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Communication
Error Control of Multiple-Precision MLFMA

Mert Kalfa , Özgür Ergül , and Vakur B. Ertürk

Abstract— We introduce and demonstrate a new error control scheme
for the computation of far-zone interactions in the multilevel fast multi-
pole algorithm when implemented within a multiple-precision arithmetic
framework. The proposed scheme provides the optimum truncation
numbers as well as the machine precisions given the desired relative error
thresholds and the box sizes for the translation operator at all frequencies.
In other words, unlike the previous error control schemes which are
valid only for high-frequency problems, the proposed scheme can be
used to control the error across both low- and high-frequency problems.
Optimum truncation numbers and machine precisions are calculated for
a wide range of box sizes and desired relative error thresholds with
the proposed error control scheme. The results are compared with the
previously available methods and numerical surveys.

Index Terms— Diagonalization, error analysis, fast multipole method
(FMM), low-frequency breakdown, multiple-precision arithmetic (MPA).

I. INTRODUCTION

The fast multipole method (FMM) has been named as one of the
top 10 algorithms of the 20th century by the Society of Industrial
and Applied Mathematics [1]. The multilevel fast multipole algo-
rithm (MLFMA) that is an extension of FMM is able to achieve
O(N log N) complexity for N unknowns, enabling the solution of
extremely large electromagnetic problems compared with O(N2) for
a Krylov-subspace iterative algorithm applied on full matrices. This
increase in efficiency is due to the ability to compute the interactions
between basis and testing functions in a group-by-group manner,
which is made possible by Gegenbauer’s addition theorem and the
diagonalization of the translation operator [2], [3]. The drawback
of the diagonalized form is that it includes an infinite summation
over spherical harmonics involving Hankel functions which become
numerically unstable as the truncation number (order) increases due
to limited machine precision. The numerical stability problem of the
translation operator is also the main culprit behind the well-known
low-frequency breakdown problem [4], which makes selecting the
truncation number an important part of the error control of MLFMA.

There have been several classical papers about the error control of
MLFMA, and most of them focus on the translation operator and its
truncation. In [5]–[7], the excess bandwidth formula (EBF) is used to
determine the truncation numbers. Although it is widely used in most
MLFMA implementations, there are two main limitations of the EBF.
First, the formula is derived using the large argument approximation
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of the Bessel and Hankel functions [8] of the translation operator,
which makes it invalid for small box sizes (i.e., low-frequency prob-
lems). Second, the numerical stability of the Hankel function given
the available machine precision is not considered. The second short-
coming is partly addressed in [9], where the accuracy lost due to the
overflow of the Hankel function is considered. However, the resulting
error control scheme is only limited to electrically large boxes.

In the case of electrically small boxes, there are many different
studies available in the literature to treat the low-frequency break-
down that falls into mainly two categories. One popular approach is
to use the multipoles explicitly [10]–[15], while another is to deform
the angular integration so that the evanescent waves are considered
for subwavelength interactions [16]–[18]. Methods in both categories
require the solver to be implemented from the ground up while
increasing complexity due to alternative expansion formulations of
Green’s function. A simple alternative to the treatment of the low-
frequency problem is proposed in [19], where multiple-precision
arithmetic (MPA) is used to handle overflowing summations when
necessary. Since the EBF is not valid for low-frequency problems,
Ergül and Karaosmanoǧlu [19] determined the optimum truncation
numbers and machine precisions by extensive numerical simulations.

In this communication, we introduce and demonstrate an error con-
trol scheme for MLFMA that is valid at all frequencies when imple-
mented in a multiple-precision framework. The proposed scheme
provides the optimum truncation numbers given the box size and the
desired relative error threshold at all frequencies for the first time in
the literature while yielding compatible results with the EBF at high
frequencies. In addition, the proposed scheme provides the required
machine precisions for each case, results of which can be used as a
precursor to an efficient and robust implementation of an MPA-based
MLFMA solver.

The rest of this communication is organized as follows. Section II
describes the proposed error control formulation and its implemen-
tation. Section III presents the numerical results and comparisons
with the existing methods and numerical surveys in the literature.
Section IV presents a discussion on the implementation of MPA
and the required computing resources. The conclusion is provided
in Section V. An e−iωt time convention, where ω = 2π f and f is
the operating frequency, is assumed and suppressed throughout this
communication.

