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We formulate a projection-based stabilization finite element technique for solving steady-
state natural convection problems. In particular, we consider heat transport through
combined solid and fluid media. This stabilization does not act on the large flow structures.
Based on the projection stabilization idea, finite element error analysis of the problem is
investigated and optimal errors for the velocity, temperature and pressure are established.
We also present some numerical tests which both verify the theoretical predictions and
demonstrate the method’s promise.
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1. Introduction

In this article we consider a projection-based numerical stabilization for a convection dominated coupled problem. This
type of stabilization, which adds an eddy viscosity stabilization only on the fine scales, is introduced in a variationally
consistent way for the stationary convection diffusion problem in [18] and for the Navier–Stokes problem in [13]. This
report studies an extension of the projection-based subgrid stabilization finite element method for the steady-state natural
convection problem.

The steady-state natural convection problem including solid media in dimensionless form is given by

−Pr �u + (u · ∇)u + ∇p = Pr Ra T e in Ω f ,

∇ · u = 0 in Ω f ,

u = 0 on ∂Ω f , u ≡ 0 in Ω − Ω f = Ωs,

−∇ · (κ∇T ) + (u · ∇)T = γ in Ω,

T = 0 on ΓT ,
∂T

∂n
= 0 on ΓB , (1.1)

for the velocity u, the pressure p and the temperature T in a regular bounded open domain Ω ⊂ Rd (d = 2,3), with disjoint
polyhedral domains Ωs , Ω f . Here ΓT = ∂Ω\ΓB where ΓB is a regular open subset of ∂Ω , γ is a forcing function, e is a unit
vector in the direction of gravitational acceleration and Pr,Ra, κ > 0 refer to the Prandtl, Rayleigh numbers and thermal
conductivity parameter, respectively. Furthermore, we consider the case κ ≡ κ f in Ω f and κ ≡ κs in Ωs where κ f and κs

are positive constants. The system (1.1) uses Boussinesq approximation as governing equations.
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The natural convection equation (1.1), which is also known as buoyancy-driven flows, above occurs in many practical
problems. Some of the commonly used buoyancy driven flows are observed in nature; such as atmospheric fronts, katabatic
winds etc., and in industry; such as dense gas dispersion, natural ventilation, solar collectors, insulation with double pane
window, cooling of electronic equipments, cooling of nuclear reactors, etc.. Classical natural convection problem in fluid
mechanics occurs in an enclosed domain [16]. For natural convection in enclosures, a boundary layer forms near the walls.
Outside this layer, a rolling core is formed inside the enclosure. The boundary layer and the core could not be considered
independent since the core is covered by the layer. There is a coupling between the core and the boundary layer. This
coupling is the main reason of the difficulty in solving these systems analytically. Thus, numerical methods and experimental
analysis are used.

System (1.1) presents severe computational problems for large Rayleigh numbers. It is well known that, the solution
of (1.1) is unique under some restrictions on the Rayleigh and Prandtl numbers. Uniqueness is lost for high Rayleigh num-
bers [24].

Standard Galerkin finite element method for natural convection problem usually yields inaccurate approximate solutions
and may exhibit global spurious oscillations [7,23]. This disappointing behavior occurs since such methods lose stability and
cannot adequately approximate solutions inside layers due to the dominance of convection terms and the strong coupling
between the velocity, pressure and temperature. Various stabilization techniques of finite element methods with more sat-
isfactory performance have been developed in [25]. Our work is directed towards the efficient stabilization technique of
natural convection problem to avoid some drawbacks of the classical methods. Overviews of some common stabilization
mechanisms for convection diffusion equation and Oseen problem were given in [4,22].

One type of the stabilization mechanisms is the projection-based stabilization [12,8,18,13]. The philosophy of the
projection-based stabilization is to use projections into appropriate function spaces in order to decompose solution scales. In
this way, the stabilization is added in different ways. A noteworthy Guermond’s stabilization idea of subgrid viscosity con-
cept makes the diffusion acts only on the finest resolved mesh scale [8], with the definition of solution spaces via bubble
functions. Based on the ideas developed in [12,8], several multiscale decompositions have been proposed in the literature
[18,13,14]. Since then, considerable progress has been made for the use of projection-based stabilization method both in
mathematical and computational analysis in past years [15,11].

The objective of this paper is to provide finite element error analysis of the projection-based stabilization method for
solving steady-state natural convection equations. In the meantime, some numerical analysis and numerical results for the
time-dependent natural convection equation can be found in literature [19,2]. To do authors best knowledge, the error
estimates of the projection-based stabilization is applied to steady-state natural convection equations are not yet avail-
able.

In this paper, we consider the same type projection-based stabilization technique of the steady-state Navier Stokes equa-
tions [15]. As in [15], we also define the large scale spaces on a coarser grid for the solution scales. Main difference in the
present work comes from the technical point of view, which is the coupling of the Navier–Stokes equation to the energy
equation. We first present stabilized finite element scheme and give comprehensive error analysis of this coupled problem.
We derive error estimations for the velocity, temperature and pressure and show that these errors are optimal with respect
to the mesh sizes along with the choices of viscosity parameters. To evaluate the performance and accuracy of the method,
we provide numerical experiments.

The plan of this paper is as follows. In Section 2, the variational formulation of the problem is derived and the projection-
based finite element scheme is presented for the steady-state natural convection problem. Notations and mathematical
preliminaries are given in Section 3. Existence, uniqueness and stability properties of the discrete problems are given in
Section 4. Section 5 contains error estimations for the velocity and temperature. Section 6 is devoted to the error estimation
of the pressure. Section 7 includes two numerical experiments: one is standard benchmark problem of buoyancy-driven
flow in an enclosed domain. The next numerical experiment is chosen to illustrate the convergence theorem. Conclusion
follows in Section 8.

2. Scheme

The following well-known functional vector spaces are considered to define a variational formulation of (1.1).

X := H1
0(Ω f ) = {

u ∈ H1(Ω f ): u = 0 on ∂Ω f
}
,

W := {
S ∈ H1(Ω): S = 0 on ΓB

}
,

Q :=
{

p ∈ L2(Ω):
∫
Ω

p dx = 0

}
,

V := H1
0,div(Ω f ) = {u ∈ X: ∇ · u = 0 in Ω f },

(·,·) denotes the L2(Ω) inner product. We remark that the vector-valued functions are denoted with boldface character. We
introduce the following bilinear and trilinear forms, for u,v,w ∈ X , T , S ∈ W and q ∈ Q :
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a0(u,v) =
∫

Ω f

∇u : ∇v dx, (2.1)

a1(T , S) =
∫
Ω

κ∇T · ∇ S dx, (2.2)

b(v,q) = −
∫

Ω f

q∇ · v dx, (2.3)

c0(u,w,v) = 1

2

∫
Ω f

(
(u · ∇)v · w − (u · ∇)w · v

)
dx, (2.4)

c1(u, T , S) = 1

2

∫
Ω f

(
(u · ∇)T S − (u · ∇)ST

)
dx, (2.5)

d(T ,v) =
∫

Ω f

T e · v dx. (2.6)

The variational formulation of (1.1) reads as follows: seek u ∈ X , p ∈ Q , T ∈ W such that

Pr a0(u,v) + c0(u,u,v) + b(v, p) = Pr Ra d(T ,v),

b(u,q) = 0,

a1(T , S) + c1(u, T , S) = (γ , S) (2.7)

for all (v,q, S) ∈ (X, Q , W ). The notations in Eqs. (2.7) are inspired by the work in [3], in which the standard Galerkin finite
element method for (2.7) is studied.

