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Abstract

In this work, we apply the adaptive discontinuous Galerkin (DGAFEM) method to the convec-
tion dominated non-linear, quasi-stationary diffusion-convection-reaction equations. We propose
an efficient preconditioner using a matrix reordering scheme to solve the sparse linear systems
iteratively arising from the discretized non-linear equations. Numerical examples demonstrate
effectiveness of the DGAFEM to damp the spurious oscillations and resolve well the sharp layers
occurring in convection dominated non-linear equations.
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1. Introduction

Many engineering problems such as chemical reaction processes, heat conduction, nuclear
reactors, population dynamics etc. are governed by coupled convection-diffusion-reaction partial
differential equations (PDEs) with non-linear source or sink terms. It is a significant challenge to
solve such PDEs numerically when they are convection/reaction-dominated. As a model prob-
lem, we consider the coupled quasi-stationary equations arising from the time discretization of
time-dependent non-linear diffusion-convection-reaction equations (Bause & Schwegler, 2012)

αui − εi∆ui + bi · ∇ui + ri(u) = fi in Ωi, (1a)

ui = gD
i on ΓD

i , (1b)

εi∇ui · n = gN
i on ΓN

i , i = 1, . . . ,m (1c)

with Ωi are bounded, open, convex domains in R2 with boundaries ∂Ωi = ΓD
i ∪ ΓN

i , ΓD
i ∩ ΓN

i = ∅,

0 < εi � 1 are the diffusivity constants, fi ∈ L2(Ω) are the source functions, bi ∈
(
W1,∞(Ω)

)2
are
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the velocity fields, gD
i ∈ H3/2(ΓD

i ) are the Dirichlet boundary conditions, gN
i ∈ H1/2(ΓN

i ) are the
Neumann boundary conditions, and u(x) = (u1, . . . , um)T and n denote the vector of unknowns
and normal vector to the boundary, respectively. The coefficients of the linear reaction terms,
α > 0, stand for the temporal discretization, corresponding to 1/∆t, where ∆t is the discrete
time-step. Moreover, we assume that the non-linear reaction terms are bounded, locally Lipschitz
continuous and monotone, i.e. satisfy for any s, s1, s2 ≥ 0, s, s1, s2 ∈ R the following conditions
(Bause & Schwegler, 2012)

|ri(s)| ≤ C, C > 0 (2a)
‖ri(s1) − ri(s2)‖L2(Ω) ≤ L‖s1 − s2‖L2(Ω), L > 0 (2b)

ri ∈ C1(R+
0 ), ri(0) = 0, r′i (s) ≥ 0. (2c)

The non-linear reaction terms ri(u) occur in chemical engineering usually in the form of products
and rational functions of concentrations, or exponential functions of the temperature, expressed
by the Arrhenius law. Such models describe chemical processes and they are strongly coupled as
an inaccuracy in one unknown affects all the others. Hence, efficient numerical approximation of
these systems is needed. For the convection/reaction-dominated problems, the standard Galerkin
finite element methods are known to produce spurious oscillations, especially in the presence of
sharp fronts in the solution, on boundary and interior layers.

In last two decades several stabilization and shock/discontinuity capturing techniques were
developed for linear and non-linear stationary and time dependent problems. For linear con-
vection dominated problems, the streamline upwind Petrov-Galerkin(SUPG) method is capable
to stabilize the unphysical oscillations (Bause, 2010; Bause & Schwegler, 2012, 2013). Never-
theless, in non-linear convection dominated problems, spurious oscillations are still present in
crosswind direction. Therefore, SUPG is used with the anisotropic shock capturing technique
as SUPG-SC for reactive transport problems (Bause, 2010; Bause & Schwegler, 2012, 2013). It
was shown that SUPG-SC is capable of reducing the unphysical oscillations in cross-wind direc-
tion. The parameters of the SUPG and SUPG-SC should be designed carefully for the efficient
solution of the discretized equations.

In contrast to the standard Galerkin conforming finite element methods, discontinuous Galerkin
finite element(DGFEM) methods produce stable discretizations without the need for stabiliza-
tion strategies, and damp the unphysical oscillations for linear convection dominated problems.
In (Yücel et al., 2013), several non-linear convection dominated problems of type (1) are solved
with DG-SC, discontinuous Galerkin method with the shock-capturing technique in (Persson &
Peraire, 2006). For an accurate solution of non-linear convection dominated problems, higher
order finite elements are used because they are less diffusive and avoid artificial mixing of chem-
ical species under discretization, for SUPG-SC and DG-SC, respectively. The main advantages
of DGFEM are the flexibility in handling non-matching grids and in designing hp-refinement
strategies (Houston et al., 2002), which allow easily adaptive grid refinement. In this paper we
extend the adaptive discontinuous Galerkin method in (Schötzau & Zhu, 2009) to the convection
dominated non-linear problems of type (1). We show on several examples the effectiveness and
accuracy of DGAFEM capturing boundary and internal layers very sharply and without signifi-
cant oscillations. An important drawback is that the resulting linear systems are more dense than
the continuous finite elements and ill-conditioned. The condition number grows rapidly with
the number of elements and with the penalty parameter. Therefore, efficient solution strategies
such as preconditioning are required to solve the linear systems. While more robust compared
to iterative solvers, direct solvers are usually more memory and time consuming due to fill-in.
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Furthermore, they are known to be less scalable on parallel architectures. Therefore, in this paper
we use an iterative method which is robust and efficient.

Because the DG method requires more degrees of freedom than the standard Galerkin method,
in (Cangiani et al., 2103) linear diffusion-convection-reaction equations are discretized near the
boundary and inter layers by the interior penalty DG method, away from the layers by continuous
Galerkin method. It was shown that combination of both methods will not affect the stability of
the DG method. Another important class of non-linear diffusion-convection equations are those
with the non-linear convective term, including the viscous Burger’s equation. In the recent years,
several effective interior penalty DG methods with efficient time integrators and with space and
time adaptivity for this class of problems are developed, see for example (Dolejs̆i, 2008; Dolejs̆i
et al., 2005; Dolejs̆i, 2013). An important class of non-linear convection-diffusion equations
are the pellet equations, which model the intra-particle mass and heat transport in porous cata-
lyst pellets. A comprehensive review of weighted residual methods, the orthogonal collocation,
Galerkin, tau and least squares methods is given in (Solsvik et al., 2013) for solving the the linear
and non-linear pellet equations, where the methods are compared with respect to convergence of
the residuals and computational efficiency.

The rest of this work is organized as follows. In the next two sections, we give the DG dis-
cretization and describe the residual based adaptivity for non-linear diffusion-convection-reaction
problems. In Section 4, we have compared the DGFEM and DGAFEM with another class of
stabilized methods, the GLSFEM (Galerkin least square finite element method) for a linear con-
vection dominated problem. Section 5 deals with an efficient solution technique for solving the
linear system arising from the DG discretization. In Section 6, we demonstrate the effective-
ness and accuracy of DGAFEM for handling the sharp layers arising in several examples with
different type of non-linear reaction mechanisms. The paper ends with some conclusions.

