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Abstract

Using the most general, model independent form of the effective Hamiltonian, the exclusive rare
baryonic A, — ALT¢~(£ = u, 7) decay is analyzed. We study the sensitivity of the branching
ratio and lepton forward—backward asymmetry to the new Wilson coefficients. It is shown that these
physical quantities are quite sensitive to the new Wilson coefficients. Determination of the position
of zero value of the forward—backward asymmetry can serve as a useful tool for establishing new
physics beyond the standard model, as well as fixing the sign of the new Wilson coefficients.
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1. Introduction

Rare decays, induced by flavor changing neutral current (FGNE)s(d) transitions,
provide a potential precision testing ground for the standard model (SM) at loop level. For
this reason studying these decays constitutes one of the main research directions of the
two operatingB-factories BaBar and Belle [1]. Rare decays can give valuable information
about the poorly studied aspects of the SM at present, such as the Cabibbo—Kobayashi—
Maskawa matrix elementg, Vs, V,» and the leptonic decay constant. After the CLEO
measurement of the radiatibe— sy decay [2], the main interest has been focused on the
rare decays induced by thhe— s¢* ¢~ transition, which have relatively “large” branching
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ratio in the SM. These decays have been investigated extensively in the SM and its various
extensions [3—18].

The theoretical analysis of the inclusive decays is rather easy since they are free of
long distance effects, but their experimental detection is quite difficult. For exclusive
decays the situation is contrary to the inclusive case; i.e., their experimental investigation
is easy, but theoretical analysis is difficult due to the appearance of the form factors. It
should be noted that the exclusiBe— K*(K)¢T¢~ decays, which are described by the
b — s£*¢~ transition at inclusive level, have been widely studied in literature (see [19-22]
and references therein). Another exclusive decay which is described at inclusive level by
theb — s¢T¢~ transition is the baryoniet, — A¢T ¢~ decay. It should be emphasized
that, in order to analyze the helicity structure of the effective Hamiltonian fobthes
transition in the SM and beyond the SM, investigation of the mesonic decays alone is
not enough, since the information about the handedness of the quark is lost during the
hadronization process. In order to maintain the helicity of the quarks, investigation of the
baryonic decays is the only choice. For this reason study of the baryonic decays receive
special interest. Note that, — A¢+¢~ decay has been studied in context of the SM and
two Higgs doublet models in [23] and [24], respectively.

Rare decays are very sensitive to the new physics beyond the SM and, therefore,
constitute quite a suitable tool for looking such effects. In general, new physics effects
manifest themselves in rare decays either through new contributions to the Wilson
coefficients existing in the SM or by introducing new structures to the effective
Hamiltonian which are absent in the SM (see, for example, [21,25-27] and the references
therein). At this point we would like to remind the reader that, the sensitivity of the
physical observables to the new physics effects in the “heavy pseudoscalar meson
light pseudoscalar (vector) meson” transitions suchBas> K (K*)¢1t¢~, are studied
systematically in [21,27,28] using the most general form of the effective Hamiltonian.

The intriguing questions that follow next are what happens in the “heavy baryon
light baryon” transition and which physical quantity is most sensitive to the new physics
effects. The present work is devoted to look for the answers to these questions.

In this work we present a systematic study of the baryohjc—> A¢T¢~ decay. The
paper is organized as follows. In Section 2, using the most general model independent form
of the Hamiltonian, we derive the matrix element, differential decay width and forward—
backward asymmetry in terms of the form factors. Section 3 is devoted to the numerical
analysis and concluding remarks.

2. Theoretical background

The matrix element of thel, — A¢+t¢~ decay at quark level is described by the
b — s¢*¢~ transition. The decay amplitude for tlhe— s¢* ¢~ transition, in a general
model independent form, can be written in the following way (see [21,25,26])
Ga
M= —VyV}*
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+ CO 5Ly b iRy lr + CRLSRY"DRELYLL + CRRSRY“PRERYLR

