzzy S4 solve (2.8) if and only if they are fuzzy spheres

of the same matrix level. For the configuration (2.9) the potential take the value zero

as is readily observed from SCS, whereas a simple calculation shows that [26] it, in fact,

has a lower (negative) value for the fuzzy S4 solutions. Thus at the classical level, fuzzy

S4 appears to be a more stable solution than the diagonal commuting matrices. Further

numerical studies have, however, revealed that the fuzzy S4 is not a minimum of V2, but

instead a saddle point [30].3

As for the massive deformation the potential part of S1 is extremized by the matri-

ces fulfilling

[Xb, [Xa,Xb]]− 2µ2Xa = 0 . (2.10)

Fuzzy four spheres S4
F and their direct sums (even from different matrix levels) are solutions

of this equation for µ2 = −8. In a recent article Steinacker [27] showed that quantum

corrections in the pure YM 5-matrix model stabilizes the radius of the fuzzy four sphere.

3This is in contrast with the third order CS term appearing in the BMN deformation of the BFSS, which

is an order less than the quadric YM potential and leads to stable fuzzy two sphere solutions [2], while the

fifth order CS term in the present model is an order higher than the YM potential and this may be seen as

the underlying reason for fuzzy four spheres not being a minimum of V2 [30].

– 6 –
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We will see that superficial instability implied by negativity of µ2 does not actually lead to

a problem when we consider the equivariant fluctuations in S1 about the S4
F backgrounds.

The reason for this is essentially that the potential of the emergent equivariantly reduced

action is bounded from below at any finite matrix level. We may as well interpret this

outcome as being due to the fact that the equivariant parametrization of the fluctuations

introduces topological fluxes through the S4
F stabilizing its radius. We will further elucidate

on these points in the sections 3 and 4. Non-trivial topological fluxes leaves its imprints

as kink type solutions of the reduced action in Euclidean signature, as we will exhibit in

section 5.

For the action S3 = SYM + SCS + SMass the potential is extremized by the matrices

fulfilling [26]

[Xb, [Xa,Xb]]− 2µ2Xa + λεabcdeXbXcXdXe = 0 , (2.11)

whose fuzzy four sphere solutions need to satisfy the relation λ = 8+µ2

4(n+2) , which includes

the previous two cases of S1 and S2 as µ2 = −8 and µ2 = 0, respectively. The equation of

motion for S3 is

Ẍa + [Xb, [Xa,Xb]]− 2µ2Xa + λεabcdeXbXcXdXe = 0 , (2.12)

in the gauge A = 0 and subject to the Gauss law constraint
∑

a[Xa , Ẋa] = 0. Equations

of motion for S1 and S2 are readily inferred from (2.12) by the remark following (2.11).

Being static, S4
F configurations satisfying any one of the equations (2.8), (2.10), (2.11) also

satisfy the corresponding equation of motions as well as the Gauss law constraint.

2.2 Models in the Euclidean signature

Wick rotating to the Euclidean signature we make the changes, t→ −iτ , ∂t → i∂τ , A → iA,

Dt → iDτ and L→ −L. Euclidean action (in 1 + 0-dimensions) is then

SE1 =
1

g2

∫
dτ Tr

(
1

2
(DτXa)2 − 1

4
[Xa,Xb]2 + µ2X 2

a

)
. (2.13)

In section 5, we will consider the kink-type solutions, that is to say, the instantons of the

low energy effective actions in 1 + 0-dimensions, which we obtain from the equivariant

reduction of SE1 .

2.3 Brief review of fuzzy S4

In this subsection we collect some of the main features of the fuzzy S4 construction [4, 25,

26, 31–33]. To start with we note that S4 is embedded in R5 as

S4 ≡
〈
~x = (x1, x2, · · · , x5) ∈ R5

∣∣~x · ~x = R2
〉
. (2.14)

Construction of fuzzy S4 proceeds as follows. Let us denote by Γa, (a : 1, · · · , 5) the

Hermitian 4× 4 gamma matrices associated to SO(5) fulfilling the defining anticommuta-

tion relations

{Γa ,Γb} = 2δab . (2.15)

– 7 –
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For concreteness we take them to be given in the form

Γi =

(
0 −iσi

iσi 0

)
, Γ4 =

(
0 12

12 0

)
, Γ5 =

(
12 0

0 −12

)
, i : 1, 2, 3 . (2.16)

We introduce the n-fold tensor product

Xa := (Γa ⊗ 14 ⊗ · · · ⊗ 14 + · · ·+ 14 ⊗ 14 · · · ⊗ Γa) (2.17)

acting on the n-fold completely symmetrized tensor product space

Hn :=

Sym⊗
n

C4 = (C4 ⊗ · · · ⊗ C4)Sym , (2.18)

which is the carrier space of the (0, n) IRR4 of SO(5). Obviously the latter is equivalent

to the completely symmetric tensor product
⊗Sym

n (0, 1) of the fundamental 4-dimensional

spinor representation of SO(5) acting on C4. Dimension of this representation and hence

that of Hn is given as

N := dim(0, n) =
1

6
(n+ 1)(n+ 2)(n+ 3) . (2.19)

Xa are then N ×N Hermitian matrices satisfying the relations

XaXa = n(n+ 4)1N , (2.20a)

εabcdeXaXbXcXd = 8(n+ 2)Xe , (2.20b)

which are the defining relations for the fuzzy four sphere, S4
F . In fact (2.20a) may be

seen as the SO(5) invariant condition giving the radius of S4
F as rn :=

√
n(n+ 4). This

construction appears to be quite analogous to that of the fuzzy two sphere [34] with SO(3)

of the latter replaced with SO(5), nevertheless only to the extent until one recognizes that

the commutation relations of Xa do not close but instead they are given by

[Xa, Xb] =: 2Gab , (2.21)

where Gab are the ten generators of SO(5) in its (0, n) IRR satisfying the commutation

relations,

[Gab, Gcd] = 2(δbcGad + δadGbc − δacGbd − δbdGac) . (2.22)

Gab are anti-hermitian by the definition (2.21). Under the SO(5) transformations generated

by Gab, Xa transform as vectors (i.e. in the (1, 0) IRR of SO(5)) of SO(5) since

[Xa, Gbc] = 2(δabXc − δacXb) . (2.23)

4Throughout the text we label the IRRs by their Dynkin Indices. In appendix A, we provide a short

dictionary between Dynkin and highest weight labelling schemes and also give a short account of the

branching rules used in the text.
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We have that

GabGba = 4n(n+ 4)1N , (2.24a)

GabGbc = n(n+ 4)δac +GaGc − 2GcGc , (2.24b)

where (2.24a) is twice the quadratic Casimir, C
SO(5)
2 =

∑5
a<bGabG

†
ab = −

∑5
a<bGabGab, of

SO(5) in the IRR (0, n).

It is also useful note that, Gab and Xa together generate the SO(6) in its (n, 0, 0) IRR.

This structure may be compactly expressed by writing the 15 generators of SO(6) as

GAB ≡ (Gab, Ga6) = (Gab,−iXa) , A,B : 1 , · · · , 6 , (2.25)

with the commutation relations taking the usual form

[GAB, GCD] = 2(δBCGAD + δADGBC − δACGBD − δBDGAC) . (2.26)

We now observe that the SO(5) invariant condition (2.20a) can be expressed as the differ-

ence of the quadratic Casimir operators:

XaXa = C
SO(6)
2 ((n, 0, 0))− CSO(5)

2 ((0, n)) = n(n+ 4)1N , (2.27)

as (n, 0, 0) of SO(6) branches solely to (0, n) of SO(5) and hence they are of the same

dimension N .

The relation (2.20b) can also be expressed equivalently in the form

Gab = − 1

2(n+ 2)
εabcdeGcdXe = − 1

2(n+ 2)
εabcdeXcXdXe . (2.28)

Another noteworthy feature of S4
F is that there is a S2

F attaching to each point of S4
F .

In other words, there is a S2
F bundle over S4

F with the total space being CP 3
F . This fact

is reflected in the fields defined on S4
F carrying an intrinsic spin, whose rank can be up to

n [26, 32].

We may also record that the commutative limit is achieved by taking n → ∞. The

intricate structure of S4
F with S2

F fibers leads to

ΩAB ≡ (ωab, xa) := lim
n→∞

GAB
n

, (2.29)

where xa, with xaxa = 1, are the coordinates of S4 ⊂ R5 and ωab is antisymmetric in its

indices, satisfy xaωab = 0, as seen by taking the commutative limit of the first equality

in (2.28) and generate, in fact, the S2 in the fibration S2 → S4 → CP 3. Detailed discussion

on this may be found in [35].

In the commutative limit, adjoint action of Xa and Gab become the differential oper-

ators [26]

adXa → ∇a := 2i (ωab∂xb − xb∂ωab
) , (2.30a)

adGab → ∇ab := 2 (xa∂xb − xb∂a − ωac∂ωcb
+ ωbc∂ωca) , (2.30b)
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where the derivatives with respect to ωab’s are given via

∂ωcd
∂ωab

= δacδbd − δadδbc . (2.31)

We may note for future use that xa∇a = 2i (xaωab∂xb − xbxb∂ωab
) = 0, since the first

term in the r.h.s. is already noted to vanish and the second term vanishes due to the

antisymmetry of ωab.

3 Equivariant fields on S4
F

3.1 Symmetry constraints and parametrization of the fields

We now focus on the YM model with mass term, whose action is given by S1

S1 = SYM + SMass . (3.1)

The potential V1 has an extremum given by four concentric S4
F ,

Xa = Xa ⊗ 14 , Xa ∈ Mat(N) , (3.2)

satisfying the equation (2.10).

