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Abstract: Photon sieves are a fairly new class of diffractive lenses that open unprecedented
possibilities for high resolution imaging and spectroscopy, especially at short wavelengths such
as UV and x-rays. In this paper, we model and analyze the image formation process of photon
sieves using Fourier optics. We derive closed-form Fresnel imaging models that relate an
input object to the image formed by a photon sieve system, both for coherent and incoherent
illumination. These analytical models also provide a closed-form expression for the point-spread
function of the system for both in-focus and out-of-focus cases. All the formulas are expressed
in terms of Fourier transforms and convolutions, which enable easy interpretation as well as fast
computation. The derived analytical models provide a unified framework to effectively develop
new imaging modalities enabled by diffractive lenses and analyze their imaging capabilities
for different design configurations, prior to physical production. To illustrate their utility and
versatility, the derived formulas are applied to several important special cases such as photon
sieves with circular holes and pixelated diffractive lenses generated by SLM-type devices. The
analytical image formation models presented in this paper provide a generalizable and powerful
means for effective analysis and simulation of any imaging system with a diffractive lens,
including Fresnel zone plates, Fresnel phase plates, and other modified Fresnel lenses and mask-
like patterns such as coded apertures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photon sieves are modified Fresnel zone plates in which a large number of holes are distributed
over the transparent Fresnel zones. Similar to Fresnel zone plates, photon sieves offer diffraction-
limited resolution, but with several additional advantages [1]. These include tighter focus for
a given smallest structure size (by enlarging the outer diameter) and suppression of secondary
maxima and higher diffraction orders (by varying the density and the diameter of the holes) [1,2].
Furthermore, photon sieves consist of a single connected piece, and are robust to manufacturing
errors, therefore enable low-cost and simpler fabrication [3–6].

Photon sieves are particularly useful at short wavelengths such as UV and x-rays. At these
wavelengths, refractive lenses do not exist due to the strong absorption of available materials, and
reflective mirrors with near diffraction-limited resolution are costly to manufacture. In fact, figure
errors and surface roughness cause the resolution of reflective optics to be considerably worse
than the diffraction limit [3,7,8]. As a result, lightweight photon sieves open new possibilities for
high resolution microscopy, spectroscopy, lithography, and ultra-large telescopes [1, 3, 9–14].

Many photon sieve imaging systems have been developed at visible, UV, and x-ray wave-
lengths, to show diffraction-limited imaging performance [1, 3, 4, 8–11, 15–24]. Design of gen-
eralized photon sieves has also been studied such as to increase transmission efficiency [25,26]
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and create structured beams at their foci [2, 27–30]. Photon sieves have been mostly used with
monochromatic sources [1,9,10] because of their wavelength-dependent focal length. However,
methods have also been developed to reduce chromatic aberration (with the goal of focusing
different wavelengths onto the same plane) so as to operate photon sieves with multi-spectral
or broad-band illumination [8, 11, 15, 31–36]. More recently, computational spectral imag-
ing modalities that, in contrast, exploit the dispersive nature of photon sieves have also been
developed [37, 38].

As the advent of photon sieve imaging systems with new configurations expands, development
of analytical and computationally efficient imaging models becomes crucial for the design and
analysis of such reconfigurable systems, as well as for digital image reconstruction. In this
paper, we present analytical imaging models for photon sieves using Fourier optics [39]. To
accomplish this, we consider the imaging system shown in Fig. 1 where a photon sieve resides
between an extended object and an image plane. We derive closed-form Fresnel imaging models
that provide the relationship between the input object and the image formed at the measurement
plane, both with coherent and incoherent illumination. The derivations also provide a closed-
form expression for the point-spread function (PSF) of the overall photon-sieve system for both
in-focus and out-of-focus cases.

The presented imaging formulas and point-spread functions are all expressed in terms of
Fourier transforms and convolutions (instead of complicated integrals), which provide an easier
understanding and insight into the imaging process. Moreover, this enables the fast and accurate
simulation of the overall imaging system using fast Fourier transform (FFT) [40], which re-
moves the need to use computationally intensive softwares, numerical integration, or diffraction
computations from multiple planes [41, 42].

Fig. 1. Illustration of a photon sieve imaging system. ©[2013] IEEE. Reprinted, with
permission, from [48].

These analytical models and point-spread functions are crucial for effective development,
design, and analysis of the new imaging modalities enabled by photon sieves, prior to their
physical production. In particular, the implications of various design choices, such as different
hole shapes [43], pixelization [28], and apodization [30], on imaging attributes can be readily
analyzed and simulated. To illustrate their utility and versatility, the derived formulas are
applied to several important special cases such as photon sieves with circular holes and pixelated
diffractive lenses generated by SLM-type devices. These imaging models can also be used as
an accurate model of the imaging process for image deconvolution and reconstruction tasks
involved in computational imaging systems with diffractive lenses [37, 38].
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The focusing properties of photon sieves have been earlier analyzed through Fresnel-Kirchhoff
diffraction integrals [1], Fresnel integrals [44, 45] and Rayleigh-Sommerfeld diffraction [46].
While the calculations in [1] were limited to point sources only, the approximate treatment of
Fresnel diffraction [44], numerical Fresnel propagation [45], and Rayleigh-Sommerfeld diffrac-
tion [46] were computed for the half of the imaging system considered here (i.e. only from the
photon sieve plane to the image plane), hence requiring the knowledge of the complex-valued
field at the photon sieve plane. A similar approach has also been developed to compute the
diffracted fields of rings instead of individual pinholes for faster simulation [47].

In this paper, by considering the overall photon-sieve system in Fig. 1, we derive the complete
analytical image formation model applicable to extended input objects. Our models are based
on Fresnel (near-field) diffraction, which is a part of scalar diffraction theory, and hence do not
require far-field (or Fraunhofer) conditions to hold. Moreover, while the approximate Fresnel
treatment in [44] are only for photon sieves with circular holes, our framework is generalizable
in that it can be applied to imaging systems with any photon sieve configuration. In fact, the
imaging models presented in this paper are powerful in that they can be used to effectively
analyze and simulate any imaging system with a diffractive lens, including modified Fresnel
lenses and any other mask-like patterns such as coded apertures.