2. Symmetric discontinuous interior penalty Galerkin (SIPG) discretization

In this Section, we describe the DG discretization of the model problem (1). We begin with
the classical weak formulation of the scalar equation (m = 1) of (1): find u ∈ U such that

∫
Ω

(ε∇u · ∇v + b · ∇uv + αuv)dx +

∫
Ω

r(u)vdx =

∫
Ω

f vdx +

∫
ΓN

gNvds , ∀v ∈ V (3)

where the solution space U and the test function space V are given by

U = {u ∈ H1(Ω) : u = gD on ΓD}, V = {v ∈ H1(Ω) : v = 0 on ΓD}.

Under the assumptions given in the previous section, the problem (3) has a unique solution in
U. The next step of the classical (continuous) FEM is to find an approximation to the problem
(3) using a conforming, finite-dimensional subspace Vh ⊂ V , which requires that the space Vh

contains functions of particular smoothness (e.g. when V = H1
0(Ω), then we choose Vh ⊂ {v ∈

C(Ω) : v = 0 on ∂Ω}). On the other hands, discontinuous Galerkin methods make it easy
to use the non-conforming spaces, in which case the functions in Vh 1 V are allowed to be
discontinuous on the inter-element boundaries.

In this article, the discretization of the problem (1) is based on the symmetric discontinuous
interior penalty Galerkin (SIPG) method, a type of discontinuous Galerkin methods, for the
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Figure 1: Two adjacent elements sharing an edge (left); an element near to domain boundary
(right)

diffusion part (Arnold et al., 2002; Rivière, 2008) and the upwinding for the convection part
(Ayuso & Marini, 2009; Houston et al., 2002).

Let {ξh} be a family of shape regular meshes with the elements (triangles) Ki ∈ ξh satisfying
Ω = ∪K and Ki ∩ K j = ∅ for Ki, K j ∈ ξh. Let us denote by Γ0, ΓD and ΓN the set of interior,
Dirichlet boundary and Neumann boundary edges, respectively, so that Γ0 ∪ ΓD ∪ ΓN forms the
skeleton of the mesh. For any K ∈ ξh, let Pk(K) be the set of all polynomials of degree at most k
on K. Then, set the finite dimensional solution and test function space by

Vh =
{
v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ ξh

}
1 V.

Note that the trial and test function spaces are the same because the boundary conditions in dis-
continuous Galerkin methods are imposed in a weak manner (see the SIPG construction below).
Since the functions in Vh may have discontinuities along the inter-element boundaries, along an
interior edge, there would be two different traces from the adjacent elements sharing that edge.
In the light of this fact, let us first introduce some notations before starting the construction of
SIPG formulation. Let Ki, K j ∈ ξh (i < j) be two adjacent elements sharing an interior edge
e = Ki ∩ K j ⊂ Γ0 (see Fig.1). Denote the trace of a scalar function v from inside Ki by vi and
from inside K j by v j. Then, set the jump and average values of v on the edge e

[v] = vine − v jne, {v} =
1
2

(vi + v j),

where ne is the unit normal to the edge e oriented from Ki to K j. Similarly, we set the jump and
average values of a vector valued function q on e

[q] = qi · ne − q j · ne, {q} =
1
2

(qi + q j),

Observe that [v] is a vector for a scalar function v, while, [q] is scalar for a vector valued function
q. On the other hands, along any boundary edge e = Ki ∩ ∂Ω, we set

[v] = vin, {v} = vi, [q] = qi · n, {q} = qi

where n is the unit outward normal to the boundary at e.
Now, we are ready to construct the SIPG discretization of the diffusion part of the problem.

We start with the continuous (i.e. assume for the moment that the unknown solution u is smooth
enough) Poisson problem

−∆u = f in Ω, (4a)

u = gD on ΓD (4b)

∇u · n = gN on ΓN (4c)
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We multiply the equation (4a) by a test function v ∈ Vh, we integrate over Ω and we split the
integrals:

−
∑
K∈ξh

∫
K

∆uvdx =
∑
K∈ξh

∫
K

f vdx

Apply the divergence theorem on every element integral∑
K∈ξh

∫
K
∇u · ∇vdx −

∑
K∈ξh

∫
∂K

(∇u · n)vds =
∑
K∈ξh

∫
K

f vdx +
∑
e∈ΓN

∫
e

gNvds

Or using the jump definitions (v ∈ Vh are element-wise discontinuous)∑
K∈ξh

∫
K
∇u · ∇vdx −

∑
e∈Γ0∪ΓD

∫
e
[v∇u]ds =

∑
K∈ξh

∫
K

f vdx +
∑
e∈ΓN

∫
e

gNvds

One can easily verify that [v∇u] = {∇u} · [v] + [∇u] · {v}. Then, using also the fact that [∇u] = 0
(u is assumed to be smooth enough so that ∇u is continuous), we get∑

K∈ξh

∫
K
∇u · ∇vdx −

∑
e∈Γ0∪ΓD

∫
e
{∇u} · [v]ds =

∑
K∈ξh

∫
K

f vdx +
∑
e∈ΓN

∫
e

gNvds

Yet, the left hand side is not coercive, even not symmetric. To handle this, noting that [u] = 0
along the interior edges (u is assumed to be continuous), we reach at∑

K∈ξh

∫
K
∇u · ∇vdx −

∑
e∈Γ0∪ΓD

∫
e
{∇u} · [v]ds −

∑
e∈Γ0

∫
e
{∇v} · [u]ds

+
∑
e∈Γ0

σ

he

∫
e
[u] · [v]ds =

∑
K∈ξh

∫
K

f vdx +
∑
e∈ΓN

∫
e

gNvds

where he denote the length of the edge e and σ is called the penalty parameter, which is a
sufficiently large to have the coercivity. Finally, we add to the both sides the edge integrals on
the Dirichlet boundary edges (keeping unknown on the left hand side and imposing Dirichlet
boundary condition on the right hand side)∑

K∈ξh

∫
K
∇u · ∇vdx −

∑
e∈Γ0∪ΓD

∫
e
{∇u} · [v]ds −

∑
e∈Γ0∪ΓD

∫
e
{∇v} · [u]ds

+
∑

e∈Γ0∪ΓD

σ

he

∫
e
[u] · [v]ds =

∑
K∈ξh

∫
K

f vdx +
∑
e∈ΓD

∫
e

gD
(
σ

he
v − ∇v · n

)
ds +

∑
e∈ΓN

∫
e

gNvds

which gives the SIPG formulation.
Now, we give the SIPG discretized system to the problem (1) combining with the upwind

discretization for the convection part: find uh ∈ Vh such that

ah(uh, vh) + bh(uh, vh) = lh(vh) ∀vh ∈ Vh, (5)
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ah(uh, vh) =
∑
K∈ξh