The scheme introduces the addition of global stabilization and then subtracts its effect onto large scales of the coupled
equations for both velocity and temperature spaces. In this way, stabilization acts only on the smallest resolved scales of
both scales. Let F H , G K be a conforming triangulation of Ω and let F h , Gk be a refinement of F H , G K , i.e. H � h and
K � k respectively. Let Xh ⊂ X , W k ⊂ W and Q h ⊂ Q be conforming finite element spaces satisfying the discrete inf–sup
condition (3.2) in Section 3 and LH , M K denote the finite element subspaces of (L2(Ω))d . The discretization we investigate
adds additional diffusion acting on all discrete velocity and temperature scales and then anti-diffuses on the scales resolvable
on F H , G K as follows: find uh ∈ Xh , ph ∈ Q h , T k ∈ W k , FH ∈ LH and G K ∈ M K such that

Pr a0
(
uh,vh) + (

α1
(∇uh − FH)

,∇vh) + c0
(
uh,uh,vh) + b

(
vh, ph) = Pr Ra d

(
T k,vh), (2.8)

b
(
uh,qh) = 0,(

FH − ∇uh, lH) = 0, (2.9)

a1
(
T k, Sk) + α2

(∇(
T k − G K )

,∇ Sk) + c1
(
uh, T k, Sk) = (

γ , Sk), (2.10)(
G K − ∇T k,mK ) = 0, (2.11)

for all (vh,qh, lH , Sk,mK ) ∈ (Xh, Q h, LH , W k, M K ) where α1 := α1(h) and α2 := α2(k) are non-negative constant functions
and user selected stabilization parameters. These parameters can be thought of as an additional viscosity in the coarse
space.

Remark 2.1. Multiscale decomposition requires selection of large scale spaces for both velocity and temperature, LH and M K ,
respectively. If both of them are selected as zero subspaces, then Galerkin formulation is recovered in [3]. We employ
LH = ∇ X H and M K = ∇W K choices of [18] for the large scale spaces to obtain the bounds in this paper. Some other
possible choices for these spaces are LH ⊆ ∇ Xh and M K ⊆ ∇W k (see [14]).

Let V h = {vh ∈ X H : (qh,∇ · vh) = 0, for all qh ∈ Q h} be the space of discretely divergence free functions. It is easy
to verify the following: (2.9) and (2.11) imply that F H and G K are L2 projections of ∇uh and ∇T k onto LH and M K ,
respectively. If we denote these projections with P H and P K , respectively, the properties of the projection operator give the
reformulations of (2.8)–(2.11) in V h as follows: find uh ∈ V h , T k ∈ W k such that

A0
(
uh,vh) + c0

(
uh,uh,vh) = Pr Ra d

(
T k,vh), (2.12)

A1
(
T k, Sk) + c1

(
uh, T k, Sk) = (

γ , Sk) (2.13)
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for all (vh, Sk) ∈ (V h, W k) where

A0
(
uh,vh) = Pr a0

(
uh,vh) + α1

(
(I − P H )∇uh, (I − P H )∇vh), (2.14)

A1
(
T k, Sk) = a1

(
T k, Sk) + α2

(
(I − P K )∇T k, (I − P K )∇ Sk). (2.15)

3. Notation and preliminaries

We present some function spaces and their norms. The standard notations in [1] for Sobolev and Lebesgue spaces are
used. The inner product and norm in (L2(Ω))d , d = 2,3 are denoted by (·,·) and ‖ · ‖. The norm in (Hk(Ω))d is denoted by
‖ · ‖k and the norms in Lebesgue spaces (L p(Ω))d , 1 � p < ∞, p 
= 2 by ‖ · ‖Lp . For vanishing boundary values, we define
H1

0(Ω) and its dual space, H−1(Ω) and its norm is defined by

‖f‖−1 = sup
v∈X

|(f,v)|
‖∇v‖

where (·,·) denotes the duality pairing.
We make use of well-known Sobolev embedding theorem for the following spaces: if Ω is bounded and has a Lipschitz

boundary then H1(Ω) ↪→ L4(Ω), that is

‖u‖L4 � C‖u‖1. (3.1)

We assume that finite element spaces have the following properties. The discrete spaces Xh, Q h satisfy the usual approx-
imation theoretic conditions and the inf–sup condition or Babuška–Brezzi condition i.e. there is a constant β independent
of the mesh size h such that

inf
qh∈Q h

sup
vh∈Xh

(qh,∇ · vh)

‖∇vh‖‖qh‖ � β > 0. (3.2)

For examples of such compatible spaces see e.g., [9,6].

Definition 3.1. Let V and V h denote respectively the divergence free subspaces of X and Xh:

V := {
v ∈ X: (q,∇ · v) = 0, ∀q ∈ Q

}
,

V h := {
vh ∈ Xh:

(
qh,∇ · vh) = 0, ∀qh ∈ Q h}.

Although typically V h � V , it is known that under the discrete inf–sup condition (3.2), functions in V are well approxi-
mated by ones in V h [6].

We consider Xh and W k to be spaces of continuous piecewise polynomials of degree r and Q h is the space of continuous
piecewise polynomials of degree r − 1. We also make the standard assumptions that the spaces Xh , Q h and W k satisfy the
following approximation properties for a given integer 1 � s � r:

inf
vh∈Xh, qh∈Q h

{∥∥(
u − vh)∥∥ + h

∥∥∇(
u − vh)∥∥ + h

∥∥p − qh
∥∥}

� Chs+1(‖u‖s+1 + ‖p‖s
)
, (3.3)

inf
Sk∈W k

∥∥T − Sk
∥∥ � ks+1‖T ‖s+1 (3.4)

for (u, p, T ) ∈ (X ∩ Hs+1(Ω), Q ∩ Hs(Ω), W ∩ Hs+1(Ω)).
We also use the fact that L2 orthogonal projections of LH and M K satisfy

‖G − PμG‖ � Cμs|G|s, μ = H, K , 1 � s � r (3.5)

for G ∈ (L2(Ω) ∩ Hs(Ω)).
We define the following weighted norms.

Definition 3.2. For u ∈ X , T ∈ W , the weighted norms of functions u : Ω f → R, T : Ω → R are defined by

‖u‖2
a,b,α1

= a‖u‖2 + b‖∇u‖2 + α1
∥∥(I − P H )∇u

∥∥2
,

‖T ‖2
a,b,α2

= a‖T ‖2 + b‖∇T ‖2 + α2
∥∥(I − P K )∇T

∥∥2

where a,b > 0 are constants and α1, α2 are stabilizing parameters.
From now on, we denote min(κ f , κs) as κmin and max(κ f , κs) as κmax for the sake of simplicity.



