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Abstract

By using the reduction technique to impulsive differential equations [1], we rigorously prove the

presence of chaos in dynamic equations on time scales (DETS). The results of the present study are

based on the Li-Yorke definition of chaos. This is the first time in the literature that chaos is obtained

for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.

Keywords: Li-Yorke chaos; Dynamic equations on time scales; Proximality; Frequent separation; Duff-
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1 Introduction

The concept of chaos has been one of the attractive topics among scientists since the studies of Poincaré

[12], Cartwright and Littlewood [21], Levinson [34], Lorenz [38] and Ueda [47]. Another subject that is

also popular is the theory of time scales, which is first presented by Hilger [26]. Both concepts have many

applications in various disciplines such as mechanics, electronics, neural networks, population models and

economics. See, for instance, [14, 16, 22, 23, 39, 41, 45, 46, 48] and the references therein.

Dynamic equations on time scales (DETS) have been extensively investigated in the literature [16, 31].

However, to the best of our knowledge, the presence of chaos has never been achieved in DETS. Motivated

by the deficiency of mathematical methods for the investigation of chaos in such equations, we suggest

the results of the present study.

The first mathematical definition of chaos was introduced by Li and Yorke [35] for discrete dynamical

systems in a compact interval of the real line. The presence of an uncountable scrambled set is one

of the main features of the Li-Yorke chaos. The original definition of Li and Yorke was extended to

dimensions greater than one by Marotto [40]. According to Marotto [40], a multidimensional continuously

differentiable map possesses generalized Li-Yorke chaos if it has a snap-back repeller. The existence of

Li-Yorke chaos in a spatiotemporal chaotic system was proved in [37] by means of Marotto’s Theorem,

and generalizations of Li-Yorke chaos to mappings in Banach spaces and complete metric spaces were

provided in [28, 43, 44]. It was shown by Kuchta [30] that if a map on a compact interval has a two

point scrambled set, then it possesses an uncountable scrambled set. Blanchard [15] proved that the
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presence of positive topological entropy implies chaos in the sense of Li-Yorke. Moreover, Li-Yorke chaos

on several spaces in connection with the cardinality of its scrambled sets was studied within the scope of

the paper [24]. Besides, Li-Yorke sensitivity, which links the Li-Yorke chaos with the notion of sensitivity,

was studied in the paper [11]. The studies [3, 4, 5, 7, 8, 9, 10] were concerned with the extension of

chaos in continuous-time systems that possess asymptotically stable and hyperbolic equilibria as well as

orbitally stable limit cycles. It was found in these papers that the solutions admit the same type of chaos

as the perturbations. The paper [5] deals with the general technique of dynamical synthesis, which was

developed in [17]–[20]. In the present study, we develop the concept of Li-Yorke chaos for DETS and

prove its existence rigorously. Our results are appropriate to obtain chaotic DETS with arbitrary high

dimensions.

Throughout the paper, we will denote by R, Z and N the sets of real numbers, integers and natural

numbers, respectively. In this study, we consider the following equation,

y∆(t) = Ay(t) + f(t, y(t)) + g(t, ζ), t ∈ T0, (1.1)

where A is a constant n× n real valued matrix, the function f : T0 ×R
n → R

n is rd-continuous and the

function g(t, ζ) is defined through the equation g(t, ζ) = ζk for t ∈ [θ2k−1, θ2k], k ∈ Z, such that ζ = {ζk}

is a sequence generated by the map

ζk+1 = F (ζk), (1.2)

where ζ0 ∈ Λ, F : Λ → Λ is a continuous function and Λ is a compact subset of Rn. In equation (1.1)

the time scale T0 is defined as T0 =
⋃∞
k=−∞[θ2k−1, θ2k] in which {θk} is a strictly increasing sequence of

real numbers such that |θk| → ∞ as |k| → ∞ and
∑

−∞(θ2k − θ2k−1) = ∞,
∑∞

(θ2k − θ2k−1) = ∞.

In the present paper, we investigate the existence of chaos in the dynamics of equation (1.1). The

system under discussion is a hybrid one, since it combines the continuous dynamics on the time scale

with the discrete equation used in the right hand side of the system. We theoretically prove that chaos

exists in (1.1) provided that the map (1.2) is chaotic. For that purpose, we make use of the reduction

technique to impulsive differential equations, which was presented by Akhmet and Turan [1]. As far

as we know, there is no paper on chaos in dynamics on time scales. The reason is that the dynamics

is essentially non-autonomous and it is difficult to verify the ingredients of chaos for unspecified time

scales. That is why we utilize the time scale introduced in the papers [1, 2] and the method of reduction

of the dynamics to impulsive differential equations [1].

