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Abstract—A hybrid method based on the combination of gener-
alized forward backward method (GFBM) and Green’s function
for the grounded dielectric slab together with the acceleration of
the combination via a discrete Fourier transform (DFT) based

ized forward backward method (GFBM), method of mo-
(MoM).

I. INTRODUCTION

AJORITY of commercial and military applications
require phased arrays fabricated using the integrated
circuit technology. However, a great portion of available design
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“element-by-element” MoM approach ([8], [9]) has become the
center of attention. In [10]-[12], the discrete Fourier transform
(DFT) technique has been used in conjunction with the MoM
in such a way that the DFT coefficients of the array currents are
formulated to be the new unknowns of the MoM matrix-equa-
tion rather than the array currents yielding a great reduction
in the number of unknowns. On the other hand, in [13] a DFT
based preconditioner is constructed and used in an iterative
MoM to significantly improve the convergence rate of the iter-
ative solution. Similarly, a DFT based acceleration algorithm is
developed in [14] and used in conjunction with stationary and
non-stationary iterative MoM solutions in [15]-[17] to obtain 0018-926X/$25.00 © 2008 IEEE
a great reduction in both the computational complexity and
storage requirements. Besides the DFT technique, fast Fourier
transform (FFT) algorithm is also combined with conjugate
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arrays. In these approaches, regardless of the array Sizeda
number of unknowns (very few compared to the array size)
is subcient in the MoM analysis to accurately predict array
currents. However, such approaches have not been extended yet
to arrays having elements other than dipoles.

In this paper, a hybrid combination of the generalized for-
ward backward method (GFBM) [24] with the grounded dielec-
tric slab® Gree® function accelerated with a DFT based al-
gorithm, namely GFBM/Greda function-DFT method, is in-
troduced for the fast and accurate analysi$wite phased ar-
rays of probe-fed microstrip patches on planar grounded dielec-
tric slabs. The method presented here is actually the generalized
form of the method presented in [E}17], and can handle any
Pnite, irregularly contogred, one or two dimensional, periodig, | Geometry of &nite, periodic, planar array 2N +1)  (2M +1)
free-standing and/or printed arrays as long as the array elem@r‘&Ee—fed microstrip patches on a grounded dielectric slab; and MoM model of
are identical. The proposed method startsHmgling the cur- asingle patch. Each arrow represents a piecewise sinusoidal basis function.
rent coebcients of a single patch by employing a conventional
Galerkin type hybrid MoM/GredB function method. The solu- Il. FORMULATION
tion for the array currents is then found through GFBM, wherg Geometry
it sweeps the current computation element by element. Because
the current distribution on each element can be expanded usindhe geometry of abpnite, periodic, planar array of
an arbitrary number of subsectional basis functions, elements of identical
the array can, in fact, have any shape. The computational camrinted microstrip patches is depicted in Fig. 1. The microstrip
plexity of this method, which is originally ( being patches are printed on the dielectric-air interface
the total number of unknowns) for each iteration, is reduces a grounded dielectric slab, which has a thicknesand a
to . This is achieved by combining a slightly mbeid  relative dielectric constant . Each patch is assumed to be
version of the DFT based acceleration algorithm developeddfobe-fed with an ideal current source, has a lengthvidth
[14] with the fact that array elements are identical and the array7 and is uniform|y Spaced from its neighbors by distances
is periodic. Bri®y, the DFT baseq accel,eratio‘n algqrithm diand inthe and directions, respectively.
vides the contributing elements intstrongandQvealOinter- — The corpguration of Fig. 1 is chosen because it provides sim-
action groups for a receiving element in the GFBM. Contribusjicity for illustrating the development of the present GFBM/
tions from the strong group are obtained by the conventiongee g function-DFT method. However, this approach can be
element-by-element computation to assure the fundamental 8¢egeq to deal with more complex array elements and/or with

curacy, whereas contributions coming frgm the weak region aJPoitrarily contoured arrays such as elliptical or circular ones.
obtained based on the DFT representation of the array current.

In general, only a few sighcant DFT terms are sbient to ional Hvbrid / , _ hod
provide accurate results as they provide minor corrections Bo Conventional Hybrid MoM/Green’s Function Metho
the solution in contrast to the dominating strong group. On tRPution for Phased Arrays

other hand, to handle more basis functions per elements, subap electric beld integral equation (EFIE) is formed by en-
arrays are formed among théh basis functions of elementso cing the boundary condition that the total tangential elec-