II. FORMULATION

A. Error Control Formulations in the Literature
Gegenbauer’s addition theorem expands the free-space Green’s

function in terms of spherical harmonics as

exp (ik| �w + �v|)
4π | �w + �v| = ik

4π

∞∑

t=0

(−1)t (2t + 1) jt (kv)h
(1)
t (kw)Pt (ŵ · v̂)

(1)

where jt and h(1)t are the spherical Bessel and Hankel functions of
the first kind, respectively. In (1), Pt is the Legendre polynomial of
order t , while w = | �w| and v = |�v | represent the translation and
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shift vectors, respectively. Note that (1) is only valid when w > v .
Representing the spherical waves as integrals over the plane-wave
spectrum, the diagonal form of Green’s function is obtained [2] as

exp (ik| �w + �v1 + �v2|)
4π | �w + �v1 + �v2| ≈ ik

(4π)2

∫
d2k̂ β(�k, �v1)ατ (�k, �w)β(�k, �v2)

(2)

where

β(�k, �v) = exp (i �k · �v) (3)

ατ (�k, �w) =
τ∑

t=0

(i)t (2t + 1)h(1)t (kw)Pt (k̂ · ŵ) (4)

are the shift and the translation operators, respectively. In (4), τ is the
truncation number that directly affects the accuracy of the translation
operator and ultimately the accuracy of MLFMA. The truncation
number also determines the number of sampling points along the
θ and φ axes of the spherical coordinate system [20] for the angular
integration in (2). For electrically large boxes, the EBF is used to
determine the truncation number [5]–[7] as

τ ≈ ka
√

3 + 2.18(d0)
2/3(ka)1/3 (5)

where a is the box edge length and d0 is the desired digits of accuracy
which is related to the desired relative error threshold (	d ) by

d0 � − log10(	d ). (6)

In practice, the actual relative error of (2) with respect to the free-
space Green’s function may exceed the desired threshold (	d ) due to
overflow problems in the evaluation of the spherical Hankel function
on a computing platform with a limited machine precision. This
behavior of the Hankel function is addressed in [9], where the digits
of accuracy lost due to the spherical Hankel function are modeled as

d1 =
[

τ − 2ka

1.8(2ka)1/3

]1.5
(7)

which can be used to estimate the effective digits of accuracy given
by

deff = d0 − d1. (8)

Note that the accuracy estimate of (8) is still only valid for electrically
large boxes since it is based on the large argument approximation of
Hankel functions.

B. Proposed Error Control Formulation
1) Estimating the Optimum Truncation Number: The derivation

for the relative error starts with Gegenbauer’s addition theorem (1).
When a truncation number of τ is used, the relative error (	̂) with
respect to the free-space Green’s function can be found from

	̂ = k R

∣∣∣∣∣∣

∞∑

t=τ+1

(−1)t (2t + 1) jt (kv)h
(1)
t (kw)Pt (ŵ · v̂ )

∣∣∣∣∣∣
(9)

where R = | �w+�v|. Assuming that the leading term of (9) dominates,
the relative error can be approximated as

	̂ ≈ k R(2τ + 3)
∣∣ jτ+1(kv)h

(1)
τ+1(kw)Pτ+1(ŵ · v̂)∣∣. (10)

Unlike the previous works on error control [5]–[7] that use the large
argument approximations of the Bessel and Hankel functions in (10),
we use the large order approximation [8, eq. (9.3.2)] as

Jt (t sech γ j ) ≈ exp [t (tanh γ j − γ j )]√
2π t tanh γ j

(11)

Yt (t sech γy) ≈ −i
exp [t (γy − tanh γy)]√

1
2π t tanh γy

. (12)

Fig. 1. Critical points for the shift vectors shown on source and observation
boxes in a one-box-buffer scheme. Corners and edge centers are shown with
filled circles, and face centers are shown as circles.