The paper is organized as follows. In Section 2, analytical Fresnel imaging models and PSFs
are presented for both coherent and incoherent illumination. Preliminary versions of some of
these models were presented in [48]. In Section 3, the derived formulas are applied to several
important special cases with commonly used design configurations. To illustrate their use, in
Section 4, numerical simulations are presented for the analysis of the imaging properties of the
photon sieve system under various design and observing scenarios.

2. Analytical image formation models

2.1. Imaging setting

As shown in Fig. 1, a photon sieve resides between an extended object and an image plane. The
distances from the photon sieve plane to the object and image planes are denoted by ds and di ,
respectively. Suppose the light originated from the source (object) plane is a spatially coherent,
space-varying, and monochromatic wave with wavelength λ. (Spatially incoherent case will be
treated later in Section 2.3.) Then the complex baseband representation of the input field can be
expressed as a linear combination of plane waves propagating in a continuum of directions [49],
given by

u(x, y) =
∫ ∫

A(α, β)ei2π
(
α
λ x+

β
λ y

)
dα dβ, (1)

where A(α, β) represents the angular spectrum of the input field u(x, y), and is related to its
Fourier transform U( fx, fy) as

A(α, β) = 1/λ2U(α/λ, β/λ), (2)

with the two-dimensional (2D) Fourier transform defined as

U( fx, fy) = F{u(x, y)}( fx, fy) =
∫ ∫

u(x, y)e−i2π( fx x+ fyy) dx dy. (3)

Any photon sieve can be fully characterized by its amplitude transmittance (aperture) function.
The transmittance function, t(x, y), is the ratio of the transmitted field amplitude to the incident
field amplitude at each point (x, y) in the photon sieve plane. The aperture t(x, y) of a photon
sieve (or in general a diffractive lens) is often binary (taking values 1 or 0). However, here
we allow t(x, y) to be an arbitrary complex-valued function to keep the derived models general
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enough and applicable to any diffractive imaging element or lens, including Fresnel phase plates,
or any other mask-like pattern that has both amplitude and phase modulation.

For instance, for the conventional photon sieve configuration with circular-shaped holes, the
transmittance function is given by

t(x, y) =
N∑
n=1

tn(x, y) =
N∑
n=1

circ
(

x − xn
dn
,
y − yn

dn

)
, (4)

where tn(x, y) is the transmittance of the nth pinhole with diameter dn and central location
(xn, yn), and N denotes the total number of holes. This transmittance tn(x, y) takes value 1
inside the nth circular pinhole, which is above expressed in terms of the circle function [49]

circ(x, y) =
{

1, if
√

x2 + y2 ≤ 1
2

0, otherwise.
(5)

Note that different design configurations such as different shapes of holes, apodization, and
pixelization can be easily included to the aperture function by using a proper mathematical form
for t(x, y). This will be illustrated in Section 3.

A photon sieve can form images either with coherent or incoherent illumination, which will
be successively discussed below.

2.2. Fresnel imaging formula for coherent sources

Theorem 1 Within the Fresnel approximation, the image r(x, y) formed at a distance di after
a photon sieve is related to the complex input wavefront u(x, y) located at a distance ds behind
the photon sieve (as shown in Fig. 1) through

r(x, y) = eiπ
x2+y2
λdi

[
ũ(x, y) ∗ hdi,λ(x, y),

]
(6)

where ∗ denotes 2D convolution, ũ(x, y) is an inverted, scaled (magnified) and chirp modulated
version of the input wavefront u(x, y) with a position-dependent phase shift, given by

ũ(x, y) = u
(
−ds

di
x,−ds

di
y

)
·
(
−ds

di

)
eiπds (x2+y2)/(λd2

i ), (7)

and hdi,λ(x, y) represents the coherent point-spread function (PSF) of the photon sieve at distance
di and wavelength λ:

hdi,λ(x, y) = i
λ

∆
e
−iπ x2+y2

∆λd2
i ∗ T

(
x
λdi
,

y

λdi

)
. (8)

Here ∆ = 1/di + 1/ds , and T( fx, fy) is the Fourier transform of the transmittance function,
t(x, y), of the photon sieve.

A few remarks are in order at this point. First, note that the coherent transfer function of the
photon sieve, i.e. the Fourier transform of the coherent PSF, is

Hdi,λ( fx, fy) = (λdi)4 t(λdi fx, λdi fy)· eiπ(∆λd
2
i )( f 2

x + f
2
y ), (9)

which is simply a magnified and chirp modulated version of the aperture function. As a result,
the formed image can be interpreted as a scaled and inverted version of the input signal u(x, y)
with a position-dependent phase shift, filtered in the frequency domain by the chirp modulated,
scaled aperture function Hdi,λ( fx, fy). Naturally, the magnification of the image relative to the
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object is di/ds , and the image is upside down relative to the object’s orientation. Also the
intensity i(x, y) of the image is given by

i(x, y) = |r(x, y)|2 =
��ũ(x, y) ∗ hdi,λ(x, y)

��2 . (10)

Second, when ds ≫ di , the coherent PSF of the photon sieve reduces to

hdi,λ(x, y) ≈ iλdie
−iπ x2+y2

λdi ∗ T
(

x
λdi
,

y

λdi

)
, (11)

with the corresponding coherent transfer function being

Hdi,λ( fx, fy) ≈ (λdi)4 t(λdi fx, λdi fy)· eiπ(λdi )( f
2
x + f

2
y ), (12)

that is, they only change with λdi . Hence, the PSF is the same for different values of λ and di
as long as λdi remains the same.

Third, the PSF is circularly symmetric whenever the aperture function is circularly symmetric.
This is because (i) a circularly symmetric aperture function makes the transfer function circularly
symmetric, and (ii) this in turn makes the PSF circularly symmetric since the Fourier transform
of a circularly symmetric function is also circularly symmetric [49].

Fourth, the presented imaging formula is general enough to accommodate for any type
of aperture function for a photon sieve or more generally for a diffractive imaging element.
Moreover, the imaging relation expressed in terms of Fourier transforms and convolutions
enables an easier understanding of the imaging process, as well as fast and accurate simulation
of the imaging system.

