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Abstract

Let A be a finite abelian group that acts fixed point freely on a finite (solvable) group G. Assume that |G|
is odd and A is of squarefree exponent coprime to 6. We show that the Fitting length of G is bounded by
the length of the longest chain of subgroups of A.
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Introduction

Let G be a finite solvable group and A be a finite group acting fixed point freely on G. A long-
standing conjecture is that if (|G|, |A|) = 1, then the Fitting length f (G) of G is bounded by the
length �(A) of the longest chain of subgroups of A. By an elegant result due to Bell and Hart-
ley [1], it is known that any finite nonnilpotent group A can act fixed point freely on a solvable
group G of arbitrarily large Fitting length with (|G|, |A|) �= 1. We expect that the conjecture
is true when the coprimeness condition is replaced by the assumption that A is nilpotent. This
question is still unsettled except for cyclic groups A of order pq and pqr for pairwise distinct
primes p,q and r [3,4].

* Corresponding author.
E-mail address: ercan@metu.edu.tr (G. Ercan).
0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2008.01.033
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In the present paper we establish the conjecture without the coprimeness condition when A

is a finite abelian group of squarefree odd exponent not divisible by 3 and |G| is odd. This
improves the bound given in Theorem 3.4 of [6]; as a by-product we also improve a bound given
in Theorem 8.5 of [2].

Namely, we shall prove the following:

Theorem A. Let A be a finite abelian group acting fixed point freely on a finite group G of odd
order. If A has squarefree exponent coprime to 6, then f (G) � �(A).

Theorem B. Let G be a finite (solvable) group of order coprime to 6. If C is a Carter subgroup
of G, then f (G) � 2(2�(C) − 1).

Preliminary remarks. All the groups considered in this paper are finite and solvable. Except for
the following, the notation and terminology are as in [2].

Let G be a group.
We denote by G̃ the Frattini factor group of G.
If S is a subgroup of G and a ∈ G, then for any positive integer n, we denote by [S,a]n the

commutator subgroup [S,a, . . . , a] with a repeated n times.
Let K be a group acting on G, that is, there is a homomorphism from K into Aut(G). We

write (K on G) to denote this action. If x ∈ K , then we write gx for the image of g ∈ G under
the automorphism of G which is the image of x in Aut(G). Let another group L act on K , and
let l ∈ L. We write (K on G)l to denote the action of K on G given by x → (K on G)(xl−1

) for
x ∈ K .

Let K be a group acting on groups H and G. We say (K on G) and (K on H ) are weakly
equivalent if each nontrivial irreducible section of (K on G) is K-isomorphic to an irreducible
section of (K on H ) and vice versa. We write (K on H) ≡w (K on G) if (K on H ) is weakly
equivalent to (K on G).

Let K,L,G and H be groups.
(a) If (K on G) ≡w (K on H), then (L on G) ≡w (L on H) for each L � K .
(b) Let L act on K and K act on G and H . If (K on G) ≡w (K on H), then (K on G)l ≡w

(K on H)l for each l ∈ L.
(c) Let V be a completely reducible kG-module for a field k and let L act on G. Let l ∈ L and

Vl denote the kG-module with respect to (G on V )l . Assume that (G on V ) ≡w (G on V )l . Let
M � G such that M is 〈l〉-invariant, and W be the sum of all irreducible kG-submodules of V

on which M acts nontrivially. Then W = W # = Wl as subspaces where W # stands for the sum
of all irreducible kG-submodules of Vl on which M acts nontrivially.

Note that W and Wl need not be isomorphic as kG-modules.

Lemma 1. Let S〈α〉 be a group where S �S〈α〉, S is an s-group for some prime s, Φ(S) � Z(S),
〈α〉 is cyclic of order p for an odd prime p. Suppose that V is a kS〈α〉-module for a field k of
characteristic different from s. Then CV (α) �= 0 if one of the following is satisfied:

(i) [Z(S),α] is nontrivial on V .
(ii) [S,α]p−1 is nontrivial on V and p = s.
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Furthermore, if S〈α〉 acts irreducibly on V or the characteristic of k is different from p, then
we also have (C on CV (α)) ≡w (C on V ) where C = CD(α) for

D =
{

S when (i) holds,
[S,α]p−1 when (ii) holds.

Proof. See [2, Proposition 3.10]. �
Lemma 2. (See Lemma 5.30 in [2].) Let S � S〈α〉 where 〈α〉 is cyclic of prime order and let V

be an irreducible kS〈α〉-module. If E is an 〈α〉-invariant subgroup of Z(S) and U is a nonzero
E〈α〉-submodule of V , then Ker(E on V ) = Ker(E on U).