∫
K
ε∇uh · ∇vhdx +

∑
K∈ξh

∫
K

(b · ∇uh + αuh)vhdx

−
∑

e∈Γ0∪ΓD

∫
e
{ε∇vh} · [uh]ds −

∑
e∈Γ0∪ΓD

∫
e
{ε∇uh} · [vh]ds

+
∑
K∈ξh

∫
∂K−\∂Ω

b · n(uout
h − uin

h )vhds −
∑
K∈ξh

∫
∂K−∩Γ−

b · nuin
h vhds

+
∑

e∈Γ0∪ΓD

σε

he

∫
e
[uh] · [vh]ds,

bh(uh, vh) =
∑
K∈ξh

∫
K

r(uh)vhdx,

lh(vh) =
∑
K∈ξh

∫
K

f vhdx +
∑
e∈ΓD

∫
e

gD
(
σε

he
vh − ε∇vh · n

)
ds

−
∑
K∈ξh

∫
∂K−∩Γ−

b · ngDvhds +
∑
e∈ΓN

∫
e

gNvhds,

where ∂K− and Γ− indicates the corresponding inflow parts, and uout
h , uin

h denotes the values on
an edge from outside and inside of an element K, respectively. The parameter σ ∈ R+

0 is called
the penalty parameter which should be sufficiently large; independent of the mesh size h and
the diffusion coefficient ε (Rivière, 2008) [Sec. 2.7.1]. We choose the penalty parameter σ for
the SIPG method depending on the polynomial degree k as σ = 3k(k + 1) on interior edges and
σ = 6k(k + 1) on boundary edges.

3. Adaptivity

Most of the convection dominated problems lead to internal/boundary layers and one has to
find accurate approximations in order to handle the nonphysical oscillations. A naive approach is
to refine the mesh uniformly. But it is not desirable as it highly increases the degrees of freedom
and refines the mesh unnecessarily in regions where the solutions are smooth. Instead, the mesh
is refined locally using an adaptive strategy. In this section, we describe the adaptive strategy for
non-linear diffusion-convection-reaction problems.

3.1. The adaptive procedure
Our adaptive algorithm is based on the standard adaptive finite element (AFEM) iterative

loop (Fig.2). The first step, SOLVE, is to solve the SIPG discretized system (5) on a given
triangulation ξh. The ESTIMATE step is the key part of the adaptive procedure, by which we
are able to determine the elements having large error to be refined using computed solution
and given data (a posteriori). As an estimator, we use a residual based error indicator based
on the modification of the error estimator given in Schötzau and Zhu (Schötzau & Zhu, 2009)
for a single linear convection dominated diffusion-convection-reaction equation to the diffusion-
convection equation with non-linear reaction mechanism, which is robust, i.e. independent of the
Péclet number. To do this, we include in the a posteriori error indicator the non-linear reaction

6
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Initialization:mesh, 0 < tol, θ

?
SOLVE
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ESTIMATE: compute η
?�
 �	η < tol

?No
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MARK: find subset MK

?

REFINE: refine triangles K ∈ MK�
 �	End

-
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�

Figure 2: Adaptive strategy

term as local contributions to the cell residuals and not to the interior/boundary edge residuals
[Chp. 5.1.4, (Verfürth, 2013)]. Let uh be the solution to (5). Then, for each element K ∈ ξh, we
define the local error indicators η2

K as

η2
K = η2

RK
+ η2

E0
K

+ η2
ED

K
+ η2

EN
K
, (7)

In (7), ηRK denote the cell residual

η2
RK

= ρ2
K‖ f − αuh + ε∆uh − b · ∇uh − r(uh)‖2L2(K),

while, ηE0
K
, ηED

K
and ηEN

K
stand for the edge residuals coming from the jump of the numerical

solution on the interior, Dirichlet boundary and Neumann boundary edges, respectively

η2
E0

K
=

∑
e∈∂K∩Γ0

(
1
2
ε−

1
2 ρe‖[ε∇uh]‖2L2(e) +

1
2

(
εσ

he
+ κhe +

he

ε
)‖[uh]‖2L2(e)

)
,

η2
ED

K
=

∑
e∈∂K∩ΓD

(
εσ

he
+ κhe +

he

ε
)‖gD − uh‖

2
L2(e),

η2
EN

K
=

∑
e∈∂K∩ΓN

ε−
1
2 ρe‖gN − ε∇uh · n‖2L2(e),

as in Schötzau and Zhu (Schötzau & Zhu, 2009) with the modified (Hoppe et al., 2008; Schötzau
& Zhu, 2009) extra term η2

EN
K

corresponding to the local indicator on the Neumann boundary
edges. The weights ρK and ρe, on an element K, are defined as

ρK = min{hKε
− 1

2 , κ−
1
2 }, ρe = min{heε

− 1
2 , κ−

1
2 },
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for κ , 0. When κ = 0, we take ρK = hKε
− 1

2 and ρe = heε
− 1

2 . Then, our a posteriori error
indicator is given by

η =

∑
K∈ξh

η2
K

1/2

.

We also introduce the data approximation error,

Θ2 = Θ2( f ) + Θ2(uD) + Θ2(uN)

where

Θ2( f ) =
∑
K∈ξ

ρ2
K(‖ f − fh‖2L2(K) + ‖(b − bh) · ∇uh‖

2
L2(K) + ‖(α − αh)uh‖

2
L2(K)),

Θ2(uD) =
∑
e∈ΓD

(
εσ

he
+ κhe +

he

ε
)‖gD − ĝD‖2L2(e),

Θ2(uN) =
∑
e∈ΓN

ε−
1
2 ρe‖gN − ĝN‖2L2(e),

according to (Schötzau & Zhu, 2009), with ĝD and ĝN denoting the mean integrals of gD and gN ,
respectively.

In the MARK step, if the given tolerance is not satisfied, we determine the set of elements
MK ⊂ ξh to be refined using the error indicator defined in (7). To do this, we use the bulk
criterion proposed by Döfler (Dörfler, 1996), by which the approximation error is decreased by
a fixed factor for each loop. In the light of bulk criterion, we choose the set of elements MK ⊂ ξh

satisfying ∑
K∈MK

η2
K ≥ θ

∑
K∈ξh

η2
K ,

for a user defined parameter 0 < θ < 1. Here, bigger θ results in more refinement of triangles in
a single loop, where, smaller θ causes more refinement loops.

Finally, REFINE step, we refine the marked elements K ∈ MK using the newest vertex bi-
section method (Chen, 2008). This process can be summarized as (see Fig.3): for each element
K ∈ ξh, we label one vertex of K as a newest vertex. The opposite edge of the newest vertex
is called as the refinement edge. Then, a triangle is bisected to two new children triangles by
connecting the newest vertex to the midpoint of the refinement edge, and this new vertex created
at the midpoint of the refinement edge is assigned to be the newest vertex of the children. Fol-
lowing a similar rule, these two children triangles are bisected to obtain four children elements
belonging to the father element (the refined triangle K ∈ MK). After bisecting all K ∈ MK , we
also divide some elements K ∈ ξh \ MK to keep the conformity of the mesh, i.e. hanging nodes
are not allowed.