We observe that U(4N) gauge symmetry of the action S1 is broken down to U(N) ×
U(4), and the commutant of (3.2) is just U(4). Let us denote with Fa the fluctuations

about (2.10). We may write

Xa = Xa ⊗ 14 + Fa ≡ Xa + Fa , (3.3)

where the r.h.s. is introduced as a self-evident short hand notation, which will be used in

the ensuing developments. We are interested in finding the equivariant fluctuations about

the configuration (3.2).5 To be more precise, we would like to concentrate on those Fa,

which are invariant under the SO(5) rotations of S4
F up to SU(4) ⊂ U(4) gauge transfor-

mations. For this purpose we proceed as follows. We introduce the equivariant symmetry

generators as

Wab = Gab ⊗ 14 + 1N ⊗ Σab , (3.4)

where Σab = 1
2 [Γa,Γb] are the generators of SO(5) in the 4-dimensional fundamental spinor

representation (0, 1). They constitute the subset of generators ΣAB := (Σab,Σa6 = −iΓa)
of SO(6) ≡ SU(4)

Z2
in the fundamental (1, 0, 0) spinor representation of SO(6). Evidently,

Wab satisfies the SO(5) commutation relations and its SO(5) representation content is given

by the decomposition of the tensor product (0, n)⊗ (0, 1) into a direct sum of IRRs as

(0, n)⊗ (0, 1) ≡ (0, n+ 1)⊕ (1, n− 1)⊕ (0, n− 1) . (3.5)

5Similar analysis was previously performed in [36–41] for massive deformations of the N = 4 SUSY YM

theory with vacua consisting of products of fuzzy two spheres, as well as SU(N) gauge theories coupled to

adjoint scalar matter multiplets with fuzzy sphere vacua emerging after dynamical breaking of the gauge

symmetry, complementing the Kaluza Klein mode expansion approach given in [42, 43].
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We digress a moment to note that, this structure can be lifted to SO(6) group by writing

WAB = (Wab,Wa6) with the representation content

(n, 0, 0)⊗ (1, 0, 0) ≡ (n+ 1, 0, 0)⊕ (n− 1, 1, 0) , (3.6)

whose branching under the SO(5) simply yields (3.5). Same branching under SO(5) also

holds for the complex conjugate representation (0, 0, n)⊗(0, 0, 1) ≡ (0, 0, n+1)⊕(0, 1, n−1).

Let us examine the adjoint action of Wab. It consists of two terms, first of which

generates the infinitesimal SO(5) rotations of the S4
F , while the second term is responsible

for generating the SO(6) gauge transformations in SO(5). Adjoint action of Wab carries the

tensor product of the reducible representation (3.5) with itself and using general formulas

on tensor product of SO(5) IRRs, it has the following decomposition in terms of SO(5) IRRs

3(0, 0)⊕ 7(1, 0)⊕Higher dimensional IRRs , n ≥ 2 , (3.7)

with the coefficients in bold indicating the multiplicities of the respective IRRs. For the

case of n = 1, the decomposition takes the form

3(0, 0)⊕ 5(1, 0)⊕Higher dimensional IRRs , n = 1 . (3.8)

To study the equivariant fluctuations about the configuration (3.2), we impose the

symmetry constraints, that is the equivariance conditions,

[Wab,A] = 0 , (3.9a)

[Wab, Fc] = −2(δacFb − δbcFa) , (3.9b)

first of which means that the gauge field A is simply required to transform as a scalar of

SO(5) under the adjoint action of Wab, which is quite natural as it does not carry any SO(5)

index, while the second requires that the fluctuations Fa introduced in (3.3) transform as

a vector of SO(5) to comply with the equivariance condition.

We infer from the decomposition (3.7) that the space of rotational invariants that

may be constructed form the intertwiners of (0, n) and (0, 1) IRRs of SO(5) is three-

dimensional, while the space of vectors that may be constructed in term of the intertwiners

and Xa is of dimension seven. The aforementioned intertwiners may be introduced via the

projection operators to the IRRs appearing in the r.h.s. of (3.5). We may express these

three projections as

PI =
∏
J 6=I

−(Gab + Σab)
2 − 2C2(λJ)

2C2(λI)− 2C2(λJ)
, P 2

I = PI , P †I = PI , I : 1, 2, 3 , (3.10)

where the factors of two in front of Casimirs are due to the unrestricted sum over a’s and

b’s. PI are projections to the IRRs of SO(5) in the order given in the r.h.s. of (3.5) and

C2(λI) = −
∑5

a<bMabMab stand for the quadratic Casimirs of SO(5) in the IRRs labeled

by λI ≡ ((0, n + 1), (1, n − 1), (0, n − 1)). Using (3.10) and the fact that idempotents can
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be given as QI = 14N − 2PI we may list the intertwiners as the idempotents

Q1 =
(G · Σ− 4)(G · Σ− 4n− 16)− 16(n+ 1)(n+ 2)

16(n+ 1)(n+ 2)
, (3.11a)

Q2 =
(G · Σ + 4n)(G · Σ− 4n− 16) + 2(2n+ 2)(2n+ 6)

−2(2n+ 2)(2n+ 6)
, (3.11b)

Q3 =
(G · Σ− 4)(G · Σ + 4n)− 16(n+ 3)(n+ 2)

16(n+ 3)(n+ 2)
. (3.11c)

By construction we do have Q2
I = 14N and Q†I = QI . Let us also note that QI are not all

independent from each other as we have
∑

I QI = −14N . A straightforward, but a long

calculation, whose details are provided in appendix A, gives

(G · Σ)2 = 12 ΓaΓbGab + 8n(n+ 2)XaΓa + 8n(n+ 4)14N , (3.12)

and will be useful in what follows.

Adjoint representation of SO(6) branches under SO(5) as 15 → 5 ⊕ 10, or in the

Dynkin notation:

(1, 0, 1) ≡ (1, 0)⊕ (0, 2) . (3.13)

Thus, further insight on how SU(4) ≈ SO(6) generators sits in these intertwiners is gained

by observing that QI contain, ten of these generators as Σab, and the remaining five as Γa,

as seen from (3.12).

Using (2.29), commutative limit of (3.12) takes the form

lim
n→∞

(G · Σ)2

n2
= 8(xaΓa + 14) . (3.14)

Consequently, we find for qI := lim
n→∞

QI :

q1 =
1

2

(
xaΓa −

∑
a<b

ωabΣab − 14

)
, (3.15a)

q2 = −xaΓa , (3.15b)

q3 =
1

2

(
xaΓa +

∑
a<b

ωabΣab − 14

)
. (3.15c)

We may argue that, equivariant parametrization of the fluctuations introduces topo-

logical fluxes through the concentric S4
F s, preventing the latter to shrink to zero radius.

Without going into any technicalities regarding the S2 fibre coordinates ωab over S4, us-

ing (3.15b), this reasoning is supported by the fact that in the commutative limit the

topological flux piercing the S4
F may be linked to the second Chern number on S4:

c2(S4) =
1

8π2

∫
S4

p2 d p2 d p2 = 1 , (3.16)

where p2 = 1
2(1 − q2) stand for the rank four projectors generating the projective module

over the algebra of functions over S4.
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We may solve the constraints given in (3.9a) and (3.9b) as follows. To satisfy (3.9a),

we may choose to parameterize the gauge field A as

A =
1

2
α1Q1 +

1

2
α214N +

1

2
α3Q3 , (3.17)

where we have introduced αµ ≡ αµ(t) are real functions of time only, and eliminated Q2 in

favor of 14N using
∑

I QI = −14N . From this form of the gauge field, it is readily observed

that the U(4) gauge symmetry is broken down to U(1)×U(1)×U(1). However, later on we

will see that term proportional to identity matrix in (3.17) decouples after the dimensional

reduction and the gauge symmetry of the reduced actions will eventually be U(1) ×U(1).

For the fluctuations satisfying (3.9b), a convenient parameterization that befits the

ensuing developments turns out be

Fa = i
φ1

2
[Xa, Q1] + i

χ1

2
[Xa, Q3] +

φ2 + 1

2
Q1[Xa, Q1] +

χ2 + 1

2
Q3[Xa, Q3]

+ φ3

({
X̂a, Q1

}
−Q3[X̂a, Q3]

)
+ χ3

({
X̂a, Q3

}
−Q1[X̂a, Q1]

)
+ φ4

(
X̂a + Γ̂a +Q3[X̂a, Q3]

)
. (3.18)

where we have introduced φµ = φµ(t) and χν = χν(t) as real functions of time only and

used the notation

X̂a =
Xa ⊗ 14

n
≡ Xa

n
, Γ̂a =

1N ⊗ Γa
n

≡ Γa
n
. (3.19)

The 1
n factors appearing in the last three terms of Fa via, X̂a and Γ̂a are naturally ex-

pected for the convergence of Fa. Similar analysis performed in [36–39] on equivariant

parametrization of fluctuations over S2
F and S2

F ×S2
F , shares the same features. Indeed, as

n→∞, we find

Fa → fa := i
φ1

2
∇aq1 + i

χ1

2
∇aq3 +

φ2 + 1

2
q1∇aq1 +

χ2 + 1

2
q3∇aq3

+ φ32xaq1 + χ32xaq3 + φ4xa . (3.20)

Demanding the fluctuations fa to be tangential to S4 means that xafa = 0 has to be

fulfilled. Since xa∇a = 0, as noted after (2.31), the latter condition is satisfied if and only

if φ3(t), χ3(t) and φ4(t) all vanish in this limit.