The rest of the paper is organized as follows. In Section 2, some preliminary results as well as basic

concepts about DETS are mentioned. Section 3 is devoted to the bounded solutions of (1.1). In Section

4, we give the description of the chaos of equation (1.1) and prove its presence rigorously. An example
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concerning Duffing equations on a time scale is presented in Section 5 to support the theoretical results.

Finally, some concluding remarks are given in Section 6.

2 Preliminaries

The basic concepts that are needed in the present paper about differential equations on time scales are

as follows [16, 31, 32, 33]. A time scale is a nonempty closed subset of R. On a time scale T, the forward

and backward jump operators are defined as σ(t) = inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t} ,

respectively. We say that a point t ∈ T is right-scattered if σ(t) > t and right-dense if σ(t) = t. In a

similar way, if ρ(t) < t, then t ∈ T is called left-scattered, and otherwise it is called left-dense. Besides,

a function h : T×R
n → R

n is called rd-continuous if it is continuous at each (t, u) ∈ T×R
n with right-

dense t, and the limits lim
(r,ν)→(t−,u)

h(r, ν) = h(t−, u) and lim
ν→u

h(t, ν) = h(t, u) exist at each (t, u) with

left-dense t. At a right-scattered point t ∈ T, the ∆-derivative of a continuous function ϑ is defined as

ϑ∆ (t) =
ϑ (σ (t))− ϑ (t)

σ (t)− t
. On the other hand, at a right-dense point t, we have ϑ∆ (t) = lim

r→t

ϑ (t)− ϑ (r)

t− r

provided that the limit exists.

It is worth noting that on the time scale T0 used in system (1.1) the points θ2k−1, k ∈ Z, are

left-scattered and right-dense, and the points θ2k, k ∈ Z, are right-scattered and left-dense. Moreover,

σ(θ2k) = θ2k+1, ρ(θ2k+1) = θ2k, k ∈ Z, and σ(t) = ρ(t) = t for any t ∈ T0 except at the points θk, k ∈ Z.

Suppose that the time scale T0 used in the description of equation (1.1) satisfies the ω−property.

That is, there exists a number ω > 0 such that t+ ω ∈ T0 whenever t ∈ T0. In this case, there exists a

natural number p such that δk+p = δk for all k ∈ Z, where δk = θ2k+1 − θ2k [1]. Suppose that p is the

minimal among those numbers.

We assume without loss of generality that θ−1 < 0 < θ0. Define on the set T′
0 = T0 \

⋃∞
k=−∞ {θ2k−1}

the ψ−substitution [1] as

ψ(t) =





t−
∑

0<θ2k<t

δk, t ≥ 0,

t+
∑

t≤θ2k<0

δk, t < 0,
. (2.3)

The function ψ(t) is one-to-one, ψ(0) = 0, ψ(T′
0) = R and lim

t→∞, t∈T
′

0

ψ(t) = ∞. According to the results

of the paper [1], dψ(t)/dt = 1, t ∈ T
′
0, and dψ−1(s)/ds = 1 provided that s 6= sk, k ∈ Z, where

ψ−1(s) =






s+
∑

0<sk<s

δk, s ≥ 0,

s−
∑

s≤sk<0

δk, s < 0,
(2.4)

and the sequence {sk} , k ∈ Z, is defined through the equation sk = ψ(θ2k). The function ψ−1 is piecewise
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continuous with discontinuities of the first kind at the points sk, k ∈ Z, such that ψ−1(sk+)−ψ−1(sk) =

δk, where ψ−1(sk+) = lim
s→s+

k

ψ−1(s), the sequence {sk} is (ψ(ω), p)−periodic, i.e., sk+p = sk + ψ(ω) for

all k ∈ Z, and ψ(t + ω) = ψ(t) + ψ(ω), t ∈ T
′
0. Moreover, if a function h(t) is ω−periodic on T0, then

h(ψ−1(s)) is ψ(ω)−periodic, and vice versa.