In the case of coupled problems, instead of a single component problem, we refine the ele-
ments being the union of the set of the elements to be refined for each component, i.e., let η1

K and
η2

K be the computed local error indicators corresponding to each unknown component of a two
component system. Next, we determine the set of elements M1

K and M2
K satisfying∑

K∈M1
K

(η1
K)2 ≥ θ

∑
K∈ξh

(η1
K)2 ,

∑
K∈M2

K

(η2
K)2 ≥ θ

∑
K∈ξh

(η2
K)2.
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Figure 3: Bisection of a triangle
.

Then, we refine the marked elements K ∈ M1
K ∪ M2

K using the newest vertex bisection method.
The adaptive procedure ends after a sequence of mesh refinements up to attain a solution with an
estimated error within a prescribed tolerance. Numerical studies show the capability of the error
indicator to find the layers properly.

3.2. Reliability and efficiency of a posteriori error estimator

In order to measure the error, we use the energy norm

|||v|||2 =
∑
K∈ξh

(‖ε∇v‖2L2(K) + κ‖v‖2L2(K)) +
∑

e∈Γ0∪ΓD

εσ

he
‖[v]‖2L2(e),

and the semi-norm
|v|2C = |bv|2∗ +

∑
e∈Γ0∪ΓD

(κhe +
he

ε
)‖[v]‖2L2(e), (8)

where

|u|∗ = sup
w∈H1

0 (Ω)\{0}

∫
Ω

u · ∇wdx

|||w|||
,

and the constant κ ≥ 0 satisfies

α −
1
2
∇ · b(x) ≥ κ, ‖ − ∇ · b + α‖L∞(Ω) ≤ κ

∗κ, (9)

for a non-negative κ∗. The first condition in (9) is needed to make the bilinear form ah coercive
(well-posedness of the linear part of the problem), and the latter is used to prove the reliability
of our a posteriori error estimator (Schötzau & Zhu, 2009). The terms |bv|2∗ and he

ε
‖[v]‖2L2(e) in (8)

are used to bound the convection part, whereas, the term κhe‖[v]‖2L2(e) is used to bound the linear
reaction part of the discrete system. In order to bound the non-linear reaction part, we use the
boundedness property (2a) [Chp. 5.1.1-4, (Verfürth, 2013)]. Then, for the solution u to the scalar
equation of (1), following the procedures in (Schötzau & Zhu, 2009) and using the boundedness
of the non-linear reaction term, we can easily obtain the a posteriori error bounds

|||u − uh||| + |u − uh|C . η + Θ (reliability),

η . |||u − uh||| + |u − uh|C + Θ (efficiency).
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4. Comparison with the Galerkin least squares finite element method (GLSFEM)

For linear PDEs, the weak form in the standard Galerkin method is obtained by multiplying
the differential equation with a test function v and integrating over a suitable function space V

(Lu, v) = ( f , v), ∀v ∈ V

where L = −ε∆ + b · ∇ + α is the linear part of the diffusion-convection-reaction equation (1).
Defining the residual as R(u) = f −Lu, the standard Galerkin method can be interpreted in form
of the residual orthogonality (R(u), v) = 0. In the case of non self-adjoint differential operators
like the the diffusion-convection-reaction operator L, it can happen that (Lu, v) is not coercive
or symmetric on V , and the resulting FEM discretization may be unstable.

For transport problems, another popular approach is based on the least squares formulation
of the Galerkin FEM. Let us write the model problem (1) as

Lu + r(u) = f in Ω (10a)
u = g on Γ, (10b)

Define the least-squares functional

J(u) :=
1
2
‖Lu + r(u) − f ‖2L2(Ω).

A minimizer of J(u) is obtained by

lim
t 7→0

d
dt

J(u + tv) = 0 , ∀v ∈ V

which yields the least-squares term

J̃Ω(u, v) := (Lu + r(u) − f ,Lv + r′(u)v)L2(Ω).

For linear problems with r(u) = 0, the least squares Galerkin method reduces to the minimization
problem

F(u) = min
v∈V

F(v)

where the functional F(·) is defined by

F(v) =
1
2
|| Lv − f ||2L2(Ω) .

The first order optimality condition leads to the least squares Galerkin method

(Lu,Lv) = ( f ,Lv) , ∀v ∈ V.

The bilinear form (Lu,Lv) is symmetric and coercive and has stronger stability properties com-
pared to the standard Galerkin method.

There are many publications on the Galerkin least squares finite element methods (GLS-
FEM). We mention here two books (Bochev & Gunzburger, 2009; Jiang, 1998) and the review
article (Bochev & Gunzburger, 1998). There are mainly two variants of the GLSFEMs; the sta-
bilized and the direct versions.
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Stabilized finite elements method (Hughes, et al., 1989): The standard (continuous) Galerkin
FEM for the problem (10) reads: find uh ∈ Uh ⊂ U such that

a(uh, vh) + (r(uh), vh)L2(Ω) = ( f , vh)L2(Ω) , ∀vh ∈ Vh ⊂ V (11)

where a(u, v) = (ε∇u + b · ∇u + αu, v)L2(Ω) is the standard bilinear form to the linear part of (10).
The general stabilized FEMs formulation reads as: for all vh ∈ Vh ⊂ V , find uh ∈ Uh ⊂ U such
that

a(uh, vh) + (r(uh), vh)L2(Ω) +
∑

K

τKSK(uh, vh) = ( f , vh)L2(Ω) (12)

where the stabilization parameter is defined on each element K as (Hauke, 2002)

τK =
1

4ε
h2 +

2|b|
h + |α|

.

One way to proceed GLSFEMs is then to use the least-squares term J̃K(u, v) as the stabilization
term S K in (12), i.e.: for all vh ∈ Vh, find uh ∈ Uh such that

a(uh, vh) + (r(uh), vh)L2(Ω) +
∑

K

τK J̃K(uh, vh) = ( f , vh)L2(Ω) (13)

Note that, being another stabilized FEM, streamline upwind Petrov-Galerkin (SUPG) method is
obtained by setting

S K(uh, vh) = (Luh + r(uh) − f ,b · ∇vh)L2(K)

with different choices of the parameter τK .