Lemma 3. Let S〈α〉 be a group such that S � S〈α〉 where 〈α〉 is of prime order p. Suppose that
V is a kS〈α〉-module for a field k of characteristic different from p, and Ω is an S〈α〉-stable
subset of V ∗. Set V0 = ⋂{Kerf | f ∈ Ω − CΩ(α)}. If there exists a nonzero f in Ω and x ∈ S

such that f (V0) �= 0 and [x, a,α] /∈ CS(f ) for each 1 �= a ∈ 〈α〉, then CV (α) �⊆ V0.

Proof. Since f (V0) �= 0, it follows that f ∈ CΩ(α) and so CS(f ) is normalized by 〈α〉. The as-
sumption [x, a,α] /∈ CS(f ) for each 1 �= a ∈ 〈α〉 yields that [x, a] /∈ CS(f ) for each 1 �= a ∈ 〈α〉.
Then bxf /∈ CΩ(α) for each b ∈ 〈α〉. Set g = ∑

b∈〈α〉 bxf . It is clear that g ∈ CΩ(α) and so
[V,α] ⊆ Kerg. Since V = [V,α] ⊕ CV (α), either g = 0 or CV (α) �⊆ Kerg. If the latter holds,
then CV (α) �⊆ V0 as claimed, because V0 ⊆ Ker(bxf ) for each b ∈ 〈α〉. Hence we may as-
sume that g = 0. Now 0 = x−1g = f + ∑

1�=b∈〈α〉[x, b]f and then f = −∑
1�=b∈〈α〉[x, b]f .

Since [x, b,α] /∈ CS(f ) by the hypothesis, we have [x, b]f /∈ CΩ(α) for each 1 �= b ∈ 〈α〉. Then
f (V0) = 0. This contradiction completes the proof. �

The following result is a generalization of Theorem 2.1.A in [5].

Theorem 1. Let S〈α〉 be a group such that S �S〈α〉, S is an s-group, 〈α〉 is cyclic of order p for
odd primes s and p with p � 5, Φ(Φ(S)) = 1, Φ(S) � Z(S).

Suppose that k is a field of characteristic not dividing ps and V is a kS〈α〉-module such that
[S,α]p−1 acts nontrivially on each irreducible submodule of V |S .

Let Ω be an S〈α〉-stable subset of V ∗ which linearly spans V ∗ and set V0 = ⋂{Kerf |
f ∈ Ω − CΩ(α)}. Then CV (α) �⊆ V0 and

(
CD(α) on CV (α)/CV0(α)

) ≡w

(
CD(α) on V

)
where

D =
{

[S,α]p−1 when s = p,

S otherwise.

Proof. Assume that the theorem is false and consider a counterexample with dimV + |S〈α〉|
minimal. Set X = CV (α)/CV0(α) and C = CD(α).

Claim 1. We may assume that S acts faithfully and S〈α〉 acts irreducibly on V and k is a splitting
field for all subgroups of S〈α〉.
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Put S = S/Ker(S on V ). By induction applied to the action of S〈α〉 on V , we get CV (α) �⊆ V0
and (CD(α) on X) ≡w (CD(α) on V ). As C = CD(α) � CD(α), we have obtained (C on X) ≡w

(C on V ). Thus we may assume that S is faithful on V .
Since V is completely reducible as an S〈α〉-module, we have a collection {V1, . . . , Vl} of

irreducible S〈α〉-submodules of V such that V = ⊕l
i=1 Vi . Now [S,α]p−1 acts nontrivially on

each irreducible constituent of Vi |S and hence [S,α]p−1 acts nontrivially on each Vi for i =
1, . . . , l. It is easy to observe that Ω|Vi

is an S〈α〉-stable subset of V ∗
i and 〈Ω|Vi

〉 = V ∗
i for

each i = 1, . . . , l. If V is not irreducible as an S〈α〉-module, we apply induction to the action
of S〈α〉 on Vi for each i and get CVi

(α) �⊆ (Vi)0 and (C on CV (α)/C(Vi)0(α)) ≡w (C on Vi).
Set Xi = CVi

(α)/CVi∩V0(α). Now (C on Xi) ≡w (C on Vi) since (Vi)0 = ⋂{Kerg | g ∈ Ωi −
CΩi

(α)} ⊇ Vi ∩ V0. As V = ⊕l
i=1 Vi and X ∼= ⊕l

i=1 Xi , it follows that (C on X) ≡w (C on V ).
Therefore we can regard V as an irreducible S〈α〉-module.

Claim 2. [Z(S),α,α] = 1.

Assume the contrary. Set S1 = Z(S)C. Then S1 is an 〈α〉-invariant subgroup of S and V |S1〈α〉
is completely reducible. Note that C � S1〈α〉. Let Vi be an irreducible S1〈α〉-submodule of V

and W be a homogeneous component of Vi |C .
Now Z(S)〈α〉 � CS1〈α〉(C) � NS1〈α〉(W). This yields that Vi |C is homogeneous. We also ob-

serve that Ker(Z(S) on Vi) = Ker(Z(S) on V ) = 1 by applying Lemma 2 to the action of S〈α〉
on V .

