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Abstract—A hybrid method based on the combination of gener-
alized forward backward method (GFBM) and Green’s function
for the grounded dielectric slab together with the acceleration of
the combination via a discrete Fourier transform (DFT) based
algorithm is developed for the efficient and accurate analysis
of electromagnetic radiation/scattering from electrically large,
irregularly contoured two-dimensional arrays consisting of finite
number of probe-fed microstrip patches. In this method, unknown
current coefficients corresponding to a single patch are first solved
by a conventional Galerkin type hybrid method of moments
(MoM)/Green’s function technique that uses the grounded dielec-
tric slab’s Green’s function. Because the current distribution on
the microstrip patch can be expanded using an arbitrary number
of subsectional basis functions, the patch can have any shape.
The solution for the array currents is then found through GFBM,
where it sweeps the current computation element by element.
The computational complexity of this method, which is originally

2

tot
( tot being the total number of unknowns) for each

iteration, is reduced to ( tot) using a DFT based acceleration
algorithm making use of the fact that array elements are identical
and the array is periodic. Numerical results in the form of array
current distribution are given for various sized arrays of probe-fed
microstrip patches with elliptical and/or circular boundaries, and
are compared with the conventional MoM results to illustrate the
efficiency and accuracy of the method.

Index Terms—Discrete Fourier transform (DFT), finite arrays,
generalized forward backward method (GFBM), method of mo-
ments (MoM).

I. INTRODUCTION

MAJORITY of commercial and military applications
require phased arrays fabricated using the integrated

circuit technology. However, a great portion of available design
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and analysis software, in particular computer-aided design
(CAD) tools, may suffer from the memory storage require-
ments and computational cost when the number of elements in
the array increases rapidly. Therefore, as an alternative to the
numerical approaches such as finite elements or finite differ-
ence time domain techniques [1]–[4], various integral equation
(IE) based method of moments (MoM) solutions, (which use
the grounded dielectric slab’s Green’s function as the kernel of
the integral equation) have been developed to be implemented
in CAD packages to perform the full wave analysis of planar,
large, finite printed phased arrays accurately and efficiently
[5]–[21].

Although the infinite array based approach [5]–[7], which
convolves the Floquet-based infinite array solution with the
array aperture distribution, has attracted attention due to its
simplicity and efficiency, it can not fully capture the finite
array truncation effects, which affects the accuracy of both
the element input impedance and the array radiation/scattering
patterns. Therefore, to improve the efficiency of the rigorous
“element-by-element” MoM approach ([8], [9]) has become the
center of attention. In [10]–[12], the discrete Fourier transform
(DFT) technique has been used in conjunction with the MoM
in such a way that the DFT coefficients of the array currents are
formulated to be the new unknowns of the MoM matrix-equa-
tion rather than the array currents yielding a great reduction
in the number of unknowns. On the other hand, in [13] a DFT
based preconditioner is constructed and used in an iterative
MoM to significantly improve the convergence rate of the iter-
ative solution. Similarly, a DFT based acceleration algorithm is
developed in [14] and used in conjunction with stationary and
non-stationary iterative MoM solutions in [15]–[17] to obtain
a great reduction in both the computational complexity and
storage requirements. Besides the DFT technique, fast Fourier
transform (FFT) algorithm is also combined with conjugate
gradient based iterative techniques in [18], [19] to obtain fast
full-wave solvers for finite arrays. Recently, a synthesis of
the sparse matrix/adaptive integral method (SM/AIM) and the
multiresolution (MR) approach is presented for the analysis of
electrically large finite arrays [20], where the MR technique
serves as an efficient preconditioner for the SM/AIM. In ad-
dition to these aforementioned studies, hybrid combinations
of uniform theory of diffraction (UTD) with MoM have been
presented for the fast analysis of electrically large, planar
periodic finite free-standing [22], [23] and printed [21] dipole
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arrays. In these approaches, regardless of the array size a fixed
number of unknowns (very few compared to the array size)
is sufficient in the MoM analysis to accurately predict array
currents. However, such approaches have not been extended yet
to arrays having elements other than dipoles.

