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Abstract

We consider three-dimensional convection of an incompressible fluid saturated in
a parallelepiped with a porous medium. A mimetic finite-difference scheme for the
Darcy convection problem in the primitive variables is developed. It consists of
staggered nonuniform grids with five types of nodes, differencing and averaging op-
erators on a two-nodes stencil. The nonlinear terms are approximated using special
schemes. Two problems with different boundary conditions are considered to study
scenarios of instability of the state of rest. Branching off of a continuous family of
steady states was detected for the problem with zero heat fluxes on two opposite
lateral planes.
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Introduction

Several algorithms ( finite element, finite difference, finite volume and spectral
methods) are used for the simulation of physical problems involving partial
differential equations (PDEs). Usually, the PDEs express fundamental physi-
cal laws like conservation of mass, momentum and total energy. While solving
such problems, some information about the problem and its structure is lost
during the discretization that replaces the PDE by a system of algebraic equa-
tions. In recent years so-called mimetic discretizations were developed to yield
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stable and accurate solutions by preserving the analytical properties of the
underlying PDEs [1,2]. Several mimetic or conservative finite difference meth-
ods were derived and their conservation properties were discussed for PDEs
arising in fluid dynamics [3,4,5]. Experience shows that discrete conservation
of mass, momentum and kinetic energy produce better results as compared
with nonconservative methods.

The main goal of this paper is to develop a mimetic scheme for three-dimensional
equations of the convection in a porous medium. Natural convection of incom-
pressible fluid in a porous medium differs from the convection of a single fluid
[6]. Usually, after the state of rest loses its stability, a finite number of regimes
(convective patterns) may appear. An exciting example with an infinite num-
ber of steady states was found for the planar problem of incompressible fluid
convection in a porous medium based on the Darcy law [7]. This case of the ap-
pearance of a continuous family of equilibria was explained by the cosymmetry
theory [8,9].

To compute a continuous family of steady states we need the numerical scheme
to be mimetic of the underlying system. The approximation of the planar
Darcy convection equations was done for the first time using the Galerkin
method [10]. Then the computations of the families of steady states were per-
formed using the finite-difference scheme [11,12] and a combination of spectral
and finite-difference approaches [13]. In [14] a staggered grid discretization for
the planar problem of Darcy convection was developed in primitive variables.
Special approximation of the nonlinear terms of the underlying system was
the crucial step in all these works. It was found that the loss of gyroscopic
and cosymmetric properties in the finite-dimensional approximation destroys
the family of steady states and leads to a finite number of isolated stationary
regimes [11,13].

In this work we consider the three-dimensional problem of natural convection
in a porous medium and develop a finite-difference scheme for a system in
primitive variables (velocities, pressure and temperature). The discretization
is based on nonuniform staggered grids [14] with five types of nodes by using
the differencing and averaging operators on two-nodes stencil. The present
finite difference scheme is constructed in the spirit of the fully conservative
second-order finite difference scheme for incompressible flow on nonuniform
grids [5]. An algorithm for the computation of the family of steady states is
described, and is used in numerical computations.

This paper is organized as follows. The equations for the three-dimensional
Darcy convection problem in primitive variables are formulated in Section
1. In Section 2, the grids, discrete operators and discretization in space are
described. The computation of the continuous family of steady states with
varying stability spectra (cosymmetric family) is described in Section 3. Nu-
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merical results on the branching off of the family of steady states and isolated
regimes from the state of rest are presented in Section 4.

1 Darcy convection

1.1 Darcy equations in primitive variables

We consider an enclosure filled by a porous medium saturated by an incom-
pressible fluid which is heated from below. We assume that the fluid is in-
compressible according to the Boussinesq approximation [6]. The system of
equations consists of the momentum equation based on the Darcy law

1

ε
v̇ = −∇p+ θγ − v, (1)

and the continuity and energy equations

∇ · v = 0, (2)

θ̇ = ∆θ − λv · γ − (v · ∇)θ. (3)

Here v = (v1, v2, v3)T is the velocity vector, γ = (0, 0,−1)T is the direction of
gravity, p(x, y, z, t) is the pressure, θ(x, y, z, t) is the deviation of the temper-
ature from a linear (in z) profile, ǫ is the porosity of the medium, x, y, z are
the space variables and the dot accent denotes differentiation w.r.t. time t.