Let us denote by Crd(T0) the set of all functions which are rd-continuous on T0, and let C1
rd(T0) ⊂

Crd(T0) be the set of all continuously differentiable functions on T0, assuming that the functions have a

one sided derivative at θk, k ∈ Z. On the other hand, we say that a function defined on R is an element

of the set PC0 if it is left-continuous on R and continuous on R \
⋃∞
k=−∞ {sk} , and it has discontinuities

of the first kind at the points sk, k ∈ Z. Moreover, a function h : R → R
n belongs to the set PC1

0 if

both h and h′ are elements of PC0, where h′(sk) = lim
s→s−

k

h(s)− h(sk)

s− sk
, k ∈ Z. It was shown by Akhmet

and Turan [1] that a function ϑ(t) belongs to Crd(T0)
(
C1
rd(T0)

)
if and only if ϑ(ψ−1(s)) belongs to PC0

(
PC1

0

)
.

In accordance with the equation y∆(θ2k) =
y(θ2k+1)− y(θ2k)

θ2k+1 − θ2k
, k ∈ Z, system (1.1) can be written as

y′(t) = Ay(t) + f(t, y(t)) + g(t, ζ), t ∈ T0,

y(θ2k+1) = δkAy(θ2k) + f(θ2k, y(θ2k))δk + ζkδk + y(θ2k).
(2.5)

Applying the transformation s = ψ(t) to (2.5) we obtain the following impulsive system,

x′(s) = Ax(s) + f(ψ−1(s), x(s)) + g(ψ−1(s), ζ), s 6= sk,

∆x|s=sk = δkAx(sk) + f(ψ−1(sk), x(sk))δk + ζkδk,
(2.6)

where x(s) = y(ψ−1(s)), ∆x|s=sk = x(sk+)− x(sk), k ∈ Z, and x(sk+) = lim
s→s+

k

x(s).

In what follows, we will make use of the usual Euclidean norm for vectors and the norm induced by

the Euclidean norm for square matrices [27].

The following conditions are required throughout the paper.

(C1) det(I + δkA) 6= 0 for all k ∈ Z, where I is the n× n identity matrix;

(C2) All eigenvalues of the matrix eψ(ω)AΠp−1
j=0 (I + δjA) lie inside the unit circle;

(C3) There exist positive numbers Mf and MF such that sup
t∈T0, y∈Rn

‖f(t, y)‖ ≤ Mf and sup
η∈Λ

‖F (η)‖ ≤

MF ;

(C4) There exists a positive number Lf such that ‖f(t, y1)− f(t, y2)‖ ≤ Lf ‖y1 − y2‖ for all t ∈ T0 and

y1, y2 ∈ R
n.
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Let us denote by X(s, r) the transition matrix of the linear homogeneous system

x′(s) = Ax(s), s 6= sk,

∆x|s=sk = δkAx(sk).
(2.7)

Under the conditions (C1) and (C2) there exist positive numbers N and λ such that ‖X(s, r)‖ ≤

Ne−λ(s−r) for s ≥ r [6, 42].

The following conditions are also needed.

(C5) NLf

(
1

λ
+

pδ̄

1− e−λψ(ω)

)
< 1, where δ̄ = max

0≤k≤p−1
δk;

(C6) −λ+NLf +
p

ψ(ω)
ln
(
1 +NLf δ̄

)
< 0;

(C7) f(t+ ω, y) = f(t, y) for all (t, y) ∈ T0 × R
n.

The next section is devoted to the bounded solutions of system (1.1).

3 Bounded solutions

Under the conditions (C1)− (C5), one can verify by using the results of [6, 42] that for a fixed sequence

ζ = {ζk} , k ∈ Z, there exists a unique bounded on R solution φζ(s) of (2.6), which satisfies the relation

φζ(s) =

∫ s

−∞
X(s, r)

[
f
(
ψ−1(r), φζ (r)

)
+ g

(
ψ−1(r), ζ

)]
dr

+
∑

−∞<sk<s

X(s, sk+)
[
f
(
ψ−1(sk), φζ(sk)

)
+ ζk

]
δk.

(3.8)

Moreover, sup
s∈R

‖φζ(s)‖ ≤ K0, where K0 = N(Mf + MF )
( 1

λ
+

pδ̄

1− e−λψ(ω)

)
. Therefore, for a fixed

sequence ζ = {ζk} , the function ϕζ(t) = φζ(ψ(t)) satisfying ϕζ(θ2k+1) = φζ(sk+), k ∈ Z, is the unique

solution of (2.5), and hence of (1.1), which is bounded on T0 such that sup
t∈T0

‖ϕζ(t)‖ ≤ K0.