Since [Z(S),α] �= 1, [Z(S1), α] is nontrivial on Vi . Applying Lemma 1 to the action of S1〈α〉
on Vi , we obtain CVi

(α) �= 0. If CVi
(α) �⊆ V0, it follows that (C on CVi

(α)/CVi∩V0(α)) ≡w

(C on Vi) as Vi |C is homogeneous. This forces that there is an irreducible S1〈α〉-submodule Vi

of the completely reducible module V |S1〈α〉 such that CVi
(α) ⊆ V0. Since 0 �= CVi

(α), we have
Vi ∩ V0 �= 0. Set Ωi = Ω|Vi

. Now Ωi is an S1〈α〉-stable subset of V ∗
i , and (Vi)0 = ⋂{Kerh |

h ∈ Ωi − CΩi
(α)} �= 0 as Vi ∩ V0 ⊆ (Vi)0. Let f ∈ Ω be such that f ((Vi)0) �= 0. Then fi =

f |Vi
∈ CΩi

(α). Consider 〈fi〉 = {cfi | c ∈ k}, a CZ(S)(fi)〈α〉-submodule of V ∗
i . Appealing to

Lemma 2 together with 〈fi〉 and CZ(S)(fi), we get CZ(S)(fi) = Ker(CZ(S)(fi) on V ∗
i ) = 1. On

the other hand, there exists x ∈ Z(S) such that [x,α,α] �= 1, as [Z(S),α,α] �= 1. It follows that
[x, a,α] �= 1 for any 1 �= a ∈ 〈α〉, that is [x, a,α] /∈ CS1(fi), for any 1 �= a ∈ 〈α〉. Now Lemma 3
applied to the action of S1〈α〉 on Vi , together with fi and Ωi , gives that CVi

(α) �⊆ (Vi)0. This is
a contradiction as Vi ∩ V0 ⊆ (Vi)0 and CVi

(α) ⊆ V0. Thus we have the claim.

Claim 3. s �= p.

Assume that s = p. Since [S,α]p−1 �= 1, [S,α]p−3 �= 1. Set S1 = [S,α]p−3. We can prove
that [S1, [S,α]p−1] � [Φ(S),α]p−3 = 1 (see [2, 5.37]). Hence [S,α]p−1 � Z(S1).

We have a collection {V1, . . . , Vl} of irreducible S1〈α〉-modules such that V = ⊕l
i=1 Vi . Fix

i ∈ {1, . . . , l}. We notice that C = C[S,α]p−1(α) � S1〈α〉 implying V |C is completely reducible.
In particular, C � Z(S1〈α〉) and so Vi |C is homogeneous.

Set Xi = CVi
(α)/CVi∩V0(α) and assume that (C on Xi) �≡w (C on CVi

(α)). If [S,α]p−1 is
trivial on Vi , then C acts trivially on Vi , and this contradicts the assumption. Hence [S,α]p−1

is not trivial on Vi . If Vi ∩ V0 = 0, then (C on Xi) ≡w (C on CVi
(α)), and again we have

a contradiction. Hence, Vi ∩ V0 �= 0, and there exists some f ∈ Ω such that f (Vi ∩ V0) �= 0.
Now f ∈ CΩ(α). Set f |Vi

= fi . Now 〈fi〉 = {cfi | c ∈ k} is a C[S,α]p−1(fi)〈α〉-submodule
of V ∗. Appealing to Lemma 2, we get CZ(S )(fi) = Ker(CZ(S )(fi) on V ∗). We also have
i 1 1 i
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C[S,α]p−1(fi) � CZ(S1)(fi). Thus C[S,α]p−1(fi) is properly contained in [S,α]p−1, that is, there
is 1 �= y ∈ [S,α]p−1 − C[S,α]p−1(fi), and x ∈ [S,α]p−3 such that y = [x,α,α]. It follows that
1 �= [x, a,α] /∈ C[S,α]p−1(fi) for any 1 �= a ∈ 〈α〉. Now we can apply Lemma 3 to the action of
S1〈α〉 on Vi together with Ωi = Ω|Vi

and fi , and obtain that CVi
(α) �⊆ V0. As Vi |C is homoge-

neous, we already have (C on Xi) ≡w (C on CVi
(α)).

Therefore we conclude that (C on CV (α)/CV0(α)) ≡w (C on CV (α)). Appealing to Lemma 1
together with V and S〈α〉, we also see that CV (α) �= 0 and (C on CV (α)) ≡w (C on V ) hold.
Thus (C on V ) ≡w (C on CV (α)/CV0(α)). Since [S,α]p−1 �= 1 and s = p, C �= 1. Hence C is
nontrivial on V and so is on CV (α)/CV0(α). This supplies CV (α) �⊆ V0, a contradiction.

Claim 4. The theorem follows.