The Rayleigh number is defined as λ = αgTKl/χµ, where α is the thermal
expansion coefficient, g is the gravity acceleration, µ is the kinematic viscosity,
χ is the thermal diffusivity of the fluid, K is the permeability coefficient, T
is the characteristic temperature difference and l is the length parameter. We
suppose that the temperature at the boundary is given by a linear function
on the vertical coordinate z.

The parallelepiped D = [0, Lx] × [0, Ly] × [0, Lz], with length Lx, depth Ly

and height Lz is filled with the fluid. The normal component of the velocity
is equal to zero at the boundary

V · n = 0, (x, y, z) ∈ ∂D. (4)

We consider two problems with different boundary conditions for the temper-
ature. The first problem is characterized by a temperature deviation θ equal
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to zero at the boundary ∂D (Dirichlet boundary condition):

θ = 0, (x, y, z) ∈ ∂D. (5)

The second problem has mixed boundary conditions: the heat flux equals zero
on two lateral faces ∂1D = {y = 0}∪{y = Ly} and the temperature deviation
θ is equal to zero on the remaining faces ∂2D = D \ ∂1D

θy = 0, (x, y, z) ∈ ∂1D, θ = 0, (x, y, z) ∈ ∂2D. (6)

The initial condition is given as follows

θ(x, y, z, 0) = θ0(x, y, z), v(x, y, z, 0) = v0(x, y, z). (7)

It is simple to check that the equations (1)–(5) are invariant with respect to
the discrete symmetries

Rx : {x, y, z, v1, v2, v3, p, θ} 7→ {Lx − x, y, z,−v1, v2, v3, p, θ}, (8)

Ry : {x, y, z, v
1, v2, v3, p, θ} 7→ {x, Ly − y, z, v1,−v2, v3, p, θ}, (9)

Rz : {x, y, z, v
1, v2, v3, p, θ} 7→ {x, y, Lz − z, v1, v2,−v3, p,−θ}. (10)

This implies that with appropriate transformations of velocity, pressure and
temperature deviation, a given set of solutions produces a new set.

1.2 Darcy equations for the temperature and stream function

When the initial velocity v0 and the initial temperature distribution θ0 do not
depend on y the system (1)–(3), (5) has a two-dimensional solution

v1 = v1(x, z, t), v2 = 0, v3 = v3(x, z, t), p = p(x, z, t), θ = θ(x, z, t). (11)

In this case we can write our system as a system containing temperature and
stream function. We follow the usual assumption in porous media flow and
neglect inertia in the momentum equation. The continuity equation (2) is
fulfilled automatically when the stream function ψ is given by

v1 = −ψz, v3 = ψx. (12)

Then the underlying system can be transformed to a new form. After appli-
cation of the curl-operator to (1) we deduce

0 = ∆2ψ − θx ≡ G, ∆2() = ()xx + ()zz, (13)
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and using (12) we obtain from (3)

θ̇ = ∆2θ + λψx + J(θ, ψ) ≡ F, J(θ, ψ) = θxψz − θzψx. (14)

The boundary conditions for the system (13), (14) follow from (6):

ψ = θ = 0, (x, z) ∈ ∂D̂, where D̂ = [0, Lx]× [0, Lz]. (15)

and the initial condition is formulated only for the temperature

θ(x, z, 0) = θ0(x, z), (16)

where θ0 denotes the initial temperature distribution. For a given θ0, the
stream function ψ can be obtained from (13) and (6) as the solution of the
Dirichlet problem via Green’s operator ψ = Gθx.

Equations (13)–(15) require that the equilibrium θ = ψ = 0 (state of rest),
be stable if λ < λ11, where λnm = (2πn/a)2 + (2πm/b)2 (m,n ∈ Z) are the
eigenvalues for the corresponding spectral problem. It was shown in [9] that
the first critical value λ11 has multiplicity two for any domain D. As a result,
a continuous family of steady states appears [7,8].

The system (13)–(15) possesses the cosymmetry property [8]: a vector-function
(θ,−ψ) being orthogonal to the right-hand side of (13) and (14) in L2. Then,
we obtain the cosymmetry condition in the following form

∫

D̂

(Fψ −Gθ)dxdz =
∫

D̂

[∆θψ −∆ψθ + λψxψ + θxθ + J(θ, ψ)ψ] dxdz = 0.(17)

This can be checked directly using integration by parts and Green’s formulae.