We say that the bounded solution ϕζ(t) attracts a solution y(t) of (1.1) if ‖y(t)− ϕζ(t)‖ → 0 as

t → ∞, t ∈ T0. The attractiveness feature of the bounded solutions of (1.1) is mentioned in the next

assertion.

Lemma 3.1 If the conditions (C1) − (C6) are valid, then for a fixed sequence ζ, the bounded solution

ϕζ(t) attracts all other solutions of (1.1).

Proof. Consider an arbitrary solution y(t), y(t0) = y0, of (1.1) for some t0 ∈ T0 and y0 ∈ R
n. Assume

without loss of generality that t0 6= θ2k−1 for any k ∈ Z. Let s0 = ψ(t0) and x(s) = y(ψ−1(s)). The

relation

x(s)− φζ(s) = X(s, s0)(y0 − φζ(s
0)) +

∫ s

s0

[
f
(
ψ−1(r), x(r)

)
− f

(
ψ−1(r), φζ(r)

)]
dr

5



+
∑

s0≤sk<s

X(s, sk+)
[
f
(
ψ−1(sk), x(sk)

)
− f

(
ψ−1(sk), φζ(sk)

)]
δk

implies for s ≥ s0 that

‖x(s)− φζ(s)‖ ≤ Ne−λ(s−s
0)
∥∥y0 − φζ(s

0)
∥∥+

∫ s

s0
NLfe

−λ(s−r) ‖x(r) − φζ(r)‖ dr

+
∑

s0≤sk<s

NLf δ̄e
−λ(s−sk) ‖x(sk)− φζ(sk)‖ .

Applying the Gronwall-Bellman Lemma for piecewise continuous functions [6] to the last inequality, one

can obtain that

‖x(s)− φζ(s)‖ ≤ N(1 +NLf δ̄)
p
∥∥y0 − φζ(s

0)
∥∥ e[−λ+NLf+p ln(1+NLf δ̄)/ψ(ω)](s−s0), s ≥ s0.

Therefore, we have for t ≥ t0, t ∈ T0, that

‖y(t)− ϕζ(t)‖ ≤ N(1 +NLf δ̄)
p
∥∥y0 − ϕζ(t

0)
∥∥ e[−λ+NLf+p ln(1+NLf δ̄)/ψ(ω)](ψ(t)−ψ(t0)).

Consequently, ‖y(t)− ϕζ(t)‖ → 0 as t→ ∞, t ∈ T0. �

In the next section, we will deal with the presence of chaos in system (1.1).

4 The chaotic dynamics

The map (1.2) is called Li-Yorke chaotic on Λ if [11, 13, 29, 35, 36]: (i) For every natural number p0, there

exists a p0−periodic point of F in Λ; (ii) There is an uncountable set S ⊂ Λ, the scrambled set, containing

no periodic points, such that for every ζ1, ζ2 ∈ S with ζ1 6= ζ2, we have lim sup
k→∞

∥∥F k(ζ1) − F k(ζ2)
∥∥ > 0

and lim inf
k→∞

∥∥F k(ζ1) − F k(ζ2)
∥∥ = 0; (iii) For every ζ1 ∈ S and a periodic point ζ2 ∈ Λ, we have

lim sup
k→∞

∥∥F k(ζ1)− F k(ζ2)
∥∥ > 0.

Let us denote by Θ the set of all sequences ζ = {ζk} , k ∈ Z, obtained by equation (1.2). A pair of

sequences ζ = {ζk} , ζ̃ =
{
ζ̃k

}
∈ Θ is proximal if lim inf

k→∞

∥∥ζk − ζ̃k
∥∥ = 0. Moreover, the pair is frequently

separated if lim sup
k→∞

∥∥ζk − ζ̃k
∥∥ > 0.