A. Çıbık, S. Kaya / J. Math. Anal. Appl. 381 (2011) 469–484 473
Lemma 3.1. The bilinear forms A0(·,·), A1(·,·) are continuous and coercive with respect to corresponding weighted norms. That is, for
u,v ∈ X, T , S ∈ W , we have

A0(u,v) � ‖u‖1,Pr,α1‖v‖1,Pr,α1 ,

A0(u,u) � ‖u‖2
1,Pr,α1

,

A1(T , S) � ‖T ‖1,κmax,α2‖S‖1,κmax,α2 ,

A1(T , T ) � ‖T ‖2
1,κmin,α2

.

Proof. Clearly, the bilinear forms (2.1) and (2.2) are continuous and coercive. The results follow from Definition 3.2. �
Inequalities which are used frequently are Young’s inequality

ab � t

p
ap + t−q/p

q
bq, a,b, p,q, t ∈ R,

1

p
+ 1

q
= 1, p,q ∈ (1,∞), t > 0, (3.6)

and Poincaré’s inequality in X

‖v‖ � C‖∇v‖ (3.7)

for all v ∈ X with C = C(Ω).
Throughout this paper, the constant C is generic constant which depends on the domain Ω and independent from

h,k, H, K ,α1 and α2 unless stated otherwise.
We remark on the convective terms defined by (2.4)–(2.5). In the continuous case, the standard form of the convective

term and skew-symmetric form of trilinear form are identical if ∇ · u = 0 and if u vanishes on the boundary. Since standard
convective terms are not divergence free on the finite element spaces, we use the modified ones [6].

Skew-symmetric trilinear forms (2.4)–(2.5) satisfy the following estimations. We denote by C1 and C2 finite positive
constants with

c0(u,v,w) � C1‖∇u‖‖∇v‖‖∇w‖, (3.8)

c1(u, T , S) � C2‖∇u‖‖∇T ‖‖∇ S‖ (3.9)

for all u,v,w ∈ X and T , S ∈ W . These estimates are well known and can be derived by applying Hölder’s inequality and
Sobolev embedding theorems [6].

Remark 3.1. For u,v ∈ X and T ∈ W , we have c0(u,v,v) = 0 and c1(u, T , T ) = 0.

Now, we also define the finite constant Nh which used throughout the paper frequently:

Nh = sup
{

c0
(
uh,vh,wh):

∥∥∇vh
∥∥ = ∥∥∇uh

∥∥ = ∥∥∇wh
∥∥ = 1, uh,vh,wh ∈ V h}.

4. Existence and uniqueness results of discrete problem

Throughout this section, we consider the existence, uniqueness and stability properties of the discrete projection-based
natural convection problem. These results without extra stabilization terms of continuous natural convection problem have
been established in [3]. Using Lemma 3.1, similar results for continuous problem with stabilization can be established in the
same way. For completeness, we only state and prove the existence and uniqueness of the discrete problem.

Theorem 4.1 (Existence). The problem (2.12)–(2.13) has at least one solution.

Proof. The proof consists of applying Lax–Milgram Theorem and Leray–Schauder Principle. Lax–Milgram Theorem guaran-
tees the existence and uniqueness of T k in the solution of (2.13). Note that the approximate temperature T k depends on
the velocity field uh . Thus we may define a mapping F hk : V h → W k by F hk(uh) = T k .

Now, we show that there is at least one uh ∈ V h satisfying

A0
(
uh,vh) + c0

(
uh,uh,vh) = Pr Ra d

(
T k,vh) (4.1)

for all vh ∈ V h . From Lemma 3.1, A0(uh,vh) is a continuous elliptic bilinear form on V h × V h and

∣∣−c0
(
uh,uh,vh) + Pr Ra d

(
F hk(uh))∣∣ �

(
C
∥∥∇uh

∥∥2 + Pr Ra
∥∥F hk(uh)∥∥)∥∥∇vh

∥∥
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for all vh ∈ V h . Thus, we may define a mapping Gh : V h → V h by

A0
(
Gh(uh),vh) = −c0

(
uh,uh,vh) + Pr Ra d

(
F hk(uh),vh).

Note that uh is a solution of (4.1) if it is a solution of

Gh(uh) = uh. (4.2)

Thus, it suffices to show that there exists at least one solution to the fixed point problem (4.2). Leray–Schauder Principle
guarantees the existence of a fixed point under two conditions: (i) Gh should be completely continuous, (ii) there exists
θ > 0 such that for every λ ∈ [0,1] and vh ∈ V h with

λGh(vh) = vh, (4.3)

vh should satisfy ‖∇vh‖ � θ .
Since V h is finite-dimensional, Gh is continuous and compact and thus completely continuous. This proves part (i). To

prove the second condition, we consider only λ ∈ (0,1] with λGh(vh) = vh . Then, we have

λ−1 A0
(
vh,vh) = −c0

(
vh,vh,vh) + Pr Ra d

(
F hk(vh),vh)

and

λ−1 Pr
∥∥∇vh

∥∥2 + λ−1α1
∥∥(I − P H )∇vh

∥∥2 � Pr Ra
∥∥∇ F hk(vh)∥∥∥∥∇vh

∥∥ � Pr Raκ−1
min‖γ ‖−1

∥∥∇vh
∥∥.

Hence
∥∥∇vh

∥∥ � λRaκ−1
min‖γ ‖−1

which completes the proof. �
Before considering the uniqueness issue, we present some stability results.

Lemma 4.1 (Stability of the velocity, temperature and pressure). The finite element approximation of (2.12)–(2.13) is stable in the
following sense:

(i) κmin‖∇T k‖2 + 2α2‖(I − P K )∇T k‖2 � κ−1
min‖γ ‖2−1 ,

(ii) Pr ‖∇uh‖2 + 2α1‖(I − P H )∇uh‖2 � Pr Ra 2‖T k‖2−1 ,

(iii) Pr ‖∇uh‖2 + 2α1‖(I − P H )∇uh‖2 � Pr Ra 2κ−2
min‖γ ‖2−1 ,

(iv) ‖ph‖ � Cβ−1κ−1
min‖γ ‖−1(Pr Ra + √

Pr α1 Ra + Ra 2Nhκ
−1
min‖γ ‖−1).

Proof. To prove (i), we set Sk = T k in (2.13) and apply the Young’s inequality. For (ii), we set uh = vh in (2.12) and use a
similar argument as in (i). Combination of the parts (i) and (ii) gives (iii).

To prove part (iv), consider Eq. (2.12) in Xh:
(

ph,∇ · vh) = A0
(
uh,vh) + c0

(
uh,uh,vh) − Pr Ra d

(
T k,vh).

Cauchy–Schwarz inequality and (3.8) yield
(

ph,∇ · vh) � Pr
∥∥∇uh

∥∥∥∥∇vh
∥∥ + α1

∥∥(I − P H )∇uh
∥∥∥∥(I − P H )∇vh

∥∥ + Nh
∥∥∇uh

∥∥2∥∥∇vh
∥∥ + Pr Ra

∥∥T k
∥∥−1

∥∥∇vh
∥∥.