+ CLRLRSLORELER + CRLLRSRPLELLR + CLRRLSLPREREL

+ CRLRLERbLEREL + CTEO'lwbEO'ﬂVZ + iCTEE“Uaﬂ§U#UbZUaﬁZ}, (1)

where L = (1 — y5)/2 and R = (1 + ys5)/2 are the chiral operators ardy are the
coefficients of the four-Fermi interaction. Part of these Wilson coefficients and structures
already exist in the effective Hamiltonian of the-> s transition in the SM. The first two

of the coefficient€s; andCppg are the non-local Fermi interactions which correspond to
—ZmSC‘;ff and—2mbC$ff in the SM, respectively. The following four terms describe vector
type interactions. Two of these vector interactions containing the coeffi@éitandC!;

do also exist in the SM in the forrr(S?gff —C10) and(Cgff + C10), respectively. Therefore,

C®l andC° represent the sum of the combinations from SM and the new physics in the
following forms

CP =C§"— C10+Cr,

% — &M 4 C10+ Cpr. )
The terms withCprrr, Crrrr, Crrrr @ndCrrpr describe the scalar type interactions.
The last two terms in Eq. (1) correspond to the tensor type interactions.

A few words about the Wilson coefficieG€™ are in order. In the SM, in next-to-leading
order atu ~ my, scale, the effective Wilson coef‘ficieﬁgff can be written in the following
form:
as(mp)

T

C§" = Colmy) [1+ w(ﬁ)] + Ysp(mp, §) + Yip (m, §),
wheres = qz/m% and w(s) represents th&(«;) corrections coming from one gluon
exchange in the matrix element of the corresponding operator whose explicit form can
be found in [29]. The function¥sp and Y p represent the short and long distance
contributions of the four-quark operatat} = 1, ..., 6, respectively. The short distance
contributionYsp can be obtained by a perturbative calculation and the result is presented
in [14,29].

The long distance paiif_p can be attributed to the reat in the intermediate states,
i.e., to the cascade process— K*y;, — K*¢*¢~, (i =1,...,6). Usually Y| p is
parametrized in the form of a phenomenological Breit—Wigner ansatz [8,30], and it is given
as

ot
Yio = — 2O ooow F(vi~ &7t my,
2 qz_m%/i+ir‘/imvi

Vi=¢ (Ls)--¥ (6s)

whereC© =3C; + C2 4 3C3 + C4 4 3Cs + Cs. The phenomenological facter for the
lowest two resonances is estimated toxhg, = 1.65 andky, = 1.65 (see, for example,
[23]), and in our numerical calculations we use the averagg/gf andv’ for the higher
resonanceg (3s) - - - ¥ (6s).

The amplitude of the exclusiva, — A¢+¢~ decay can be obtained by sandwiching
the matrix element of thé — s¢*¢~ decay between initial and final state baryons. It
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follows from Eg. (1) that, in order to calculate the amplitude of the— A¢T¢~ decay
the following matrix elements are needed

(AlISyu(1F y5)b| Ap), (Al504, (1F y5)b| Ap),
(Al5(1F y5)b|Ap). 3)

Explicit forms of these matrix elements in terms of the form factors are presented in
Appendix A. Using the parametrization of these matrix elements, the matrix form of the
Ap — ALT¢™ decay can be written as

Ga
42
x [eyreia A1y @+ ) + Buyud - o)

+iouq " [A2(1+ ys) + Ba(1— y5)]
+qu[ A3+ 79) + BaL— y9)]Jua,

M == Vt b V;l;

+ Cy*ystii [Dl)/u(l +y5) + E1yu(1— ys)

+i0ug"[D2(1+ y5) + E2(1— y5)]

+qu[D3(1+ y5) + E3(1— J/s)]]uA,, +€Cii (N1 + Hiys)ua,

+ Lystiin(N2 + Hoys)u a,

+ACT o™ Cia fropw = iff @vu — aur) = if7 (Pugv = Pogi) Jua,
+4CrEe" P logpliial frouw — iff (@i — qur)

=i (Pugy = Poga) [, | (4)

whereP = py, + pa.

Explicit expressions of the functions;, B;, D;, E;, H; and N; (i =1,2,3 and
Jj =1,2) are given in Appendix A.