We say that a pair ϕζ(t), ϕζ̃(t) of bounded solutions of (1.1) is proximal if for an arbitrary small real

number ǫ > 0 and arbitrary large natural number E, there exists an integerm such that
∥∥ϕζ(t)−ϕζ̃(t)

∥∥ <

ǫ for all t ∈ [θ2m−1, θ2(m+E)]∩T0. On the other hand, the pair ϕζ(t), ϕζ̃(t) is frequently (ǫ0,∆)-separated

if there exist numbers ǫ0 > 0, ∆ > 0 and infinitely many disjoint intervals Jq ⊂ T0, q ∈ N, each with a

length no less than ∆, such that
∥∥ϕζ(t)−ϕζ̃(t)

∥∥ > ǫ0 for each t from these intervals. Furthermore, a pair

ϕζ(t), ϕζ̃(t) of solutions of (1.1) is called a Li-Yorke pair if it is proximal and frequently (ǫ0,∆)-separated

for some positive numbers ǫ0 and ∆.
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Let A be the collection of all bounded solutions ϕζ(t) of (1.1) such that ζ ∈ Θ. The description of

Li-Yorke chaos for system (1.1) is as follows.

Definition 4.1 System (1.1) is called Li-Yorke chaotic if:

(i) There exists an mω−periodic solution of (1.1) for each m ∈ N;

(ii) There exists an uncountable set Σ ⊂ A , the scrambled set, which does not contain any periodic

solution, such that any pair of different solutions of (1.1) inside Σ is a Li-Yorke pair;

(iii) For any ϕζ(t) ∈ Σ and any periodic solution ϕζ̂(t) ∈ A , the pair ϕζ(t), ϕζ̂(t) is frequently (ǫ0,∆)-

separated for some positive numbers ǫ0 and ∆.

One can verify that the sequence {κk} defined through the equation κk = θ2k − θ2k−1, k ∈ Z, is

p-periodic. In what follows, we will denote κ = min
0≤k≤p−1

κk and κ = max
0≤k≤p−1

κk. Moreover, let i((a0, b0))

be the number of the terms of the sequence {sk} that belong to the interval (a0, b0), where a0, b0 ∈ R

with a0 < b0. One can verify that i((a0, b0)) ≤ p+
p

ψ(ω)
(b0 − a0).

The next assertion is about the proximality feature of bounded solutions of equation (1.1).

Lemma 4.1 Suppose that the conditions (C1) − (C6) are fulfilled. If a pair of sequences ζ, ζ̃ ∈ Θ is

proximal, then the same is true for the pair ϕζ(t), ϕζ̃(t) ∈ A .

Proof. Set R1 = 2N(Mf +MF )
( 1

λ
+

pδ̄

1− e−λψ(ω)

)
and α = λ −NLf −

p

ψ(ω)
ln(1 +NLf δ̄). Suppose

that γ is a real number which satisfies the inequality

γ ≥ 1 +N
( 1

λ
+

δ̄p

1− e−λψ(ω)

)(
1 +

NLf(1 +NLf δ̄)
p

α
+
NLf δ̄p(1 +NLf δ̄)

p

1− e−αψ(ω)

)
.

Fix an arbitrary small number ǫ > 0 and an arbitrary large natural number E such that

E ≥ 1

ακ
ln
(γR1(1 +NLf δ̄)

p

ǫ

)
.

Since the pair ζ, ζ̃ is proximal, there exists an integer k0 such that
∥∥∥g

(
t, ζ

)
− g

(
t, ζ̃

)∥∥∥ < ǫ/γ for t ∈

[θ2k0−1, θ2(k0+2E)] ∩ T0. In this case,
∥∥∥g

(
ψ−1(s), ζ

)
− g

(
ψ−1(s), ζ̃

)∥∥∥ < ǫ/γ for s ∈ (sk0−1, sk0+2E ].

The bounded solutions φζ(s) = ϕζ(ψ
−1(s)) and φζ̃(s) = ϕζ̃(ψ

−1(s)) of (2.6) satisfy the relation

φζ(s)− φζ̃(s) =

∫ s

−∞
X(s, r)

[
f
(
ψ−1(r), φζ (r)

)
− f

(
ψ−1(r), φζ̃ (r)

)

+g
(
ψ−1(r), ζ

)
− g

(
ψ−1(r), ζ̃

)]
dr

+
∑

−∞<sk<s

X(s, sk+)
[
f
(
ψ−1(sk), φζ(sk)

)
− f

(
ψ−1(sk), φζ̃(sk)

)
+ ζk − ζ̃k

]
δk.

7



Thus, for s ∈ (sk0−1, sk0+2E ], we have that

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ ≤ R1e

−λ(s−sk0−1) +
Nǫ

γλ

(
1− e−λ(s−sk0−1)

)

+
Nδ̄pǫ

γ(1− e−λψ(ω))

(
1− e−λ(s−sk0−1+ψ(ω))

)

+

∫ s

sk0−1

NLfe
−λ(s−r)

∥∥∥φζ(r)− φζ̃(r)
∥∥∥dr

+
∑

sk0−1<sk<s

NLf δ̄e
−λ(s−sk)

∥∥∥φζ(sk)− φζ̃(sk)
∥∥∥.