Making use of the stability bounds for the velocity and temperature gives

(ph,∇ · vh)

‖∇vh‖ � Pr Raκ−1
min‖γ ‖−1 +

√
Pr α1

2
Raκ−1

min‖γ ‖−1 + Nh Ra 2κ−2
min‖γ ‖2−1 + Pr Raκ−1

min‖γ ‖−1.

Taking supremum over vh ∈ Xh and using the inf–sup condition (3.2) yield the desired result. �
Corollary 4.1. Existence and uniqueness of ph is guaranteed by part (iv) of Lemma 4.1 and the inf–sup condition (3.2) [6].

We are now in a position to prove the global uniqueness condition of the discrete solution, which is the same as with
the continuous case in [3]. First, by using the solution operator F hk in Theorem 4.1, we define the following constant:

Mhk = sup

{
d(F hk(uh) − F hk(vh),uh − vh)

‖∇(uh − vh)‖2
, uh 
= vh, uh,vh ∈ V h

}
. (4.4)
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Theorem 4.2. Suppose Nh‖∇uh‖ + Pr Ra Mhk < Pr . Then, uh and F hk(uh) = T k are unique solutions.

Proof. Let uh,wh ∈ V h and uh 
= wh be two solutions. Writing Eq. (2.12) for uh and wh , and subtracting them give

A0
(
uh − wh,vh) = c0

(
wh,wh,vh) − c0

(
uh,uh,vh) + Pr Ra d

(
F hk(uh) − F hk(wh),vh) (4.5)

for all vh ∈ V h . Setting vh = uh − wh in (4.5), using Cauchy–Schwarz inequality, adding and subtracting terms, using Re-
mark 3.1 and (4.4) lead us to

Pr
∥∥∇(

uh − wh)∥∥2 + α1
∥∥(I − P H )∇(

uh − wh)∥∥2 � Nh
∥∥∇(

uh − wh)∥∥2∥∥∇uh
∥∥ + Pr Ra

∥∥∇(
uh − wh)∥∥2

Mhk.

So, (
Pr − (

Nh
∥∥∇uh

∥∥ + Pr Ra Mhk
))∥∥∇(

uh − wh)∥∥2 + α1
∥∥(I − P H )∇(

uh − wh)∥∥2 � 0.

Since (Nh‖∇uh‖ + Pr Ra Mhk) < Pr , we have a contradiction. Therefore, uh = vh . �
Remark 4.1. If one uses the results of Lemma 4.1, global uniqueness condition, Nh‖∇uh‖ + Pr Ra Mhk < Pr can be reformu-
lated as Raκ−1

min‖γ ‖−1(Nh + Pr C2κ
−1
min) < Pr in terms problem data.

Furthermore, global uniqueness condition of the discrete problem ensures uh to be a fixed point of a contractive map
in V h [17].

5. A priori error estimation

This section states a priori error estimation for the velocity and temperature. Before giving the main theorem, we define
so-called modified Stokes projection operators. Lemma 3.1, hence Lax–Milgram Theorem guarantees the existence of such
projection operators for both velocity and temperature. When we split the errors into approximation terms and a finite
element remainder for u and T , the use of such operators simplifies the approximation terms and so the error estimations.
We first state the stability of these projections and give the related error bounds.

Definition 5.1 (Modified Stokes projections for the velocity and temperature). The operator of the modified Stokes projection for
the velocity and pressure, P S , is defined by; P S : (X, Q ) → (Xh, Q h), P S (u, p) = (ũ, p̃) where

A0
(
u − ũ,vh) + b

(
vh, p − p̃

) = 0,

b
(
u − ũ,qh) = 0

for all (vh,qh) ∈ (Xh, Q h). In the discretely divergence free space V h and in the pressure space Q h , this definition reduces
to

A0
(
u − ũ,vh) + b

(
vh, p − qh) = 0 (5.1)

for all vh ∈ V h . The modified Stokes projection operator for the temperature, P T , is defined by P T : W → W k , P T (T ) = T̃
where

A1
(
T − T̃ , Sk) = 0 (5.2)

for all Sk ∈ W k .

Lemma 5.1 (Stability of modified Stokes projections). The modified Stokes projections defined by (5.1) and (5.2) are stable in the
following sense:

Pr ‖∇ũ‖2 + α1
∥∥(I − P H )∇ũ

∥∥2 � C
(
Pr ‖∇u‖2 + α1

∥∥(I − P H )∇u
∥∥2 + Pr −1

∥∥p − qh
∥∥2)

, (5.3)

κmin‖∇ T̃ ‖2 + α2
∥∥(I − P K )∇ T̃

∥∥2 � C

(
κ2

max

κmin
‖∇T ‖2 + α2

∥∥(I − P K )∇T
∥∥2

)
. (5.4)

Proof. For the proof of (5.3), first set vh = ũ in (5.1) and use Cauchy–Schwarz inequality:

Pr ‖∇ũ‖2 + α1
∥∥(I − P H )∇ũ

∥∥2 � Pr ‖∇u‖‖∇ũ‖ + α1
∥∥(I − P H )∇u

∥∥∥∥(I − P H )∇ũ
∥∥ + ∥∥p − qh

∥∥‖∇ · ũ‖.
Young’s inequality and combining terms give the result.

The stability of the modified Stokes projection of temperature is established by writing Sk = T̃ in (5.2) and using similar
arguments as in the first part. �

The next lemma states the error in those projection operators.
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Lemma 5.2 (Error in modified Stokes projections). Suppose the discrete inf–sup condition (3.2) holds. Then (ũ, T̃ ) exists uniquely in
(Xh, Q h, W k) and satisfies

Pr
∥∥∇(u − ũ)

∥∥2 + α1
∥∥(I − P H )∇(u − ũ)

∥∥2

� C
(

inf
û∈Xh

∥∥∇(u − û)
∥∥2 + α1 inf

û∈Xh

∥∥(I − P H )∇(u − û)
∥∥2 + Pr −1 inf

qh∈Q h

∥∥p − qh
∥∥2

)
, (5.5)

κmin
∥∥∇(T − T̃ )

∥∥2 + α2
∥∥(I − P K )∇(T − T̃ )

∥∥2

� C
(
κ2

maxκ
−1
min inf

T̂ ∈W k

∥∥∇(T − T̂ )
∥∥2 + α2 inf

T̂ ∈W k

∥∥(I − P K )∇(T − T̂ )
∥∥2

)
. (5.6)

Proof. To prove (5.5), let e = u − ũ and decompose the error e = η − φh , where η = u − û, φ = ũ − û. Here û is the
approximation of u in V h . Thus (5.1) reads as

Pr
(∇φh,∇vh) + α1

(
(I − P H )∇φh, (I − P H )∇vh)

= Pr
(∇η,∇vh) + α1

(
(I − P H )∇η, (I − P H )∇vh) + (

p − qh,∇ · vh). (5.7)

Setting vh = φh in (5.7) and applying Cauchy–Schwarz and Young’s inequalities direct us to

Pr

2

∥∥∇φh
∥∥2 + α1

2

∥∥(I − P H )∇φh
∥∥2 � C

(
Pr ‖∇η‖2 + α1

2

∥∥(I − P H )∇η
∥∥2 + Pr −1

∥∥p − qh
∥∥2

)
. (5.8)

Since û is an approximation of u in V h , we can take infimum over V h in (5.8). Recall that under the discrete inf–sup
condition (3.2) and ∇ · u = 0, the infimum can be replaced by Xh [6]. The stated error estimate now follows from the
triangle inequality.