For the integration of equations (13)–(15) it is essential to provide a discrete
version of the cosymmetry condition. In [11] a regular uniform mesh was used
and both stream function and temperature were defined at the same nodes.
The Jacobian approximation was based on the Arakawa scheme [15] and a
number of one-parameter families of steady states were computed. It was also
found that a violation of the cosymmetry property led to a degeneration of
the family. The application of staggered nonuniform grids for the problem
(13)–(16) was considered in [14].
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2 Spatial discretization

We have discretized the equations (1)–(7) using five different types of nodes:
one for the pressure, another for the temperature and three nodes for the
components of the velocity vector, see Fig. 1.

y
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i+1/2,j,k+1/2

θ
i,j+1,k+1

θ
i+1,j+1,k

v3
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i+1,j+1,k+1
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p
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θ
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v1
i,j+1/2,k+1/2
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θ
i+1,j,k+1

x

Fig. 1. Grid and nodes

For the first problem with Dirichlet boundary conditions (4) and (5) we intro-
duce a nonuniform grid for the temperature θ

0 = x0 < x1 < . . . < xNx+1 = Lx,

0 = y0 < y1 < . . . < yNy+1 = Ly,

0 = z0 < z1 < . . . < zNz+1 = Lz.

The grid for the second problem with mixed boundary conditions (4) and (6)
differs only in y direction

y0 + y1 = 0, y1 < . . . < yNy
, yNy

+ yNy+1 = 2Ly.

Thus the temperature θ is defined at the nodes

ω0 = {(xi, yj, zk), i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1, k = 0, . . . , Nz + 1}.

We introduce then the staggered grids along all coordinates
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xi+1/2 =
1

2
(xi + xi+1), i = 0, . . . , Nx,

yj+1/2 =
1

2
(yj + yj+1), j = 0, . . . , Ny,

zk+1/2 =
1

2
(zk + zk+1), k = 0, . . . , Nz.

The velocities v1, v2 and v3 are defined on the grids which are staggered
respectively along the corresponding coordinates

ω1 = {(xi, yj+1/2, zk+1/2), i = 0, . . . , Nx + 1, j = 0, . . . , Ny, k = 0, . . . , Nz},

ω2 = {(xi+1/2, yj, zk+1/2), i = 0, . . . , Nx, j = 0, . . . , Ny + 1, k = 0, . . . , Nz},

ω3 = {(xi+1/2, yj+1/2, zk), i = 0, . . . , Nx, j = 0, . . . , Ny, k = 0, . . . , Nz + 1}.

Finally, the pressure p is defined at the nodes

ωp = {(xi+1/2, yj+1/2, zk+1/2), i = 0, . . . , Nx, j = 0, . . . , Ny, k = 0, . . . , Nz}.

In the case of Dirichlet boundary conditions we do not need any fictitious
nodes for the discretization. In the case of mixed boundary conditions the
grids are introduced in such a way that on ∂2D the boundary conditions for the
temperature and the normal component of velocity are fulfilled automatically.
We define fictitious nodes for the temperature and velocity v2 to approximate
the boundary conditions on ∂1D.

2.1 Discrete finite-difference operators

To approximate (1)–(7) we define a set of discrete analogs of first order differ-
ential operators on a two-point stencil

d1θi+1/2,j,k =
θi+1,j,k − θi,j,k
xi+1 − xj

≈ (θx)i+1/2,j,k,

d2θi,j+1/2,k =
θi,j+1,k − θi,j,k
yj+1 − yj

≈ (θy)i,j+1/2,k, (18)

d3θi,j,k+1/2 =
θi,j,k+1 − θi,j,k
zk+1 − zk

≈ (θz)i,j,k+1/2,

and weighted averaging operators on the coordinates

δ1θi+1/2,j,k =
(xi+1 − xi+1/2)θi+1,j,k + (xi+1/2 − xi)θi,j,k

xi+1 − xi
≈ (θ)i+1/2,j,k,
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δ2θi,j+1/2,k =
(yj+1 − yj+1/2)θi,j+1,k + (yj+1/2 − yj)θi,j,k

yj+1 − yj
≈ (θ)i,j+1/2,k,(19)

δ3θi,j,k+1/2 =
(zk+1 − zk+1/2)θi,j,k+1 + (zk+1/2 − zk)θi,j,k

zk+1 − zk
≈ (θ)i,j,k+1/2.

