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Abstract. In SU(N) Yang-Mills theories on a manifold M , which are suitably coupled to a
set of scalars, fuzzy spheres may be generated as extra dimensions by spontaneous symmetry
breaking. This process results in gauge theories over the product space of the manifold M and
the fuzzy spheres with smaller gauge groups. Here we present the SU(2)− and SU(2)×SU(2)-
equivariant parametrization of U(2) and U(4) gauge fields on S2

F and S2
F × S2

F respectively
and outline the dimensional reduction of these theories over the fuzzy extra dimensions. The
emerging dimensionally reduced theories are Higgs type models. Some vortex type solutions of
these theories are briefly discussed.

1. Introduction
Recently, there has been significant advances in understanding the structure of gauge theories
possessing fuzzy extra dimensions [1, 2] (for a review on fuzzy spaces see [3]). It is known
that in certain SU(N) Yang-Mills theories on a manifold M , which are suitably coupled to a
set of scalars, fuzzy spheres may be generated as extra dimensions by spontaneous symmetry
breaking. The vacuum expectation values (VEVs) of the scalar fields form the fuzzy sphere(s),
while the fluctuations around the vacuum are interpreted as gauge fields over S2

F or S2
F × S2

F .
The resulting theories can therefore be viewed as gauge theories over M ×S2

F and M ×S2
F ×S2

F
with smaller gauge groups; which is further corroborated by the expansion of a tower of Kaluza-
Klein modes of the gauge fields. Gauge theory on M4×S2

F ×S2
F has recently been investigated

in [4]. Inclusion of the fermions into these theories was considered in [4, 5]. For a review on
these and related results [6] can be consulted.

It appears worthwhile to investigate the equivariant parametrization of gauge fields and
perform dimensional reduction over the fuzzy extra dimensions to shed some further light into
the structure of these theories. Essentially, It is possible to use the well known coset space
dimensional reduction (CSDR) techniques to achive this task. To briefly recall the latter consider
a Yang-Mills theory with a gauge group S over the product space M×G/H. G has a natural
action on its coset, and requiring the Yang-Mills gauge fields to be invariant under the G action
up to S gauge transformations leads to a G-equivariant parametrization of the gauge fields and
subsequently to the dimensional reduction of the theory after integrating over the coset space
G/H [7, 8].

Starting with the article [9], these ideas have been put under investigation. The most general
SU(2)-equivariant U(2) gauge field overM×S2

F have been found, and it was utilized to perform
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the dimensional reduction overS2
F . It was shown that for M = R2 the emergent theory is an

Abelian Higgs type model which has non-BPS vortex solutions depending on the parameters
in the model, corresponding to instantons in the original theory. This has been followed up
by investigating the situation in which M is also a noncommutative space [10]. Performing
SU(2)-equivariant dimensional reduction of this theory leads to a noncommutative U(1) theory
which couples adjointly to a set of scalar fields. On the Groenewald-Moyal plane M = R2

θ the
emergent models admit noncommutative, non-BPS vortex as well as fluxon solutions.

In this paper, we first give a brief account of these developments and then continue with
outlining some of the new research results from an article in preparation [11]. Starting again
from an SU(N ) gauge theory on M with a set of six scalars with the internal symmetry
group SO(3) × SO(3) and identifying the VEV’s of the scalars with S2

F × S2
F , fluctuations

around this vacuum become the gauge fields on S2
F × S2

F [4]. When M is identified to be the
standard Minkowski space, this theory actually possess the same field content as the bosonic
part of the N = 4 SUSY Yang-Mills and corresponds to a particular deformation of it with a
potential for scalars breaking the SO(6) R-symmetry down to SO(3) × SO(3) and the N = 4
supersymmetry. In [11] the ideas of our recent work is being applied to the SU(2) × SU(2)-
equivariant parametrization of U(4) gauge fields on S2

F ×S2
F . The reduction over the latter leads

to U(1)3 Higgs type models on R2 with more sophisticated vortex type solutions.