The direct variant of GLSFEM: The second way to proceed the GLSFEMs is to consider and
discretize just the least-squares term J̃Ω(u, v). One may solve this problem in a straightforward
manner: for all vh ∈ Vh ⊂ H2(Ω) ∩ V , find uh ∈ Uh ⊂ H2(Ω) ∩ U such that J̃Ω(uh, vh) = 0, i.e.∫

Ω

(Luh + r(uh))(Lvh + r′(uh)vh)dx =

∫
Ω

f (Lvh + r′(uh)vh)dx

which is not only a fourth order problem but also the solution and trial subspaces Uh and Vh

need to consist of continuously differentiable functions making it complicated to construct bases
functions (standard finite element spaces cannot be used anymore) and the assembly of the stiff-
ness matrix. The condition number of the stiffness matrix is order of O(h−4) instead of order
O(h−2) for the standard Galerkin FEM. Hence, this approach is impractical. Instead, being the
most common practical way, the problem (10) is converted into a first-order system as (Houston
et al., 2002; Bochev & Gunzburger, 1998).

p − ∇u = 0 in Ω

−ε∇ · p + b · ∇u + αu + r(u) = f in Ω

u = g on Γ

Then, we define now the least-square functional for z = (p, u)T as

J(z) :=
1
2
‖p − ∇u‖2L2(Ω) +

1
2
‖ − ε∇ · p + b · ∇u + αu + r(u) − f ‖2L2(Ω)

11



A minimizer of J(z) is obtained by the identity

lim
t 7→0

d
dt

J(z + tv) = 0 , ∀v

which yields a least-squares term of order two. Using this approach, we solve the resulting
least-squares term, which is a second-order problem now, using (discontinuous) finite elements
solution and trial spaces S h ⊂ H1(Ω, div)×U (S h ⊂ H1(Ω, div)×H1(Ω)) and Th ⊂ H1(Ω, div)×V
(Th ⊂ H1(Ω, div)×H1(Ω)), respectively. The condition number of the stiffness matrix is retained
as O(h−2) as in the standard Galerkin method (Bochev & Gunzburger, 1998). For convection
dominated problems, the resulting linear systems of equations are solved usually with precon-
ditioned conjugate gradient method due to large condition numbers, as reported in (Lazarov &
Vassilevski , 2000) for GLSFEM solution of singularly perturbed diffusion-convection problems.

In order to compare the GLSFEM with the DGFEM, we consider the linear problem (Yücel
et al., 2013)

− ε∆u + b · ∇u + αu = f in (0, 1)2 (14)

with ε = 10−6, β = (2, 3)T and α = 1. The load function f and Dirichlet boundary conditions are
chosen so that the exact solution is

u(x1, x2) =
π

2
arctan

(
1
√
ε

(−0.5x1 + x2 − 0.25)
)
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Figure 4: Comparion of the GLSFEM and DGFEM for linear convection dominated problem
(14)

As we can see from the from the Fig.4, the DGFEMs produce smaller errors than the GLS-
FEM for the convection dominated problem (14).

5. Efficient solution of linear systems

The approximate solution to the discrete problem (5) has the form

uh =

Nel∑
i=1

Nloc∑
l=1

U i
lφ

i
l

12



where φi
l’s are the basis polynomials spanning the DGFEM space Vh, U i

l’s are the unknown
coefficients to be found, Nel denotes the number of triangles and Nloc is the number of local
dimension depending on the degree of polynomials k, for instance, for k = 2 we have Nloc = 6
(in 2D, Nloc = (k + 1)(k + 2)/2). In DG methods, we choose the piecewise basis polynomials
φi

l’s in such a way that each basis function has only one triangle as a support, i.e. we choose
on a specific triangle Ke, e ∈ {1, 2, . . . ,Nel}, the basis polynomials φe

l which are zero outside
the triangle Ke, l = 1, 2, . . . ,Nloc. By this construction, the stiffness matrix obtained by DG
methods has a block structure, each of which related to a triangle (there is no overlapping as
in continuous FEM case). The product do f := Nel ∗ Nloc gives the degree of freedom in DG
methods. Inserting the linear combination of uh in (5) and choosing the test functions as vh = φi

l,
l = 1, 2, . . . ,Nloc, i = 1, 2, . . . ,Nel, the discrete residual of the system (5) in matrix vector form
is given by

R(U) = S U + h(U) − L

where U ∈ Rdo f is the vector of unknown coefficients U i
l’s, S ∈ Rdo f×do f is the stiffness matrix

corresponding to the bilinear form ah(uh, vh), h ∈ Rdo f is the vector function of U related to
the non-linear form bh(uh, vh) and L ∈ Rdo f is the vector to the linear form lh(vh). The explicit
definitions are given by

S =


S 11 S 12 · · · S 1,Nel

S 21 S 22
...

...
. . .

S Nel,1 · · · S Nel,Nel

 , U =


U1
U2
...

UNel



h(U) =


h1
h2
...

hNel

 , L =


L1
L2
...

LNel


where all the block matrices have dimension Nloc:

S ji =


ah(φi

1, φ
j
1) ah(φi

2, φ
j
1) · · · ah(φi

Nloc, φ
j
1)

ah(φi
1, φ

j
2) ah(φi

2, φ
j
2)

...
...

. . .

ah(φi
1, φ

j
Nloc) · · · ah(φi

Nloc, φ
j
Nloc)


, Ui =


U i

1
U i

2
...

U i
Nloc



hi =


bh(uh, φ

i
1)

bh(uh, φ
i
2)

...
bh(uh, φ

i
Nloc)

 , Li =


lh(φi

1)
lh(φi

2)
...

lh(φi
Nloc)


Obviously, the condition number of the stiffness matrix obtained by the SIPG discretization

increases by the degree k of basis polynomials. One of the reasonable ways to handle this draw-
back is to choose a suitable set of basis polynomials. There are a variety of basis polynomial
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functions such as Lagrange shape functions, monomial bases, Legendre polynomials. In our
study, we use the orthogonal Dubiner basis defined on the reference triangle (Deng & Cai, 2005)

T̂ = {x = (x1, x2)| 0 ≤ x1, x2 ≤ 1}

(all the integral terms above are computed on this reference triangle using an affine map between
the reference triangle and physical triangles). The construction of such basis polynomials based
on the collapsed coordinate transform between the reference triangle T̂ and the reference square
Q̂ = [−1, 1]2 (see Fig.5). First, the basis polynomials on the square Q̂ is formed by a generalized

S
S
S
S
S
SS

6

-

T̂

x2

x1

(0, 0) (1, 0)

(0, 1)

x1 =
(1+z1)(1−z2)

4

x2 =
1+z2

2

�

-

z1 =
2x1

1−x2
− 1

z2 = 2x2 − 1

6

-
Q̂

z2

z1

(−1,−1) (1,−1)

(−1, 1) (1, 1)

Figure 5: Collapsed coordinate transform between reference triangle and reference square
.

tensor product of the Jacobi polynomials on the interval [−1, 1], and then, these basis polynomials
are transformed to the reference triangle T̂ using the collapsed coordinate transform in Fig.5. The
explicit forms of Dubiner basis polynomials on the reference triangle T̂ are given by

φmn(x1, x2) = (1 − z2)mP0,0
m (z1)P2m+1,0

n (z2)

= 2m(1 − x2)mP0,0
m (

2x1

1 − x2
− 1)P2m+1,0

n (2x2 − 1) , 0 ≤ m, n,m + n ≤ Nloc

where Pα,β
n (x)’s denote the corresponding n-th order Jacobi polynomials on the interval [−1, 1],

which are orthogonal polynomials under the Jacobi weight (1 − x)α(1 + x)β, i.e.∫ 1

−1
(1 − x)α(1 + x)βPα,β

m (x)Pα,β
n (x)dx = δmn

This property of the Jacobi polynomials yields the orthogonality of the Dubiner basis on the
reference triangle T̂ as ∫∫

T̂
φmn(x1, x2)φi j(x1, x2)dx1dx2 =

1
8
δmiδn j.