3.2 Reduction over S4
F and the low energy effective action

We are now in a position to exploit the explicit parameterizations given (3.17) and (3.18)

to determine the low energy effective action that emerges from the action S1 by tracing

over the concentric S4
F ’s.

After a straightforward but a long calculation, with some intermediate steps relegated

to the appendix B, we may write down the covariant derivatives in the form

DtXa =
i

2
(Dtφ1 − iQ1Dtφ2)[Xa, Q1] +

i

2
(Dtχ1 − iQ3Dtχ2)[Xa, Q3]

+ ∂tφ3

({
X̂a, Q1

}
−Q3

[
X̂a, Q3

])
+ ∂tχ3

({
X̂a, Q3

}
−Q1

[
X̂a, Q1

])
+ ∂tφ4

(
X̂a + Γ̂a +Q3

[
X̂a, Q3

])
,

(3.21)
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where we have used

Dtφi = ∂tφi + εjiα1φj , Dtχi = ∂tχi + εjiα3χj . (3.22)

for the fields φi(t) and χi(t) for (i : 1, 2) only.

Trace of the kinetic term is evaluated to be

1

2
Tr(DtXa)2 =

n(n+ 4)

(n+ 1)2
|Dtφ|2 +

n(n+ 4)

(n+ 3)2
|Dtχ|2

+
2(n+ 4)(n5 + 8n4 + 18n3 + 8n2 − 11n)

n2(n+ 1)2(n+ 3)2
(∂tφ3)2

− 12n(n+ 4)

n2(n+ 1)(n+ 3)
(∂tφ3∂tχ3)

+
n(n+ 4)(−n3 − 3n2 + 17n+ 35)

n2(n+ 1)(n+ 3)2
(∂tφ3∂tφ4)

− n(n+ 4)(n+ 5)

n2(n+ 3)
(∂tφ4∂tχ3)

+
(n4 + 10n3 + 30n2 + 34n+ 45)

2n2(n+ 3)2
(∂tφ4)2

+
2n(n+ 4)(n4 + 8n3 + 18n2 + 8n− 11)

n2(n+ 3)2(n+ 1)2
(∂tχ3)2 ,

(3.23)

where we have introduced the complex fields φ(t) = φ1(t)+iφ2(t) and χ(t) = χ1(t)+iχ2(t),

with the covariant derivatives taking the usual form Dtφ = ∂tφ+ iα1φ, Dtχ = ∂tχ+ iα3χ.

Although (3.23) does not appear to be manifestly positive definite, a simple analysis

using Mathematica confirms that it is so, as it should be by construction. Thus, it is

possible and useful to make a linear field redefinition in the sector spanned by φ3, φ4 and

χ3, i.e. convert to a basis, in which the kinetic term (3.23) is diagonalized. In the next

section, we will naturally work with such linearly redefined fields, which diagonalize the

kinetic term for specific values of n from n = 1 to n = 5.

We can now proceed to evaluate the trace of the mass term in the action S1. This can

be written out as

−µ2Tr(XaXa) = − µ2Tr(XaXa + 2XaFa + FaFa)

= − µ2

(
2n(n+ 4)

(n+ 1)2
|φ|2 +

2n(n+ 4)

(n+ 3)2
|χ|2

+
4(n+ 4)(n4 + 8n3 + 18n2 + 8n− 11))

n(n+ 1)2(n+ 3)2
(φ2

3 + χ2
3)

+
n4 + 10n3 + 30n2 + 34n+ 45

n2(n+ 3)2
φ2

4

+
2(n+ 4)(−n3 − 3n2 − 17n+ 35)

n(n+ 1)(n+ 3)2
φ3φ4 −

24(n+ 4)

n(n+ 1)(n+ 3)
φ3χ3
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− 2(n+ 4)(n+ 5)

n(n+ 3)
χ3φ4 +

(n+ 4)(−n3 − 4n2 + 7n+ 22)

(n+ 3)2(n+ 1)
φ3

+
(n+ 4)(−n3 − 8n2 − 9n+ 6)

(n+ 1)2(n+ 3)
χ3 +

(n+ 4)(n2 + 6n+ 5)

(n+ 3)2
φ4 + C(n)

)
.

(3.24)

A few remarks are in order. Firstly, we see that there are terms which are linear in the

fields φ3, φ4 and χ3. For finite values of n, which is essentially going to be our main focus

in the next section, these terms cause no harm. In the n → ∞ the coefficients of these

terms diverge linearly with n. Thus, alluding to our previous remark following (3.20), for

the finiteness of the large n limit, it will suffice to assume that φ3, φ4 and χ3 vanish faster

than 1
n . The mass terms then converges to −2µ2(|φ|2 + |χ|2), while the kinetic term is

given by |Dtφ|2 + |Dtχ|2 in this limit. Let us also note that, we have µ2 = −8, since we are

inspecting this term about the S4
F configuration satisfying (2.10). The exact form of the

constant term C(n) is immaterial; in the next section we will adjust the overall constant

term in the reduced Lagrangians so as to set the minimum value of the potential to zero.

Analytic calculation of the trace of the interaction term 1
4Tr[Xa,Xb]

2 in the action S1

for the equivariant parametrizations (3.17) and (3.18) turns out to be quite a formidable

task as it involves large number of rather complicated traces. As an alternative ap-

proach, we have evaluated the traces for this term for the values of n = 1, 2, 3, 4, 5 us-

ing Mathematica. These already correspond to reasonably large span of matrix sizes

4N = 40, 80, 140, 224, respectively and gives us ample information for exploring the dy-

namics of the low energy reduced action. This is what we take up in the next section.

4 Dynamics of the low energy reduced action

4.1 Gauge symmetry & the Gauss law constraint

The equivariantly reduced action obtained from S1 is invariant under the U(1)×U(1) gauge

transformations

φ′ = e−iΛ1(t)φ , α′1(t) = α1(t) + ∂tΛ1(t) ,

χ′ = e−iΛ3(t)χ , α′3(t) = α3(t) + ∂tΛ3(t) (4.1)

with the remaining fields φ3, φ4 and χ3 being real and thus uncharged under U(1)×U(1).

We observe this manifestly from (3.23) and the mass term (3.24). The interaction term

has the same gauge symmetry too by construction and can be manifestly seen from (6.1)

at the level n = 1.

As the time derivatives of U(1) gauge fields α1(t) and α3(t) appear nowhere in the

action, these fields have no dynamics of their own. Their equations of motion give us the

Gauss law constraints:

1

2i

1

|φ|2
(φ(∂tφ)∗ − (∂tφ)φ∗) = α1(t) ,

1

2i

1

|χ|2
(χ(∂tχ)∗ − (∂tχ)χ∗) = α3(t) . (4.2)
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We make the gauge choice α1(t) = 0 and α3(t) = 0, which essentially amounts to the

reality conditions φ∗ = φ and χ∗ = χ. We can be more precise by first noting that the

Gauss law constraints does not break the U(1) × U(1) gauge symmetry completely, but a

residual Z2×Z2 remains. Indeed, writing φ ≡ (φ1, φ2) = |φ|(cos θ, sin θ) and χ ≡ (χ1, χ2) =

|χ|(cosσ, sinσ), we may express the constraints in the form

∂tθ =
1

|φ|2
εijφi∂tφj = ∂tΛ1 = 0 , ∂tσ =

1

|χ|2
εijχi∂tχj = ∂tΛ3 = 0 . (4.3)

Therefore, the remaining Z2 × Z2 symmetry is encoded in the gauge functions as Λ1(t) =

Λ0
1 + πk and Λ3(t) = Λ0

3 + πk, where Λ0
1 and Λ0

3 are constants and k ∈ Z2. This indicates

that, for both of the gauge functions, Λ1 and Λ3, we have more generally∫ ∞
−∞

dt ∂tΛ = Λ(∞)− Λ(−∞) = πk (4.4)

Due to (4.3), we have θ(t) = θ0 + πk and σ(t) = σ0 + πk, and (4.4) holds for both θ(t)

and σ(t), as well. Having noted these points, in what follows we set φ2(t) and χ(t) to zero

(i.e., we have both θ0 and σ0 set to zero). Then, the Z2×Z2 symmetry is implemented by

(φ1 , χ1)→ (±φ1 ,±χ1) & (φ1 , χ1)→ (±φ1 ,∓χ1).

In section 5 we consider the structure of the LEAs in the Euclidean time τ . Due to

the Z2 × Z2 symmetry, we will be able to explore kink type solutions of the LEAs by

imposing appropriate boundary conditions on φ1(τ) and χ1(τ) as τ → ±∞. Availability

to impose topologically non-trivial boundary conditions on the latter can be attributed to

the property (4.4) of the restricted gauge functions, which holds the same in the Euclidean

signature.

There is also the possibility of not imposing the Gauss law constraint as recently

discussed for BFSS and BMN matrix models in [28]. This leads to presence of Goldstone

bosons for the LEAs that we have obtained, as we will briefly discuss and demonstrate in

section 6.