2. Yang-Mills Theory on M× S2
F

Our departure point is a U(N ) Yang-Mills theory over a suitable space M, which may be
commutative or noncommutative, with action give as

S =

∫
M

TrN

( 1

4g2
F †µνFµν + (Dµφa)

†(Dµφa)
)

+
1

g̃2
TrN

(
F †abFab

)
+ a2TrN

(
(φaφa + b̃)2

)
. (1)

Here, φa (a = 1, 2, 3) are anti-Hermitian scalars, transforming in the adjoint of SU(N ) and in
the vector representation of an additional global SO(3) symmetry, Dµφa = ∂µφa + [Aµ , φa] are
the covariant derivatives and Aµ are the u(N ) valued anti-Hermitian gauge fields associated to
the curvature Fµν . Fab is given as

Fab := [φa , φb]− εabcφc , (2)

In above a, b̃, g and g̃ are constants and TrN = N−1Tr denotes a normalized trace.
This theory spontaneously develops extra dimensions in the form of fuzzy spheres [2]. The

potential terms for the scalars are positive definite, and the solutions

Fab = 0 , −φaφa = b̃ (3)

are evidently a global minima. Most general solution to this equation is not known. However
depending on the values taken by the parameter b̃, a large class of solutions has been found in
[2]. Here we restrict ourselves to the simplest situation and refer the reader to [2] for a general
discussion and its physical consequences.

Taking the value of b̃ as the quadratic Casimir of an irreducible representation of SU(2)
labeled by `, b̃ = `(` + 1) with 2` ∈ Z and assuming further that the dimension N of the
matrices φa is (2`+ 1)n, (3) is solved by the configurations of the form

φa = X(2`+1)
a ⊗ 1n , (4)

where X
(2`+1)
a are the (anti-Hermitian) generators of SU(2) in the irreducible representation `,

which has dimension 2` + 1. We observe that this vacuum configuration spontaneously breaks
the U(N ) down to U(n) which is the commutant of φa in (4).
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Fluctuations about the vacuum (4) may be written as

φa = Xa +Aa , (5)

where Aa ∈ u(2` + 1) ⊗ u(n) and we have used the short-hand notation X
(2`+1)
a ⊗ 1n =: Xa.

Then Aa (a = 1, 2, 3) may be interpreted as three components of a U(n) gauge field on the fuzzy
sphere S2

F . The latter is simply the algebra of (2`+1)× (2`+1) matrices Mat(2`+1), generated

by the Hermitian “coordinate functions” x̂a := i√
`(`+1)

X
(2`+1)
a and their products. x̂a fulfill the

commutation relations

[x̂a , x̂b] =
i√

`(`+ 1)
εabcx̂c , x̂ax̂a = 1 , (6)

φa are indeed the “covariant coordinates” on S2
F and Fab is the field strength, which takes the

form
Fab = [Xa , Ab]− [Xb , Aa] + [Aa , Ab]− εabcAc . (7)

when expressed in terms of the gauge fields Aa.
To summarize, with (44) the action in (1) takes the form of a U(n) gauge theory on

M× S2
F (2` + 1) with the gauge field components AM (ŷ) = (Aµ(ŷ) , Aa(ŷ)) ∈ u(n) ⊗ u(2` + 1)

and field strength tensor (ŷ are a set of coordinates for the noncommutative manifold M)

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Fµa = Dµφa = ∂µφa + [Aµ, φa] (8)

Fab = [φa, φb]− εabcφc .

3. The SU(2)-Equivariant Gauge Field
Let us focus on the case of a U(2) gauge theory on M× S2

F . The construction of the most
general SU(2)-equivariant gauge field on S2

F can be performed as follows [9]:
We pick the symmetry generators ωa which generate SU(2) rotations upto U(2) gauge

transformations. Accordingly, we choose

ωa = X(2`+1)
a ⊗ 12 − 12`+1 ⊗

iσa

2
, ωa ∈ u(2)⊗ u(2`+ 1) , for a = 1, 2, 3 (9)

These ωa are the generators of the representation 1/2⊗ ` of SU(2), where by m we denote the

spin m representation of SU(2) of dimension 2m+ 1. SU(2)-equivariance of the theory requires
the fulfillment of the symmetry constraints,

[ωa , Aµ] = 0 , [ωa, φb] = εabcφc, (10)

on the gauge field and a consistency condition on these constraints is [ωa, ωb] = εabcωc which is
readily satisfied by our choice of ωa.