(4.9)

Let us define the functions u(s) = eλs
∥∥∥φζ(s)− φζ̃(s)

∥∥∥ and v(s) = β1 + β2e
λs, where

β1 = R1e
λsk0−1 − Nǫ

γλ
eλsk0−1 − Nδ̄pǫ

γ(1− e−λψ(ω))
eλ(sk0−1−ψ(ω))

and

β2 =
Nǫ

γ

(
1

λ
+

δ̄p

1− e−λψ(ω)

)
.

One can confirm by means of (4.9) that

u(s) ≤ v(s) +

∫ s

sk0−1

NLfu(r)dr +
∑

sk0−1<sk<s

NLf δ̄u(sk).

It can be shown by applying the analogue of the Gronwall’s Lemma for piecewise continuous functions

that

u(s) ≤ v(s) +

∫ s

sk0−1

NLf (1 +NLf δ̄)
i((r,s))eNLf(s−r)v(r)dr

+
∑

sk0−1<sk<s

NLf δ̄(1 +NLf δ̄)
i((sk,s))eNLf(s−sk)v(sk).

Accordingly, the inequality

u(s) ≤ β1(1 +NLf δ̄)
pe(λ−α)(s−sk0−1) + β2e

λs

+
NLfβ2(1 +NLf δ̄)

p

α
eλs

(
1− e−α(s−sk0−1)

)

+
NLf δ̄pβ2(1 +NLf δ̄)

p

1− e−αψ(ω)
eλs

(
1− e−α(s−sk0−1+ψ(ω))

)
.

is valid. Therefore,

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ < R1(1 +NLf δ̄)

pe−α(s−sk0−1)

+
Nǫ

γ

(
1

λ
+

δ̄p

1− e−λψ(ω)

)(
1 +

NLf(1 +NLf δ̄)
p

α
+
NLf δ̄p(1 +NLf δ̄)

p

1− e−αψ(ω)

)

8



for s ∈ (sk0−1, sk0+2E ].

Suppose that s belongs to the interval (sk0−1+E , sk0+2E ]. Because the number E is sufficiently large

such that E ≥ 1

ακ
ln
(γR1(1 +NLf δ̄)

p

ǫ

)
and s− sk0−1 > Eκ, we have

R1(1 +NLf δ̄)
pe−α(s−sk0−1) <

ǫ

γ
.

Hence,

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ <

ǫ

γ
+
Nǫ

γ

(
1

λ
+

δ̄p

1− e−λψ(ω)

)(
1 +

NLf (1 +NLf δ̄)
p

α
+
NLf δ̄p(1 +NLf δ̄)

p

1− e−αψ(ω)

)

≤ ǫ.

The last inequality yields
∥∥∥ϕζ(t)− ϕζ̃(t)

∥∥∥ < ǫ for t ∈ [θ2(k0+E)−1, θ2(k0+2E)] ∩ T0. Consequently, the

couple ϕζ(t), ϕζ̃(t) is proximal. �

The frequent separation feature of the bounded solutions of (1.1) is presented in the next lemma.

Lemma 4.2 Under the conditions (C1) − (C5), if a pair of sequences ζ, ζ̃ ∈ Θ is frequently separated,

then the pair of solutions ϕζ(t), ϕζ̃(t) ∈ A is frequently (ǫ0,∆)-separated for some positive numbers ǫ0

and ∆.

Proof. Because the pair of sequences ζ, ζ̃ is frequently separated, there exists a positive number ǭ0 and

a sequence {kq} of integers satisfying kq → ∞ as q → ∞ such that
∥∥∥ζkq − ζ̃kq

∥∥∥ > ǭ0 for each q ∈ N.