The advantage of the Dubiner basis is that its orthogonality leads to diagonal mass matrix by
which one may obtain better-conditioned matrices compared to the other basis polynomials (see
Fig.6), and it provides high accuracy in the approximation of the integrals.

5.1. Effect of the penalty parameter
The penalty parameter σ in the SIPG formulation (5) should be selected sufficiently large

to ensure the coercivity of the bilinear form [(Rivière, 2008), Sec. 27.1], which is needed for
14
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Figure 6: Degree vs. condition number of the stiffness matrix: comparison for different type of
basis functions for the linear model problem (1) with r(u) = 0

the stability of the convergence of the DG method. It ensures that the matrix arising from the
DG discretization of the diffusion part of (5) is symmetric positive definite. At the same time
it should not be too large since the conditioning of the matrix arising from the bilinear form
increases linearly by the penalty parameter (see Fig.7). In the literature, several choices of the
penalty parameter are suggested. In (Epshteyn & Rivière, 2007), computable lower bounds are
derived, and in (Dobrev et al., 2008), the penalty parameter is chosen depending on the diffusion
coefficient ε. The effect of the penalty parameter on the condition number was discussed in detail
for the DG discretization of the Poisson equation in (Castillo, 2012) and in (Slingerland & Vuik,
2014) for layered reservoirs with strong permeability contrasts, e.g. ε varying between 10−1 and
10−7. Since the penalty parameter, in SIPG formulation, is mainly related to the Laplace operator,
to examine the effect of the penalty parameter, we study on the Poisson problem (pure elliptic
case )

− ∆u = f in (0, 1)2 (15)

with the appropriate load function f and Dirichlet boundary conditions using the exact solution
u(x) = sin(πx1) sin(πx2). In Fig.8, we have plotted the maximum nodal errors for the Poisson
problem (15) depending on the penalty parameter to show the instability bound of the scheme
for different degrees of bases, where the triangular symbols indicate our choice σ = 3k(k + 1).

Similarly, the condition number of the stiffness matrix increases with decreasing mesh-size
and increasing order of the DG discretization for the linear diffusion-convection-reaction prob-
lem (3) with r(u) = 0, (see Fig.9), which affects the efficiency of an iterative solver. Similar
results can be found in (Castillo, 2012) for the Poisson problem.

Besides the choice of a suitable basis polynomials, in this section, we describe also an effi-
cient solution technique for the large ill-conditioned linear systems arising from the linearization
of the DG discretization. This technique is based on reordering of matrix elements and precon-
ditioning.

5.2. Matrix reordering & block LU factorization
Because the stiffness matrices obtained by DGFEM become ill-conditioned and dense for

higher order DG elements (Ayuso & Marini, 2009), several preconditioners are developed for
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the efficient and accurate solution of linear diffusion-convection equations (Antonietti & Süli,
2009; Georgoulis & Loghin, 2008). We apply the matrix reordering and partitioning technique
in (Tarı & Manguoğlu, 2013), which uses the largest eigenvalue and corresponding eigenvector
of the Laplacian matrix. This reordering allows us to obtain a partitioning and a preconditioner
based on this partitioning. Since our matrices are non-symmetric, as the first step, we compute
the symmetric structure by adding its transpose to itself. A symmetric, square and sparse matrix
could be represented as a graph where same index rows and columns are mapped into vertices
and nonzeros of the sparse matrix are mapped into the edges of the graph. Since the matrix is
symmetric, the corresponding graph is undirected. The Laplacian matrix (L) is, then, defined as
follows

L(i, j) =

deg(vi) if i = j,
−1 if i , j

in which the deg(vi) is the degree of the vertex i. In this paper, the reordering we use is based
on the unweighted Laplacian matrix given above. If the graph contains only one connected
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component, the eigenvalues of L are 0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λn, otherwise there are as many
zero eigenvalues as the number of connected components.

Certain eigenvalues and corresponding eigenvectors of the Laplacian matrix have been stud-
ied extensively. Most notably the second nontrivial eigenvalue of the Laplacian and the corre-
sponding eigenvector known as the algebraic connectivity and the Fiedler vector of the graph
(Fiedler, 1973). Nodal domain theorem in (Fiedler, 1975) shows that the eigenvectors corre-
sponding to the eigenvalues other than the first and the second smallest eigenvalue give us the
connected components of the graph. In (Barnard et al., 1995), the Fiedler vector for permuting
the matrices to reduce the bandwidth is proposed. Reordering to obtain effective and scalable
parallel banded preconditioners is proposed in (Manguoğlu et al., 2010). We use a sparse ma-
trix reordering for partitioning and solving linear systems using the largest eigenvalue and the
corresponding eigenvector of the Laplacian matrix. Using this reordering, we show that one can
reveal underlying structure of a sparse matrix. A simple Matlab code to find the reordered matrix
and the permutation matrix can be found at (http://www.ceng.metu.edu.tr/~manguoglu/
MatrixReorder.m)

To solve the discrete problem (5), we use the Newton-Raphson method. We start with a non-
zero initial vector U(0). The linear system arising from ith-Newton-Raphson iteration step has
the form Jw(i) = −R(i), where J is the Jacobian matrix to R(U(0)) (i.e. J = S + h′(U(0)) and it
remains unchanged among the iteration steps), w(i) = U(i+1) − U(i) is the Newton correction, and
R(i) denotes the residual of the system at Ui (R(i) = R(U(i))). We construct a permutation matrix
P using the matrix reordering technique described above, applied to the sparse matrix J. Then,
we apply the permutation matrix P to obtain the permuted system Nw = d where N = PJPT ,
w = Pw(i) and d = −PR(i). After solving the permuted system, the solution of the unpermuted
linear system can be obtained by applying the inverse permutation, w(i) = PT w. Given a sparse
linear system of equations Nw = d, after reordering, one way to solve this system is via block
LU factorization. Suppose, the permuted matrix N, the right hand side d and the solution w is
partitioned as follows: (

A B
CT D

) (
w1
w2

)
=

(
d1
d2

)
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A block LU factorization of the coefficient matrix can be given as(
A B

CT D

)
=

(
A 0

CT S

) (
I U
0 I

)
where U = A−1B and S = D −CT A−1B, also known as the Schur complement matrix. If the cost
can be amortized, one can form U and S once and use them for solving linear systems with the
same coefficient matrix and different right hand sides. After this factorization, there are various
approaches that one can take to solve the system. One way is to solve the system via block
backward and forward substitution, by first solving the linear system At = d1, and then solving
the Schur complement system S w2 = d2 − CT t and obtaining w1 = t − Uw2. This method is
summarized in Algorithm 1.