In this paper, a hybrid combination of the generalized for-
ward backward method (GFBM) [24] with the grounded dielec-
tric slab’s Green’s function accelerated with a DFT based al-
gorithm, namely GFBM/Green’s function-DFT method, is in-
troduced for the fast and accurate analysis of finite phased ar-
rays of probe-fed microstrip patches on planar grounded dielec-
tric slabs. The method presented here is actually the generalized
form of the method presented in [14]–[17], and can handle any
finite, irregularly contoured, one or two dimensional, periodic,
free-standing and/or printed arrays as long as the array elements
are identical. The proposed method starts by finding the cur-
rent coefficients of a single patch by employing a conventional
Galerkin type hybrid MoM/Green’s function method. The solu-
tion for the array currents is then found through GFBM, where
it sweeps the current computation element by element. Because
the current distribution on each element can be expanded using
an arbitrary number of subsectional basis functions, elements of
the array can, in fact, have any shape. The computational com-
plexity of this method, which is originally ( being
the total number of unknowns) for each iteration, is reduced
to . This is achieved by combining a slightly modified
version of the DFT based acceleration algorithm developed in
[14] with the fact that array elements are identical and the array
is periodic. Briefly, the DFT based acceleration algorithm di-
vides the contributing elements into “strong” and “weak” inter-
action groups for a receiving element in the GFBM. Contribu-
tions from the strong group are obtained by the conventional
element-by-element computation to assure the fundamental ac-
curacy, whereas contributions coming from the weak region are
obtained based on the DFT representation of the array current.
In general, only a few significant DFT terms are sufficient to
provide accurate results as they provide minor corrections to
the solution in contrast to the dominating strong group. On the
other hand, to handle more basis functions per elements, sub-
arrays are formed among the th basis functions of elements
( , being the total number of basis func-
tions per element) using the periodicity of the array and array
elements being identical. Then, contributions coming from the
weak region of the actual array is calculated by superposing
the weak region contributions of each subarray using the cor-
responding DFT coefficient.

In Section II, the geometry and a brief information regarding
the conventional hybrid MoM/Green’s function solution for the
finite phased arrays of probe-fed microstrip patches on planar
grounded dielectric slabs are presented. Hence, this section may
provide insight to the proposed GFBM/Green’s function-DFT
solution as well as it serves as a reference solution used to assess
the efficiency and accuracy of GFBM/Green’s function-DFT
method. Section III provides the detailed description of the
GFBM/Green’s function-DFT formulation. Numerical results
in the form of array current distribution are provided for var-
ious arrays using the proposed GFBM/Green’s function-DFT
method, and compared with the conventional MoM/Green’s
function results in Section IV. An time dependence is
assumed and suppressed throughout this paper.

Fig. 1. Geometry of a finite, periodic, planar array of (2N + 1)� (2M + 1)
probe-fed microstrip patches on a grounded dielectric slab; and MoM model of
a single patch. Each arrow represents a piecewise sinusoidal basis function.

II. FORMULATION

A. Geometry

The geometry of a finite, periodic, planar array of
identical

printed microstrip patches is depicted in Fig. 1. The microstrip
patches are printed on the dielectric-air interface
of a grounded dielectric slab, which has a thickness and a
relative dielectric constant . Each patch is assumed to be
probe-fed with an ideal current source, has a length , width

, and is uniformly spaced from its neighbors by distances
and in the and directions, respectively.

The configuration of Fig. 1 is chosen because it provides sim-
plicity for illustrating the development of the present GFBM/
Green’s function-DFT method. However, this approach can be
extended to deal with more complex array elements and/or with
arbitrarily contoured arrays such as elliptical or circular ones.

B. Conventional Hybrid MoM/Green’s Function Method
Solution for Phased Arrays

An electric field integral equation (EFIE) is formed by en-
forcing the boundary condition that the total tangential elec-
tric field should vanish on the microstrip patch surfaces. Then,
the conventional hybrid MoM/Green’s function solution starts
with an expansion of the unknown induced array surface current,

, in terms of a finite set of subsectional basis functions

(1)

where

on the th patch
on the th patch

(2)
with as the position vector of , being the total
number of subsectional basis functions per microstrip patch and

[and ] being piecewise sinusoidal along the di-
rection of the current and constant in the direction perpendicular
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to the current. Finally, are the unknowns to be computed
and

(3)

with being the area occupied by the th piecewise si-
nusoidal basis function as illustrated in Fig. 1.