To prove (5.6), define T − T̃ = ẽ = (T − T̂ ) − (T̃ − T̂ ) = χ − ξk where T̂ approximates T in W k . As in the first part, if one
sets Sk = ξk and uses Cauchy–Schwarz and Young’s inequalities, the following estimation is obtained

κmin
∥∥∇ξk

∥∥2 + α2
∥∥(I − P K )∇ξk

∥∥2 � Cκ2
maxκ

−1
min‖∇χ‖2 + α2

∥∥(I − P K )∇χ
∥∥2

.

Taking infimum over W k and applying the triangle inequality complete the proof. �
We now give the our main theorems. Since the equations are coupled in (2.12)–(2.13), the error estimations are also

coupled. Now we first state the error estimation for T − T k in terms of the error in u − uh .

Theorem 5.1. The error for T − T k satisfies

κmin
∥∥∇(

T − T k)∥∥2 + α2
∥∥(I − P K )∇(

T − T k)∥∥2

� C
(
κ−1

min inf
T̃ ∈W k

‖∇u‖2
∥∥∇(T − T̃ )

∥∥2 + α2
∥∥(I − P K )∇T

∥∥2
)

+ C2
2κ

−3
min‖γ ‖2−1

∥∥∇(
u − uh)∥∥2

.

Proof. Making use of (2.7) and (2.13) gives the error equation:

A1
(
ẽ, Sk) + c1

(
u, T , Sk) − c1

(
uh, T k, Sk) = α2

(
(I − P K )∇T , (I − P K )∇ Sk) (5.9)

for all Sk ∈ W k where ẽ = T − T k . Decompose the error as an approximation terms and a finite element remainder: ẽ =
(T − T̃ ) − (T k − T̃ ) = χ − ξk . Here, T̃ denotes the modified Stokes projection of T defined by (5.4). Now, set Sk = ξk into
the error equation (5.9). With a rearrangement of terms, we obtain

∣∣A1
(
ξk, ξk)∣∣ �

∣∣c1
(
u, T , ξk) − c1

(
uh, T k, ξk)∣∣ + ∣∣α2

(
(I − P K )∇T , (I − P K )∇ξk)∣∣. (5.10)

Note that A1(χ, ξk) = 0 due to the definition of the modified Stokes projection. Now, let us bound each term on the right-
hand side of (5.10):

∣∣c1
(
u, T , ξk) − c1

(
uh, T k, ξk)∣∣ = ∣∣c1

(
u,χ, ξk) − c1

(
u − uh, T k, ξk)∣∣

� Cκ−1
min‖∇u‖2‖∇χ‖2 + κmin

4

∥∥∇ξk
∥∥2 + C2

2κ
−1
min

∥∥∇(
u − uh)∥∥2∥∥∇T k

∥∥2
,

∣∣α2
(
(I − P K )∇T , (I − P K )∇ξk)∣∣ � α2 ∥∥(I − P K )∇T

∥∥2 + α2 ∥∥(I − P K )∇ξk
∥∥2

.

2 2



A. Çıbık, S. Kaya / J. Math. Anal. Appl. 381 (2011) 469–484 477
Thus, bounding the terms as shown above for (5.10) results in

κmin

2

∥∥∇ξk
∥∥2 + α2

2

∥∥(I − P K )∇ξk
∥∥2 � Cκ−1

min‖∇u‖2‖∇χ‖2 + C2
2κ

−1
min

∥∥∇(
u − uh)∥∥2∥∥∇T k

∥∥2 + α2

2

∥∥(I − P K )∇T
∥∥2

.

Combination of terms and application of the triangle inequality yield the stated error estimation. �
The error estimation for the velocity is proved next. This error estimation uses Theorem 5.1.

Theorem 5.2. Under the condition Raκ−1
min‖γ ‖−1(Nh + 3

2 C2
2 Pr Raκ−3

min‖γ ‖3
−1) < Pr , the error satisfies

Pr
∥∥∇(

u − uh)∥∥2 + α1
∥∥(I − P H )∇(

u − uh)∥∥2

� C
{

M1

[
inf

ũ∈Xh

∥∥∇(u − ũ)
∥∥2 + Pr −1α1 inf

ũ∈Xh

∥∥(I − P H )∇(u − ũ)
∥∥2 + Pr −2 inf

qh∈Q h

∥∥p − qh
∥∥2

]

+ M2

[
κ−2

min inf
T̃ ∈W k

∥∥∇(T − T̃ )
∥∥2 + κ−1

minα2 inf
T̃ ∈W k

∥∥(I − P K )∇(T − T̃ )
∥∥2

]

+ α1
∥∥(I − P H )∇u

∥∥2 + Pr Ra 2κ−1
minα2

∥∥(I − P K )∇T
∥∥2

}
,

where C2 is as in (3.9) and M1 and M2 are also constants which are defined below explicitly:

M1 = C
[
Pr −1κ−2

min Ra 2‖γ ‖2−1 + Pr Ra 2κ−4
min‖γ ‖2−1

]
,

M2 = C

[
Pr Ra 4 κ2

max

κ6
min

‖γ ‖2−1

]
.

Proof. The use of (2.7) and (2.12) results with the error equation:

A0
(
e,vh) + c0

(
u,u,vh) − c0

(
uh,uh,vh) + b

(
vh, p − qh)

= Pr Ra d
(
ẽ,vh) + α1

(
(I − P H )∇u, (I − P H )∇vh) (5.11)

for all (vh,qh) ∈ (V h, Q h) where e = u − uh and ẽ = T − T k . Split the errors as e = η − φh where η = (u − ũ), φh = (uh − ũ)

and ẽ = χ − ξk where χ = (T − T̃ ), ξk = (T k − T̃ ). Note that ũ and T̃ denote the modified Stokes projections of u and T ,
respectively. Now, writing vh = φh in (5.11) yields

A0
(
φh,φh) = A0

(
η,φh) + b

(
φh, p − qh) + c0

(
u,u,φh) − c0

(
uh,uh,φh)

+ α1
(
(I − P H )∇u, (I − P H )∇φh) + Pr Ra d

(
ẽ,φh). (5.12)

Note that, A0(η,φh) + b(φh, p − qh) = 0 by the definition of the modified Stokes projection. To bound the terms on the
right-hand side of (5.12), we first consider the nonlinear terms. Adding, subtracting terms and observing the skew-symmetry
of convective term yield

∣∣c0
(
u,u,φh) − c0

(
uh,uh,φh)∣∣ = ∣∣c0

(
u,η,φh) + c0

(
η,uh,φh) − c0

(
φh,uh,φh)∣∣.