Obviously, theA, — A¢*¢~ decay introduces a lot of form factors. However, when the
heavy quark effective theory (HQET) has been used, the heavy quark symmetry reduces
the number of independent form factors to two of#y and F»), irrelevant with the Dirac
structure of the relevant operators [31], and hence we obtain that

(A(p|5TB|A(pa,)) = a[F1(q?) + P F2(q?)]Tu s, (5)

where " is an arbitrary Dirac structurey* = p’jh/mAb is the four-velocity ofA;, and
q = pa, — pa is the momentum transfer. Comparing the general form of the form factors
with (5), one can easily obtain the following relations among them (see also [23])

g1=fi=f) =g =F1+JrFa,

F
=fr=gs=fa=gr =ff = —,
ma,
g =f=0 g =f=—"4%

ma,
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P F>

T T

83 (ma, +ma), fa =- (ma, —may), (6)
mAb mAh

wherer = mi/mﬁh. These relations will be used in further numerical calculations.
It is a simple matter now to derive the double differential decay rate with respect to the
angle between lepton and the dimensionless invariant mass of the dilepton
d2r _ GzazmAb

2
I de = 163845 Vin V| oy AL, 1, ) T (s, 2), )

wheres = g2/m? ,v=,/1—4m2/q?is the lepton velocity and

T (s,2) = To(s) + Ta(s)z + Ta(5)2°. (8)

The expressions fdfy(s), 71(s) and7z(s) can be found in Appendix B.

In Egs. (7), (8),z = cosy is the angle between the momentadof and A, in the
center of mass frame of dileptong(1, r, s) — 1+ r? + s — 2r — 25 — 2rs is the triangle
function. After integrating over the angte the invariant dilepton mass distribution takes
the following form

dr  G%a®my, L2 1

E—w“’zb‘%‘ v/ AL, 1, s) |:76(S)+§TZ(S):|- 9)
The limit for s is given by

4m?

—L<s<(1-vr)? (10)

my,

The lepton forward—backward asymmetfys is one of the powerful tools in looking
for new physics beyond the SM. Determination of the position of the zero value dithe
is very useful for this purpose. New physics effects can shift the position of the zero value of
the forward—backward asymmetry. Indeed, it has been shown in [21] that the new physics
effects shift the zero value of the forward—backward asymmetry forBthe K*¢T¢~
decay. Therefore we will study the sensitivity of the forward—backward asymmetry to the
new Wilson coefficients. The normalized forward—backward asymmetry is defined as
Aeq — fol ddslz;z dz — i)1 ddsZZ dz_
folfs—ll;zdz"'fglfs—gzdz
It is well known that.Arg is parity-odd but CP-even quantity, which depends on the
chirality of the lepton and quark currents. In order to obtaia cosd dependence, the
differential decay width should contain multiplication of such terms which transform even
and odd under parity, respectively.
In the massless lepton case, the zero position of the forward—backixgraimilar to
the B — K*¢*T¢~ decay, satisfies the following relation in SM [32]

(11)

2mp(1 — s0p?)
soll— (L —r)p2 —2/7 p]

Re[C§"Co] = — Re[C7Cy), (12)
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wherep = F»/(F1 + F2) andsg is the value ofs at which Arg vanishes. The effect of
introducing a new vector type interaction with coefficiéht; (Cy g) reduces to redefining
Cgﬁ andC1p in the following way:

& - &+ Cri(— ST+ CLp),
C10—> Ci10—Crr(— Ci0+ CLR).

In the presence of other interactions, the change in the form of Eq. (12) can easily be
obtained from Egs. (11) and (B.3). It should be noted that the large energy effective theory
and QCD sum rules predict very close results for the rasi@?) / F1(¢?):

Fa(q?) _ F2(0)
Fi(q?) ~ F1(0)

(see, for example, [33] and the references therein). For this reason, the zero position of the
forward—backward4rg, far from the resonance region, is insensitive to the form factors
and depends only on the values of the Wilson coefficients, similar t® threeson decays.
Therefore the shift in the zero position of thgg can be attributed to the existence of the
new physics.