The formulas (18)–(19) are valid both for integer and half-integer values of i,
j and k. Then the discrete analog of the Laplacian on the seven-nodes stencil
can be written as

△h = d1d1 + d2d2 + d3d3 ≈ △, (20)

and the averaging operator on three-dimensional cell is given as

δ0 = δ1δ2δ3. (21)

The nonlinear term approximation is constructed using a linear combination
of two terms

(v · ∇θ)i,j,k ≈ J(θ, v)i,j,k = (22)

=
1

3

[
d1δ1(θδ2δ3v

1) + d2δ2(θδ1δ3v
2) + d3δ3(θδ1δ2v

3)
]
i,j,k

+
2

3

[
d1δ2δ3(δ0θδ1v

1) + d2δ1δ3(δ0θδ2v
2) + d3δ1δ2(δ0θδ3v

3)
]
i,j,k

.

This provides second order accuracy for the uniform grid and an asymptoti-
cally second order accuracy for the quasi-uniform mesh. It allows conservation
of energy and constitute a mimetic discretization of the underlying problem.

2.2 Semi-discretization

To reach some steady state it is useful to apply an approach based on artificial
compressibility [16,17]. Thus instead of equation (2) we consider the following
equation with coefficient η

ṗ+
1

η
∇ · v = 0. (23)

Using the operators (18)–(22) we discretize system (1), (3) and (23) in the
following form

[
θ̇ −△hθ − λδ1δ2v

3 + J(θ, v)
]
i,j,k

= 0, (24)
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[
v̇1 − ε(−d1p− v1)

]
i,j+1/2,k+1/2

= 0, (25)
[
v̇2 − ε(−d2p− v2)

]
i+1/2,j,k+1/2

= 0, (26)
[
v̇3 − ε(−d3p− v3 + δ1δ2θ)

]
i+1/2,j+1/2,k

= 0, (27)
[
ṗ+

1

η
(d1v

1 + d2v
2 + d3v

3)

]

i+1/2,j+1/2,k+1/2

= 0. (28)

For the problem with Dirichlet boundary conditions (1)–(5) the grids are in-
troduced in such a way that the nodes for the transversal velocity are located
on the wall. It allows us to fulfill the boundary conditions on a rigid wall (5)
in a very simple way for each pair of planes:
for x = 0 (i = 0) and x = Lx (i = Nx + 1) we have

v1i,j+1/2,k+1/2 = 0, j = 0, . . . , Ny, k = 0, . . . , Nz, (29)

θi,j,k = 0, j = 0, . . . , Ny + 1, k = 0, . . . , Nz + 1,

for y = 0 (j = 0) and y = Ly (j = Ny + 1 )we have

v2i+1/2,j,k+1/2 = 0, i = 0, . . . , Nx, k = 0, . . . , Nz, (30)

θi,j,k = 0, i = 0, . . . , Nx + 1, k = 0, . . . , Nz + 1,

and for z = 0 (k = 0) and z = Lz (k = Nz + 1) we have

v3i+1/2,j+1/2,k = 0, i = 0, . . . , Nx, j = 0, . . . , Ny, (31)

θi,j,k = 0, i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1.

The problem with mixed boundary conditions (1)–(4) and (6) is discretized
using fictitious nodes to satisfy the boundary conditions on the planes y = 0
and y = Ly. Thus instead of (30) we have

v2i+1/2,0,k+1/2 = −v2i+1/2,1,k+1/2, i = 0, . . . , Nx, k = 0, . . . , Nz, (32)

v2i+1/2,Ny+1,k+1/2 = −v2i+1/2,Ny ,k+1/2, i = 0, . . . , Nx, k = 0, . . . , Nz,

θi,0,k = θi,1,k, θi,Ny+1,k = θi,Ny ,k, i = 0, . . . , Nx + 1, k = 0, . . . , Nz + 1.