4.2 Dynamics of the reduced action and chaos

The explicit form of the equivariantly reduced Lagrangian for n = 2 is given below

L(n=2) =
1

2

(
0.96χ̇2

1 + 2.7φ̇2
1 + 12.94φ̇2

3 + 6.32φ̇2
4 + 0.88χ̇2

3

)
− 1.09χ4

1 − 0.252χ4
3

− 2.03χ3
3 + 6.99χ2

1 − 0.26χ2
1χ

2
3 − 4.80χ2

3 + 2.69χ2
1χ3

+ 0.11χ3 − 4.8χ2
1φ

2
1 − 0.10χ2

3φ
2
1 + 3.77χ3φ3φ

2
1 − 0.77χ3φ4φ

2
1

− 2.79χ3φ
2
1 − 1.46χ3

3φ3 + 0.44χ3
3φ4 − 1.62χ2

1φ
2
3 − 2.71χ2

1φ
2
4

+ 5.02χ2
1φ3 − 5.11χ2

1φ3φ4 + 3.81χ2
1φ4 − 3.36χ2

3φ
2
3

− 0.33χ2
3φ

2
4 − 8.51χ2

3φ3 + 1.92χ2
3φ3φ4 + 2.75χ2

3φ4 − 0.64χ3φ
3
3

− 0.67χ3φ
3
4 − 19.2χ3φ

2
3 − 1.45χ3φ3φ

2
4 + 1.80χ3φ

2
4

− 1.36χ2
1χ3φ3 − 2.51χ2

1χ3φ4 − 13.05χ3φ3 + 2.16χ3φ
2
3φ4

+ 10.25χ3φ3φ4 + 1.07χ3φ4 − 3.70φ4
1 − 32.51φ2

3φ
2
1
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+ 0.90φ2
4φ

2
1 + 41.66φ3φ

2
1 + 19.59φ3φ4φ

2
1 − 20.62φ4φ

2
1

+ 12.20φ2
1 − 14.33φ4

3 − 5.46φ4
4 + 41.31φ3

3 − 5.89φ3φ
3
4

+ 28.77φ3
4 − 28.88φ2

3 − 3.423φ2
3φ

2
4 + 22.60φ3φ

2
4 − 43.37φ2

4

− 46.70φ3 + 4.18φ3
3φ4 + 3.42φ2

3φ4 − 15.50φ3φ4 + 16.80φ4 − 29.6 . (4.5)

while the explicit form of L(n) for n = 3, 4, 5 are given in appendix B.

Let us note that in L(n) for n = 2, 3, 4, 5, we have i) performed the linear transformation

among the fields φ3 → φ′3, φ4 → φ′4, χ3 → χ′3 which diagonalizes the kinetic term (3.23),

and dropped the ′’s in the final form, ii) have set µ2 = −8 as we have already remarked to

do so in the paragraph after (3.24), iii) have imposed the Gauss law constraints as we just

discussed, iv) adjusted the constant in the final form of each L(n), so that the associated

potentials, V(n), take the value zero at their minima, v) introduced an over-dot, ˙(. . .), to

denote the time derivatives and vi) set the coupling constant g to one, as it has no effect

on the classical physics save for determining a global normalization in the energy unit.

For n = 1, the reduced action takes a simpler form as compared to the cases for n ≥ 2,

which is given as

L(n=1) =
5

16
χ̇2

1 +
5

4
φ̇2

1 +
15

4
Φ̇2 − 5

8

(
φ2

1 + χ2
1 − 4

)
2 − 15

8

(
φ2

1 + 4Φ(1 + Φ)− 3
)

2

− 5

2
φ2

1χ
2
1 −

15

2
(1 + 2Φ)2φ2

1 .

(4.6)

where we have introduced Φ = φ3+φ4−χ3, which is the only combination of the constituent

dynamical variables φ3, φ4 and χ3 upon which L(n=1) depends. This is to be expected in

view of (3.8). For L(n=1) too, all items following (4.5) are performed as well, except the

item i), which is already taken care of with the introduction of Φ(t).

An important feature of the reduced Lagrangians is that their potentials are all

bounded from below. Therefore, we infer that at any level n the equivariant fluctua-

tions about the concentric S4
F solutions, with µ2 = −8 do not cause any instability. The

absolute minima of the potentials are given in (B.7), (5.6), (B.8) and (B.9).

We find that the reduced Lagrangians, L(n), have chaotic dynamics. One of the basic

tools to probe the presence of chaos in a dynamical system is to compute the Lyapunov

exponents, which measures the exponential growth in perturbations [44]. If, say, x(t) is

a phase space coordinate, in a chaotic system the perturbation in x(t), denoted by δx(t),

deviates exponentially from its initial value at t = 0; |δx(t)| = |δx(0)|eλLt, λL being the

Lyapunov exponent corresponding to the phase space variable x(t).

The phase space corresponding to the LEA are 10-dimensional, except for the n = 1

case, and spanned by

(φ1, χ1, φ3, χ3, φ4, pφ1 , pχ1 , pφ3 , pχ3 , pφ4) (4.7)

where pi are the corresponding conjugate momenta and the Hamiltonians, H(n), are ob-

tained from L(n) in the usual manner using H = piq̇i − L. Using numerical solutions for

the Hamilton’s equations of motion, we have performed calculations of all of the Lyapunov

spectrum for the models at the levels n = 2, 3, 4, 5 at the energies

E = 15, 20, 25, 30, 40, 50, 100, 250, 500, 1000, 2000 , (4.8)
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Energy n = 2 n = 3 n = 4 n = 5

E = 15 0.094 0.035 0.016 0.039

E = 20 0.2788 0.086 0.055 0.056

E = 25 0.4204 0.2159 0.1563 0.1180

E = 30 0.4893 0.3515 0.2623 0.2372

E = 40 0.6370 0.5371 0.4453 0.4393

E = 50 0.7265 0.6450 0.5710 0.5276

E = 100 0.9645 0.8430 0.7578 0.6972

E = 250 1.099 1.0699 0.9922 0.9054

E = 500 1.1574 1.1439 1.1064 1.0405

E = 1000 1.2138 1.1983 1.1610 1.0982

E = 2000 1.3087 1.2949 1.2412 1.1566

Table 1. LLE Values for n ≥ 2.

Energy n=1

10 0.03361

15 0.1056

20 0.1831

25 0.4218

30 0.5416

35 0.5744

38 0.3329

40 0.1284

45 0.1152

Table 2. LLE Values for n = 1, E ≤ 45.

Energy n=1

50 0.1386

75 0.1879

100 0.3356

150 0.5786

200 0.9476

300 1.1487

500 1.2307

1000 1.3303

2000 1.5061

Table 3. LLE Values for n = 1,E > 45.

and obtained their time series, which are given in the appendix B.4 in figures 8–57. To be

more precise, we ran a Matlab code, which calculated the mean of the time series for 20

runs with randomly selected initial conditions for all of the Lyapunov exponents at each

n and for the energies given above. The initial conditions are randomly selected by the

code from a sector of the 10-dimensional phase space for (n = 2, 3, 4, 5). The latter is

specified by giving the initial values of the eight of the phase space coordinates, while the

code randomly selects an initial value for one phase space coordinate and calculates the

last one to satisfy the given value of the energy. We have checked that, increasing the

number of the randomly selected coordinates somewhat increases the computation time,

but does not have any significant impact on our results. For n = 1, dimension of the phase

space reduces to 6 as easily observed from L(1) in (4.6). A similar analysis to the one

described above is also performed at this level, whose marked differences and similarities

with the rest will also be pointed out in what ensues. Table 1 summarizes our findings for

the largest Lyapunov exponents λmax at (n = 2, 3, 4, 5) at the listed values of the energy.

Table 2 and 3 give the LLE data at a larger set of energies for n = 1 to probe especially

the low energy region, which appears to have different features.

It is especially interesting from our data to explore the dependence of the LLEs at a

given level n with respect to the energy. We find that our data for LLEs fit very well with
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Figure 1. λ2(E) = 1.41− 5.00 1√
E

. Figure 2. λ3(E) = 1.40− 5.61 1√
E

.

Figure 3. λ4(E) = 1.34− 5.58 1√
E

. Figure 4. λ5(E) = 1.25− 5.19 1√
E

.

λi(E) αn βn
λ2(E) 1.41 −5.00

λ3(E) 1.40 −5.61

λ4(E) 1.34 −5.58

λ5(E) 1.25 −5.19

Table 4. αn & βn values for the fit in (4.9).

the functional relation

λn(E) = αn + βn
1√
E

(4.9)

where λn(E) denotes the LLE as a function of energy at fixed n. The plots for the data

and corresponding fits are given in figures 1, 2, 3, and 4. We have also calculated the

standard error for the largest Lyapunov exponents from the standard deviation of the final

mean value of λn(E) using the Largest Lyapunov exponents from each of the 20 runs at

each level n and at the energies listed above. The errors are quite small, typically remain

around 0.0050 with the span being from ±0.0018 to ±0.011 and thus appear very small in

the figures.

Our findings appear to be quite novel in the sense that, to the best of our knowledge,

they constitute the only result in the literature within the context of matrix Yang-Mills

theories at zero temperature, in which the dependence of the LLEs on the energy is pre-

dicted from numerical data at several of the lowest lying matrix levels. The data and the
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Figure 5. λ1(E) = 1.78− 12.9 1√
E

for E ≥ 45. Figure 6. Sample LLE values for 10 ≤ E ≤ 50.

corresponding fits indicate that after E = 500, increase in LLEs becomes very slow and

from the last row of the values of LLE at E = 2000 given in table 1, we see that the αn
values of the fits provide a reasonably good estimates of the values of λn(E = 2000), which

is within a margin of ≤ 0.1 only.

At the level n = 1 we find a markedly different behaviour of LLEs with increasing

energy for E ≤ 50 as can be seen from the data and corresponding plots given in figures 5

and 6. Sudden decrease in the value of the Lyapunov exponents around E = 40 can be

attributed to the fact that the potential V(1) takes the value 40 at its local maximum.