3. Numerical analysis

In this section we will study the sensitivity of tee branching ratio and lepton forward—
backward asymmetry to the new Wilson coefficients. The main input parameters in
calculating the above-mentioned quantities are the form factors. Since there exists no
exact calculation of the form factors of th&, — A transition, we will use the form
factors derived from QCD sum rules in framework of the heavy quark effective theory,
which reduces the number of lots of form factors into two (see, for example, [31]yZhe
dependence of these form factors can be represented in terms of the three parameters as

F(a®) = 1 2 ZF(O) 2,2 22’

—ar(q®/m%,) +br(ge/my,)
where parameterg; (0), a andb are listed in Table 1 (see [34]).

The values of other input parameters which appear in the expressions of the branching

ratio and forward—backward asymmetry ang; = 4.8 GeV, m,, = 5.64 GeV,m, =
1.116 GeV,m. = 1.4 GeV. Contribution of new physics effects are contained in the new
Wilson coefficients (see Eg. (1)). To the leading logarithmic approximation the values
of the Wilson coefficients ar€S" = —0.313, C§" = 4.344 and Sl = —4.669 [14].

Table 1
Transition form factors for thet, — A¢+¢~ decay in a three-parameter fit
F(0) ar bp
Fy 0.462 —0.0182 —0.000176

F> -0.077 —0.0685 000146
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These values of the Wilson coefficients correspond to the short distance contribution.
The Wilson coefficiemcgff receives long distance contributions also coming from the
real cc intermediate states, i.e., from thg'yr family. In the present work we take into
consideration both short and long distance contributions. In order to estimate the branching
ratio and lepton forward-backward asymmetry we need the values of the new Wilson
coefficients which describe new physics beyond the SM. In this work we will vary all
new Wilson coefficients within the range|C1g| < Cx < |C10|. The experimental bounds

on the branching ratio of th8 — K*utu~ [35] and B, — 't~ decays [36] suggests

that this is the right order of magnitude range for the vector and scalar Wilson coefficients.
We assume that all new Wilson coefficients are real, i.e., we do not introduce any new
phase in addition to the one present in the SM.

Let us first study the dependence of the branching ratio forthe> A¢T¢~ decay
on the new Wilson coefficients. In Figs. 1-4 and 5-8 we present the dependence of the
branching ratio for thet, — Au*tu~ (A, — AtTt~) decay onCrr, Crg, Crr, CreL,
CrrLr, Cr andCrg, respectively. One can easily see from these figures that the branching
ratio is strongly dependent afi; ; and the tensor interaction coefficierfg and Crg,
while it is weakly dependent on the remaining vector interaction couptings Crr and
Cgrr and the scalar couplinG. g r. It should be noted that similar behavior takes place
for the other scalar interaction coefficients.

This dependence of the branching ratio on the new Wilson coefficients can be explained
in the following way. As an example, let us consider only the terms that comedhgm
andCy y in the massless lepton limit. It follows from Egs. (B.1) and (B.3) that, in this limit
the branching ratio defined in Eq. (9) takes the following form:

‘ {<1_r+s)ﬁ Re[F} ]

16’"13 2 tot tot |2 tot tot |2
x|~ G+ |ClR + CLL| "+ [CLR — €L
Ap

mp

1
+41—r—y) Re[C3(CPy +C)] <|F2|2 + ;|F1|2>

mA,

b

" Re{ ;P ReC (5} + CE)

m
ma,

+ 161

16m? 1
+8m% [1—r)? - SZ][TbICﬂZ(IFzIZ + ;|F1|2)
Ap h

1 The latest result released by the BaBar Collaboration for the branching ratio Bf-the&k *¢+ ¢~ decay, is

B(B— Kk*tte7) = (1687288 +0.18) x 1076
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Fig. 1. The dependence of the branching ratio forahe— Autu~ decay on the new Wilson coefficienty ;.
andCp g. In all figures the curves with sharp peaks are the ones in which the long distance contributions are taken
into account.
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Fig. 2. The same as in Fig. 1, but for the coefficieijsg andCgy. .
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We observe from this expression that, if there e&ist or Cy g in addition to SM Wilson
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Fig. 3. The same as in Fig. 1, but for the coefficiéhtg gy, .