The solutions to these constraints are obtained using the representation theory of SU(2) and
are presented in [9]. They are conveniently parametrized as

Aµ =
1

2
Qaµ(ŷ) +

1

2
ibµ(ŷ) , (11)

Aa =
1

2
ϕ1(ŷ)[Xa, Q] +

1

2
(ϕ2(ŷ)− 1)Q[Xa, Q] + i

1

2
ϕ3(ŷ)

1

2
{X̂a, Q}+

1

2
ϕ4(ŷ)ω̂a, , (12)
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with φa = Xa + Aa and aµ, bµ are Hermitian U(1) gauge fields, ϕi are Hermitian scalar fields
over M, the curly brackets denote anti-commutators throughout, and

X̂a :=
1

`+ 1/2
Xa , ω̂a :=

1

`+ 1/2
ωa. (13)

They contain, in addition to the Mat2(2`+ 1) identity matrix, the only non-trivial rotational
invariant under ω, which is

Q :=
Xa ⊗ σa − i/2

`+ 1/2
, Q† = −Q , Q2 = −12(2`+1) . (14)

Indeed, Q is the fuzzy version of q := iσ · x and converges to it in the `→∞ limit.

4. Reduced Action
Confining ourselves to a noncommutativeM and using the SU(2)-equivariant gauge field in the
noncommutative U(2) Yang-Mills theory on M⊗ S2

F , we can explicitly trace it over the fuzzy
sphere and reduce it to a theory on M. The reduced action has the general form

S =

∫
M
LF + LG +

1

g̃2
Ṽ1 + a2Ṽ2 (15)

where LF stands for the curvature term, LG for the gradient term and Ṽ1, Ṽ2 for the reduced
forms of the potential terms in the original action. The explicit form of these terms and the
related results are omitted here, they can be found in [10]. It turns out that the presence of
extra degrees of freedom, namely ϕ3 , ϕ4, in the SU(2)-equivariant gauge field on S2

F leads to a
further symmetry breaking in the reduced action and the reduced action is invariant only under
a noncommutative U(1) gauge group and it has the form [10],

S =

∫
M

1

4g2
|Fµν |2 +

1

2

`2 + `

(`+ 1/2)2
DµϕDµϕ

† +
1

8

`2 + `

(`+ 1/2)2

(
(`+ 3

2)(`− 1
2)

(`+ 1
2)2

+ 1

)
(Dµϕ3)2

+
`2 + `+ 3

4

4(`+ 1
2)2

(Dµϕ4)2 +
`2 + `

4(`+ 1
2)3
{Dµϕ3 , Dµϕ4}+

1

g̃2
Ṽ1 + a2Ṽ2 . (16)

where we have

Dµ· = ∂µ ·+[cµ , ·] , Fµν = ∂µcν − ∂νcµ + i[cµ , cν ] , cµ =
1

2
bµ . (17)

5. Solutions of the Reduced Theory on R2
θ

We look at the classical solutions of the system governed by the action given in (16) on the
Groenewald-Moyal plane R2

θ. We consider only one of the the two extreme cases of a2 =∞ and
a2 = 0 corresponding, respectively, to imposing the constraint φaφa + `(` + 1) = 0 in full (i.e.
“by hand”) and imposing no constraint at all. In both cases, we consider the large ` limit; in
the a = ∞ theory, we include only terms appearing at O(`−2), whereas for the case a = 0, we
assume ` = ∞. Here we just give a brief account of the former, while a full account including
the latter is given in [10].

R2
θ may be defined by two operators ŷ1 , ŷ2 acting on the standard Fock space H. They fulfill

the Heisenberg algebra commutation relation

[ŷ1 , ŷ2] = iθ , (18)
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where θ is the noncommutativity parameter. Switching to the complex basis

z =
1√
2

(y1 + iy2) , z̄ =
1√
2

(y1 − iy2) , (19)

the commutation relations become
[z , z̄] = θ . (20)

After performing the dimensional reduction, the fuzzy constraint φaφa + `(`+ 1) = 0 can be
solved order by order in powers of the parameter 1

` to obtain ϕ3 and ϕ4 in terms of ϕ1 and ϕ2.
Substituting back into the action yields an action involving only the scalar ϕ = ϕ1 + iϕ2.