In particular, the given imaging formula suggests two different ways for the numerical compu-
tation of the coherent PSF. A direct computation of Eq. (8) requires first computing the Fourier
transform of the aperture function and then convolving the result with a complex exponential
(i.e. chirp). Alternatively, based on Eq. (9), one can first compute the coherent transfer function
by multiplying the scaled aperture function with a complex exponential, and then compute the
inverse Fourier transform of the transfer function to obtain the PSF. Because the convolution in
the direct approach is a time-consuming operation, the approach based on Eq. (9) is the clear
choice for faster computation.

Hence, on a computer, the samples of the PSF can be computed by first sampling the transfer
function in Eq. (9) and then computing its inverse FFT. That is, the PSF of the overall imaging
system can be computed through a single FFT computation, without resorting to computationally
intensive softwares, numerical integration, or diffraction computations from multiple planes [41,
42]. This fast computation method works accurately provided that the separation between the
samples of the transfer function is sufficiently small (to satisfy the Nyquist sampling criterion)
and the total number of samples is sufficiently large (to contain the significant amount of total
energy of the PSF in the computation) [40, 50].

Proof. The field v(x, y) just before the photon sieve is related to the input field u(x, y) by

v(x, y) = u(x, y) ∗ 1
iλds

eiπ
x2+y2
λds . (13)

Here the input field is convolved with the PSF of the free space propagation under Fresnel
approximation [39, 49] (where the constant phase term is dropped). If the open form of this
convolution is used together with the 2D Fourier transform expression in Eq. (3), an equivalent
form can be obtained as follows [39, Chap.4]:

v(x, y) = 1
iλds

eiπ
x2+y2
λds F

{
u(x ′, y′)eiπ

x′2+y′2
λds

} (
x
λds
,

y

λds

)
, (14)
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Hence the relation between v(x, y) and u(x, y) can be expressed as a chirp (quadratic phase
exponential) multiplication, followed by the evaluation of the Fourier transform at the frequency
{ fx = x/(λds), fy = y/(λds)}, followed by a second chirp multiplication.

Secondly, the field amplitude s(x, y) just after the aperture of the photon sieve is related to
v(x, y) as

s(x, y) = t(x, y)v(x, y), (15)

where t(x, y) is the aperture function.
Lastly, the complex amplitude, r(x, y), in the image plane is related to s(x, y) through another

free space propagation:

r(x, y)= 1
iλdi

eiπ
x2+y2
λdi F

{
s(x ′, y′)eiπ

x′2+y′2
λdi

}(
x
λdi
,

y

λdi

)
. (16)

By using the above three relations together with the properties of the Fourier transform, the
image amplitude r(x, y) can be obtained as follows:

r(x, y)=eiπ
x2+y2
λdi

[
ũ(x, y) ∗i

λ

∆
e
−iπ x2+y2

∆λd2
i ∗T( x

λdi
,
y

λdi
)
]
, (17)

where T( fx, fy), ũ(x, y), and ∆ are as defined before.

This result, derived from first principles, could also be obtained by invoking the lens law. The

lens law [49] states that for a lens with transmittance t(x, y) = e−iπ
x2+y2
λ fl q(x, y) where q(x, y)

describes the finite aperture and fl is the focal length, the image formed at the distance di behind
the lens is, within the Fresnel approximation, given by

r(x, y) = eiπ
x2+y2
λdi

[
ũ(x, y) ∗ Q( x

λdi
,

y

λdi
)
]
, (18)

where 1/ fl = 1/ds + 1/di . For a general transmittance function t(x, y), one can use q(x, y) =

eiπ
x2+y2
λ fl t(x, y), or equivalently Q( fx, fy) = iλ fle−iπλ fl ( f

2
x + f

2
y ) ∗ T( fx, fy) in the above expression

to arrive at the same result:

r(x, y) = eiπ
x2+y2
λdi

[
ũ(x, y) ∗ i

λ

∆
e
−iπ x2+y2

∆λd2
i ∗ T( x

λdi
,

y

λdi
)
]
, (19)

with ∆ replacing 1/ fl , i.e. ∆ = 1/ds + 1/di .
Note that the presented models are valid for diffractive elements operating at the Fresnel

(near-field) regime of scalar diffraction theory. As well-known [39], the scalar theory (such
as Rayleigh-Sommerfeld diffraction) is accurate when both (i) the dimensions of the smallest
diffracting structure, and (ii) the distance from the aperture to the observation plane are large
compared to a wavelength. Fresnel approximation is an additional approximation on top of that
made for scalar theory, and there are also sufficient conditions for its validity [39, 49]. These
conditions check whether the distance from the diffractive lens to the image plane, di , as well
as to the source plane, ds , are large enough. On the other hand, these sufficient conditions are
known to be overly stringent, and not necessary for the accuracy of the Fresnel approximation.
Based on different analyses [39, 51, 52], it has been observed that the accuracy of the widely
used Fresnel approximation is extremely good to distances that are very close to the diffracting
aperture (or equivalently, to field angles that are too large). Hence, we can conclude that the
models in this paper are accurate provided that the hole diameters are large compared to a
wavelength, and the image and source planes are not very close to the diffractive lens.
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These two requirements for the validity of the models limit the maximum numerical aperture
(NA) of the diffractive lens and hence its resolution. That is, there exist practical cases for which
the required conditions are not satisfied. As an example, consider a binary Fresnel zone plate
with outer diameter D, first-order focus f , and outer zone width w. In this case, f = Dw/λ
is satisfied [7], and NA can be approximated as D/2 f = λ/2w. Since the validity of scalar
diffraction theory requires w ≫ λ, it is required that f ≫ D and N A ≪ 0.5 for this type
of Fresnel lens. In general, when the size of the smallest diffracting structure approaches the
wavelength and polarization effects become significant, the scalar diffraction theory and hence
the models in this paper are inadequate. In these cases, the vector diffraction theory or the
finite-difference time-domain based numerical computations are needed [53–57]. Moreover,
for cases where Fresnel approximation fails only, a more richer scalar diffraction theory such
as Rayleigh-Sommerfeld diffraction can be used [46]. Nevertheless, even when the presented
analytical models are not valid, they will still be useful to understand the trends in the imaging
behavior that may be difficult to achieve with numerical computations.