Cauchy–Schwarz, (3.8) and Young’s inequalities give

∣∣c0
(
u,η,φh)∣∣ � C Pr −1‖∇u‖2‖∇η‖2 + Pr

6

∥∥∇φh
∥∥2

,

∣∣c0
(
η,uh,φh)∣∣ � C Pr −1‖∇η‖2

∥∥∇uh
∥∥2 + Pr

6

∥∥∇φh
∥∥2

,

∣∣c0
(
φh,uh,φh)∣∣ � Nh

∥∥∇φh
∥∥2∥∥∇uh

∥∥.

Similarly, consistency term and the last term on the right-hand side of (5.12) are bounded with

∣∣α1
(
(I − P H )∇u, (I − P H )∇φh)∣∣ � α1

2

∥∥(I − P H )∇u
∥∥2 + α1

2

∥∥(I − P H )∇φh
∥∥2

and

∣∣Pr Ra d
(
T − T k,φh)∣∣ � 3

2
Pr Ra 2

∥∥T − T k
∥∥2

−1 + Pr

6

∥∥∇φh
∥∥2

.

Combining all the terms involving φh on the left-hand side gives
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(
Pr

2
− Nh

∥∥∇uh
∥∥)∥∥∇φh

∥∥2 + α1

2

∥∥(I − P H )∇φh
∥∥2

� C
(
Pr −1‖∇η‖2(‖∇u‖2 + ∥∥∇uh

∥∥2) + α1
∥∥(I − P H )∇u

∥∥2) + 3

2
Pr Ra 2

∥∥T − T k
∥∥2

−1. (5.13)

Clearly, the next step we should follow is to find a bound for the term ‖T − T k‖2−1. In order to do that, we write u − uh =
η − φh in the statement of Theorem 5.1 and plug in estimation in (5.13). Rearranging the terms yields(

Pr

2
− Nh

∥∥∇uh
∥∥ − 3

2
Pr Ra 2C2

2κ
−4
min‖γ ‖2−1

)∥∥∇φh
∥∥2 + α1

2

∥∥(I − P H )∇φh
∥∥2

� C
(
Pr −1‖∇η‖2(‖∇u‖2 + ∥∥∇uh

∥∥2) + α1
∥∥(I − P H )∇u

∥∥2 + Pr Ra 2κ−4
min‖γ ‖2−1‖∇η‖2

+ Pr Ra 2κ−2
min‖∇u‖2‖∇χ‖2 + Pr Ra 2κ−1

minα2
∥∥(I − P K )∇T

∥∥2)
. (5.14)

Let us consider the coefficient of the term ‖∇φh‖2. Making use of the uniqueness bound and the assumption of the
theorem, we have

Pr

2
<

Pr

2
− Nh Raκ−1

min‖γ ‖−1 − 3

2
Pr Ra 2C2

2κ
−4
min‖γ ‖2−1. (5.15)

Plugging (5.15) into (5.14) and writing the stability bounds for the terms we have

Pr
∥∥∇φh

∥∥2 + α1
∥∥(I − P H )∇φh

∥∥2 � C
(
Pr −1κ−2

min Ra 2‖γ ‖2−1‖∇η‖2 + Pr Ra 2κ−4
min‖γ ‖2−1‖∇η‖2

+ Pr Ra 4κ−4
min‖γ ‖2−1‖∇χ‖2 + α1

∥∥(I − P H )∇u
∥∥2

+ Pr Ra 2κ−1
minα2

∥∥(I − P K )∇T
∥∥2)

. (5.16)

Substituting the error bounds of Lemma 5.2 into (5.16) and applying the triangle inequality complete the proof. �
One might see also that the addition of the extra term in (2.12)–(2.13) does not degrade the order of convergence. To

see this, we give the following remark.

Remark 5.1. If we assume the regularity assumptions, (u, p, T ) ∈ (X ∩ Hs+1(Ω), Q ∩ Hs(Ω), W ∩ Hs+1(Ω)) and the use of
the estimations (3.3), (3.4) and (3.5) yield

Pr
∥∥∇(

u − uh)∥∥2 + α1
∥∥(I − P H )∇(

u − uh)∥∥2

� M1
((

h2s|u|2s+1

(
1 + Pr−1α1

) + Pr−2h2s|p|2s
)

+ M2
(
κ−1

mink2s|T |2s+1

(
κ−1

min + α2
)) + α1 H2s|u|2s+1 + α2 K 2s|T |2s+1

)
. (5.17)

Here h, k are given and by equilibrating the orders of convergence, appropriate values for the mesh scales H , K and
parameters α1, α2 are chosen. That is, the error is optimal for α1 H2s = h2s and α2 K 2s = k2s . For instance, let us consider
the case for s = 2 and use Taylor–Hood finite element pairs, satisfying the inf–sup condition (3.2), which are given below
explicitly along with the choices of LH = ∇ X H and M K = ∇W K :

Xh = {
v ∈ C0(Ω̄): v|� ∈ P2(�), ∀� ∈ F h},

W k = {
S ∈ C0(Ω̄): S|� ∈ P2(�), ∀� ∈ Gk},

Q h = {
v ∈ C0(Ω̄): v|� ∈ P1(�), ∀� ∈ F h},

LH = {
lH ∈ L2(Ω): lH

∣∣
�

∈ P1(�), ∀� ∈ F H}
,

M K = {
mK ∈ L2(Ω): mK

∣∣
�

∈ P1(�), ∀� ∈ G K }
.

If we make the same assumptions as in Theorem 5.2 and consider (5.17), one can imply that along with the choices of
(α1, H) = (h2,h1/2) the error

∥∥∇(
u − uh)∥∥ = O

(
h2 + k2)

is optimal for the velocity.
If we plug the results obtained for velocity into Theorem 5.1 and carry out similar computations, we have

∥∥∇(
T − T k)∥∥ = O

(
h2 + k2).

Similarly, for the choices of (α2, K ) = (k2,k1/2) we have the optimal error for the temperature.
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6. Error estimation for pressure

This section deals with the estimation of the error for the discrete pressure in the L2 norm.

Theorem 6.1 (Error estimate for pressure). Suppose that the assumptions of Theorem 5.2 hold. Then the error p − ph satisfies

∥∥p − ph
∥∥ ≤ qC

((
Pr + ‖∇u‖)∥∥∇(

u − uh)∥∥ + ∥∥∇(
u − uh)∥∥2 + α1

∥∥(I − P H )∇(
u − uh)∥∥ inf

qh∈Q h

∥∥p − qh
∥∥

+ Pr Ra
∥∥(

T − T k)∥∥−1 + α1
∥∥(I − P H )∇u

∥∥)
.

Proof. To prove this, we consider (5.11). Let p − ph = (p − p̃)− (ph − p̃), where p̃ is an approximation of the pressure in Q h .
(5.11) reads as

b
(
vh, ph − p̃

) = A0
(
e,vh) + (

c0
(
u,u,vh) − c0

(
uh,uh,vh)) + b

(
vh, p − p̃

) − Pr Ra d
(
ẽ,vh)

− α1
(
(I − P H )∇u, (I − P H )∇vh).