Now s �= p and [Φ(S),α] = 1. Then Φ(S) � Z(S〈α〉) and so S is a central product of [S,α]
and CS(α). As C = CS(α) � S〈α〉, V |C is completely reducible. In fact, V |C is homogeneous,
because any homogeneous component is stabilized by S〈α〉 as C is centralized by [S,α]〈α〉. It
follows that (C on CV (α)/CV0(α)) ≡w (C on V ) if CV (α) �⊆ V0 holds. Hence CV (α) ⊆ V0. Note
that CV (α) �= 0, because otherwise we would have obtained s = 2 as [S,α] is nontrivial on V .
Then there exists 0 �= f ∈ CΩ(α) with f (V0) �= 0. Now CZ(S)(f ) = Ker(CZ(S)(f ) on V ∗) = 1
by Lemma 2. If follows that CZ([S,α])(f ) = 1, as [CS(α), [S,α]] = 1. Then C[S,α](f ) is properly
contained in [S,α]. Let M be a maximal α-invariant subgroup of [S,α] containing C[S,α](f ).
The abelian group [S,α]/M = [S,α] forms an irreducible 〈α〉-module on which 〈α〉 acts fixed
point freely. Thus we have [x, a] �= 0 for any 0 �= x ∈ [S,α]. It follows that [x, a,α] �= 0 for each
1 �= a ∈ 〈α〉. Put x = xM for x ∈ [S,α]. Then [x, a,α] /∈ M . In particular, [x, a,α] /∈ C[S,α](f )

for each 1 �= a ∈ 〈α〉. Recall that V |C is homogeneous. Then Lemma 3 applied to the action of
S〈α〉 on V gives that CV (α) �⊆ V0. This contradiction completes the proof of Theorem 1. �

Let V be an irreducible G〈α〉-module where G � G〈α〉 and 〈α〉 is cyclic of prime order p.
We say V is an ample G〈α〉-module if [G,α]p−1 acts nontrivially on V . Notice that when |G| is
odd, this coincides with the definition of an ample module given in [2].

Theorem 2. Let S〈α〉 be a group such that S �S〈α〉, S is an s-group, 〈α〉 is cyclic of order p for
distinct primes s and p, Φ(Φ(S)) = 1, Φ(S) � Z(S). Suppose that V is an irreducible kS〈α〉-
module on which [S,α] acts nontrivially where k is a field of characteristic different from s.
Then

[V,α]p−1 �= 0 and
(
CS(α) on V

) ≡w

(
CS(α) on [V,α]p−1)

unless p is a Fermat prime, s = 2 and [S̃, α] is an irreducible 〈α〉-module.

Proof. See [2, Proposition 3.10]. �
Now we are ready to prove our key result, which improves Theorem 3.1 in [5] obtained by

pursuing the idea in Dade’s work [2].

Theorem 3. Let G � GA and 〈z〉 � A of prime order p with p � 5. Suppose that P1, . . . ,Pt is
an A-Fitting chain of G such that [P1, z] �= 1, Pi is a pi -group where pi is an odd prime for each
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i = 1, . . . , t , and t � 3. Then there are sections Di0, . . . ,Dt of Pi0, . . . ,Pt , respectively, forming
an A-Fitting chain of G such that z centralizes each Dj for j = i0, . . . , t where

i0 =
{

2 if p1 �= p,

3 if p1 = p.

Proof. Let q be a prime number different from pt , let pt+1 = q and let Pt+1 stand for the regular
Zq [PtPt−1A]-module. We shall add Pt+1 to the given chain and define subspaces Ei of Pi for
each i = 1, . . . , t +1 as follows: E1 = P1, Ei = [Xi,Ei−1] for i = 2, . . . , t +1, where Xi/Φ(Pi)

is the sum of all ample irreducible Ei−1〈z〉-submodules of P̃i : It is easy to observe that for each
i = 2, . . . , t + 1, Ei are all Ei−1A-invariant subgroups of Pi and Ẽi is a direct sum of ample
irreducible Ei−1〈z〉-submodules.

We now define subgroups Fi of Ei for i = 1, . . . , t + 1 as follows:

F1 = {1},
Fi = CEi

(z) if pi �= p and i � 2,

F2 = C[E2,z]p−1(z) if p2 = p,

Fi = [[Ei, z]p−1,Fi−1
]

if pi = p and i � 3.

It can also be easily seen that for each i = 2, . . . , t +1, Fi is Fi−1A-invariant and is centralized
by z.

We next define the sections Di by Di = Fi/Ker(Fi on Ẽi+1) for i = 2, . . . , t and claim that
they form an A-chain each of its sections is centralized by z, as desired.

We proceed from this point by assuming that we can prove the following two claims whose
proofs will follow later.

Claim 1. Assume that i � 2 and pi �= p. If Ei �= 1, then Di is a nontrivial Fi−1-invariant section
such that (Fi−1 on Ẽi) ≡w (Fi−1 on D̃i).