Algorithm 1 Algorithm for solving the linear system after reordering

Input: The coefficient matrix:
(

A B
CT D

)
and the right hand side:

(
d1
d2

)
Output: The solution vector:

(
w1
w2

)
1: solve At = d1
2: solve S w2 = d2 −CT t
3: compute w1 = t − Uw2

We note that this approach involves solving two linear systems of equations with the coeffi-
cient matrix A and S . These linear systems can be solved directly or iteratively which requires
effective preconditioners. Other approaches could involve solving the system Nw = d iteratively
where the preconditioner could take many forms. There are many other techniques for solving
block partitioned and saddle point linear systems, we refer the reader to (Benzi et al., 2005) for
a more detailed survey of some of these methods.

6. Numerical results

In this section, we give several numerical examples demonstrating the effectiveness and accu-
racy of the DGAFEM for convection dominated non-linear diffusion-convection-reaction equa-
tions.

6.1. Example with polynomial type non-linearity

Our first example is taken from (Bause, 2010) with Dirichlet boundary condition on Ω =

(0, 1)2 with ε = 10−6, b = 1
√

5
(1, 2)T , α = 1 and r(u) = u2. The source function f and Dirichlet

boundary condition are chosen so that u(x1, x2) = 1
2

(
1 − tanh 2x1−x2−0.25

√
5ε

)
is the exact solution.

The problem is characterized by an internal layer of thickness O(
√
ε | ln ε |) around 2x1− x2 = 1

4 .
The mesh is locally refined by DGAFEM around the interior layer (Fig.10) and the spurious

solutions are damped out in Fig.11, similar to the results as in (Bause, 2010) using SUPG-SC,
in (Yücel et al., 2013) with SIPG-SC. On adaptively and uniformly refined meshes, from the
Fig.12, it can be clearly seen that the adaptive meshes reduce the substantial computing time.
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On uniform meshes, the SIPG is slightly more accurate as shown in (Yücel et al., 2013) than the
the SUPG-SC in (Bause, 2010). The error reduction by increasing degree of the polynomials is
remarkable on finer adaptive meshes (Fig.12, bottom).

x
1

x 2

(a) d.o.f. 70716

Figure 10: Example 6.1: Adaptive mesh.

In Table 1, we give the results using the solution technique in Section 5 for the BiCGStab with
the stopping criterion as ‖ri‖2/‖r0‖2 ≤ tol for tol = 10−7 (ri is the residual of the corresponding
system at the ith iteration) applied to the unpermuted system and Schur complement system
with and without preconditioning on the finest levels of uniformly (4th refinement level with dof
196608 and 32768 triangular elements) and adaptively (17th refinement level with dof 70716 and
11786 triangular elements) refined meshes. As a preconditioner, the incomplete LU factorization
of the Schur complement matrix S (ILU(S )) is used for the linear system with the coefficient
matrix S . The linear systems with the coefficient matrix A are solved directly. Table 1 shows that
solving the problem via the block LU factorization using the Schur complement system with the
preconditioner ILU(S ) is the fastest.

Linear Solver # Newton # BiCGStab Time
BiCGStab w/o prec. (Unpermuted) 10.8 (10.5) 818 (757.5) 1389.3 (773.3)
BiCGStab w/ prec. M1 (Permuted) 10.3 (10.3) 1.5 (3) 423.1 (374.2)
BiCGStab w/ prec. M2 (Permuted) 10.3 (10.3) 1.5 (3) 416.8 (375.9)
Block LU + (BiCGStab w/o prec.) 10.3 (10.9) 247.5 (315.5) 270.9 (310.3)
Block LU + (BiCGStab w/ prec. ilu(S) ) 10.3 (10.9) 19 (28.5) 140.9 (114.7)

Table 1: Example 6.1: Average number of Newton iterations, average number of BiCGStab
iterations, total computation time in seconds corresponding to the uniformly refined (adaptively
refined) mesh.

The time for applying the permutation to obtain the reordered matrix and the permutation
matrix P takes 9.9 seconds, whereas, it takes 0.13 seconds to form the Schur complement ma-
trix S and 0.04 seconds to compute the ILU(S ) on a PC with Intel Core-i7 processor and 8GB
RAM using the 64-bit version of Matlab-R2010a. We note that since the Jacobian matrix does
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(a) d.o.f. 196608 (b) d.o.f. 70716

Figure 11: Example 6.1: Uniform(left) and adaptive(right) solutions, quadratic elements.

not change during the non-linear iterations, the permutation, the Schur complement matrix and
ILU(S ) is computed only once for each run.

In all of the following results and figures, the Jacobian matrix J is scaled by a left Jacobi
preconditioner before reordering to obtain a well conditioned matrix. The reordering procedure
is applied to the scaled Jacobian matrix. Reordering times, which are included in the total com-
putation time, for the uniform and adaptive refinements are 102.1 seconds and 41.4 seconds,
respectively.

Fig.15 shows the condition numbers of the Jacobian matrices J of the original system, S
and A of the block LU factorized system on the uniformly and adaptively refined meshes. The
condition numbers of the coefficient matrix A are almost constant for uniform refinement by
different orders of DG discretizations and around 10, whereas the condition number of S lower
than of the Jacobian matrix J. This is due to the clustering of nonzero elements around the
diagonal (Fig.16) due to the matrix reordering. For adaptive refinement, Fig.15, bottom, we
observe the same behavior, whereas the conditions numbers are larger of order one than for the
uniform refinement. For comparison, we provide results by using BiCGStab with two block
preconditioners. The preconditioning matrices M1 and M2 for the permuted full systems are
given as

M1 =

(
A 0

CT S

)
, M2 =

(
A B
0 S

)
.

Total number of iterations and time for different algorithms are given in Table 1. Our proposed
method where we compute the block LU factorization of the partitioned matrix and solve the
system involving the Schur complement iteratively via preconditioned BiCGStab is the best in
terms of the total time compared to other methods for both uniform and adaptive refinement. In
Fig.13 and Fig.14, we present the total time and the average number of linear solver iterations,
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Figure 12: Example 6.1: Global errors: comparison of the methods by quadratic elements(top),
adaptive DG for polynomial degrees 1-4(bottom).

respectively, for uniform and adaptive refinements as the problem size has been increased. We
observe that the proposed preconditioned linear solver has been the best in terms of time with a
reasonable number of iterations for different problem sizes regardless refinement type.

6.2. Example with Monod type non-linearity

We consider the Monod type non-linearity in (Bause, 2010):

u − ∇ · (ε∇u) + b · ∇u −
u

1 + u
= f

on Ω = (0, 1)2 with the convection field b(x1, x2) = (−x2, x1)T , diffusion coefficient ε = 10−6 and
the source function f = 0. The Dirichlet boundary condition is prescribed as u(x1, x2) = 1 for
1/3 ≤ x1 ≤ 2/3, x2 = 0 and u(x1, x2) = 0 on the remaining parts of the lower boundary as well
as on the right and upper boundary. Moreover, ∂u(x1,x2)

∂n = 0 for x1 = 0, 0 ≤ x2 ≤ 1 where n is the
outer unit normal.