2.3. Fresnel imaging formula for incoherent sources

Theorem 2 For incoherent imaging within the Fresnel approximation, the average intensity
i(x, y) = ⟨|r(x, y, t)|2⟩ in the image plane at a distance di after a photon sieve is related to the
object intensity distribution ui(x, y) at a distance ds behind the photon sieve through

i(x, y) = ũi(x, y) ∗ gdi,λ(x, y), (20)

where ũi(x, y) is the inverted and scaled object intensity given by

ũi(x, y) =
(

ds
di

)2
ui

(
−ds

di
x,−ds

di
y

)
, (21)

and gdi,λ(x, y) denotes the incoherent PSF of the photon sieve at distance di and wavelength λ:

gdi,λ(x, y) =
�����i λ∆ e

−iπ x2+y2

∆λd2
i ∗ T

(
x
λdi
,

y

λdi

)�����2 . (22)

The angular bracket ⟨.⟩ here denotes a statistical (ensemble) average (with the assumption on
ergodicity, which can be interpreted as time average).

Hence for incoherent illumination, the image intensity is given by the convolution of the ideal
image intensity ũi with the impulse response gdi,λ. That is, the intensities are convolved, rather
than the complex amplitudes as in the coherent case. Naturally, the incoherent PSF of the photon
sieve is just the squared magnitude of its coherent PSF given in Eq. (8):

gdi,λ(x, y) = |hdi,λ(x, y)|2. (23)

Note that the intensity recorded in a stationary system is actually the sample time average
given by i(x, y) = 1

T

∫ T

0 |r(x, y, t)|2dt, whereas here we are dealing with the ensemble average
i(x, y) = ⟨|r(x, y, t)|2⟩. When the ergodicity assumption holds, this ensemble (statistical) average
is equivalent to the observed time average at the detector.

Proof. A spatially incoherent wave emanating from the object u(x, y) can be described by a
random complex amplitude that varies with spatial position and time [49] as follows:

w(x, y, t) = u(x, y)ρ(x, y, t). (24)

                                                                 Vol. 26, No. 24 | 26 Nov 2018 | OPTICS EXPRESS 32265 



Here ρ(x, y, t) represents a spatially white random process satisfying ⟨ρ(x, y, t)ρ∗(x ′, y′, t)⟩ =
δ(x− x ′, y− y′), where δ(.) denotes the Dirac delta function. The spatial autocorrelation function
of the input wave w(x, y, t) can then be written in terms of the object intensity ui(x, y) as

⟨w(x, y, t)w∗(x ′, y′, t)⟩ = |u(x, y)|2δ(x − x ′, y − y′) = ui(x, y)δ(x − x ′, y − y′), (25)

that is, there is no correlation between the values at different spatial positions.
Using this model for spatial incoherence and the derived imaging model for the coherent case

(Eq. (6)), an expression can be obtained for the image intensity as given by the statistical average
of the squared image magnitude:

⟨|r(x, y, t)|2⟩

=

(
ds
di

)2∫∫∫∫
⟨w(−ds

di
ξ,−ds

di
η, t)w∗(−ds

di
ξ ′,−ds

di
η′, t)⟩

× h(x − ξ, y − η)h∗(x − ξ ′, y − η′)e
−iπ(ξ2+η2−ξ′2−η′2)

λd2
i
/ds dξdξ ′dηdη′,

=

(
ds
di

)2∫∫
ui

(
−ds

di
ξ,−ds

di
η

)
|h(x − ξ, y − η)|2dξdη,

=

(
ds
di

)2
ui

(
−ds

di
x,−ds

di
y

)
∗ |h(x, y)|2, (26)

where h(x, y) = hdi,λ(x, y) is the coherent PSF.

Lastly, we note that the case of imaging partially coherent scenes could be treated similarly
if the two-dimensional spatial correlation function is known for the input. In this case, the
derivation above should be repeated by replacing the Dirac delta function in Eq. (25) with the
known spatial correlation function.

3. Some examples of diffractive lenses

Here we illustrate the generality of the presented formulas by applying them to some important
special cases with commonly used design configurations. These also illustrate that analytical
PSFs can be obtained when analytical expressions exist for the transmittance function.

3.1. Conventional photon sieve with circular holes

The conventional photon sieve (PS) configuration consists of circle-shaped holes, so its trans-
mittance can be expressed as sum of circle functions as in Eq. (4). By inserting this form for
t(x, y) in Eqs. (8) and (9), the coherent PSF and transfer function of this type of photon sieve
can be respectively obtained as follows:

hdi,λ(x, y) = i
λ

∆
e
−iπ x2+y2

∆λd2
i ∗

(
N∑
n=1

d2
n jinc

(
dnx
λdi
,

dny
λdi

)
e−i

2π
λdi

(xnx+yny)
)
, (27)

Hdi,λ( fx, fy) = (λdi)4 eiπ(∆λd
2
i )( f 2

x + f
2
y )

N∑
n=1

circ
(
λdi fx − xn

dn
,
λdi fy − yn

dn

)
. (28)

Here ∆ = 1/di + 1/ds , the total number of holes is N , and the nth pinhole’s diameter is denoted
by dn and central location by (xn, yn). The two-dimensional jinc function appears in the PSF
expression because it is the Fourier transform of the circle function, and defined as [49]

jinc(x, y) = jinc
(√

x2 + y2
)
=

J1(π
√

x2 + y2)
2
√

x2 + y2
, (29)
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where J1(.) is the first-order Bessel function of the first kind.
For this particular photon sieve with circular holes, the Fresnel PSF has been given in [44] in

an integral form for the case ds ≫ di . It can be shown that the PSF given here in the convolution
form is the general form of this. For this, the convolution in Eq. (27) should be written in open
form; after some calculations and assuming ds ≫ di , it can be simplified as

hdi,λ(x, y) = 2π(λdi)2e−iπ
x2+y2
λdi

N∑
n=1

eiπ
R2
λdi

∫ dn/2

0
reiπ

r2
λdi J0

(
2π
λdi

Rr
)

dr . (30)

Here J0(.) is the 0th order Bessel function of the first kind and R2 = (x − xn)2 + (y − yn)2. Other
than the complex exponential (chirp) term in front, this expression is same as the one in [44]
when the illumination there is taken as a plane wave of normal incidence.