2.3 Discrete equations for the planar problem

The system of ordinary differential equations (24)–(28), (29), (31) and (32)
has a solution such that v2i+1/2,j,k+1/2 = 0 and the other variables are invariant
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w.r.t. index j. Then, we can exclude equation (26) and consider the two-
dimensional problem. Moreover, we can eliminate pressure and velocities and
reformulate the system with the discrete stream function and temperature.
Let’s define the stream function ψ at the nodes ω0 using difference operators
(18)

(d3ψ)i,k+1/2 = −v1i,k+1/2, (d1ψ)i+1/2,k = v3i+1/2,k. (33)

The discrete analog of the continuity equation (2) is automatically fulfilled
by (33). After the substitution of (33) in (25) and (27) and the combination
of the resulting formulas we can deduce the analog of (13) (inertia terms are
omitted)

[∆2,hψ −Dxθ]i,k = 0. (34)

Similarly we find from (24)

θ̇i,k =
[
∆2,hθ + λDxψ +

1

3
JD +

2

3
Jd

]

i,k
. (35)

Here Dx = d1δ1, Dz = d3δ3 are the first order differencing operators on three-
nodes stencils. The Laplacian and Jacobian are approximated using

∆2,h = d1d1 + d3d3,

JD = Dx (θDyψ)−Dy (θDxψ) , (36)

Jd = d̂x
(
d̂0θd̂zψ

)
− d̂z

(
d̂0θd̂xψ

)
,

where d̂0 = δ1δ3, d̂x = d1δ3, d̂z = d3δ1.

The resulting scheme (34)–(36) ensures the fulfillment of a discrete analog of
the cosymmetry property (17) as well as the nullification of the gyroscopic
terms [12]. Equations in [11] follow from (34)–(36) for the case of the uniform
grid xi = ih, zk = kg, h = Lx/(Nx + 1), g = Lz/(Nz + 1). Then the Jacobian
approximation gives the famous Arakawa formula [15] on uniform grids h = g.

3 Computation of the family of steady states

We rewrite the resulting system of equations in vector form. Let us introduce
vectors which contain only unknowns at internal nodes
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Θ = (θ1,1,1, . . . , θNx,1,1, θ1,2,1, . . . , θNx,Ny,Nz
),

V 1 = (v11,1/2,1/2, . . . , v
1

Nx,1/2,1/2, v
1

1,3/2,1/2, . . . , v
1

Nx,Ny+1/2,Nz+1/2),

V 2 = (v21/2,1,1/2, . . . , v
2
Nx+1/2,1,1/2, v

2
1/2,2,1/2, . . . , v

2
Nx+1/2,Ny,Nz+1/2),

V 3 = (v31/2,1/2,1, . . . , v
3

Nx+1/2,1/2,1, v
3

1/2,3/2,1, . . . , v
3

Nx+1/2,Ny+1/2,Nz
),

P = (p1/2,1/2,1/2, . . . , pNx+1/2,1/2,1/2, p1/2,3/2,1/2, . . . , pNx+1/2,Ny+1/2,Nz+1/2),

and obtain the system which corresponds (24)–(28)

Θ̇ = A1Θ+ λC1V
3 − F (Θ, V ),

V̇ 1 = −B4P − C2V
1,

V̇ 2 = −B5P − C3V
2,

V̇ 3 = −B6P − C4V
3 + C5Θ, (37)

Ṗ = −B1V
1 − B2V

2 − B3V
3.

Here the matrices Bk, k = 1, . . . , 6, are constructed by the application of first
order difference operators, and the matrices Ck, k = 1, . . . , 5, by the averaging
operators. The matrix A1 presents the discrete form of the Laplacian. The
nonlinear term is given by F (Θ, V ). Equations (37) form a system of

5NxNyNz + 3(NxNy +NxNz +Ny +Nz) + 2(Nx +Ny +Nz) + 1

unknowns.

From (37) at J = 0 we can derive the perturbation equations (σ is a decrement
of linear growth) to analyze the stability of the state of rest

σΘ = A1Θ+ λC1V
3, (38)

σV 1 = −B4P − C2V
1, (39)

σV 2 = −B5P − C3V
2, (40)

σV 3 = −B6P − C4V
3 + C5Θ, (41)

σP = −B1V
1 − B2V

2 − B3V
3. (42)

For the decrement σ = 0 we obtain the system from which we can determine
the threshold value of the Rayleigh number corresponding to the monotonic
loss of stability. We can express P , V 1, V 2 V 3 via Θ from (38)–(42) and
obtain a system of NxNyNz equations for the unkown vector Θ. Substituting
(39), (40) and (41) into (42) we deduce

A1Θ = λC1(C5 − B6S)Θ. (43)

Here we find the vector P = SΘ from the system of linear algebraic equations
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with rank deficiency 1

(B1C
−1

2 B4 +B2C
−1

3 B5 +B3C
−1

4 B6)P = B3C
−1

4 C5Θ.

Since for an incompressible flow the pressure may differ by a constant we can
exclude one component of P and respectively one equation.