Let us fix a natural number q. For s ∈ (skq−1, skq ], the solutions φζ(s) = ϕζ(ψ
−1(s)) and φζ̃(s) =

ϕζ̃(ψ
−1(s)) of (2.6) satisfy the relations

φζ(s) = φζ(skq−1+) +

∫ s

skq−1

[Aφζ(r) + f(ψ−1(r), φζ (r)) + ζkq ]dr

and

φζ̃(s) = φζ̃(skq−1+) +

∫ s

skq−1

[Aφζ̃(r) + f(ψ−1(r), φζ̃ (r)) + ζ̃kq ]dr,

respectively. Therefore, one can obtain that

∥∥∥φζ(skq )− φζ̃(skq )
∥∥∥ > ǭ0κ−

∥∥∥φζ(skq−1+)− φζ̃(skq−1+)
∥∥∥−

∫ skq

skq−1

(‖A‖+ Lf )
∥∥∥φζ(r) − φζ̃(r)

∥∥∥ dr

≥ ǭ0κ− [1 + (‖A‖ + Lf)κ] sup
s∈(skq−1,skq ]

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ .
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The last inequality implies that

sup
s∈(skq−1,skq ]

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ >

ǭ0κ

2 + (‖A‖+ Lf )κ
.

Define the number

∆ = min

{
κ

2
,

ǭ0κ

4[2 + (‖A‖+ Lf )κ](K0 ‖A‖ +Mf +MF )

}
.

At first, suppose that sup
s∈(skq−1,skq ]

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ =

∥∥∥φζ(η)− φζ̃(η)
∥∥∥ for some η ∈ (skq−1, skq ], and let

νq =





η, if η ≤ (skq−1 + skq )/2,

η −∆, if η > (skq−1 + skq )/2,
.

It can be verified for s ∈ J̃q = [νq, νq +∆] that

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ ≥

∥∥∥φζ(η) − φζ̃(η)
∥∥∥ −

∣∣∣∣
∫ s

η

‖A‖
∥∥∥φζ(r) − φζ̃(r)

∥∥∥ dr
∣∣∣∣

−
∣∣∣∣
∫ s

η

∥∥∥f(ψ−1(r), φζ (r)) − f(ψ−1(r), φζ̃ (r))
∥∥∥ dr

∣∣∣∣ −
∣∣∣∣
∫ s

η

∥∥ηkq − η̃kq
∥∥ dr

∣∣∣∣

>
ǭ0κ

2[2 + (‖A‖+ Lf )κ]
.

On the other hand, the inequality
∥∥∥φζ(s)− φζ̃(s)

∥∥∥ >
ǭ0κ

2[2 + (‖A‖+ Lf )κ]
is true also for s ∈ J̃q =

(skq−1, skq−1 +∆] in the case that sup
s∈(skq−1,skq ]

∥∥∥φζ(s)− φζ̃(s)
∥∥∥ =

∥∥∥φζ(skq−1+)− φζ̃(skq−1+)
∥∥∥ .

Thus,
∥∥∥ϕζ(t)− ϕζ̃(t)

∥∥∥ > ǫ0 for each t from the intervals Jq, q ∈ N, where ǫ0 =
ǭ0κ

2[2 + (‖A‖+ Lf)κ]

and Jq = ψ−1(J̃q). Consequently, the pair ϕζ(t), ϕζ̃(t) ∈ A is frequently (ǫ0,∆)-separated. �

The main result of the present study is mentioned in the following theorem.

Theorem 4.1 Assume that the conditions (C1)−(C7) are fulfilled. If the map (1.2) is Li-Yorke chaotic

on Λ, then system (1.1) is chaotic in the sense of Definition 4.1.

Proof. Suppose that ζ = {ζk} is a p0−periodic solution of (1.2) for some p0 ∈ N. In this case, the function

g(t, ζ), which is used in the right hand side of equation (1.1), is mω−periodic, where m = lcm {p0, p} /p.

Making use of the conditions (C5) and (C7), one can verify that the bounded solution ϕζ(t) of (1.1) is

mω−periodic. Therefore, (1.1) possesses an mω−periodic solution for each m ∈ N.

Let us denote by Σ the set consisting of bounded solutions ϕζ(t) of (1.1) for which the initial value

ζ0 of the sequence ζ = {ζk} belongs to the scrambled set S of the map (1.2). Because the set S is

uncountable, Σ is also uncountable. Moreover, Σ does not contain any periodic solutions, since no

periodic points of F take place inside S.
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According to the Lemmas 4.1 and 4.2, any pair of different solutions inside Σ is a Li-Yorke pair, i.e.

Σ is a scrambled set. Besides, Lemma 4.2 implies that for any solution ϕζ(t) ∈ Σ and any periodic

solution ϕζ̂(t) ∈ A , the pair ϕζ(t), ϕζ̂(t) is frequently (ǫ0,∆)-separated for some positive numbers ǫ0

and ∆. Consequently, system (1.1) is Li-Yorke chaotic. �

In the next section, a Duffing equation on a time scale will be utilized to illustrate the theoretical

results.