]
Cr=—4--o-"]

CT =44 --2-- ]
sM o —
Crg=—4 —e- {

Fig. 4. The same as in Fig. 1, but for the coefficiefits andCy g, describing the tensor interactions.

coefficients then the leading terms are proportioanal to
2
4(|CE"° + 1C10%) +2CLL 12+ 4R (CET — Cr0)*Crr], forCir,
2
4(|CE° + 1C10%) +2CLrI? + ARG (CST + Cr0)"CrLr],  for Cpi.
It is well known that in the Sl\/lcf,’ff = 4.344 (short distance) an@1p = —4.669, then
the terms~ Re[(Cgff — C10)*C ] give constructive interference to the SM result, while
the terms~ Re[(Cgff + C10)*Crr] give destructive interference to the SM result, since

Cgﬁ + C10 < 0. We can conclude then that the branching ratio is weakly dependent on
Crr Which is confirmed by the numerical calculations.
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Fig. 5. The dependence of the branching ratio foraize— Ar+ 7z~ decay on the new Wilson coefficienty ;.
and CLR-

10"x—(Ay — ATF77)
ds

Fig. 6. The same as in Fig. 5, but for the coefficiefitggr andCg. .

We observe from Fig. 4 that the branching ratio is strongly dependent on the tensor
interaction.

For the A, — A+~ decay the situation is analogous to thg — Au* ™ decay
with a slight difference. Contribution coming from different type vector interactions
becomes comparable. This fact can be explained by the fact that the terms proportional
to ~ (1 — v?), which are very small in thg case, contribute more in thecase.

At this point we would like to point out that, similar dependence on the new Wilson
coefficients occurs for th8 — K*¢*¢~ decay.
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Fig. 8. The same as in Fig. 5, but for the coefficie@its and C7 g describing the tensor interactions.

In Figs. 9-16 we present the dependence of the lepton forward—backward asymmetry
on the new Wilson coefficients for tha, — Au™u~ and A, — ArTt~ decays. We
observe from Figs. 9-12 that, for thg, — Au*u~ case the lepton forward—backward
asymmetry is more sensitive to the coefficietts, and Crr and weakly depends on
rest of the Wilson coefficients. It follows from these figures that wiign is positive
(negative), the zero point of the forward—backward asymmetry is shifted to the left (right)
from its corresponding SM value. For all values of the coefficieh{g andCg the zero
position of the forward—backward asymmetry is shifted right and left with respect to its
SM value, respectively. From these figures we see that, the new positibtia$ far from
the resonance region. Moreover, as has already been noted, the zero posities ief
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Arp(Ay — A7)

-0.3

| I

Fig. 9. The dependence of the lepton forward—backward asymmetry fotghe Apt ™ decay on the new
Wilson coefficientsC; ;, andCy g.

Arp(Ny = Aptpr)

Fig. 10. The same as in Fig. 9, but for the coefficiefifgr andCg. .

insensitive to the form factors and depends only on the Wilson coefficients. Therefore, the
shift in the zero position of the dilepton forward—backward asymmetry can be attributed to
the existence of new physics.

So, in view of all these observations we can say that, determination of the zero point
of the forward—backward asymmetry can give us essential information, not only about the
existence of new physics, but also about the sign of the new Wilson coefficients.

From Figs. 13-16 we arrive at the following conclusion for thg — At*z~
decay. Except tensor interaction coefficients, far from the resonance region, the forward—
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Fig. 11. The same as in Fig. 9, but for the coeffici€ntz gy, -
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Fig. 12. The same as in Fig. 9, but for the coefficiefi{sandC7 g, describing the tensor interactions.

backward asymmetry is negative for positive or negative values of the remaining ones. This
situation is opposite to the, — Au* = case. The value of thelrg is more sensitive
to the CLgrgr and tensor interaction. The sign of thég can give us unambiguous
information about the sign of the tensor interaction coefficients.

Obviously, investigation of polarization effects in thg — A£™¢~ decay can provide
us new information in addition to the branching ratio and forward—backward asymmetry.
We will consider this question in one of our future works.