Substituting (11) and (12) into the spherical Bessel and Hankel
functions in (10), we obtain

jτ+1(kv) =
√
π

2kv
Jτ+1.5(kv) ≈ 0.5ψ j√

(τ + 1.5)kv tanh γ j
(13)

h(1)τ+1(kw) =
√

π

2kw
H (1)
τ+1.5(kw) ≈ 0.5ψh − iψ−1

h√
(τ + 1.5)kw tanh γh

(14)

where ψ j and ψh are defined as

ψ j � exp [(τ + 1.5)(tanh γ j − γ j )] (15)

ψh � exp [(τ + 1.5)(tanh γh − γh)] (16)

with

γ j = sech−1
(

kv

τ + 1.5

)
(17)

γh = sech−1
(

kw

τ + 1.5

)
. (18)

Substituting (13) and (14) into (10), we obtain

	̂ ≈ R√
wv

∣∣∣∣∣
Pτ+1(ŵ · v̂ )ψ j

(
0.5ψh − iψ−1

h

)
√

tanh γ j tanh γh

∣∣∣∣∣ (19)

which can be used to estimate the relative error for all possible
translation and shift vectors.

To find the maximum error given a box size (a), the translation
distance is taken as its minimum value (i.e., w = 2a for a one-box-
buffer scheme) and the total shift distance is taken as its maximum
value (v = |[a a a]T | = a

√
3, where T is the matrix transpose),

respectively, as shown in Fig. 1.
Note that the error control schemes used in [5]–[7] assume

|Pτ+1(ŵ·v̂)| = 1 as the worst case when estimating the relative error.
However, the values of the argument where the absolute value of the
Legendre polynomial reaches unity (ŵ · v̂ = ±1) are not necessarily
the points where the largest errors will occur, e.g., ŵ · v̂ = 1/

√
3 for

the worst case illustrated in Fig. 1. Moreover, the root-mean-square
value of the Legendre polynomials over the range ŵ · v̂ ∈ [−1, 1]
can be calculated as

√√√√√√

1∫

−1

P2
t (z)dz =

√
2

2t + 1
(20)

which can be derived using Rodrigues’ formula [8, eq. (8.6.18)]
and integration by parts. Equation (20) shows that assuming
|Pτ+1(ŵ · v̂)| = 1 in (19) leads to overestimation of the truncation
numbers, especially for larger box sizes and/or smaller desired rela-
tive errors. Moreover, even slightly overestimated truncation numbers
cause a much higher required machine precision, especially for low
frequencies because of the increased numerical instability of the
Hankel functions for small arguments. As a result, the Legendre
polynomial is kept intact in (19).
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Fig. 2. Relative error estimate (	̂) for a = λ/32, 	d = 1e−3, �w = [0 2a 0]T ,
and �v = �v1 + �v2 = [a a a]T .

To the best of our knowledge, (19) cannot be solved for τ analyt-
ically, due to the inclusion of the Legendre polynomial. Therefore,
the number of harmonics for a given box size (a) and a desired
relative error threshold (	d ) must be found numerically. Moreover,
due to the oscillatory nature of the Legendre polynomial, there are
more than one solution for a given relative error threshold. This
behavior is shown in Fig. 2, in which the relative error estimate as a
function of the truncation number is given for an example scenario.
Therefore, to provide an accurate upper bound for the relative error,
we define a set of feasible truncation numbers as

τ̃ (a, 	d ) � {τ ∈ Z
+ | 	̂(a, τ ) < 	d , 	̂(a, τ − 1) > 	d }. (21)

Then, the optimum truncation number (τopt) can simply be found as
the maximum value of the feasible set as

τopt(a, 	d ) � max(τ̃ (a, 	d )). (22)

From a practical standpoint, (21) and (22) correspond to finding the
zero crossings of 	d − 	̂, and then, selecting the largest τ value for
which the estimated relative error is below the desired relative error.
This approach has a computational complexity of O(τopt) and ensures
the actual relative error of the translation operator stays below the
specified level.