Selecting the testing functions, ( ,
, ), the same as the basis functions (Galerkin

procedure), the following matrix-equation is obtained:

(4)

In (4), is the column vector
consisting of the unknown current amplitude of the
th basis function belonging to the th patch and is the

impedance matrix of the array with elements
, which denotes the mutual impedance between the

th basis function of the th patch and th testing function
of the th patch. It is explicitly given by

(5)

(with and being the position vectors on the th and th
current modes, respectively). On the other hand, at the right
hand side of (4) is the column vector related to the
excitation of the array. Assuming an ideal probe (a unit current
source at the probe location) located at the po-
sition of any of the patches, a typical element of is given by

(6)

with

(7)

where is the scan direction of the main beam and
is the free-space propagation constant. Finally, in
(5) and in (6) are the corresponding
components of the spatial domain representation of the dyadic
Green’s function, , for the infinite grounded dielectric
slab [25]–[28].

C. Review of Generalized Forward Backward Method (GFBM)
For Phased Arrays

Rather than using direct solution methods such as Gaussian
elimination or LU-decomposition to solve (4), one can employ
GFBM [24] as an iterative algorithm, which yields nearly the
same accuracy and converges rapidly. To employ GFBM to (4),

Fig. 2. Decomposition of Z in the GFBM algorithm; Z : strong group, Z :
forward group, Z : backward group.

first the current vector, , is decomposed into its forward, ,
and backward, , components as

(8)

and the impedance matrix, , is expressed as

(9)

where is formed by the block diagonal matrices of cor-
responding to the impedance matrix of a single patch, whereas

and are the lower and upper triangular parts of with
subtracted, respectively, as illustrated in Fig. 2. Then, the

original matrix-equation, given by (4), is transformed to

(10)

(11)

Initializing to zero at the first iteration, (10) is solved for
and the resultant is used in (11) to solve for . Iterations
are continued until convergence is provided; this requires, in
general, three or four iterations. Since is small compared to

, GFBM requires computational complexity and

memory storage due to the repeated computations of and
.

D. GFBM/Green’s Function Method Accelerated With a
DFT-Based Algorithm (GFBM/Green’s Function-DFT)

The GFBM/Green’s function-DFT method for finite arrays of
microstrip patches is, in fact, the generalized form of the method
presented in [14]–[17] and is based on the compactness of the
DFT spectrum of practical array currents.

Consider in (10), which represents contributions to a
receiving antenna (i.e., receiving element) from the antennas in
the front of this receiving antenna (forward sweep). Similar to
[14] if we call these antennas as contributing elements, the DFT
based acceleration algorithm starts by dividing these elements
into strong and weak interaction groups as illustrated in Fig. 3
for a generic finite array of probe-fed microstrip patches with
three basis functions per a single patch (each basis function is
represented with a different color). These contributions can be
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Fig. 3. Decomposition of a forward-sweep contribution region of the receiving
element into strong and weak interaction groups.

expressed as

(12)

where strong and weak groups are denoted by and ,
respectively.

Elements that are distanced within a few wavelengths (usu-
ally or , : free-space wavelength, is enough) from
receiving elements form the strong group and the total number
of elements in this group is denoted by . Its size is fixed for
most of the receiving elements during the forward sweep and
is very small compared to the total number of elements in the
entire array. Because the contributions coming from the strong
group have a major effect on the accuracy of the overall solu-
tion, they are obtained via an element-by-element computation,
where a conjunction of the conventional hybrid MoM/Green’s
function method with the GFBM is used. This step mainly as-
sures the fundamental accuracy for the final solution.

On the other hand, although contributions coming from the
weak group provide only minor corrections to the overall solu-
tion, their evaluation without an acceleration algorithm would
constitute the most time-consuming aspect of the GFBM solu-
tion procedure. Therefore, contributions coming from the weak
region are obtained making use of the DFT representation of the
induced entire array current distribution. However, because the
current distribution on each element is expanded using an ar-
bitrary number of subsectional basis functions, the acceleration
algorithm presented in [14] is modified to handle more basis
functions per elements provided that array elements are iden-
tical (i.e., each element has the same number of basis functions)
and the array is periodic. Hence, if we consider only the first
basis functions of all elements, a periodic subarray, just like the
arrays described in [14]–[17], can be formed. The same is true
for all other basis functions as well. Then,
using the DFT representation of (corresponding to the th
subarray)

(13)

with being the coefficient of the th DFT term ( th basis
functions, i.e., th subarray) given by

(14)

the weak region contributions to the th basis function of the
th element is expressed as

(15)

Note that the DFT representation of practical large array cur-
rent distribution is very compact. Only a few values are
large compared to the rest. Hence, selecting only the significant
DFT terms based on the criterion presented in [11], (15) can be
rewritten as