Claim 2. Assume that i � 2 and pi = p. If either i = 2 or Di−1 �= 1, then Ker(Fi on Ẽi+1) = 1,
Di = Fi �= 1 and (Fi−1 on Ẽi) ≡w (Fi−1 on F̃i).

We first prove the theorem in the case p1 �= p.
Now E1 = P1 and [E1, z]p−1 = [E1, z] �= 1. Then the faithful action of P1 on P̃2 =

[P̃2, [E1, z]] ⊕ C
P̃2

([E1, z]) forces that Ẽ2 �= 0, that is, P̃2 contains an irreducible ample E1〈z〉-
submodule. If p2 �= p, we apply Claim 1 to the action of E1〈z〉 on Ẽ2 and obtain that D2 is a
nontrivial section of E2. If p2 = p, we also have D2 = F2 �= 1 by Claim 2. Thus we have seen
that D2 �= 1 in any case.

Suppose that Di−1 �= 1 for some i � 3. Then Ei �= 1. Appealing again to Claims 1 and 2,
respectively, when pi �= p and pi = p, we see that Di is a nontrivial Fi−1-invariant section and
(Fi−1 on Ẽi) ≡w (Fi−1 on D̃i) for each i � 2. It follows that Di−1 = Fi−1/Ker(Fi−1 on D̃i)

normalizes Di = Fi/Ker(Fi on Ẽi+1) and Ker(Di−1 on Di) = 1 for each i = 3, . . . , t .
We also have Φ(Di) � Z(Di), Φ(Φ(Di)) = 1 and [Φ(Di),Di−1] = 1 for i = 2, . . . , t .
It remains to prove that (Di−1 on D̃i) is weakly Di−2-invariant for i = 4, . . . , t . Since (Pi−1

on P̃i) is weakly Pi−2-invariant, (Ei−1 on P̃i) is weakly Fi−2-invariant by Remark (a), that
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is, (Ei−1 on P̃i) ≡w (Ei−1 on P̃i)
x for each x ∈ Fi−2. Then Xi/Φ(Pi) = (Xi/Φ(Pi))x by Re-

mark (c) and so (Ei−1 on Ẽi) ≡w (Ei−1 on Ẽi)
x . Hence (Ei−1 on Ẽi) is weakly Fi−2-invariant.

This gives that (Fi−1 on Ẽi) is weakly Fi−2-invariant, too. As (Fi−1 on Ẽi) ≡w (Fi−1 on D̃i)

holds, it also follows that (Fi−1 on D̃i) is weakly Fi−2-invariant by Remark (b). Consequently
we have obtained that (Di−1 on D̃i) is weakly Di−2-invariant, proving the theorem when p1 �= p.

Finally we assume that p1 = p, and consider the chain P2, . . . ,Pt . Note that [P2, z] �= 1,
because otherwise [P1, z] = 1 by the three subgroup lemma. Since p2 �= p, the above argument
gives an A-Fitting chain D3, . . . ,Dt whose terms are all centralized by z. This completes the
proof of Theorem 3. �

We shall need the following fact in proving Claim 1.

Lemma 4. Assume pi �= p and let W be an irreducible submodule of P̃i+1|Ei
. If Φ(Ei) acts

nontrivially on W , then so does [Ei, z].

Proof. Suppose that W is an irreducible submodule of P̃i+1|Ei
on which Φ(Ei) acts nontriv-

ially and [Ei, z] acts trivially. Then there exists an EiA-submodule X of P̃i+1 such that W is
isomorphic to an irreducible Ei -submodule of X. Since X|Ei

is completely reducible, there
is a collection {U1, . . . ,Us} of homogeneous Ei -modules such that X = ⊕s

i=1 Ui . Assume
that U1 is a sum of isomorphic copies of W . Then Ker(Ei on X) = ⋂

a∈A Ker(Ei on U1)
a =⋂

a∈A Ker(Ei on W)a .
Put K = Ker(Φ(Ei) on X). K is an A-invariant normal subgroup of Ei . Furthermore, K

is Ei−1-invariant because [Φ(Ei),Ei−1] = 1. Set Ei = Ei/K and Ei = Ei/Ker(Ei on X).
Note that E′

i = Φ(Ei) since CEi/E
′
i
(Ei−1) = 0. Now Ei is nonabelian, because otherwise

E′
i = Φ(Ei) = K , which is not the case. It follows that V = Ei/Z(Ei) �= 0. Obviously we

have Z(Ei) ⊆ Z(Ei). On the other hand, if Z(Ei) = C = C/Ker(C on X), then [C,Ei] �
Ker(Ei on X)∩Φ(Ei) = 1, because Φ(Ei) = Φ(Ei/K) is faithful on X. Therefore C � Z(Ei),

that is, Z(Ei) = Z(Ei).
Also note that Ker(Ei on X) ⊂ Z(Ei): Because otherwise there is x ∈ Ker(Ei on X) \ Z(Ei)

and so there is y ∈ Ei such that 1 �= [x, y]. Now [x, y] is a nontrivial element of Φ(Ei) acting
trivially on X. This contradicts the fact that Φ(Ei) is faithful on X.