5 An example

Let us take into account the following forced Duffing equation,

y∆∆(t) + 5y∆(t) +
35

2
y(t) + 0.02y3(t) = 0.1 cos

(π
3
t
)
+ g(t, ζ), t ∈ T0, (5.10)

where T0 =
⋃∞
k=−∞[θ2k−1, θ2k] and θk = 3k +

1

2

(
1 + (−1)k

)
, k ∈ Z. The function g(t, ζ) is defined

through the equation g(t, ζ) = ζk for t ∈ [θ2k−1, θ2k], k ∈ Z, in which the sequence ζ = {ζk} , ζ0 ∈ [0, 1],

is generated by the logistic map

ζk+1 = 3.9ζk(1− ζk). (5.11)

The time scale T0 satisfies the ω-property with ω = 6, and one can confirm that ψ(ω) = 4 and δk = 2 for

all k ∈ Z, where δk = θ2k+1 − θ2k. According to the results of the paper [35], the map (5.11) possesses

Li-Yorke chaos. It is worth noting that the unit interval [0, 1] is invariant under the iterations of the map

[25].

By using the variables y1 = y and y2 = y∆, equation (5.10) can be reduced to the system

y∆1 (t) = y2(t),

y∆2 (t) = −35

2
y1(t)− 5y2(t)− 0.02y31(t) + 0.1 cos

(π
3
t
)
+ g(t, ζ),

(5.12)

which is in the form of (1.1), where

A =




0 1

−35

2
−5




and

f(t, y1, y2) =




0

−0.02y31 + 0.1 cos
(π
3
t
)


 .
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One can show that

eAt = e−
5
2
tQ




cos
(

3
√
5

2 t
)

− sin
(

3
√
5

2 t
)

sin
(

3
√
5

2 t
)

cos
(

3
√
5

2 t
)


Q−1,

where

Q =




0 1

3
√
5

2
−5

2


 ,

and the eigenvalues of the matrix e4A(I + 2A) are inside the unit circle, where I is the 2 × 2 identity

matrix.

Due to the fact that the coefficient of the nonlinear term y31(t) in (5.12) is sufficiently small, it can

be numerically verified for ζ0 ∈ [0, 1] that the bounded solutions of system (5.12) lie inside the region

D =
{
(y1, y2) ∈ R

2 : −0.01 ≤ y1 ≤ 0.07,−0.12 ≤ y2 ≤ 0.07
}
. Therefore, it is reasonable to consider the

dynamics of (5.12) inside D .

The conditions (C5) and (C6) hold for (5.12) with N = 193, λ = 1.6, p = 1, δ̄ = 2 and Lf = 0.000294.

In accordance with Theorem 4.1, system (5.12) is Li-Yorke chaotic. It is worth noting that the chaoticity

of the logistic map (5.11) gives rise to the presence of chaos in (5.12). Moreover, Lemma 3.1 implies that

for a fixed solution ζ = {ζk} of (5.11) the unique bounded solution of (5.12) attracts all other solutions

of the system.

Let us use the solution ζ = {ζk} of (5.11) with ζ0 = 0.19 in system (5.12). We depict in Figure 1 the y1-

coordinate of the solution of (5.12) corresponding to the initial data y1(0) = 0.019 and y2(0) = −0.004.

Figure 1 supports the result of Theorem 4.1 such that system (5.12) possesses chaos. Moreover, the

trajectory of the same solution in the y1−y2 plane is represented in Figure 2, which reveals the existence

of a chaotic attractor in the dynamics of (5.12).

0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

t

y 1

Figure 1: The chaotic behavior in the solution of system (5.12).

6 Conclusion

We rigorously prove the existence of chaos in dynamic equations on time scales, where the right hand side

of the equations depends on a chaotic map. The reduction technique to impulsive differential equations

presented in the paper [1] is used in our investigations. A mathematical description of chaos in the sense
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Figure 2: The chaotic trajectory of system (5.12).

of Li-Yorke is provided for DETS, and the ingredients of the Li-Yorke chaos, proximality and frequent

separation, are theoretically proved. The results can be used to obtain chaotic mechanical systems and

electrical circuits on time scales without any restriction in the dimension.
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