(16)

where

(17)

and is the set of significant DFT terms. The most impor-
tant DFT term is (i.e., and for each sub-
array) which corresponds to the infinite array with uniform ex-
citation. Selecting only this DFT term for finite arrays usually
yields enough accuracy. However, for further accuracy one may
choose a few more DFT terms for each subarray from the two or-
thogonal row and column (representing diffrac-
tion from the edges). More explanations on the selection of
can be found in [11] and [14]. It should be mentioned that be-
cause contributions coming from the weak group provide minor
corrections to the overall solution, retaining only a few of the
most significant DFT terms is sufficient from the accuracy point
of view. As a result, is actually a very small number (based on
our extensive simulations, we noticed that taking more than two
DFT terms (in addition to ) for each subarray does not im-
prove the accuracy enough to justify the computational burden
it produces).

in (17) denotes the contribution of the th DFT term
of the th basis function to the th basis function of the th re-
ceiving element, and its efficient evaluation is very crucial to re-
tain the computational complexity at . Therefore, con-
sidering each periodic subarray one at a time (i.e.,

and each basis function becomes an element), the
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Fig. 4. The forward weak group corresponding to the pqrth receiving ele-
ment (the solid loop) is decomposed into two groups indicated by dotted and
dash-dotted loops. The dotted loop is identical to the dashed loop, which is the
forward weak group of p(q � 1)rth receiving element, except for a location
shift, corresponding to a phase shift.

iterative calculation (apart from the usual GFBM iterations) pre-
sented in [14]–[16] is used. Considering only the forward sweep
and assuming that the iterative procedure sweeps elements in the
order of , in
(17) (denoted as ) is written as

(18)

where corresponds to the weak group when the th
column of the array is subtracted. Because the in the
first term of (18) depends only on and , this
term can be related to by

(19)

This relation is illustrated in Fig. 4 where the weak group of
the th receiving element (the solid loop in Fig. 4) is decom-
posed into two parts, the upper sub-group denoted by the dotted
loop and the lower sub-group denoted by the dash-dotted loop
which consists of the elements of the th column. The upper
sub-group of the th element is identical to the weak group
of the th element, shown with the dashed loop, ex-
cept a location shift which corresponds to a phase shift. Since
we have basis functions in each antenna element, this pro-
cedure is repeated times for subarrays as shown in Fig. 4
with . It should also be noted that in the forward sweep

is calculated before is interested.

Similarly, denoting the second term in (19) as , which
represents the contributions coming from a linearly phased one-

dimensional array with the receiving element located far away
from this array, it is iteratively calculated as

(20)

and the first term can be related to by

(21)

, due to the ’backward’ group can be found in a sim-
ilar fashion by a backward sweep where the formulation will be
in the same form of (18)–(21). Note that when is in the first
few columns (i.e., or ), all contributing
elements will be in its strong region. Hence, an element-by-el-
ement computation must be employed.

Besides, for the irregularly contoured two-dimensional
arrays, the modification presented in [17] is implemented.
Briefly, these arrays are extended to rectangularly contoured
arrays by introducing virtual elements so that the proposed
GFBM/Green’s function-DFT method can be used. However,
during the implementation procedure it should be assumed
that currents on the virtual elements are exactly zero (i.e.,

for virtual elements). Therefore, in the evaluation of
strong region contributions, both the voltages on these elements
and all mutual couplings related to these elements are set to
zero such that

(22)

and

(23)

Implementation of (22) and (23) will assure that
for virtual elements. On the other hand, in the evaluation of
weak region contributions, between two virtual ele-
ments and between a real and a virtual element are
treated the same as between two real elements as op-
posed to (23) for strong group contributions. Notice that because
the values of virtual elements are zero in the computa-
tion of values, if one employs all DFT terms, utilization
of nonzero when a virtual element is involved does
not yield an error. However, due to the use of a few significant
DFT terms, a small error might be expected. Nevertheless, such
an error coming from the computation of weak region contribu-
tions does not affect the overall accuracy.



1674 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 6, JUNE 2008

Finally, the computational complexity and storage require-
ments of this method is summarized as follows: The storage re-
quirement for the unknown current vectors, and , during
the iterative process is , significant DFT terms require
a storage of , where , and the storage re-
quirement during the calculation of is . Mean-
while, the computational cost for the strong region is
and , weak region calculations require an opera-
tional count of and finally the computational cost for
the calculations of and is . As a re-
sult, considering the fact that and are almost constant re-
gardless of the array size, the overall storage and computational
complexity requirements of this method is .