2) Estimating the Optimum Machine Precision: After finding
the optimum number of harmonics (τopt), the far-zone interactions
between the boxes are computed using the diagonal form of Green’s
function in (2). The machine precision must be able to handle
each of the individual elementary functions in (2), as well as all
of the intermediate combinations (i.e., products, summations, and
integrations) before the final result. Note that the required machine
precision is highly dependent on the implementation (order of com-
putation, canceling terms, and so on). An important assumption on
the implementation is that the frequency scaling that comes from
multiplication by k in (2) is performed after the computation is
finished, i.e., the first k term in (2) is replaced by 2π while estimating
the required machine precision.

To represent the worst case in terms of the required machine
precision when computing (2), we define

GMP �
2πNθφθφ

(4π)2
(τ + 1)(2τ + 1)h(1)τ (kw)PMP

τ . (23)

In (23), PMP
τ is defined to be the value of the Legendre polynomial

Pτ (k̂ · ŵ) that requires the highest machine precision (i.e., its
minimum value other than zero) as

PMP
τ �

{
min

k̂∈K3
(|Pτ (k̂ · ŵ)|)|Pτ (k̂ · ŵ) �= 0

}
(24)

where K
3 is the set of unit vectors k̂ that are defined by the angular

sampling in the numerical evaluation of (2). The steps taken to
obtain (23) from (2) are as follows. First, the unit amplitude shift
operators (β(�k, �v)) are omitted. Second, assuming that all terms in

the truncated summation in (4) coherently adds up as the worst case,
the summation is replaced with a multiplication by the number of
terms, i.e., (τ + 1). Third, assuming that the integrand coherently
adds up in (2), the integral is replaced with a multiplication by
Nθφθφ, where θ and φ are the grid sizes along the θ and φ
axes, respectively, and Nθφ is the total number of angular samples.
Note that we use Gauss–Legendre sampling along the θ-axis as
given in [20] when computing (2). However, while constructing (23),
we assume uniform sampling, which yields

θ = φ = π

τ + 1
(25)

Nθφ = 2(τ + 1)2. (26)

Note that uniform integration weights follow the sample mean of
Gauss–Legendre weights with a multiplicative factor of π/2 (i.e., half
of the extent of θ-axis). Therefore, uniform integration weights offer
a simpler and computationally tractable alternative when comput-
ing (23).

The expression given in (23) includes the multiplicative terms
both greater and smaller than one, which we define as overflow-
critical (GMP+ ) and underflow-critical terms (GMP− ), respectively, as

GMP+ = 2πNθφ (τ + 1)(2τ + 1)max
(
0.5|ψh |, ∣∣ψ−1

h

∣∣) (27)

GMP− = θφ

(4π)2
PMP
τ√

(τ + 1.5)kw tanh γh
. (28)

Note the spherical Hankel function in (23) is replaced by its large
order approximation in (14), and only the dominating term of the
numerator of (14) is considered (|ψh | � 1 for large boxes and vice
versa). In the worst case, the machine precision must be large enough
to handle both GMP+ and GMP− separately. Therefore, the required
decimal digits of machine precision for computing (23) can be found
as

MPG = max
(

log10
(
GMP+

)
,− log10

(
GMP−

))
. (29)

When determining the optimum machine precision, we must also
consider the actual expected amplitude of Green’s function and the
desired relative error threshold as

MP	 � − log10(	d )+ log10 (4πRmax)+ 1 (30)

where 	d ∈ (0, 1) and 4πRmax is the denominator of the free-space
Green’s function with Rmax as the maximum value of R for the
given box size (for the one-box-buffer scheme, �v = [a a a]T and
Rmax = a

√
11). The +1 term in (30) is added empirically for safety.

Finally, the optimum machine precision (MPopt) for computing (2)
can be found as

MPopt = 	max(MPG ,MP	)
. (31)

To summarize, given a box size (a) and a desired relative error
threshold (	d), (19)–(22) can be used to find the optimum truncation
number (τopt), while (27)–(31) can be used to find the optimum digits
of machine precision (MPopt). Note that, (19)–(22) and (27)–(31)
can also be used to infer the achievable relative errors and the corre-
sponding truncation numbers given the available machine precision.

III. NUMERICAL RESULTS

The proposed error control scheme was implemented in MATLAB,
where the MPA environment was constructed using a commercially
available toolbox [21]. In order to validate the proposed error control
scheme, the following scenarios were investigated.