Thus Z(Ei) = Z(Ei)/Ker(Ei on X). We conclude that Ei/Z(Ei) and Ei/Z(Ei) are 〈z〉-
isomorphic modules. Since 〈z〉 is trivial on Ei , it is trivial on V also. An application of the three
subgroup lemma supplies that [Ei−1, z] is also trivial on V . It follows that [Ei−1, z] is trivial on
each of the Ei−1〈z〉-composition factors of V . Note that V is a nonzero quotient module of Ẽi .
Since Ẽi is a direct sum of ample irreducible Ei−1〈z〉-submodules, so is V , that is, [Ei−1, z]p−1

and hence [Ei−1, z] is nontrivial on V , a contradiction completing the proof of Lemma 4. �
Proof of Claim 1. We have Ei−1 �= 1 as [Ei,Ei−1] = Ei . Also Ker(Ei on Xi+1/Φ(Pi+1)) =
Ker(Ei on Ei+1) = Ker(Ei on Ẽi+1). Appealing to Remark (c) together with V = P̃i+1, G = Pi ,
L = Fi−1 and M = [Ei, z], we see that Ker(Ei on Ẽi+1) is Fi−1-invariant. This yields that
Di = Fi/Ker(Fi on Ẽi+1) is Fi−1-invariant, as Fi−1 normalizes Fi .

We know that Ẽi = ⊕l
j=1 Wij where Wi1, . . . ,Wil are irreducible ample Ei−1〈z〉-submodules.

Set Wi = Uj/Φ(Ei) for each j = 1, . . . , l. Since P̃i+1|E is completely reducible and Ei is

j i
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faithful on P̃i+1, there exists at least one irreducible component of P̃i+1|Ei
on which Uj acts

nontrivially. Let Nj denote the set of all such components of P̃i+1|Ei
.

There are two cases: Either

(I) there is at least one N in Nj on which Φ(Ei) acts trivially,

or

(II) there is no N in Nj on which Φ(Ei) acts trivially.

In the latter case, as an immediate consequence of Lemma 4, we have the following:

Let N be an irreducible component of Ẽi+1|Ei
. Then N ∈ Nj iff Φ(Ei) acts nontrivially on N .

Thus Uj is trivial on each irreducible component N of P̃i+1|Ei
lying outside Ẽi+1, because

otherwise N ∈ Nj implying that Φ(Ei) and hence [Ei, z] is nontrivial on N , a contradiction. It
follows that

1 = Ker(Uj on P̃i+1) = Ker(Uj on Ẽi+1) when (II) holds.

Now suppose that Ker(Uj on Ẽi+1) = 1 for each j = 1, . . . , s and Ker(Uj on Ẽi+1) �= 1 for
each j = s + 1, . . . , l.

For each j = s + 1, . . . , l, set Ωj = {f ∈ W ∗
ij

| there exists N in Nj on which Φ(Ei) acts
trivially and Ker(Uj on N)/Φ(Ei) ⊆ Kerf }. Now for each N in Nj on which Φ(Ei) acts triv-
ially, Ker(Uj on N)/Φ(Ei) is proper in Wij and hence is contained in a maximal subspace M .
Therefore Ωj �= {0}. Also Ωj is Ei−1〈z〉-invariant. This yields that 〈Ωj 〉 = W ∗

ij
, by the irre-

ducibility of W ∗
ij

as an Ei−1〈z〉-module.

Now for each j = 1, . . . , l, we set Kj = Ker(Uj on Ẽi+1). Then KjΦ(Ei)/Φ(Ei) ⊆ (Wij )0:
If not, then j ∈ {s +1, . . . , l} and there exist x ∈ Kj , f ∈ Ωj −CΩj

(z) such that f (xΦ(Ei)) �= 0.

By the definition of Ωj , we can find an irreducible submodule N of P̃i+1|Ei
on which Uj is

nontrivial, Φ(Ei) is trivial and Ker(Uj on N)/Φ(Ei) ⊆ Kerf . Then x /∈ Ker(Uj on N). As
x ∈ Ker(Uj on Ẽi+1), N lies outside Ẽi+1|Ei

, that is, [Ei, z]p−1 = [Ei, z] acts trivially on N .
Thus [Uj , z] is trivial on N and so f ∈ CΩj

(z), a contradiction.
Since Wij is an irreducible Ei−1〈z〉-module, Wij |Ei−1 decomposes into a direct sum of homo-

geneous Ei−1-modules which are permuted transitively by 〈z〉. Since [Ei−1, z]p−1 is nontrivial
on at least one of these components, it is nontrivial on all of them. It follows that [Ei−1, z]p−1

acts nontrivially on each irreducible component of Wij |Ei−1 for each j = 1, . . . , l.
Let Ωj denote the whole of W ∗

ij
when j ∈ {1, . . . , s}. Appealing to Theorem 1 for each j =

1, . . . , l together with the action of Ei−1〈z〉 on Wij and the corresponding Ωj , we see that
CWij