III. NUMERICAL RESULTS AND DISCUSSION

Numerical results in the form of array current distribution
pertaining to various electrically large, rectangular and irregu-
larly contoured two-dimensional finite arrays of probe-fed mi-
crostrip patches on grounded dielectric slabs are given to assess
the efficiency and accuracy of the GFBM/Green’s function-DFT
method.

The first numerical example is a larger version of an array ex-
ample given in [9] with the parameters , ,

, ,
. As the first step, results given in [9, Figs. 7 and

10] are generated with the conventional hybrid MoM/Green’s
function solution and excellent agreement is achieved. Then, ex-
panding each patch using three -directed basis functions, the
induced array current, , of a 41 41 (a total of 5043 un-
knowns) probe-fed microstrip patch array with the aforemen-
tioned parameters is obtained with the GFBM/Green’s func-
tion-DFT method and is compared with the result of the con-
ventional MoM/Green’s function method. Fig. 5(a) shows this
comparison (i.e., ) for the 20th column (same as -20th
column due to symmetry) when the array is excited uniformly
and phased to radiate a beam maximum in the broadside direc-
tion [i.e., ]. The current distribution on the
first five patches are zoomed just to show the agreement with
the conventional MoM/Green’s function solution. Similarly, for
the same array Fig. 5(b) shows the same comparison for the
middle column (i.e., ) when the array is excited uni-
formly and phased to radiate a beam maximum in the direc-
tion . As seen from the figures, the agree-
ment between the GFBM/Green’s function-DFT and the con-
ventional hybrid MoM/Green’s function methods is very good.
Desired accuracy for the GFBM/Green’s function-DFT method
is achieved with just three iterations by selecting (3 3
for the strong region) and using a single DFT term for each
subarray (i.e., and a total of three DFT terms). On the
other hand, the CPU time for the GFBM/Green’s function-DFT
method is approximately 0.05 s/iteration, whereas the conven-
tional MoM/Green’s function method requires 1500 s to solve
the same array.

The second numerical example is a 19 19 array version of
a probe-fed microstrip patch antenna taken from [29] (case 6(b)
in [29]). The substrate and the antenna dimensions for this par-
ticular antenna are given in [29] as , ,

, and .

Fig. 5. Comparison of the magnitude of the induced current jA j obtained
via GFBM/Green’s Function-DFT and the conventional MoM/Green’s function
methods for a 41� 41 probe-fed microstrip patch array on a grounded dielectric
slab with d = 0:04� , � = 2:55. Other parameters are: L = W = 0:3� ,
d = d = 0:5� , x = �L=2, y = 0. Three x̂-directed basis func-
tions are used for each patch. (a) 20th (or �20th) column (with with a close-up
view of the current on the first 5 patches) for (� ; � ) = (0 ; 0 ), (b) middle
column for (� ; � ) = (20 ; 0 ).

Similar to the previous example, we first simulate case 6(b) of
[29] with the conventional hybrid MoM/Green’s function solu-
tion using 10 basis functions (four - and six -directed) and
an excellent agreement with Fig. 8 curve b of [29] is obtained,
where the frequency range is 7.3–8.5 GHz. Then, we set the fre-
quency to 8 GHz, obtain the induced array current, , of the
19 19 (a total of 3610 unknowns) array version of this antenna
using the GFBM/Green’s function-DFT method, and compare
the result with that of obtained with the conventional hybrid
MoM/Green’s function method. In both simulations, the array
is excited uniformly and phased to radiate a beam maximum
in the broadside direction. Also, the interelement spacing for
both simulations is selected to be at 8 GHz.
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Fig. 6. Comparison of the magnitude of the induced current jA j obtained
via GFBM/Green’s Function-DFT and the conventional MoM/Green’s function
methods for a 19� 19 probe-fed microstrip patch array on a grounded dielectric
slab with d = 0:021� , � = 2:22. Other parameters are: L = 0:33� ,
W = 0:53� , d = d = 0:7� , x = �0:1133� , y = 0. A
total of 10 basis functions (four x̂ and six ŷ-directed basis functions) are used
for each patch. (a) 8th (or �8th) column, (b) middle column.

Fig. 6(a) and (b) show this comparison (i.e., ) for the
8th (or the th) and middle columns, respectively, where re-
sults agree with each other very well. Similar to the previous ex-
ample, desired accuracy for the GFBM/Green’s function-DFT
method is achieved again within three iterations by selecting

(3 3 for the strong region) and (a total
of 10 DFT terms). Finally, the elapsed CPU time to solve this
array with the conventional MoM/Green’s function method is
approximately 532 s, whereas it is only 0.1 s/iteration for the
GFBM/Green’s function-DFT method.