1) Box Size (a): 64λ to λ/2048 in base-2 logarithmic steps.
2) Desired Relative Error: 	d ∈ {10−2, 10−3, 10−4, 10−5}.
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TABLE I

OPTIMUM TRUNCATION NUMBERS (τopt ) AND MACHINE
PRECISIONS (MPopt ) FOR VARIOUS DESIRED

RELATIVE ERROR THRESHOLDS (	d ) AND

BOX SIZES (a) WHEN �w = [0 2a 0]T

TABLE II

OPTIMUM TRUNCATION NUMBERS (τopt ) AND MACHINE

PRECISIONS (MPopt ) FOR VARIOUS DESIRED
RELATIVE ERROR THRESHOLDS (	d ) AND

BOX SIZES (a) WHEN �w = [3a 3a 3a]T

3) Translation Vectors ( �w): [0 2a 0]T for minimum translation
distance along the y-axis (see Fig. 1) and [3a 3a 3a]T for
maximum translation distance for a one-box-buffer scheme.

4) Shift Vectors (�v = �v1 + �v2): From corners, edge centers, and
face centers of the source box to those of the observation box
(shown in Fig. 1)

For each scenario listed earlier, we calculated the optimum truncation
numbers (τopt) and the optimum digits of machine precision (MPopt)
using (19)–(22) and (27)–(31), which are reported in Table I for
�w = [0 2a 0]T and in Table II for �w = [3a 3a 3a]T . Note that for
each entry in Tables I and II, we investigated all critical shift vectors
and report the largest τopt and MPopt pairs.

Using Tables I and II, the actual relative errors with respect to the
free-space Green’s function are given in Figs. 3 and 4. As shown

Fig. 3. Relative errors with respect to free-space Green’s function when
Table I is used in an MPA environment for �w = [0 2a 0]T . Dashed lines
represent the desired relative error thresholds.

Fig. 4. Relative errors with respect to free-space Green’s function when
Table II is used in an MPA environment for �w = [3a 3a 3a]T . Dashed lines
represent the desired relative error thresholds.

in Figs. 3 and 4, the truncation numbers and the machine precisions
obtained from the proposed scheme keep the relative errors close
to or below the desired levels for both large and small boxes. Note
that some small oscillations in the actual errors can be observed as
the box size increases due to the large order approximations given
in (11) and (12). The large order approximation becomes slightly
more erroneous as the arguments of the Bessel and Hankel functions
get closer to their order for very large arguments. However, the error
due to the large order approximation for asymptotically large boxes
is always bounded, which can be shown analytically by comparing
the large order and large argument approximations [8] of the Bessel
and Hankel functions. Therefore, the proposed error control scheme
can be used for arbitrarily large box sizes.

An interesting observation for Tables I and II is that τopt values
for a given error threshold become constant for electrically small
boxes. This behavior is also observed in the harmonics of Green’s
function when the multipole expansion is explicitly used as in [14].
Therefore, truncation numbers only depend on the desired relative
error thresholds for electrically small boxes.

Another important observation is that there is always a minimum
value of MPopt from where the value increases for both increasing
and decreasing box sizes. For electrically small boxes, the spherical
Hankel function in (2) dominates every other term and gets larger as
the box size decreases asymptotically. For electrically large boxes,
the terms due to angular sampling and numerical integration given
in (25) and (26) dominate, which then causes an increase in MPopt
as the box size increases asymptotically.

When we compare Tables I and II, we observe that as the
translation distance (w) increases, the τopt and MPopt pairs decrease
significantly for small boxes while increasing slightly for large
boxes. The behavior for small boxes is again due to the spherical
Hankel function dominating the other terms in (2). For very small
arguments (i.e., electrically small boxes), a relatively small increase
in the translation distance from Tables I and II causes a reduction
of many orders of magnitude in the value of the spherical Hankel
function, leading to dramatic reductions in the estimates of both
τopt and MPopt. On the other hand, the slight increase of MPopt
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Fig. 5. Comparison of the truncation numbers found by the proposed scheme
to [5]–[7] and [19] for 	d = 10−2 and �w = [0 2a 0]T .