(z) � (Wij )0 and (Fi−1 on CWij
(z)/C(Wij

)0(z)) ≡w (Fi−1 on Wij ).
We shall now observe that for each j = 1, . . . , l, (Fi−1 on Wij ) ≡w (Fi−1 on CWij

(z)): If
pi−1 = p or [Z(Ei−1), z] is nontrivial on Wij , this holds by Lemma 1. Assume that pi−1 �= p

and [Z(Ei−1), z] � K = Ker(Ei−1 on Wij ). Since [Ei−1, z] is nontrivial on Wij and pi−1 is

odd, it can be easily seen that CWij
(z) �= 0. Put Ei−1 = Ei−1/K . As Φ(Ei−1) = Φ(Ei−1) �

Z(Ei−1〈z〉), Ei−1 is a central product of [Ei−1, z]〈z〉 and C (z). Then C (z) � Ei−1〈z〉
Ei−1 Ei−1
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and Wij |CEi−1
(z) is homogeneous. We have F i−1 � CEi−1

(z) yielding that (F i−1 on Wij ) ≡w

(F i−1 on CWij
(z)). Thus (Fi−1 on Wij ) ≡w (Fi−1 on CWij

(z)).
Now (Fi−1 on CWij

(z)) ≡w (Fi−1 on CWij
(z)/C(Wij

)0(z)) ≡w (Fi−1 on Wij ) holds, for

each j = 1, . . . , l. Set Lj = Ker(CUj
(z) on Ẽi+1). Notice that any nontrivial irreducible Fi−1-

submodule of CWij
(z)/C(Wij

)0(z) is Fi−1-isomorphic to an irreducible Fi−1-submodule of
CUj

(z)/Lj . Therefore any nontrivial irreducible Fi−1-submodule of Wij is Fi−1-isomorphic
to an irreducible Fi−1-submodule of CUj

(z)/Lj . On the other hand, any nontrivial irreducible
Fi−1-submodule of CUj

(z)/Lj is Fi−1-isomorphic to an irreducible Fi−1-submodule of CUj
(z)

and hence to an irreducible Fi−1-submodule of Wij . This shows that (Fi−1 on Wij ) ≡w

(Fi−1 on CUj
(z)/Lj ) for each j = 1, . . . , l.

As Ẽi = ⊕l
j=1 Wij and C

Ẽi
(z) = ⊕l

j=1 CWij
(z) = ⊕l

j=1 CUj
(z)Φ(Ei)/Φ(Ei), we have

(Fi−1 on Ẽi) ≡w (Fi−1 on CEi
(z)/Ker(CEi

(z) on Ẽi+1)). Notice that Di = CEi
(z)/Ker(CEi

(z)

on Ẽi+1). Hence (Fi−1 on Ẽi) ≡w (Fi−1 on Di) ≡w (Fi−1 on D̃i), because [Φ(Di),Fi−1] = 1.

Since CWij
(z) � (Wij )0 we have Fi = CEi

(z) � Ker(Ei on Ẽi+1) and so Di �= 1, completing the
proof of Claim 1. �
Proof of Claim 2. Suppose that pi = p for some i � 2. If i �= 2, assume that Di−1 �= 1.
Now Ker([Ei, z]p−1 on Ẽi+1) = Ker([Ei, z]p−1 on P̃i+1) = 1. Since Fi � [Ei, z]p−1, we have
Ker(Fi on Ẽi+1) = 1, that is Di = Fi .

We first consider the case i = 2. Then p2 = p and so p1 �= p. Since E1 = P1 and
[E1, z] �= 1, we see that Ẽ2 �= 0. Applying Theorem 2 to the action of E1〈z〉 on each irre-
ducible E1〈z〉-component of Ẽ2, we get [Ẽ2, z]p−1 �= 0. This yields that [E2, z]p−1 �= 1 and
so F2 = C[E2,z]p−1(z) �= 1. As F1 = 1, this completes the proof of Claim 2 when i = 2.

We next assume that i > 2. Now pi−1 �= p and Fi−1 = CEi−1(z). Since Di−1 �= 1, Fi−1 �= 1
and Ẽi �= 0. We apply Theorem 2 to the action of Ei−1〈z〉 on each irreducible Ei−1〈z〉-
component of Ẽi to get [Ẽi , z]p−1 �= 0 and (Fi−1 on Ẽi) ≡w (Fi−1 on [Ẽi , z]p−1). This
gives that (Fi−1 on Ẽi) ≡w (Fi−1 on [[Ẽi , z]p−1,Fi−1]) as [Ẽi , z]p−1 = [[Ẽi , z]p−1,Fi−1] ⊕
C[Ẽi ,z]p−1(Fi−1). Now (Fi−1 on Ẽi) ≡w (Fi−1 on F̃i) holds, because [Φ(Ei),Fi−1] = 1. This
finishes the proof of Claim 2. �
Proofs of theorems

Theorem A. Let A be an abelian group acting fixed point freely on a group G of odd order. If A

has squarefree exponent coprime to 6, then f (G) � �(A).