Although the value of LLE decreases around this nonstable equilibrium point it resumes

to attain the growing profile for E ≥ 45 and the same functional form which befit those of

n ≥ 2 also fits well with the numerical results as can be seen from figure 5. We have found

the suitable fit to be λ1(E) = 1.78− 12.9 1√
E

for E ≥ 45.

These results also enable us to probe the onset of chaos in our models. To do so,

let us first remark that the numerical calculations are performed for a finite computation

time only, therefore even at low energies numerical values of the LLEs are small numbers

compared to the characteristic scale of LLE values within a given model, but may not

be seen to vanish in finite time. Secondly, it is well-known that in Hamiltonian systems

periodic dynamics and chaotic dynamics can coexist and that there is in general no sharp

passage from one to another [45]. Keeping these two facts in mind, it thus appears reason-

able to set a critical lower bound on the LLE value at and above which the models have

appreciable amount of chaotic dynamics, (i.e. there are comparable number of chaotic and

periodic trajectories.) Inspecting the data from table 1 and the time series plots of the

Lyapunov spectrum given in the appendix B.4, we see that a reasonable choice would be to

take this bound to be about 0.1. Then, we find that for n = 2, 3, 4, 5, critical energies for

the onset of chaos turns out to be E ≈ 16, 22, 23, 24, respectively, with the corresponding

LLE values being λ2(E = 16) = 0.1167, λ3(E = 22) = 0.1039, λ4(E = 23) = 0.0996,

λ5(E = 24) = 0.1178. Lyapunov exponents become smaller below these energies as can be

inspected from table 1. In fact, using equation (4.9), we predict that they get smaller at

an increasing rate of dλn(E)
dE = −1

2βnE
− 3

2 , (βn < 0), as E decreases. From the fits we find

that for n = 2, 3, 4, 5, LLEs vanish at the energies ≈ 12.6, 16, 17.4, 17.3, respectively, which
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Figure 7. λE versus n (Dashed lines are provided only for visual guidance).

Energy γE δE
E = 15 0.13 0.07

E = 20 0.41 0.25

E = 25 0.62 0.32

E = 30 0.67 0.28

E = 40 0.79 0.23

E = 50 0.88 0.22

E = 100 1.17 0.29

E = 250 1.26 0.20

E = 500 1.25 0.12

E = 1000 1.31 0.16

E = 2000 1.44 0.16

Table 5. γE and δE fit values.

is consistent with the small values obtained for LLE at E = 15. Below E = 15, part of

the initial conditions become too small for the numerical integrator built into Matlab to

handle and we can not obtain any healthy data on the LLE in this region. However, there

appears no reason to expect that any significant amount of chaos remains below E = 15.

It is also worthwhile to explore the change in LLE values as n takes on the values

n = 2, 3, 4, 5 at fixed value of the energy. Figure 7 depicts this at several different values

of the energy. It turns out that logaritmic functions of the form

λE(n) = γE − δE log n , n = 2, 3, 4, 5 , (4.10)

provide a good fit to the data. Here λE(n) stand for LLE as a function of n at fixed

energy. The dashed lines in figure 7 are provided for visual guidance as n takes on only the

integer values. Values of γE , δE are also provided below for convenience. Only important

feature we infer from these fits is that at a given energy E, decrease in λE(n) appears to

be logarithmically slow, suggesting that, even for n > 5, we may expect to have chaotic

dynamics at moderate values of the energy.
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Before closing this section we want to note that the LEAs treated in this paper have

only Z2×Z2 symmetry after gauge fixing as already explained in section 4.1. This residual

gauge symmetry is spontaneously broken by the degenerate vacuum configurations of zero

energy, which are given section 5.2 and in appendix B.5 (the potential V(n) and hence the

corresponding vacua are the same both in real time and Euclidean time), as well as by the

instanton solutions given in the next section. We see that the configurations that respect

the Z2 ×Z2 symmetry are only those for which both φ1 and χ1 are vanishing, as these are

the only two fields changing sign under the Z2×Z2 action. We thus easily infer that those

configurations respecting this Z2 × Z2 symmetry and possessing the smallest energy are

the static solutions of the equations of motion minimizing V(n)(φ1 = 0, χ1 = 0, φ3, φ3, χ3).

Using Mathematica we have calculated that these configurations have the energies E =

10, 15.1, 18.0, 19.7, 20.8, respectively for n = 1, 2, 3, 4, 5. At each of n = 2, 3, 4, 5 there are

eight distinct configurations at the given energy, while at n = 1 there are only two.

5 Kink solutions

We now consider the matrix model in the Euclidean signature SE1 given in (2.13) and the

corresponding LEAs. The latter have multiple degenerate vacua supporting kink solutions,

i.e. instantons in 1 + 0-dimensions, whose features are sketched out in what follows.

5.1 Kinks at level n = 1

The Lagrangian is given as

L(n=1) =
1

8
χ′21 +

1

2
φ′21 +

3

2
Φ′2 +

1

4

(
φ2

1 + χ2
1 − 4

)
2 +

3

4

(
φ2

1 + 4Φ(1 + Φ)− 3
)

2

+ φ2
1χ

2
1 + 3(1 + 2Φ)2φ2

1 .

(5.1)

where ′ stands for derivatives with respect to the Euclidean time τ . We have also scaled

out an unimportant factor of 5
2 compared to (4.6). We can easily see from (5.1) that there

are three different pairs of vacua, which are given by the configurations

φ1 = ±2 , χ1 = 0 , Φ = −1

2
,

φ1 = 0 , χ1 = ±2 , Φ =
1

2
or − 3

2
, (5.2)

Since either φ1 or χ1 vanish in these vacua, we infer that, the kink solutions could be of

the type with topological indices (±1, 0) or (0,±1) ∈ Z2 ⊕ Z2. These are the familiar kink

solutions [46, 47]. Indeed, we find that the equations of motion are of the form

φ′′1 −
(
4φ3

1 + 3χ2
1φ1 + φ1(7 + 6Φ)(6Φ− 1)

)
= 0 ,

χ′′1 − 4
(
χ3

1 + 3φ2
1χ1 − 4χ1

)
= 0 , (5.3)

Φ′′ −
(
2(1 + 2Φ)

(
3φ2

1 + 4Φ(1 + Φ)− 3
))

= 0 .
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which have the following solutions

φ1(τ) = 2 tanh
(

2
√

2 τ
)
, χ1(τ) = 0 , Φ(τ) = −1

2
, φ1(±∞) = ±2 , (5.4)

φ1(τ) = 0 , χ1(τ) = 2 tanh
(

2
√

2 τ
)
, Φ(τ) =

1

2
or − 3

2
, χ1(±∞) = ±2 . (5.5)

5.2 Kinks at levels n ≥ 2

For n = 2, 3, 4, 5, the number of degenerate vacua increases. This may be expected due

to the larger number degrees of freedom in the LEAs. Nevertheless, a similar structure in

vacuum configurations to that of n = 1 is observed, and allow for the kink solutions. At

n = 3, for instance, we have eight pairs of degenerate vacua, which are given as

{φ1 → 0., φ3 → 2.56, φ4 → 3.42, χ1 → ±2., χ3 → −11.5} ,
{φ1 → 0., φ3 → −0.28, φ4 → 0.55, χ1 → ±2., χ3 → 1.46} ,
{φ1 → 0., φ3 → 2.55, φ4 → −0.60, χ1 → ±2., χ3 → −5.26} ,
{φ1 → 0., φ3 → −0.27, φ4 → 4.60, χ1 → ±2., χ3 → −4.79} ,
{φ1 → ±2., φ3 → 2.30, φ4 → 4.13, χ1 → 0, χ3 → −3.01} ,
{φ1 → ±2., φ3 → −0.02, φ4 → −0.16, χ1 → 0, χ3 → −7.04} ,
{φ1 → ±2., φ3 → 0.28, φ4 → −0.55, χ1 → 0, χ3 → −1.46} ,
{φ1 → ±2., φ3 → 2.00, φ4 → 4.51, χ1 → 0, χ3 → −8.59} ,

(5.6)

The equations of motion for L(n=3) are coupled non-linear differential equations, which

are not easy to solve. We may look at the linearized system of equations around one of the

minima. For notational simplicity, let us write (φ1, χ1, φ3, φ4, χ3) ≡ (S1, S2, S3, S4, S5) := S

and also introduce S = S0 + s, where S0 is one of the vacuum configurations in (5.6) and

s stands for the fluctuations. The linearized system of equations is given by

Cis′′i =
∂2V(3)

∂si∂sj

∣∣∣∣∣
S0

sj , (5.7)

where no sum over repeated indices is implied on th l.h.s. and Ci can be easily read off

from (B.4). For, say, S0
± ≡ {φ1 → ±2., φ3 → 2.00, φ4 → 4.51, χ1 → 0, χ3 → −8.59}, these

take the form

2.6s′′1 − 125.3s1 − 30.1s3 + 51.9s4 + 5.41s5 = 0 ,

0.52s′′2 − 38.91s2, = 0 ,

9.8s′′3 − 30.1s1 − 216.3s3 + 29.7s4 + 3.7s5, = 0 , (5.8)

6.9s′′4 + 51.9s1 + 29.7s3 − 110.8s4 − 6.4s5, = 0 ,

0.92s′′5 + 5.4s1 + 3.7s3 − 6.4s4 − 5.8s5 = 0 .
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The leading order profiles of the solutions of these equations which are regular as τ → ∞
are given below, while their complete forms are given in appendix B. We have

s1(τ) ≈ (−0.98c1 − 0.18c2 + 4.98c3 + 1.11c4) e−2.38τ , s2(τ) = c5e
−8.65068τ ,

s3(τ) ≈ (−0.65c1 − 0.12c2 + 3.28c3 + 0.73c4) e−2.38τ ,

s4(τ) ≈ (7.75c1 + 1.49c2 − 39.25c3 − 8.73c4) e−2.38τ ,

s5(τ) ≈ (−73.40c1 − 13.99c2 + 404.89c3 + 89.86c4) e−2.38τ , (5.9)

where ci (i : 1 · · · 5) are arbitrary constants. (5.9) provides the asymptotic profile of the

kink solutions near S0
+.