For large but finite `, one can solve the constraint approximately by expanding it to leading
order in powers of `−1 around the ` =∞. Performing this to order O

(
`−3
)
, we find [10]

ϕ3 = −i4
`

[ϕ1 , ϕ2] +
1

2`2
(ϕ2

1 + ϕ2
2 − 1) +O

(
`−3
)
, (21)

ϕ4 = − 1

2`
(ϕ2

1 + ϕ2
2 − 1) + i

3

`2
[ϕ1 , ϕ2] +O

(
`−3
)
. (22)

Using these in (16), it is found in [10] that the action takes the form

S = 2πθTrH

[
1

4g2
|Fµν |2 +

1

2

(
1− 1

4`2

)
DµϕDµϕ

† +
1

`2

(
Dµ[ϕ ,ϕ†]

)2
+

1

32`2

(
Dµ{ϕ ,ϕ†}

)2

+
1

g̃2

((
1

2
+

1

4`2

)(
1

2
{ϕ ,ϕ†} − 1

)2

+
1

8

(
1− 1

`
− 3

4`2

)
[ϕ ,ϕ†]2

)
+O

(
`−3
) ]

. (23)

It is possible to employ the solution generating techniques introduced in [12] to find
noncommutative vortex type solutions of (23). To this end we proceed with defining the covariant
coordinates

X = −1

θ
z̄ + icz , X† = −1

θ
z − icz̄ , (24)

where the complex combinations cz = 1√
2
(c1 − ic2), cz̄ = 1√

2
(c1 + ic2) are introduced. The

covariant derivatives and the field strength may be expressed as

Dzϕ = [X ,ϕ] , Dz̄ϕ = −[X† , ϕ] . (25)

Fzz̄ = ∂zcz̄ − ∂z̄cz + i[cz , cz̄] ,

= i[X ,X†] +
i

θ
, (26)

All the basic constituents of the action (23) transform covarianty under the gauge symmetry

X −→ UXU † , ϕ −→ UϕU † , Dzϕ −→ UDzϕU
† , Fzz̄ −→ UFzz̄U

† . (27)

It follows that the equations of motion will transform covariantly, that is,

δS

δX
−→ U

δS

δX
U † ,

δS

δϕ
−→ U

δS

δϕ
U † , (28)

under a partial isometry U satisfying

U †U = 1 , UU † = P , (29)
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where P is a projection operator [12]. Thus, the partial isometries (29) generate solutions from
a known solution.

A trivial solution to the equations of motion of (23) may easily found to be X = −1
θ z̄ , ϕ = 1.

Taking U = Sm, where S is the usual shift operator S =
∑∞

k=0 |k + 1〉〈k|, we can write a set of
non-trivial solutions for the theory governed by (23) as

ϕ = SmS†m = 1− Pm ,

X = −1

θ
Smz̄S†m , (30)

where

Pn =

n−1∑
k=0

|k〉〈k| , (31)

is the projection operator of rank m. The corresponding field strength is F12 = −iFzz̄ = 1
θPm.

We can view these solutions as noncommutative vortices [12, 13, 14] carrying m units of flux:

2πθTrF12 = 2πm . (32)

It is useful to evaluate the value of the action (23) on these solutions; we find

S = πθm

(
1

g2θ2
+

1

g̃2

(
1 +

1

2`2

))
+O

(
`−3
)
. (33)

This corresponds to the energy of the static vortices in 2 + 1 dimensions, R2
θ × R1 with R1

standing for time. We observe that to leading order in `−1 there is a `−2 contribution adding to
the energy, which is a residue of the fact that the present model has descended from a model
with a fuzzy sphere of order `, S2

F (`) as extra dimensions.
Two limiting cases may also be easily recorded from (33). For g̃ →∞, our solutions collapse

to the fluxon solutions discussed in [15, 16]; whereas, for θ →∞, the action gets a contribution
only from the potential term, and our vortex solution collapses to a noncommutative soliton
solution of the type first discussed in [17].

6. U(4) Gauge Theory over M× S2
F × S2

F
i. Gauge theory onM× S2

F × S2
F :

Starting again with an SU(N ) gauge theory, which is now coupled adjointly to six scalar
fields Φi , (i = 1 , · · · , 6), the relevant action is given in the form [4]

S =

∫
M

TrN

( 1

4g2
F †µνFµν +

1

2
(DµΦi)

†(DµΦi)
)

+ V (Φ) . (34)

In this expression, Aµ are u(N ) valued anti-Hermitian gauge fields, Φi (i = 1, · · · 6) are six anti-
Hermitian scalars transforming in the adjoint of SU(N ) and DµΦi = ∂µΦi + [Aµ ,Φi] is the
covariant derivative.