To find an isolated convective pattern we apply the direct approach and inte-
grate the system of ordinary differential equations (37) by the classical fourth
order Runge-Kutta method up to convergence.

To compute a family of steady states we apply the technique based on the
cosymmetric version of the implicit function theorem [18] and the algorithm
developed in [10,11,19]. The zero equilibrium V 1 = V 2 = V 3 = P = Θ = 0
is globally stable for λ < λ1 where λ1 is the minimal eigenvalue for spectral
problem (43). When λ is slightly larger than λ1, then all points of the fam-
ily are stable [9]. Starting from the vicinity of unstable zero equilibrium we
integrate the ordinary differential equations (37) up to a point Θ0 close to
some stable equilibrium on the family. Then we correct the point Θ0 by the
Newton method. To predict the next point on the family we determine the
kernel of the linearization matrix (Jacobi matrix) at the point Θ0 and then
use the Adams-Bashford method. This procedure is repeated to obtain the
entire family of steady states. It is important to note that the given procedure
allows us to compute the stable regimes as well as unstable ones.

4 Numerical results

V. Yudovich [8] proved that the appearance of a family of steady states in
the planar Darcy convection is caused by the nontrivial cosymmetry of the
problem. Loss of stability of the state of rest is characterized by the repeated
eigenvalues for the corresponding spectral problem. For the problem under
consideration we find the critical Rayleigh numbers from the system (43).
There exist two scenarios of instability of the state of rest in the parallelepiped:
branching off of isolated regimes and the appearance of a family of steady
states [20]. In our computer experiment the emergence of the family was only
observed for the problem with mixed boundary conditions. It was found that
a family of stable equilibria has appeared in the case of rather small value of
Ly/Lx (relative depth) which depends also on the ratio Lx/Lz.

It was shown in [14] that a uniform grid is the best choice for the computation
of the critical Rayleigh numbers while a nonuniform grid is useful for the
computation of a specific regime with a desirable accuracy. Thus, we use the
uniform grids and set up the amount of internal nodes for the temperature as
Nx ×Ny ×Nz.
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4.1 Critical Rayleigh numbers

We present in Table 1 the first seven critical Rayleigh numbers λ for the
problem with Dirichlet boundary conditions for several values of the depth
Ly and fixed length Lx = 2 and height Lz = 1. In the case Ly < 1 (Ly > 1)
the computation of critical Rayleigh numbers was carried out on the mesh of
14× 6× 6 (14× 10× 6) internal nodes for the temperature.

Table 1
Dependence of critical Rayleigh numbers on the depth Ly for the problem with
Dirichlet boundary conditions; Lx = 2, Lz = 1, mesh 14 × 6× 6 (14× 10× 6)

Ly 0.4 0.6 0.8 1.2 1.6

λ1 157.5 99.2 77.9 62.0 (59.1) (53.5)

λ2 159.0 100.1 78.0 62.3 (59.7) (54.9)

λ3 207.0 138.4 108.5 83.4 (73.3) (60.6)

λ4 209.4 139.6 116.0 85.1 (78.2) (66.0)

λ5 298.3 178.7 122.9 90.0 (79.6) (69.5)

λ6 303.8 191.1 132.4 100.1 (95.2) (81.4)

λ7 310.5 192.0 152.1 107.6 (95.3) (86.9)

One can see that some critical values in Table 1 are close to each other. When
we take Lx = Ly we find that some critical values coincide. For example, for
D = [0, 2] × [0, 2] × [0, 1] and the mesh 12 × 12 × 6 we find that λ1 = 51.3
and λ2 = λ3 = 53.8. But this is a consequence of the discrete symmetries on
the x1 and x2 coordinates and doesn’t lead to the appearance of a family of
steady states.