There are both internal and boundary layers on the mesh (Fig.17, left), around them oscilla-
tions occur. Fig.17, right, shows that by DGAFEM, the oscillations are almost disappear, similar
to the results in (Bause, 2010) for the SUPG-SC and in (Yücel et al., 2013) for SIPG-SC. Fig.17,
left, shows that the adaptive process leads to correctly refined meshes. Moreover, by increasing
polynomial degree of the basis functions (k = 4), the oscillations are completely eliminated on
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Figure 13: Example 6.1: Computation time vs. dof: Uniform refinement (top) and adaptive
refinement (bottom)

the outflow boundary (Fig.17, bottom) and the sharp front is preserved. This is not the case for
SUPG-SC (Bause, 2010) and SIPG-SC (Yücel et al., 2013), where still small oscillations are
present.

As in case of polynomial non-linearity, Example 5.1, the block LU factorized system solved
by BiCGStab with the preconditioner ILU(S) is the most efficient solver, with an average number
of 7 Newton iterations. The computing times for the uniform refinement was 20.6 seconds, and
30.5 for the adaptive refinement.

6.3. Example with Arrhenius type non-linearity

Next example is the non-linear reaction for a two-component system in (Tezduyar & Park,
1986):

−∇ · (ε∇u1) + b · ∇u1 − 100k0u2e
−E
Ru1 = 0,

−∇ · (ε∇u2) + b · ∇u2 + k0u2e
−E
Ru1 = 0

on Ω = (0, 1)2 with the convection field b = (1 − x2
2, 0)T , the diffusion constant ε = 10−6, the

reaction rate coefficient k0 = 3× 108 and the quotient of the activation energy to the gas constant
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Figure 14: Example 6.1: # Average BiCGStab iterations vs. dof: Uniform refinement (top) and
adaptive refinement (bottom)

E
R = 104. The unknowns u1 and u2 represent the temperature of the system and the concentration
of the reactant, respectively.

There are oscillations around the layers, even small, for the uniform refinement (Fig.18, left)
as for SIPG-SC in (Yücel et al., 2013). On the other hand, these oscillations are completely
dumped out by DGAFEM with almost half of the dof used in the uniform refinement (Fig.18,
right).

The block LU factorization based algorithm with the preconditioner ILU(S) requires 10.5
seconds for the uniform and 24.4 seconds for the adaptive refinements. Matrix reordering and
permutation took 2.44 seconds for the uniform and 2.17 seconds for adaptive refinements, re-
spectively.

6.4. Coupled example with polynomial type non-linearity
Our final problem is the modification of the non-stationary transport problem, Example 2, in

(Bause & Schwegler, 2013). The problem is stated as the following:

αu1 − ∇ · (ε∇u1) + b · ∇u1 + 50u2
1u2

2 = 0,
αu2 − ∇ · (ε∇u2) + b · ∇u2 + +50u2

1u2
2 = 0
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Figure 15: Example 6.1: Condition number of the matrices J (unpermuted matrix), S (Schur
complement matrix) and A (left top block of permuted matrix): Uniform refinement (top) and
adaptive refinement (bottom).

on the rectangular domain Ω = (0, 1)× (0, 2) with the convection field b = (0,−1)T , the diffusion
constant ε = 10−10 and linear reaction constant α = 0.1. On the left, right and lower parts of the
boundary of the domain, Neumann boundary conditions are prescribed. On the remaining part
of the boundary, Dirichlet boundary conditions are chosen as

u1(x) =


8(x1 − 0.375) for 0.375 < x1 ≤ 0.5,
−8(x1 − 0.625) for 0.5 < x1 ≤ 0.625,
0 otherwise

u2(x) =



8(x1 − 0.125) for 0.125 ≤ x1 ≤ 0.25,
−8(x1 − 0.375) for 0.25 < x1 ≤ 0.375,
8(x1 − 0.625) for 0.625 ≤ x1 ≤ 0.75,
−8(x1 − 0.875) for 0.75 < x1 ≤ 0.875,
0 otherwise

There is a boundary layer on the outflow boundary, Fig.20. Fig.19 shows that oscillations are
almost damped using DGAFEM approximations, similar to those results in (Bause & Schwegler,
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Figure 16: Example 6.1: Sparsity patterns of the unpermuted (left), permuted (middle) and the
Schur complement (right) matrices at the final refinement levels: Uniform refinement (top) with
dof 196608 and adaptive refinement (bottom) with dof 70716.

2013) using SUPG-SC. It can be seen from Fig.20 that the mesh is correctly refined by DGAFEM
near the boundary layer.

7. Conclusions

We have shown that using DGAFEM with the sparse linear solver is an efficient method for
solving non-linear convection dominated problems accurately and avoids the design of the pa-
rameters in the shock capturing technique as for the SUPG-SC and DG-SC methods. The numer-
ical examples demonstrate that DGAFEM allows to capture the interior and boundary layers very
sharply without any significant oscillation. As a future study, we will apply space-time adaptive
DG methods for time-dependent convection dominated non-linear diffusion-convection-reaction
equations.
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Figure 17: Example 6.2: Adaptive meshes (left) and the cross-section plots (right) of the so-
lutions at the left outflow boundary by quadratic elements (top) with dof 82464 and quartic
elements (bottom) with dof 80530
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Dolejs̆, V., Feistauer, M., & Sobotiková, V. (2005). Analysis of the discontinuous Galerkin method for non-linear con-
vection diffusion problems. Comput. Methods Appl. Mech. Eng., 194, 2709–2733.

Dolejs̆i, V. (2013). hp-DGFEM for non-linear convection-diffusion problems. Mathematics and Computers in Simulation,
87, 87–118.

Epshteyn, Y., & Riviere, B. (2007). Estimation of penalty parameters for symmetric interior penalty Galerkin methods.
J. Comput. Appl. Math., 206, 843-872.

Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23, 298-305.
Fiedler, M. (1975). A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.

Czechoslovak Mathematical Journal, 25, 619-633.
Georgoulis, E., Loghin, D. (2008). Norm preconditioners for discontinuous Galerkin hp-finite element methods. SIAM

Journal on Scientific Computing, 30, 2447-2465.
G.Hauke, G. (2002). A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput.

Methods. in Applied Mech. and Eng., 191, 2925–2947.
Hoppe, R.H.W., Kanschat, G., & Warburton, T. (2008). Convergence analysis of an adaptive interior penalty discontinu-

ous Galerkin method. SIAM Journal on Numerical Analysis, 47,534–550.
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Figure 18: Example 6.3: Uniform(left) and adaptive(right) solutions to the temperature(top) and
reactant(bottom), quadratic elements with dof 12288 for uniform refinement and with dof 6168
for adaptive refinement

.
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Figure 19: Example 6.4: Uniformly(left) and adaptively(right) obtained cross-section plots on
the outflow boundary for the component u2, quartic elements with dof 61440 for uniform refine-
ment and with dof 33690 for adaptive refinement.
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Figure 20: Example 6.4: Adaptive mesh, quartic elements with dof 33690.
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