As a third example using the parameters of Fig. 5, a 1257-ele-
ment (a total of 3771 unknowns) probe-fed microstrip patch an-
tenna array with a circular boundary is considered. The size of
the corresponding rectangular array is 41 41 after the virtual
elements are introduced. Fig. 7(a) and (b) show a comparison of
the magnitude of the induced array current, , for the 16th
(or th) and 1st (i.e., , or st) columns, respectively.
In both simulations the array is scanned in the broadside direc-
tion. As in the case of the first numerical example, very good

Fig. 7. Comparison of the magnitude of the induced current jA j obtained
via GFBM/Green’s Function-DFT and the conventional MoM/Green’s function
methods for a 1257-element (41� 41) circular, probe-fed microstrip patch array
on a grounded dielectric slab. All parameters are the same as in Fig. 5. (a) 16th
(or �16th) column, (b) 1st (or �1st) column.

agreement between GFBM/Green’s function-DFT and the con-
ventional MoM/Green’s function methods is achieved within
three iterations by selecting and . Just like the
previous two examples, a significant acceleration is achieved for
the solution of the array with the GFBM/Green’s function-DFT
method. While the conventional MoM/Green’s function method
solves this array in 630 s, it takes only 0.09 s/iteration for the
GFBM/Green’s function-DFT solution.

Our final example is the elliptical version of the example
given in Fig. 7 composed of 843 probe-fed microstrip patch an-
tennas (a total of 2529 unknowns). The size of the corresponding
rectangular array is 43 27 after the virtual elements are intro-
duced. Fig. 8(a) and (b) show a comparison of the magnitude of
the induced array current, , for the 10th (or th) and
middle columns, respectively for a broadside scan. Similar to
the previous example, within three iterations with and

, very good agreement between GFBM/Green’s func-
tion-DFT and the conventional MoM/Green’s function methods
is achieved. Moreover, similar to the previous examples, a sig-
nificant acceleration is achieved for the solution of the array
with the GFBM/Green’s function-DFT approach. It takes 185
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Fig. 8. Comparison of the magnitude of the induced current jA j obtained
via GFBM/Green’s Function-DFT and the conventional MoM/Green’s function
methods for a 843-element (43� 27) elliptical, probe-fed microstrip patch array
on a grounded dielectric slab. All parameters are the same as in Fig. 5. (a) 10th
(or �10th) column, (b) middle column.

s for the conventional MoM/Green’s function method to solve
this elliptically contoured array, whereas only 0.06 s/iteration is
enough to solve the same array with the GFBM/Green’s func-
tion-DFT method.

Finally it should be mentioned that all numerical results are
obtained using a Pentium IV 3.2 GHz personal computer, and
in all these numerical examples the percentage error defined as

(24)

where and pertain to column
vectors obtained using the conventional MoM/Green’s function
and GFBM/Green’s function-DFT methods, respectively, is less
than 5%. In (24), stands for the Frobenius norm. Actually
a slight increase in the strong region or in the number of DFT
terms decreases this error further.

IV. CONCLUSION

A novel method, named GFBM/Green’s function-DFT
method, is presented for the fast and accurate analysis of arbi-
trarily contoured finite phased arrays of probe-fed microstrip

patches on planar grounded dielectric slabs. It is based on a
hybrid combination of the GFBM with the grounded dielectric
slab’s Green’s function and its acceleration with a DFT based
algorithm. The method can also handle arrays with arbitrarily
shaped elements since the first step of the method is to find the
current coefficients of a single patch by employing a conven-
tional Galerkin type hybrid MoM/Green’s function method,
where an arbitrary number of subsectional basis functions
can be used. The computational complexity of this method is

for each iteration, which is achieved by combining a
generalized version of the DFT based acceleration algorithm
developed in [14] with the fact that array elements are identical
and the array is periodic.

Several numerical examples, in the form of array current dis-
tribution, are provided for various arrays with rectangular, cir-
cular and elliptical boundaries and results are compared with
a reference solution based on the conventional hybrid MoM/
Green’s function method to assess the efficiency and accuracy of
this method. Very good agreement is observed between the hy-
brid GFBM/Green’s function-DFT and the reference solutions
for each array. Furthermore, as expected, a great reduction in
the solve time of these arrays is achieved. Work is in progress
to extend this method to multilayer geometries.
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