We summarize in Table 2 the first seven critical Rayleigh numbers λ for the
mixed boundary conditions problem for several values of the depth Ly and
fixed length Lx = 2 and height Lz = 1. One can see that for Ly = 0.4
and Ly = 0.6 two minimal eigenvalues of the problem (43) are repeated.
This corresponds to the birth of the continuous family of steady states. The
parallelepiped with Ly = 0.8 gives a single minimal eigenvalue and that results
in the appearance of two isolated stationary regimes.
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Table 2
Dependence of critical Rayleigh numbers on the depth Ly for the problem with
mixed boundary conditions; Lx = 2, Lz = 1, mesh 14× 6× 6 (14× 10× 6)

Ly 0.4 0.6 0.8 1.2 1.6

λ1 52.5 52.5 46.7 44.5 (42.5) (45.7)

λ2 52.5 52.5 52.5 51.6 (49.4) (46.1)

λ3 90.8 56.6 52.5 52.5 (52.5) (49.6)

λ4 93.1 66.8 56.2 52.5 (52.5) (52.5)

λ5 93.1 84.7 73.2 67.8 (58.1) (52.5)

λ6 102.1 93.1 93.1 68.3 (64.8) (57.8)

λ7 122.2 93.1 93.1 80.9 (68.6) (66.3)

It should be noted that on the fixed mesh the threshold corresponding to the
branching off of the family of steady states (repeated critical values) doesn’t
depend on the depth Ly. Comparison with results on the mesh 24 × 6 × 12
shows that even a rough mesh allows to find a threshold (minimum of critical
Rayleigh numbers) with accuracy about 10%. For instance, using the mesh
24× 6 × 12 we obtain λ1 = 50.5 for Ly = 0.4 and Ly = 0.6 and λ1 = 46.8 for
Ly = 0.8.

On the other hand convection in a three-dimensional box with insulating im-
permeable lateral boundaries (the lateral walls are taken as thermally insulat-
ing) was a subject of numerous works [6]. We may refer here to [21] where it
was shown that different two-dimensional and three-dimensional states appear
depending on the initial conditions.

4.2 Computation of steady states

Now we study the mixed boundary conditions problem and consider the par-
allelepipeds with small depth when the family of stationary solutions branches
off. The steady states belonging to the family are essentially two-dimensional
and don’t depend on the coordinate y.

Fig. 2 demonstrates this by the presentation of several convective patterns
from the family: none has transversal motion to the plane y = const. The
relative location of each steady state is given in Fig. 3 where each letter cor-
responds to a flow pattern in Fig. 2. In Fig. 3 we use the Nusselt values for
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the planar problem [10]

Nuv =

Lz∫

0

θx(
Lx

2
, 0, z)dz, Nuh =

Lx∫

0

θz(x, 0, 0)dx. (44)

Here Nuv corresponds to the cumulative heat flux from left to right defined
for the centered vertical section of the rectangular domain. The value Nuh is
a combined heat flux through the bottom of the enclosure, y = 0.

2

a

0

1

0.5

2

b

0

1

0.5

2

c

0

1

0.5

2

d

0

1

0.5

Fig. 2. Members of the family of steady states; λ = 60, D = [0, 2] × [0, 0.5] × [0, 1]

The regimes in Fig. 2 are the members of the family of steady states, because
stability spectra for each state have exactly one value being zero with reliable
accuracy (10−8). We plot the distribution of eigenvalues of the Jacobi matrix
(matrix of linearization) computed for the convective pattern with two sym-
metrical rolls (regime a in Fig. 3). We take different values of the depth Ly

to demonstrate the three-dimensional instability on the family, see Fig. 4).
It is clearly seen that exactly one point σ lies on the imaginary axis. The
corresponding eigenvector defines the neutral direction along the family. Such
a family is called cosymmetric, the stability of its members is governed by
nonzero eigenvalues or defined on the submanifold being transversal to the
family.

It should be noted that the given Rayleigh number is rather far from the

15



700 800 900 1000

−200

−100

0

100

200

a

b c

d

Nu
h

Nu
v

Fig. 3. Family of steady states; λ = 60, D = [0, 2] × [0, 0.5] × [0, 1]
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Fig. 4. Stability spectrum for the two-rolls steady state from the family; λ = 100,
Lx = 2, Lz = 1

critical value when some members of the family become unstable. In the case
of the parallelepiped D = [0, 2] × [0, 0.5] × [0, 1] the family of steady states
appears at λ ≈ 51. The transformation of stability spectra with increasing λ
is presented in Fig. 5. One can see that the symmetrical convective pattern
lost its stability before λ = 200. Some states on the family become unstable
at λ ≈ 190. This value is less than λ ≈ 400 which corresponds to the critical
value of instability for the planar problem.