Fig. 6. Comparison of the machine precisions found by the proposed scheme
to double precision and [19] for 	d = 10−2 and �w = [0 2a 0]T .

for the larger boxes is due to the first term in the right-hand side
of (19) increasing for larger translation distances.

The τopt and MPopt pairs obtained with our proposed scheme also
agree well with the previous studies found in the literature. Fig. 5
compares the proposed scheme with the well-known EBF [5]–[7]
when 	d = 10−2 and �w = [0 2a 0]T . Since the EBF is not valid
for small boxes, truncation numbers found via numerical simulations
in [19] are also shown in Fig. 5. The proposed scheme agrees
very well with the EBF for electrically large boxes while being
valid for electrically small box sizes. A similar comparison is given
in Fig. 6, where the optimum machine precisions given in Table I
for 	d = 10−2 and machine precisions found numerically in [19] are
shown. The proposed scheme estimates slightly larger MPopt values
while still following the trend found in [19]. This is expected since
our method assumes the worst case in terms of the implementation
for the optimum machine precision, leading to MPopt estimates that
are greater than or equal to experimental values.

IV. DISCUSSION ON MULTIPLE-PRECISION ARITHMETIC

The low-frequency breakdown, hence the requirement for a higher
machine precision, occurs during the matrix vector multiplication.
As a result, multiple-precision MLFMA implementations require
the modification of the far-zone interactions. Moreover, we note
that the required machine precision is strictly dependent on the
translation distance (see Tables I and II); therefore, MPA should be
hierarchically implemented across each translation level of MLFMA
(i.e., N−2 different precisions for N levels). More specifically, setup,
aggregation, translation, and disaggregation operations for each level
must all be performed in the corresponding machine precision found
by using the proposed method.

We illustrate the computational overhead introduced by the MPA
for 	d = 10−5 in Fig. 7, where we plotted the CPU-times and
allocated memories for a one-box-buffer scheme. The simulations
were performed on a workstation with 24-core Xeon E5-2650 proces-
sor. To have a fair comparison with the standard double precision,
we computed the diagonal form of Green’s functions using the
same truncation numbers obtained from Table I for both double
precision and MPA. An expected observation from Fig. 7 is that

Fig. 7. Comparison of CPU-times, allocated memory, and achieved relative
errors for varying box sizes when the truncation numbers in Table I is used
for 	d = 10−5 with double precision and MPA (averaged over 10 runs).

the double precision only works for box sizes larger than 4λ, which
is in agreement with Table I. Another important observation is
that there is a relatively constant overhead introduced by the MPA
toolbox even for double or lower precisions. Moreover, the CPU
and RAM requirements increase as the box size increases, since
more and more terms need to be included in the summations and
integrations in (2). For low frequencies or small boxes, the CPU
and RAM requirements are relatively constant and only increases
slightly for increasing machine precision (e.g., in Fig. 7, the machine
precision increases from 13 to 273). We note that the commercial
toolbox implements the MPA framework at the software level, while
a hardware implementation would be more efficient and would
introduce less overhead.

V. CONCLUSION

In this communication, a novel error control scheme for MLFMA
that is valid at all frequencies and arbitrary desired error thresholds
is introduced and demonstrated. The previous studies on the error
control are limited to electrically large translation distances, relatively
large error thresholds, and fixed machine precisions. The proposed
scheme can be used to obtain the optimum truncation numbers and
the machine precisions for any translation distance, given an arbitrary
desired error threshold. Given the available machine precision and the
translation distances, the proposed scheme can also be used to esti-
mate the achievable error levels. Moreover, an MPA implementation
of MLFMA with the proposed error control scheme can elegantly
mitigate the well-known low-frequency breakdown problem while
requiring no change in the underlying formulation.

Currently, MPA operations can be implemented with open-
source or commercial libraries with small changes to the standard
MLFMA codes. However, software implementations of arbitrary
precision arithmetic introduce a constant but manageable overhead in
terms of processing time and memory, which can be addressed with a
low-level (i.e., hardware) implementation for increased computational
efficiency.
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