Finally we would like to discuss briefly the number of expected events. As has already
been noted, in the process under consideration, long distance effects can contribute via
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0.1
0.0
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Arp(Ay = ArH77)

-0.2

0.40 0.45 0.50 0.55 0.60 0.65

Fig. 13. The dependence of the lepton forward—backward asymmetry fotthe At+t~ decay on the new
Wilson coefficientsC; ; andCpg.
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0.0
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Arp(Ay = A7)

-0.2

-0.3

Fig. 14. The same as in Fig. 13, but for the coefficiefifszy andCpg; .

the realcc resonances (see the expression d@ﬁ). The dominant contribution to the
differential branching ratio comes from the three low lying resonadges, v/, ¥ in
the interval 9 Ge¥ < ¢2 < 14.5 Ge\2. In order to minimize the hadronic uncertainties,
we will discard this subinterval in estimation of the branching ratio by dividinggthe
region to low and high dilepton mass intervals

0] 4m§ < q2 < (mypy —0.02 Ge\/)2 (low q2 region,
() (my +0.02GeW? < g2 < (ma, —ma)?  (highg? region,



182 T.M. Aliev et al. / Nuclear Physics B 649 (2003) 168-188

.AFB(Ab — Artr7)

03l Crirrr=+4--8-
A S E N R

0.40 0.45 0.50 0.55 0.60 0.65

Fig. 16. The same as in Fig. 13, but for the coefficiefifsandCy g, describing the tensor interactions.

where we choose the cutting parameter to 2 @GeV. In the SM, the branching ratio for
the A, — A¢T¢~ decay in the above-mentioned kinematical regions is

_ 3.0x 108  region (I)
Ap— Aptu™) = : )
B(Ap — Au"u) {0.62x 1076, region (II).

Obviously, theA, — Attt decay takes place only in the second kinematical region
and our estimation for the branching ratio lead#tol, — Attt7)=1.2x 107",
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For a comparison of our results, we also present the values of the branching ratio for the
B — K*¢*T¢~ decays:

B(B— K*utu")

_ { 1.6 x 1076, 4m? < q2(m gy — 0.02 GeW?,
“10.46x 1078, (my +0.02 GeW? < g2 < (mp — mg+)?,
B(B— K*ttt7)=10x 1077,

(my: +0.02 GeW? < g% < (mp — mg+)2.

We observe that the values of the branching ratios forkhe K*¢*¢~ and A, —
ALT¢~ decays are close to each other in the corresponding regions.
The number of expected events for the considered decay is estimated to be

where\;, is the number obb pairs produced per yeaf, is the fragmentation function

of the b quark to A;, which is estimated to have a value about 10%. At LHC-B and
BTeV machines, where the double lepton triggering helps high reconstruction efficiencies,
N = 1011102 hb pairs are expected to be produced per year [37]. Using these values
for the branching ratios predicted in the SM, the number of expected events in the above
mentioned regions are

3.0x 10% region (I}

N(Ab = Au M_) ~ {6 x 10°, region (Il),

and
./\/(Ab — Ar+r7) ~ 10°.

We see that although the number of expected events is one order of magnitude less than
the corresponding — K*¢*¢~ decay, it has the potential of being quite detectable in
future LHC-B and BTeV machines.

In conclusion, a systematic analysis of the rage— A¢+¢~ decay is presented. For
the form factors describing the, — A transition we have used HQET predictions. The
sensitivity of the branching ratio and of the lepton forward—backward asymmetry to the
new Wilson coefficients is studied systematically. Analysis of the zero position of the
lepton forward—backward asymmetry determines not only the magnitude but also the sign
of the new Wilson coefficients for tha, — Au™ ™ decay. The sign of the forward—
backward asymmetry for the, — Ar*r~ decay can serve as a useful tool in determining
the sign of the Wilson coefficients.