Product of two fuzzy spheres emerges as extra dimensions from this theory as a consequence
of spontaneous breaking of the original gauge symmetry. Following [4], we consider a potential
of the form

V (Φ) =
1

g2
L

V1(ΦL) +
1

g2
R

V1(ΦR) +
1

g2
LR

V1(ΦL,R) + a2
LV

L
2 (ΦL) + a2

RV
R

2 (ΦR) , (35)
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where
ΦL
a = Φa , ΦR

a = Φa+3 , (a = 1, 2, 3) , (36)

and

V1(ΦL) = TrNF
L†
ab F

L
ab , FLab = [ΦL

a ,Φ
L
b ]− εabcΦL

c

V1(ΦR) = TrNF
R†
ab F

R
ab , FRab = [ΦR

a ,Φ
R
b ]− εabcΦR

c

V2(ΦL) = TrN (ΦL
aΦL

a + b̃L)2 , V2(ΦR) = TrN (ΦR
a ΦR

a + b̃R)2

V1(ΦL,R) = TrNF
(L ,R)†
ab F

(L ,R)
ab , F

(L ,R)
ab = [ΦL

a ,Φ
R
b ] . (37)

We observe that the potential V (Φ) is positive definite, and it is possible to pick b̃L and b̃R
as the quadratic Casimirs of respectively SU(2)L and SU(2)R with IRR’s labeled by `L and `R

b̃L = `L(`L + 1) , b̃R = `R(`R + 1) , 2`L , 2`R ∈ Z . (38)

If it is further assumed that N = (2`L + 1)(2`R + 1)n, (n ∈ Z) then the configuration

ΦL
a = X(2`L+1)

a ⊗ 1(2`R+1) ⊗ 1n ,

ΦR
a = 1(2`L+1) ⊗X(2`R+1)

a ⊗ 1n (39)

[ΦL
a ,Φ

R
b ] = 0 , (40)

is a global minimum of the potential V (Φ) where X
(2`L+1)
a and X

(2`R+1)
a are the anti-Hermitian

generators of SU(2)L and SU(2)R respectively in the IRR’s `L and `R, with the commutation
relations

[X(2`L+1)
a , X

(2`L+1)
b ] = εabcX

(2`L+1)
c , [X(2`R+1)

a , X
(2`R+1)
b ] = εabcX

(2`R+1)
c . (41)

This vacuum configuration spontaneously breaks the U(N ) down to U(n) which is the
commutant of ΦL

a ,Φ
R
a in (39).

Defining

x̂La =
i√

`L(`L + 1)
X(2`L+1)
a ⊗ 1(2`R+1) , x̂Ra = 1(2`L+1) ⊗

i√
`R(`R + 1)

X(2`R+1)
a , (42)

x̂La x̂
L
a = 1 , x̂Ra x̂

R
a = 1 . (43)

the vacuum is a product of two fuzzy spheres S2
F × S2

F generated by x̂La and x̂Ra .
Fluctuations about this vacuum give a U(n) gauge theory over S2

F × S2
F . We can write

ΦL
a = XL

a +ALa , ΦR
a = XR

a +ARa (44)

where ALa , A
R
a ∈ u(2`L+1)⊗u(2`R+1)⊗u(n) with the short-hand notation X

(2`L+1)
a ⊗1(2`R+1)⊗

1n =: XL
a and 1(2`L+1) ⊗X

(2`R+1)
a ⊗ 1n =: XR

a .

Thus, ΦL
a ,Φ

R
a are the “covariant coordinates” on S2

F ×S2
F and the associated curvatures FLab,

FRab, F
L ,R
ab take their familiar form after expanding

FLab = [XL
a , A

L
b ]− [XL

b , A
L
a ] + [ALa , A

L
b ]− εabcALc .

FRab = [XR
a , A

R
b ]− [XR

b , A
R
a ] + [ARa , A

R
b ]− εabcARc .

FL ,Rab = [XL
a , A

R
b ]− [XR

b , A
L
a ] + [ALa , A

R
b ] . (45)

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012062 doi:10.1088/1742-6596/343/1/012062

7



ii. The SU(2)× SU(2)-Equivariant Gauge Field

We formulate the SU(2)L × SU(2)R ∼= SO(4)-equivariant U(4) gauge theory on S2
F × S2

F .
For this purpose we need to introduce SO(4) symmetry generators under which Aµ is a scalar
up to a U(4) gauge transformation, that is carrying the SO(4) IRR (0, 0) and ALa and ARa are
SO(4) tensors carrying the IRRs (1, 0) and (0, 1), respectively. In other words, ALa is a vector
under the left SU(2) and a scalar under the right SU(2), whereas ARa is an SU(2)R vector and
an SU(2)L scalar.