3.2. Pixelated structures

Another important special case is a pixelated diffractive lens, which is often realized by a
spatial light modulator (SLM) or a digital micromirror device (DMD) [28]. Because a pixelated
diffractive lens also acts as a diffraction grating, the PSF will have contributions from many
diffraction orders. Analytical expressions can be obtained for the PSF and the transfer function
after properly formulating the pixelated aperture function.

Without loss of generality, we consider rectangular shaped pixels. Let t(x, y) be the continuous
transmittance function and tp(x, y) be its pixelated version with the pixel pitch in x and y

directions given by dx and dy , and the pixel dimensions given by ax and ay , respectively. Then
the mathematical relation between tp(x, y) and t(x, y) can be expressed as

tp(x, y) =
[
t(x, y) 1

dxdy
comb

(
x

dx
,
y

dy

)]
∗ rect

(
x

ax
,
y

ay

)
,

=

[
t(x, y)

∑
m

∑
n

δ(x − mdx, y − ndy)
]
∗ rect

(
x

ax
,
y

ay

)
,

=
∑
m

∑
n

t(mdx, ndy) rect
(

x − mdx

ax
,
y − ndy

ay

)
, (31)

where the 2D comb function is the infinite train of impulses given by

comb(x, y) =
∞∑

m=−∞

∞∑
n=−∞

δ(x − m, y − n), (32)

and the 2D rectangle function is defined as

rect(x, y) =
{

1, if |x | ≤ 1
2, |y | ≤

1
2,

0, otherwise.
(33)

The Fourier transform of this aperture function can be obtained as

Tp( fx, fy) =
[
T( fx, fy) ∗ comb(dx fx, dy fy)

]
· axaysinc(ax fx, ay fy),

=
axay
dxdy

∑
m

∑
n

T
(

fx −
m
dx
, fy −

n
dy

)
sinc(ax fx, ay fy), (34)

where the 2D sinc function is the Fourier transform of the rectangle function and defined as

sinc(x, y) = sinc(x)sinc(y), (35)
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with sinc(t) = sin(πt)/πt.
By inserting this pixelated aperture function tp(x, y) and its Fourier transform in Eqs. (8) and

(9), the coherent PSF and transfer function can be respectively obtained as follows:

hdi,λ(x, y) = i
λaxay
∆dxdy

e
−iπ x2+y2

∆λd2
i ∗

∑
m

∑
n

T
(

1
λdi

(x − m
λdi
dx

), 1
λdi

(y − n
λdi
dy

)
)

sinc
(

ax

λdi
x,

ay
λdi

y

)
,

(36)

Hdi,λ( fx, fy) = (λdi)4 eiπ(∆λd
2
i )( f 2

x + f
2
y )

∑
m

∑
n

t(mdx, ndy)rect(λdi
ax

( fx−m
dx

λdi
), λdi

ay
( fy−m

dy
λdi

)).

(37)
Here ∆ = 1/di + 1/ds as before. As expected, the PSF is composed of infinitely many terms,
each associated with a different diffraction order. The (m, n) diffraction order is centered at
(mλdi/dx, nλdi/dy), and each order contains modulation with a 2D sinc envelope. The PSF due
to (0, 0) diffraction order mainly differs from the non-pixelated case (given in Eq. (8)) by this
sinc envelope, and the separation between different diffraction orders increases as the pitch size
decreases, as expected.

3.3. Binary Fresnel zone plate

Photon sieves are modified Fresnel zone plates in which a large number of holes are distributed
over the transparent Fresnel zones. Because of this connection, many studies about the photon
sieve and its design criteria are closely related to that of a Fresnel zone plate [2, 3, 28, 58, 59].
Here we consider a binary Fresnel zone plate and provide closed-form expressions for its PSF and
transfer function. To the best of our knowledge, these expressions have not appeared elsewhere
before. Since the binary Fresnel zone plate can be viewed as an infinite series of thin lenses (as
discussed below), its PSF and transfer function have simpler analytical forms, and, as will be
illustrated in Section 4, these simpler formulas closely approximate the PSF/transfer function
of a conventional photon sieve, as one would expect. Hence an equivalent binary Fresnel zone
plate can also be used to approximately simulate conventional photon sieve systems.

To obtain a closed-form expression for the PSF/transfer function of a binary Fresnel zone
plate, its transmittance function needs to be properly formulated. As an example, we consider
a binary Fresnel zone plate (FZP) with transparent odd zones, and whose first order focus is f
and outer diameter is D. The aperture function of this FZP can be mathematically expressed as
follows [39, 49]:

t(x, y) = 1
2

[
1 + sgn

(
cos
π

λ f
(x2 + y2)

)]
circ

( x
D
,
y

D

)
, (38)

where the sign function sgn(x) takes value 1 if x is positive and −1 otherwise. By using the
Fourier series expansion of a periodic square wave [60], this aperture function can be rewritten
as

t(x, y) =
[ ∞∑
m=−∞

sin(πm/2)
πm

e−im
π
λ f (x2+y2)

]
circ

( x
D
,
y

D

)
,

=

[
1
2
+

∑
odd m

(−1) |m |−1
2

mπ
e−iπ

x2+y2
λ fm

]
circ

( x
D
,
y

D

)
, (39)

where fm = f /m. Note that each odd term in the above summation corresponds to the transmit-
tance function of a thin lens with focal length fm. That is, the FZP can be viewed as an infinite
series of thin lenses, each associated with a different diffraction order m. Hence, FZP generates
infinitely many diffraction orders, and each odd order m comes to focus at a focal distance fm [7].
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As a result, the PSF of the FZP should consist of infinite terms, each due to a different diffraction
order and representing whether the mth diffraction order comes to focus or not at the distance
di .