5.3 Kinks in the presence of the Chern Simons term

Here we will confine our discussion only to the level n = 1. In the Euclidean signature, the

reduced action obtained from S3 takes the form

L(n=1) =
5

16
χ′21 +

5

4
φ′21 +

15

4
Φ′2 +

5

8

(
φ2

1 + χ2
1 +

1

2
µ2

)2

+
15

8

(
φ2

1 + 4Φ(1 + Φ) + (1 +
1

2
µ2)

)2

+
5

2
φ2

1χ
2
1 +

15

2
(1 + 2Φ)2φ2

1

− 1

8

(
µ2 + 8

)
(2Φ + 1)

(
5φ2

1

(
χ2

1 + (2Φ + 1)2
)

+ (2Φ + 1)4 + 5φ4
1

)
.

(5.10)

Last term in (5.10) is the contribution coming from the reduction of SCS as can be clearly

observed from the fifth order terms it contains. Due to presence of this term the potential

of (5.10) does not have an absolute minimum, in fact, naturally, it is not bounded from

below. Nevertheless, for µ2 < 0, it is a matter of a simple calculation to see that the

potential still have degenerate local minima. This still allows for kink solutions, which

are, however, only metastable and will decay under sufficiently large perturbations. As a

concrete example, we have, for instance for µ2 = −1, the local minima occurring at

φ1 = 0 , χ1 = ± 1√
2
, Φ ≈ −0.804 , (5.11)

and a kink solution to the equations of (5.10) is given by

φ1 = 0 , χ1 =
1√
2

tanh
√

2τ , Φ ≈ −0.804 . (5.12)

6 Gauge symmetry revisited

In [28] Maldacena and Milekhin considered the BFSS model without imposing the Gauss

law constraint, i.e. without the SU(N)-singlet condition on the physical states. This is

based on the fact that the BFSS model with A = 0 is still well-defined even in the absence

of the Gauss law constraint, at the expense that the SU(N) is no longer a local but a global

gauge symmetry group in this situation.
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We observe that such a possibility is also valid and applicable to the low energy reduced

actions that we have obtained in this paper. The latter have U(1)×U(1) gauge symmetry

and the Gauss law constraint was given in (4.2), imposing the U(1)×U(1) singlet condition

meaning that the complex fields φ(t) and χ(t) are uncharged, i.e. real, under the gauge

fields α1(t) and α3(t), respectively. If we do not impose the constraint we can still set the

gauge fields α1(t) and α3(t) to zero in the LEAs at any level n. In this case, the LEAs

have a global U(1) × U(1) symmetry, which is spontaneously broken by several different

vacuum configurations, and hence imply the existence of Goldstone bosons in these LEAs.

For instance, at the level n = 1, we have the action

L(n=1) =
1

8
|χ̇|2 +

1

2
|φ̇|2 +

3

2
Φ̇2 − 1

4

(
|φ|2 + |χ|2 − 4

)2 − 3

4

(
|φ|2 + 4Φ(1 + Φ)− 3

)2
− |φ|2|χ|2 − 3(1 + 2Φ)2|φ|2 .

(6.1)

with three different vacuum configurations, as easily recognized from (5.2)

|φ| = 2 , χ = 0 , Φ = −1

2
,

φ = 0 , |χ| = 2 , Φ =
1

2
or − 3

2
, (6.2)

spontaneously breaking the U(1) × U(1) symmetry. Thus, we immediately infer that the

fluctuations around each of these vacuum configurations give rise to one Goldstone boson

in the usual manner that it arises in an abelian gauge theory with degenerate vacua. As a

concrete example, we have, with φ = 2+σ1 + iσ2, Φ = −1
2 +ρ and denoting the fluctuation

around χ = 0 still with χ, potential part of L(n=1) takes the form

V(n=1)(σ1, σ2, χ, ρ) =
1

4
(σ2

1 + σ2
2 + 2σ1 + |χ|2)2 +

3

4
(σ2

1 + σ2
2 + 2σ1 + 4ρ2)2

+
(
(2 + σ1)2 + σ2

)
(|χ|2 + 6ρ) ,

(6.3)

showing that σ2 is massless, i.e. it is the Goldstone boson associated with this particular

vacuum configuration. Similar analysis show the existence of Goldstone bosons for the

other two vacuum configurations in (6.2). Finally, we note that for n = 2, 3, 4, 5 we infer

from (B.7), (5.6), (B.8) and (B.9) that, at each value of n, there are eight distinct vacuum

configurations determined by the values of φ, χ and the real fields φ3, χ3 and φ4, each of

which comes with a Goldstone boson.

7 Conclusions

In this paper we have studied the 5d mass-deformed Yang-Mills matrix model with U(4N)

gauge symmetry. We have found the exact form of the SU(4) ≈ SO(6) equivariant

parametrizations of the gauge field and the fluctuations about the classical four concentric

fuzzy four sphere configuration and used them to calculate the LEAs by performing traces

over the S4
F s for the first five lowest matrix levels. The LEA’s obtained in this manner have

potentials bounded from below, which indicates that the equivariant fluctuations about the

S4
F configurations with a tachyonic mass term (µ2 = −8) do not lead to any instabilities.
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We have showed through detailed numerical computations that these reduced systems have

chaotic dynamics and exhibited its various features. In particular, based on the numerical

calculations of the Lyapunov spectrum we deterined how the LLE behaves as a function of

energy, and also were able to comment on the aspects of the onset of chaos in these models.

In the Euclidean signature, we have demonstrated that the LEAs support the usual kink

type solutions, i.e. instantons in 1 + 0-dimensions. The latter may be viewed as the resid-

ual topologically non-trivial configurations, linked to the topological fluxes penetrating the

concentric S4
F s due to the equivariance conditions, and preventing them to shrink to zero

radius.
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A Some formulas on representation theory

A.1 Branching rules & relations among Dynkin and heights weight labels

Irreducible representations of SO(2k) and SO(2k − 1)can be given in terms of the high-

est weight labels [λ] ≡ (λ1 , λ2 , · · · , λk−1 , λk) and [µ] ≡ (µ1 , µ2 , · · · , µk−1) respectively.

Branching of the IRR [λ] of SO(2k) under SO(2k − 1) IRRs follows from the rule

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µk−1 ≥ |λk| , (A.1)

The relationship between Dykin labels and highest weight labels for SO(5) IRRs is

(p, q)Dynkin ≡ (λ1, λ2)HW , (A.2)

with

λ1 =
p+ q

2
λ2 =

q

2
. (A.3)

For the SO(6) IRRs the correspondence is given by

(p, q, r)Dynkin ≡ (λ1, λ2, λ3)HW , (A.4)

with

λ1 = q +
p+ r

2
λ2 =

p+ r

2
λ3 =

p− r
2

. (A.5)
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A.2 Computation of (G · Σ)2

Here we present the details of the calculation leading to (3.12). We have

(G · Σ)2 = GijGklΣijΣkl

= γiγjγkγlGijGkl . (A.6)

Multiplying both sides of (A.6) with εabcdm and using εijklmγiγjγkγl = 24γm as can be

inferred from (2.20b) one obtains

εabcdmεijklmγiγjγkγlGabGcd = 24εabcdmγmGabGcd (A.7)

To handle the left hand side of (A.7) we make use of the determinant

εabcdmεijklm =

∣∣∣∣∣∣∣∣∣
δai δaj δak δal

δbi δbj δbk δbl

δci δcj δck δcl

δdi δdj δdk δdl

∣∣∣∣∣∣∣∣∣ (A.8)

Left hand side of (A.7) then reads

4γaγbγcγdGabGcd + 4γcγdγaγbGabGcd + 4γaγcγdγbGabGcd

+4γaγdγbγcGabGcd + 4γcγaγbγdGabGcd + 4γdγaγcγbGabGcd

= 4(6γaγbγcγdGabGcd − 12GabGab + 24γaγcGabGcb) , (A.9)

where the second line follows after making use of {Γa ,Γb} = 2δab for rearrangements.

Therefore, (A.7) can be cast into the form

(G · Σ)2 = γaγbγcγdGabGcd = εabcdmγmGabGcd + 2GabGab − 4γaγcGabGcb .

Employing Gab = 1
2 [Xa, Xb], we can expand the first term in r.h.s. of (A.2) as

εabcdmγmGabGcd =
1

4
εabcdmγm (XaXbXcXd −XaXbXdXc −XbXaXcXd +XbXaXdXc)

= εabcdmγmXaXbXdXc

= 8(n+ 2)Xmγm . (A.10)

after using (2.20b). Substituting GabGab = −4n(n + 4)14N for the second term and sim-

plifying the third term as

−4γaγcGabGcb = −2γaγcGabGcb − 2γaγcGabGcb

= −2γaγcGabGcb − 4GabGab + 2γaγcGcbGab

= −2γaγc[Gab, Gcb]− 4GabGab

= 12γaγcGac − 4GabGab (A.11)

and finally, combining all the terms together we get

(G · Σ)2 = 12 ΓaΓbGab + 8(n+ 2)XaΓa + 8n(n+ 4)14N . (A.12)
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B Details on the dimensional reduction of S1

B.1 Useful identities

Some useful identities among Q1, Q3 and Xa, which simplify the analytic calculations are

listed below:

[Q1, [Xa, Q3]] = 0 , [Q3, [Xa, Q1]] = 0 ,

[Q1, Q3[Xa, Q3]] = 0 , [Q3, Q1[Xa, Q1]] = 0 ,

[Q3, Q1[Xa, Q1]] = 0 , [Q1, {Xa, Q2}] = 0 ,

[Q1, {Xa, Q1} −Q3[Xa, Q3]] = 0 , [Q3, {Xa, Q1} −Q3[Xa, Q3]] = 0 ,

[Q1, {Xa, Q3} −Q1[Xa, Q1]] = 0 , [Q3, {Xa, Q3} −Q1[Xa, Q1]] = 0 .