On S2
F ×S2

F the SU(2)×SU(2) ∼= SO(4) rotational symmetry is implemented by the adjoint
actions adXL

a and adXR
a :

adXL
a · = [XL

a , ·] , adXR
a · = [XR

a , ·] , [adXL
a , adX

R
a ] = 0 . (46)

We introduce the anti-Hermitian symmetry generators

ωLa = X(2`L+1)
a ⊗ 1(2`R+1) ⊗ 14 − 1(2`L+1) ⊗ 1(2`R+1) ⊗ i

LLa
2
,

ωRa = 1(2`L+1) ⊗X(2`R+1)
a ⊗ 14 − 1(2`L+1) ⊗ 1(2`R+1) ⊗ i

LRa
2
. (47)

fulfilling the consistency conditions

[ωLa , ω
L
b ] = iεabcω

L
c ,

[ωRa , ω
R
b ] = iεabcω

R
c , (48)

[ωLa , ω
R
b ] = 0 . (49)

Here LLa and LRa are 4× 4 matrices which fulfill

[LLa , L
L
b ] = 2iεabcL

L
c ,

[LRa , L
R
b ] = 2iεabcL

R
c , (50)

[LLa , L
R
b ] = 0 . (51)

It is not very hard to see that there are four invariants under the action of ωLa and ωRa . These
are the three ”idempotents”

QL =
X`L
a ⊗ 1(2`R+1) ⊗ LLa − i

21

`L + 1/2
, Q†L = −QL , Q2

L = −14(2`L+1)(2`R+1) , (52)

QR =
1(2`L+1) ⊗X`R

a ⊗ LRa − i
21

`R + 1/2
, Q†R = −QR , Q2

R = −14(2`L+1)(2`R+1) , (53)

QLQR

and the identity matrix −14(2`L+1)(2`R+1).
These lead to the parametrization

Aµ =
1

2
aLµQ

L +
1

2
aRµQ

R +
i

2
bµ1 +

1

2
icµQ

LQR , (54)

where aµ, bµ, cµ and dµ are all Hermitian U(1) gauge fields, and to the parametrizations

ALa =
1

2
(χ1 + χ′1)[XL

a , Q
L] +

1

2
(χ2 + χ′2 − 1)QL[XL

a , Q
L] + i

1

2
χ3

1

2
{X̂L

a , Q
L}+

1

2
χ4ω̂

L
a

+
1

2
(χ1−χ′1)iQR[XL

a , Q
L]+

1

2
(χ2−χ′2)iQRQL[XL

a , Q
L]+ i

1

2
χ′3

1

2
iQR{X̂L

a , Q
L}+

1

2
χ′4iQ

Rω̂La .

(55)
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ARa =
1

2
(λ1 + λ′1)[XR

a , Q
R] +

1

2
(λ2 + λ′2 − 1)QR[XR

a , Q
R] + i

1

2
λ3

1

2
{X̂R

a , Q
R}+

1

2
λ4ω̂

R
a

+
1

2
(λ1−λ′1)iQL[XR

a , Q
R]+

1

2
(λ2−λ′2)iQLQR[XR

a , Q
R]+ i

1

2
λ′3

1

2
iQL{X̂R

a , Q
R}+

1

2
λ′4iQ

Lω̂Ra .

(56)

Here χi, χ
′
i, λi and λ′i i = (1, 2, 3, 4) are Hermitian scalar fields over M, the curly brackets

denote anti-commutators throughout, and we have used

X̂a :=
1

`+ 1/2
Xa , ω̂:

a =
1

`+ 1/2
ωa , (57)

for both the left and the right quantities.
Dimensional reduction of the gauge theory over S2

F ×S2
F leads essentially to a U(1)3 Abelian

Higgs type model coupled to four complex and eight real scalar fields. In the large ` limit, it
appears that the part of the potential governing the vortex solutions has the following form

(|χ|2 − 1

4
)2 + (|χ′|2 − 1

4
)2 + (|λ|2 − 1

4
)2 + (|λ′|2 − 1

4
)2 + 2(|χλ′ − χ′λ|2 + |λ̄χ− χ′λ̄′|2) . (58)

where χ := χ1 + iχ2 and other complex fields are likewise defined. The vacuum manifold here
is T 3 = S1 × S1 × S1 and π1(T 3) = Z3, which clearly indicates the existence of vortex solutions
in this model. Complete results on this work will be given in [11].
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