The analytical expression for the coherent PSF can be obtained by either using the known
PSF formulas for a thin lens with circular aperture [49, Chap.4] or by evaluating Eq. (8) for the
aperture function in Eq. (39). This results in the following PSF:

hdi,λ(x, y) = h0(x, y) +
∑

odd m

hm(x, y), (40)

where each contributing term to the PSF due to a different diffraction order is

h0(x, y)= i
λ

2∆
e
−iπ x2+y2

∆λd2
i ∗ D2jinc

(
D
λdi

x,
D
λdi

y

)
, (41)

hm(x, y)=

(−1)

|m |−1
2

mπ (λdi)2D2jinc
(

D
λdi

x, D
λdi

y
)
, ϵm = 0,

(−1)
|m |−1

2
mπ D2jinc

(
D
λdi

x, D
λdi

y
)
∗ i λ

ϵm
e
−iπ x2+y2

ϵmλd2
i , ϵm , 0.

Here ∆ = 1/di +1/ds as before, and ϵm = 1/di +1/ds −1/ fm indicates whether the mth lens (i.e.
mth order diffraction) is in focus (when ϵm = 0) or out of focus (when ϵm , 0) at the distance
di . Hence, as expected, the PSF of the binary FZP is composed of infinitely many terms, each
associated with a different diffraction order and depending on whether the corresponding order
is in focus. In fact, hm(x, y) is the coherent PSF of the mth contributing lens in the aperture
function, and its form depends on whether the mth diffraction order is in focus or not. In the
focused case ( ϵm = 0), the intensity |hm(x, y)|2 is simply the well-known airy pattern [39, 49].
For example, if a monochromatic collimated beam is focused at the first order focus f (i.e.
di = f , ds = ∞, ϵ1 = 0), the airy pattern is observed when all the contributing terms in Eq. (40)
other than the first order diffracted field h1(x, y) have negligible energy.

Similarly, the coherent transfer function is

Hdi,λ( fx, fy) = H0( fx, fy) +
∑

odd m

Hm( fx, fy), (42)

with

H0( fx, fy) =
(λdi)4

2
eiπ∆λd

2
i ( f 2

x + f
2
y )circ

(
λdi
D

fx,
λdi
D

fy

)
, (43)

Hm( fx, fy) =
(−1) |m |−1

2

mπ
(λdi)4eiπϵmλd2

i ( f 2
x + f

2
y )circ

(
λdi
D

fx,
λdi
D

fy

)
.

The diffraction efficiencies for different orders also follow as given in [7]:

ηm =


1/4, if m = 0,
1/m2π2, if m odd,
0, if m even.

(44)

Hence 50% of the incident energy is absorbed by the zone plate through the non-transparent zones
(associated with the vanishing even orders). 25% is passed without being focused (m = 0), 10%
appears on the first order focus f1, (another 10% goes to the divergent first order, i.e. m = −1),
1% appears on the third order focus f3, etc.
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If this lens model will be used as an approximate model for the conventional photon sieve, it
should be taken into account that white zones of the Fresnel zone plate are replaced with holes.
This in turn affects the amount of transmitted light through the diffractive imaging element, and
hence the diffraction efficiencies given above. If γ is the fraction of the area of the open holes (in
the photon sieve) to the area of the white zones (in the Fresnel zone plate), then the diffraction
efficiency should approximately scale by γ2. However, note that if the levels of the side-lobes
are different for the PSFs of the PS and the equivalent FZP, then the peak intensity can also differ
from this predicted value.

3.4. Binary diffractive lenses with reversed transparency

When working with binary diffractive lenses, it may be of interest to exchange the transparent
and opaque regions. A well-known example is an FZP with transparent even zones, which can
be obtained from an FZP with transparent odd zones, described in Eq. (38), by switching the
transparent and opaque regions. If two diffractive lenses are related to each other in this manner,
the PSF/transfer function of one of them can be directly obtained from the PSF/transfer function
of the other.

To explicitly show this, let us consider two diffractive lenses with aperture functions t1(x, y)
and t2(x, y) such that their sum is a circle function:

t1(x, y) + t2(x, y) = circ
( x

D
,
y

D

)
, (45)

where D denotes the outer diameter of the diffractive lenses. Then their PSFs must sum to the
PSF of a circular aperture. One can prove this version of Babinet’s principle [49] as follows.
The PSF of a circular aperture can be obtained by inserting the Fourier transform of its aperture
function in Eq. (8):

hcirc(x, y) = i
λ

∆
e
−iπ x2+y2

∆λd2
i ∗ D2jinc

(
D
λdi

x,
D
λdi

y

)
. (46)

Let T1( fx, fy) and T2( fx, fy) denote the Fourier transforms of the aperture functions t1(x, y) and
t2(x, y), and h1(x, y) and h2(x, y) denote their respective PSFs. Using Eq. (45) in replace of the
circular aperture function, one can also obtain the following:

hcirc(x, y) = i
λ

∆
e
−iπ x2+y2

∆λd2
i ∗

(
T1

(
x
λdi
,

y

λdi

)
+ T2

(
x
λdi
,

y

λdi

))
,

= i
λ

∆
e
−iπ x2+y2

∆λd2
i ∗ T1

(
x
λdi
,

y

λdi

)
+ i
λ

∆
e
−iπ x2+y2

∆λd2
i ∗ T2

(
x
λdi
,

y

λdi

)
,

= h1(x, y) + h2(x, y). (47)

Hence, as shown, the PSFs sum to the PSF of the circular aperture given in Eq. (46). Similarly,
the transfer functions of such diffractive lenses sum to the transfer function of a circular aperture;
that is,

Hcirc( fx, fy) = (λdi)4 eiπ(∆λd
2
i )( f 2

x + f
2
y )· circ

(
λdi
D

fx,
λdi
D

fy

)
= H1( fx, fy) + H2( fx, fy), (48)

where the first equality is obtained using Eq. (9).
To illustrate the usefulness of these relationships, we consider an FZP with transparent even

zones, which is obtained from an FZP with transparent odd zones described in Eq. (38) by
switching the transparent zones with opaque ones. Each term contributing the coherent PSF and
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transfer function of this type of FZP can be obtained from the PSF and transfer function terms
given in Eqs. (41) and (43), respectively, by using the relations in Eqs. (47) and (48):

h0(x, y) = i
λ

2∆
e
−iπ x2+y2

∆λd2
i ∗ D2jinc

(
D
λdi

x,
D
λdi

y

)
, (49)

hm(x, y) =

(−1)

|m |+1
2

mπ (λdi)2D2jinc
(

D
λdi

x, D
λdi

y
)
, ϵm = 0,

(−1)
|m |+1

2
mπ D2jinc

(
D
λdi

x, D
λdi

y
)
∗ i λ

ϵm
e
−iπ x2+y2

ϵmλd2
i , ϵm , 0,

H0( fx, fy) =
(λdi)4

2
eiπ∆λd

2
i ( f 2

x + f
2
y )circ

(
λdi
D

fx,
λdi
D

fy

)
, (50)