Proof. Set f = f (G). By Lemmas 8.1 and 8.2 in [2], there is an A-Fitting chain of length f

in G. Since A is nilpotent, it is a Carter subgroup of any semidirect product of it with a section
of G. Thus A acts fixed point freely on any section of this chain.

Hence once the following assertion referring only to A-Fitting chains is proved, the theorem
will follow immediately.

Let A be an abelian group of squarefree exponent coprime to 6, and let P1, . . . ,Pt be an
A-Fitting chain of a finite solvable group G such that Pi has odd order and A acts fixed point
freely on Pi for each i = 1, . . . , t . Then t � �(A).

We shall use induction on t . We may assume that P1 is an irreducible A-module. As A acts
fixed point freely on P1, there exists z ∈ A of prime order p such that [P1, z] �= 1. Then [P1, z] =
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P1 and so p1 �= p. Also p � 5. Theorem 3 applied to the chain P1, . . . ,Pt gives us an A-Fitting
chain D2, . . . ,Dt such that z centralizes each Di , for i = 2, . . . , t . Hence D2, . . . ,Dt is an A/〈z〉-
Fitting chain on each of its sections A/〈z〉 acts fixed point freely. By induction, it follows that
t − 1 � �(A) − 1. Then t � �(A), as desired. �
Lemma 5. Let A be a group acting on a Fitting chain P1,P2, . . . ,Pt where each Pi has odd
order, in such a way that A centralizes no nontrivial section of any Pi , i = 1,2, . . . , t . Assume
that A is nilpotent of order coprime to 6. Then t � 2�(A) − 1.

Proof. Let � = �(A). We prove that t � 2� − 1 by induction on �.
If � = 0 the statement is trivial and if 0 < � � 2, the statement is well known. Therefore we

may assume that � � 3.
If A is a q-group for some prime number q then the action is coprime. By [5] we have t � 2�

and, since 2� � 2� − 1, in this case the statement is proved.
We now suppose that there exist two distinct prime numbers q and r which divide the order

of A. Since A is nilpotent, there exist α,β ∈ A of order q and r respectively such that 〈α〉 and
〈β〉 are normal in A. Set B = 〈α,β〉. Let k be the biggest integer such that α and β centralize
P1, . . . ,Pk and suppose that [Pk+1, α] �= 1 (if [Pk+1, α] = 1 then by hypothesis [Pk+1, β] �= 1).
Therefore A/B acts on P1, . . . ,Pk and the induction hypothesis gives k � 2�−2 − 1. If t − k � 2
the statement is proved, since 2�−2 − 1 + 2 � 2� − 1. If t − k � 3 then, by Theorem 3 applied to
Pk+1, . . . ,Pt , there are sections Dk+3, . . . ,Dt such that each Di is centralized by α (or, respec-
tively, by β).

Since A/〈α〉 and Dk+3, . . . ,Dt satisfy the hypothesis, we have t − (k + 2) � 2�−1 − 1 and
therefore t � 2�−1 − 1 + 2�−2 − 1 + 2 � 2� − 1. �
Theorem 4. Let H be a group of order coprime to 6. If a Carter subgroup C of H admits a
normal complement G, then f (G) � 2�(C) − 1.

Proof. Set f = f (G). By Lemmas 8.1 and 8.2 in [2], there is a C-Fitting chain P1, . . . ,Pf .
Since C is a Carter subgroup of H with G ∩ C = 1, it centralizes no nontrivial section of G. By
Lemma 5, we obtain that f � 2�(C) − 1. �
Theorem B. Let C be a Carter subgroup of a group G. If G has order coprime to 6, then
f (G) � 2(2�(C) − 1).

Proof. Set f = f (G). We use induction on �(C). If �(C) = 0, then C = 1, G = 1 and so the
theorem follows. Assume that �(C) > 0. Fix a Carter subgroup C of G. There is an integer
k � 0 such that Fk(G) ∩ C = 1 and Fk+1(G) ∩ C �= 1. Put G = G/Fk+1(G). Since C is a Carter
subgroup of G and Fk+1(G) ∩ C �= 1, �(C) < �(C). So by induction

f (G) = f − k − 1 � 2
(
2�(C) − 1

)
.

Now C is a Carter subgroup of K = CFk(G) and Fk(G) is a normal complement to each
Carter subgroup of K . Thus k = f (Fk(G)) � 2�(C) − 1 by Theorem 4.

It follows that

f = 1 + k + (f − k − 1) � 1 + 2�(C) − 1 + 2
(
2�(C)−1 − 1

) = 2
(
2�(C) − 1

)
. �
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