Appendix A. Definition of the form factors

As has already been noted, in describing the— A transition, the following matrix
elements

(AlSyu(1F y5)b| Ap), (Al5040 (1F y5)b| Ap), (AISALF y5)b| Ap).
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These matrix elements are generally parametrized in the following way (here we follow
[23]

(AlSyublAp) = sl frvu +if20u0q” + faqu]ua,. (A.1)
(Al5yuysbl Ap) = i a[81Yu Y5 + 82000 ¥59” + 839, Y5 U A, (A2)
<A|§qub|Ab>
- _ ¢V v u_-SP V_ p gkt A.3
=uplfrow —ify (Vﬂq Wwq ) lfT( nd vg ) UAp, (A.3)

(Alsouvysb| Ap)
=il —igl (yuq" —vvg") —ig5(Pug” — Pog™ A4
=ia|grouw —igr (vuq" — wq") —igr (Pug” — Pug") |vsua,. (A4)
The form factors of the magnetic dipole operators are defined as
(Al5iouwq"blAp) = sl f] vu +if3 0uva” + f3 aulua,.
(Al5i0,0 59 bl Ap) =i [ 81 Vi ¥5 + i85 0uvY5q" + 83 4u¥s]uay- (A.5)

Multiplying (A.3) and (A.4) byig" and comparing wit (A.5) and (A.6), respectively, one
can easily obtain the following relations

3= fr+ fiq?
2

q
=+ fEma, +ma))g?=——"—f1,
ma, —ma
g2 =87 +834°,
2
T 1% N 2 q T
= —_ —_ - . A-6
g1 =87 —gr(ma, —ma)lq mAb+mA83 (A.6)

The matrix element of the scalar (pseudoscalar) operakoasdsysb can be obtained
from (A.1) and (A.2) by multiplying both sides tg* and using equation of motion.
Neglecting the mass of the strange quark, we get

1
(Alsb|Ap) = m—bﬁA[fl(mAh —ma)+ f2q%un, (A7)

i 1.
<MWme=;EmkﬂmM+mMm—&f%hm~ (A.8)

Using these definitions of the form factors and effective Hamiltonian in Eq. (1), we get
the following forms of the functiond\;, B;, D;, E;, N; andH; (i =1,2,3; j=12)
entering the matrix element of the, — A¢+¢~ decay:

1

42
1

+ E(fl + g1 (CrL + CRrr),

Ar=A1(1— 2), Az3=A1(1-3),

B1=A1(g1—> —g1: 81 — —81 ), Bz =B1(1— 2), B3=B1(1— 3),

tot

1 1
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1 1
Dy =5(Crr = Cre)(f1+81) + E(ctf}e — C¥) (A1 — ),
D2 =D1(1— 2), D3=D1(1— 3),
E1=D1(g1—> —g1), Ex=E1(1— 2), E3=E1(1—3),

1
Ni= m_b(fl(mA” +ma) + f3¢2)(CLrLr + CriLr + CLRRL + CRLRL),
N2 = N1(CLrrL = —CLRRL; CRLRL = —CRLRL),

1
Hy= m—b(gl(mAh +ma) — g3q2)(CLRLR — CRLLR + CLRRL — CRLRL),

Hz = H1(CLrrL = —CLRRL; CRLRL — —CRLRL)- (A.9)

Appendix B. Double differential rate

The explicit form of the expressior®(s), 71(s) and7Z,(s) are as follows:
To(s) = —2048umim’ |Cr R f /7]

+384nemS, { (14 V7 ) (L— 27 +7 = s) R (A1 + B)*Cr f1]
+2(1= V7)) (L+ 247 +7 —5) R (A1 — B)*Cre fr]}
+32n%m% s(1+r —5)(1Dsf* + | E3l?)
+4m% s(1—2yr +r —s)(4m¢Re(D3 — E3)* Hz| + | Ha2|?)
+64mZm3, (1—r — 5) R D} E3 + D3Ej]
+256mem%, (1+2Jr +r —s)(2— 4 +2r +5) R A3Cri fr]
— 128umem$, | (L4 V7) (R (A1 + BY*Cr f7]
—16m([Cr PR /7" 1)) — ma,s RE[ (A2 + B Cr f7]
+64n3, VF(6n? —m?,5) R D} E1]
—128mem’, [(1—r)?+ (1— 63/ +7)s — 25*] R§ (A1 + B)*Cr f} ]
+64m2m’, \/r (ZmAhs Re[ D3 E3]+ (1—r +s) Re{ D} D3 + Eng])
— 128nem’, {2(1+ 207 +r = 5)(2— 4v7 +2r +5) R B3 Cre f1]
+(1=2Vr+r—s)(2+4Vr +2r +5)RABICr fr]
+32n3, (2m? +m3 ) [ = +5yma, V7R AL Az + B} By]
—ma,(1—r —s)Re[A]B2 + ASB1]
— 27 (R4 A} BL] +md, s R A3B2] )|
+8m%, {4mF(L+r —s) +m3, [A—r)? =]} (1Al + | B
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+8m, {4m§[k +A+r—s)s]+mi s[A-r)? - sz]}(lAzl2 +1B2/?)
— &3, |4m? 1+ —5) = m3 [ -2 =2} (D12 + | EaP?)
+51203, | fr?{[2m3(1— 637 + 1 —5) +m, [+ @+ r —)s])iCr 2
+4[2mZ(146yr +r—s5)+mF, [A+ L+r— S)S]]|CTE|2}