Hm( fx, fy) =
(−1) |m |+1

2

mπ
(λdi)4eiπϵmλd2

i ( f 2
x + f

2
y )circ

(
λdi
D

fx,
λdi
D

fy

)
Note that when the above formulas are compared with the ones in Eqs. (41) and (43), it is clear
that, due to the contribution from the 0th order term, the overall PSF (OTF) of an FZP does not
remain exactly the same (although similar) after reversing the transparent and opaque regions.

4. Numerical results

For demonstration of the usefulness and generality of the presented imaging models, numerical
simulations are performed to illustrate the imaging properties under various different design
configurations and observing scenarios. For this, we consider and compare four different
designs of diffractive lenses. The first one is a binary FZP design with transparent even zones.
Based on this, two sample PS designs, one with circular holes and another with rectangular
holes, are generated. A pixelated version of the PS design with circular holes is also included in
the comparison.

For all designs, the wavelength is chosen as 630nm, the outer diameter as 10mm, and the
width of the outer zone as 50µm. The resulting FZP has a focal length of 0.7937m and 25
transparent zones. For the PS designs, the fraction of the transparent area due to holes (relative
to the zone area) is chosen as 0.6, and the hole size is selected to be 1.53 times the underlying
zone width. This resulted in 2662 holes, distributed uniformly within each zone (i.e. separated
by the same angle) and with the smallest hole size being 76.5µm. For the PS design with square
holes, the width of the square holes is taken to be equal to the diameter of the circular holes in
the first PS design. In the pixelated version of the first PS design (with circular holes), the pixel
pitch, dx , and the effective pixel dimension, ax , are respectively chosen as 50µm and 40µm,
and same in the y direction, resulting in a fill factor of 64%. Fig. 2 shows the resulting aperture
functions for all designs.

For comparison, two different observing scenarios are considered. In both cases, the photon
sieve is located at a distance ds = 15m from the source. In the first scenario, the image plane
at a distance di = 0.838m after the photon sieve is considered, which corresponds to the plane
of (first-order) focus. In the second scenario, the plane that is three depth of focus (DOF) away
from the focal plane is considered, resulting in a defocus case. More specifically, DOF [3] is
equal to 0.7937mm for the above designs, and hence in the second scenario the distance of the
image plane to the photon sieve is chosen as di = 0.8618m.

For all designs and scenarios, first the samples of the coherent transfer function is computed
using the derived formula in Eq. (9) and the respective aperture function, then the coherent PSF
is obtained from the sampled transfer function using a single FFT. As mentioned earlier, for
accurate computation of the PSF, the separation between the samples of the transfer function
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Fig. 2. Aperture functions of different designs. (a) FZP, (b) PS with circular holes, (c) PS
with rectangular holes, (d) Pixelated PS.

should be sufficiently small (to satisfy the Nyquist sampling criterion) and the total number of
samples should be sufficiently large (to contain the significant amount of total energy of the
PSF in the computation) [40]. That is, if Hdi,λ( fx, fy)| fx=k δ f , fy=l δ f denotes the samples of the
transfer function taken uniformly with a separation of δf for −(N − 1)/2 ≤ k, l ≤ (N − 1)/2,
the sampling interval δf should be chosen sufficiently small and N should be sufficiently large.
In our computations, we choose δf = 17 cycles/m and N = 8841 for all cases other than the
pixelated design, while δf = 13 cycles/m and N = 11041 for the pixelated design. The reason
for the decrease of δf in the pixelated case is the increase in the extent of the PSF due to the
additional diffraction orders arising from pixelization. This dictates a higher Nyquist rate to
sample the transfer function. Once the coherent PSFs are computed as explained, the incoherent
PSFs are also obtained from their squared magnitude (see Eq. (23)).

The magnitude of the normalized coherent PSFs for the first (focus) and second (defocus)
scenarios are shown in Figs. 3 and 4, respectively. The incoherent PSFs for the first (focus)
scenario is also shown in Fig. 5. As seen in these figures, the normalized PSFs of different
designs appear to be very similar in their first few lobes. The major difference is observed in
the peak intensity values due to the different amount of light transmission. In fact, the peak
intensity for the circular PS design is lower than that of the FZP by a factor of 6, and the PS
design with square holes is slightly lower than this. For the pixelated one, due to the additional
diffraction orders arising from pixelization, the peak intensity is lower than that of the circular
PS by a factor of 3. To better see the relative efficiency of the imaging, insets of line-scan
across the PSF center are also shown in Figs. 3, 4 and 5. These PSF slices in the insets are
normalized to the peak PSF value of the zone-plate. Although not shown here, in the computed
PSFs of the pixelated PS, the additional diffraction orders are also observed at the multiples of
λdi/dx = 0.0109m, as expected.

To see the differences in the normalized PSFs more clearly, the central slices of the PSFs
are also shown in Fig. 6 on a semilogarithmic scale and in a larger extent. For the focused
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Fig. 3. Two-dimensional view of the magnitude of coherent PSFs at focus (after normal-
ization). (a) FZP, (b) PS with circular holes, (c) PS with rectangular holes, (d) Pixelated
PS. To better see the relative efficiency of the imaging, line-scans across the PSF centers
are also shown in the insets. These PSF slices are normalized to the peak PSF value of the
zone-plate.

case, the distance from the peak to the first zero crossing (i.e. Rayleigh resolution) is nearly
1.22∆ = 61µm for all designs, as expected, since all designs have the same outer diameter (i.e.
same numerical aperture) [2, 3, 46, 47]. On the other hand, in the three DOF away case, the
location of the first zero crossing increases to 450µm. As mentioned before, the PSFs appear
to be almost identical in the first few lobes for all designs. The only exception is that the PS
with rectangular holes has slightly higher secondary side-lobes than others in the focused case,
which is also expected. However, although the PSFs are very similar in the first few lobes, higher
side-lobes are visible at the tails for all FZP-like designs compared to the traditional FZP. More
specifically, the side-lobes of pixelated PS are the highest, which is followed by rectangular and
circular PS.