We first consider here the nonlinear terms. Adding and subtracting terms and using (3.8) yield

∣∣c0
(
u,u,vh) − c0

(
uh,uh,vh)∣∣ = ∣∣−c0

(
e,e,vh) + c0

(
e,u,vh) + c0

(
u,e,vh)∣∣

� C
(‖∇e‖ + ‖∇u‖)‖∇e‖∥∥∇vh

∥∥.

Bounds for the other terms are obtained in a similar manner as in the estimation of the error ‖∇(u − uh)‖. Hence

∣∣b(
vh, ph − p̃

)∣∣ � C
∥∥∇vh

∥∥(
Pr ‖∇e‖ + α1

∥∥(I − P H )∇e
∥∥ + (‖∇e‖ + ‖∇u‖)‖∇e‖

+ ‖p − p̃‖ + Pr Ra
∥∥T − T k

∥∥−1 + α1
∥∥(I − P H )∇u

∥∥)
. (6.1)

Notice that (3.2) implies

(
ph − p̃,∇ · vh) � β

∥∥∇vh
∥∥∥∥ph − p̃

∥∥
and using this relation yields

∥∥p − ph
∥∥ � ‖p − p̃‖ + ∥∥p̃ − ph

∥∥ � ‖p − p̃‖ + β−1 |b(vh, ph − p̃)|
‖∇vh‖ . (6.2)

Substituting (6.1) into (6.2) taking infimum over Q h give us the desired result. �
Remark 6.1. Making use of Taylor–Hood elements as in Remark 5.1 with the choices (α1, H) = (h2,h1/2) and (α2, K ) =
(k2,k1/2) and using the approximation results (3.3)–(3.4) for the velocity and temperature errors, we have

∥∥p − ph
∥∥ = O

(
h2 + k2)

which is the optimal error.

7. Numerical studies

In this section, numerical studies are given in order to show the effectiveness of the method and validate the obtained
theoretical results. The projection-based stabilization method for steady natural convection problem has been assessed on
two numerical examples in two dimensions. The first example is a well-known test case for the natural convection codes
which is called buoyancy-driven cavity problem. For the other test case, we consider a known particular analytical solution
in order to check the error rates.

All computations are carried out by using the software FreeFem++ [10]. In both examples, we use conforming Taylor–Hood
finite element pairs. It is well known that these pairs fullfill the inf–sup condition (3.2) (see [9]). Finite element spaces are
given in Remarks 5.1 and 6.1 with the algorithmic choices for the size of the meshes and the parameters: H ∼ h1/2 and
K ∼ k1/2, α1 = h2, α2 = k2. Since we solve the problem on the same mesh, we let h = k and H = K .

To handle the nonlinearity of the system, the Newton method of [9] is used. The algorithm consists of starting with
an initial guess (u(0), T (0)) and then generate the sequence of iterates (u(m) ∈ Xh , p(m) ∈ Q h and T (m) ∈ W k) for m � 1 by
solving the sequence of linear systems
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Fig. 1. The physical domain with its boundary conditions.

Table 1
Comparison of maximum vertical velocity at y = 0.5 with mesh size used in computation.

Ra GFEM Present study Ref. [5] Ref. [21] Ref. [20] Ref. [26]

104 16.41(11 × 11) 19.91(11 × 11) 19.51(41 × 41) 19.63(71 × 71) 19.90(71 × 71) 19.79(101 × 101)

105 51.22(21 × 21) 70.60(21 × 21) 68.22(81 × 81) 68.85(71 × 71) 70.00(71 × 71) 70.63(101 × 101)

106 201.20(32 × 32) 228.12(32 × 32) 216.75(81 × 81) 221.60(71 × 71) 228.00(71 × 71) 227.11(101 × 101)

Pr a0
(
u(m),vh) + c0

(
u(m−1),u(m),vh) + c0

(
u(m),u(m−1),vh) + b

(
vh, p(m)

)
= Pr Ra d

(
T (m),vh) + c0

(
u(m−1),u(m−1),vh) − α1

(
(I − P H )∇u(m−1), (I − P H )∇vh)b

(
u(m),qh) = 0,

a1
(
T (m), Sk) + c1

(
u(m), T (m−1), Sk) + c1

(
u(m−1), T (m), Sk)

= (
γ , Sk) + c1

(
u(m−1), T (m−1), Sk) − α2

(
(I − P H )∇T (m−1), (I − P H )∇ Sk)

for all (vh,qh, Sk) ∈ (Xh, Q h, W k).
This scheme is known to be locally convergent if at least either or both T and u · n are specified at every point of the

boundary.

7.1. Buoyancy-driven cavity problem

The problem of buoyancy-driven cavity is used as a suitable benchmark for testing the natural convection codes in the
literature. The simplicity of geometry and clear boundary conditions make this problem attractive. The domain consists of
a square cavity with differentially heated vertical walls where right and left walls are kept at TC and T H , respectively,
with T H > TC . The remaining walls are insulated and there is no heat transfer through them. The boundary conditions are
no-slip boundary conditions for the velocity at all four walls (u = 0) and Dirichlet boundary conditions for the temperature
at vertical walls. As the horizontal walls are adiabatic, we employ ∂T

∂n = 0 here. Fig. 1 shows the physical domain of the
buoyancy-driven cavity flow problem. In the test case, we take κ = 1, γ = 0, TC = 0 and T H = 1. While we consider the
air as the cavity filling fluid in our model, we take the fixed value Pr = 0.71. We have performed our computations for
Rayleigh number varying from 103 to 106. The performance of the projection-based stabilization is compared with the
famous benchmark solutions of de Vahl Davis [5] and some other authors such as Massarotti et al. [21], Manzari [20], and
the more recent study of Wan et al. [26]. From these benchmark solutions [5] used second-order central approximations
to solve natural convection problem in a square cavity. Ref. [21] developed a semi-implicit form of the characteristic-based
split scheme and [20] employed an explicit finite element algorithm. Recently, [26] used discrete singular convolution for
the solution of the problem. We also include the results for the classical Galerkin Finite Element Method (GFEM) where we
keep the same mesh sizes for the proposed method and GFEM. Numerical simulations are obtained for three uniform grids
of 11 × 11, 21 × 21 and 32 × 32.

We start our illustrations by giving peak values of vertical velocity at y = 0.5 and horizontal velocity at x = 0.5. Tables 1
and 2 summarize the maximum vertical velocity values at mid-height and at mid-width for different Rayleigh numbers.
For quantitative assessment, we also include those velocity values obtained by [5,21,20,26]. As can be observed, the results
of our computations are in an excellent agreement with the benchmark data even at coarser grid. We also see that as the
Rayleigh number increases, GFEM yields results which are not so close to the benchmark solutions. We also present the
vertical velocity distribution at the mid-height and horizontal velocity distribution at the mid-width in Fig. 2, respectively,
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Table 2
Comparison of maximum horizontal velocity at x = 0.5 with mesh size used in computation.