(B.1)

B.2 Intermediate forms of DtXa

Two intermediate steps in obtaining (3.21) may be listed as follows. Substituting the

parametrizations in (3.17) and (3.18) in DtXa = ∂tXa − i[A,Xa], we find

DtXa = i
∂tφ1

2
[Xa, Q1] + i

∂tχ1

2
[Xa, Q3]

+
∂tφ2

2
Q1[Xa, Q1] +

∂tχ2

2
Q3[Xa, Q3]Xa

+ ∂tφ3

({
X̂a, Q1

}
−Q3

[
X̂a, Q3

])
+ ∂tχ3

({
X̂a, Q3

}
−Q1

[
X̂a, Q1

])
+ ∂tφ4(X̂a + Γ̂a +Q3

[
X̂a, Q3

]
) +

α1φ1

4
[Q1, [Xa, Q1]]

+
α1χ1

4
[Q1, [Xa, Q3]]− iα1(φ2 + 1)

4
[Q1, Q1[Xa, Q1]]

− iα1(χ2 + 1)

4
[Q1, Q3[Xa, Q3]]− iα1φ3

2

[
Q1,

{
X̂a, Q1

}
−Q3

[
X̂a, Q3

]]
− iα1χ3

2

[
Q1,

{
X̂a, Q3

}
−Q1

[
X̂a, Q1

]]
− iα1φ4

2

[
Q1, X̂a + Γ̂a +Q3

[
X̂a, Q3

]]
+
α3φ1

2
[Q3, [Xa, Q1]] +

α3χ1

4
[Q3, [Xa, Q3]]− iα3(φ2 + 1)

4
[Q3, Q1[Xa, Q1]]

− iα3(χ2 + 1)

4
[Q3, Q3[Xa, Q3]]− iα3φ3

2

[
Q3,

{
X̂a, Q1

}
−Q3

[
X̂a, Q3

]]
− iα3χ3

2

[
Q3,

{
X̂a, Q3

}
−Q1

[
X̂a, Q1

]]
− iα3φ4

2

[
Q3, X̂a + Γ̂a +Q3

[
X̂a, Q3

]]
− iα1

2
[Q1, Xa]− i

α3

2
[Q3, Xa] .

(B.2)

With the help of the identities listed in (B.1), this simplifies to

DtXa =
i

2
(∂tφ1 − α1φ2)[Xa, Q1] +

i

2
(∂tχ1 − α3χ2)[Xa, Q3]

+
1

2
(∂tφ2 + α1φ1)Q1[Xa, Q1] +

1

2
(∂tχ2 + α1χ2)Q3[Xa, Q3]

+ ∂tφ3

({
X̂a, Q1

}
−Q3

[
X̂a, Q3

])
+ ∂tχ3

({
X̂a, Q3

}
−Q1

[
X̂a, Q1

])
+ ∂tφ4

(
X̂a + Γ̂a +Q3

[
X̂a, Q3

])
.

(B.3)
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B.3 Explicit form of the low energy reduced actions

Below we give the equivariantly reduced Lagrangians for n = 3, 4, 5:

L(n=3) =
1

2

(
0.58χ̇2

1 + 0.92χ̇2
3 + 6.903φ̇2

4 + 2.6φ̇2
1 + 9.8φ̇2

3

)
− 1.43χ4

1

− 0.05χ4
3 − 0.81χ3

3 + 8.10χ2
1 − 0.30χ2

1χ
2
3 − 3.63χ2

3 + 3.34χ2
1χ3

+ 0.23χ3 − 5.25χ2
1φ

2
1 − 0.17χ2

3φ
2
1 + 4.04χ3φ3φ

2
1 − 1.34χ3φ4φ

2
1

− 3.56χ3φ
2
1 − 0.447χ3

3φ3 + 0.128χ3
3φ4 − 4.09χ2

1φ
2
3 − 1.79χ2

1φ
2
4

+ 9.83χ2
1φ3 − 6.24χ2

1φ3φ4 + 4.20χ2
1φ4 − 1.66χ2

3φ
2
3

− 0.13χ2
3φ

2
4 − 4.70χ2

3φ3 + 0.86χ2
3φ3φ4 + 1.49χ2

3φ4

− 0.23χ3φ
3
3 − 0.142χ3φ

3
4 − 17.80χ3φ

2
3 − 0.75χ3φ3φ

2
4

+ 0.34χ3φ
2
4 − 2.30χ2

1χ3φ3 − 1.96χ2
1χ3φ4 − 12.48χ3φ3

+ 1.08χ3φ
2
3φ4 + 9.19χ3φ3φ4 + 1.64χ3φ4 − 3.94φ4

1 − 23.22φ2
3φ

2
1

− 1.65φ2
4φ

2
1 + +13.14φ2

1 + 35.3φ3φ
2
1 + 18.84φ3φ4φ

2
1 − 21.27φ4φ

2
1

− 8.46φ4
3 − 1.19φ4

4 + 29.74φ3
3 − 2.33φ3φ

3
4 + 11.24φ3

4 − 51.36φ2
3

− 2.91φ2
3φ

2
4 + 16.41φ3φ

2
4 − 29.82φ2

4 − 45.17φ3 + 3.54φ3
3φ4

+ 4.90φ2
3φ4 − 14.55φ3φ4 + 17.07φ4 − 30.61 . (B.4)

L(n=4) =
1

2

(
1.3χ̇2

1 + 2.6φ̇2
1 + 8.38φ̇2

3 + 6.77φ̇2
4 + 0.88χ̇2

3

)
− 1.66χ4

1

− 1.66χ4
1 − 0.02χ4

3 − 0.39χ3
3 + 8.81χ2

1 − 0.29χ2
1χ

2
3 − 2.75χ2

3

+ 3.47χ2
1χ3 + 0.25χ3 − 5.48χ2

1φ
2
1 − 0.18χ2

3φ
2
1 + 3.55χ3φ3φ

2
1

− 1.32χ3φ4φ
2
1 − 3.72χ3φ

2
1 − 0.16χ3

3φ3 + 0.04χ3
3φ4 − 7.09χ2

1φ
2
3

− 0.80χ2
1φ

2
4 + 14.2χ2

1φ3 − 5.37χ2
1φ3φ4 + 3.18χ2

1φ4 − 0.85χ2
3φ

2
3

− 0.05χ2
3φ

2
4 − 2.59χ2

3φ3 + 0.40χ2
3φ3φ4 + 0.79χ2

3φ4 + 0.01χ3φ
3
3

− 0.02χ3φ
3
4 − 14.3χ3φ

2
3 − 0.33χ3φ3φ

2
4 − 0.18χ3φ

2
4 − 2.92χ2

1χ3φ3

− 1.22χ2
1χ3φ4 − 10.38χ3φ3 + 0.40χ3φ

2
3φ4 + 7.01χ3φ3φ4 + 1.59χ3φ4

− 3.94φ4
1 − 16.04φ2

3φ
2
1 − 2.03φ2

4φ
2
1 + 13.4φ2

1 + 28.6φ3φ
2
1 + 14.2φ3φ4φ

2
1

− 17.7φ4φ
2
1 − 5.49φ4

3 − 0.21φ4
4 + 24.2φ3

3 − 0.73φ3φ
3
4 + 3.47φ3

4

− 66.4φ2
3 − 1.99φ2

3φ
2
4 + 9.79φ3φ

2
4 − 16.53φ2

4 − 42.75φ3

+ 2.24φ3
3φ4 + 5.81φ2

3φ4 − 11.5φ3φ4 + 14.5φ4 − 31 . (B.5)

L(n=5) =
1

2

(
1.5χ̇2

1 + 2.5φ̇2
1 + 7.549φ̇2

3 + 6.537φ̇2
4 + 0.83χ̇2

3

)
− 1.85χ4

1

− 1.85χ4
1 − 0.006χ4

3 − 0.22χ3
3 + 9.31χ2

1 − 0.26χ2
1χ

2
3 − 2.20χ2

3 + 3.45χ2
1χ3

+ 0.25χ3 − 5.63χ2
1φ

2
1 − 0.18χ2

3φ
2
1 + 2.8χ3φ3φ

2
1 − 0.97χ3φ4φ

2
1 − 3.69χ3φ

2
1
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− 0.07χ3
3φ3 + 0.02χ3

3φ4 − 10.4χ2
1φ

2
3 − 0.19χ2

1φ
2
4 + 18.01χ2

1φ3

− 3.23χ2
1φ3φ4 + 1.60χ2

1φ4 − 0.45χ2
3φ

2
3 − 0.02χ2

3φ
2
4

− 1.45χ2
3φ3 + 0.17χ2

3φ3φ4 + 0.37χ2
3φ4 + 0.10χ3φ

3
3 + 0.0003χ3φ

3
4

− 10.40χ3φ
2
3 − 0.10χ3φ3φ

2
4 − 0.20χ3φ

2
4 − 3.37χ2

1χ3φ3 − 0.58χ2
1χ3φ4

− 8.29χ3φ3 + 0.07χ3φ
2
3φ4 + 4.34χ3φ3φ4 + 1.16χ3φ4 − 3.88φ4

1

− 9.66φ2
3φ

2
1 − 1.20φ2

4φ
2
1 + 13.4φ2

1 + 20.9φ3φ
2
1 + 8.14φ3φ4φ

2
1

− 11.95φ4φ
2
1 − 3.66φ4

3 − 0.02φ4
4 + 22.15φ3

3 − 0.12φ3φ
3
4 + 0.61φ3

4 − 77.93φ2
3

− 0.90φ2
3φ

2
4 + 3.98φ3φ

2
4 − 6.40φ2

4 − 38.93φ3 + 0.883φ3
3φ4 + 5.42φ2

3φ4

− 7.43φ3φ4 + 10.35φ4 − 31 . (B.6)

B.4 Time series for Lyapunov exponents for n = 1, 2, 3, 4, 5

Figure 8. n = 1, E = 15, LLE = 0.094. Figure 9. n = 1, E = 25, LLE = 0.2788.