+ 8m3hsv2{—8mAbsﬁ Re[ D3 E2] + 4(1— r + 5)v/r R D} D2 + E3 E5]
— 4L~ r — )R D} Bz + D5 Ex] +m,[(1— )% =57 (1Dal? + | Eo1?)}
+ (14277 +r —s5){1028mBmS, |Cr 2| 72

+ 16’”’5m§1h (1—/r)Re[(D1+ E1)*N2]

o+ dm, 5IN2I2 + 4m, s (4me R (Da + Eg)*Na] + 2N 2) |

+ (1= 27 +r = s)[~128nem’, (2+4V7 + 2 + ) RAASCr /1]
+512m3, (L+ V7)) Re 7 1 |[8m?(@Crel? = 1Cr )

—m2,s(4Cr e +1CrP)| = 16mem3, (1+ V7 ) R(D1 — En)* Ho]
—24m? sRe[(A2+ B2)*Cr f | + dm’, sv?| H|?

+256m%, | £Y|X([m3, 52 + 4mP(1+ 27 + 1 +5)]ICr 2
+4m§1bSZU2|CTE|2)}» (B.1)

Ti(s) = —16mm3buﬁ| (1— /r)Re[(A1— By)* H]

— (1+Vr)Ref(A1 + Bl)*Nl]}

— 384ngm’, v/A| (1+ V7 ) R{(D1— En*Cr fr]

+2(1- V7 )Re(D1+ Ev*Cre fr]]

— 256mgm’, vV (1 —r)(Re[(D2 — E2)*Cr fr]

— 2Re(D2 + E2)*CrE fr])

+256mem5y, vV (1= Vr)(1+2v7 +r —s) (R (D1 + EV*Cre f7])
+128nem’, suv/i (R (Cr — 2C7)* Da f7]

—RY(Cr +2C7)" Eaff]) - 16m%, suv/3{2R4 41 D1]

— 2R B} E1] — 4R (N1 + Ho)*Cr fr] + 8Rq (N2 + H1)*CrE f7 ]
+myRe[ (A2 + 32)*N1]} — 16rnibsvﬁ(me Re[(A2 — B2)* Hi]
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+ 2m 4, R B{ D2 — B3 D1 + A5E1 — ATE3])

+256mm%, svv/A(1— /1) RE(D2 — E2)*Cr fy ]

+64m5, suva(1+/r) (—Re[Ni‘CTfTV] +2R4N3Cre f)]

+ 4m¢ Re[(D3 + Es)*CTEfTV])

+32m5, suv/A(1 - r) R A3 D2 — B3 E2]

+32m5, suv/A+/r R{A3D1 + A1Do — B5E1 — BY E>]

+64mS, suv/A(L+ 207 + 7 — 5) (-ReN; Cr 7] + 2R N3 Cri /7]
+ 4m¢ Re[ (D3 + ES)*CTEf;])

+256mm’, vV/i] (- ) R(D1 + E*Cra f7]

+sRe(D1 - En*Crfy ]}, (B.2)

Ta(s) = —8m%, v?A(|A11? + | B1l? + | D1? + | E1[?)
—512m%, v?A[(4ICrel® + ICT %) fr 7]
+8mS, sv2A(|A2f? + | B2|? + | D2f? + | E2|?)

— 256n%, sv%(4ICrel? + |Cr?) [2RY £ £

[ ma, (LR £ m s £ (8.3)
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