Ra GFEM Present study Ref. [5] Ref. [20] Ref. [26]

104 15.70(11 × 11) 15.90(11 × 11) 16.18(41 × 41) 16.10(71 × 71) 16.10(101 × 101)

105 41.00(21 × 21) 33.51(21 × 21) 34.81(81 × 81) 34.00(71 × 71) 34.00(101 × 101)

106 80.25(32 × 32) 65.52(32 × 32) 65.33(81 × 81) 65.40(71 × 71) 65.40(101 × 101)

Fig. 2. Variation of vertical velocity at mid-height (left) and horizontal velocity at mid-width for varying Rayleigh numbers (right).

Table 3
Comparison of average Nusselt number on the vertical boundary of the cavity at x = 0 with mesh size used in computation.

Ra GFEM Present study Ref. [5] Ref. [20] Ref. [21] Ref. [26]

104 2.40(11 × 11) 2.15(11 × 11) 2.24(41 × 41) 2.08(71 × 71) 2.24(71 × 71) 2.25(101 × 101)

105 5.11(21 × 21) 4.35(21 × 21) 4.52(81 × 81) 4.30(71 × 71) 4.52(71 × 71) 4.59(101 × 101)

106 6.00(32 × 32) 8.83(32 × 32) 8.92(81 × 81) 8.74(71 × 71) 8.82(71 × 71) 8.97(101 × 101)

which are very popular graphical illustrations in the study of buoyancy-driven cavity type tests. These profiles are also
comparable with the similar ones in [26]. It is obvious that as Rayleigh numbers increases, the differences in the profiles
presented in Fig. 2 are getting larger.

A very important property of the natural convection flows, especially for engineers, is the rate of heat transfer along the
vertical walls of the cavity. The dimensionless parameter called Nusselt number stands for this quantity. The local Nusselt
number can be calculated as

Nulocal = ±∂T

∂x
.

The negative sign means heat transfer at the hot wall and the positive sign means heat transfer at the cold wall. The local
Nusselt number at the cavity hot wall is used for comparison with benchmark problems in the literature frequently. As in
the velocity components case, we calculate the average Nusselt numbers with GFEM and our method. The benchmark data
results are also included to compare the average Nusselt numbers values with the presented study. The results are given
in Table 3. As we can understand from Table 3, there is a very good agreement with the benchmark solutions and the
present study, which can still capture reasonable results for rather coarser grid. The plots of Fig. 3 show the variation of
the Nusselt number along the hot wall and cold wall for different Rayleigh numbers. These profiles are also look reasonable
when compared with those reported in [5,20,21,26]. Characters of the flow patterns for increasing Rayleigh numbers are
seen very often in the study of natural convection problems. Diagrams showing the streamlines and temperature isolines
are very popular among the convective heat transport illustrations. We present these patterns in Fig. 4. It is clear from the
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Fig. 3. Variation of local Nusselt number at cavity hot wall (left) and cavity cold wall (right).

Fig. 4. Streamlines (upper left to right) and isotherms (lower left to right) for with Ra = 103,104,105,106, respectively.

streamline patterns that, as Rayleigh number increases circular vortex at the cavity center begin to deform into an ellipse
and then break up into two vortices tending to approach to the corners differentially heated sides of the cavity. So we
can conclude that, the flow is swifter as the thermal convection is concentrated. Through the increase in Rayleigh number,
parallel behavior of the temperature isolines is distorted and these lines seem to have a flat behavior in the central part
of the region. Near the sides of the cavity, isolines tend to be vertical only. With Ra = 106, the temperature slopes at the
corners of the differentially heated sides are more immersed then the cases of lower Rayleigh number. We also note that
these graphics are also perfectly comparable with the ones given in the investigations of [5,21,20,26].
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Table 4
Total degree of freedoms, numerical errors and convergence rates for each variable.

Mesh # of d.o.f. ‖u − uh‖ Rate ‖∇(u − uh)‖ Rate ‖p − ph‖ Rate ‖∇(T − T k)‖ Rate

h = 1/4 374 0.0170 – 0.3712 – 0.3521 – 0.2922

h = 1/8 1318 0.0021 2.85 0.0905 2.02 0.0951 1.92 0.0767 1.95

h = 1/16 4934 2.434e-04 2.92 0.0222 2.01 0.0215 1.94 0.0187 2.02

h = 1/32 19078 2.722e-05 2.99 0.0054 2.01 0.0054 1.98 0.0042 2.10

7.2. Numerical convergence study

An assessment of the convergence of the numerical simulation is presented in this subsection. We consider the problem
(1.1) in the domain Ω = [−1,1] × [−1,1]. The forcing function γ and boundary values of the temperature are given so that
the prescribed solution of the system is given by

u = ((
x2 − 1

)2
y
(

y2 − 1
)
,−(

x2 − 1
)
x
(

y2 − 1
)2)

,

p = 1

8

(
y4 − y6 + y2 − 1

)
x8 + 1

2

(
y6 − y4 − y2 + 1

)
x6 + 6

5
yx5 + 3

4

(
y4 − y6 + y2 − 1

)
x4 + (

4y3 − 8y
)
x3

+ 1

2

(
y6 − y4 − y2 + 1

)
x2 + (

10y − 4y3)x,

T = 1

400

(
2y3 − 3y5 + y

)
x8 + 1

100

(
3y5 − 2y3 − y

)
x6 + 3

250
x5 + 3

100

(
y3 − 3

2
y5 + 1

2
y

)
x4 + 1

25

(
3y2 − 2

)
x3

+ 1

100

(
3y5 − 2y3 − y

)
x2 + 1

50

(
3y4 − 12y2 + 8

)
x.

In (1.1), non-zero Neumann boundary condition for T on ΓB and Dirichlet boundary condition for u are chosen so that
(u, p, T ) is the solution of the system. Note that, using the non-zero Neumann boundary condition for the variable T affect
the stability bounds given in Lemma 4.1 and hence the main theorems. Although this replacement changes some terms and
constants in the error analysis, it does not degrade the order of errors given in Remarks 5.1 and 6.1.

We use the same settings as in Remarks 5.1 and 6.1 with Pr = 1, Ra = 100 and κ = 1. We compute the errors between
exact solution and computed numerical solution for the variables u, p and T . Then, we compare error rates with the
theoretical expectations. Table 4 presents the corresponding total degree of freedoms for u, T and p, errors and convergence
rates for different mesh sizes. We first compute the errors for the coarsest mesh of h = 1/4 and then refine the mesh to
obtain finer ones. The theory predicts the error rates in Table 4, O(h3) for the L2 norm for u, and O(h2) for the L2 norm for
p and O(h2) in energy norm for the temperature. Note that the behavior of the error is exactly as anticipated by the theory.
Thus we can conclude that the projection-based stabilization does not degrade the order of the errors for all variables.

8. Conclusion

This paper studied the projection-based stabilization method for the steady-state natural convection equations. By means
of this method, global stabilizations are added for both velocity and temperature variables and these effects are subtracted
from the large scales. We established the rigorous finite element error analysis of the scheme for the velocity, temperature
and pressure and proved that with the appropriate choices of mesh scales and the parameters, the optimal errors can be
obtained. We examined performance and accuracy of the method and compared the results with other published data.
The numerical results revealed excellent agreement with other published data and validation of theoretical results.
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