Figure 10. n = 1, E = 30, LLE = 0.4893.
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Figure 11. n = 1, E = 40, LLE = 0.6370. Figure 12. n = 1, E = 50, LLE = 0.7265.

Figure 13. n = 1, E = 100, LLE = 0.9645.

Figure 14. n = 1, E = 250, LLE = 1.099. Figure 15. n = 1, E = 500, LLE = 1.1574.
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Figure 16. n = 1, E = 1000, LLE = 1.2138. Figure 17. n = 1, E = 2000, LLE = 1.3087.

Figure 18. n = 2, E = 15, LLE = 0.094. Figure 19. n = 2, E = 25, LLE = 0.2788.

Figure 20. n = 2, E = 30, LLE = 0.4893.
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Figure 21. n = 2, E = 40, LLE = 0.6370. Figure 22. n = 2, E = 50, LLE = 0.7265.

Figure 23. n = 2, E = 100, LLE = 0.9645.

Figure 24. n = 2, E = 250, LLE = 1.099. Figure 25. n = 2, E = 500, LLE = 1.1574.
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Figure 26. n = 2, E = 1000, LLE = 1.2138. Figure 27. n = 2, E = 2000, LLE = 1.3087.

Figure 28. n = 3, E = 15, LLE = 0.035. Figure 29. n = 3, E = 25, LLE = 0.2159

Figure 30. n = 3, E = 30, LLE = 0.3515.
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Figure 31. n = 3, E = 40, LLE = 0.5371. Figure 32. n = 3, E = 50, LLE = 0.6450.

Figure 33. n = 3, E = 100, LLE = 0.8430.

Figure 34. n = 3, E = 250, LLE = 1.0699. Figure 35. n = 3, E = 500, LLE = 1.1439.
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Figure 36. n = 3, E = 1000, LLE = 1.1983. Figure 37. n = 3, E = 2000, LLE = 1.2949.

Figure 38. n = 4, E = 15, LLE = 0.016.

Figure 39. n = 4, E = 25, LLE = 0.1563. Figure 40. n = 4, E = 30, LLE = 0.2623.
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Figure 41. n = 4, E = 40, LLE = 0.4453. Figure 42. n = 4, E = 50, LLE = 0.5710.

Figure 43. n = 4, E = 100, LLE = 0.7578.

Figure 44. n = 4, E = 250, LLE = 0.9922. Figure 45. n = 4, E = 500, LLE = 1.1064.
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Figure 46. n = 4, E = 1000, LLE = 1.161. Figure 47. n = 4, E = 2000, LLE = 1.2412.

Figure 48. n = 5, E = 15, LLE = 0.039. Figure 49. n = 5, E = 25, LLE = 0.118.

Figure 50. n = 5, E = 30, LLE = 0.23616.
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Figure 51. n = 5, E = 40, LLE = 0.4393. Figure 52. n = 5, E = 50, LLE = 0.5276.

Figure 53. n = 5, E = 100, LLE = 0.6972.

Figure 54. n = 5, E = 250, LLE = 0.9054. Figure 55. n = 5, E = 500, LLE = 1.0405.
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Figure 56. n = 5, E = 1000, LLE = 1.0982. Figure 57. n = 5, E = 2000, LLE = 1.1566.

B.5 Absolute minima of the potentials V(n)

The absolute minima of the potentials V(n) associated to L(n) are given below.

For n = 2:

{φ1 → 0, φ3 → 2.05, φ4 → 1.95, χ1 → ±2., χ3 → −6.47} ,
{φ1 → 0, φ3 → 2.09, φ4 → −0.16, χ1 → ±2., χ3 → −2.76} ,
{φ1 → 0, φ3 → −0.41, φ4 → 2.50, χ1 → ±2., χ3 → −2.66} ,
{φ1 → 0, φ3 → −0.37, φ4 → 0.39, χ1 → ±2., χ3 → 1.05} ,
{φ1 → ±2., φ3 → 1.30, φ4 → 2.74, χ1 → 0, χ3 → −4.38} ,
{φ1 → ±2., φ3 → 1.44, φ4 → 2.60, χ1 → 0, χ3 → −1.28} ,
{φ1 → ±2., φ3 → 0.24, φ4 → −0.25, χ1 → 0, χ3 → −4.14} ,
{φ1 → ±2., φ3 → 0.37, φ4 → −0.40, χ1 → 0, χ3 → −1.05} ,

(B.7)

For n = 4:

{φ1 → 0, φ3 → 2.46φ4 → 2.90, χ1 → ±1., χ3 → −12.4} ,
{φ1 → 0, φ3 → 2.27, φ4 → −0.17, χ1 → ±1., χ3 → −7.91} ,
{φ1 → 0, φ3 → 0.87, φ4 → 4.67, χ1 → ±1., χ3 → −7.43} ,
{φ1 → 0, φ3 → 0.68, φ4 → 1.60, χ1 → ±1., χ3 → −2.94} ,
{φ1 → ±1., φ3 → 0.89, φ4 → 0.64, χ1 → 0, χ3 → −4.73} ,
{φ1 → ±1., φ3 → 2.25, φ4 → 3.86, χ1 → 0, χ3 → −10.6} ,
{φ1 → ±1., φ3 → 2.42, φ4 → 3.85, χ1 → 0, χ3 → −6.38} ,
{φ1 → ±1., φ3 → 0.72, φ4 → 0.66, χ1 → 0, χ3 → −8.97} ,

(B.8)
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For n = 5:

{φ1 → 0, φ3 → 3.04, φ4 → 2.64, χ1 → ±1., χ3 → −16.9} ,
{φ1 → 0, φ3 → 0.92, φ4 → 2.08, χ1 → ±1., χ3 → −4.27} ,
{φ1 → 0, φ3 → 2.60, φ4 → −2.67, χ1 → ±1., χ3 → −11.0} ,
{φ1 → 0, φ3 → 1.36, φ4 → 7.38, χ1 → ±1., χ3 → −10.2} ,
{φ1 → ±1., φ3 → 1.06, φ4 → 0.28, χ1 → 0, χ3 → −6.35} ,
{φ1 → ±1., φ3 → 2.90, φ4 → 4.43, χ1 → 0, χ3 → −14.9} ,
{φ1 → ±1., φ3 → 3.11, φ4 → 4.80, χ1 → 0, χ3 → −9.04} ,
{φ1 → ±1., φ3 → 0.85, φ4 → −0.09, χ1 → 0, χ3 → −12.2} ,

(B.9)

B.6 Asymptotic profiles of the kink solution for L(n=3)

Solutions of (5.9), which are regular as τ →∞ are given below

s1(τ) = (3.1c1 + 0.49c2 − 6.52c3 − 1.52c4) e−3.45τ

+ (0.07c1 − 0.005c2 + 0.25c3 + 0.16c4) e−4.56τ

+ (−1.17c1 − 0.3c2 + 1.29c3 + 0.26c4) e−7.36τ

+ (−0.98c1 − 0.18c2 + 4.98c3 + 1.11c4) e−2.38τ , (B.10)

s3(τ) = (0.92c1 + 0.15c2 − 1.95c3 − 0.46c4) e−3.44τ

+ (−0.139c1 + 0.01c2 − 0.48c3 − 0.30c4) e−4.56τ

+ (−0.14c1 − 0.035c2 + 0.15c3 + 0.03c4) e−7.36τ

+ (−0.65c1 − 0.12c2 + 3.28c3 + 0.73c4) e−2.38τ (B.11)

s4(τ) = (7.74c1 + 1.45c2 − 39.25c3 − 8.73c4) e−2.38τ

+ (5.79c1 + 0.93c2 − 12.24c3 − 2.86c4) e−3.45τ

+ (0.25c1 + 0.065c2 − 0.28c3 − 0.055c4) e−7.36τ

+ (0.016c1 − 0.001c2 + 0.055c3 + 0.035c4) e−4.56τ (B.12)

s5(τ) = (3.09c1 + 0.49c2 − 6.26c3 − 1.47c4) e−3.45τ

+ (0.20c1 + 0.051c2 − 0.24c3 − 0.048c4) e−7.36τ

+ (0.025c1 + 0.00025c2 + 0.03c3 + 0.03c4) e−4.56τ

+ (−73.40c1 − 13.99c2 + 404.89c3 + 89.86c4) e−2.38τ (B.13)
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