To prevent possible confusion, we emphasize that the same outer diameter and zone plate
geometry are used for all designs in order to perform a fair comparison. As a result, the PS designs
considered here do not show the well-known advantages over the zone plates such as sharper
focusing and suppression of sidelobes. As mentioned in many earlier works [2, 46, 47], simply
replacing the open rings of a zone plate with the pinholes does not enable these advantages.
Our results clearly illustrate this. Nevertheless, using pinholes, one can extend the diameter
of a photon sieve beyond the diameter of a zone plate with the same smallest structure, and
sharper focusing can be achieved due to this larger aperture size (i.e. increased numerical
aperture) [1, 2, 46, 47]. Moreover, using pinholes also allow to smoothly vary the density of
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Fig. 4. Two-dimensional view of the magnitude of coherent PSFs at three DOF away from
focus (after normalization). (a) FZP, (b) PS with circular holes, (c) PS with rectangular
holes, (d) Pixelated PS. To better see the relative efficiency of the imaging, line-scans across
the PSF centers are also shown in the insets. These PSF slices are normalized to the the
peak PSF value of the zone-plate.

pinholes over the zones, and suppression in sidelobes can be achieved when such a smoothly
varying aperture (transmission) function is used [1, 2, 46]. As illustrated in Fig. 2, the PS
designs considered here neither employ a larger aperture size nor a smoothly varying aperture
function; as a result, the considered PS designs provide neither sharper focusing nor suppression
of sidelobes compared to the zone plate.

As stated before, the Fresnel models used in the simulations are accurate provided that the
pinhole diameters are large compared to a wavelength, and the image and source planes are not
very close to the diffractive lens. For the latter requirement, there are well-known sufficient
conditions [39, 49, 52] that can be checked. For example, the sufficient condition given in [49]
for the validity of the Fresnel approximation is as follows:

z >
1
λ
[(x − ξ)2 + (y − η)2]2max . (51)

Here, the diffractive aperture is assumed to lie in the (ξ, η) plane, the source/image is in the
(x, y) plane, and z is the distance between these two planes. In our results, the width of the
observation region is 4mm, the diameter of the diffractive element is 10mm, and the wavelength
is 630nm. Inserting these values into the above equation gives the condition that z > 0.16m.
Hence the condition is satisfied for both distances, di and ds , in the focused and defocused
cases. Since this is a sufficient condition, the Fresnel approximation and our models derived
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Fig. 5. Two-dimensional view of the incoherent PSFs at focus (after normalization). (a)
FZP, (b) PS with circular holes, (c) PS with rectangular holes, (d) Pixelated PS. To better
see the relative efficiency of the imaging, line-scans across the PSF centers are also shown
in the insets. These PSF slices are normalized to the peak PSF value of the zone-plate.

based on this approximation yield accurate results here. However, it should also be noted that
this condition is usually overly stringent, and not necessary for the accuracy of the Fresnel
approximation [39, 51, 52]. Therefore, the results may as well be satisfactory for much shorter
distances.

Lastly, as discussed in Section 3.3.3, the PSF of the FZP is composed of infinitely many
terms, each associated with a different diffraction order. As a final remark, we note that the
single PSF term in Eq. (41) corresponding to the 1st diffraction order (i.e. m = 1) provides
a good approximation not only to the overall PSF of the FZP at focus but also to the PSF of
other FZP-like diffractive lenses. Hence the single lens model (with m = 1) provides a good
approximation for these diffractive lenses, while it requires less computations for the simulation
of the system. Hence, this model provides an approximate, but a simpler analysis.

5. Conclusion and discussions

In this paper, we presented closed-form Fresnel imaging formulas that relate the input field
distribution to its image formed by a diffractive element such as a photon sieve. Both spatially
coherent and incoherent cases are considered, and analytical expressions for the associated PSFs
are also provided. All the formulas are given in terms of Fourier transforms and convolutions,
which enable easy interpretation as well as fast computation. These formulas are derived based
on the scalar diffraction theory and Fresnel approximation, and hence they are accurate provided
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Fig. 6. One-dimensional central slice of normalized PSFs. (a) magnitude of coherent PSF
at (first-order) focus, (b) magnitude of coherent PSF at three DOF away from focus, (c)
incoherent PSF at focus.
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that the hole diameters are large compared to a wavelength, and the image and source planes are
not very close to the diffractive element.

The presented imaging models are powerful in that they can be used to effectively analyze and
simulate any diffractive imaging system operating at the Fresnel regime. The system can contain
an on-axis or off-axis photon sieve, Fresnel zone plate, Fresnel phase plate, or other mask-like
pattern such as a coded aperture. To illustrate their utility and generality, the derived formulas
are applied to several important special cases with common design considerations including
photon sieves with circular holes, pixelated diffractive lenses generated by SLM type devices,
and binary diffractive lenses with exchanged transparent and opaque regions.

The presented analytical models provide a unified framework to effectively develop new
high-resolution imaging modalities enabled by diffractive elements, as well as to analyze their
imaging capabilities under various design and observing scenarios. To illustrate this, numerical
simulations are performed that show the focusing performance of different FZP-like diffractive
lenses that are based on the same binary FZP design. It is observed that all of these diffractive
elements (including photon sieves with circular or square holes, and a pixelated version) possess
similar PSFs for both focused and defocused cases, with the major difference observed at peak
intensity values and at the tails. Hence, the ease of computing the derived PSF formulas enables
testing how changing the design parameters affects the resolution and the imaging performance
(prior to constructing the physical system), as well as attaining desirable designs that sharpen the
PSF. Moreover, using the computed PSFs and the derived input-output relationships involving
convolutions, the output of the imaging system can be easily simulated for a given object with
coherent or incoherent illumination, using FFTs. These imaging models can also be used as
an accurate model of the imaging process for image deconvolution and reconstruction tasks
involved in novel computational imaging systems with diffractive lenses [37, 38].
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