We present in Fig. 6 the distribution of spectra for different values of the
depth Ly. One can see that the steady state with two rolls is stable when
Ly = 0.3 and unstable for Ly ≥ 0.4 (two spectra values in right part of the
complex plane). When the Rayleigh number becomes greater the instability
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Fig. 5. Stability spectrum for symmetric two-rolls pattern from the family for dif-
ferent λ; D = [0, 2] × [0, 0.5] × [0, 1]

on the family occurs for smaller values of the depth Ly.
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Fig. 6. Stability spectrum for the two-rolls steady state from the family; λ = 200,
Lx = 2, Lz = 1

When the depth Ly = 0.9 the only isolated stable regimes are branched off of
the state of rest. Because of the discrete symmetries of the problem (8)–(10) we
obtained two regimes. The flow pattern for one of these regimes is presented in
Fig. 7. The distribution of eigenvalues for this stable steady state is displayed
in Fig. 8. One can see that the distribution of the stability spectra has no
point close to the imaginary axis. This regime is essentially three-dimensional
and isolated. Branching off the isolated convective regimes is characteristic for
the parallelepipeds with non-small depth.
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Fig. 8. Stability spectrum for the isolated steady state from the family; λ = 52,
D = [0, 2] × [0, 0.9] × [0, 1]

5 Conclusion

Convection in a porous parallelepiped has demonstrated two different scenarios
of instability of the state of rest. It was found by computer experiments that
for zero heat fluxes on two lateral sides (mixed boundary conditions) the
appearance of a cosymmetric continuous family of equilibria becomes possible.
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To compute a continuous family of equilibria one needs to solve repeatedly a
nonlinear system of algebraic equations that is degenerated in the vicinity of
the family. This is why discretization is so important for the Darcy convection.
We have developed the approach based on primitive variables equations and a
finite-difference discretization with staggered nonuniform grids. This scheme
mimics the nontrivial characteristics of the underlying problem that admits
existence of a continuous family of steady states.
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TÜBITAK (Turkish Scientific Research Council). A.N. and V.T. were partially
supported by the Program for the leading scientific schools (# 5747.2006.1)
and Russian Foundation for Basic Research (# 08-01-00734) and the Program
for National Universities of Russia.

References

[1] J. M. Hyman, J. Morel, M. Shashkov and S. Steinberg,Mimetic Finite Difference

Methods for Diffusion Equations, Comput. Geosciences, 6 (2002), 333–352.

[2] J. M. Hyman, P. B. Bochev, Principles of Mimetic Discretizations of Differential

Operators, IMA Volumes in Mathematics and Its Applications, 142, (2006), 89-
114

[3] Y. Morinishi, T. S. Lund, O. V. Vasilyev, P. Moin, Fully Conservative Higher

Order Finite Difference Schemes for Incompressible Flow, J. Comput. Phys. 143
(1998) 90–124.

[4] O.V. Vasilyev, High order finite difference schemes on non-uniform meshes with

good conservation properties, J. Comput. Phys. 57 (2000) 746761.

[5] F. E. Ham, F. S. Lien, and A. B. Strong, A Fully Conservative Second-Order

Finite Difference Scheme for Incompressible Flow on Nonuniform Grids, J.
Comput. Phys. 177 (2002) 117-133.

[6] D. A. Nield, A. Bejan, Convection in porous media. Springer-Verlag, New York,
1999, 546 p.

[7] D. V. Lyubimov, On the convective flows in the porous medium heated from

below, J. Appl. Mech. Techn. Phys. 16 (1975), 257–261.

[8] V. I. Yudovich, Cosymmetry, degeneracy of the solutions of operator equations,

and the onset of filtrational convection, Math. Notes 49 (1991), 540-545.

19



[9] V. I. Yudovich, Secondary cycle of equilibria in a system with cosymmetry, its

creation by bifurcation and impossibility of symmetric treatment of it, Chaos 5
(1995), 402–441.

[10] V. N. Govorukhin, Numerical simulation of the loss of stability for secondary

steady regimes in the Darcy plane-convection problem, Doklady Akademii Nauk
363 (1998), 806–808.
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