( . being the total number of basis funC+c pe|q should vanish on the microstrip patch surfaces. Then,

tions per element) using the periodicity of the array and ar@¥e conventional hybrid MoM/Greéh function solution starts

elements being identical. Then, contributions coming from thg, 5, oy nansion of the unknown induced array surface current,

weak region .Of the ac_tua_l array is calculated by SUPEIPOSING i tarms of abnite set of subsectional basis functions
the weak region contributions of each subarray using the cor-

responding DFT coé&tient.
In Section 11, the geometry and a brief information regarding
the conventional hybrid MoM/Greéhfunction solution for the (1)
bnite phased arrays of probe-fed microstrip patches on planar
grounded dielectric slabs are presented. Hence, this section may
provide insight to the proposed GFBM/Gré&rfunction-DFT where
solution as well as it serves as a reference solution used to assess
the ebciency and accuracy of GFBM/Gre@nfunction-DFT

method. Section Il provides the detailed description of the onthe th patch
GFBM/Greei8 function-DFT formulation. Numerical results onthe thpatch

in the form of array current distribution are provided for var- (2)

ious arrays using the proposed GFBM/Gr@function-DFT with asthe positionvectorof being the total
method, and compared with the conventional MoM/Gf@ennumber of subsectional basis functions per microstrip patch and
function results in Section IV. An time dependence is [and ] being piecewise sinusoidal along the di-

assumed and suppressed throughout this paper. rection of the current and constant in the direction perpendicular
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Finally, the computational complexity and storage require-
ments of this method is summarized as follows: The storage re-
quirement for the unknown current vectors,and , during
the iterative process is , signibcant DFT terms require
a storage of , Where , and the storage re-
quirement during the calculation of is . Mean-
while, the computational cost for the strong region is
and , weak region calculations require an opera-
tional count of and bnally the computational cost for
the calculations of and is . As a re-
sult, considering the fact that and  are almost constant re-
gardless of the array size, the overall storage and computational
complexity requirements of this method is

I1l. NUMERICAL RESULTS AND DISCUSSION

Numerical results in the form of array current distribution
pertaining to various electrically large, rectangular and irregu-
larly contoured two-dimensiondhite arrays of probe-fed mi-
crostrip patches on grounded dielectric slabs are given to assess
the ebciency and accuracy of the GFBM/Grdafunction-DF T
method.

Thebrst numerical example is a larger version of an array ex-
ample given in [9] with the parameters , ,

. As the brst step, results given in [9, Figs. 7 and
10] are generated with the conventional hybrid MoM/Gf@en
function solution and excellent agreement is achieved. Then, ex-
panding each patch using threedirected basis functions, the
induced array current, ,o0f a4l 41 (atotal of 5043 un-
knowns) probe-fed microstrip patch array with the aforemen-
tioned parameters is obtained with the GFBM/Gf@efunc-
tion-DFT method and is compared with the result of the con-
ventional MoM/Greef® function method. Fig. 5(a) shows this
comparison (i.e., ) for the 20th column (same as -20th
column due to symmetry) when the array is excited uniformly
and phased to radiate a beam maximum in the broadside direc-
tion [i.e., ]. The current distribution on the
brst bve patches are zoomed just to show the agreement wiih. 5. Comparison of the magnitude of the induced curjént  j obtained
the conventional MoM/Greda function solution. Similarly,for 12CFENIGreet Funcion DT and e comentonal woGruncton
the same array Fig. 5(b) shows the same comparison for #® withd = 0:04 , = 2:55. Other parameters are:= W = 0:3
middle column (i.e., ) when the array is excited uni-d =d =0:5 X = =2y = 0. Threer-directed basis func-
f_ormly and phased to radiate a beam maximum in the dir | ér\],\f g{?ﬁfgﬂ:&:ﬁiﬁﬂﬁgg? s(ﬁéfcoﬁgs(ﬁgﬁh) C OIL)Jn:m(c(JWIt;how)lt,h(S)Crlr?izec}J_lgp
tion . As seen from théegures, the agree- columnfor( ; )= (20 ;0).
ment between the GFBM/Gre@nfunction-DFT and the con-
ventional hybrid MoM/Gree® function methods is very good.
Desired accuracy for the GFBM/Gre@riunction-DFT method Similar to the previous example, waest simulate case 6(b) of
is achieved with just three iterations by selecting (3 3 [29] with the conventional hybrid MoM/Greéfunction solu-
for the strong region) and using a single DFT term for eadlon using 10 basis functions (four and six -directed) and
subarray (i.e., and a total of three DFT terms). On thean excellent agreement with Fig. 8 curve b of [29] is obtained,
other hand, the CPU time for the GFBM/Gréfunction-DFT where the frequency range is 285 GHz. Then, we set the fre-
method is approximately 0.05 s/iteration, whereas the convequency to 8 GHz, obtain the induced array current, , of the
tional MoM/Greer8 function method requires 1500 s to solvd9 19 (atotal of 3610 unknowns) array version of this antenna
the same array. using the GFBM/GreeB function-DFT method, and compare
The second numerical example is a 129 array version of the result with that of obtained with the conventional hybrid
a probe-fed microstrip patch antenna taken from [29] (case 6(#pM/Greer(3 function method. In both simulations, the array
in [29]). The substrate and the antenna dimensions for this par-excited uniformly and phased to radiate a beam maximum
ticular antenna are given in [29] as , , in the broadside direction. Also, the interelement spacing for
, and . both simulations is selected to be at 8 GHz.
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